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ABSTRACT OF DISSERTATION

Interdisciplinary Essays in Economics

and Operations Management

by

Georgios Georgiadis

Doctor of Philosophy in Management

University of California, Los Angeles, 2013

Professor Christopher Siu Tang, Chair

In this dissertation I present three papers, each as an individual chapter. The first two papers

are in the field of economics, while the third paper is in the field of operations management.

In the first paper, titled “Projects and Team Dynamics”, I study the dynamic collabora-

tion of a team on a project that progresses gradually over time and generates a payoff upon

completion. The main result is that members of a larger team work harder than members

of a smaller team if and only if the project is sufficiently far from completion. In contrast,

as the project gets close to completion, the aggregate effort of a larger team can become less

than that of a smaller team due to aggravated free-riding. This result has three implications

for the organization of partnerships and when a manager recruits agents into a team to un-

dertake a project on her behalf. First, given a fixed budget, larger teams are preferable the
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longer the project is. Second, the manager can benefit from dynamically decreasing the team

size as the project approaches completion. Third, asymmetric compensation is preferable if

the project is sufficiently short.

The second paper titled “Project Design with Limited Commitment and Teams” studies

the interaction between a group of agents who exert costly effort over time to complete

a project, and a manager who chooses its objectives. The manager can commit to the

requirements only when the project is sufficiently close to completion. This is common in

projects that involve design or quality objectives which are hard to define far in advance.

The main result is that the manager has incentives to extend the project as it progresses:

she is time-inconsistent. This result has three implications. First, the manager will choose

a larger project if she has less commitment power. Second, if the agents receive a fraction

of the project’s worth upon its completion, then the manager should delegate the decision

rights over the project size to the agents unless she has sufficient commitment power. Third,

cultivating an insider culture so that the agents act in the interest of the entire team may

aggravate the manager’s commitment problem and lower profits.

The third paper titled “The Retail Planning Problem Under Demand Uncertainty” stud-

ies the problem faced by a retailer who chooses suppliers, and determines the production,

distribution and inventory planning for products with uncertain demand in order to minimize

total expected costs. This problem is often faced by large retail chains that carry private

label products. We formulate this problem as a convex mixed integer program and show that

it is strongly NP-hard. We determine a lower bound by applying a Lagrangean relaxation

and show that this bound outperforms the standard convex programming relaxation, while

being computationally efficient. We then develop heuristics to generate feasible solutions.

Our computational results indicate that our convex programming heuristic yields feasible

solutions that are close to optimal with an average suboptimality gap at 3.4%. Finally, we

develop managerial insights for practitioners facing this problem.
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Chapter 1

Projects and Team Dynamics

1.1 Introduction

Teamwork is central in the organization of firms and partnerships. Between 1987 and 1996,

the use of employee participation teams nearly doubled from 37% to 66% among Fortune

1000 corporations (Lawler, Mohrman and Benson (2001)).1 Despite the theoretical predic-

tions that effort and group size should be inversely related (Olson (1965), Andreoni (1988),

Bonatti and Hörner (2011) and others), empirical studies commonly find that organizing

workers into teams or providing group incentives has increased productivity in both manu-

facturing and service firms. Hamilton, Nickerson and Owan (2003) find that the adoption

of teamwork and group incentives improved worker productivity for apparel production, as

is the case for Continental airlines (Knez and Simester (2001)), steel finishing lines (Boning,

Ichniowski and Shaw (2007)), and call centers (Batt (1999)).

To explain why the adoption of teamwork often leads to increased productivity in organiza-

tions in spite of the free-rider problem, scholars have argued that teams benefit from various

motivational forces such as mutual monitoring (Alchian and Demsetz (1972)), complemen-

tary skills (Lazear (1998)), peer pressure to achieve a group norm (Kandel and Lazear

1Since the late 1990s, team use seems to have reached a plateau, but it’s a relatively high plateau (Lazear
and Shaw (2007)).
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(1992)), warm-glow (Andreoni (1990)), and non-pecuniary benefits such as more engaging

work and social interaction.

I develop a tractable framework to study the team problem faced by a group of agents

who collaborate to complete a project. The primary focus is on how the agents’ incentives

depend on the team composition and on how far the project is from completion. Using this

framework, I examine (i) how the agents should organize into a partnership, and (ii) how

a manager who recruits agents into a team to carry out a project on her behalf, should

determine the team composition as well as the agents’ compensation scheme.

The key features of the model are that the project progresses gradually and stochastically

towards completion at a rate that depends on the agents’ costly effort, and it generates a

payoff when it is completed. Many applications fall within this framework. For instance,

consider new product development, where a group of individuals collaborate on the design

and manufacture of the product: features are gradually incorporated into the project, and it

starts generating a revenue stream after it is released to the market. Start-up companies also

share these dynamics: their evolution is uncertain, and they (predominantly) generate value

for the stakeholders when they are acquired by a larger corporation or they become public.

Similarly, these features are common in many consulting, marketing, as well as construction

projects.

Outline of the Results

A Markov Perfect equilibrium (hereafter MPE) is characterized by a system of ordinary

differential equations subject to a set of boundary conditions. By examining how the geom-

etry of the solution depends on the parameters of the problem, I obtain insights about how

the agents’ incentives to exert effort at different stages of the project depend on the team
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composition (i.e., the team size, as well as each agent’s reward and patience level), and on

the degree of uncertainty associated with the evolution of the project.2 A key result is that

agents increase their effort as the project progresses. Intuitively, because they discount time

and they are compensated upon completion, they have stronger incentives the closer the

project is to completion. This result was first shown by Yildirim (2006) and Kessing (2007)

who studied similar models, and its implication is that efforts are strategic complements in

this model. This is because by increasing his effort level, an agent brings the project closer

to completion, which incentivizes others to also increase their effort.

The main result is that members of a larger team work harder than members of a smaller

team - both individually and on aggregate - if and only if the project is sufficiently far

from completion.3 Intuitively, by increasing the size of the team, agents obtain stronger

incentives to free-ride. However, because the total progress that needs to be carried out is

fixed, the agents benefit from the ability to complete the project quicker, which increases

the present discounted value of their reward, and consequently strengthens their incentives.

I shall refer to these forces as the free-riding and the encouragement effect, respectively.4

Because the marginal cost of effort is increasing and agents work harder the closer the

project is to completion, their incentives to free-ride, and consequently the free-riding effect,

becomes stronger as the project progresses. On the other hand, the benefit of being able

to complete the project faster in a bigger team is smaller the less progress remains, and

hence the encouragement effect becomes weaker as the project progresses. Therefore, the

encouragement effect dominates the free-riding effect, and consequently members of a larger

2A similar approach is used by Cao (2010), who studies a continuous-time version of the patent race of
Harris and Vickers (1985).

3This result holds both if the project is a public good so that each agent’s reward is independent of
the team size, and if the project generates a fixed payoff that is shared among the team members so that
doubling the team size halves each agent’s reward.

4The latter is reminiscent to the encouragement effect in Bolton and Harris (1999), which reveals that
more experimentation by the other team members in the future increases each agent’s present incentives to
experiment.
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team have stronger incentives than those of a smaller team, if and only if the project is

sufficiently far from completion.

This result has two implications for the organization of partnerships. First, if the project is

a public good so that each agent’s reward is independent of the group size, then expanding

the partnership ad-infinitum is optimal. On the other hand, if the project generates a payoff

upon completion that is shared among the team members, then agents prefer to expand the

partnership only if the project is sufficiently long.5

I then introduce a manager who is the residual claimant of a project, and she recruits a

group of agents to undertake it on her behalf. Her objective is to determine how large

a team to employ and how to compensate its members. A key result is that the optimal

symmetric scheme compensates the agents only upon completion of the project. The intuition

is that by backloading payments (compared to rewarding the agents for reaching intermediate

milestones), the manager can provide the same incentives at the early stages of the project,

while providing stronger incentives when the project is close to completion.6

These results have three implications for team recruiting. First, the optimal team size

increases in the length of the project. To see the intuition behind this result, recall that a

larger team works harder relative to a smaller one if and only if the project is sufficiently

far from completion. Because the team size is chosen before the agents begin to work, the

benefit from a larger team working harder while the project is far from completion outweighs

the loss from working less when it is close to completion only if it is sufficiently long.

5A project is referred to as long if the expected amount of progress necessary to complete it is large.
6If asymmetric rewards are permitted, then compensating the agents for reaching intermediate milestones

can be beneficial, as it effectively enables the manager to dynamically change the team size as the project
progresses.

4



Second, a manager can benefit from dynamically decreasing the size of the team as the project

gets close to completion. The intuition is that she prefers a larger team while the project

is far from completion since free-riding is not a major concern, while she prefers a smaller

team when the project gets close to completion. With two agents, this can be implemented

using an asymmetric compensation scheme in which one agent receives a reward as soon as

the project hits a pre-specified intermediate milestone and no further compensation so that

he stops working, while the second agent is rewarded only when the project is completed.

Finally, with two (identical) agents, the manager is better off compensating them asymmet-

rically if the project is sufficiently short. Intuitively, asymmetric compensation mitigates

the free-rider problem as the agent who receives the larger reward can rely less on the other

agent (to exert effort).

Related Literature

First, this paper is related to the moral hazard in teams literature (Holmström (1982), Ma,

Moore and Turnbull (1988), Bagnoli and Lipman (1989), Legros and Matthews (1993) and

others). These papers focus on the free-rider problem, which arises when each agent must

share the benefit of his effort with the other members of the team, and they explore ways to

restore efficiency.

Most closely related to this paper is the literature on dynamic contribution games, and in

particular the papers that study threshold or discrete public goods. The general theme of

these games is that a group of agents interact repeatedly, and in every period (or moment),

each agent chooses his contribution (or effort) to a joint project at a personal cost. Contri-

butions accumulate until they reach a certain threshold, at which point each agent receives

a payment (that is independent of his individual contributions) and the game ends.
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Admati and Perry (1991) consider a setting in which two agents take turns in contributing to

a public good, and they characterize an equilibrium where agents make small contributions

at a time, each conditional on the previous contributions of the other agent. Their main

takeaway is that contributing little by little over multiple periods helps mitigate the free-

rider problem. Marx and Matthews (2000) consider a simultaneous action n− player game

in which agents receive flow payoffs while the project is in progress in addition to a lump-

sum upon completion. They show that multiple contribution periods can achieve a higher

provision level of the public good compared to what is achievable in the single period game

provided that there is a discrete payoff jump upon completion of the project.7 Lockwood

and Thomas (2002), Compte and Jehiel (2004) and Matthews (2012) also study related

contribution games.

Yildirim (2006) and Kessing (2007) show that if the project generates a payoff only upon

completion, then contributions are strategic complements even when there are no comple-

mentarities in the agents’ production function.8,9 Yildirim (2006) also examines how each

agent’s (but not the team’s aggregate) effort level depends on the team size, and he estab-

lishes a result similar to the one in this paper: members of a larger team work harder at the

early stages of the project provided that it is sufficiently long, while they work less when it

7Duffy, Ochs and Vesterlund (2007) experimentally test this prediction. They find that contributions
in the repeated game are higher than in the static game, but the increase does not depend crucially on the
existence of a discrete payoff jump upon completion.

8The model in this paper is essentially a stochastic version of the one studied by Kessing (2007). On the
other hand, the model by Yildirim (2006) differs in that the project comprises of multiple discrete stages,
and in every period, the current stage is completed as long as at least one agent exerts effort (which is
binary). Consequently, equilibrium strategies are mixed, and higher effort is the interpretation that each
agent is more likely to exert effort.

9If agents only receive flow payoffs while the project is in progress, then Fershtman and Nitzan (1991)
show that contributions become strategic substitutes. In the intermediate case in which agents receive a mix
of flow payoffs and a payoff upon completion, then Battaglini, Nunnari and Palfrey (2012) show this game
typically has a continuum of equilibria, some of which exhibit strategic complementarity and some strategic
substitutability.
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is close to completion.

I make the following contributions to this literature. First, I propose a tractable framework

to analyze the dynamic problem faced by a group of agents who collaborate over time to

complete a project. This framework can be useful for addressing an array of other questions

related to dynamic moral hazard problems that involve completing a project. Second, I

generate several insights for the organization of partnerships where agents must determine

how large a partnership to form, and for team recruiting where the manager must determine

how large a team to employ and how to compensate its members.10 Third, contrary to

previous literature, while mutual monitoring, peer pressure, synergies, and warm-glow are

helpful for explaining the benefits of teamwork, I show that they are actually not necessary

when the team’s objective is to complete a project.

The remainder of this paper is organized as follows. Section 2 introduces the model. Section

3 characterizes the equilibria of the game, and establishes some basic results. Section 4

examines how the size of the team influences the agents’ incentives, and the implications of

this result for the organization of partnerships. Section 5 studies the problem faced by a

manager who recruits agents into a team to undertake a project, and she must determine the

team composition and how to compensate the team members. Finally, Section 6 concludes.

Appendices A.1 and A.2 contain a discussion of non-Markovian strategies and a robustness

test of the main result, respectively. All proofs are provided in Appendix B.

10The latter problem is also studied by Rahmani, Roels and Karmarkar (2013). However, their analysis
focuses on the contractual relationship between the members of a two-agent team (one of whom is the residual
claimant of the project).
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1.2 The Model

A team of n agents collaborate to complete a project. Time t ∈ [0,∞) is continuous. The

project starts at some initial state q0 < 0, its state qt evolves according to a stochastic

process, and it is completed at the first time τ such that qt hits the completion state which is

normalized to 0. Note that |q0| is interpreted as the length of the project. Agent i ∈ {1, .., n}

is risk neutral, discounts time at rate r > 0, and receives a pre-specified reward Vi > 0 upon

completing the project. An incomplete project has zero value, and each agent’s outside

option equals 0.11 At time t each agent observes the state of the project qt, and exerts costly

effort to influence the drift of the stochastic process

dqt =

(
n∑
i=1

ai,t

)
dt+ σdWt ,

where ai,t denotes the effort level of agent i at time t, σ > 0 captures the degree of uncertainty

associated with the evolution of the project, and Wt is a standard Brownian motion.12,13

Efforts are unobservable and each agent’s flow cost of exerting effort a is given by c (a) =

λ
p+1

ap+1, where λ > 0 and p ≥ 1.14

At every moment t, agent i observes the state of the project qt, and chooses his effort strategy

11See Remark 3 for a discussion of the case in which each agent has a strictly positive outside option.
12For simplicity, I assume that the variance of the stochastic process (i.e., σ) does not depend either on

qt or on the agents’ effort levels. First, if σ is a continuously differentiable function of qt with range [σ, σ̄],
where 0 < σ < σ̄ <∞ and σ′ (·) <∞, then it is straightforward to show that all of the results hold. Second,
note that qt will hit the completion state at some finite time with probability 1 even if no agent ever exerts
any effort. This can be avoided if effort influences both the drift and the diffusion of the stochastic process
such that dqt = 0 if ai,t = 0 for all i. While the analysis of this case is intractable, numerical examples with

dqt = (
∑n
i=1 ai,t) dt+σ (

∑n
i=1 ai,t)

1/2
dWt suggest that the main result (i.e., Theorem 2) and its implications

continue to hold.
13I assume that efforts are perfect substitutes. To capture the notion that agents are more productive

when working in teams (due to complementary skills), one can consider the case in which the project evolves

according to dqt =
(∑n

i=1 a
1/γ
i,t

)γ
dt + σdWt, where γ ≥ 1. The main result (i.e., Theorem 2), and its

implications continue to hold.
14The case in which p ∈ (0, 1] is discussed in Remark 1, while the case in which effort costs are linear is

discussed in Appendix A.2.

8



Ai,t = {ai,s}s≥t to maximize his expected discounted payoff while taking into account the

effort strategies A−i,t = {a−i,s}s≥t of the other team members. As such, for a given set of

strategies, his expected discounted payoff function satisfies

Ji (qt) = Eτ
[
e−r(τ−t)Vi −

ˆ τ

t

e−r(s−t)c (ai,s) ds

]
, (1.1)

where the expectation is taken with respect to τ : the random variable that denotes the

completion time of the project.

Assuming that Ji (·) is twice differentiable for all i, and using standard arguments (Dixit

(1999)), one can derive the Hamilton-Jacobi-Bellman (hereafter HJB) equation for the

expected discounted payoff function of agent i:

rJi (qt) = −c (ai,t) +

(
n∑
j=1

aj,t

)
J ′i (qt) +

σ2

2
J ′′i (qt) (1.2)

defined on (−∞, 0] subject to the value-matching conditions

lim
q→−∞

Ji (q) = 0 and Ji (0) = Vi . (1.3)

(1.2) asserts that agent i’s flow payoff is equal to his flow cost of effort, plus his marginal

benefit from bringing the project closer to completion times the aggregate effort of the team,

plus a term that captures the sensitivity of his payoff to the volatility of the project. To

interpret (1.3), observe that as q → −∞, the expected time until the project is completed so

that agent i collects his reward diverges to ∞, and because r > 0, his expected discounted

payoff asymptotes to 0. On the other hand, because he receives his reward and exerts no

further effort after the project is completed, Ji (0) = Vi.
15

15By noting that Ji (q) ∈ [0, Vi] for all q and i, it follows that the transversality condition
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Finally, observe that Vi and λ are isomorphic. Therefore, without loss of generality, for the

remainder of this paper I normalize λ = 1.16

1.3 Results

1.3.1 Markov Perfect Equilibrium

I assume that agents play Markovian strategies, so that at every moment, each agent chooses

his effort level as a function of the current state of the project. Therefore, given q, agent i

chooses his effort level ai (q) such that

ai (q) ∈ arg max
ai
{aiJ ′i (q)− c (ai)} .

The first-order condition for agent i’s problem is J ′i (q) = c′ (ai): each agent chooses his effort

level such that the marginal cost of effort is equal to the marginal benefit associated with

bringing the project closer to completion. Because c′ (0) = 0 and c (·) is strictly increasing,

given any q there exists a unique non-negative effort level ai (q) that satisfies the first-

order condition as long as J ′i (q) ≥ 0. Suppose for now that J ′i (q) ≥ 0 for all q, and let

f (·) = c′−1 (·).17 Then ai (q) = f (J ′i (q)), and by substituting this into (1.2), the expected

discounted payoff for agent i satisfies

rJi (q) = −c (f (J ′i (q))) +

[
n∑
j=1

f
(
J ′j (q)

)]
J ′i (q) +

σ2

2
J ′′i (q) (1.4)

limt→∞ E [e−rtJi (qt)] = 0 of the verification theorem (p. 123 in Chang (2004)) is satisfied, thus ensur-
ing that a solution to the system of HJB equations (1.2) subject to (1.3) is indeed optimal for (1.1).

16To verify this, let J̃i (q) = Ji(q)
λ , substitute this into (1.2), and observe that λ cancels out. Using (1.3),

observe that J̃i (·) satisfies limq→−∞ J̃i (q) = 0 and J̃i (0) = Vi
λ .

17Theorem 1 establishes that in fact J ′i (q) > 0 for all q, which implies that the first-order always binds.
The interpretation is that each agent is strictly better off the closer the project is to completion.
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subject to (1.3).

A MPE is characterized by the system of nonlinear ordinary differential equations defined

by (1.4) subject to (1.3) for all i ∈ {1, .., n}. As a result, to show that a MPE exists, it

suffices to show that a solution to the system of differential equations exists, and J ′i (q) ≥ 0

for all i and q. The MPE will be unique if the system of differential equations has exactly one

solution, because every MPE must satisfy (1.4) subject to (1.3), and the first-order condition

is both necessary and sufficient.

Theorem 1. A Markov Perfect equilibrium (MPE) for the game defined by (1.1) exists.

For each agent i, the expected discounted payoff function Ji (q) is infinitely differentiable on

(−∞, 0], and it satisfies:

(i) 0 < Ji (q) ≤ Vi for all q.

(ii) J ′i (q) > 0 for all q, and hence the equilibrium effort ai (q) > 0 for all q.

(iii) J ′′i (q) > 0 for all q, and hence a′i (q) > 0 for all q.

(iv) If agents are symmetric (i.e., Vi = Vj for all i 6= j), then the MPE is symmetric.

(v) Finally, the equilibrium is unique with n symmetric agents or 2 asymmetric agents.18

J ′i (q) > 0 implies that each agent is strictly better off, the closer the project is to completion.

Because c′ (0) = 0 (i.e., the marginal cost of a little effort is negligible), each agent exerts a

strictly positive amount of effort at every state of the project: ai (q) > 0 for all q.19

The facts that agents are impatient, they incur the cost of effort at the time effort is exerted,

and they are compensated upon completing the project implies that they have stronger

incentives the closer the project is to completion: a′i (q) > 0 for all q. The implication of

18To simplify notation, if the agents are symmetric, then the subscript i is interchanged with the subscript
n to denote the team size throughout the remainder of this paper.

19If c′ (0) > 0, then there exists a quitting threshold Qq, such that agent i exerts 0 effort on (−∞, Qq],
while he exerts strictly positive effort on (Qq, 0], and his effort increases in q.
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this result is that efforts are strategic complements. This is because a higher effort level

by one agent brings the project closer to completion, which incentivizes the other agents to

also raise their effort. This result was first shown by Yildirim (2006) and Kessing (2007),

and it is in contrast to static models (Holmström (1982)), dynamic models in which the

agents receive flow payoffs while the project is in progress (Fershtman and Nitzan (1991)),

as well as dynamic models in which the project can be completed instantaneously (Bonatti

and Hörner (2011)) where efforts are strategic substitutes.

A natural question that arises is whether agents can increase their expected discounted

payoff by adopting non-Markovian strategies, so that their effort at t depends on the entire

evolution path of the project {qs}s≤t. While a formal analysis of this case is beyond the scope

of this paper, following Sannikov and Skrzypacz (2007), I conjecture that there does not

exist a symmetric Public Perfect equilibrium in which agents can achieve a higher expected

discounted payoff than the MPE at any state of the project. See Appendix A.1 for details.

Remark 1. Recall that I have assumed that p ≥ 1; i.e., effort costs are at least quadratic.

If p ∈ (0, 1), then a MPE exists as long as σ2

4

´∞
0

s ds

r
∑n
i=1 Vi+ns

p+1
p

>
∑n

i=1 Vi.
20 In this case,

statements (i)-(iv) of Theorem 1 continue to hold, and the MPE is unique if the agents are

symmetric. By noting that none of the subsequent proofs use that p ≥ 1, it follows that all

comparative statics hold for any p > 0.

Remark 2. The model assumes that the project is never canceled. If there is an exogenous

cancellation state QC < q0 such that the project is canceled (and the agents receive payoff

0) at the first time that qt hits QC , then effort needs no longer be increasing in q. Instead,

20This condition is satisfied if
∑n
i=1 Vi, r and n are sufficiently small, or if σ and p are sufficiently large.

If p ≥ 1, then it is satisfied for any choice of the other parameters.
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it increases in q only if Qc is sufficiently small (i.e., close to −∞), it is U-shaped if QC

is in some medium range, and it decreases in q if QC is sufficiently large. Intuitively, this

is because agents have incentives to work harder when the state of the project is near the

cancellation state to avoid hitting it, and these incentives are stronger, the larger QC is.

Remark 3. Recall that agents are assumed to have outside option 0. Consider a team of

symmetric agents, each of whom has a positive outside option 0 ≤ u < Jn (q0). In this

case, there exists an abandonment state QA < q0 satisfying the smooth-pasting condition

∂
∂q
Jn (q, QA)

∣∣∣
q=QA

= 0 such that they abandon the project at the first moment q hits QA.

In this case, effort is increasing in progress.21 Note that if u = 0, then QA = −∞.

1.3.2 Comparative Statics

This section establishes some comparative statics, which are helpful for understanding how

the agents’ incentives depend on the parameters of the problem. To examine the effect

of each parameter to the agents’ incentives, I consider two symmetric teams that differ in

exactly one attribute: their members’ rewards Vi, patience levels ri, or the volatility of the

project σ.22

Proposition 1. Consider two teams comprising of symmetric agents.

(i) If V1 < V2, then other things equal, a1 (q) < a2 (q) for all q.

(ii) If r1 > r2, then other things equal, there exists an interior threshold Θr such that

a1 (q) ≤ a2 (q) if and only if q ≤ Θr.

(iii) If σ1 > σ2, then other things equal, there exist interior thresholds Θσ,1 ≤ Θσ,2 such that

a1 (q) ≥ a2 (q) if q ≤ Θσ,1 and a1 (q) ≤ a2 (q) if q ≥ Θσ,2.

21Here, Jn (·, QA) denotes each agent’s expected discounted payoff conditional on the abandonment state
QA.

22Since the teams differ in a single parameter (i.e., their reward Vi in statement (i)), abusing notation, I
let ai (·) denote each agent’s effort strategy corresponding to the parameter with subscript i.
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The intuition behind statement (i) is straightforward. If the agents receive a bigger reward,

then they always work harder in equilibrium.

Statement (ii) asserts that a team of less patient agents works harder relative to a team of

more patient agents if and only if the project is sufficiently close to completion. Intuitively,

less patient agents have more to gain from an earlier completion (provided that the project

is sufficiently close to completion). However, bringing the completion time forward requires

them to exert more effort, whose costs are incurred at the time that effort is exerted, whereas

the reward is only collected upon completion of the project. Therefore, the benefit from

bringing the completion time forward (by exerting more effort) outweighs its cost only when

the project is sufficiently close to completion.

Finally, statement (iii) asserts that incentives become stronger in the volatility of the project

σ when it is far from completion, while the opposite is true when it gets close to completion.23

To see the intuition behind this result, note that as the volatility increases, it becomes more

likely that the project will be completed either earlier than expected (upside), or later than

expected (downside). If the project is sufficiently far from completion, then Ji (q) ' 0 so that

the downside is negligible, while J ′′i (q) > 0 implies that the upside is not (negligible), and

consequently a1 (q) ≥ a2 (q). On the other hand, because the completion time of the project

is non-negative, the upside diminishes as the project approaches completion. Therefore,

when the project is sufficiently close to completion (i.e., q ≥ Θσ,2), the downside is bigger

than the upside so that a1 (q) ≤ a2 (q).

23A limitation of this result is that it does not guarantee that Θσ,1 = Θσ,2, which implies that it does not
provide any prediction about how the agents’ effort depends on σ when q ∈ [Θσ,1,Θσ,2]. However, numerical
analysis indicates that in fact Θσ,1 = Θσ,2.
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1.3.3 First-Best Outcome

To obtain a benchmark for the agents’ equilibrium effort levels, I compare them to the first-

best outcome, where at every moment, each agent chooses his effort level to maximize the

team’s, as opposed to his individual expected discounted payoff. I focus on the symmetric

case, and denote by Ĵn (q) and ân (q) the first-best expected discounted payoff and effort

level of each member of an n-person team, respectively. The first-order condition for each

agent’s effort level satisfies ân (q) ∈ arg maxa

{
anĴ ′n (q)− c (a)

}
, and substituting the first

order condition into (1.2) yields

rĴn (q) = −c
(
f
(
nĴ ′n (q)

))
+ nf

(
nĴ ′n (q)

)
Ĵ ′n (q) +

σ2

2
Ĵ ′′n (q)

subject to the boundary conditions (1.3). It is straight-forward to show that the properties

established in Theorem 1 apply for Ĵn (q) and ân (q). In particular, the system of first-best

ODE subject to the boundary conditions (1.3) has a unique solution, Ĵ ′n (q) > 0 for all q

so that the first order condition always binds, and Ĵ ′′n (q) > 0 for all q, which implies that

â′n (q) > 0; i.e., similar to the MPE, the first-best effort level increases with progress.

Proposition 2. In a team of n ≥ 2 agents, ân (q) > an (q) and Ĵn (q) > Jn (q) for all q.

This result is not surprising: due to the free-rider problem, in the MPE, each agent exerts

strictly less effort and he is strictly worse off at every state of the project as compared to

the case in which agents behave collectively by choosing their effort level at every moment

to maximize the team’s expected discounted payoff.
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1.4 Team Dynamics

1.4.1 The Effect of Team Size to the Agents’ Incentives

When examining the relationship between the agents’ incentives and the size of the team,

it is important to consider how each agent’s reward depends on the team size. I consider

the two extreme cases: the public good allocation scheme, wherein each agent receives a

reward V upon completing the project, which does not depend on the size of the team, and

the budget allocation scheme, wherein each agent receives a reward V
n

upon completing the

project.

With n symmetric agents, each agent’s expected discounted payoff function satisfies

rJn (q) = −c (f (J ′n (q))) + nf (J ′n (q)) J ′n (q) +
σ2

2
J ′′n (q)

subject to limq→−∞ Jn (q) = 0 and Jn (0) = Vn, where Vn = V or Vn = V
n

under the public

good or the budget allocation scheme, respectively.

Theorem 2. Consider two teams comprising of n and m > n identical agents. Under both

allocation schemes, there exist thresholds Θn,m and Φn,m such that

(A) am (q) ≥ an (q) if and only if q ≤ Θn,m ; and

(B) mam (q) ≥ nan (q) if and only if q ≤ Φn,m.

Statement (A) asserts that under both allocation schemes, members of a larger team work

harder than members of a smaller team if and only if the project is sufficiently far from

completion.24 Figure 1 illustrates an example. To understand the intuition behind this result,

note that by increasing the size of the team, two forces influence the agents’ incentives: First,

24A similar result is established by Yildirim (2006). However, the comparative static applies only to each
agent’s individual effort in his model rather than to the team’s aggregate effort as well.

16



agents obtain stronger incentives to free-ride. To see why, consider an agent’s dilemma at

time t to (unilaterally) reduce his effort by a small amount ε for a short interval ∆. By

doing so, he saves approximately εc′ (a (qt)) ∆ in cost of effort, but at t + ∆, the project is

(on expectation) ε∆ father from completion (compared to the scenario in which he does not

reduce his effort). In equilibrium, this agent will carry out only 1
n

of that lost progress, which

implies that the benefit from shirking increases in the size of the team. On the other hand,

because the total progress that needs to be carried out is fixed, increasing the team size

(and holding strategies fixed) implies that the project will (on expectation) be completed

sooner. This increases the present discounted value of each agent’s reward (i.e., Eτ [e−rτ ]),

which it turn strengthens his incentives. I shall refer to these forces as the free-riding and

the encouragement effect, respectively, and the intuition will follow from examining how the

magnitude of these effects changes as the project progresses.

First, let us consider the free-riding effect, and recall that agents work harder, the closer

the project is to completion. By noting that the marginal cost of effort is increasing, it

follows that an agent’s gain from free-riding, which is proportional to c′ (a (qt)), increases in

qt. Therefore, the free-riding effect becomes stronger as the project progresses. In addition,

recall that effort vanishes as q → −∞ and c′ (0) = 0, which implies that the free-riding effect

is negligible when the project is sufficiently far from completion.

To understand how the magnitude of the encouragement effect changes as the project pro-

gresses, it is simpler to consider the deterministic case in which σ = 0. Let τ denote the

completion time when the team comprises of n agents, and note that each agent’s marginal

benefit of bringing the completion time forward is − d
dτ
Vne

−rτ = rVne
−rτ . Doubling the team

size and holding strategies fixed halves the completion time, and each agent’s respective

marginal benefit now becomes rV2ne
− 1

2
rτ . Therefore, the magnitude of the encouragement
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effect can be measured by the ratio of the marginal benefits: V2n

Vn
e
rτ
2 . Under the public good

allocation (in which case V2n

Vn
= 1), this ratio increases in τ and it is always greater than 1,

which implies that the benefit of a bigger team being able to complete the project sooner de-

creases as the project progresses, and it becomes negligible as the project nears completion.

On the other hand, under the budget allocation (in which case Vm
Vn

= 1
2
), while the ratio in

consideration still increases in τ , it is greater than 1 only if τ is sufficiently large. Therefore,

the encouragement effect is positive when the project is sufficiently far from completion, it

becomes weaker as the project progresses, and it is negative when the project is close to

completion.

q

J n(q
)

-80 -70 -60 -50 -40 -30 -20 -10 0
0

100

200

300

400

500

q

J n(q
)

-60 -50 -40 -30 -20 -10 0
0

100

200

300

400

500

q

a n(q
)

-80 -70 -60 -50 -40 -30 -20 -10 0

0

5

10

15

20

25

q

a n(q
)

-60 -50 -40 -30 -20 -10 0

0

5

10

15

20

25

J
3
(q)

J
5
(q)

J
3
(q)

J
5
(q)

a
3
(q)

a
5
(q)

a
3
(q)

a
5
(q)

Θ
3,5

Θ
3,5Φ

3,5

Public Good Allocation Budget Allocation
Expected Discounted Payoff Functions Expected Discounted Payoff Functions

Individual Effort Levels Individual Effort Levels

Φ
3,5

Θ
3,5

Θ
3,5

Figure 1.1: Illustration of Theorem 2. The upper panels illustrate each agent’s expected

discounted payoff under public good (left) and budget (right) allocation for two different team

sizes: n = 3 and 5. The lower panels illustrate each agent’s equilibrium effort. In both cases, there

exists an interior threshold Θ3,5 such that each member of the larger team exerts more effort relative

to each member of the smaller team if and only if q ≤ Θ3,5. Similarly, there exists a threshold Φ3,5

such that the total aggregate of the larger team is greater than that of the smaller team if and only

if q ≤ Φ3,5.
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Therefore, under both allocation schemes, the encouragement effect dominates the free-riding

effect, and consequently, members of a larger team work harder than those of a smaller team

if and only if the project is sufficiently far from completion.

