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Abstract

Machine learning (ML) and artificial intelligence (AI) have had a profound impact

on our lives. Domains like health and learning are naturally helped by human–AI

interactions and decision making. In these areas, as ML algorithms prove their value in

making important decisions, humans add their distinctive expertise and judgment on

social and interpersonal issues that need to be considered in tandem with algorithmic

inputs of information. Some questions naturally arise. What rules and regulations

should be invoked on the employment of AI, and what protocols should be in place

to evaluate available AI resources? What are the forms of effective communication

and coordination with AI that best promote effective human–AI teamwork? In this

review, we highlight factors that we believe are especially important in assembling and

managing human–AI decisionmaking in a group setting.

KEYWORDS

decisionmaking, human—AI teams, machine learning

INTRODUCTION

Intelligent agents have become fundamental to everyday life. Exam-

ples of such systems include social assistants on mobile devices,

pedagogical agents in tutoring systems, social robots collaborating

with humans, and multimodal interface agents for smart appliances

and environments. Combining state-of-the-art machine learning (ML)

and understanding of human behaviors may excite major scientific

discoveries at the interface of natural and artificial intelligence (AI).

As noted in the National Science Foundation’s 10 Big Ideas,1 The

Future of Work at the Human–Technology Frontier: “we have a unique

opportunity to actively shape the development and use of technologies

to improve the quality of work while also increasing productivity

and economic growth in manufacturing and in service sectors such

as healthcare and education.” While combining a single human with

a single AI agent has been explored much in the literature,2–10 this

review concentrates on the group setting of human and AI agents.

The intellectual challenges here include integrating group theoretic

constructs from the social sciences and AI/ML methods to under-

stand the dynamic behavior of groups with AI involvement. A key

barrier in this endeavor is the current limitation in data, models,

and theories that explain their dynamic behavior, coordination, and

performance. Existing research indicates that group performance

cannot be understood by studying the components (individuals and

networks) in isolation. It is not simply a sum of individual performance,

but ruled by patterns of interactions, influence, and other relationships

among group members. Yet, we do not fully understand the dominant

sociocognitive processes that determine the dynamic, adaptive, and

learning behavior of human–AI groups. In this article, we concentrate

on the open problem of theory development on optimal coordination

of AI and groups of humans in decisionmaking.

Sociocognitive constructs for decision making in
human groups

Over the last decades, scientists have made meaningful headway in

understanding collective group behavior of humans. Researchers have

examined social processes of groups on single issues and sequences

of issues, and have understood the implications of these social
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F IGURE 1 We formalize group interactions as the composition of
sociocognitive constructs. This review considers the three constructs
of transactive memory (Section “TransactiveMemory Systems in
Human–AI Groups”), cognitive biases (Section “Cognitive Biases in
Human–AI Groups”), and influence systems (Section “Influence
Systems in Human–AI Groups”), and investigates how these are
realized in the task of risky decisionmaking (Section “Risky Decision
Making in Human–AI Groups”)

processes for group performance on objective measures of perfor-

mance, and their emergent effects given the characteristics of groups

and the actors in them. As shown in Figure 1, this review focuses on

three selected sociocognitive constructs to provide a quantitative

understanding of group decision-making processes in uncertain envi-

ronments. Transactive memory systems (TMS)11 are automatically

activated in the appraisal of group members’ levels of expertise

and potential contributions to tasks. Cognitive biases, heuristic and

bounded rational processes augment and interfere with the recog-

nition and correct appraisal12 of other individuals’ skills. Finally,

interpersonal influence systems, with various weighted digraph struc-

tures of i→ j arcs of accorded influence, result from the composition

of learning, biases, and a number of other antecedent factors and

cognitive processes.13

Understanding and modeling decision making in groups remains

highly complex. For example, research from psychology14,15 suggests

that people process information using dual processes: an explicit

(controlled) conscious process and an implicit (automatic) unconscious

process. The first process is encoded by analytic algorithms, rules,

and reasoning systems, and is amenable to ML modeling. The second

implicit automatic system and its interaction with the explicit system

is harder to model in humans, and poses considerable challenges for a

theoretical understanding of mixed human–AI groups.