Statement (B) shows that under both allocation schemes, the aggregate effort exerted by the

larger team is greater than that of the smaller team if and only if the project is sufficiently

far from completion. When the project is far from completion such that q ≤ Θn,m, it is

straightforward that the aggregate effort of the larger team exceeds that of the smaller team

by statement (A). The perhaps surprising aspect of this result is that the free-riding effect

can become so aggravated when the project is near completion, that not only each member

of the larger team exerts less effort relative to each member of the smaller team, but also

the aggregate effort of the larger team becomes less than that of the smaller team.

By using the same proof technique, one can show that under both allocation schemes, the

first-best aggregate effort increases in the team size at every state of the project. This

strengthens the intuition that statement (B) is a consequence of the free-riding effect be-

coming overwhelmingly stronger than the encouragement effect when the project is close to

completion.

Theorem 2 reaches an opposite conclusion relative to earlier results in the moral hazard

in teams and the public good contribution literatures that establish an inverse relationship

between individual effort (or contribution) and team size (Holmström (1982), Andreoni

(1988), Bonatti and Hörner (2011), and others).25 The key difference is that efforts are

strategic complements in the model studied in this paper, so that as the team size increases,

25While Bonatti and Hörner (2011) focus on the uncertainty pertaining to the feasibility of the project,
their result that the aggregate effort of the team decreases in its size (equation 7) continues to hold as p̄→ 1,
in which case the project is known to be feasible.
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in addition to the free-rider problem becoming aggravated (which is consistent with previous

findings), the agents also benefit from the ability to complete the project sooner.

Note that the thresholds of Theorem 2 need not always be interior. In particular, it is

possible that Θn,m = −∞ under budget allocation, which would imply that each member

of the smaller team always works harder than each member of the larger team. However,

numerical analysis indicates that Θn,m is always interior under both allocation schemes. On

the other hand, Φn,m is guaranteed to be interior only under budget allocation if effort costs

are quadratic, while one can find examples in which Φn,m is interior as well as examples in

which Φn,m = 0 otherwise. Numerical analysis indicates that the most important parameter

that determines whether Φn,m is interior is the convexity of the effort costs, and it is interior

as long as effort costs are not too convex (i.e., p is sufficiently small). This is intuitive,

because more convex effort costs favor the larger team more. In addition, under public good

allocation, for Φn,m to be interior, it is also necessary that n and m are sufficiently small.

Intuitively, this because the size of the pie increases in the team size under this scheme,

which (again) favors the larger team.26

1.4.2 Partnership Formation

Now let us examine the problem faced by a group of agents who organize into a partnership.

Suppose that teams are formed sequentially, and the agents who have already committed to

join, decide whether to admit another member.27 Admission to the team is costless, and no

agent will begin to work until the team composition has been finalized.

Proposition 3. Suppose that n identical agents have committed to join a team.

26The case in which effort costs are linear is examined in Appendix A.2, and an analogous result to
Theorem 2 is shown: members of an (n+ 1) -member team have stronger incentives relative to those of an
n-member team as long as n is sufficiently small.

27Note that because the equilibrium is symmetric, the team members will be in agreement with respect to
whether they should admit a new member.
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(i) Under public good allocation, the team is always better off admitting another member.

(ii) Under budget allocation, there exists a threshold Tn such that the team is better off

admitting another member if and only if the project length |q0| ≥ Tn.

By adding another member to the team, each agent will need to exert less effort to complete

the project, which implies that his total expected discounted effort cost will decrease. If his

reward upon completing the project does not depend on the team size, as is the case under

public good allocation, then expanding the partnership ad-infinitum is optimal.

On the other hand, if each agent who has committed to join must surrender part of his

reward in order to expand the team (i.e., under budget allocation), then he will do so only

if the gain from being able to complete the project sooner in a bigger group is sufficiently

large to offset the decrease in his net payoff upon completing the project. This is true only

if the project is sufficiently long. This result is illustrated in the top panels of Figure 1.

1.5 Manager’s Problem

1.5.1 The Model with a Manager

The manager is risk neutral, she discounts time at the same rate r > 0 as the agents, and

her outside option is normalized to 0. She is the residual claimant of a project, and she

hires a group of agents to undertake it on her behalf, which has length |q0|, and generates

a payoff U > 0 upon completion. To incentivize the agents, the manager designates a set

of milestones q0 < Q1 < .. < QK = 0 (where K ∈ N), and for every k ∈ {1, .., K} she

allocates non-negative payments {Vi,k}ni=1 that are due upon reaching milestone Qk for the

first time. She then makes a take-it-or-leave-it offer to a group of agents, and once the
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team composition has been finalized, the agents begin to work.28,29 For each k, the manager

disburses the payments {Vi,k}ni=1 as soon as the project hits Qk for the first time. As soon as

the project is completed, the manager collects her payoff U , she disburses the final payments

{Vi,K}ni=1 to the agents, and the game ends.

The manager’s problem entails choosing the team size and the agents’ contracts to maxi-

mize her expected discounted profit at time 0 (i.e., at q0) subject to the agents’ incentive

compatibility constraints.

1.5.2 A Preliminary Result

I begin by considering the case in which the manager compensates the agents only upon

completing the project, and I show in Theorem 3 that her problem is well-defined and it

satisfies some desirable properties. Then I explain how this result extends to the case in

which the manager also rewards the agents for reaching intermediate milestones.

Given the team size n and the agents’ compensations {Vi}ni=1 that are due upon completion

of the project, the manager’s expected discounted profit function can be written as

F (q) =

(
U −

n∑
i=1

Vi

)
Eτ
[
e−rτ | q

]
,

where the expectation is taken with respect to the project’s completion time τ , which depends

on the agents’ strategies and the stochastic evolution of the project.30 By using the first order

condition for each agent’s equilibrium effort level as determined in Section 3, the manager’s

28The details of each offer is public information, so that without loss of generality, I can assume that offers
will be made such that every one is accepted.

29It is important to acknowledge that the manager’s contracting space is limited. While a contract a-la-
Sannikov (2008) or one in which the agents’ payoffs may also depend on time is more desirable, such analysis
is not tractable using the present model, and is therefore left for future research.

30Note that the subscript k is dropped when K = 1 (in which case Q1 = 0).
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expected discounted profit at any given state of the project satisfies

rF (q) =

[
n∑
i=1

f (J ′i (q))

]
F ′ (q) +

σ2

2
F ′′ (q) (1.5)

defined on (−∞, 0] subject to the boundary conditions

lim
q→−∞

F (q) = 0 and F (0) = U −
n∑
i=1

Vi . (1.6)

The interpretation of these conditions is similar to (1.3). As the state of the project diverges

to −∞, its expected completion time diverges to ∞, and because r > 0, the manager’s

expected discounted profit diminishes to 0. On the other hand, the manager’s profit is

realized when the project is completed, and it equals her payoff U less the payments
∑n

i=1 Vi

disbursed to the agents.31

Theorem 3. Given (n, {Vi}ni=1), a solution to the manager’s problem defined by (1.5) subject

to the boundary conditions (1.6) and the agents’ problem as defined in Theorem 1 exists, and

it has the following properties:

(i) F (q) > 0 and F ′ (q) > 0 for all q.

(ii) F (·) is infinitely differentiable on (−∞, 0].

(iii) Finally, F (·) is unique if the team comprises of n symmetric or 2 asymmetric agents.

Now let us discuss how Theorems 1 and 3 extend to the case in which the manager rewards

the agents upon reaching intermediate milestones. Recall that she can designate a set of

milestones, and attach rewards to each milestone that are due as soon as the project reaches

the respective milestone for the first time. Let Ji,k (·) denote agent i’s expected discounted

payoff given that the project has reached k−1 milestones, which is defined on (−∞, Qk], and

note that it satisfies (1.4) subject to limq→−∞ Ji,k (q) = 0 and Ji,k (Qk) = Vi,k + Ji,k+1 (Qk),

where Ji,K+1 (0) = 0. The second boundary condition states that upon reaching milestone

31Because the manager’s outside option is equal to 0, without loss of generality, I can restrict attention to
the case in which the payments {Vi}ni=1 are chosen such that

∑n
i=1 Vi ≤ U .
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k, agent i receives the reward attached to that milestone, plus the continuation value from

future rewards. Starting with Ji,K (·), it is straightforward that it satisfies the properties of

Theorem 1, and in particular, that Ji,K (Qk−1) is unique (as long as n = 2 or compensation is

symmetric) so that the boundary condition of Ji,K−1 (·) at QK−1 is well-defined. Proceeding

backwards, it follows that for every k, Ji,k (·) satisfies the properties established in Theorem

1.

To examine the manager’s problem, let Fk (·) denote her expected discounted profit given

that the project has reached k − 1 milestones, which is defined on (−∞, Qk], and note that

it satisfies (1.5) subject to limq→−∞ Fk (q) = 0 and Fk (Qk) = Fk+1 (Qk) −
∑n

i=1 Vi,k, where

FK+1 (Qk) = U . The second boundary condition states that upon reaching milestone k, the

manager receives the continuation value of the project, less the payments that she disburses to

the agents for reaching this milestone. Again starting with k = K and proceeding backwards,

it is straightforward that Fk (·) satisfies the properties established in Theorem 3 for all k.

1.5.3 Contracting Problem

Theorem 4. The optimal symmetric scheme compensates the agents only upon completion

of the project.

To prove this result, I consider an arbitrary set of milestones and arbitrary rewards attached

to each milestone, and I construct an alternative scheme that rewards the agents only upon

completing the project and renders the manager better off. Intuitively, because rewards

are sunk (in terms of incentivizing the agents) after they are disbursed, by backloading

payments, the manager can provide the same incentives at the early stages of the project,

while providing stronger incentives when the project is close to completion.
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The value of Theorem 4 lies in that it reduces the infinite-dimensional problem of determining

the team size, the number of milestones, the set of milestones, and the rewards attached to

each milestone into a two-dimensional problem, in which the manager only needs to determine

the team size and her budget B =
∑n

i=1 Vi for compensating the agents.

The restriction that the manager compensates the agents symmetrically is not without loss

of generality. As shown in Remark 4, an asymmetric scheme that rewards the agents upon

reaching (different) intermediate milestones may be desirable, because it enables the manager

to dynamically decrease the team size as the project progresses, which in turn mitigates free-

riding. However, because individuals value fairness in pay (Lazear (1989) and Baron and

Kreps (1999)), it is of interest to examine the symmetric case. The following Proposition

examines how the manager should determine her budget.

Proposition 4. Suppose that the manager employs n identical agents and she compensates

them symmetrically. Then her optimal budget B increases in the projects length |q0|.

Contemplating an increase in her budget, the manager trades off a decrease in her net profit

U−B and an increase in the project’s present discounted value Eτ [e−rτ | q0]. Because a longer

project takes (on average) a larger amount of time to be completed, a decrease in her net

profit has a smaller effect on her expected discounted profit at time 0 the longer the project

is. Therefore, the benefit from raising the agents’ compensations outweighs the decrease in

her net profit if and only if the project is sufficiently long, and the desired comparative static

follows by applying the Monotonicity Theorem of Milgrom and Shannon (1994).

Proposition 5. Suppose the manager has a fixed budget B to (symmetrically) compensate

a group of identical agents. For any m > n, there exists a threshold Tn,m such that she is

better off employing an m-member team instead of an n-member one if and only if the length

of the project |q0| ≥ Tn,m.
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Figure 1.2: Illustration of Proposition 5. Given a fixed budget, the manager’s expected

discounted profit is higher if she recruits a 5-member team relative to a 3-member team if and only

if the initial state of the project q0 is to the left of the threshold −T3,5; or equivalently, if and only

if |q0| ≥ T3,5.

Given a fixed budget, the manager’s objective is to choose the team size to minimize the

expected completion time of the project. This is equivalent to maximizing the aggregate

effort of the team along the evolution path of the project. Hence, the intuition behind this

result follows from statement (B) of Theorem 2. If the project is short, then on expectation,

the aggregate effort of the smaller team will be greater than that of the larger team due to

the free-riding effect (on average) dominating the encouragement effect. The opposite is true

if the project is long. Figure 2 illustrates an example.

Applying the Monotonicity Theorem of Milgrom and Shannon (1994) leads one to the

following Corollary.

Corollary 1. Given a fixed budget to (symmetrically) compensate a group of identical agents,

the manager’s optimal team size n increases in the length of the project |q0|.

The take-away from Proposition 5 (and Corollary 1) is that a larger team is more desirable

26



while the project is far from completion, whereas a smaller team becomes preferable when

the project gets close to completion. Therefore, it seems desirable to construct a scheme that

dynamically decreases the team size as the project progresses. Suppose that the manager

employs two identical agents on a fixed budget B, and she designates a retirement state R,

such that one of the agents is permanently retired (i.e., he stops exerting effort) at the first

time that the state of the project hits R. From that point onwards, the other agent continues

to work alone. Both agents are compensated only upon completion of the project, and the

payments (say V1 and V2) are chosen such that the agents are indifferent with respect to who

will retire at R; i.e., their expected discounted payoffs are equal at qt = R.32,33

Proposition 6. Suppose the manager employs two identical agents with quadratic effort

costs. Consider the retirement scheme described above, where the retirement state R is

chosen such that |R| ≤ min {|q0| , T1,2} and T1,2 is taken from Proposition 5. There exists a

threshold ΘR > |R| such that the manager is better off implementing this retirement scheme

relative to allowing both agents to work together until the project is completed if and only if

its length |q0| < ΘR.

First, note that after one agent retires, the other will exert first-best effort until the project

is completed. Because the manager’s budget is fixed, this retirement scheme is preferable

only if it increases the expected aggregate effort of the team along the evolution path of the

project. A key part of the proof involves showing that agents have weaker incentives before

one of them is retired as compared to the case in which they always work together (i.e.,

when a retirement scheme is not used). Therefore, the benefit from having one agent exert

first-best effort after one of them retires outweighs the loss from the two agents exerting less

effort before one of them retires (relative to the case in which they always work together)

32It is shown that (i) such a pair {V1, V2} exists, and (ii) the agent who will retire at R (say agent 2)
receives a smaller payment that the other agent; i.e., V2 < V1.

33Note that this is one of many possible retirement schemes. A more elaborate analysis of dynamic team
size management is beyond the scope of this paper, and it is left for future research.
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only if the project is sufficiently short. Hence, this retirement scheme is preferable if and

only if |q0| < ΘR.

Remark 4. This result implies that an asymmetric scheme that rewards the agents upon

reaching (different) intermediate milestones can do better than the best symmetric one

if the project is sufficiently short. Observe that the retirement scheme proposed above

can be implemented using the following (asymmetric) rewards-for-milestones scheme. Let

Q1 = R (where |R| ≤ min {|q0| , T1,2}), and suppose that agent 1 receives V as soon as the

project is completed, while he receives no intermediate rewards. On the other hand, agent

2 receives the expected discounted value of B − V upon hitting R for the first time (i.e.,

(B − V )Eτ [e−rτ |R]), and he receives no further compensation, so that he effectively retires

at that point. From Proposition 6 we know that there exists a budget split V and a threshold

ΘR such that this scheme is preferable if |q0| < ΘR.

We know that an asymmetric compensation scheme may be beneficial, because it enables the

manager to dynamically decrease the team size as the project gets close to completion. In this

case, the asymmetry arises from the fact that agents are compensated upon reaching different

milestones. The following result shows that an asymmetric scheme may be preferable even if

the manager compensates the (identical) agents upon reaching the same milestone; namely,

upon completing the project.

Proposition 7. Suppose the manager has a fixed budget B > 0, and she employs two

identical agents with quadratic effort costs whom she compensates upon completion of the

project. Then for all ε ∈
(
0, B

2

]
, there exists a threshold Tε such that the manager is better

off compensating the two agents asymmetrically such that V1 = B
2

+ ε and V2 = B
2
− ε instead

of symmetrically, if and only if the length of the project |q0| ≤ Tε.
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To see the intuition behind this result, note that ε = B
2

is equivalent to the case in which

the manager employs a single agent, and from Proposition 5 we know that there exists a

threshold T1,2 such that the manager is better off employing one agent instead of two if and

only if |q0| ≤ T1,2. The intermediate cases in which ε ∈
(
0, B

2

)
can be thought of as if the

manager employs a full-time agent and a part-time one. Part of the proof involves showing

that the aggregate effort under an asymmetric scheme is larger compared to a symmetric one

if and only if the project is sufficiently close to completion. Intuitively, this is because the

full-time agent cannot free-ride on the other agent as much. By noting that the manager’s

objective is to allocate her budget so as to maximize the agents’ expected aggregate effort

along the evolution path of the project, it follows that this is best done by allocating it

asymmetrically between the agents if the project is sufficiently short.

1.6 Concluding Remarks

This paper studies the dynamic collaboration of a team on a project that gradually progresses

towards completion. The main result is that members of a larger team work harder than

those of a smaller team if and only if the project is sufficiently far from completion. On

the other hand, when the project is close to completion, free-riding becomes so severe that

a larger team may on aggregate exert less effort than a smaller team. I then examine the

implications of this result for the organization of partnerships where agents must determine

how large a partnership to form, and for team recruiting where the manager must determine

how large a team to employ and how to compensate its members.

This paper opens several opportunities for future research. First, Georgiadis, Lippman and

Tang (2012) consider the case in which the project length is endogenous. Motivated by

projects that involve design or quality objectives which are often difficult to define in advance,
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they examine how the manager’s optimal project length depends on her ability to commit to a

given project length in advance. Second, this paper provides several testable predictions that

lend themselves to empirical or experimental investigation; in particular, Ederer, Georgiadis

and Nunnari test the predictions of Theorem 2 using laboratory experiments. Third, one

may consider the case in which the state of the project can only be observed imperfectly,

in which case the agents would need to update their beliefs about how close the project

is to completion over time, and base their strategies on those beliefs. Optimal contracting

for incentivizing a group of agents to undertake a project is an issue that deserves further

exploration; for example, by incorporating time into the agents’ contracts and using an

approach in the mold of Sannikov (2008). Finally, from an applied perspective, it might be

interesting to examine how a project can be split into subprojects.
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1.7 Additional Results

1.7.1 Equilibria with Non-Markovian Strategies

I have assumed that agents’ strategies are Markovian so that at every moment, each agent’s

effort is a function of only the current state of the project qt. This raises the question whether

agents can increase their expected discounted payoff by adopting non-Markovian strategies,

so that their effort depends on the entire evolution path of the project {qs}s≤t. Sannikov

and Skrzypacz (2007) study a related model in which agents can change their actions only

at times t = 0,∆, 2∆, .., where ∆ > 0 (but small), and the information structure is similar;

i.e., the state variable evolves according to a diffusion process whose drift is influenced by

the agents’ actions. They show that the payoffs from the best symmetric Public Perfect

equilibrium (hereafter PPE) converge to the payoffs corresponding to the MPE as ∆ → 0

(see their Proposition 5).

A natural discrete-time analog of the model considered in this paper is one in which at

t ∈ {0,∆, 2∆, ..} each agent chooses his effort level ai,t at cost c (ai,t) ∆, and at t + ∆ the

state of the project is equal to qt+∆ = qt + (
∑n

i=1 ai,t) ∆ + εt+∆, where εt+∆ ∼ N (0, σ2∆).

In light of the similarities between this model and the model in Section VI of Sannikov and

Skrzypacz (2007), it is reasonable to conjecture that in the continuous-time game, there

does not exist a PPE in which agents can achieve a higher expected discounted payoff than

the MPE at any state of the project. However, because a rigorous proof is difficult for the

continuous-time game and the focus of this paper is on team formation, a formal analysis of

non-Markovian PPE of this game is left for future work.

Nevertheless, it is useful to present some intuition. Following Abreu, Pearce and Stacchetti

(1986), an optimal PPE involves a collusive regime and a punishment regime, and in every
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period, the decision whether to remain in the collusive regime or to switch is guided by the

outcome in that period alone. In the context of this model, at t+ ∆, each agent will base his

decision on qt+∆−qt
∆

. As ∆ decreases, two forces influence the scope of cooperation. First, the

gain from a deviation in a single period decreases, which helps cooperation. On the other

hand, because V
( qt+∆−qt

∆

)
= σ2

∆
, the agents must decide whether to switch to the punishment

regime by observing noisier information, which increases the probability of type I errors

(i.e., triggering a punishment when no deviation has occurred), thus hurting cooperation.

As Sannikov and Skrzypacz (2007) show, the latter force becomes overwhelmingly stronger

than the former as ∆→ 0, thus eradicating any gains from cooperation.

1.7.2 Linear Effort costs

The assumption that effort costs are convex affords tractability as it allows for comparative

statics despite the fact that the underlying system of HJB equations does not have a closed-

form solution. However, convex effort costs also favor larger teams. Therefore, it is useful

to examine how the comparative statics with respect to the team size extend to the case

in which effort costs are linear; i.e., c (a) = a. In this case, the marginal value of effort is

equal to J ′i (q) − 1, so that agents find it optimal to exert the largest possible effort level

if J ′i (q) ≥ 1, and the smallest possible effort level otherwise. As a result, it is necessary

to impose bounds on the minimum and maximum effort that each agent can exert at any

moment. Let us assume that a ∈ [0, 1]. Moreover, suppose that agents are symmetric, and

σ = 0 so that the project evolves deterministically.34 By using (1.2) subject to (1.3) and the

corresponding first order condition, it follows that a unique project-completing MPE exists

if q0 ≥ ψn, where ψn = n
r

ln
(

n
rVn+1

)
, it is symmetric, and each agent’s discounted payoff and

34While the corresponding HJB equation can be solved analytically if effort costs are linear, the solution
is too complex to obtain the desired comparative statics if σ > 0.
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effort strategy satisfies

Jn (q) =

[
−1

r
+

(
Vn +

1

r

)
e
rq
n

]
1{q≥ψn} and an (q) = 1{q≥ψn} ,

respectively.35 Observe that agents have stronger incentives the closer the project is to

completion, as evidenced by the facts that J ′′n (q) ≥ 0 for all q, and an (q) = 1 if and only

if q ≥ ψn. To investigate how the agents’ incentives depend on the team size, one needs

to examine how ψn depends on n. This threshold decreases in the team size n under both

allocation schemes (i.e., both if Vn = V and Vn = V
n

for some V > 0) if and only if n is

sufficiently small. This implies that members of an (n+ 1) − member team have stronger

incentives relative to those of an n−member team as long as n is sufficiently small.

If agents maximize the team’s rather than their individual discounted payoff, then the first-

best threshold ψ̂n = n
r

ln
(

1
rV+1

)
, and it is straightforward to show that it decreases in n

under both allocation schemes. Therefore, similar to the case in which effort costs are

convex, members of a larger team always have stronger incentives than those of a smaller

one.

1.8 Proofs

Proof of Theorem 1. This proof is organized in 7 parts. I first show that a MPE for the

game defined by (1.1) exists. Next I show that properties (i) thru (iii) hold, and that the

value functions are infinitely differentiable. Then I show that with symmetric agents, the

equilibrium is also symmetric. Finally, I show that the solution to the system of boundary

value ODE is unique when the game comprises of n symmetric, or 2 asymmetric agents.

35Note that if q0 ∈
[
n
r ln

(
n

rV+1

)
, 1r ln

(
1

rV+1

))
, then there exists another equilibrium in which no agent

exerts any effort and the project is never completed.
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Part I: Existence of a MPE.

To show that a MPE exists, it suffices to show that a solution satisfying the system of

ordinary nonlinear differential equations defined by (1.4) subject to the boundary conditions

(1.3) for all i = 1, .., n exists.

To begin, fix some arbitrary N ∈ N and rewrite (1.4) and (1.3) as

J ′′i,N (q) =
2

σ2

[
rJi,N (q) + c

(
f
(
J ′i,N (q)

))
−

(
n∑
j=1

f
(
J ′j,N (q)

))
J ′i,N (q)

]
(1.7)

subject to Ji,N (−N) = 0 and Ji,N (0) = Vi

for all i. Let gi (JN , J
′
N) denote the the RHS of (1.7), where JN and J ′N are vectors whose

ith row corresponds to Ji,N (q) and J ′i,N (q), respectively , and note that gi (·, ·) is continuous.

Now fix some arbitrary K > 0, and define a new function

gi,K (JN , J
′
N) = max {min {gi (JN , J ′N) , K} , −K} .

Note that gi,K (·, ·) is continuous and bounded. Therefore, by Lemma 4 in Hartman (1960),

there exists a solution to J ′′i,N,K = gi,K
(
Ji,N,K , J

′
i,N,K

)
subject to Ji,N,K (−N) = 0 and

Ji,N,K (0) = Vi for all i. This Lemma, which is due to Scorza-Dragoni (1935), states:

Let g (q, J, J ′) be a continuous and bounded (vector-valued) function for α ≤ q ≤ β and

arbitrary (J, J ′). Then, for arbitrary qα and qβ, the system of differential equations J ′′ =

g (q, J, J ′) has at least one solution J = J (q) satisfying J (α) = qα and J (β) = qβ.

The next part of the proof involves showing that there exists a K̄ such that gi,K
(
Ji,N,K (q) , J ′i,N,K (q)

)
∈(

−K̄, K̄
)

for all i, K and q, which will imply that the solution Ji,N,K̄ (·) satisfies (1.7) for
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all i. The final step involves showing that a solution exists when N → ∞, so that the first

boundary condition in (1.7) is replaced by limq→−∞ Ji (q) = 0.

First, I show that 0 ≤ Ji,N,K (q) ≤ Vi and J ′i,N,K (q) ≥ 0 for all i and q. Because Ji,N,K (0) >

Ji,N,K (−N) = 0, either Ji,N,K (·) is increasing, or it has an interior global extreme point.

If the former is true, then the desired inequality holds. Suppose the latter is true and let

z∗ denote such interior global extreme point. By noting that Ji,N,K (·) is at least twice

differentiable, J ′i,N,K (z∗) = 0, and hence J ′′i,N,K (z∗) = max
{

min
{

2r
σ2Ji,N,K (z∗) , K

}
, −K

}
.

Suppose z∗ is a global maximum. Then J ′′i,N,K (z∗) ≤ 0 =⇒ Ji,N,K (z∗) ≤ 0, which contradicts

the fact that Ji,N,K (0) > 0. Now suppose that z∗ is a global minimum. Then J ′′i,N,K (z∗) ≥

0 =⇒ Ji,N,K (z∗) ≥ 0. Therefore either Ji,N,K (·) is increasing, or it has an interior global

minimum z∗ such that Ji,N,K (z∗) ≥ 0. As a result, 0 ≤ Ji,N,K (q) ≤ Vi for all i and q.

Next, let us focus on J ′i,N,K (·). Suppose that there exists a z∗∗ such that J ′i,N,K (z∗∗) < 0. Be-

cause Ji,N,K (−N) = 0, either Ji,N,K (·) is decreasing on [−N, z∗∗], or it has a local maximum

z̄ ∈ (−N, z∗∗). If the former is true, then J ′i,N,K (z∗∗) < 0 implies that Ji,N,K (q) < 0 for some

q ∈ (−N, z∗∗], which is a contradiction because Ji,N,K (q) ≥ 0 for all q. So the latter must

be true. Then J ′i,N,K (z̄) = 0 implies that J ′′i,N,K (z̄) = max
{

min
{

2r
σ2Ji,N,K (z̄) , K

}
, −K

}
.

However, because z̄ is a maximum, J ′′i,N,K (z̄) ≤ 0, and together with the fact that Ji,N,K (q) ≥

0 for all q, this implies that Ji,N,K (q) = 0 for all q ∈ [−N, z∗∗). But since J ′i,N,K (z∗∗) < 0, it

follows that Ji,N,K (q) < 0 for some q in the neighborhood of z∗∗, which is a contradiction.

Therefore, it must be the case that J ′i,N,K (q) ≥ 0 for all i and q.

The next step involves establishing that there exists an Ā, independent of N and K, such that

J ′i,N,K (q) < Ā for all i and q. First, let SN,K (q) =
∑n

i=1 Ji,N,K (q). By summing J ′′i,N,K =

gi,K
(
Ji,N,K , J

′
i,N,K

)
over i, using that (i) 0 ≤ Ji,N,K (q) ≤ Vi and 0 ≤ J ′i,N,K (q) ≤ S ′N,K (q) for
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all i and q, (ii) f (x) = x1/p, and (iii) c (x) ≤ x c′ (x) for all x ≥ 0, and letting Γ = r
∑n

i=1 Vi,

we have that for all q

∣∣S ′′N,K (q)
∣∣ ≤ 2

σ2

n∑
i=1

[
rJi,N,K (q) + c

(
f
(
J ′i,N,K (q)

))
+

[
n∑
j=1

f
(
J ′j,N,K (q)

)]
J ′i,N,K (q)

]

≤ 2

σ2

[
Γ +

n∑
i=1

c′
(
c′−1

(
J ′i,N,K (q)

))
c′−1

(
J ′i,N,K (q)

)
+ S ′N,K (q)

n∑
j=1

f
(
J ′j,N,K (q)

)]

≤ 4

σ2

[
Γ + nS ′N,K (q) f

(
S ′N,K (q)

)]
=

4

σ2

[
Γ + n

(
S ′N,K (q)

) p+1
p

]
.

By noting that SN,K (0) =
∑n

i=1 Vi, SN,K (−N) = 0, and applying the mean value theorem,

it follows that there exists a z∗ ∈ [−N, 0] such that S ′N,K (z∗) =
∑n
i=1 Vi
N

. It follows that for

all z ∈ [−N, 0]

n∑
i=1

Vi >

ˆ z

z∗
S ′N,K (q) dq ≥ σ2

4

ˆ z

z∗
S ′N,K (q)

S ′′N,K (q)

Γ + n
(
S ′N,K (q)

) p+1
p

dq ≥ σ2

4

ˆ S′N (z)

0

s

Γ + ns
p+1
p

ds ,

where I let s = S ′N,K (q) and used that S ′N,K (q)S ′′N,K (q) dq = S ′N,K (q) dS ′N,K (q). It suffices

to show that there exists a Ā < ∞ such that σ2

4

´ Ā
0

s

Γ+ns
p+1
p
ds =

∑n
i=1 Vi. This will imply

that S ′N,K (q) < Ā, and consequently J ′i,N,K (q) ≤ Ā for all q ∈ [−N, 0]. To show that such

Ā exists, it suffices to show that
´∞

0
s

Γ+ns
p+1
p
ds = ∞. First, observe that if p = 1, then

´∞
0

s
Γ+ns2

ds = 1
2n

ln (Γ + ns2) |∞0 = ∞. By noting that s
Γ+ns2

is bounded for all s ∈ [0, 1],

s

Γ+ns
p+1
p
> s

Γ+ns2
for all s > 1 and p > 1, and

´∞
0

s
Γ+ns2

ds = ∞, integrating both sides over

[0,∞] yields the desired inequality.

Because Ā is independent of both N and K, this implies that J ′i,N,K (q) ∈
[
0, Ā

]
for all

q ∈ [−N, 0], N ∈ N and K > 0. In addition, we know that Ji,N,K (q) ∈ [0, Vi] for all

q ∈ [−N, 0], N ∈ N and K > 0. Now let K̄ = maxi
{

2
σ2

[
rVi + c

(
f
(
Ā
))]}

, and observe that

a solution to J ′′
i,N,K̄

= gi,K̄

(
JN,K̄ , J

′
N,K̄

)
subject to Ji,N,K̄ (−N) = 0 and Ji,N,K̄ (0) = Vi for
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all i exists, and gi,K̄

(
JN,K̄ (q) , J ′

N,K̄
(q)
)

= g
(
Ji,N,K̄ (q) , J ′

N,K̄
(q)
)

for all i and q ∈ [−N, 0].

Therefore, Ji,N,K̄ (·) solves (1.7) for all i.

To show that a solution for (1.7) exists at the limit as N → ∞, I use the Arzela-Ascoli

theorem, which states:

Consider a sequence of real-valued continuous functions (fn)n∈N defined on a closed and

bounded interval [a, b] of the real line. If this sequence is uniformly bounded and equicon-

tinuous, then there exists a subsequence (fnk) that converges uniformly.

Recall that 0 ≤ Ji,N (q) ≤ Vi and that there exists a constant Ā such that 0 ≤ J ′i,N (q) ≤ Ā

on [−N, 0] for all i and N > 0. Hence the sequences {Ji,N (·)} and
{
J ′i,N (·)

}
are uniformly

bounded and equicontinuous on [−N, 0]. By applying the Arzela-Ascoli theorem to a se-

quence of intervals [−N, 0] and letting N → ∞, it follows that the system of ODE defined

by (1.4) has at least one solution satisfying the boundary conditions (1.3) for all i.

Part II: Ji (q) > 0 for all q and i.

By the boundary conditions we have that limq→−∞ Ji (q) = 0 and Ji (0) = Vi > 0. Suppose

that there exists an interior z∗ that minimizes Ji (·) on (−∞, 0]. Clearly z∗ < 0. Then

J ′i (z∗) = 0 and J ′′i (z∗) ≥ 0, which by applying (1.4) imply that

rJi (z
∗) =

σ2

2
J ′′i (z∗) ≥ 0 .

Because limq→−∞ Ji (q) = 0, it follows that Ji (z
∗) = 0. Next, let z∗∗ = arg maxq≤z∗ {Ji (q)}.