Another source of complexity in modeling and understanding

decision making in groups has to do with uncertainty. This uncer-

tainty can be separated into two kinds: aleatoric and epistemic.16,17

Aleatoric uncertainty refers to the notion of randomness (as in coin

flipping): the variability in the outcome of an experiment that is due to

inherently random effects. Epistemic uncertainty refers to uncertainty

due to lack of knowledge of the group environment. This uncertainty

can in principle be reduced by a proper recognition of expertise on

groups and protocols that reveal explanations on why a fact may be

true.

Both aleatoric and epistemic uncertainty require groups to decide

under varying amounts of risk and reward under conditions that are

not completely rational. Themost successful model for explaining risky

decision making is prospect theory.18,19 According to it, individuals

make decisions based on the potential value of losses and gains among

the set of available options. It proposes that individuals compute an

internal evaluation for each prospect that is determined by a value

function and a probability weighting function. The value function is

S-shaped and asymmetrical, capturing loss aversion. The probability

weighting function encodes the hypothesis that individuals over-react

to small probability events, but under-react to large probability

events. The theory deviates from its rational competitor, expected

utility theory,20 which assumes that people evaluate the outcome of a

decision in terms of the expected reward, independent of any cognitive

biases (such as risk aversion). Other recent theories explaining individ-

ual choices under risk/uncertainty include dynamic decision models,21

such as dynamic field theory.22

Overall, numerous efforts have focused on explaining and modeling

group decision making; this is a vast field tackling a multifaceted

problem. Motivated by some of our own experimental and analytical

work, this review focuses on the above-mentioned key sociocognitive

constructs and presents an explicit way of interconnecting them

quantitatively in the context of risky decisionmaking.

While we focus only on a few selected sociocognitive constructs, it

is important to recognize that other modeling results have also been

put forth. For example, collective intelligence refers to a group’s ability

to produce intelligence and behaviors beyond the individual;23 in this

body of work, human groups can display magnified cognitive capac-

ity and unique cognitive abilities that emerge from the interaction

between the group members.24 Theory of mind25–29 broadly refers

to humans’ ability to represent the mental states of others, including

their desires, beliefs, and intentions. Finally, the seminal work by Ref-

erence 30 and the influential References 31 and 32 have introduced

and popularized the concept of group mental model to focus on the

overlapping knowledge and shared cognition among group members.

Broadly speaking, the theory of group mental models focuses on a

broader content domain than the theory of TMS.

Sociocognitive constructs for decision making in
human–AI groups

Humans and AI are clearly different in their cognitive and processing

capabilities.33 Groups with AI involvement should be designed so that

the raw computational and search power of computers for state-space

reduction can be combined with group inductive reasoning, especially

in uncertain environments. What is the optimal group-AI design for

a given decision? This is a question pervading all kinds of groups that

oriented to specific types of issues. Taxonomies and ontologies for

characterizing group decision making have been defined34–36 in order

to investigate the optimal composition of groups. The behavior of

groups with AI involvement must be observable and predictable. This

is challenging in complex uncertain environments. While groups often

adopt satisficing strategies,37,38 AI utilizes search space reduction

strategies, such as limited look-ahead, constraint relaxation, and

heuristics. Both humans and AI are subject to bias and faulty informa-

tion: humans by their members’ beliefs and AI by the available data

and training protocols. Since observability and predictability have

ramifications on the level of trust,39 groups with AI involvement must

have confidence that the behavior of their AI is consistent with an
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F IGURE 2 Our simplified representation in Figure 1 is now
augmented to include (1) the presence of AI agents in the group, and
(2) the adoption ofMLmodels to predict the behavior of a human+AI
group. In this review, we confine ourMLmodeling efforts to the
specific tasks of predicting the emergence of influence systems (the
left big arrow) and the prediction of decisions under multiple
risk/reward scenarios (the right big arrow). Note thatML techniques
can be utilized broadly in other tasks in the group environment, such
as deciding optimal group composition and the design of interventions