If z∗∗ is on the boundary of the desired domain, then Ji (q) = 0 for all q ≤ z∗. Suppose

that z∗∗ is interior. Then J ′i (z∗∗) = 0 and J ′′i (z∗∗) ≤ 0 imply that Ji (z
∗∗) ≤ 0, so that

Ji (q) = J ′i (q) = 0 for all q < z∗.
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Using (1.4) we have that

|J ′′i (q)| ≤ 2r

σ2
|Ji (q)|+

2

σ2
(n+ 1) f

(
Ā
)
|J ′i (q)| ,

where this bound follows from part I of the proof. Now let hi (q) = |Ji (q)| + |J ′i (q)|, and

observe that hi (q) = 0 for all q < z∗, hi (q) ≥ 0 for all q, and

h′i (q) ≤ |J ′i (q)|+ |J ′′i (q)| ≤ 2r

σ2
|Ji (q)|+

2

σ2

[
fi
(
Ā
)

+
n∑
j=1

fj
(
Ā
)

+
σ2

2

]
|J ′i (q)| ≤ C hi (q) ,

where C = 2
σ2 max

{
r, (n+ 1) f

(
Ā
)

+ σ2

2

}
. Fix some ẑ < z∗, and applying the differential

form of Grönwall’s inequality yields hi (q) ≤ hi (ẑ) exp
(´ q

ẑ
Cdx

)
for all q. Because (i) hi (ẑ) =

0, (ii) exp
(´ q

z∗
Cdx

)
< ∞ for all q, and (iii) hi (q) ≥ 0 for all q, this inequality implies that

Ji (q) = 0 for all q. However this contradicts the fact that Ji (0) = Vi > 0. As a result, Ji (·)

cannot have an interior minimum, and there cannot exist a z∗ > −∞ such that Ji (q) = 0

for all q ≤ z∗. Hence Ji (q) > 0 for all q.

Part III: J ′i (q) > 0 for all q and i.

Pick a K such that Ji (0) < Ji (K) < Vi. Such K is guaranteed to exist, because Ji (·) is

continuous and Ji (0) > 0 = limq→−∞ Ji (q). Then by the mean-value theorem there exists a

z∗ ∈ (K, 0) such that J ′i (z∗) = Ji(0)−Ji(K)
−K = Vi−Ji(K)

−K > 0. Suppose that there exists a z∗∗ ≤ 0

such that J ′i (z∗∗) ≤ 0. Then by the intermediate value theorem, there exists a z̄ between z∗

and z∗∗ such that J ′i (z̄) = 0, which using (1.4) and part II implies that rJi (z̄) = σ2

2
J ′′i (z̄) > 0

(i.e., z̄ is a local minimum). Consider the interval (−∞, z̄]. Because limq→−∞ Ji (q) = 0,

Ji (z̄) > 0 and J ′′i (z̄) > 0, there exists an interior local maximum ẑ < z̄. Since ẑ is interior,

it must be the case that J ′i (ẑ) = 0 and J ′′i (ẑ) ≤ 0, which using (1.4) implies that Ji (ẑ) ≤ 0.

However this contradicts the fact that Ji (q) > 0 for all q. As a result there there cannot
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exist a z̄ ≤ 0 such that J ′i (z̄) ≤ 0. Together with part II, this proves properties (i) and (ii).

Part IV: Ji (q) is infinitely differentiable on (−∞, 0] for all i.

By noting that limq→−∞ Ji (q) = limq→−∞ J
′
i (q) = 0 for all i, and by twice integrating both

sides of (1.7) over the interval (−∞, q], we have that

Ji (q) =

ˆ q

−∞

ˆ y

−∞

2r

σ2
Ji (z) +

2

σ2

[
c (f (J ′i (z)))−

(
n∑
j=1

f
(
J ′j (z)

))
J ′i (z)

]
dz dy .

Recall that c (a) = ap+1

p+1
, f (x) = x1/p, and J ′i (q) > 0 for all q. Since Ji (q) and J ′i (q) satisfy

(1.4) subject to the boundary conditions (1.3) for all i, Ji (q) and J ′i (q) are continuous for

all i. As a result, the function under the integral is continuous and infinitely differentiable in

Ji (z) and J ′i (z) for all i. Because Ji (q) is differentiable twice more than the function under

the integral, the desired result follows by induction.

Part V: J ′′i (q) > 0 and a′i (q) > 0 for all q and i.

I have thus far established that for all q, Ji (q) > 0 and J ′i (q) > 0. By applying the envelope

theorem to (1.4) we have that

rJ ′i (q) = [f (J ′i (q)) + A−i (q)] J
′′
i (q) +

σ2

2
J ′′′i (q) , (1.8)

whereA−i (q) =
∑n

j 6=i f
(
J ′j (q)

)
. Choose some finite z∗ ≤ 0, and let z∗∗ = arg max {J ′i (q) : q ≤ z}.

By part III, J ′i (z∗∗) > 0. Because limq→−∞ J
′
i (q) = 0, either z∗∗ = z, or z∗∗ is interior. Sup-

pose z∗∗ is interior. Then J ′′i (z∗∗) = 0 and J ′′′i (z∗∗) ≤ 0, which using (1.8) implies that

J ′i (z∗∗) ≤ 0. However this contradicts the fact that J ′i (z∗∗) > 0, and therefore J ′i (·) does not

have an interior maximum on (−∞, z] for any z ≤ 0. Therefore z∗∗ = z, and hence J ′i (·) is
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strictly increasing; i.e., J ′′i (q) > 0 for all q. By differentiating ai (q) we have that

d

dq
ai (q) =

d

dq
c′−1 (J ′i (q)) =

J ′′i (q)

c′′ (c′−1 (J ′i (q)))
> 0 .

Part VI: When the agents are symmetric, the MPE is also symmetric.

Suppose agents are symmetric; i.e., they have identical effort costs, patience levels, and they

receive the same reward upon completing the project. In any MPE, {Ji (·)}ni=1 must satisfy

(1.4) subject to (1.3). Arbitrarily pick two agents i and j, and let ∆ (q) = Ji (q) − Jj (q).

Observe that ∆ (·) is smooth, and limq→−∞∆ (q) = ∆ (0) = 0. Therefore either ∆ (·) ≡ 0 on

(−∞, 0], which implies that Ji (·) ≡ Jj (·) on (−∞, 0] for all i 6= j and hence the equilibrium is

symmetric, or ∆ (·) has at least one interior global extreme point. Suppose the latter is true,

and denote this extreme point by z∗. Then and by using (1.4) and the fact that ∆′ (z∗) = 0,

we have r∆ (z∗) = σ2

2
∆′′ (z∗). Suppose that z∗ is a maximum. Then ∆′′ (z∗) ≤ 0, which

implies that ∆ (z∗) ≤ 0. However, because ∆ (0) = 0 and z∗ is assumed to be a maximum,

∆ (z∗) = 0. Next, suppose that z∗ is a minimum. Then ∆′′ (z∗) ≥ 0, which implies that

∆ (z∗) ≥ 0. However, because ∆ (0) = 0 and z∗ is assumed to be a minimum, ∆ (z∗) = 0.

Therefore it must be the case that ∆ (·) ≡ 0 on (−∞, 0]. Since i and j 6= i were chosen

arbitrarily, Ji (·) ≡ Jj (·) on (−∞, 0] for all i 6= j, which implies that the equilibrium is

symmetric.

Part VII: The system of ordinary nonlinear differential equations defined by (1.4) for (a)

n ∈ N symmetric agents, and (b) 2 asymmetric agents, has at most one solution satisfying

the boundary conditions (1.3).

Case (A): I first prove uniqueness for n symmetric agents. From Part VI of the proof,

we know that if agents are symmetric, then the MPE is symmetric. Therefore to facilitate
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exposition, I drop the notation for the ith agent. Any solution J (·) must satisfy

rJ (q) = −c (f (J ′ (q)))+nf (J ′ (q)) J ′ (q)+
σ2

2
J ′′ (q) subject to lim

q→−∞
J (q) = 0 and J (0) = V .

Suppose that there exist 2 functions JA (q) , JB (q) that satisfy the above boundary value

problem. Then defineD (q) = JA (q)−JB (q), and note thatD (·) is smooth and limq→−∞D (q) =

D (0) = 0. Hence either D (·) ≡ 0 in which case the proof for (a) is complete, or D (·) has an

interior global extreme point z∗. Suppose the latter is true. Then D′(z∗) = 0, which implies

that rD (z∗) = σ2

2
D′′ (z∗). Suppose that z∗ is a global maximum. Then D′′ (z∗) ≤ 0 implies

that D (z∗) ≤ 0, and D (0) = 0 implies that D (z∗) = 0 and D (q) ≤ 0 for all q. Hence either

D (·) ≡ 0 or z∗ is a global minimum. Suppose the latter is true. Then D′′ (z∗) ≥ 0 implies

that D (z∗) ≥ 0, and D (0) = 0 implies that D (z∗) = 0 and D (q) ≥ 0 for all q. Therefore it

must be the case that D (·) ≡ 0 and the proof for (a) is complete.

Case (b): Now consider (1.4) for the case with 2 asymmetric agents. Any solution J1 (q)

and J2 (q) must satisfy

J ′′1 (q) = − 2

σ2

p

p+ 1
[J ′1 (q)]

p+1
p − 2

σ2
J ′1 (q) [J ′2 (q)]

1
p +

2r

σ2
J1 (q) and

J ′′2 (q) = − 2

σ2

p

p+ 1
[J ′2 (q)]

p+1
p − 2

σ2
[J ′1 (q)]

1
p J ′2 (q) +

2r

σ2
J2

subject to Ji (0) = Vi and limq→−∞ Ji (q) = 0 for all i = {1, 2}.

To show that there exists a unique solution to the above system of ODE, I shall use Theorem

5 in Hartman (1960), which states
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Let g (q, J, J ′) be defined on D (T,R) (i.e., be a continuous vector value function on [−N, 0]

such that |Ji (q)| ≤ Vi for all q and i) and possess continuous partial derivatives with respect

to the components of J and J ′. Let F (q, J, J ′) and G (q, J, J ′) denote the Jacobian matrices

F (q, J, J ′) =
∂g

∂J
and G (q, J, J ′) =

∂g

∂J ′

and suppose that 4F −GGT � 0. Then (1.7) has at most one solution satisfying Ji (0) = Vi

and Ji (−N) = 0 for all i ∈ {1, 2}.

Clearly in this case g (q, J, J ′) is continuous, |Ji (q)| is bounded for all q and i, and possesses

continuous partial derivatives with respect to Ji and J ′i for all i. Therefore it suffices to show

that 4F − GGT � 0 holds for all N > 0 and by letting N → ∞ conclude that the above

system of 2 ODE has a unique solution on (−∞, 0]. We have

F (q) =
2

σ2

 r 0

0 r

 and G (q) = − 2

σ2

 [J ′1 (q)]1/p + [J ′2 (q)]1/p 1
p

J ′1(q)

J ′2(q)
[J ′2 (q)]1/p

1
p

J ′2(q)

J ′1(q)
[J ′1 (q)]1/p1 [J ′1 (q)]1/p + [J ′2 (q)]1/p

 .

To facilitate exposition, let us denote (only for this proof) α = [J ′1 (q)]1/p, β = [J ′2 (q)]1/p and

κ =
J ′1(q)

J ′2(q)
. By noting that J ′i (q) > 0 for all q and i, it follows that 0 < κ <∞. Then

4F −GGT =
2

σ2

 4r + (α + β)2 +
(
κβ
p

)2

(α + β)
(
α
κp

+ κβ
p

)
(α + β)

(
α
κp

+ κβ
p

)
4r + (α + β)2 +

(
α
κp

)2

 .

To check that the above matrix is positive definite I use Sylvester’s criterion. First note that

4r1 + (α + β)2 +
(
κβ
p

)2

> 0. The determinant of the above matrix is equal to

16r2 + 8 (α + β)2 r + 4r

[(
α

κp

)2

+

(
κβ

p

)2
]

+ (α + β)2

[
(α + β)2 − αβ

p2

]
.
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Clearly the first three terms are positive. By noting that p ≥ 1 and using the property that

J ′i (q) > 0 for all q, it follows that the last term is also positive. Hence the determinant of

the above matrix is positive and uniqueness follows by applying Theorem 5 from Hartman

(1960) for any given N > 0 and letting N →∞.

In light of the fact that J ′i (q) > 0 for all q, it follows that the first-order condition for each

agent’s best response always binds. As a result, any MPE must satisfy the system of ODE

defined by (1.4) subject to (1.3). Since this system of ODE has a unique solution with n

symmetric or 2 asymmetric agents, it follows that in these two cases, the dynamic game

defined by (1.1) has a unique MPE.

Proof of Proposition 1. This proof is organized in 4 parts. To begin, let Ji (·) denote the ex-

pected discounted payoff of each member of an n-person team with parameters {ri, ci (·) , Vi}

who undertakes a project with volatility σ.

Proof for property (i): First, pick α < 1 and V such that V1 = αV2 < V2 = V , and

let r = r1 = r2. Let DV (q) = J1 (q) − J2 (q), and note that it is smooth, and DV (0) =

(α− 1)V < 0 = limq→−∞DV (q) = 0. Suppose that DV (·) has some interior extreme point,

which I denote by z∗. Then D′V (z∗) = 0, and by using (1.4) we have

rDV (z∗) =
σ2

2
D′′V (z∗) .

Suppose that z∗ is a global minimum. Then D′′V (z∗) ≥ 0 =⇒ DV (z∗) ≥ 0, which contradicts

the fact that DV (0) < 0. So z∗ must be a global maximum. Then D′′V (z∗) ≤ 0 =⇒

DV (z∗) ≤ 0, which contradicts the fact that z∗ is interior. Hence DV (·) cannot have any

interior extreme points, and thus it must be decreasing for all q; i.e., D′V (q) ≤ 0 for all q

and D′V (q) < 0 for at least some q.

43



The next step involves showing that in fact, D′V (q) < 0 for all q. Suppose that there exists

a z such that D′V (z) = 0. If DV (z) = 0, then limq→−∞DV (q) = 0, any interior maximum

on (−∞, z] must satisfy DV (z) ≤ 0, and any interior minimum must satisfy DV (z) ≥ 0.

It follows that DV (q) = D′V (q) = 0 for all q < z. So suppose that DV (z) < 0, and let

ẑ = arg minq≤z {DV (q)}. Clearly, ẑ > −∞. Second, to show that ẑ < z, suppose that

the contrary is true; i.e., ẑ = z. Then D′V (z) = 0, DV (z) < 0, and (1.4) imply that

D′′V (z) < 0, which contradicts the assumption that ẑ is a minimum. Hence ẑ is interior, so

that D′V (z) = 0 and D′′V (z) ≥ 0, which together with (1.4) imply that DV (z) ≥ 0. However,

this contradicts the assumption that DV (z) < 0. Therefore, DV (z) = 0, and it follows that

DV (q) = D′V (q) = 0 for all q < z. Next, let M (q) = [J1 (q)− J2 (q)] + [J ′1 (q)− J ′2 (q)],

and note that M (q) ≤ 0 for all q, M (0) < 0, and M (q) = 0 for all q < z. By applying

the differential form of Grönwall’s inequality, it follows that M (q) = 0 for all q, which

contradicts the fact that M (0) < 0. Hence, I conclude that there does not exist a z such

that D′V (z) = 0. Therefore, D′V (q) < 0 for all q, which implies that a1 (q) < a2 (q) for all q.

Proof for property (ii): First pick δ > 1 and r such that r1 = δr > r = r2. Next,

define Dr (q) = J1 (q) − J2 (q). By noting that limq→−∞Dr (q) = Dr (0) = 0, observe that

either Dr (·) ≡ 0, or Dr (·) has at least one interior extreme point. Suppose Dr (·) ≡ 0.

Then D′r (·) ≡ D′′r (·) ≡ 0, and using (1.4) we have that δJ1 (·) ≡ J2 (·). However this is a

contradiction, because J1 (·) ≡ J2 (·), and δ > 1. Therefore Dr (·) must have at least one

interior extreme point, which I denote by z∗. By noting that D′r (z∗) = 0 and using (1.4), we

have that

r [δJ1 (z∗)− J2 (z∗)] =
σ2

2
D′′r (z∗) .

Suppose that z∗ is a global maximum. Then D′′r (z∗) ≤ 0, and hence δJ1 (z∗) − J2 (z∗) ≤ 0.
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However because Ji (·) > 0 and δ > 1, this implies that Dr (z∗) < 0 = Dr (0), which

contradicts the assumption that z∗ is a global maximum. Therefore, z∗ must be a global

minimum, and Dr (q) ≤ 0 for all q.

I next show that Dr (·) is single-troughed. Suppose it is not. Then I can find an interior local

minimum z∗ followed by an interior a local maximum z̄ > z∗. Since z̄ is an interior maximum,

D′r (z̄) = 0 and D′′r (z̄) ≤ 0, and from (1.4) it follows that δJ1 (z̄) ≤ J2 (z̄). Because z∗ is

an interior minimum, D′′r (z∗) ≥ 0 implies that δJ1 (z∗) ≥ J2 (z∗) ⇒ −δJ1 (z∗) ≤ −J2 (z∗),

and by using δJ1 (z̄) ≤ J2 (z̄), we have that 0 < δ [J1 (z̄)− J1 (z∗)] ≤ J2 (z̄)− J2 (z∗), where

the first inequality follows from Theorem 1 (iii) and the fact that z̄ > z∗. By assumption

Dr (z̄) > Dr (z∗), which implies that J2 (z̄)− J2 (z∗) < J1 (z̄)− J1 (z∗), so that

δ [J1 (z̄)− J1 (z∗)] ≤ J2 (z̄)− J2 (z∗) < J1 (z̄)− J1 (z∗) ,

which contradicts the facts that δ > 1 and J1 (z̄) − J1 (z∗) > 0. Hence Dr (·) must be

single-troughed. Because limq→−∞Dr (q) = Dr (0) = 0, there exists a Θr < 0 such that

D′r (q) ≤ 0 if and only if q ≤ Θr. Finally, because c1 (·) ≡ c2 (·) ⇒ f1 (·) ≡ f2 (·), it follows

that a1 (q) ≤ a2 (q) if and only if D′r (q) ≤ 0, or equivalently, if and only if q ≤ Θr.

Proof for property (iii): First pick α > 1 and σ such that σ2
1 = ασ2

2 > σ2
2 = σ2.

Let J1 (·) and J2 (·) denote each agent’s expected discounted payoff associated with σ1 and

σ2, respectively. Moreover let Dσ (q) = J1 (q) − J2 (q) and observe that limq→−∞Dσ (q) =

Dσ (0) = 0. So either Dσ (·) ≡ 0 on (−∞, 0], or Dσ (·) has some interior global extreme

point. Suppose that Dσ (·) ≡ 0 on (−∞, 0]. This implies that Dσ (q) = D′σ (q) = D′′σ (q) = 0
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for all q, and using (1.4) it follows that for all q

rDσ (q) =
σ2

2
[αD′′σ (q) + (α− 1) J ′′2 (q)] =⇒ J ′′2 (q) = 0 .

However this contradicts Theorem 1 (iii), which implies that Dσ (·) hast at least one interior

global extreme point, denoted by z∗. Then D′σ (z∗) = 0, and using (1.4) yields rDσ (z∗) =

σ2

2
[αD′′σ (z∗) + (α− 1) J ′′2 (z∗)]. Suppose that z∗ is a global minimum. Then D′′σ (z∗) ≥ 0, α >

1, and J ′′2 (z∗) > 0 imply that Dσ (z∗) > 0. However, this contradicts the fact that Dσ (0) = 0.

Therefore z∗ must be a maximum. This implies that there exist interior thresholds Θσ,1 ≤

Θσ,2 such that Dσ (·) is increasing on (−∞,Θσ,1] and decreasing on [Θσ,2, 0].36 Finally,

because a1 (q) ≥ a2 (q) if and only if D′σ (q) ≥ 0, the desired result follows.

Proof of Proposition 2. This proof is organized in 3 parts. I first show that the desired

relationships hold with weak inequality. Then I show that they in fact hold with strict

inequality.

Part I: â (q) ≥ a (q) for all q.

Note that c (a) = ap+1

p+1
implies that f (x) = x1/p and c (f (x)) = x

p+1
p

p+1
. As a result (1.4) and

the first-best HJB equation can be written as

rJ (q) =

(
n− 1

p+ 1

)
[J ′ (q)]

p+1
p +

σ2

2
J ′′ (q) and

rĴ (q) =
p

p+ 1

[
nĴ ′ (q)

] p+1
p

+
σ2

2
Ĵ ′′ (q) ,

respectively, where the subscript for the ith agent has been suppressed since the equilibria

are symmetric. Note that the equilibrium effort level of each agent is given by f (J ′ (q)),

36Unfortunately, it is not possible to prove that Dσ (·) does not have any local extrema so that Θσ,1 = Θσ,2,
which would imply that a1 (q) ≥ a2 (q) if and only if q ≤ Θσ,i.
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while the first-best effort level of each agent is given by f
(
nĴ ′ (q)

)
. Because f (·) is strictly

increasing, it suffices to show that nĴ ′ (q) ≥ J ′ (q) for all q. Let α =
[

np
np+(n−1)

]p
n, and note

that α|n=1 = 1, α ≤ n and α is strictly increasing in n for all p > 0 and n ≥ 2, which implies

that 1 < α ≤ n for all p > 0 and n ≥ 2. Because Ĵ ′ (q) > 0 and J ′ (q) > 0 for all q, it

suffices to show that αĴ ′ (q) ≥ J ′ (q) for all q. Now define ∆α (q) = αĴ (q)− J (q) and note

that ∆α (·) is smooth, limq→−∞∆α (q) = 0, and ∆α (0) = (α− 1)V > 0. So either ∆α (·) is

increasing on (−∞, 0] or it has at least one interior global extreme point. If the former is

true, then the desired inequality holds. Now suppose the latter is true and let us denote this

extreme point by z∗. Using that αĴ ′ (z∗) = J ′ (z∗), (1.4) and the first-best HJB equation,

we have that

r∆α (z∗) =

[
αp

p+ 1

(n
α

) p+1
p − n+

1

p+ 1

]
[J ′ (q)]

p+1
p +

σ2

2
∆′′α (z∗)

=⇒ r∆α (z∗) =
σ2

2
∆′′α (z∗) .

37 Suppose that z∗ is a global maximum. Then ∆′′α (z∗) ≤ 0 implies that ∆α (z∗) ≤ 0,

contradicting the fact that ∆α (0) > 0. Therefore, z∗ must be a minimum. Then ∆′′α (z∗) ≥ 0

implies that ∆α (z∗) ≥ 0, contradicting the facts that limq→−∞∆α (q) = 0 and that z∗ is

interior. Therefore ∆α (·) cannot have any interior extreme points, which implies that ∆α (·)

is increasing on (−∞, 0].

Part II: Ĵ (q) ≥ J (q) for all q.

Let us define ∆1 (q) = Ĵ (q) − J (q) and note that ∆1 (·) is smooth, and limq→−∞∆1 (q) =

∆1 (0) = 0. Therefore either ∆1 (·) ≡ 0, or ∆1 (·) has at least one local interior extreme point.

If the former is true, then ∆′1 (q) = ∆′′1 (q) = 0 for all q. Then using (1.4) and the first-best

HJB equation, it follows that 1
p+1

[
pn

p+1
p − n (p+ 1) + 1

]
[J ′ (q)]

p+1
p = 0, which contradicts

37Note that the constant α has been chosen such that the term in brackets equals 0 when αĴ ′ (z∗) = J ′ (z∗).

47



the facts that J ′ (z∗) > 0 and
[
pn

p+1
p − n (p+ 1) + 1

]
> 0 for all n ≥ 2 and p > 0. Therefore

it must be the case that ∆1 (·) has an interior extreme point, which we denote by z∗. Using

that Ĵ ′ (z∗) = J ′ (z∗), (1.4) and the first-best HJB equation, we have that

r∆1 (z∗) =
pn

p+1
p − n (p+ 1) + 1

p+ 1
[J ′ (z∗)]

p+1
p +

σ2

2
∆′′1 (z∗) .

Suppose that z∗ is a minimum. Then ∆′′1 (z∗) ≥ 0 and
[
pn

p+1
p − n (p+ 1) + 1

]
> 0 implies

that ∆1 (z∗) > 0, which in turn implies that ∆1 (q) ≥ 0, or equivalently Ĵ (q) ≥ J (q) for all

q.

Part III: â (q) > a (q) and Ĵ (q) > J (q) for all q.

Recall that in proving existence of a MPE in Theorem 1 (Part I), I obtained a bound

|J ′′ (q)| ≤ C [|J (q)|+ |J ′ (q)|] for all q, where C > 0 is a constants. Using an analogous

approach, one can obtain a similar bound for
∣∣∣Ĵ ′′ (q)∣∣∣; i.e.,

∣∣∣Ĵ ′′ (q)∣∣∣ ≤ Ĉ
[∣∣∣Ĵ (q)

∣∣∣+
∣∣∣Ĵ ′ (q)∣∣∣]for

all q.

Suppose that there exists a z ≤ 0 such that ∆′α (z) = 0. Because r∆α (z) = σ2

2
∆′′α (z),

using the same argument used to establish Proposition 1 (ii), it follows that z must be a

minimum such that ∆α (z) = 0, and ∆α (q) = 0 for all q ≤ z. The last equality implies that

∆′α (q) = 0 for all q < z. Now define Mα (q) = α
[
Ĵ (q) + Ĵ ′ (q)

]
− [J (q) + J ′ (q)], and note

by parts I and II that Mα (q) ≥ 0 for all q. Also Mα (q) = 0 for all q < z, and there exists a

constant Cα > 0 such that M ′
α (q) ≤ Cα ·Mα (q) for all q. By applying the differential form

of Grönwall’s inequality, it follows that Mα (q) = 0 for all q. However this contradicts the

facts that αĴ (0) − J (0) > 0 and αĴ ′ (0) ≥ J ′ (0). Therefore there does not exist a z such

that ∆′α (z) = 0, so that αĴ ′ (q) > J ′ (q) for all q, which implies that â (q) > a (q) for all q.
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To show that Ĵ (q) > J (q) for all q, I use the same approach as above. First note that if

there exists a ẑ < 0 such that ∆1 (ẑ) = 0, then ∆1 (q) = 0 for all q ≤ ẑ. Then by defining

M (q) =
[
Ĵ (q) + Ĵ ′ (q)

]
− [J (q) + J ′ (q)], and by using the fact that M (q) > 0 for at least

some q, and the differential form of Grönwall’s inequality, the desired result follows. The

details are omitted.

Proof of Theorem 2. This proof is organized in 4 parts.

Proof for (A) under Public Good Allocation:

To begin let us define Dn,m (q) = Jm (q) − Jn (q), and note that Dn,m (q) is smooth, and

Dn,m (0) = limq→−∞Dn,m (q) = 0. Therefore, either Dn,m (·) ≡ 0, or it has an interior

extreme point. Suppose the former is true. Then Dn,m (·) ≡ D′n,m (·) ≡ D′′n,m (·) ≡ 0

together with (1.4) implies that f (J ′n (q)) J ′n (q) = 0 for all q. However, this contradicts

Theorem 1 (ii), so that Dn,m (·) must have an interior extreme point, which I denote by z∗.

Then D′n,m (z∗) = 0⇒ J ′m (z∗) = J ′n (z∗), and D′′n,m (z∗) ≥ 0. By using (1.4) we have

rDn,m (z∗) =
σ2

2
D′′n,m (z∗) + (m− n) f (J ′n (z∗)) J ′n (z∗) > 0 = rDn,m (0) ,

which implies that z∗ is either a global maximum, or a local extreme point satisfying

Dn,m (z∗) ≥ 0. Therefore, Jm (q) ≥ Jn (q) (i.e., Dn,m (q) ≥ 0) for all q.

I now show that Dn,m (q) is single-peaked. Suppose it is not. Then there must exist a

local maximum z∗ followed by a local minimum z̄ > z∗. Clearly, Dn,m (z̄) < Dn,m (z∗),

D′n,m (z̄) = D′n,m (z∗) = 0, D′′n,m (z̄) ≥ 0 ≥ D′′n,m (z∗), and by Theorem 1 (iii), J ′n (z̄) > J ′n (z∗).

49



By using (1.4), at z̄ we have

rDn,m (z̄) =
σ2

2
D′′n,m (z̄) + (m− n) f (J ′m (z̄)) J ′m (z̄)

>
σ2

2
D′′n,m (z∗) + (m− n) f (J ′m (z∗)) J ′m (z∗) = rDn,m (z∗) ,

which contradicts the assumption that z∗ is a local maximum and z̄ is a local minimum. By

noting that Dn,m (·) cannot be strictly increasing or strictly decreasing due to the boundary

conditions, it follows that Dn,m (·) is single-peaked; i.e., there exists a Θn,m ≤ 0 such that

J ′m (q) ≥ J ′n (q) (because D′n,m (q) ≥ 0), and consequently am (q) > an (q), if and only if

q ≤ Θn,m.

Proof for (A) under Budget Allocation

Recall that under the public good allocation scheme, we had the boundary conditionDn,m (0) =

0. This condition is now replaced by Dn,m (0) = V
m
− V

n
< 0. Therefore, Dn,m (·) is either

decreasing, or it has at least one extreme point. Using similar arguments as above, it follows

that any extreme point z∗ is a global maximum and Dn,m (·) may be at most single-peaked.

Hence either Dn,m (·) is decreasing in which case Θn,m = −∞, or there exists an interior

Θn,m such that am (q) ≥ an (q) if and only if q ≤ Θn,m. The details are omitted.

Proof for (B) under Public Good Allocation:

Note that c (a) = ap+1

p+1
implies that f (x) = x1/p and c (f (x)) = x

p+1
p

p+1
. As a result, (1.4) can

be written for an n−member team as

rJn (q) =

(
n− 1

p+ 1

)
(J ′n (q))

p+1
p +

σ2

2
J ′′n (q) . (1.9)

To compare the total effort of the team at every state of the project, we need to com-
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pare mf (J ′m (q)) and nf (J ′n (q)), or equivalently (mpJ ′m (q))1/p and (npJ ′n (q))1/p. Define

D̄n,m (q) = mpJm (q) − npJn (q), and observe that D̄′n,m (q) ≥ 0 ⇐⇒ mam (q) ≥ nan (q).

Note that D̄n,m (0) = (mp − np)V > 0 and limq→−∞ D̄n,m (q) = 0. As a result, either

D̄n,m (q) is increasing for all q, which implies that mam (q) ≥ nan (q) for all q and hence

Φn,m = 0, or D̄n,m (q) has an interior extreme point z∗. Suppose the latter is true. Then

D̄′n,m (z∗) = 0 implies that J ′m (z∗) =
(
n
m

)p
J ′n (z∗). Multiplying both sides of (1.9) by mp and

np for Jm (·) and Jn (·), respectively, and subtracting the two quantities yields

rD̄n,m (z∗) = − np

p+ 1

[ n
m
− 1
]

(J ′n (z∗))
p+1
p +

σ2

2
D̄′′n,m (z∗) ,

and observe that the first term in the RHS is strictly positive. Now suppose z∗ is a global

minimum. Then D̄′′n,m (z∗) ≥ 0, which implies that D̄n,m (z∗) > 0, but this contradicts the

facts that limq→−∞ D̄n,m (q) = 0 and z∗ is interior. Hence z∗ must be a global maximum or

a local extreme point satisfying D̄n,m (z∗) ≥ 0.

To complete the proof for this case, I now show that D̄n,m (·) can be at most single-peaked.

Suppose that the contrary is true. Then there exists a local maximum z∗ followed by a

local minimum z̄ > z∗. Because D̄′n,m (z∗) = D̄′n,m (z̄) = 0, D̄′′n,m (z̄) ≥ 0 ≥ D̄′′n,m (z∗), and

by Theorem 1 (iii) J ′n (z∗) < J ′n (z̄), it follows that D̄n,m (z∗) < D̄n,m (z̄). However, this

contradicts the facts that z∗ is a local maximum and z̄ is a local minimum, which implies

that D̄n,m (·) is either strictly increasing in which case Φn,m = 0, or it has a global interior

maximum and no other local extreme points, in which case there exists an interior Φn,m such

that mam (q) ≥ n an (q) if and only if q ≤ Φn,m.

Proof for (B) under Budget Allocation

The only difference compared to the proof under public good allocation is the boundary
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condition at 0; i.e., D̄n,m (0) = mpJm (0) − npJn (0) = (mp−1 − np−1)V > 0 (recall p ≥ 1).

As a result, the same proof applies. Note that if p = 1 (i.e., effort costs are quadratic), then

D̄n,m (0) = 0 and hence Φn,m is interior.

Proof of Proposition 3. Let us first consider the statement under public good allocation. In

the proof for statement (A) of Theorem 2, I showed that Dn,n+1 (q) = Jn+1 (q)− Jn (q) ≥ 0

for all q. This implies that Jn+1 (q0) ≥ Jn (q0) for all q0 ≤ 0.

Now consider the statement under budget allocation. In the proof for statement (A) of

Theorem 2, I showed that Dn,n+1 (·) = Jn+1 (·)− Jn (·) is either decreasing, or it has exactly

one extreme point which must be a maximum. Moreover, limq→−∞Dn,n+1 (q) = 0 and

Dn,n+1 (0) < 0. This implies that there exists a threshold Tn (may be −∞) such that

Jn+1 (q0) ≥ Jn (q0) if and only if q0 ≤ −Tn, or equivalently if and only if |q0| ≥ Tn.

Proof of Theorem 3. This proof is organized in 5 parts. I first show that a solution to (1.5)

subject to the boundary conditions (1.6) exists. Then I show that properties (i) and (ii)

hold. Finally, I show that the solution to the above boundary value problem is unique. The

proofs resemble those in Theorem 1 closely.

Part I: Existence of a solution.

First note that Ji (·) depends only on Vi for all i and not on F (·), so for given Vi I can solve

F (·) by taking Ji (·) as given for all i. I shall use a similar approach as that used to prove
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existence for Ji (·). Note that (1.5) and (1.6) can be re-written as

F ′′N (q) =
2r

σ2
FN (q) +

2

σ2

[
n∑
i=1

f (J ′i (q))

]
F ′N (q) (1.10)

subject to FN (−N) = 0 and FN (0) = F0 ,

where F0 = U −
∑n

i=1 Vi > 0. Let h (FN , F
′
N) denote the RHS of (1.10), and observe that

h (·, ·) is continuous. Now fix some arbitrary K > 0 and define a new function

hK (FN , F
′
N) = max {min {h (FN , F

′
N) , K} , −K} .

Note that hK (·, ·) is continuous and bounded, so that by the Scorza-Dragoni Lemma (see

Lemma 4 in Hartman (1960)), there exists a solution to F ′′N,K = hK
(
FN,K , F

′
N,K

)
[−N, 0]

subject to FN,K (−N) = 0 and FN,K (0) = F0. The next part of the proof involves showing

that there exists some K̄ such that hK
(
FN,K , F

′
N,K

)
∈
[
−K̄, K̄

]
for all K on [−N, 0], which

will imply that the solution F ′′
N,K̄

(·) satisfies (1.10). The final step involves showing that a

solution exists when N →∞, so that a solution to (1.5) subject to (1.6) exists.

By part I of Theorem 1, there exists an Ā such that |J ′i (q)| ≤ Ā for all q, and it is straight-

forward to show that FN,K (q) ∈ [0 , F0] and F ′N,K (q) ≥ 0 for all q. As a result, letting

Ω = nf
(
Ā
)
, a bound for

∣∣F ′′N,K (q)
∣∣ can be obtained by

∣∣F ′′N,K (q)
∣∣ ≤ 2r

σ2
F0 +

2

σ2
ΩF ′N,K (q) .

By noting that FN (0) > 0 and using the mean-value theorem, it follows that there exists a
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z∗ ∈ [−N, 0] such that F ′N (z∗) = F0

N
. Hence, for all z ∈ [−N, 0]

F0 >

∣∣∣∣ˆ z

z∗
F ′N (q) dq

∣∣∣∣ ≥ σ2

2

∣∣∣∣ˆ z

z∗
F ′N (q)

F ′′N (q)

rF0 + ΩF ′N (q)
dq

∣∣∣∣ ≥ σ2

2

∣∣∣∣∣
ˆ F ′N (z)

0

s

rF0 + Ωs
ds

∣∣∣∣∣ ,
where I let s = F ′N (q) and used that F ′N (q)F ′′N (q) = F ′N (q) dF ′N (q). The fact that
´∞

0
s

rF0+Ωs
ds = ∞ implies that there exists a B̄ < ∞ such that σ2

2

∣∣∣´ B̄0 s
rF0+Ωs

ds
∣∣∣ = F0.

This implies that F ′N (q) ≤ B̄ for all q ∈ [−N, 0].

Because B̄ is independent of both N and K, F ′N,K (q) ∈
[
0, B̄

]
for all q ∈ [−N, 0], N ∈ N, and

K > 0. In addition, we now that FN,K (q) ∈ [0 , F0] for all q ∈ [−N, 0], N ∈ N, and K > 0.

Now let K̄ = 2r
σ2F0+ 2

σ2 ΩB̄, and observe that a solution to F ′′
N,K̄

= hK̄

(
FN,K̄ , F

′
N,K̄

)
subject to

FN,K̄ (−N) = 0 and FN,K̄ (0) = F0 exists, and hK̄

(
FN,K̄ (q) , F ′

N,K̄
(q)
)

= h
(
FN,K̄ (q) , F ′

N,K̄
(q)
)

for all q ∈ [−N, 0]. Therefore, FN,K̄ (·) solves (1.10).

To show that a solution for (1.10) as N →∞ exists, recall that there exists a constant B̄ such

that |F ′N (q)| ≤ B̄ on [−N, 0] for all N ∈ N. Hence the sequences {FN (·)} and {F ′N (·)} are

uniformly bounded and equicontinuous on [−N, 0]. By applying the Arzela-Ascoli theorem

to a sequence of intervals [−N, 0] and letting N → ∞, it follows that the system of ODE

defined by (1.5) subject to (1.6) has at least one solution.

Part II: F (q) > 0 for all q.

First note that limq→−∞ F (q) = 0 and F (0) > 0. Let z∗ = arg minq≤0 {F (q)}. Clearly,

z∗ < 0. If z∗ = −∞, then together with the fact that limq→−∞ F (q) = 0, this implies

that F (q) > 0 for all q, which proves the desired statement. So suppose that z∗ is interior.

Then F ′ (z∗) = 0 and F ′′ (z∗) ≥ 0, which using (1.5) implies that F (z∗) ≥ 0. Because

limq→−∞ F (q) = 0, it follows that F (z∗) = 0. Now suppose that F (q) 6= 0 for at least some
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q. Then there exists some z̄ such that F ′ (z̄) = 0, which using (1.5) implies that rF (z̄) =

σ2

2
F ′′ (z̄). By noting that any maximum must satisfy F ′′ (z̄) ≤ 0 =⇒ F (z̄) ≤ 0, while any

minimum must satisfy F ′′ (z̄) ≥ 0 =⇒ F (z̄) ≥ 0, it follows that if there exists a z∗ such that

F (z∗) = 0, then F (q) = 0 and F ′ (q) = 0 for all q < z∗. By applying the differential form of

Grönwall’s inequality to |F (q)|+ |F ′ (q)| and using that |F ′′ (q)| ≤ 2r
σ2 |F (q)|+ 2nf(Ā)

σ2 |F ′ (q)|,

it follows that F (q) = 0 for all q. However this contradicts the fact that F (0) > 0. Hence

F (·) cannot have an interior minimum, and there cannot exist an interior z∗ such that

F (z∗) = 0. Hence F (q) > 0 for all q.

Part III: F ′ (q) > 0 for all q.

Because F (·) is continuous and limq→−∞ F (q) = 0 < F (0), there exists a −∞ < Λ < 0

such that F (Λ) < F (0), and by the mean-value theorem, there exists a z∗ ∈ (Λ, 0) such

that F ′ (z∗) = F (0)−F (Λ)
−Λ

> 0. Suppose that there exists a z∗∗ such that F ′ (z∗∗) ≤ 0. Then

by the intermediate value theorem, there exists a z̄ between z∗ and z∗∗ such that F ′ (z̄) = 0.

Using (1.5) and the fact that F (q) > 0 for all q, it follows that rF (z̄) = σ2

2
F ′′ (z̄) > 0; i.e.,

z̄ is a minimum. Because z̄ is interior, limq→−∞ F (q) = 0, and F (z̄) > 0, there exists an

interior local maximum ẑ < z̄, so that F ′ (ẑ) = 0 and F ′′ (ẑ) ≤ 0. Using (1.5), it follows that

F (ẑ) ≤ 0, which contradicts the fact that F (q) > 0 for all q. Therefore, F ′ (q) > 0 for all q.

Part IV: F (q) is infinitely differentiable on (−∞, 0].

By noting that limq→−∞ F (q) = limq→−∞ F
′ (q) = 0, and by twice integrating both sides of

(1.5) over the interval (−∞, q], we have that

F (q) =

ˆ q

−∞

ˆ y

−∞

2r

σ2
F (z) +

2

σ2

[
n∑
i=1

f (J ′i (z))

]
F ′ (z) dz dy .

Recall that f (x) = x1/p and J ′i (q) > 0 for all q. Since a solution F (·) satisfying (1.5) subject
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to the boundary conditions (1.6) exists, F (q) and F ′ (q) are continuous. As a result, the

function under the integral is continuous and infinitely differentiable in F (z), F ′ (z) and

J ′i (z) for all i. By noting that F (q) is differentiable twice more than the function under the

integral, using Theorem 1 (iv), and proceeding by induction, property (iii) is proven.

Part V: Uniqueness of a solution.

Because F (·) is a function of J ′i (·) for all i, and Theorem 1 established that Ji (·) is unique

if the team comprises of n symmetric, or 2 asymmetric agents, I focus only on these cases

only. Suppose that there exist two solutions that solve (1.5) subject to the initial conditions

(1.6), denoted by F1 (·) and F2 (·), respectively. Let ∆F (q) = F1 (q)− F2 (q), and note that

∆F (0) = limq→−∞∆F (q) = 0, and ∆F (·) is smooth. Also observe that either ∆F (·) ≡ 0,

or ∆F (·) has a global extreme point. Suppose the latter is true and letting z∗ be such

extreme point, we have that ∆F ′ (z∗) = 0. Using (1.5) and the facts that ∆F ′′ (z∗) ≥ 0 if

z∗ is a minimum and ∆F ′′ (z∗) ≤ 0 if z∗ is a maximum, it follows that ∆F (q) = 0 for all q.

Hence F1 (·) ≡ F2 (·) and the proof is complete.

Proof of Theorem 4. To prove this result, first fix a set of arbitrary milestones Q1 < .. <

QK = 0 where K is arbitrary but finite, and assume that the manager allocates budget

wk > 0 for compensating the agents upon reaching milestone k for the first time. Now

consider the following compensation schemes. Let B =
∑K

k=1 wk. Under scheme (a), each

agent is paid B
n

upon completion of the project and receives no intermediate compensation

while the project is in progress. Under scheme (b), each agent is paid wk
nEτk [erτk |Qi] when qt

hits Qk for the first time, where τk denotes the random time to completion given that the

current state of the project is Qk. I shall show that the manager is always better off using

scheme (a) relative to scheme (b).

56



Some remarks are in order. First, note that scheme (b) ensures that the expected total cost

for compensating each agent equals B
n

to facilitate comparison between the two schemes.

Second, observe that while the expected total cost for compensating the agents is the same

under the two schemes, the associated variance is zero under scheme (a), while it is strictly

positive under scheme (b) due to the stochastic evolution of the project. Therefore, if the

manager is credit constrained or ambiguity / risk averse, then scheme (a) is favored even

more. Third, since the manager values the project at U , without loss of generality, I can

restrict attention to allocations {wk}Kk=1 such that
∑K

k=1wk = B < U .

This proof is organized in 3 parts. In part I, I introduce the necessary functions (i.e., ODEs)

that will be necessary for the proof. In part II, I show that each agent exerts higher effort

under scheme (a) relative to scheme (b). Finally, in part III, I show that the manager’s

expected discounted profit is higher under scheme (a) relative to scheme (b) for any choice

of Qk’s and wk’s.

Part I: To begin, I introduce the expected discounted payoff and discount rate functions

(i.e., ODEs) that will be necessary for the proof. Under scheme (a), given the current state

q, each agent’s expected discounted payoff satisfies

rJ (q) = −c (f (J ′ (q)))+nf (J ′ (q)) J ′ (q)+
σ2

2
J ′′ (q) subject to lim

q→−∞
J (q) = 0 and J (0) =

B

n
.

On the other hand, under scheme (b), given the current state q and that k−1 milestones have

been reached, each agent’s expected discounted payoff, which is denoted by Jk (q), satisfies

rJk (q) = −c (f (J ′k (q))) + nf (J ′k (q)) J ′k (q) +
σ2

2
J ′′k (q) on (−∞, Qk]
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subject to

lim
q→−∞

Jk (q) = 0 and Jk (Qk) =
wk

nEτk [erτk |Qk]
+ Jk+1 (Qk) ,

where JK+1 (QK) = 0.38 The second boundary condition states that upon reaching milestone

Qk for the first time, each agent is paid wk
nEτk [erτk |Qk]

, and he receives the continuation value

Jk+1 (Qk) from future progress. Eventually upon reaching the Kth milestone, the project

is completed so that each agent is paid wK
n

, and receives no continuation value. Note that

due to the stochastic evolution of the project, even after the kth milestone has been reached

for the fist time, the state of the project may drift below Qk. Therefore, the first boundary

condition ensures that as q → −∞, the expected time until the project is completed so that

each agent collects his reward diverges to∞, which together with the fact that r > 0, implies

that his expected discounted payoff asymptotes to 0. Using the same approach as used in

Theorem 1, it is straightforward to show that for each k, Jk (·) exists, it is unique, smooth,

strictly positive, strictly increasing and strictly convex on its domain.

Next, let us denote the expected discount rate until the project is completed under scheme

(a), given the current state q, by T (q) = Eτ [e−rτ | q]. Using the same approach as used to

derive the manager’s HJB equation, it follows that

rT (q) = nf (J ′ (q))T ′ (q) +
σ2

2
T ′′ (q) subject to lim

q→−∞
T (q) = 0 and T (0) = 1 .

The first boundary condition states that as q → −∞, the expected time until the project is

completed diverges to ∞, so that limq→−∞ T (q) = 0. On the other hand, when the project

is completed so that q = 0, then τ = 0 with probability 1, which implies that T (0) = 1.

38Since this proof considers a fixed team size n, we use to subscript k to denote that k− 1 milestones have
been reached.

58



Next, let us consider scheme (b). Similarly, we denote the expected discount rate until the

project is completed, given the current state q and that k− 1 milestones have been reached,

by Tk (q) = Eτk [e−rτk | q]. Then, it follows that

rTk (q) = nf (J ′k (q))T ′k (q) +
σ2

2
T ′′k (q) on (−∞, Qk]

subject to

lim
q→−∞

Tk (q) = 0 , Tk (Qk) = Tk+1 (Qk) for all k ≤ n ,

where TK+1 (QK) = 1. The first boundary condition has the same interpretation as above.

The second boundary condition ensures value matching; i.e., that upon reaching milestone k

for the first time, Tk (Qk) = Tk+1 (Qk). Using the same approach as used in Theorem 3, it is

straightforward to show that T (·) and for each k, Tk (·) exists, it is unique, smooth, strictly

positive, and strictly increasing on its domain.

Note that by Jensen’s inequality, 1
Eτk [erτk ]

≤ Eτk [e−rτk ].39 Therefore, using this inequality,

and the second boundary condition for Jk (·), it follows that Jk (Qk) ≤ wk
n
Tk (Qk)+Jk+1 (Qk).

Part II: The next step of the proof is to show that for any k, J (Qk) ≥ Jk (Qk), and as

a consequence of Proposition 1 (i), J ′ (q) ≥ J ′k (q) for all q ≤ Qk. This will imply that

agents exert higher effort under scheme (a) at every state of the project. To proceed, let

us define ∆k (q) = J (q)− Jk (q)− 1
n

(∑k−1
i=1 wi

)
Tk (q) on (−∞, Qk] for all k, and note that

limq→−∞∆k (q) = 0 and ∆k (·) is smooth.

39Because e±rt is convex, it follows that erEτk ≤ E [erτk ] and e−rEτk ≤ E [e−rτk ]. The second inequality
can be re-written as 1

E[e−rτk ]
≤ erEτk , so that 1

Eτk [e
rτk ] ≤ Eτk [e−rτk ].
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First, I consider on the case in which k = K, and then I proceed by backward induction.

Noting that ∆K (QK) = 0 (where QK = 0), either ∆K (·) ≡ 0 on (−∞, QK ], or ∆K (·) has

some interior global extreme point z. If the former is true, then ∆K (q) = 0 for all q ≤ QK ,

so that J (QK) ≥ JK (QK). Now suppose that the latter is true. Then ∆′K (z) = 0 so that

r∆K (z) = −c (f (J ′ (z))) + nf (J ′ (z)) J ′ (z) + c (f (J ′K (z)))− nf (J ′K (z)) J ′K (z)

−

(
m−1∑
i=1

wi

)
f (J ′K (z))T ′K (z) +

σ2

2
∆′′K (z) .

Because ∆′K (z) = 0 implies that
(∑k−1

i=1 wi

)
T ′K (z) = n [J ′ (z)− J ′K (z)], the above equation

can be re-written as

r∆K (z) = c (f (J ′K (z)))− c (f (J ′ (z))) + nf (J ′ (z)) J ′ (z)− nf (J ′K (z)) J ′ (z) +
σ2

2
∆′′K (z)

=

{
[J ′K (z)]

p+1
p − [J ′ (z)]

p+1
p

p+ 1
+ n [J ′ (z)]

p+1
p − n [J ′K (z)]

1
p J ′ (z)

}
+
σ2

2
∆′′K (z) .

To show that the term in brackets is strictly positive, note that J (QK) > JK (QK) so that

J ′ (z) > J ′K (z) by Proposition 1 (i), and J ′K (z) > 0. Therefore, let x =
J ′K(z)

J ′(z)
, where x < 1,

and observe that the term in brackets is non-negative if and only if

n (p+ 1) [J ′ (z)]
p+1
p − [J ′ (z)]

p+1
p ≥ n (p+ 1) [J ′K (z)]

1
p J ′ (z)− [J ′K (z)]

p+1
p

=⇒ n (p+ 1)− 1 ≥ n (p+ 1)x
1
p − x

p+1
p .

Because the RHS is strictly increasing in x, and it converges to the LHS as x→ 1, I conclude

that the above inequality holds.

Suppose that z is a global minimum. Then ∆′′K (z) ≥ 0 together with the fact that the

term in brackets is strictly positive implies that ∆K (z) > 0. Therefore, any interior global
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minimum must satisfy ∆K (z) ≥ 0, which in turn implies that ∆K (q) ≥ 0 for all q. As a

result, ∆K (QK−1) ≥ 0 or equivalently J (QK−1) ≥ JK (QK−1) + 1
n

(∑K−1
i=1 wi

)
TK (QK−1).

Now consider ∆K−1 (·), and note that limq→−∞∆K−1 (q) = 0. By using the last inequality,

that JK−1 (QK−1) ≤ wK−1

n
TK−1 (QK−1) + JK (QK−1), and TK−1 (QK−1) = TK (QK−1), it

follows that

∆K−1 (QK−1) = J (QK−1)− JK−1 (QK−1)− 1

n

(
K−2∑
i=1

wi

)
TK−1 (QK−1) ≥ 0 .

Therefore, either ∆K−1 (·) is increasing on (−∞, QK−1], or it has some interior global extreme

point z < QK−1 such that ∆′K−1 (z) = 0. If the former is true, then ∆K−1 (QK−2) ≥ 0. If

the latter is true, then by applying the same technique as above we can again conclude that

∆K−1 (QK−2) ≥ 0.

Proceeding inductively, it follows that for all k ∈ {2, .., K}, ∆k (Qk−1) ≥ 0 or equivalently

J (Qk−1) ≥ Jk (Qk−1)+ 1
n

(∑k−1
i=1 wi

)
Tk (Qk−1) and using that Jk−1 (Qk−1) ≤ wk−1

n
Tk (Qk−1)+

Jk (Qk−1), it follows that J (Qk−1) ≥ Jk−1 (Qk−1). Finally, by using Proposition 1 (i), it

follows that for all k, J ′ (q) ≥ J ′k (q) for all q ≤ Qk.

Part III: Given a fixed expected budgetB, the manager’s objective is to maximize Eτ [e−rτ | q0]

or equivalently T (q0), where τ denotes the completion time of the project, and it depends

on the agents’ strategies, which themselves depend on the set of milestones {Qk}Kk=1 and

payments {wk}Kk=1. Since q0 < Q1 < .. < QK , it suffices to show that T (q0) ≥ T1 (q0) in

order to conclude that given any arbitrary choice of {Qk, wk}Kk=1, the manager is better off

compensating the agents only upon completing the project relative to also rewarding them

for reaching intermediate milestones.
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Define Dk (q) = T (q) − Tk (q) on (−∞, Qk] for all k ∈ {1, .., K}, and note that Dk (·) is

smooth and limq→−∞Dk (q) = 0. Let us begin with the case in which k = K. Note that

DK (QK) = 0 (where QK = 0). So either DK (·) ≡ 0 on (−∞, QK ], or DK (·) has an interior

global extreme point z̄ < QK . Suppose that z̄ is a global minimum. Then D′K (z̄) = 0 so

that

rDK (z̄) = n [J ′ (z̄)− J ′K (z̄)]T ′ (z̄) +
σ2

2
D′′K (z̄) .

Recall that J ′ (q) ≥ J ′k (q) for all q ≤ Qk from part II. Since z̄ is assumed to be a minimum,

it must be true that D′′K (z̄) ≥ 0, which implies that that DK (z̄) ≥ 0. Therefore, any interior

global minimum must satisfy DK (z̄) ≥ 0, which implies that DK (q) ≥ 0 for all q ≤ QK . As

a result, T (QK−1) ≥ TK (QK−1) = TK−1 (QK−1).

Next, consider DK−1 (·), recall that limq→−∞DK−1 (q) = 0, and note that the above in-

equality implies that DK−1 (QK−1) ≥ 0. By using the same technique as above, it follows

that T (QK−2) ≥ TK−1 (QK−2) = TK−2 (QK−2), and proceeding inductively we obtain that

D1 (q) ≥ 0 for all q ≤ Q1 so that T (q0) ≥ T1 (q0).

Proof of Proposition 4. In preparation, I establish a Lemma that ensures that the single-

crossing property of Milgrom and Shannon (1994) is satisfied.

Lemma 1. Suppose the manager employs n identical agents, each of whom receives B
n

upon

completion. Then for all δ ∈ (0, U −B), there exists a threshold Tδ such that she is better

off increasing each agent’s reward by δ
n

so that each agent receives B+δ
n

if and only if the

length of the project |q0| ≥ Tδ.
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Proof of Lemma 1. Consider 2 teams each comprising of n symmetric agents. Upon comple-

tion of the project, each member of the first team receives a reward B
n

, while each member

of the second team receives a reward B+δ
n

, where δ > 0. Let us denote each agent’s expected

discounted payoff and equilibrium effort level of the two teams given q by {J0 (q) , a0 (q)}

and {Jδ (q) , aδ (q)}, respectively. From Proposition 1 (i) we know that aδ (q) > a0 (q) for

all q; i.e., each agent’s effort level is strictly increasing in his compensation. Abusing no-

tation, let us denote the manager’s expected discounted profit given q for the two cases

by FB (q) and FB+δ (q), respectively. Now let ∆V (·) = FB (·) − FB+δ (·), and observe that

limq→−∞∆V (q) = 0 < δ = ∆V (0). Because ∆V (·) is smooth, it is either increasing on

(−∞, 0], or it has an interior global extreme point. Suppose the latter is true and denote

that extreme point by z̄. By using (1.5), it follows that

r∆V (z̄) = n [aB (z̄)− aB+δ (z̄)]F ′B (z̄) +
σ2

2
∆′′V (z̄) .

Because F ′B (z̄) > 0, aB (z̄) < aB+δ (z̄), ∆V (0) > 0, and z̄ is interior, it follows that z̄ must

be a global minimum. By noting that any local maximum ẑ must satisfy ∆V (ẑ) ≤ 0, it

follows that ∆V (·) is either increasing on (−∞, 0], or it crosses 0 exactly once from below.

Therefore there exists a Tδ such that ∆V (q0) ≤ 0 if and only if q0 ≤ −Tδ, or equivalently,

the manager is better off increasing each agent’s reward by δ
n

if and only if |q0| ≥ Tδ. By

noting that Tδ = −∞ if ∆V (·) is increasing on (−∞, 0], the proof is complete.

Other things equal, the manager chooses her budget B ∈ [0, U ] to maximize her expected

discounted profit at q0; i.e., she chooses B (|q0|) = arg maxB∈[0,U ] {Fn (q0;B)}. By noting

that the necessary conditions for the Monotonicity Theorem (i.e., Theorem 4) of Milgrom

and Shannon (1994) to hold are satisfied, it follows that the manager’s optimal budget

B (|q0|) is (weakly) increasing in the project length |q0|.
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Proof of Proposition 5. Let us denote the manager’s expected discounted profit when she

employs n (symmetric) agents by Fn (·), and note that limq→−∞ Fn (q) = 0 and Fn (0) =

U − V > 0 for all n. Now let us define ∆n,m (·) = Fm (·) − Fn (·) and note that ∆n,m (·)

is smooth and limq→−∞∆n,m (q) = ∆n,m (0) = 0. It suffices to show that for all n and m

there exists a Tn,m ≤ 0 such that Fm (q0) ≥ Fn (q0) if and only if q0 ≤ Tn,m. Note that either

∆n,m (·) ≡ 0, or ∆n,m (·) has at least one global extreme point. Suppose that the former is

true. Then ∆n,m (q) = ∆′n,m (q) = ∆′′n,m (q) = 0 for all q, together with (1.5), implies that

[Am (q)− An (q)]F ′n (q) = 0 for all q, where An (·) ≡ nan (·). However, this is a contradiction,

because Am (q) > An (q) for at least some q by Theorem 2 (B), and F ′n (q) > 0 for all q by

Theorem 3 (i). Therefore, ∆n,m (·) has at least one global extreme point, which I denote by

z̄. By using that ∆′n,m (z̄) = 0 and (1.5), we have that

r∆n,m (z̄) = [Am (z̄)− An (z̄)]F ′n (z̄) +
σ2

2
∆′′n,m (z̄) .

Recall that F ′n (z̄) > 0, and from Theorem 2 (B) that for each n and m there exists an

(interior) threshold Φn,m such that Am (q) ≥ An (q) if and only if q ≤ Φn,m. It follows that

z̄ is a global maximum if z̄ ≤ Φn,m, while it is a global minimum if z̄ ≥ Φn,m. Next observe

that if z̄ ≤ Φn,m then any local minimum must satisfy ∆n,m (z̄) ≥ 0, while if z̄ ≥ Φn,m

then any local maximum must satisfy ∆n,m (z̄) ≤ 0. Therefore either one of the following

three cases must be true: (i) ∆n,m (·) ≥ 0 on (−∞, 0], or (ii) ∆n,m (·) ≤ 0 on (−∞, 0], or

(iii) ∆n,m (·) crosses 0 exactly once from above. Therefore there exists a Tn,m such that

∆n,m (q0) ≥ 0 if and only if q0 ≤ −Tn,m, or equivalently the manager is better off employing

m > n rather than n agents if and only if |q0| ≥ Tn,m. By noting that Tn,m = 0 under case

(i), and Tn,m =∞ under case (ii), the proof is complete.
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Proof of Corollary 1. Other things equal, the manager chooses the team size n ∈ N to max-

imize her expected discounted profit at q0; i.e., she chooses n (|q0|) = arg maxn∈N {Fn (q0)}.

By noting that the necessary conditions for the Monotonicity Theorem (i.e., Theorem 4) of

Milgrom and Shannon (1994) to hold are satisfied, it follows that the optimal team size

n (|q0|) is (weakly) increasing in the project length |q0|.

Proof of Proposition 6. This proof is organized in 2 parts.

Part I: Agents’ Problem

(a) Formulation of the Agents’ Problem

To begin, fix the manager’s budget B < U and the retirement state R. Then denote by

J̄ (·) each agent’s expected discounted payoff when both agents carry out the project to

completion together. Let us assume by convention that as soon as the project hits R for

the first time, agent 2 will retire, and agent 1 will carry out the remainder of the project on

his own. Upon completion of the project, agent i receives Vi, where V1 + V2 = B. The Vi’s

will be chosen such that J1 (R) = J2 (R); i.e., the agents have the same expected discounted

payoff when the project hits R for the first time. This will ensure that the agents’ strategies

before agent 2 retires are identical (which makes the analysis tractable). Therefore, denote

by JR (·) the expected discounted payoff of each agent before agent 2 has retired. Note that

J̄ (·) and Ji (·) are defined on (−∞, 0], while JR (·) is defined on (−∞, R].

Using (1.4), J̄ (·) satisfies

rJ̄ (q) = −c
(
f
(
J̄ ′ (q)

))
+ 2f

(
J̄ ′ (q)

)
J̄ ′ (q) +

σ2

2
J̄ ′′ (q) s.t. lim

q→−∞
J̄ (q) = 0 and J̄ (0) =

B

2
.

Because the state of the project q can drift back below R after agent 2 has retired, J1 (·) and

65



J2 (·) satisfy

rJ1 (q) = −c (f (J ′1 (q))) + f (J ′1 (q)) J ′1 (q) +
σ2

2
J ′′1 (q) s.t. lim

q→−∞
J1 (q) = 0 and J1 (0) = V1 , and

rJ2 (q) = f (J ′1 (q)) J ′2 (q) +
σ2

2
J ′′2 (q) s.t. lim

q→−∞
J2 (q) = 0 and J2 (0) = B − V1

on (−∞, 0], respectively. Observe that after agent 2 retires, his expected discounted payoff

depends on the effort of agent 1 and on his net payoff V2 upon completion of the project.

By using the same approach as used to prove Proposition 1 (i), it follows that J1 (·) {J2 (·)}

increases {decreases} in V1, and J1 (·) and J2 (·) depend continuously on V1. Moreover,

J1 (R) > J2 (R) = 0 if V1 = B, and it is straightforward to show that J1 (R) < J2 (R) if

V1 = B
2

. Therefore, by the intermediate value theorem, there exists a V1 >
B
2

such that

J1 (R) = J2 (R).

Next let us consider JR (·). Using (1.4), JR (·) satisfies

rJR (q) = −c (f (J ′R (q)))+2f (J ′R (q)) J ′R (q)+
σ2

2
J ′′R (q) s.t. lim

q→−∞
JR (q) = 0 and JR (R) = J1 (R) ,

where the second condition ensures value matching at q = R. Because J1 (·) and J2 (·) are

pinned down independently of JR (·), the above boundary conditions completely characterize

JR (·).

(b) Show that JR (R) ≤ J̄ (R), and hence J ′R (q) ≤ J̄ ′ (q) for all q ≤ R.

Let D (q) = J1 (q) + J2 (q) − 2J̄ (q), note that limq→−∞D (q) = D (0) = 0, and D (·) is

smooth. Therefore either D (·) ≡ 0 on (−∞, 0], or D (·) has at least one interior extreme

point. Suppose the latter is true, and let us denote this extreme point by ẑ. Then D′ (ẑ) = 0
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so that

rD (ẑ) = −c (f (J ′1 (ẑ))) + 2c
(
f
(
J̄ ′ (ẑ)

))
+ 2

[
f (J ′1 (ẑ))− 2f

(
J̄ ′ (ẑ)

)]
J̄ ′ (ẑ) +

σ2

2
D′′ (ẑ)

⇒ rD (ẑ) = −1

2

{
2
[
J̄ ′ (ẑ)

]2
+
[
J ′1 (ẑ)− 2J̄ ′ (ẑ)

]2}
+
σ2

2
D′′ (ẑ) .

Suppose that ẑ is a maximum. Then D′′ (ẑ) ≤ 0, and because the first term in the RHS is

strictly negative, it follows that D (ẑ) < 0. This implies that any local maximum ẑ must

satisfy D (ẑ) ≤ 0, which leads me to conclude that D (q) ≤ 0 for all q. Moreover, because

the inequality is strict, note that it cannot be case that D (·) ≡ 0 on (−∞, 0]. Because

JR (R) = J1 (R) = J2 (R), the result implies that JR (R) ≤ J̄ (R). Finally, by applying

Proposition 1 (i), it follows that J ′R (q) ≤ J̄ ′ (q) for all q ≤ R.

Part II: Manager’s Problem

(a) Formulation of the Manager’s Problem

To begin, denote by F̄ (·) the manager’s expected discounted profit when both agents carry

out the project to completion together. Denote by F1 (·) the manager’s expected discounted

profit when one agent carries out the project alone (i.e., after agent 2 has retired). Denote by

FR (·) the manager’s expected discounted profit taking into account that agent 2 will retire

at the first time that the state of the project hits R. Note that F̄ (·) and F1 (·) are defined

on (−∞, 0], while FR (·) is defined on (−∞, R]. Using (1.5), F̄ (·) and F1 (·) satisfy

rF̄ (q) = 2f
(
J̄ ′ (q)

)
F̄ ′ (q) +

σ2

2
F̄ ′′ (q) s.t. lim

q→−∞
F̄ (q) = 0 and F̄ (0) = U −B , and

rF1 (q) = f (J ′1 (q))F ′1 (q) +
σ2

2
F ′′1 (q) s.t. lim

q→−∞
F1 (q) = 0 and F1 (0) = U −B ,

respectively. Finally, the manager’s expected discounted profit before one agent is retired
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satisfies

rFR (q) = 2f (J ′R (q))F ′R (q) +
σ2

2
F ′′R (q) s.t. lim

q→−∞
FR (q) = 0 and FR (R) = F1 (R) ,

where the second condition ensures value matching at q = R. Because F1 (·) is determined

independently of FR (·), these boundary conditions completely characterize FR (·).

(b) Show that there exists a ΘR ≤ R such that FR (q0) ≥ F̄ (q0) if and only if ΘR ≤ q0 < R.

First, let ∆1 (q) = F1 (q)− F̄ (q), and note that limq→−∞∆1 (q) = ∆1 (0) = 0, and that ∆1 (·)

is smooth. As a result, either ∆1 (·) ≡ 0 on (−∞, 0], or it has at least one interior extreme

point. Suppose that the latter is true, and let us denote such extreme point by z∗. Then

∆′1 (z∗) = 0, which implies that

r∆1 (z∗) =
[
f (J ′1 (z∗))− 2f

(
J̄ ′ (z∗)

)]
F̄ ′ (z∗) +

σ2

2
∆′′1 (z∗) .

It is straightforward to prove a result analogous to Theorem 2 (B): that there exists a

threshold Φ such that f (J ′1 (z∗)) ≤ 2f
(
J̄ ′ (z∗)

)
if and only if z∗ ≤ Φ. As a result ∆1 (z∗) ≤ 0

if z∗ ≤ Φ, while ∆1 (z∗) ≥ 0 if z∗ ≥ Φ. It follows that ∆1 (·) crosses 0 at most once from

below.

Next, define ∆R (q) = FR (q)− F̄ (q) on (−∞, R]. Note that limq→−∞∆R (q) = 0, ∆R (R) =

∆1 (R), and ∆R (·) is smooth, where the second equality follows from the value matching

condition FR (R) = F1 (R). Because ∆1 (·) crosses 0 at most once from below, depending on

the choice of the retirement point R, it may be the case that ∆1 (R) S 0.