acceptable common ground whatever the displayed initial beliefs of

the group’s members might be.40–45

An excellent survey of the broad ideas on human–AI autonomy

teaming has been put forth in a recent paper.46 The authors discuss

different levels of autonomy and summarize the recent literature. They

note that most of the papers have concentrated on dyads (one human

and one AI agent in a group). Furthermore, the authors found a “rela-

tively haphazard collections of independent and dependent variables

considered in relatively narrow (rather than integrative) empirical

studies”; likely because we are in the relatively early days of studying

and building an understanding of such groups. A related review47

discusses the implications of leadership in human–AI groups. Refer-

ence 48 discusses the mechanisms for enhancing the performance

of human–AI groups and outlines the critical scientific questions

that must be addressed to enable this vision. Reference 49 outlines

a research agenda for exploring the potential risks and benefits of

human–AI groups; the agenda is separated into three design areas:

machine artifact, collaboration, and institution, and augmented with a

set of possibilities that have significant potential for benefit or harm.

There is evidence that the same sociocognitive constructs relevant

in human groups play an important role when the group is composed

of multiple humans and AI agents; we illustrate this concept by

introducing AI agents in Figure 2. As illustrated there, this review

focuses on the adoption of ML models to quantitatively predict the

behavior of a human+AI group on two specific tasks: the emergence

of influence systems and the prediction of which decisions a group

will reach among options with varying risk/reward tradeoffs. However,

much work48 remains to be done in order to understand and quantify

how these constructs are affected by the introduction of AI agents in

human groups. How to integrate AI into human groups in order to pro-

duce cognitive abilities that go beyond the individual or the group of

humans, and allowmeaningful interactions is an important question.50

Group constructs have also been proposed in ML—experts, weak

learners, crowd-sourced workers—to achieve goals that no single

individual can accomplish on its own. In the case of boosting,51 one can

obtain a “strong learner” that is able to predict arbitrarily accurately

based on an ensemble of “weak learners” whose predictions are

slightly better than random guessing. In the case of “learning from

expert advice,”52 an algorithm works with a group of K arbitrary

“experts” who give daily “stock predictions” andwho perform nearly as

well as the “expert” that has the best “track record” at any given time.

It is an iterative game in which in each iteration the “player” must make

a decision and the experts with the best track record may change over

time. The “Multi-armed Bandits” (MAB) problems53 can be thought of

as a variant of the problem of “learning from expert advice” in which a

“player” can only observe the payoff of the “expert” at each iteration. In

the case of “crowd sourcing,”54 an algorithm aggregates the inputs of

a large group of unreliable “participants,” evaluates each “participant,”

and then infers the ground truth.