Suppose ∆1 (R) ≥ 0. Then either ∆R (·) increases in (−∞, R], or it has at least one interior

extreme point. Suppose the latter is true, and let us denote such extreme point by z̄. Then

68



∆′R (z̄) = 0 implies that

r∆R (z̄) = 2
[
f (J ′R (z̄))− f

(
J̄ ′ (z̄)

)]
F̄ ′ (z̄) +

σ2

2
∆′′R (z̄) .

Recall from part I (c) of this proof that J ′R (q) ≤ J̄ ′ (q) for all q ≤ R , which implies that

f (J ′R (z̄)) ≤ f
(
J̄ ′ (z̄)

)
. It follows that z̄ must satisfy ∆R (z̄) ≤ 0. Because ∆1 (R) ≥ 0, it

follows that there exists a threshold ΘR < R such that ∆1 (q0) ≥ 0 if and only if ΘR ≤

q0 < R. If ∆1 (R) < 0, the same analysis yields that ∆R (·) decreases in (−∞, R], and hence

∆1 (q0) ≤ 0 for all q0 ≤ R.

(c) Conclusion of the Proof

I have shown that as long as R is chosen such that F1 (R) ≥ F̄ (R) (so that ∆1 (R) ≥ 0),

there exists a threshold ΘR < R such that FR (q0) ≥ F̄ (q0) for all q0 ∈ [ΘR, R]. The last

relationship implies that as long as the the length of the project |R| < |q0| ≤ |ΘR|, the

manager is better off implementing the proposed retirement scheme relative to allowing both

agents to carry out the project to completion together. Finally, the requirement that R is

chosen such that F1 (R) ≥ F̄ (R) is equivalent to the requirement that if the project length

were |q0| = |R|, and the manager did not use a dynamic team size management scheme, she

would be better off employing one instead of two agents.

Proof of Proposition 7. In preparation, I first establish two Lemmas.

Lemma 2. Consider a project undertaken by two identical agents who differ only in their

final rewards such that V1 > V2. Also, suppose that effort costs are quadratic. Then

d
dq

[a1 (q)− a2 (q)] ≥ 0 for all q.
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Proof of Lemma 2. Observe that when effort costs are quadratic, then ai (q) = J ′i (q), so it

suffices to show that D′J (·) = J ′1 (·) − J ′2 (·) is (weakly) increasing on (−∞, 0]. First note

that limq→−∞D
′
J (q) = 0, and from Proposition 1 (i), it follows that D′J (q) > 0 for all q. Fix

z ≤ 0, and let z̄ = arg max {D′J (q) : q ≤ z}. Clearly, z̄ > −∞. Suppose that z̄ is interior.

Then D′′J (z̄) = 0 and D′′′J (z̄) ≤ 0, and by using (1.8) we have that rD′J (z̄) = σ2

2
D′′′J (z̄) ≤ 0.

However, this contradicts the fact that D′J (z̄) > 0, which implies that z̄ = z. Since z was

chosen arbitrarily, this implies that D′J (·) is (weakly) increasing on (−∞, 0].

Lemma 3. Consider a project undertaken by two identical agents, and suppose that effort

costs are quadratic. Consider the following two scenarios for the agents’ compensation: (i)

V1 = V2 = B
2

, and (ii) V1 = B
2

+ ε > B
2
− ε = V2. Then for all ε ∈

(
0, B

2

]
there exists a

Θε < 0 such that the aggregate effort of the team is larger under asymmetric rewards ( i.e.,

under scenario (ii)) if and only if q ≥ Θε.

Proof of Lemma 3. First let us denote the expected discounted payoff function of the agents

under asymmetric compensation by J1 (q) and J2 (q), respectively, and let us denote the

expected discounted payoff function of the agents under symmetric compensation by JS (q).

Because effort costs are quadratic, ai (q) = J ′i (q). Observe that we are interested in com-

paring 2aS (q) and a1 (q) + a2 (q), or equivalently 2J ′S (q) and J ′1 (q) + J ′2 (q) on (−∞, 0]. Let

us define M (q) = 2JS (q)− J1 (q)− J2 (q). By noting that limq→−∞M (q) = M (0) = 0 and

M (·) is smooth on (−∞, 0], it follows that either M (·) ≡ 0, or it has at least one interior

global extreme point. Suppose the latter is true and let us denote that extreme point by z∗.

By using (1.4), and the facts that f (x) = x and c (f (x)) = x2

2
, it follows that

rM (z∗) =
1

2

[
6 (J ′S (z∗))

2 − 2 (J ′1 (z∗) + J ′2 (z∗))
2

+ (J ′1 (z∗))
2 − (J ′2 (z∗))

2
]

+
σ2

2
M ′′ (z∗) .
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Because z∗ is an extreme point, M ′ (z∗) = 0 implies that J ′S (z∗) = J1(z∗)+J2(z∗)
2

. By substi-

tuting into the above equality and simplifying the terms, we have

rM (z∗) =
1

4
[J ′1 (z∗)− J ′2 (z∗)]

2
+
σ2

2
M ′′ (z∗) .

Suppose that z∗ is a global interior minimum. Then the facts that M ′′ (z∗) ≥ 0 and

J ′1 (z∗) > J ′2 (z∗) (which follows from Proposition 1 (i)), imply that M (z∗) > 0. How-

ever, this contradicts the fact that M (0) = 0, which implies that z∗ must be a maximum

and M (q) ≥ 0 for all q. Moreover, because J1 (z∗) > J2 (z∗), note that it cannot be the case

that M (·) ≡ 0.

Now suppose that M (·) has more than one extreme points. Then there must exist a local

maximum z∗ followed by a local minimum z̄ > z∗. This implies that M ′′ (z∗) ≤ 0 ≤M ′′ (z̄),

and by Lemma 2, 0 ≤ J ′1 (z∗) − J ′2 (z∗) ≤ J ′1 (z̄) − J ′2 (z̄). These equalities imply that

M (z∗) ≤M (z̄), which contradicts the assumption that z∗ is a maximum and z̄ is a minimum.

Hence M (·) has a global maximum on (−∞, 0] and no other local extreme points. Therefore

there exists a Θε < 0 such that M ′ (q) ≥ 0 if and only if q ≤ Θε.

To begin, let us denote the manager’s expected discounted profit by F0 (q) and Fε (q) under

the symmetric (i.e.,
(
B
2
, B

2

)
) and the asymmetric (i.e.,

(
B
2

+ ε, B
2
− ε
)
) compensation scheme,

respectively. Moreover, let us denote the expected discounted payoff of each agent by JS (·),

J1 (·), and J2 (·), where the subscripts follow the convention from Lemma 3. Next, let

∆ε (q) = F0 (q) − Fε (q), and observe that limq→−∞∆ε (q) = ∆ε (0) = 0. Therefore, either

∆ε (·) ≡ 0, or ∆ε (·) has at least one interior global extreme point. Suppose the latter is true,

and let us denote that extreme point by z̄. By using (1.5) and the fact that ∆′ε (z̄) = 0, it
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follows that

r∆ε (z̄) = [2J ′S (z̄)− J ′1 (z̄)− J ′2 (z̄)]F ′0 (z̄) +
σ2

2
∆′′ε (z̄) .

From Lemma 2, we know that there exists a threshold Θε such that 2J ′S (q) ≥ J ′1 (q) + J ′2 (q)

if and only if q ≤ Θε, and from Theorem 3 (ii) that F ′0 (q) > 0 for all q. It follows that

z̄ is a global maximum if z̄ ≤ Θε, while it is a global minimum if z̄ ≥ Θε. Moreover, any

local extreme point z̄ ≤ Θε must satisfy ∆ε (z̄) ≥ 0, while any local extreme point z̄ ≥ Θε

must satisfy ∆ε (z̄) ≤ 0. Moreover, because 2J ′S (q) > J ′1 (q) + J ′2 (q) for at least some q, and

F ′0 (q) > 0 for all q, it cannot be the case that ∆ε (·) ≡ 0. Therefore, either one of the following

three cases must be true: (i) ∆ε (·) ≥ 0 on (−∞, 0], (ii) ∆ε (·) ≤ 0 on (−∞, 0], or (iii) ∆ε (·)

crosses 0 exactly once from above. Hence, there exists a Tε such that F0 (q0) ≥ Fε (q0) if and

only if q0 ≤ −Tε, or equivalently if and only if |q0| ≥ Tε.
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Chapter 2

Project Design with Limited

Commitment and Teams

2.1 Introduction

A key component of a project, such as the development of a new product, is choosing

the features that must be included before the decision maker deems the product ready to

market. Naturally, which features are to be included must be communicated to the relevant

stakeholders. When choosing these features, the decision maker must balance the added value

derived from a bigger or a more complex project (i.e., one that contains more features) against

the additional cost associated with designing and implementing the additional features. Such

costs include not only engineering inputs but also the implicit cost associated with delayed

cash flow.

Issues regarding technological uncertainty come to the forefront: will the engineering team

be able to implement the desired new features, and if so, will the associated cost and delay

be acceptable. Stumbling blocks, setbacks, and surprises are almost certain to enter the

path of a new product introduction. Consequently, it may not be possible to contract

either on various aspects of the new features or on the time when the new product will

be introduced, at least not at the early stages of the project. Even the decision maker

herself is not yet certain about the exact specifications and appearance of the final output.
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Anecdotal evidence from the development of Apple’s first generation iPod indicates that

Steve Jobs kept changing the requirements of the iPod as it progressed. This suggests that

committing to a set of features/requirements early on was infeasible in the development of

a new product as innovative as the iPod back in 2001 (Wired Magazine (2004)). Similarly,

consider the process of designing a new car. If it were possible to describe in advance what

the design must look like for management to give its approval, then there would be far fewer

delays as the new car makes its way to production and design would be relatively easy.

However, as the final product takes shape, the decision maker can better guide the design

team to fulfill her objectives.

What we have in mind about the incontractibility of the project requirements was eloquently

posed by Tirole (1999)

In practice, the parties are unlikely to be able to describe precisely the specifics of

an innovation in an ex ante contract, given that the research process is precisely

concerned with finding out these specifics, although they are able to describe it ex

post.

More generally, such incontractibilities arise in projects that involve significant novelty in

quality or design. This also applies to many innovation projects where it is difficult to describe

in sufficient detail for the purpose of a contract until the project is close to completion.

We develop a tractable model to study the interaction between a group of individuals who ex-

ert costly effort over time to complete a project and a manager who chooses its requirements.

When the choice of the project requirements is endogenous, we characterize the Markov Per-

fect equilibrium and show that it is unique. Then, we investigate how the manager’s optimal

choice of the requirements depends on her ability to commit earlier or later on. To model

the manager’s limited ability to commit, we assume that given the current state q of the
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project, she can commit to any Q ∈ [q, q + y], where y ≥ 0 captures her commitment power,

and y is common knowledge.1 Therefore, the manager can commit to a project size Q∗ > y

only after the agents have made sufficient progress such that q ≥ Q∗ − y.size of the project

is now endogenous.

The main result is that the manager’s incentives propel her to extend the project as it

progresses; for example, by introducing additional requirements. The intuition behind this

result is as follows. Because agents are impatient, they incur the cost of effort at the time

they exert it, and they get compensated upon completion of the project, in equilibrium, they

increase their effort as the project progresses. On the other hand, the manager chooses the

project size by trading off the marginal benefit of a larger project against the marginal cost

associated with having to wait longer for a larger project to be completed. Of course, due to

discounting, a larger project induces a larger opportunity cost of waiting. However, because

the agents increase their effort, this marginal cost decreases as the project progresses, while

the respective marginal value is independent of the progress made on the project. Because

the project size will be chosen such that the two marginal values are equal, it follows that

the manager’s optimal project size increases as the project progresses. This result has three

implications.

First, the project size that the manager will eventually choose decreases in her commitment

power.2 If the manager has sufficiently large commitment power, she will commit to her

optimal project size at time 0. On the other hand, if she has less commitment power, then

1Here, Q is a one-dimensional parameter that captures the project requirements, or equivalently, the
project size.

2We assume that the manager’s commitment power y is given exogenously as it depends on the nature of
the project. For example, projects that contain a significant innovation or design component are associated
with a relatively small commitment power, since the requirements are difficult to unambiguously define ex-
ante. On the other hand, in construction projects, the requirements can typically be specified in advance so
that they are associated with a relatively large commitment power.
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at time 0 she can either commit to a small project, or she can wait to commit until the

project is at an advanced stage so that she can commit to her optimal project size. We

show that the manager always finds the latter option preferable. However, once such an

advanced stage has been reached, her optimal project size is larger than it was at time 0.

Consequently, the less commitment power the manager has, the bigger a project she will

choose. Furthermore, she will commit to her optimal project size at a later state.3

Second, due to the agents’ rational expectations, anticipating that the manager will choose

a larger project if she has less commitment power, the agents respond by decreasing their

effort; this renders her worse off (see Proposition 2). Therefore, if the agents receive a share

of the project’s worth upon completion (i.e., an equity contract), the manager might delegate

the decision rights over the project size to the agents. Intuitively, note that the smaller is

the manager’s commitment power, the larger a project she will eventually choose, which

implies that without delegating, her ex-ante discounted profit decreases in her commitment

power. On the other hand, the agents would choose a project smaller than is optimal for the

manager, but they are time-consistent, which implies that the manager’s discounted profit

is independent of the agents’ commitment power. The upshot is that there exists an interior

threshold such that the manager should delegate the decision rights over the project size to

the agents unless she has sufficient commitment power (see Proposition 3).

The third implication is related to the organizational culture that the manager should cul-

tivate within the team. Motivated by the concept of insiders (who act in the best interest

of the team) and outsiders (who act in their own best interest) introduced by Akerlof and

Kranton (2000), we characterize a continuum of (non-Markovian) Public Perfect equilibria

3An additional source of inability to commit to specific requirements is an asymmetry in the bargaining
power of the parties involved. For example, if a project is undertaken in-house where the manager can
significantly influence the team members’ career paths and contracts are typically implicit, the manager is
less likely to be able to commit relative to the case in which the project is outsourced and contract is explicit.

81



where agents choose their effort to maximize a convex combination of their individual and

the entire team’s discounted payoff. The weight that the agents place on maximizing the

team’s payoff can be interpreted as the team’s cooperativeness. In Proposition 4, we examine

the degree to which the manager should influence it, for example, by selecting the team mem-

bers or encouraging interaction among them. Given a fixed project size, a fully cooperative

environment where the agents place all the weight on maximizing the entire team’s payoff

is first-best. However, if the size of the project is endogenous, then Proposition 5 shows

that a fully cooperative environment is profit-maximizing only if the manager has sufficient

commitment power. Otherwise, the degree of cooperativeness that maximizes her discounted

profit is interior, and both her profit and the degree of cooperativeness increase in her com-

mitment power. Intuitively, by cultivating a lower degree of cooperativeness, the manager

can mitigate her ex-post incentives to extend the project, which are inversely related to her

commitment power.

To test the robustness of the main results, we examine four extensions. First, we study

synergies, where the team’s total effort is greater than the sum of the individual efforts.

Second, we consider the case in which each agent receives a fixed lump-sum payment upon

completion that it independent of the project size. Third, we consider a scenario in which

the interaction between the manager and the agents is persistent in that a new project is

initiated as soon as the previous one is completed. Finally, we consider the case in which,

in addition to a lump-sum payment upon completion of the project, the agents receive flow

payments while the project is ongoing. In all four extensions, we find that (i) the manager has

incentives to extend the project as it progresses, (ii) she should delegate the decision rights

over the project size to the agents unless she has sufficient commitment power, and (iii) the

cooperation level that maximizes her ex-ante discounted profit increases in her commitment

power.
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Related Literature

First and foremost, this paper is related to the moral hazard in teams literature - in particular

to the papers that study dynamic contribution games. Admati and Perry (1991) and Marx

and Matthews (2000) examine how the incentives to contribute to a public good evolve

over time, and establish conditions under which the project is completed. Kessing (2007)

shows that in contrast to the case in which the project generates flow payments while it is in

progress considered by Fershtman and Nitzan (1991), efforts are strategic complements when

the agents receive a payoff only upon completion of the project. Georgiadis (2012) examines

how the incentives to contribute to a public good depend on the team composition, and he

focuses on how a manager should choose the team composition and the agents’ compensation

scheme. A feature common to most of the papers in this stream of literature is that the size of

the project is given exogenously. However, in new product design, the choice of the objectives

of any given project is a central part of the problem. Our contribution to this literature is

to endogenize the size of the project, and to examine how this choice depends on who has

the decision rights and on the extent of the decision maker’s commitment power.

A second strand of related literature is that on incomplete contracting. In particular, our

paper is closely related to the papers that study how ex-ante contracting limitations generate

incentives to renegotiate the initial contract ex-post (Grossman and Hart (1986), Hart and

Moore (1990), Aghion and Tirole (1994), Tirole (1999), and Al-Najjar, Anderlini and

Felli (2006)). A subset of this literature focuses on situations wherein the involved parties

have asymmetric information. Here, ratchet effects have been shown to arise in principal-

agent models in which the principal learns about the agent’s ability over time, and the agent

reduces his effort to manipulate the principal’s beliefs about his ability (Freixas, Guesnerie

and Tirole (1985) and Laffont and Tirole (1988)). In another thread of this strand are

papers that consider the case in which the agent is better informed than the principal, or he
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has better access to valuable information. The common result is that delegating the decision

rights to the agent is beneficial as long as the he is sufficiently better informed and the

incentive conflict is not too large (Aghion and Tirole (1997) and Dessein (2002)). In our

model, however, all parties have full and symmetric information, so that ratchet effects and

the incentives to delegate the decision rights to the agents arise purely out of moral hazard.

Finally, this paper is related to the literatures on corporate culture (Kreps (1990)) and

social identity (Tajfel and Turner (1979)). The game that we analyze, contains a continuum

of non-Markovian equilibria in addition to the unique Markov equilibrium. We couple this

fact with the concepts introduced by Kreps (1990) and Akerlof and Kranton (2000) to

examine which equilibrium will be played. Moreover, experiments in social identity theory

have demonstrated that it is surprisingly easy to influence subjects’ behavior as insiders, who

act in their group’s best interest, or outsiders, who act in their own best interest (Akerlof

and Kranton (2005)). Consequently, our result can be employed by a manager who seeks

to influence the team’s corporate culture (which we term cooperativeness) when the choice

of the project size is endogenous.

This paper is organized as follows. In Section 2 we introduce the model, and we analyze

the agents’ as well as the manager’s problem. In Section 3 we study the manager’s optimal

choice of the project requirements as a function of her commitment power, and we examine

her option to delegate the decision rights over the requirements to the agents. Section 4

focuses on how the manager’s optimal choice of the requirements depends on the agents’

cooperation level, and we examine how the manager should influence it. Section 5 concludes.

In Appendix A we extend our model to test the robustness of our results. All proofs are

provided in Appendix B.
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2.2 The Model

A group of n identical agents contracts with a manager to undertake a project. The agents

exert (costly) effort over time to complete the project, they receive a lump-sum compensation

upon completing the project, and they are protected by limited liability.4 The manager has

the authority to choose the size of the project. A project of size Q ≥ 0 generates a payoff

equal to Q upon completion. This payoff is split between the parties as follows: each agent

receives βQ
n

, and the manager receives (1− β)Q.5 Time t ∈ [0,∞) is continuous; all parties

are risk neutral and discount time at rate r > 0. The project starts at state q0 = 0. At

every moment t, each agent observes the state qt of the project, and exerts costly effort to

influence the process

dqt =

(
n∑
i=1

ai,t

)
dt ,

where ai,t denotes the effort level of agent i at time t.6,7 To avoid trivializing the problem,

we assume that efforts are not contractible. Each agent’s flow cost of exerting effort level a

is λ
2
a2, where λ > 0, while his outside option is equal to 0. The project is completed at the

4For the sake of tractability, we assume that the agents are compensated only upon completing the
project. However, in Appendix A.4 we consider the case in which, in addition to a lump-sum payment upon
completion of the project, they receive a per unit of time compensation while the project is ongoing. We
find that all the main results of this paper continue to hold.

If the agents have unlimited liability, then the manager can achieve first-best by selling the project to the
agents for a price that makes their participation constraint bind.

5We assume that β is independent of Q; otherwise, the assumption that the manager has limited ability
to commit to a project size would be violated. However, we defer a detailed justification until after we have
formalized what we mean by limited commitment power in Section 3.1.2.

Note that this is essentially an equity contract. In Appendix A.2 we consider the case in which each agent
receives a flat payment upon completion of the project that is independent of the project size Q, and we find
that such a contract aggravates the manager’s commitment problem.

6Efforts are perfect substitutes in the base model. In Appendix A.1, we examine the case in which they
are complementary, and we show that all results continue to hold.

7The assumption that the project progresses deterministically is made for the sake of tractability. Geor-
giadis (2012) analyzes a similar model in which the project progresses stochastically and the project size
is given exogenously. The insights regarding the Markov Perfect equilibrium are essentially identical in the
two cases. However, a closed-form characterization of the equilibrium and of the optimal project size cannot
be obtained if the project progresses stochastically.
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first time τ such that qτ = Q.

In this Section, we consider differentiable Markov Perfect equilibria (hereafter MPE) such

that at any time t, agent i observes the state qt of the project, and chooses his effort strategy

{ai,s}s≥t to maximize his expected discounted payoff while accounting for the effort strategies

of the other team members.8

In the remainder of this Section, we study the agents’ problem, and we determine the man-

ager’s discounted profit given a fixed project size Q. We endogenize the choice of Q in Section

3.

2.2.1 Agents’ Problem

Given a project of size Q and the current state qt of the project, agent i’s expected discounted

payoff function satisfies

Πi,t (q ;Q) = max
{ai,s}s≥t

[
e−r(τ−t)

βQ

n
−
ˆ τ

t

e−r(s−t)
λ

2
a2
i,sds | {a−i,s}s≥t , Q

]
, (2.1)

where τ denotes the completion time of the project and it depends on the agents’ strategies.

Note that the first term captures the agent’s net payoff upon completion of the project,

while the second term captures his discounted cost of effort for the remaining duration of

the project. Because payoffs depend solely on the state of the project (i.e., q) and not on

the time t, this problem is stationary; hence the subscript t can be dropped. Using standard

arguments (Dixit (1999)), one can derive the Hamilton-Jacobi-Bellman equation for the

8Besides the MPE in this Section, there also exist Public Perfect equilibria with history dependent strate-
gies. Such equilibria are characterized in Section 4.
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expected discounted payoff function for agent i

rΠi (q ;Q) = max
ai

{
−λ

2
a2
i +

(
n∑
j=1

aj

)
Π′i (q ;Q)

}

subject to the boundary conditions

Πi (q ;Q) ≥ 0 for all q and Πi (Q ;Q) =
βQ

n
.

The first boundary condition captures the fact that each agent’s discounted payoff must

be non-negative because he has the option to exert no effort and incur no effort cost, thus

guaranteeing himself a payoff of 0. The second boundary condition states that upon com-

pleting the project, each agent receives his reward and exerts no further effort. The following

Proposition characterizes the MPE for this game.

Proposition 8. For any given project size Q, there exists a Markov Perfect equilibrium

(MPE) for the game defined by (2.1). This equilibrium is symmetric, and each agent’s effort

strategy is given by 9

a (q ;Q) =
r

2n− 1
[q − C (Q)]+ , where C (Q) = Q−

√
2βQ

rλ

2n− 1

n
.

In equilibrium, each agent’s expected discounted payoff is given by

Π (q ;Q) =
rλ

2

(
[q − C (Q)]+

)2

2n− 1
.

If Q < 2β
rλ

, then this equilibrium is unique, and the project is completed in finite time.

Otherwise, there also exists an equilibrium in which no agent ever exerts any effort and the

9To simplify notation, because the equilibrium is symmetric and unique, the subscript i is dropped
throughout the remainder of this paper. Moreover, [·]+ = max {·, 0}.

87



project is never completed.10

Observe that the agents exert no effort if C (Q) ≥ 0, or equivalently if Q ≥ 2β
rλ

2n−1
n

, in

which case the project is never completed. Intuitively, if the project is too large, then the

discounted cost of effort to complete it is larger than the discounted net payoff. As a result,

the agents are better off abandoning the project altogether. On the other hand, if C (Q) < 0

(i.e., if Q < 2β
rλ

2n−1
n

), then each agent’s effort level increases in the state of the project q.

Intuitively, this is due to the facts that agents are impatient and they incur the cost of effort

at the time it is exerted, while they are compensated only when the project is completed.

As a result, the closer the project is to completion, the stronger are their incentives to exert

effort.

While the MPE need not be unique, it turns out that the manager will always choose the

size of the project such that the equilibrium is unique when the project size Q is endogenous

(see Remark 1 in Section 3).

2.2.2 Manager’s Problem

We now introduce the manager’s problem. Given a project of size Q and the agents’ belief

Q̃ about the manager’s choice of the project size, the manager’s discounted profit can be

written as W
(
q ;Q, Q̃

)
=
[
e−rτ (1− β)Q |Q, Q̃

]
, where the project’s completion time τ

depends on the agents’ strategies which in turn depend on the agents’ belief Q̃. Note that

the manager’s discounted payoff depends on the agents’ belief about the manager’s choice of

the project size because this belief influences their effort strategy. However, in equilibrium

beliefs must be correct; i.e., Q = Q̃. Using standard arguments, one can derive the HJB

10If Q ≥ 2β
rλ

2n−1
n , then the two MPE coincide, and the project is never completed.
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equation for the manager’s expected discounted profit

rW
(
q ;Q, Q̃

)
=
[
n a
(
q ; Q̃

)]
W ′
(
q ;Q, Q̃

)

subject to the boundary conditions

W
(
q ;Q, Q̃

)
≥ 0 for all q and W

(
Q ;Q, Q̃

)
= (1− β)Q .

To interpret these boundary conditions, note that manager’s discounted profit is non-negative

at every state of the project, because she does not incur any cost or disburse any payments

to the agents while the project is in progress.11 On the other hand, she receives her net profit

(1− β)Q, and the game ends as soon as the state of the project hits Q for the first time. It

is straightforward to show that this ordinary differential equation has the following unique

solution

W
(
q ;Q, Q̃

)
= (1− β)Q


[
q − C

(
Q̃
)]+

Q− C
(
Q̃
)


2n−1
n

, . (2.2)

Note that (1− β)Q represents the manager’s net profit upon completion of the project, while

the next term can be interpreted as an effective discount rate that captures the completion

time of the project, which depends on the agents’ strategies characterized in Proposition 1

and their belief about the project size.

2.3 Project Choice and the Commitment Problem

In this Section we endogenize the project size Q. The manager has full decision rights over

the choice of the project size, but she may not be able to commit to a specific Q until the

11In Appendix A.4 we consider the case in which the manager compensates the agents per unit of time
while the project is in progress, and we find that all results continue to hold.
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project is sufficiently close to that state. Formally, we assume that given the current state of

the project q, the manager can only commit to a project size in the interval [q, q + y], where

y ≥ 0 is common knowledge. We think of it as capturing the describability (or verifiability)

of the project requirements.

The extreme case y = ∞ represents the situation in which the requirements are perfectly

describable. Therefore, when y = ∞, the manager can (and will) commit to her optimal

project size at time 0. On the other hand, if y = 0, then the requirements are completely

indescribable, and the manager only knows that the project is complete when she sees it.

In this case, at every moment the manager observes the current state of the project q, and

she decides whether it is good enough (in which case the size of the project will be Q = q),

or whether to let the agents continue to work and re-evaluate the completion decision an

instant later. Therefore, y can be interpreted as the manager’s commitment power, where a

larger y indicates greater commitment power.

For example, y is likely to be large in a construction project where the requirements are

relatively standardized and easy to define. On the other hand, in a project that involves

a significant innovation or quality component, such as the development of Apple’s first-

generation iPhone, y is likely to be small, because the manager cannot contract on the

requirements of the final product until the project is at an advanced stage. Similarly, y is

typically small in design-related projects such as automotive design or the commissioning of

a sculpture, as the requirements are difficult to describe.

The main result of this paper is that the manager is time-inconsistent with respect to her

optimal choice of the project size: she is inclined to introduce additional requirements as

the project progresses. The implication of this result is that if she has less commitment

90



power (i.e., if y is smaller), then she will (eventually) select a larger project. The agents,

anticipating that she will choose a larger project if she has less commitment power, decrease

their effort rendering her (ex-ante) worse off. We show that the manager benefits from

delegating the decision rights over the project size to the agents unless her commitment

power is sufficiently large, in which case the agents will choose a smaller project but their

preferences are time-consistent.

2.3.1 Optimal Project Size

To examine the manager’s optimal project size, we first consider the case in which she has

full commitment power (i.e., y =∞), so that she can commit to any project size before the

agents begin to work. Second, we consider the opposite extreme case in which she has no

commitment power (i.e., y = 0), so that at every moment she observes the current state of

the project q and decides whether to complete the project immediately, or to let the agents

continue to work on the project and re-evaluate her option to complete the project a moment

later. Finally, we consider the case in which she has intermediate commitment power (i.e.,

0 < y <∞), and we examine how her optimal project size depends on y.

2.3.1.1 Full Commitment Power (y =∞)

If the manager has full commitment power, then she can commit to a project size before the

agents begin to work. Therefore, at time 0 with q = 0, the manager leads a Stackelberg game

in which she chooses the project size that maximizes her discounted profit and the agents

follow by adopting the equilibrium strategy characterized in Proposition 1. As a result, her

optimal project size with full commitment (FC) satisfies QM
FC ∈ arg maxQW (0 ;Q,Q).12

Noting from (2.2) that W (0 ;Q,Q) is concave in Q, and differentiating it with respect to Q

12Because the manager leads the agents in a Stackelberg game, given any choice Q, the agents will choose
their strategy based on that Q, and the agent’s belief Q̃ will coincide with Q ex-ante.
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we have:

QM
FC =

β

rλ

2n− 1

2n

(
4n

4n− 1

)2

.

Note that the concavity of her discounted profit function implies that she commits to QM
FC

at q = 0 for any commitment power y ≥ QM
FC .

2.3.1.2 No Commitment Power (y = 0)

On the other hand, if the manager has no commitment power, then at every moment she

observes the current state of the project q, and she decides whether to stop work and collect

the net profit (1− β)Q or to let the agents continue working and re-evaluate her decision

to complete the project a moment later. In this case, the manager and the agents engage

in a simultaneous-action game, where the manager chooses Q to maximize her discounted

payoff given the agents’ beliefs Q̃ and their strategies, and the agents form their beliefs by

anticipating the manager’s choice Q. Therefore, her optimal project size with no commitment

(NC) satisfies QM
NC ∈ arg maxQ

{
W
(
q ;Q, Q̃

)}
, where in equilibrium beliefs must be correct;

i.e., Q = Q̃. By solving
∂W(q ;Q,Q̃)

∂Q

∣∣∣∣
Q=Q̃

= 0, we have:

QM
NC =

β

rλ

2n

2n− 1
.

Observe that if y = 0, then she will choose a strictly larger project relative to the case

in which she has full commitment power: QM
NC > QM

FC . We shall discuss the intuition

behind this result in Section 3.1.3, where we determine the manager’s optimal project size

for intermediate levels of commitment power.13

13Note that QMFC increases in the team size n while QMNC decreases in n. By examining the effort strategies
from Proposition 1, it follows that given any Q, there exists some interior threshold ϕ such that the total
effort of the team (and consequently the manager’s discounted profit) increases in the team size if and only
if the project is sufficiently far from completion; i.e., q ≤ ϕ. The reader is referred to Georgiadis (2012) for
a detailed analysis and discussion of this result. The upshot is that if y =∞ so that she can choose the size
of the project at q = 0, then her optimal project size increases in n. On the other hand, suppose that y = 0,
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Conceptually, this commitment problem could be resolved by allowing β to be contingent on

the project size. In particular, suppose that the manager can fix β, and let β̂ (Q) equal β if

Q = QM
FC , and 1 otherwise. Then, her optimal project size is equal to QM

FC regardless of her

commitment power because any other project size will yield her a net payoff of 0. However,

this implicitly assumes that QM
FC is contractible at q = 0, which is clearly not true for any

y < QM
FC . Therefore, we rule out this possibility by assuming that β is independent of Q.

2.3.1.3 Partial Commitment Power (0 < y <∞)

Recall that the manager’s optimal project size is equal to QM
FC for all y ≥ QM

FC , and it is

equal to QM
NC if y = 0. To determine her optimal project size when y ∈

(
0, QM

FC

)
, we solve

an auxiliary problem, and we show that there is a one-to-one correspondence between this

auxiliary problem and the original problem.

Suppose that the manager can credibly commit to her optimal project size as soon as the

project hits x. In this case, the manager leads a Stackelberg game, where she chooses QM
x to

maximize her discounted profit at x, so that QM
x ∈ arg maxQ≥x {W (x ;Q,Q)}, and the agents

follow by choosing their strategies based on QM
x . We then show that for all y ∈

(
0, QM

FC

)
,

there exists a unique x (y) ∈
(
0, QM

NC

)
, such that the manager will commit to the project

size QM
x(y) as soon as the project hits x (y) for the first time.

Proposition 9. Suppose that given the current state q, the manager can commit to any

and observe from Proposition 1 that the rate at which agents increase their effort as the project progresses
decreases in the team size; i.e., ∂

∂qa (q ;Q) = r
2n−1 ↓ in n. By noting that the manager’s incentives to extend

the project are driven by the agents working harder as the project progresses, it follows that in a larger team
the manager has weaker incentives to extend the project relative to a smaller team.
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project size Q ∈ [q, q + y]. Then at x (y) the manager will commit to QM
x(y), where

QM
x(y) =

(
2n

4n− 1

)2
(√

β

rλ

2n− 1

2n
+

√
β

rλ

2n− 1

2n
+

4n− 1

4n2
x (y)

)2

, (2.3)

x (y) is the unique solution to the equation max
{
QM
x(y) − y, 0

}
= x (y), and x (y) decreases

in y.

Therefore, the manager’s optimal project size decreases in her commitment power: QM
x(y)

decreases in y.14

The first part of this Proposition asserts that the manager has incentives to extend the project

as it progresses: QM
x increases in x. To understand the intuition behind this result, note

that the manager trades off a larger project that yields a larger net profit upon completion

against having to wait longer until that profit is realized, but she ignores the additional

effort cost associated with a larger project. Moreover, recall that the agents increase their

effort level, and hence the manager’s marginal cost associated with choosing a larger project

decreases, as the project progresses. On the other hand, her marginal benefit from choosing

a larger project is independent of the progress made. Since the project size will be chosen

such that the two marginal values are equal, it follows that the manager’s optimal project

size increases as the project progresses.15

The implication of this result is that if the manager has less commitment power, then she

14If the manager has full commitment power, then QMx(∞) = QMFC . If she has no commitment power, then

the fixed point of (2.3) coincides with QMNC .
15To reinforce the intuition that this is due to the agents increasing their effort as the project progresses,

suppose that each agent exerts constant effort a > 0 throughout the duration of the project. Then given the
current state q, the project will be completed in Q−q

na units of time so that the manager’s discounted profit

is equal to (1− β)Qe−
r(Q−q)
na . Differentiating this expression with respect to Q and using the first-order

condition, it follows that the manager’s discounted profit is maximized at Q = na
r . Observe that the optimal

project size is independent of q, which leads us to conclude that the manager’s time-inconsistency arises due
to the agents increasing their effort along the evolution path of the project.
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will (eventually) commit to a larger project; i.e., QM
x(y) decreases in y. By noting that the

extreme cases in which the manager has full (no) commitment power correspond to y = 0

(y =∞), this intuition also explains why QM
NC > QM

FC . Figure 1 illustrates this result.
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Figure 2.1: Optimal project size when β = 0.5, r = 0.1, λ = 1, and n = 4. The left panel

illustrates the manager’s incentives the extend the project as it progresses: observe that her optimal

project size increases in the state of the project q, and there exists a state at which the manager is

better off completing the project without further delay. The right panel illustrates that her optimal

project size (solid line) decreases in her commitment power, while the agents’ optimal project size

(dashed line) is independent of their commitment power.

Remark 5. Recall that (i) the MPE is unique if Q < 2β
rλ

, (ii) QM
NC < 2β

rλ
for all n ≥ 2, ,

and (iii) QM
x(y) ≤ QM

NC for all y. Therefore, the game has a unique MPE for any level of

commitment power when the project size is chosen by the manager.16

16Note that the MPE is always unique if n = 1. However, if y = 0, then a
(
0; QMNC

)
= 0, which implies
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It is important to emphasize that the agents internalize the manager’s limited ability to

commit, and they choose their effort strategy appropriately. In particular, each agent’s

effort increases in the manager’s commitment power (i.e., a
(
q ;QM

x(y)

)
increases in y) since

C (Q) increases in Q for all Q > β
rλ

2n−1
2n

and QM
x(y) >

β
rλ

2n−1
2n

for all y. This implies that

the manager’s ability to commit induces a ratchet effect: anticipating that she will choose

a larger project, the agents respond by scaling down their effort. While ratchet effects have

been shown to arise in settings with asymmetric information (e.g., Freixas, Guesnerie and

Tirole (1985) and Laffont and Tirole (1988)), in our model they arise under moral hazard

with full and symmetric information.

Besides disincentivizing the agents from exerting effort, the manager’s limited ability to

commit is also detrimental to her ex-ante discounted profit; i.e., W
(

0 ;QM
x(y)

)
increases in

y.17 Thus, unable to commit sufficiently early, the manager might consider delegating the

decision rights over the project size to the agents.

2.3.2 Delegating the Choice of the Project Size to the Agents

We begin by examining how the agents would select the project size. LetQA ∈ arg maxQ {Π (x ;Q)}

denote the agents’ optimal project size given the current state x.18 Solving this maximization

problem yields

QA =
β

rλ

2n− 1

2n
.

that the project is never completed in equilibrium; in fact, it is not even started.
17This is because W (0 ;Q) is concave in Q, the manager’s ex-ante discounted profit is maximized at QMFC ,

QMx(y) ≥ Q
M
FC for all y, and QMx(y) decreases in y.

18Because agents are identical and the equilibrium is symmetric, they will be in agreement with respect
to the optimal project size.

96



First, observe that the agents’ optimal project size is independent of the current state x.

Intuitively, this is because they incur the cost of their effort, so that their effort cost increases

together with their effort level as the project progresses. As a result, unlike the manager,

their marginal cost associated with choosing a larger project does not decrease as the project

evolves, so that they do not have incentives to extend or shrink the project as it progresses.

Second, observe that QA < QM
x(y) ∀y; i.e., the agents always prefer a smaller project than

the manager.19 This is because they incur the cost of their effort, so that their marginal cost

associated with a larger project is greater than that of the manager’s.

Proposition 10. Suppose that given the current state q, the manager can commit to any

project size Q ∈ [q, q + y]. Then the manager should delegate the choice of the project size to

the agents unless she has sufficient commitment power; i.e., there exists an interior threshold

θ such that W
(
0 ;QA, QA

)
> W

(
0 ;QM

x(y), Q
M
x(y)

)
if and only if y < θ.

Recall that the agents’ optimal project size is time-consistent, which implies that if the

manager delegates the decision rights to the agents, then her ex-ante discounted profit is

independent of when the project size is chosen. The key part of this result is that if the

manager has no commitment power (i.e., y = 0), then she is always better off delegating the

decision rights over the project size to the agents. By noting that the manager’s optimal

project size (and hence her ex-ante discounted profit) increases in her commitment power,

the Proposition follows.

19An implication of this observation, together with Remark 1, is that the equilibrium of the game is unique
also when the project size is chosen by the agents.
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2.4 The Benefits and Costs of Cooperation

So far, we have focused exclusively on Markov Perfect equilibria. The main feature of such

equilibria is that the agents’ strategies depend on the current state of the project qt but

not on its evolution path (i.e., {qs}s≤t). While the restriction to MPE is reasonable in

situations where teams are large and members cannot monitor each other, there typically

exist other Public Perfect equilibria (hereafter PPE) with history-dependent strategies. In

this Section, we characterize a continuum of such equilibria in which at every moment, each

agent chooses his effort to maximize a convex combination of his individual and the entire

team’s discounted payoff along the equilibrium path.

Building upon the concepts introduced in the seminal paper on social identity by Tajfel and

Turner (1979), Akerlof and Kranton (2000) argue that depending on the work environment,

employees may behave as insiders who act in the best interest of the organization or as

outsiders who act in their individual best interest. Therefore, the weight that an agent

places on maximizing the team’s discounted payoff can be interpreted as the degree to which

he feels an insider, and we shall refer to an equilibrium as more cooperative the more weight

each agent places on maximizing the team’s discounted payoff.

By noting that experiments in social identity theory have demonstrated that it is surprisingly

easy to affect subjects’ behavior as insiders or outsiders within a group (Akerlof and Kranton

(2005)), the objective of this Section is to examine how the manager should influence the

agents’ cooperation level to maximize her discounted profit.20 The main result is that if the

agents play a more cooperative equilibrium, then the manager will choose a larger project,

20Note that given a fixed Q, all parties are better off if the agents play a more cooperative equilibrium. In
particular, the extreme case in which each agent puts all the weight on maximizing the team’s discounted
payoff, corresponds to the efficient outcome (i.e., the Samuelson-Lindahl condition). On the other hand, the
case in which each agent puts all the weight on his individual discounted payoff corresponds to the MPE
characterized in Section 2.
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and she will have stronger incentives to extend it as it progresses. The upshot is that

unless the manager has sufficient commitment power, she is better off if the agents do not

play the fully cooperative equilibrium (i.e., place all the weight on maximizing the team’s

discounted payoff). More generally, the cooperation level that maximizes the manager’s

(and the agents’) discounted profit decreases in her commitment power. Intuitively, the

manager can mitigate her incentives to extend the project by inducing the agents to play a

less cooperative equilibrium, which is useful if she has small commitment power.

2.4.1 Public Perfect Equilibria

Recall from Section 2.1 that at every moment, each agent observes the current state of the

project and chooses his effort to maximize his expected discounted payoff. On the other

side of the spectrum, the Samuelson-Lindahl condition (which is a sufficient condition for

efficiency given a fixed project size) dictates that each agent chooses his effort to maximize the

discounted payoff of the entire team. One can conceive of a continuum of intermediate cases

in which at every moment, each agent chooses his effort to maximize a convex combination of

his individual and the entire team’s discounted payoff. We model this by assuming that given

the current state of the project q, each agent chooses his effort to maximize the expected

discounted payoff of k ∈ [1, n] agents; i.e., he solves

a (q ;Q, k) ∈ arg max
a

{
a kΠ′ (q ;Q, k)− λ

2
a2

}
, (2.4)

Note that k = 1 (k = n) corresponds to the case in which each agent places all the weight

on maximizing his individual (the team’s) discounted payoff, while k ∈ (1, n) corresponds to

intermediate cooperation levels. The following Proposition establishes that for all k ∈ (1, n]

there exists a PPE in which at every moment along the equilibrium path, each agent chooses

his effort by solving (2.4).21

21Note that there exist PPE where each agent’s cooperation level varies as the project progresses, and the
cooperation level may differ across team members. However, we restrict attention to the case in which the
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Proposition 11. For any given k ∈ [1, n] and project size Q, there exists a Public Perfect

equilibrium (PPE) in which each agent’s effort strategy satisfies

a (q ;Q, k) =
r

2n− k
[q − C (Q ; k)]+ (2.5)

along the equilibrium path, where C (Q ; k) = Q −
√

2βQ
rλ

(2n−k)k
n

. After any deviation from

the equilibrium path, all agents revert to the Markov Perfect equilibrium (i.e., k = 1) for the

remaining duration of the game. In equilibrium, each agent’s discounted payoff is given by

Π (q ;Q, k) =
rλ

2k

(
[q − C (Q ; k)]+

)2

2n− k
,

and it increases in k.

The intuition behind the existence of cooperative PPE is as follows. First, if all agents choose

their effort by solving (2.4) for some k > 1, then each agent is strictly better off relative to

the case in which k = 1. Second, k = 1 corresponds to the Markov equilibrium, so that the

threat of punishment is credible. Third, by examining the progress made until time t, each

agent can infer whether all agents followed the equilibrium strategy; i.e., if qt corresponds

to the progress that should occur if all agents follow (2.5). Because a deviation from the

equilibrium path is detectable (and punishable) arbitrarily quickly, the gain from a deviation

is infinitesimally small. As a result, no agent has an incentive to deviate from the strategy

dictated by (2.5), so that it constitutes a PPE.22

cooperation level is constraint throughout the duration of the project and identical across all agents because
we interpret k as part of the organization’s corporate culture which is persistent.

22There is a well known problem associated with defining a trigger strategy in continuous-time games. To
see why, suppose that a deviation occurs at some t′, and agents revert to the MPE at t′′. However, because
there is no first time after t′, there always exists some t ∈ (t′, t′′) such that the agents are better off reverting
to the MPE at that t; i.e., subgame perfection fails. To resolve this problem, we use the concept of inertia
strategies proposed by Bergin and MacLeod (1993).
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We now solve the manager’s problem. Using (2.5) and proceeding as in Section 2.2, it follows

that given the current state of the project q, the project size Q, the agents’ beliefs Q̃, and a

cooperation level k, the manager’s discounted profit satisfies

W
(
q ;Q, Q̃, k

)
= (1− β)Q


[
q − C

(
Q̃ ; k

)]+

Q− C
(
Q̃ ; k

)


2n−k
n

.

2.4.2 Optimal Project Size

In this Section we determine the manager’s and the agents’ optimal project size, and we

examine how it depends on the agents’ cooperation level. Moreover, we show that the

delegation result established in Proposition 3 continues to hold within this larger class of

equilibria.

By using a similar approach as in Section 3.1, it follows that the manager’s optimal project

size satisfies

QM
FC (k) =

β

rλ

k (2n− k)

2n

(
4n

4n− k

)2

and QM
NC (k) =

2β

rλ

kn

2n− k

when y =∞ (FC) and when y = 0 (NC), respectively. Observe that for any k, the manager’s

optimal project size with no commitment is strictly greater than that with full commitment;

i.e., QM
NC (k) > QM

FC (k). Also note that for any level of commitment power y ≥ QM
FC (k),

the manager will commit to a project size equal to QM
FC (k) before the agents begin to work

on the project.

On the other hand, for any intermediate level of commitment power y ∈
[
0, QM

FC (k)
]
, one
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can show that the manager will commit at x (y) to her optimal project size

QM
x(y) (k) =

(
2n

4n− k

)2
(√

β

rλ

k (2n− k)

2n
+

√
β

rλ

k (2n− k)

2n
+
k (4n− k)

4n2
x (y)

)2

,

where x (y) is the unique solution to max
{
QM
x(y) (k)− y, 0

}
= x (y), and it decreases in y.

Observe that QM
x (k) increases in x, which implies that similar to the base model analyzed

in Section 3, the manager has incentives to extend the project as it progresses: given a

cooperation level, the manager will commit to a larger project as her commitment power

decreases.

Remark 6. Given any y, the manager’s optimal project size increases in the agents’ cooper-

ation level: QM
x(y) (k) increases in k for all y.

This is intuitive: since each agent’s effort increases in k, the team can achieve more progress

during any given time interval by playing a more cooperative equilibrium. Therefore, the

marginal cost associated with choosing a larger project decreases in k, while the associated

marginal benefit does not depend on k, which implies that the manager has incentives to

choose a larger project if the agents play a more cooperative equilibrium. This observation

is illustrated in the left panel of figure 2 for the cases in which k = 0.8n and k = 0.95n.

Remark 7. The manager’s incentives to extend the project as it progresses become stronger

in the agents’ cooperation level: ∂QMx (k)
∂x

increases in k.

To understand the intuition behind this observation, recall from Section 3 that the manager’s

incentives to extend the project are driven by the fact that agents ramp up their effort as the

project progresses, and observe that ∂2a(q ;Q, k)
∂q∂k

> 0; i.e., agents ramp up their effort faster if
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a more cooperative equilibrium is played. Consequently, the manager has stronger incentives

to extend the project in this case.

Now let us consider the manager’s option to delegate the decision rights over the project size

to the agents. Given their cooperation level k, the agents will choose their optimal project

size by solving QA (k) ∈ arg maxQ {Π (q ;Q, k)}, which yields

QA (k) =
β

rλ

k (2n− k)

2n
.

Observe that QA (k) is independent of q, which implies that the agents’ preferences with

respect to the project size are time-consistent. Moreover, similar to the manager, the agents

find it optimal to choose a larger project if they play a more cooperative equilibrium. How-

ever, for any cooperation level k and regardless of the manager’s commitment power, the

agent’s optimal project size is smaller than that of the manager; i.e., QA (k) ≤ QM
x(y) (k)

for any y. By using a similar approach as in Proposition 3, we can establish the following

Remark.

Remark 8. Given cooperation level k, there exists an interior threshold θk such that manager

should delegate the decision rights over the project size to the agents if and only if y ≤ θk.

By numerically examining this threshold θk, we find that it increases in k so that delegation

becomes more attractive the higher is the agents’ cooperation level. This is intuitive since

the manager’s commitment problem becomes aggravated if a more cooperative equilibrium

is played.
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2.4.3 Cultivating a Cooperative Environment

Given a fixed Q, both the agents’ and the manager’s discounted payoff increase in the

cooperation level k. However, when the choice of Q is endogenous, this need no longer

be true because a higher cooperation level induces the manager to choose a larger project,

and it aggravates her commitment problem. Unless the manager has sufficient commitment

power, the agents anticipate this and decrease their effort, rendering all parties worse off.

Using equilibrium selection concepts introduced by Kreps (1990), we now consider the

possibility that the manager can influence the agents’ cooperation level (i.e., the PPE that

the agents will play) by cultivating a more cooperative environment within the team with a

variety of policies such as organizing sponsored activities, encouraging interaction among the

team members, and engaging the agents when making decisions, as well as with appropriate

selection of those who join the team.

Taking into account her commitment power y at time 0, the manager chooses the agents’

cooperation level to maximize her ex-ante discounted profit:

kMy ∈ arg max
1≤k≤n

{
W
(
0 ;QM

x(y) (k) , QM
x(y) (k) , k

)}
.

To obtain clean results, we restrict attention to the extreme cases y = ∞ and y = 0, and

we illustrate that a threshold result holds for intermediate levels of commitment power by

using numerical examples.

Proposition 12. Suppose that given the current state q, the manager can commit to any

project size Q ∈ [q, q + y], where y ≥ 0, and suppose that at q = 0 the manager can choose

the agents’ cooperation level k.

When y = ∞, a fully cooperative environment is optimal: kMFC = n. However, when y = 0,
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kMNC (0) < n.

Choosing a higher cooperation level has two opposite effects. For any (fixed) Q, the agents

work harder, which increases the manager’s discounted profit. However, precisely because

the agents work harder and they ramp up their effort faster as the project progresses, the

manager has stronger incentives to extend the project, which harms her ex-ante discounted

profit. Therefore, if y =∞ so that she can commit to her optimal project size at q = 0, then

she is better off fostering a fully cooperative environment within the team; i.e., k = n. On

the other hand, if y = 0, Proposition 5 asserts that the latter effect dominates the former, so

that a less than fully cooperative environment within the team renders her (ex-ante) better

off; i.e., k < n.

The right panel of Figure 2 illustrates the manager’s optimal cooperation level as a function

of her commitment power. Observe that a fully cooperative environment is optimal if and

only if the manager has sufficient commitment power; i.e., there exists some interior ϕ such

that kMy = n if and only if y ≥ ϕ.

If the manager delegates the decision rights over the project size to the agents, then a fully

cooperative environment is optimal. Intuitively, a fully cooperative environment will induce

the agents to choose a larger project, as evidenced by the fact that QA (k) increases in k,

which will in turn increase the manager’s discounted profit.

Finally, we discuss the case in which the team members can themselves choose their coop-

eration level. Suppose that at q = 0, the manager and the agents engage in a simultaneous-

action game, where the manager chooses her optimal project size, and the agents select their

cooperation level. Because the agents’ optimal cooperation level for any given project size

is equal to n, it follows that the unique Nash equilibrium of this game is for the agents to
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Figure 2.2: The manager’s optimal project size (left panel) and her optimal cooperation

level (right panel) when β = 0.5, r = 0.1, λ = 1, and n = 4. The left panel illustrates that a higher

cooperation level (k = 0.95n versus 0.80n) induces the manager to choose a larger project, and it

aggravates her commitment problem as evidenced by the fact that the upper line is steeper than

the lower line. The right panel illustrates that the manager’s optimal cooperation level increases

in her commitment power such that a fully cooperative equilibrium (i.e., k = n) is optimal if and

only if she has sufficient commitment power (i.e., y ≥ ϕ).

select k = n and for the manager with commitment power y to choose QM
x(y) (n).

An alternative specification of the game is that at q = 0, the agents, knowing the man-

ager’s commitment power, lead a Stackelberg game by selecting their (verifiable) cooper-

ation level kAy , and the manager follows by choosing her optimal project size QA
x(y)

(
kAy
)
.

If y = ∞, the cooperation level that maximizes the agents’ discounted payoff kAFC =

arg maxk
{

Π
(
0 ;QA

FC (k) , k
)}

= 4n
5

. On the other hand, when y = 0, the agents’ optimal co-

operation level kANC = n
2
. While the agents’ optimal cooperation level cannot be determined

analytically for intermediate levels of commitment power, numerical examples suggest that

kAy increases in y, and kAy ∈
[
n
2
, 4n

5

]
for all y. The key take-away from this analysis is that
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the agents are better off under a partially cooperative environment (i.e., kAy < n for all y)

regardless of the manager’s commitment power. By choosing a lower cooperation level, the

agents induce the manager to choose a smaller project that is closer to their optimal project

size. Moreover, if the manager has less commitment power, then the agents prefer an even

lower cooperation level in order to mitigate the manager’s incentive to extend the project.

2.5 Concluding Remarks

We develop a tractable model to study the interaction between a group of agents who col-

laborate over time to complete a project and a manager who chooses its size to maximize

her discounted profit. A central feature of the model is that the manager has limited com-

mitment ability. This is captured in our model by assuming that given the current state q

of the project and her commitment power y, she can only commit to a project size in the

interval [q, q + y].

The main result is that the manager has incentives to extend the project (e.g., introduce

additional requirements) as it progresses. This implies that if the manager has less com-

mitment power, then she will (eventually) commit to a bigger project. The implication of

this result is that anticipating this behavior, the agents reduce their effort, rendering the

manager worse off. Consequently, the manager is better off delegating the decision rights

over the project size to the agents unless she has sufficient commitment power.

In the latter part of the paper we characterize non-Markovian equilibria where each agent

chooses his effort to maximize a convex combination of his and the entire team’s discounted

payoff. Here, we show that the manager will choose a larger project, and she will have

stronger incentives if the agents place more weight on maximizing the team’s payoff. In
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contrast to the case in which the project size is exogenous, the equilibrium in which agents

place all the weight on maximizing the team’s payoff maximizes the manager’s discounted

profit only if she has sufficient commitment power: surprisingly, it is not always beneficial

for the manager to foster an insider culture within an organization if she has limited ability

to commit to a particular project size early on.

In our model agents are compensated upon completion of the project. Georgiadis (2012)

shows that this scheme is optimal when the project size is given exogenously. However, it is

far from clear that this scheme continues to be optimal when the project size is endogenous

and the manager has limited commitment power. It is possible that a more complex scheme

in which the manager provides each agent with flow payments while the project is in progress

(e.g., Sannikov (2008)), or she compensates the agents upon reaching pre-designated mile-

stones can improve her discounted profit and mitigate her commitment problem. This is a

promising direction for future research.
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2.6 Extensions

In this Section we consider four extensions to our model to test the robustness of the main

results.

2.6.1 Production Synergies

First, we consider the case in which the agents’ efforts are complementary, so that at every

moment, the total effort of the team is greater than the sum of the agents’ individual efforts.

We show that all three main results continue to hold for any degree of complementarity.

To obtain tractable results, we consider the production function proposed by Bonatti and

Hörner (2011), so that the project evolves according to dq =
(∑n

i=1 a
1/γ
i

)γ
dt, where γ ≥ 1,

and a larger γ indicates a stronger degree of complementarity. By assuming symmetric

strategies, it follows that given the current state of the project q, cooperation level k, and

the completion state Q, each agent’s discounted payoff and effort strategy are given by

Π (q ;Q, k, γ) =
rλn2−2γ

2k

(
[q − C (Q ; k, γ)]+

)2

2n− k
and a (q ;Q, k, γ) =

rn1−γ

2n− k
[q − C (Q ; k, γ)]+ ,

respectively, where C (Q ; k, γ) = Q−
√

2βQ
rλ

n2γ−2(2n−k)k
n

.23 Because (with other things equal)

Π (q ;Q, k, γ) increases in k for all γ, it follows that ∀k ∈ [1, n] there exists a PPE such

that each agent follows the strategy dictated by a (q ;Q, k, γ), and after any deviation from

the equilibrium path, all agents revert to the MPE; i.e., k = 1. Furthermore, each agent’s

discounted payoff, his equilibrium effort, as well as the aggregate effort of the entire team,

increase in the degree of complementarity γ.

23As the algebra is straightforward and similar to that used to derive Propositions 1 and 4, it is omitted
here in order to streamline the exposition.
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By using the agents’ strategies, it follows that the manager’s discounted profit satisfies

W
(
q ;Q, Q̃, k, γ

)
= (1− β)Q


[
q − C

(
Q̃ ; k, γ

)]+

Q− C
(
Q̃ ; k, γ

)


2n−k
n

.

To streamline the exposition, we focus on the extreme cases in which the manager has either

full or no commitment power. It follows that

QM
FC (k, γ) =

β

rλ

k (2n− k)

2n

(
4n

4n− k

)2

n2γ−2 and QM
NC (k, γ) =

2β

rλ

kn

2n− k
n2γ−2 .

Observe that the manager’s optimal project size increases in the degree of complementarity,

and similar to the case analyzed in Section 4, QM
NC (k, γ) > QM

FC (k, γ). Moreover, the

counterpart of Proposition 2 continues to hold; i.e., if the manager has less commitment

power, then she will choose a bigger project.

We now examine the manager’s option to delegate the choice of Q to the agents, as well as

her optimal choice of the agents’ cooperation level. To begin, note that the agents’ optimal

project size satisfies QA (k, γ) = β
2rλ

k(2n−k)
n

n2γ−2. By following a similar approach as in

Section 3, it follows that given γ, there exists a threshold θγ such that the manager is better

off delegating the choice of the project size to the agents if and only if her commitment power

y < θγ. Similarly, the manager should cultivate a partially cooperative environment within

the team (i.e., k < n) unless she has sufficient commitment power.

2.6.2 Fixed Compensation

In the base model, we have assumed that the agents’ net payoff upon completion of the

project is proportional to its value. While a more valuable project will typically yield a

larger net payoff to the agents - for example a bigger bonus, a salary increase, greater job
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security, or a larger outside option, this assumption can be thought of as an extreme case,

since any incentive scheme will likely consist of a fixed component that is independent of the

project size, and a performance-based component. In this Section, we consider the opposite

extreme where each agent’s net payoff is fixed and independent of the project size, while

efforts are perfect substitutes; i.e., dqt = (
∑n

i=1 ai,t) dt.

The take-away from this Section is that the main results continue to hold. In fact, the

manager’s commitment problem becomes so aggravated in this case, that the project may

never be completed in equilibrium. However, this commitment problem can be mitigated so

that the project is completed even if the manager has no commitment power by choosing a

sufficiently low cooperation level k. Moreover, because the agents’ payoff does not depend

on the project size, the manager cannot benefit by delegating the choice of the project size

to the agents,since their optimal project size is 0.

To begin, suppose that each agent receives a lump-sum V
n

as soon as the project is completed

regardless of its size. Then given the current state of the project q, the cooperation level k,

and the completion state Q, each agent’s equilibrium effort is given by

ā (q ;Q, k) =
r

2n− k
[
q − C̄ (Q ; k)

]+
where C̄ (Q ; k) = Q−

√
2V

rλ

(2n− k) k

n
,

while the manager’s discounted profit satisfies

W̄
(
q ;Q, Q̃, k

)
= (Q− V )


[
q − C̄

(
Q̃ ; k

)]+

Q− C̄
(
Q̃ ; k

)


2n−k
n

.

Using the same approach as in Section 4, one can show that for all k ∈ [1, n] there exists a

PPE such that each agent follows the strategy dictated by ā (q ;Q, k) contingent on all other
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agents following the same strategy, and reverts to the MPE (i.e., k = 1) after observing a

deviation.

By examining the manager’s optimal project size, it follows that with full and with no

commitment power, we have

Q̄M
FC (k) =

2n− k
3n− k

V +
n

3n− k

√
2V

rλ

(2n− k) k

n
and Q̄M

NC (k) = V +

√
2V

rλ

kn

2n− k
,

respectively. Observe that Q̄M
NC (k) > Q̄M

FC (k), and by solving for Q̄M
x (k) ∈ arg maxQ W̄ (q ;Q,Q, k),

it follows that Q̄M
x (k) increases in x. Therefore, similar to the base model, the manager has

incentives to extend the project as it progresses. In fact, these incentives can be so strong

that the project is never completed in equilibrium. To see why, note that the project is

completed only if C̄ (Q ; k) < 0, and this inequality is true at Q = Q̄M
NC (k) if and only if

√
rλV <

√
2(2n−k)k

n
−
√

2kn
2n−k . Moreover, if each agent’s net payoff is independent of the

project size, then delegating the choice of the project size to the agents is not beneficial,

because they will choose a project of size 0.

To examine the manager’s optimal choice of k, note that the last inequality is violated if

k = n, which implies that if the agents play the fully cooperative PPE and the manager

has no commitment power, then the project is never completed. Therefore, the manager can

increase her discounted profit by choosing some k < n such that the project is completed. On

the other hand, by noting that
√

2(2n−k)k
n

>
√

2kn
2n−k

∣∣∣∣
k=1

for all n ≥ 2, and observing that V

is the only parameter that the manager can choose (since r and λ are given exogenously), it

follows that there always exists some V > 0 and k ∈ [1, n] such that the project is completed

in equilibrium even if the manager has no commitment power.
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Therefore, the manager’s commitment problem is severely aggravated if the agents’ net

payoffs are independent of the project size. Intuitively, this is because the manager obtains

the entire marginal benefit from a larger project (as opposed to 1−β thereof), which provides

her with stronger incentives to extend the project. As a result, anticipating this behavior,

the agents prefer to exert no effort and abandon the project altogether.

2.6.3 Sequential Projects

Insofar, we have assumed that the manager interacts with the agents for the duration of a

single project. The main purpose of this assumption was to maintain tractability. However,

because relationships between a manager and work teams are often persistent in practice, it is

important to verify that the main results of this paper are robust to repeated interactions. In

this Section we consider the case in which as soon as a project is completed, with probability

α < 1, the manager and the agents interact for the duration of another project, while the

relationship is terminated with probability 1− α, and each party receives its outside option

which is normalized to 0.24

Indeed, we find that when the manager and the agents engage in sequential projects, all

the main results continue to hold. Moreover, we observe that if the relationship is more

persistent (i.e., α is larger), then the manager has stronger incentives to delegate the choice

of the project size to the agents, and her optimal cooperation level is larger.

Since the problem is stationary, the manager will choose the same project size every time.

Both the agents’ and the manager’s problem remain unchanged, except for the boundary

24If α = 0, then this case reduces to the base model. On the other hand, because the value of the project
has been assumed to be linear in its size, and it generates a payoff only upon completion, if α = 1, then both
the manager and the agents would choose an arbitrarily small project, which would be completed arbitrarily
quickly. Therefore, we restrict attention to the cases in which α < 1.
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conditions, which become Π̂ (Q ;Q) = βQ
n

+ αΠ̂ (0 ;Q) and Ŵ
(
Q ;Q, Q̃

)
= (1− β)Q +

αŴ
(

0 ;Q, Q̃
)

, respectively. The interpretation of these conditions is that upon comple-

tion of each project, each party receives its net payoff from this project, plus the expected

continuation value from future projects.

Unfortunately, it is no longer possible to determine the manager’s optimal completion state

analytically, and consequently to analyze the manager’s option to delegate the choice of

the project size to the agents, or to influence the agents’ cooperation level. Therefore, we

present a numerical example to illustrate how the main results of the paper extend to this

case. Figure 3 demonstrates how the manager’s optimal project size, the value of delegation,

as well as the agents’ cooperation level depend on her commitment power. The takeaway

is that the main results of this paper continue to hold when the relationship between the

manager and the agents is persistent.

2.6.4 Flow Payments while the Project is in Progress

Throughout the analysis we have maintained the assumption that the agents receive a lump-

sum payment upon completing the project, but they do not receive any flow payments while

the project is ongoing. Therefore, to extend the project, the manager must only incur the

cost associated with having to wait longer until the project is completed. In this Section, we

extend our model to consider the case in which the manager compensates each agent with

a flow payment w
n
> 0 per-unit of time while the project is in progress, in addition to a

lump-sum payment upon completing the project.

We find that similar to the base case, the manager has incentives to extend the project as it

progresses, and that she is better off delegating the decision rights to the project size to the

agents unless she has sufficient commitment power. Moreover, her optimal cooperation level
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Figure 2.3: An example in which the manager interacts with the agents repeatedly when β = 0.5,

r = 0.1, λ = 1, n = 4, and α = 0.25. The left panel illustrates that her optimal project size

decreases in her commitment power, while the agents’ optimal project size is independent of their

commitment power. The middle panel illustrates that delegating the decision rights over the project

size to the agents is beneficial if and only if the manager doesn’t have sufficient commitment power.

Finally, the right panel illustrates that the manager’s optimal cooperation level increases in her

commitment power. Therefore, the main results continue to hold when the relationship between

the manager and the agents is persistent.

k increases in her commitment power, and a fully cooperative equilibrium is optimal only if

she has sufficient commitment power.

It is straightforward to show each agent’s discounted payoff, and the manager’s discounted

profit satisfy the HJB equations

rΠ̌ (q ;Q) =
w

n
+
k (2n− k)

2λ

[
Π̌ (q ;Q)

]2
s.t. Π̌ (Q ;Q) = βQ

rW̌
(
q ;Q, Q̃

)
= −w +

[
na
(
q ; Q̃, k

)]
W̌ ′
(
q ;Q, Q̃

)
s.t. W̌

(
Q ;Q, Q̃

)
= (1− β)Q ,

respectively, where a
(
q ; Q̃, k

)
= kΠ̌(q ;Q)

λ
. Unfortunately, this model is analytically not

tractable. Therefore, to examine how the main results extend to this case, we present a
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Figure 2.4: An example in which the manager compensates the agents per unit of time while the

project is in progress when β = 0.5, r = 0.1, λ = 1, n = 4, and w = 0.001. Similar to Figure 3, this

figure illustrates that the main results continue to hold in this case.

numerical illustration (see Figure 4). Observe in the left panel that the manager’s optimal

project size decreases in her commitment power, while the agents’ optimal project size is

independent of their commitment power. From the middle panel, one observes a similar

pattern to Proposition 3: the manager should delegate the choice of the project size unless

she has sufficient commitment power. Finally, note from the right panel that the cooperation

level that maximizes the manager’s discounted profit increases in her commitment power,

and a fully cooperative equilibrium is optimal only if she has sufficient commitment power.

2.7 Proofs

Proof of Proposition 1. Given the project’s state q, agent i chooses his effort level

ai (q) ∈ arg max
ai

{(
n∑
j=1

aj

)
Π′i (q ;Q)− λ

2
a2
i

}
.
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The first order condition for agent i’s problem is Π′i (q ;Q) = λai, which implies that

ai (q ;Q) =
Π′i(q ;Q)

λ
. By noting that the SOC is satisfied, and by substituting ai (q ;Q) into

the HJB equation, the expected discounted payoff for agent i satisfies

rΠi (q ;Q) = −λ
2

[
Π′i (q ;Q)

λ

]2

+

[
n∑
j=1

Π′j (q ;Q)

λ

]
Π′i (q ;Q) (2.6)

subject to Πi (q ;Q) ≥ 0 ∀q and Πi (Q ;Q) = βQ
n

.

To show that a MPE with differentiable strategies exists for this game, it suffices to show

that a solution to (2.6) exists. To show this, we derive a symmetric solution analytically.

In particular, for symmetric strategies (i.e., Πi (q ;Q) = Πj (q ;Q) ∀i and j), (2.6) can be

re-written as

rΠ (q ;Q) =
2n− 1

2λ
[Π′ (q ;Q)]

2
, (2.7)

and the solution to this differential equation satisfies

Π (q ;Q) =
rλ

2

(
[q − C (Q)]+

)2

2n− 1
, where C (Q) = Q−

√
2βQ

rλ

2n− 1

n

is determined by the value matching condition. By using the FOC, it follows that each

agent’s effort strategy is given by

a (q ;Q) =
r

2n− 1
[q − C (Q)] 1{q≥C(Q)} .

To show that there do not exist any asymmetric solutions to (2.6) we proceed by contradic-

tion. Fix Q > 0, and suppose there exist at least two agents a and b whose discounted payoff

functions Πa (q ;Q) and Πb (q ;Q) satisfy (2.6), but Πa (q ;Q) 6= Πb (q ;Q) for at least some q <

Q. Then let D (q) = Πa (q ;Q)−Πb (q ;Q), and note that D (Q) = 0 andD (·) is differentiable.

Then using (2.6) we can write 2rλD (q) = [2
∑

i Πi (q ;Q)− Πa (q ;Q)− Πb (q ;Q)]D′ (q).
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Moreover, because agents are impatient (r > 0) and the amount of effort that needs to be

exerted until the project is completed diverges to infinity as q → −∞, it must be true that

Πi (q ;Q) → 0 as q → −∞. Therefore, limq→−∞D (q) = 0, so if D (q) 6= 0 for at least some

q < Q, then it must be the case that there exists some interior z < Q such that D (z) 6= 0

and D′ (z) = 0, which yields a contradiction. Hence we conclude that (2.6) cannot admit an

asymmetric solution.

To show that (2.7) has a unique symmetric solution, we use a similar approach. Fix

Q > 0, and suppose that there exist ΠA (q ;Q) and ΠB (q ;Q) that both satisfy (2.7). Then let

∆ (q) = ΠA (q ;Q)−ΠB (q ;Q), and note that ∆ (Q) = 0 and ∆ (·) is differentiable. Therefore,

(2.7) can be re-written as 2rλ∆ (q) = (2n− 1) [Π′A (q ;Q) + Π′B (q ;Q)] ∆′ (q). Moreover,

limq→−∞∆ (q) = 0 by the same argument as above, so if ∆ (q) 6= 0 for at least some q < Q,

then it must be the case that there exists some interior z < Q such that ∆ (z) 6= 0 and

∆′ (z) = 0, which yields a contradiction. Therefore, there exists a unique symmetric solution

to (2.6).

We have insofar shown that there exists a unique solution to (2.6), and that this solution

is symmetric. Moreover, note that if C (Q) ≥ 0 (or equivalently Q ≥ 2β
rλ

2n−1
n

), then the

equilibrium strategy dictates that no agent ever exerts any effort, in which case the project

is never completed. On the other hand, as long as C (Q) < 0, the strategy a (q ;Q) consti-

tutes the unique project-completing MPE. Next, suppose that C (Q) < 0 ≤ C (Q)|n=1 (or

equivalently 2β
rλ
≤ Q < 2β

rλ
2n−1
n

), and fix all effort strategies except of that of agent i to 0.

Then agent i’s best response is to also exert 0 effort, since C (Q)|n=1 ≥ 0; i.e., he is not

willing to undertake the entire project by himself. As a result, if Q ≥ 2β
rλ

, then in addition

to the project-completing MPE, there also exist an equilibrium in which no agent exerts any

effort, and the project is never completed.
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Proof of Proposition 2. To begin, note that for any x, W (x ;Q,Q) is strictly concave in

Q, and applying the first order condition yields (2.3). It is straightforward to verify that

∂
∂x
QM
x > 0 and ∂2

∂x2Q
M
x < 0 ∀q > 0. Finally, solving the fixed point QM

Q = Q yields

QM
Q = β

rλ
2n

2n−1
.

Next, let g (x) = QM
x − x, and observe that g (0) = QM

0 > 0 and g
(
QM
Q

)
= 0. Moreover,

it is easy to check that g′ (x) < 0 on
[
0, QM

Q

]
, which implies that given any y ≤ QM

0 , there

exists a unique x (y) such that g (x (y)) = y.

Clearly, if y ≥ QM
0 , then the manager finds it optimal to commit to QM

0 at x = 0.

Therefore, ∀y ≥ 0, there exists a unique x (y) that solves max
{
QM
x(y) − y, 0

}
= x (y).

To proceed, suppose that y < QM
0 , and note that W (q ;Q,Q) is strictly concave in Q

for all Q ≥ q. Given the current state of the project q, the manager can either commit to

a completion state in the interval [q, q + y], in which case her discounted payoff is equal to

maxq≤Q≤q+yW (q ,Q,Q), or she can delay committing, anticipating that she will be able to

commit to some completion state q′ > q + y later, which will yield her a discounted payoff

W (q , q′, q′). Therefore, the manager will choose to commit to a completion state at q if

and only if maxq≤Q≤q+yW (q ,Q) ≥ W (q , q′, q′) ∀q′ > q + y, or equivalently if and only if

arg maxQ≥qW (q ,Q,Q) ≤ q+ y. By noting that QM
q ∈ arg maxQ≥q {W (q ;Q,Q)}, it follows

that the manager finds it optimal to commit to project size QM
x(y) at q = x (y), where x (y) is

the unique solution to the equation max
{
QM
x(y) − y, 0

}
= x (y), and QM

x(y) is given by (2.3).

Proof of Proposition 3. If the project size is chosen by the agents, then they will choose

QA = β
rλ

2n−1
2n

, and by substituting this into the manager’s expected discounted profit yields

W
(
0 ;QA, QA

)
= (1−β)β

rλ
2n−1

2n

(
1
2

) 2n−1
n .

Next, consider the case in which the completion state is chosen by the manager, and

she has no commitment power (i.e., y = 0) so that she eventually completes the project at
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QM
NC = β

rλ
2n

2n−1
. By substituting this the manager’s expected discounted profit we have that

W
(
0 ;QM

NC , Q
M
NC

)
= (1−β)β

rλ
2n

2n−1

(
n−1
2n−1

) 2n−1
n .

Now consider the ratio
W(0 ;QMNC ,Q

M
NC)

W (0 ;QA,QA)
=
(

2n
2n−1

)2 (2n−2
2n−1

) 2n−1
n , and for the purpose of this

proof, let h (n) =
(

2n
2n−1

)2 (2n−2
2n−1

) 2n−1
n where n ∈ R ∩ (1,∞). Observe that h (0) = 0 and

limn→∞ h (n) = 1. Differentiating with respect to n yields h′ (n) =
4[(2n−1)(n−1) ln( 2n−2

2n−1)+n]
(2n−1)3(n−1)

(
2n−2
2n−1

) 2n−1
n >

0 if and only if (2n− 1) (n− 1) ln
(

2n−2
2n−1

)
+n > 0 or equivalently if ln

(
2n−2
2n−1

)
+ n

(2n−1)(n−1)
> 0.

Now observe that limn→∞

[
ln
(

2n−2
2n−1

)
+ n

(2n−1)(n−1)

]
= 0, and ∂

∂n

[
ln
(

2n−2
2n−1

)
+ n

(2n−1)(n−1)

]
< 0

∀n ≥ 1. This implies that ln
(

2n−2
2n−1

)
+ n

(2n−1)(n−1)
> 0, and hence h′ (n) > 0. By noting

that h (0) = 0 and limn→∞ h (n) = 1, it follows that h (n) < 1 ∀n ∈ N, which implies that

W
(
0 ;QA, QA

)
> W

(
0 ;QM

NC , Q
M
NC

)
∀n ≥ 1.

We have thus far established that W
(
0 ;QA, QA

)
> W

(
0 ;QM

NC , Q
M
NC

)
. Moreover, it is

straightforward to verify that W
(
0 ;QM

FC , Q
M
FC

)
> W

(
0 ;QA, QA

)
; i.e., the manager should

not delegate the choice of Q to the agents if she has full commitment power. Because

QM
x(y) is strictly decreasing in y for all y < QM

FC , W (0 ;Q,Q) is strictly concave in Q, and

QM
FC < QM

NC , it follows that W
(

0 ;QM
x(y), Q

M
x(y)

)
is strictly increasing in y on

[
0, QM

FC

)
. By

noting that W
(
0 ;QA, QA

)
is independent of y, it follows that there exists some threshold

θ < QM
FC such that W

(
0 ;QA, QA

)
> W

(
0 ;QM

x(y), Q
M
x(y)

)
if and only if y < θ.

Proof of Proposition 4. This proof is organized as follows. First, we show that Π (q ;Q, k)

is the solution to a game in which each agent chooses his effort according to (2.4), and that

(2.5) is the corresponding effort strategy. Then we show that this strategy constitutes a

PPE.

From (2.4), given the current state of the project q, the FOC yields a (q ;Q, k) =

kΠ′(q ;Q, k)
λ

, and the SOC is always satisfied. Substituting the FOC into each agent’s HJB
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equation yields

rΠ (q ;Qk) =
(2n− k) k

2rλ

[Π′ (q ;Q, k)]2

2

subject to Π (Q ;Q, k) ≥ 0 ∀q and Π (Q ;Q, k) = βQ
n

.

It is straightforward to verify that Π (q ;Q, k) = rλ
2k

([q−C(Q ;k)]+)
2

2n−k solves the above HJB

equation, and by using the FOC, it follows that each agent’s effort satisfies (2.5). If k = 1,

then (2.5) corresponds to the Markov equilibrium.

We now show that the strategy defined above is indeed a PPE for any 1 < k ≤ n. First

note that any deviation from the described strategy is detectable arbitrarily quickly. Since

the agents can react quickly, such deviation can be punished with arbitrarily small delay,

so that the gains from a deviation are arbitrarily small. Second, reverting to the Markov

equilibrium after a deviation is sequentially rational since the MPE is (by definition) a PPE.

Third, observe that Π (q ;Q, k) > Π (q ;Q, 1) for all k > 1 and q ≥ C (Q ; k), which implies

that for any given 1 < k ≤ n, as long as each agent chooses his effort to maximize the

expected discounted payoff of k agents, no agent has an incentive to unilaterally deviate.

Finally, by applying Theorem 4 of Bergin and MacLeod (1993) it follows that there exists

a Public Perfect equilibrium in which each agent follows 2.5 along the equilibrium path.

Proof of Proposition 5. Suppose first that the manager has full commitment power. Then,

her optimal project size is equal to QM
FC (k) = 2β

rλ
k(2n−k)

n

(
2n

4n−k

)2
, and it follows that

W
(
0 ;QM

FC (k) , QM
FC (k) , k

)
=

2β (1− β)

rλ

k (2n− k)

n

(
2n

4n− k

)2(
2n− k
4n− k

) 2n−k
n

.

By differentiating this with respect to k we have that ∂
∂k
W
(
0 ;QM

FC (k) , QM
FC (k) , k

)
> 0 if

and only if 2n (n− k)−k (2n− k) ln
(

2n−k
4n−k

)
> 0. This condition holds ∀k ∈ [1, n]. Therefore,

in this case the manager’s optimal coordination level is kMFC = n.
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Next, suppose that the manager has no commitment power, so that she eventually com-

pletes the project at QM
NC (k) = 2β

rλ
kn

2n−k . Then it follows that

W
(
0 ;QM

NC (k) , QM
NC (k) , k

)
=

2β (1− β)

rλ

kn

(2n− k)

(
n− k
2n− k

) 2n−k
n

,

and by differentiating this with respect to k we have that ∂
∂k
W
(
0 ;QM

NC (k) , QM
NC (k) , k

)
> 0

if and only if k(2n−k)
n

(n− k) ln
(
n−k
2n−k

)
−
[
k −

(
2 +
√

2
)
n
] [
k −

(
2−
√

2
)
n
]
< 0. Because

limk→n (n− k) ln
(
n−k
2n−k

)
= 0 and

([
k −

(
2 +
√

2
)
n
] [
k −

(
2−
√

2
)
n
]∣∣
k=n

< 0, the last in-

equality is violated as k → n. Therefore, limk→n
∂
∂k
Wk

(
0 ;QM

NC (k) , QM
NC (k) , k

)
< 0, so that

arg maxkW
(
0 ;QM

NC (k) , QM
NC (k) , k

)
< n.

Therefore, we have show that with full commitment power, the manager’s optimal co-

operation level kMFC = n, while with no commitment power, her optimal cooperation level

kMNC < n.
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Chapter 3

The Retail Planning Problem Under

Demand Uncertainty

3.1 Introduction

Retail store chains typically carry private label merchandise. For example, department store

chain Macy’s carries several private label brands such as Alfani, Club Room, Hotel Collec-

tion and others. Similarly, Target, J. C. Penney and others carry their own private label

brands. Other retail store chains such as GAP, H&M and Zara carry private label prod-

ucts exclusively. Private labels allow firms to differentiate their products from those of their

competitors, enhance customer loyalty, and they typically provide higher profit margins.

However, these benefits are accompanied by additional challenges. The retailer must plan

the entire supply chain by selecting suppliers, and by making decisions on production, dis-

tribution and inventory at the retail (and possibly other) locations for each of these private

label products in order to minimize total costs. This problem can be complicated when there

is a large number of products with uncertain demand that can be sourced from various sup-

pliers, and they are distributed across various demand zones. An example of such a supply

chain is illustrated in Figure 1.
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Figure 3.1: The retail supply chain for private label products.

Private label products can be produced in-house, or production can be outsourced to third

party suppliers. Without loss of generality, we refer to these options as suppliers. Supplier

choice entails fixed costs such as building and staffing a plant when producing in-house or

negotiating, contracting and control costs when outsourcing it. Each production facility

can manufacture multiple products interchangeably, and there are economies of scale in

manufacturing and distribution. Demand at each zone (i.e., store or city) is stochastic and

inventory is carried at every demand zone. Here, demand zones can be interpreted either as

retail stores, or as distribution centers (DC’s).1 The retailer incurs overstock and understock

1With the latter interpretation we implicitly assume (i) that the locations of DCs and the assignment
of stores to DCs are pre-determined, and (ii) that stores maintain only a minimal amount of inventory so
that inventory costs at individual stores are negligible. This latter assumption is consistent with the existing
literature (e.g., Shen at al. (2003)). While it is plausible that management must also determine the location
of DCs and allocate stores to DCs, we leave this important problem for future research.
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costs for leftover inventory and unmet demand, respectively. In this context, there are three

types of decisions. First, the retailer needs to decide which suppliers to choose. Second, they

need to conduct production and logistics planning. Third, inventory management decisions

on how much of each product to stock at each demand zone need to be made.

We develop the retail planning problem under uncertainty to address these decisions. In this

problem, we model the selection of suppliers, production, distribution and inventory decisions

faced by the retailer as a nonlinear mixed integer program that minimizes total expected

costs. We show that this problem is convex and strongly NP-hard. An interesting attribute of

this problem is that it combines two well-known subproblems: a generalized multi-commodity

facility location problem and a newsvendor problem. We exploit this structure to develop

computationally efficient heuristics to generate feasible solutions. In addition, we apply a

Lagrangean relaxation to obtain a lower bound, which we use to assess the quality of the

feasible solutions provided by the heuristics. We show that the feasible solutions of a convex

programming heuristic are close to optimal: on average within 3.4% of optimal, while in the

majority of cases they are closer to optimal as evidenced by the 2.8% median suboptimality

gap. Further, the performance gap of this heuristic improves with larger problem sizes, and

the computational time of this heuristic scales up approximately linearly in the problem size.

We also conduct robustness checks and find that the performance of this heuristic, as well

as its advantage relative to the benchmark practitioner’s heuristic is not sensitive to changes

in the problem parameters. All these are desirable attributes for potential implementation

in large-sized, real applications.

Our analysis enables us to draw several managerial insights. First, the optimal inventory

level when solving the joint supplier choice, production, distribution and inventory problem

is smaller than when the inventory subproblem is solved separately. This is because when
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solving the joint problem, the solution accounts for the fact that a larger downstream inven-

tory level raises production quantities, which increases upstream production and distribution

costs as well as the costs associated with establishing production capacity. In contrast, these

costs are not considered when the inventory subproblem is solved separately, and hence re-

sult in a larger inventory level. Thus, in order to minimize total supply chain costs, one

needs to adopt an integrated approach to solve the joint problem by considering the effect of

downstream inventory decisions on upstream production and distribution costs. Our model

provides a framework to analyze these decisions. Second, the two major costs that influence

total (expected) supply chain costs are production costs and the understock costs associated

with the variance in demand. Therefore retailers should focus on reducing these costs first

before considering the effects of supplier capacity and contracting costs. Third, it is impor-

tant to consider establishment, production, distribution and inventory costs together when

choosing suppliers, because a supplier who is desirable in any one of these aspects may in

fact not be the best overall choice. Our analysis provides a mechanism to integrate these

aspects and pick the best set of suppliers.

Since one of the decisions considered in the retail planning problem under demand uncertainty

is the establishment of production capacity by the explicit choice of suppliers, this problem

can be placed in the broad category of facility location problems under uncertain demand.

Aikens (1985), Drezner (1995), Owen and Daskin (1998), Snyder (2006), and Melo et al.

(2009) provide extensive reviews. The problem with stochastic demand was first studied by

Balachandran and Jain (1976) and Le Blanc (1977), who developed a branch and bound

procedure, and a Lagrangean heuristic, respectively. This paper generalizes their models by

considering multiple products, as well as incorporating economies of scale in production and

distribution.
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This paper can also be placed in the general area of integrated supply chain models. Shen

(2007) provides a comprehensive review of this area. In particular, this paper is related to

Daskin et. al. (2002) and Shen at al. (2003) who studied a location-inventory problem in

a supplier - DC - retailer network. Here, the planner’s problem is to determine which DCs

to establish, the inventory replenishment policy at each DC, and logistics between DCs and

retailers. Daskin et. al. (2002) and Shen at al. (2003) solved this problem by using a

Lagrangean relaxation and a column-generation approach, respectively. Shen (2005) studied

a multi-commodity extension of Daskin et. al. (2002) with economies of scale but without

explicitly modeling inventory decisions and without capacity constraints. Relative to these

papers, we incorporate economies of scale in both production and distribution, as well as

capacity constraints at each supplier. Moreover, we explicitly model the inventory problem.

Here, by using the newsvendor instead of a replenishment model to make inventory deci-

sions, we capture features of the retail fashion industry, where lead times are long relative to

product lifecycles so that inventory cannot be replenished mid-season, and unmet demand is

lost, resulting in underage costs.2 A related problem was also studied by Oszen et al. (2008)

who studied a capacitated extension of Shen at al. (2003). However, unlike these papers

we focus on the joint supplier choice, logistics and inventory planning problem, as opposed

to the risk pooling effects from strategically locating DCs. This is because manufacturing

is often outsourced to third party suppliers and contracts are volume-based, production and

inventory decisions are best made simultaneously (Fisher and Rajaram (2000)).3 Finally,

in contrast to all these papers, we motivate an important problem faced by retail chains

carrying private label products, propose an effective methodology to generate feasible solu-

tions for this problem, test it on realistic data to assess its performance, and develop insights

2Specific lead times faced by manufacturers are reported to be seven months for Oxford shirts ordered by
J.C. Penney, and five months for Benetton apparel (Iyer and Bergen (1997)).

3For example, leading retailers H&M and GAP outsource 100% of their manufacturing, while Zara out-
sources approximately 40% of its manufacturing to third party suppliers (Tokatli (2008)). Anecdotal evidence
suggests that Macy’s outsources all of its manufacturing.
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that practitioners can use for choosing suppliers, and making production, distribution and

inventory decisions.

The paper is organized as follows: In Section 2 we present the basic model formulation,

in Section 3 we discuss the corresponding Lagrangean relaxation, while in Section 4 we

propose heuristics. In Section 5 we present results from our numerical study. In Section 6

we summarize and provide future research directions.

3.2 Model Formulation

We formulate the retail planning problem under uncertainty as a nonlinear mixed-integer

program. To provide a precise statement of this problem, we define:

Indices:

I, J, K: The set of possible suppliers, demand zones and products, respectively.

i, j, k: The subscripts for suppliers, demand zones and products, respectively.

Parameters:

fi: Fixed annualized cost associated with choosing supplier i.

dik: Setup cost associated with producing product k at supplier i.

eij: Setup cost associated with shipping from supplier i to demand zone j.

cijk: Marginal cost to produce and ship product k from supplier i to demand zone j.

Li, Ui: Minimum acceptable throughput and capacity of supplier i, respectively.
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αijk: Units of capacity consumed by a unit of product k at supplier i that is shipped to

demand zone j.

hjk / pjk: Per unit overstock / understock cost associated with satisfying demand for product

k at demand zone j.

Φjk (ξ) / φjk (ξ): The cumulative / probability density function of the demand distribution

for product k at demand zone j.

Decision variables:

zi: 0 − 1 variable that equals 1 if supplier i is chosen to supply products, and 0

otherwise.

wik: 0−1 variable that equals 1 if product k is produced in supplier i, and 0 otherwise.

vij: 0− 1 variable that equals 1 if supplier i ships to demand zone j, and 0 otherwise.

xijk: Quantity of product k shipped from supplier i to demand zone j.

yjk: Inventory level of product k carried at demand zone j.

To capture economies of scale so that per-unit production and shipping costs decrease in

quantity, we approximate these costs by a setup cost dik that is incurred to initiate production

for each product k at every supplier i, a setup cost eij that is incurred to ship from each

supplier i to every demand zone j, and a constant marginal cost (cijk) that is incurred to

produce and distribute each additional unit. While a more complex cost structure could be

desirable in some applications, we employ this structure as it captures economies of scale

and it permits structural analysis of the problem.

To model the inventory problem faced by the retailer we employ the newsvendor model. In

contrast to Daskin et. al. (2002) and Shen at al. (2003) who use a (Q, r) replenishment
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model, this paper is motivated by the fashion retail industry, where merchandise is often

seasonal and lead times are long relative to the season length. Consequently, the retailer

cannot replenish inventory mid-season so that unmet demand is lost, while leftover demand

needs to be salvaged via mark downs at the end of the season. Therefore, the standard

single-period newsvendor model would seem most appropriate here. Under this model, let

Sjk (y) denote the expected overstock and understock cost associated with carrying y units

of inventory for product k at demand zone j. This can be written as

Sjk (y) = hjk

ˆ y

0

(y − ξ)φjk (ξ) dξ + pjk

ˆ ∞
y

(ξ − y)φjk (ξ) dξ (3.1)

=⇒ Sjk (y) = (hjk + pjk)

ˆ y

0

Φjk (ξ) dξ + pjk [E (ξ)− y]

The problem of supplier selection, production, distribution, and inventory planning faced by

the retailer can be expressed by the following nonlinear mixed-integer program, which we

call the Retail Planning Problem (RPP):

(RPP)

ZP = min

{∑
i∈I

fizi +
∑
i∈I

∑
k∈K

dikwik +
∑
i∈I

∑
j∈J

eijvij +
∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk +
∑
j∈J

∑
k∈K

Sjk (yjk)

}

subject to ∑
i∈I

xijk = yjk ∀j ∈ J, k ∈ K (3.2)

Lizi ≤
∑
j

∑
k

αijkxijk ≤ Uizi ∀i ∈ I (3.3)

∑
j∈J

αijkxijk ≤ Uiwik ∀i ∈ I , k ∈ K (3.4)
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∑
k∈K

αijkxijk ≤ Uivij ∀i ∈ I , j ∈ J (3.5)

xijk ≥ 0 , yjk ≥ 0 ∀i ∈ I , j ∈ J , k ∈ K (3.6)

wik ∈ {0, 1} , vij ∈ {0, 1} , zi ∈ {0, 1} ∀i ∈ I , j ∈ J , k ∈ K (3.7)

The objective function of the RPP consists of four terms. The first term represents the

annualized fixed cost associated with securing capacity at supplier i. The second term rep-

resents the setup cost associated with production, while the third term represents the setup

cost associated with distribution. The fourth term represents the corresponding (constant)

marginal production and distribution costs. The fifth term represents the total expected cost

associated with carrying inventory at the demand zones.

Constraint (3.2) ensures that total inventory level for each product at every demand zone

equals the total quantity produced and shipped to that zone. Note that it is also a coupling

constraint. Were it not for (3.2), the RPP would decompose by supplier i into a set of mixed

integer linear problems, and by demand zone j and product k into a set of newsvendor

problems. This observation suggests that this may be a good candidate constraint to use in

any eventual decomposition of the problem. The left hand side inequality of (3.3) imposes a

lower bound on the minimum allowable throughput of a supplier, if the supplier is selected.

A lower bound on a supplier’s throughput may be desirable in order to achieve sufficient

economies of scale. The right hand side inequality of (3.3) imposes the capacity constraint

(i.e., Ui) for each supplier that is selected, and it enforces that no production will take place

with suppliers that are not selected. Constraint (3.4) enforces the condition that xijk > 0 if

and only if product k is produced at supplier i (i.e., iff wik = 1 for some j ∈ J), while (3.5)
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enforces the condition that xijk > 0 if and only if some quantity is shipped from supplier i to

demand zone j (i.e., iff vij = 1 for some k ∈ K). Finally (3.6) are non-negativity constraints,

while (3.7) are binary constraints.

Observe that the RPP is a convex mixed integer program since it consists of a linear gener-

alized facility location subproblem and a convex inventory planning subproblem. By noting

that the Capacitated Plant Location Problem (CPLP) is strongly NP-hard (Cornuejols et.

al. (1991)), it can be shown that the RPP is also strongly NP-hard.4 Therefore, it is unlikely

that real-sized problems can be solved to optimality. We verify this in our computational

results. Consequently, it is desirable to develop heuristics to address this problem. The

quality of these heuristics can be assessed by comparing them to a lower bound, which we

establish in the next section.

3.3 Decomposition & Lower Bounds

In order to obtain a tight lower bound, we apply a Lagrangean relaxation to the RPP (see

Geoffrion (1974) and Fisher (1981)). An important issue when designing a Lagrangean

relaxation is deciding which constraints to relax. In making this choice, it is important to

strike a suitable compromise between solving the relaxed problem efficiently and yielding a

relatively tight bound. Observe that by relaxing (3.2), the problem can be decomposed into a

mixed integer linear program (MILP) containing the xijk, wik, vij, and zi variables, and into a

convex program containing the yjk variables. Moreover, this relaxation enables us to further

decompose the MILP by supplier (i.e., by i), and the convex program by demand zone and

product (i.e., by j and k) into multiple subproblems. A key attribute of this decomposition

4This result can be shown by reducing an instance of the RPP to the CPLP. Specifically, in this reduction,
let (i) demand assume a degenerate probability distribution, (ii) the overage and underage costs to be
arbitrarily large (i.e., hjk and pjk → ∞ ∀j, k), (iii) dik = 0 and eij = 0 ∀i, j, k, (iv) Li = 0 ∀i ∈ I, and (v)
Ui’s take values from the set {1, .., p} for any fixed p ≥ 3 ∀i ∈ I.
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is that all subproblems can be solved analytically. On the other hand, a potential concern

is that this decomposition generates a relatively large number of dual multipliers: J ×K of

them, which we denote by λjk. Relaxing (3.2) for a given J ×K-matrix λ of multipliers, the

Lagrangean function takes the following form:

(Lλ)

L (λ) = min
∑
i∈I

[
fizi +

∑
k∈K

(
dikwik +

∑
j∈J

(cijk − λjk)xijk

)
+
∑
j∈J

eijvij

]

+
∑
j∈J

∑
k∈K

[λjkyjk + Sjk (yjk)] (3.8)

subject to (3.3), (3.4), (3.5), (3.6) and (3.7).

Note that (Lλ) decomposes by i into I independent production and distribution subproblems,

and by j and k into J ×K independent inventory subproblems. More specifically, (3.8) can

be re-written as:

L (λ) =
∑
i∈I

Lmilpi (λ) +
∑
j∈J

∑
k∈K

Lcvxjk (λ)

where

Lmilpi (λ) = min

{
fizi +

∑
k∈K

[
dikwik +

∑
j∈J

(cijk − λjk)xijk

]
+
∑
j∈J

eijvij

}

and

Lcvxjk (λ) = min {λjkyjk + Sjk (yjk)}

Note that the Lagrangean multipliers in the production and distribution subproblems (i.e.,

Lmilpi (λ)) can be interpreted as the cost saved (or cost incurred if λjk < 0) from producing

and distributing an additional unit of product k to demand zone j. On the other hand, the
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Lagrangean multipliers in the inventory subproblems (i.e., Lcvxjk (λ)) can be interpreted as the

change in holding cost associated with carrying an additional unit of inventory of product k

at demand zone j.

For any given set of multipliers λ, the following Proposition determines the optimal solution

for (Lλ), thus providing a lower bound for the RPP.

Proposition 13. For given set of multipliers λ ∈ RJ×K, a lower bound for the RPP is given

by

L (λ) =
∑
i∈I

min

{
min
j∈J

{
eij + min

k∈K

{
dik + (cijk − λjk)

Ui
αijk

}}
+ fi , 0

}

+
∑
j∈J

∑
k∈K

[
pjkEjk (ξ)− (pjk + hjk)

ˆ yjk(λjk)

0

ξφjk (ξ) dξ

]
, (3.9)

where

yjk (λ) =


Φ−1
jk (1) if λjk ≤ −hjk

Φ−1
jk

(
pjk−λjk
pjk+hjk

)
if − hjk ≤ λjk ≤ pjk

Φ−1
jk (0) if λjk ≥ pjk

(3.10)

Proof. To begin, fix λ ∈ RJ×K . Let us first consider each production and distribution sub-

problem. To solve each subproblem, we apply the integer linearization principle by Geoffrion

(1974). First, observe that if zi = 0, then Lmilpi = 0. Hence the optimal solution must

satisfy Lmilpi (λ) ≤ 0. As a result, we fix zi = 1 and solve

Lmilpi (λ , zi = 1) , min
∑
k∈K

[
dikwik +

∑
j∈J

(cijk − λjk)xijk

]
+
∑
j∈J

eijvij + fi

subject to (3.3), (3.4), (3.5), (3.6), and (3.7).

Because the problem is linear, using (3.3) it can easily be shown that xijk (λ) ∈
{

0, Ui
αijk

}
.

Using that Lmilpi (λ) ≤ 0, (3.4), (3.5) and (3.7), it follows that
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Lmilpi (λ) = min

{
min
j∈J

{
eij + min

k∈K

{
dik + (cijk − λjk)

Ui
αijk

}}
+ fi , 0

}
Next, consider each inventory subproblem. It is easy to show that this problem is convex

in yjk and by solving the first order condition with respect to yjk, we obtain (3.10), where

Φ−1
jk (•) denotes the inverse of Φjk (•). Finally, by using (3.1) and yjk (λjk), it is easy to show

that for each j ∈ J and k ∈ K, Lcvxjk (λjk) can be written as

Lcvxjk (λjk) = pjkEjk (ξ)− (pjk + hjk)

ˆ yjk(λjk)

0

ξφjk (ξ) dξ

By noting that a lower bound can be obtained by L (λ) =
∑

i∈I L
milp
i (λ)+

∑
j∈J
∑

k∈K Lcvxjk (λ),

the proof if complete.

Note that the Lagrangean solution will chose a supplier (i.e., set zi (λ) = 1) if and only if

the cost savings associated with producing and distributing an additional unit of product k

to demand zone j exceed the fixed cost associated with choosing this supplier for at least

some j and k (i.e., if and only if −minj∈J

{
eij + mink∈K

{
dik + (cijk − λjk) Ui

αijk

}}
≥ fi).

However, this solution may not be feasible. Thus, the purpose of this solution is more to

establish the value of the objective function of (Lλ), which is a lower bound on the value of

the optimal solution of the RPP. This lower bound can then be used to evaluate the quality of

any feasible solution generated by heuristics for this problem. In the unlikely event that the

corresponding solution is feasible for the original problem, it then solves the RPP optimally.

In the following Lemma we show that the Lagrangean problem (Lλ) does not possess the

integrality property (see Geoffrion (1974)). Therefore the Lagrangean bound is likely to

be strictly better than that of a convex programming relaxation (i.e., the relaxation that is

obtained by replacing the binary constraints in 3.7 by the continuous interval [0, 1] for the
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RPP). We confirm this in our computational results in Section 5.

Lemma 4. The Lagrangean problem (Lλ) does not possess the integrality property.

Proof. It suffices to show that a convex programming relaxation of the RPP where (3.7) is

replaced by

0 ≤ wik ≤ 1 , 0 ≤ vij ≤ 1 and 0 ≤ zi ≤ 1 ∀i ∈ I , j ∈ J , k ∈ K

does not yield a solution such that the w,v, and z variables are integral. We prove this by

constructing a counterexample as follows: Let |J | = |K| = 1, ei1 = di1 = Li = 0 ∀i ∈

I, αi11 = 1 ∀i ∈ I, and Φ11 (ξ) = ξ. To simplify exposition, in the remainder of this

proof we drop the subscripts j and k. Observe that by cost minimization, ∀i we will have

that zi = xi
Ui

. As a result, it suffices to show that there exists an instance of the convex

programming relaxation of the RPP with optimal solution x∗i /∈ {0, Ui} for some i ∈ I (and

hence z∗i /∈ {0, 1}. To proceed, by noting that Slater’s condition is satisfied for the primal

problem, we dualize (3.2) and write the Lagrangean

L (ν) = min
0≤xi≤Ui

{∑
i∈I

(
ci +

fi
Ui

+ ν

)
xi + (h+ p)

ˆ y

0

ξdξ +
p

2
− (ν + p) y

}

It is straightforward to check that for any given dual multiplier ν, the Lagrangean program

assumes the following optimal solution:

xi (ν) =


Ui if ci + fi

Ui
+ ν < 0

∈ [0, Ui] if ci + fi
Ui

+ ν = 0

0 otherwise

, and y (ν) =
ν + p

h+ p

Observe that a solution of the form xi ∈ {0, Ui} will be optimal (and hence zi ∈ {0, 1}) if
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and only if there exists a dual multiplier ν such that

∑
i∈I

Ui1{
ci+

fi
Ui

+ν≤0
} =

ν + p

h+ p

By noting that the RHS is a smooth function strictly increasing in ν, while the LHS is a step

function decreasing in ν, it follows that there may exist at most one ν such that the above

equality is satisfied. We now construct an example in which there exists no ν such that the

above equality is satisfied. Letting h = p = 1, |I| = 2, Ui = i
2

and ci + fi
Ui

= i
3
, observe that

if

−1
3
< ν (LHS) = 0 < ν+1

2
= (RHS)

−1 < ν ≤ −1
3

then (LHS) = 1
2
> ν+1

2
= (RHS)

ν < −1 (LHS) = 3
2
> ν+1

2
= (RHS)

We have thus constructed an instance for which the convex programming relaxation does

not yield an optimal solution that is integral, and hence proven that the Integrality Property

does not hold.

We next consider the problem of choosing the matrix of Lagrangean multipliers λ to tighten

the bound L (λ) as much as possible. Specifically, we are interested in the tightest possible

lower bound, which can be obtained by solving:

LBLR = max
λ∈RJ×K

L (λ)

One way to maximize L (λ) is by using a traditional subgradient algorithm (see Fisher (1985)

for details). However this technique may be computationally intensive in our problem as we

have J ×K Lagrangean multipliers.
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To overcome this difficulty, we exploit the structure of the dual problem to demonstrate how

the optimal set of Lagrangean multipliers λ can in some cases be fully or partially determined

analytically. In preparation, we establish the following Lemma.

Lemma 5. The optimal set of Lagrangean multipliers λ∗ ∈ J ×K satisfy

min

{
min
i∈I

{
cijk +

αijk
Ui

(dik + eij + fi)

}
, pjk

}
≤ λ∗jk ≤ pjk ∀j ∈ J and k ∈ K

Proof. First, it is easy to check from the first line of (3.9) that Lmilp (λ) decreases in λ, and

Lmilp (λ) = 0 if dik + eij + (cijk − λjk) Ui
αijk

+ fi ≥ 0 ∀i, j, k. By re-arranging terms, one can

show that Lmilp (λ) = 0 if λjk ≤ cijk +
αijk
Ui

(dik + eij + fi) ∀i, j, k. It is also easy to verify

from the second line of (3.8) that Lcvxjk (λjk) increases in λjk, and Lcvxjk (λjk) = pjkEjk (ξ) if

λjk ≥ pjk ∀j , k.

To show that min
{

mini∈I

{
cijk +

αijk
Ui

(dik + eij + fi)
}
, pjk

}
≤ λ∗jk ≤ pjk, first suppose

that the LHS inequality is not satisfied for some j , k. Then Lmilpi (λ∗) = Lmilpi

(
λ̂
)

and

Lcvxjk
(
λ∗jk
)
≤ Lcvxjk

(
λ̂jk

)
, where λ̂ = max {λ∗, min

{
mini∈I

{
cijk +

αijk
Ui

(dik + eij + fi)
}
, pjk

}}
.

As a result, L (λ∗) ≤ L
(
λ̂
)

and hence λ∗ cannot be optimal. Now suppose that λ∗jk > pjk

for some j, k. then Lcvxjk
(
λ∗jk
)

= Lcvxjk (pjk) and Lmilpi (λ∗) ≤ Lmilpi

(
λ∗jk
)
, where λ∗jk denotes

the set of Lagrangean multipliers λ∗, in which the j − kth element has been replaced by pjk.

As a result L (λ∗) ≤ L
(
λ∗jk
)
, and hence λ∗ cannot be optimal. This completes the proof.

This Lemma states that the optimal set of Lagrangean multipliers λ∗ lies in a well-defined

compact set. Observe from the left hand side expression in Lemma 2 that λ∗jk > 0 ∀j , k.

From (3.10) observe that the optimal inventory level yjk
(
λ∗jk
)

is strictly smaller than the

optimal inventory level that would be determined from solving the inventory subproblem

separately from the supplier choice and production planning subproblem. This is a direct

consequence of performing production, distribution and inventory planning in an integrated
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manner. The second implication of this Lemma is that the optimal solution of the Lagrangean

relaxation will always satisfy
∑

i∈I xijk (λ∗) ≥ yjk (λ∗), and if the set defined in Lemma 2

is a singleton for some j and k, then it is possible to partially characterize the optimal set

of Lagrangean multipliers ex-ante. When these sets are singletons for all j and k, then

it is possible to completely characterize λ∗ ex-ante. This is established by the following

Proposition.

Proposition 14. If mini∈I

{
cijk +

αijk
Ui

(dik + eij + fi)
}
≥ pjk, then the optimal Lagrangean

multiplier λ∗jk = pjk. If this inequality holds ∀j ∈ J and k ∈ K, then λ∗ = p, and ZP = LBLR

(i.e., the Lagrangean relaxation solves the RPP).

Proof. For any j and k, if mini∈I

{
cijk +

αijk
Ui

(dik + eij + fi)
}
≥ pjk, then by Lemma 2 λ∗jk =

pjk. If this condition holds for all j and k, then it follows that λ∗jk = pjk, and by substituting

λ∗jk = pjk into (3.8) it is easy to check that (Lλ) is feasible for RPP. This completes the

proof.

Observe that mini∈I

{
cijk +

αijk
Ui

(dik + eij + fi)
}

can be interpreted as the lowest marginal

cost associated with establishing capacity at some supplier, producing product k, and dis-

tributing it to demand zone j. As a result, when this marginal cost exceeds the marginal

underage cost, it is optimal not to produce any quantity of product k for demand zone j, and

incur the expected underage cost ; i.e., set λjk = pjk, which yields yjk (pjk) = 0 by applying

(3.10).

By using Lemma 2 and Proposition 2 we now establish a worst-case error bound for the

Lagrangean relaxation studied in this section.
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Corollary 2. The worst-case error bound for this Lagrangean relaxation satisfies

εLR ≥ 1 + max

−
∑

j,k (pjk + hjk)
´ y(λ1

jk)
0 ξφjk (ξ) dξ∑

j,k pjkEjk (ξ)
,

∑
i min

{
minj∈J

{
eij + mink∈K

{
dik + (cijk − pjk) Ui

αijk

}}
, 0
}

∑
j,k pjkEjk (ξ)


where εLR = LBLR

ZP
and λ1

jk = min
{

mini∈I

{
cijk +

αijk
Ui
· (dik + eij + fi)

}
, pjk

}
∀j and k.

Moreover, there exists a problem instance of the RPP such that the bound is tight (i.e.,

εLR = 1).

Proof. First note that the Lagrangean dual is a concave maximization problem, and recall

from Lemma 2 that λ∗jk ≥ min
{

mini∈I

{
cijk +

αijk
Ui

(dik + eij + fi)
}
, pjk

}
= λ1

jk. Moreover,

it is easy to check that a trivial feasible solution can be obtained by setting zi = wik = xijk =

yjk = 0 ∀i, j, k, in which case the objective function is equal to
∑

j,k pjkEjk (ξ). As a result,

the following inequalities hold:

max
{
L
(
λ1
)
, L (p)

}
≤ LBLR ≤ ZP ≤

∑
j,k

pjkEjk (ξ)

Hence εLP = LBLR
ZP
≥ max{L(λ1) , L(p)}∑

j,k pjkEjk(ξ)
, and the result follows by substituting L (λ1) and L (p)

from (3.9). To show that there exists an instance such that this bound is tight, for every

i ∈ I, pick fi such that minj,k

{
dik + eij + (cijk − pjk) Ui

αijk

}
+fi ≥ 0. Then it is easy to check

that εLR ≥ 1. Because εLR ≤ 1 by definition, we conclude that εLR = 1 in this instance.

This completes the proof.
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3.4 Heuristics & Upper Bounds

In this section we develop heuristics, which can be used to obtain feasible solutions for

the RPP. These heuristics can be used in conjunction with the lower bound developed in

Section 3 to provide upper bounds for a branch and bound algorithm, or to generate a

feasible solution for the RPP. We initially propose two intuitive heuristics. The first is a

practitioner’s heuristic developed based on observed practice at a large retail chain. The

second is a sequential heuristic, which solves the inventory management subproblem first,

and then it solves the remaining standard facility location problem by applying the well-

known Drop procedure (Klincewicz and Luss (1986)).

These two heuristics can be used to benchmark the performance of the analytically more

rigorous heuristics we develop. The first is a convex programming based heuristic, which

generates a feasible solution by solving a sequence of convex programs. We also propose

a simpler LP-based heuristic, which is computationally more efficient. This heuristic uses

the inventory levels from the Lagrangean problem (i.e., y (λ∗)), and it generates a feasible

solution by solving a sequence of linear programs. We next present these heuristics, and we

evaluate their performance in Section 5.

3.4.1 Practitioner’s Heuristic

This heuristic first chooses the inventory level for every product at each demand zone to

equal the respective expected demand; i.e., yjk = µjk ∀j ∈ J , k ∈ K. Second, suppliers are

sorted according to the ratio Ri = fi
Ui

, which captures the fixed cost per-unit of capacity

associated with choosing supplier i. Third, the algorithm establishes sufficient capacity to

satisfy the total inventory by choosing suppliers that have the lowest Ri. For example if R1 ≤

R2... ≤ RI , then the algorithm will set zi = 1 ∀i ∈ {1, .., n} and zi = 0 otherwise, where n =
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min
{
n ≤ I :

∑n
i=1 Ui ≥

∑
j∈J
∑

k∈K yjk

}
. Finally, production and transportation decisions

are made by solving a relaxed version of the RPP, where the fixed cost variables wik and vij

are relaxed to lie in [0, 1]. Here, a feasible solution is obtained by rounding to 1 the fractional

wik and vij variables, and by re-solving the linear program with respect to xijk ≥ 0. Note that

this heuristic does not take into account the underage and overage costs due to the variation

in demand as inventory levels are set to simply equal the mean demand. We denote the

objective function of this heuristic by UBPr. This procedure is formalized in Algorithm 1.

Algorithm 3.1 Practitioner’s Heuristic.

1: Let Ri = fi
Ui

, and sort candidate facilities such that R1 ≤ R2... ≤ RI .
2: Fix yjk = µjk ∀j and k.

3: Let n = min
{
n ≤ I :

∑n
i=1 Ui ≥

∑
j∈J
∑

k∈K yjk

}
.

4: Fix zi = 1 ∀i = 1, .., n and zi = 0 otherwise.

5: Solve the RPP with relaxed variables vij , wik ∈ [0, 1].

6: Fix to 1 any vij > 0 and wik > 0, re-solve LP, and compute objective function UBPr.

A more sophisticated version of this heuristic can be obtained by choosing the inventory

levels according to the newsvendor model, and then using the same approach as described in

Algorithm 1 to choose suppliers and conduct logistics planning. We call this the newsvendor-

based practitioner’s heuristic, and we denote its objective function by UBPr−NV .

3.4.2 Sequential Heuristic

This heuristic obtains a feasible solution for the RPP in two stages: In the first stage, it fixes

the inventory level for each product at every demand zone by solving J × K newsvendor

problems. This reduces the problem to a standard capacitated facility location problem with

piece-wise linear costs. Then, in the second stage it uses a Drop heuristic - a well-known

construction heuristic for facility location problems to determine which suppliers to choose.

The general idea of the Drop heuristic is to start with a solution in which all candidate
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suppliers are chosen (i.e., zi = 1 ∀i), iteratively deselect one supplier at a time, and solve

the remaining subproblem in which the fixed cost variables wik and vij are relaxed to lie

in [0, 1]. Then any fractional wik and vij variables are rounded to 1, and the problem is

resolved with respect to the xijk variables. In each loop, the heuristic permanently deselects

the supplier who provides the greatest reduction in total expected costs, and it terminates

if no further cost reduction is possible. Since exactly one zi is dropped in each loop, and

at least one supplier must be selected in any feasible solution, the algorithm needs at most

I (I − 1) iterations in total, and two convex programs are solved in each iteration. We denote

the objective function of this heuristic by UBSeq. This procedure is formalized in Algorithm

2.

Algorithm 3.2 Sequential Heuristic.

1: Fix yjk = y (newsvendor) ∀j and k

2: Fix zi = 1 ∀i and UBSeq = +∞.

3: for n = 1 to I do

4: for m = 1 to I do

5: if zm = 1 do

6: Fix zmi = zi ∀i 6= m and zmm = 0.

7: Solve the RPP with zmi and relaxed variables vij , wik ∈ [0, 1].

8: Fix to 1 any vij > 0 and wik > 0, and resolve RPP to find xijk variables.

9 Compute objective function UBm
Seq.

10 end if

11 end for

12 if minm UB
m
Seq < UBSeq do

13 UBSeq = minm UB
m
Seq and zm∗ = 0, where m∗ = arg minm UB

m
Seq.

14 terminate

15: end if

16: end for

For completeness, we also consider a variant of the sequential heuristic that fixes the inventory

level for each product at every demand zone to equal the respective expected demand. We call

this the simplified sequential heuristic, and we denote its objective function by UBSeq−Simple.

146



3.4.3 Convex Programming Based Heuristic

One disadvantage of the practitioner’s and the sequential heuristics is that inventory decisions

are made independent of supplier selection and logistics decisions. Moreover, the Drop

approach used in the sequential heuristic can be computationally intensive. Therefore, we

construct a convex programming based heuristic as an alternative way to obtain a feasible

solution for the RPP.

The heuristic begins by solving a relaxed RPP where the fixed cost variables zi, wik and vij

have been relaxed to lie in [0, 1]. First, it temporarily fixes the largest fractional zi to 1,

solves the remaining (relaxed) problem, and rounds to 1 any fractional wik and vij variables.

Second, it temporarily fixes the smallest fractional zi to 0, and again it solves the remaining

(relaxed) problem and rounds to 1 any fractional wik and vij variables. The algorithm then

permanently fixes the zi that yielded the lowest total expected costs, and it continues to

iterate until all zi variables have been fixed to 0 or 1. The assumption behind this approach

is that the fractional value of zi is a good indicator of the “worthiness” of choosing supplier i.

Since at least one zi is fixed in each loop, the algorithm needs at most I iterations in total,

and two convex programs are solved in each iteration. We denote the objective function of

this heuristic by UBCvx. This procedure is formalized in Algorithm 3.

To gauge the value of joint logistics and inventory planning, we also consider a simplified

version of the convex programming heuristic, in which inventory levels are selected in advance

using the solution corresponding to the lower bound from the Lagrangean relaxation (i.e.,

yjk (λ∗) ∀j and k). Then the problem of finding a feasible solution reduces to solving a

sequence of linear programs, which are easier to solve than convex programs. We denote the

objective function associated with this LP-based heuristic by UBLp.
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Algorithm 3.3 Convex Programming Based Heuristic.

1: Initiate zmini = 0 and zmaxi = 1 ∀i
2: while zmaxi > zmini for some i do

3: Solve the RPP with relaxed variables vij , wik ∈ [0, 1] and zmini ≤ zi ≤ zmaxi

4: if zi ∈ {0, 1} do
5: Set zmini = zmaxi = zi
6: end if

7: Let imax = arg max {zi : zi ∈ (0, 1)} and imin = arg min {zi : zi ∈ (0, 1)}.
8: Solve the RPP with relaxed variables v+

ij , w
+
ik ∈ [0, 1] , zmini ≤ z+

i ≤ zmaxi and z+
imax

= 1.

9: Fix to 1 any v+
ij > 0 and w+

ik > 0, and compute objective function UB+
CV X .

10: Solve the RPP with relaxed variables v−ij , w
−
ik ∈ [0, 1] , zmini ≤ z−i ≤ zmaxi and z−imin = 0.

11: Fix to 1 any v−ij > 0 and w−ik > 0, and compute objective function UB−CV X .

12: if Z+ > Z− do

13: zminimax
= 1

14: else

15: zmaximin
= 0

16: end if

17: end while

18: Fix to 1 any vij > 0 and wik > 0, re-solve the convex program, and compute UBCvx.

3.5 Computational Results

In this section we present a computational study to evaluate the performance of the heuristics.

In addition, we investigate the key factors that drive their performance, and also examine

their robustness. In addition, we use our analysis develop managerial insights about the

solution of the RPP.

To test our methods across a broad range of data, we randomly generated the parameter

values using a realistic set of data made available to us by a large retailer. We generated

500 random problem instances, each comprising between 5 to 20 candidate suppliers, 10

to 40 demand zones, and 1 to 25 products (i.e., I ∼ U {5, .., 20}, J ∼ U {10, .., 40} and

K ∼ U {1, .., 25}). The parameters we used in our computational study are summarized in

Table 1. To solve the optimization problems associated with the bounding techniques we

propose, we used the CVX solver for Matlab (CVX (2011)) running on a computer with an
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Parameters Distribution of Values Parameters Distribution of Values

Fixed Cost of f̄ ∼ N (50, 10) Overstock h̄ ∼ N (5, 1)

Choosing a Supplier fi ∼ N
(

2JK
3I f̄ ,

3JK
2I f̄

)
Cost hjk ∼ U

[
2
3 h̄,

3
2 h̄
]

Setup Cost Associated d̄ ∼ N (200, 40) Understock p̄ ∼ N (50, 10)

with Production dik ∼ U
[
0, d̄

]
Cost pjk ∼ U

[
2
3 p̄,

3
2 p̄
]

Setup Cost Associated ē ∼ N (200, 40) Mean µ̄ ∼ N (20, 4)

with Distribution eij ∼ U [0, ē] Demand µjk ∼ U
[

2
3 µ̄,

3
2 µ̄
]

Marginal Production c̄ ∼ N (10, 2) Demand σ̄ ∼ N (5, 1)

and Distribution Cost cijk ∼ U
[

2
3 c̄,

3
2 c̄
]

Variance σjk ∼ U
[

2
3 σ̄,

3
2 σ̄
]

Supplier Capacity
Ū ∼ N (100, 20) Weights αijk = 1

Ui ∼ N
(

40JK
I Ū , 90JK

I Ū
)

Min. Throughput Li = 0

Table 3.1: Summary of Parameters used in our Computational Study.

Intel Core i7-2670QM 2.2GHz processor and 6 GB of RAM memory.

To evaluate the performance of the Lagrangean lower bound, we benchmark it against a

standard convex programming relaxation, in which the integrality constraints are relaxed so

that (3.7) is replaced by

0 ≤ wik ≤ 1 , 0 ≤ vij ≤ 1 , 0 ≤ zi ≤ 1 ∀i ∈ I , j ∈ J , k ∈ K

In every one of the problem instances tested, the Lagrangean relaxation generated a better

lower bound than the convex programming relaxation, on average by 2.34%. This is con-

sistent with Lemma 1, which asserts that the Lagrangean problem Lλ does not possess the

Integrality Property.

To test the performance of the heuristics developed in Section 4, we evaluate the subopti-

mality gaps relative to the Lagrangean lower bound. Let ∆x = 100% UBx−LBLR
LBLR

, where x ∈
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{Cvx, Lp, Seq, Seq − Simple, Pr, Pr −NV } denote the convex programming based, the

LP-based, the sequential, the simplified sequential, the practitioner’s, and the newsvendor-

based practitioner’s heuristic, respectively. The average and median values, as well as the

range of these metrics are illustrated in Figure 2.

In addition, to get an idea of the computational complexity of these heuristics, Table 2 reports

the mean, median and maximum computational time for the problem instances tested.

Figure 3.2: Suboptimality Gap.

UBPr UBPr−NV UBSeq UBSeq−Simple UBCvx UBLp

mean 2.02 2.03 80.85 187.41 175.76 105.04

median 1.68 1.72 59.48 91.00 96.78 52.48

max 9.44 10.23 463.98 1974.96 1472.18 949.64

Table 3.2: Computational Times (sec).

First observe from Figure 2 that the convex programming based heuristic unambiguously

outperforms the other heuristics. In particular, it provides feasible solutions that are on

average within 3.44% of optimal, and range from 0.41% to 18.76%. While the gap of the
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LP-based heuristic is higher than the convex programming based heuristic on average, in the

majority of cases it generates a feasible solution that is quite close to optimal as evidenced

by the median gap of 4.32%. The practitioner’s heuristics generate feasible solutions that

are on average 19.95% and 36.32% from optimal for the standard and the newsvendor-based

version, respectively. On the other hand, the suboptimality gap for the sequential heuristics

is on average 36.72% and 23.7% for the standard and the simplified version, respectively.

Interestingly, with both the practitioner’s and the sequential heuristic, the version in which

inventory levels are set equal to the mean demand outperforms the version in which inventory

levels are chosen according to the newsvendor solution. This is because the understock costs

are generally larger than the overstock costs, and hence the newsvendor model leads to a

larger stocking quantity than the average demand. This in turn increases production and

distribution costs, as well as the fixed costs associated with establishing capacity in excess

of the benefit of reducing underage costs.

In addition, the inventory levels corresponding to the solution of the convex programming

based heuristic are always lower than those determined by the newsvendor solution, and

they are often lower than those chosen by the LP-based heuristic. This is because the

convex programming heuristic solves the joint problem in contrast to the LP-based heuristic

as well as other heuristics in which the inventory levels are chosen separately from the joint

problem. When one solves for the joint problem, the solution accounts for the fact that

a larger downstream inventory level raises production quantities, which increases upstream

production and distribution costs as well as the costs associated with establishing production

capacity. In contrast, these costs are not considered when the inventory subproblem is

solved separately, and hence result in a larger inventory level. The takeaway from this

is that when planning the entire supply chain, it is important to consider the effect of
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downstream inventory decisions to the upstream production and distribution costs. Retailers

often underestimate the impact of upstream costs in their urge to have a higher market share

associated with higher fill rates. When such costs are adequately represented, a lower fill rate

may actually be preferable in order to lower total costs. Finally, note that the cost reduction

resulting from the convex programming based heuristic relative to the other heuristics is

important, because retailers operate in a highly competitive environment with very low

margins and even a small cost reduction can lead to a large profit increase.

Next, consider the computation time for each heuristic. Observe that both practitioner’s

heuristics are computationally very fast, while both sequential heuristics are quite slow.

Also note that the standard sequential heuristic is computationally less intensive than its

simplified counterpart. Because the standard sequential heuristic chooses the stocking quan-

tities according to the newsvendor model, which in general are higher than the expected

demand, the Drop procedure needs fewer iterations in the standard sequential heuristic.

Finally, observe that the convex programming based heuristic is about as computationally

intensive as the simplified sequential heuristic, but leads to much lower average gaps. Thus

it clearly dominates both versions of the sequential heuristic. However, as expected, it is

computationally more intensive than the LP-based heuristic.

Since the convex programming heuristic dominates the other heuristics in terms of the gap

from the lower bound, we focus on this heuristic to examine (a) how the computational time

scales up with the size of the problem, (b) how the suboptimality gap and its performance

advantage relative to the practitioner’s heuristic depend on the parameters of the problem,

and (c) which parameters have the greatest impact on the total expected costs.

To conduct this analysis, we regress the computational times, the suboptimality gap of the
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convex programming heuristic (i.e., ∆Cvx), the gap between the convex programming and

the practitioner’s heuristic (i.e., 100% UBCvx−UBPr
UBPr

), and the total expected cost associated

with the convex programming heuristic (i.e., UBCvx) of the 500 problem instances tested

earlier on the size (i.e., I, J , K), and the parameters of the problem (i.e., µ̄, σ̄, h̄, p̄, c̄, d̄, ē,

f̄ , Ū). Table 3 summarizes the results.5

Computational Time Suboptimality Gap Cvx. vs. Pract. H. Expected Cost

I
23.93*** -0.13*** 0.32*** 5247.77***
(1.301) (0.034) (0.089) (1094.73)

J
7.66*** -0.09*** 0.06 9798.92***
(0.651) (0.016) (0.042) (517.59)

K
18.33*** -0.16*** 0.15** 19590.85***
(0.803) (0.026) (0.067) (822.44)

µ̄
-0.35 -0.12*** 0.25*** 11042.93***

(0.893) (0.017) (0.044) (543.84)

σ̄
0.04 0.101 -0.12 48.77

(3.732) (0.071) (0.185) (2278.22)

h̄
7.79 0.12 0.12 7702.49**

(5.706) (0.109) (0.287) (3521.77)

p̄
0.023 0.012 0.25*** 2048.43***

(0.548) (0.0104) (0.027) (334.45)

c̄
6.13 0.055 -0.038 8629.04***

(2.69) (0.051) (0.134) (1647.61)

d̄
0.02 0.026 -0.053 261.74

(1.108) (0.0204) (0.054) (657.6)

ē
-1.59 0.011 -0.007 1269.01*

(1.099) (0.021) (0.055) (672.77)

f̄
-1.40** -0.00003*** -0.00008*** 2.29***
(0.551) (0.000003) (0.00001) (0.12)

Ū
1.38*** 0.0015*** 0.002*** -37.82***
(0.266) (0.0001) (0.0003) (3.35)

Intercept
-689.2*** 8.52*** -36.62*** -830954.6***

(88.8) (1.469) (3.851) (47333.18)
R2 0.641 0.40 0.315 0.891

Table 3.3: Suboptimality Gap vs. Problem Parameters (Convex Programming Heuristic).

5The values above the parantheses denote the regression coefficients corresponding to the parameter in
the left column. The values in parentheses denote standard errors. * denotes significance at 10% level, **
denotes significance at 5% level, and *** denotes significance at 1% level.
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First note that the computational time of the convex programming heuristic is strongly de-

pendent on the problem size (i.e., I, J and K), while it is insensitive to the other parameters

of the problem. More interestingly, the relatively large R2 ratio implies that the computa-

tional time of the convex programming heuristic is explained by a linear model well, which in

turn suggests that the computational time scales up approximately linearly in the problem

size.

From the second column, observe that the suboptimality gap decreases in the size of the

problem (I, J and K), and this effect is significant at the 1% level. This finding is en-

couraging: it predicts that the convex programming heuristic will perform even better in

larger problem instances that could be expected in some applications. The suboptimality

gap increases in the capacity of the candidate suppliers (Ū), while it decreases in the mean

demand (µ) and the fixed costs associated with choosing a supplier (f̄). The suboptimality

gap also increases in the demand variance (σ̄), the underage and overage costs (p̄ and h̄),

and the production costs (c̄, d̄, and ē), but this effect is not significant at the 10% level.

Finally, note that a 95% confidence interval for each regression coefficient can be obtained

from (regression coeff.) ± 1.9648 (std. error).6 Therefore, as seen in Table 3, because the

values of all regression coefficients and their respective standard errors are close to zero,

|(regression coeff.)± 1.9648 (std. error)| is close to zero for all parameters. This shows that

the performance of the convex programming heuristic is robust to changes in the parameters

of the RPP.

The third column examines how the performance advantage of the convex programming

heuristic relative to the practitioner’s heuristic depends on the parameters of the problem.

6±1.9648 corresponds to the 2.5 and 97.5 percentile of a t-distribution with 500− 13 degrees of freedom.
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Observe that the performance advantage of the convex programming heuristic becomes larger

in the size of the problem, while it is insensitive to the cost parameters as evidenced by the

small regression coefficients and the small (respective) standard errors. This, together with

the finding that the value of the intercept is negative at the 1% significance level, reinforces

the benefits from using the convex programming heuristic, as one could expect even larger

problems with different cost parameters in certain applications.

The fourth column considers the relationship between the total expected cost of the feasible

solutions generated by the convex programming heuristic, and the parameters of the problem.

Predictably, the expected cost increases in the size of the problem (I, J and K), in the mean

demand (µ̄), in the production costs (c̄, d̄ and ē), in the fixed costs associated with choosing

a supplier (f̄), as well as in the underage and overage costs (p̄ and h̄). On the other hand, the

expected cost decreases in the capacity of the candidate suppliers (Ū), while the effect of the

demand variance (σ̄) is insignificant. Therefore, our findings suggest that besides the problem

size (i.e., I, J , K and µ̄), the two most important factors that affect the expected cost of

a feasible solution are (i) the marginal production cost and (ii) the inventory underage and

overage costs. The latter observation emphasizes the value of an improved demand forecast.

On the other hand, the capacity of a supplier as well as the fixed contracting costs appear to

have a secondary effect. This is consistent with the initiatives undertaken at several retailers

to reduce the impact of production, inventory underage and overage costs (Fisher and Raman

(2010)).

Since the gaps of the convex programming based heuristic are the smallest, we analyze the

solutions to develop some insights about how it chooses suppliers. This could be useful for

practitioners who make such decisions. We find that suppliers are chosen in increasing order
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of the ratio ri, where

ri =
1

Ui

[
fi +

1

|J | |K|
∑
j,k

(
dik + vij + cijk

αijk
Ui

)]

The term in brackets represents the sum of fixed establishment costs and the average pro-

duction and distribution costs across products and demand zones when a supplier is fully

utilized. Therefore the ratio ri can be interpreted as the average total cost per unit of capac-

ity at supplier i. This suggests that it is important to consider establishment, production and

distribution costs together when choosing suppliers, and it is beneficial to choose suppliers

with the lowest total average cost per unit of capacity.

3.6 Conclusions

We analyze a multi-product retail planning problem under demand uncertainty, in which the

retailer jointly chooses suppliers, plans production and distribution, and selects inventory

levels to minimize total expected costs. This problem typically arises in retail store chains

carrying private label products, who need to plan the entire supply chain by making decisions

with respect to (i) supplier selection for their private label products, (ii) distribution of

products from suppliers to demand zones (i.e., stores or distribution centers), and (iii) the

inventory levels for every product at each demand zone. This problem is formulated as a

mixed integer convex program.

Since the retail planning problem is strongly NP-hard, we use a Lagrangean relaxation to

obtain a lower bound, and we develop heuristics to generate feasible solutions. First we

develop an analytic solution for the Lagrangean problem (Proposition 1), and we establish

conditions under which the Lagrangean dual can be solved analytically (see Proposition 2).
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We first develop a practitioner’s and a sequential heuristic. We then propose two heuristics,

which reduce the problem of generating a feasible solution to solving a sequence of convex

or linear programs. To test the performance and the robustness of our methods we conduct

an extensive computational study. The convex programming based heuristic and its LP-

based counterpart yields feasible solutions that are on average within 3.4% and 10.2% from

optimal, respectively. Sensitivity analysis suggests that the computational time of the convex

programming heuristic scales up approximately linearly in the problem size, while it is stable

to changes in problem parameters. Finally, these heuristics outperform both the Sequential

and the Practitioner’s heuristics, and the performance advantage of the convex programming

based heuristic relative to the practitioner’s heuristic is robust to the parameters of the

problem. All these are desirable features for any eventual implementation in large sized real

applications.

Several managerial insights can be drawn from this work. First, solving the more complicated

joint supplier choice, production, distribution and inventory problem leads to a leaner supply

chain with lower inventory levels than solving the inventory subproblem separately from the

supplier choice and logistics subproblem. This highlights the importance of considering the

effect of inventory decisions on upstream production and distribution costs. Our methodology

provides an effective approach to solve this joint problem. Second, the major costs that

influence supply chain costs across the retailer are production costs, as well as the understock

and overstock costs associated with carrying inventory at the demand zones. Therefore

retailers should focus on reducing these costs first before considering the effects of supplier

capacity and contracting costs. Third, it is important to consider establishment, production,

distribution and inventory costs together when choosing suppliers, because a supplier who is

desirable in any one of these aspects may in fact not be the best overall choice. Our analysis

provides a mechanism to integrate these aspects and pick the best set of suppliers.
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This paper opens up several opportunities for future research. First, this problem could be

extended to explicitly model nonlinear production and shipping costs, which is of particular

interest for applications that exhibit significant economies of scale. In that case the problem

formulation is a mixed integer nonlinear program that is neither convex nor concave (see

Caro et al. (2012) for details about addressing a related problem in the process industry

with uncertain yields). Second, our model could be extended to incorporate multiple echelons

in the supply chain (i.e., wholesalers, distribution centers, etc.) and allow multiple echelons

to carry inventory. Third, it may be desirable to incorporate side constraints pertaining to

facilities, production and distribution (i.e., v, x, w, and z variables) as in (Geoffrion and

McBride (1978)). Undoubtedly, all of these extensions would require significant, non-trivial

modifications to our model. Finally, further work could be done to improve the heuristics in

order to further reduce the suboptimality gap.

In conclusion, we believe the methods described in this paper provide an effective method-

ology to address the retail planning problem under demand uncertainty.
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