Some recent human–AI group experiments

To explore sociocognitive constructs for decisionmaking in human and

human–AI groups (Sections “Socio-cognitive constructs for decision

making in human groups” and “Socio-cognitive constructs for decision

making in human–AI group”), we carried out a number of controlled

experiments. In the context of expertise recognition, the experiments

documented in References 55 and 56 investigate how a group answers

a sequence of intellective questions with the help of the Platform for

Online Group Studies;57 here is a synopsis of these experiments. The

group’s task is to answer intellective questions from different cate-

gories, such as history, science and technology, and so on. Every group

consists of four individuals and each individual has access to their own

AI agent. Each question is answered in four timed phases. In the first

phase, every group member records their individual response for the

question. In the second phase, the response of every group member

is displayed on the screen and a chat plugin (the only communication

channel) is enabled for communication. Group members then record

their choices and decide whether or not to use an AI agent (and which

AI agent to use) in an optional third phase. In the fourth and final phase,

the group submits an answer. The correct answer to each question is

displayed at the end of each round. Note that if the group has relied

on the incorrect response of an AI agent, then the group’s trust in

that agent (and their other available AI agents) may be eroded. After

every few questions, subjects are asked to record the influence of their

teammates in their decision-making process as a percent value, such

that the sum of all values adds up to 100. Every subject assumes they

are given a total of 100 chips and instructed to distribute these chips

to indicate the relative importance of each member in determining

their own final answers on past problems. The number of chips that

subjects allocate to themselves indicate the extent to which their final

answer was not affected by the conversation. After normalization,

the self-reported interpersonal influences form a row-stochastic

appraisal/influence matrix. This approach to measuring interpersonal

appraisals and influence is standard in the study of influence systems,

for example, see the classic work documented in Reference 13 as

well as the recent studies.37,58–60 Additionally, the group members

are asked to rate the accuracy of all four AI agents based on their

interactions with them. Finally, the platform collects a log of all the

instant messages, including time of message and content during every
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question, the individual and group answers, and the self-reported

influencematrices.

This experimental protocol and attending software implementation

allow us to study (1) expertise recognition and learning phenomena, (2)

cognitive biases in human–AI groups, (3) influence systems resulting

from learning and biases, and (4) risky decision-making process in

human–AI groups. We elaborate on each of these four aspects in the

next four sections.

The rest of this review is organized as follows. Section “Transactive

Memory Systems in Human–AI Groups” considers the theory on TMS

in which the distributed knowledge of the members of a group is

made apparent and efficiently exploited. Section “Cognitive Biases in

Human–AI Groups” considers the effects and mitigation of cognitive

biases. Section “Influence Systems in Human–AI Groups” considers

the emergence of influence systems. Section “Risky Decision Making

in Human–AI Groups” considers the integration of the above three

constructs into group decision making. We end with a brief discussion

in Section “Conclusions and FutureWork.”

TMS IN HUMAN–AI GROUPS

TMS is a conceptual model of group cognition, learning, and perfor-

mance. This model originates in the seminal work by Reference 11 and

is by nowwell-established in organization science, for example, see the

influential References 61–65. From Reference 63, TMS theory models

howmembers of long-tenured groups rely upon one another to obtain,

process, and communicate information from specialized knowledge

domains; this theory is used to understand the functioning of special-

ized teams in organizations, such as consulting teams, product develop-

ment teams, research teams, and ad hoc project teams. In other words,

a TMS is a collective “memory” system that emerges in groups engaged

in tasks and captures how the distributed knowledge of the members

of a group is made apparent, appraised, and efficiently exploited by

everymember of the group. Empirical research across a range of group

types and settings64,66,67 demonstrates a strong positive relationship

between the development of a TMS and group performance.

A key question in TMS theory is how do individuals and AI

agents estimate expertise levels of each other in order to rationally

assign influence in the decision-making process. Naturally, a reliable

appraisals of expertise may be obtained from a sequence of issues,

under the assumption that expertise is stationary, in which case

expertise can be estimated from the accuracy/success of prior pre-

dictions/decisions. An elaboration of TMS includes appraisals of the

usefulness of one ormoreAI-ML resources in decisionmaking on a par-

ticular issue. In general, TMSsystemsprovideabasis for assigningmore

weight to some members than others,68 and more weight to some AI-

ML algorithms than others. Note that trustworthy ML algorithms may

be employed in the selection of members for a decision-making group.

Ourwork onTMS systems includes empirical and theoretical contri-

butions. Our recent experiments on memory-based intellective tasks,

as summarized in Section “Some recent human–AI group experiments”

and documented in References 55 and 56, provide novel evidence

about interpersonal appraisals, memory systems, and social influence

in groups. We found empirical evidence for longstanding theories of

TMS and confidence heuristics, regarding the origins of social influ-

ence and group performance. Specifically, we quantified how, along an

issue sequence with feedback, individuals with higher expertise and

social confidence are accorded higher interpersonal influence. We

modeled how higher-performing individuals better recognize experts

in their group, whereas lower-performing individuals assign more

uniform evaluations and influence using a “central tendency/reversion

to the mean” bias (more about these concepts in Section “Cognitive

Biases in Human–AI Groups”). On the theoretical side, building on

early simulation-based computational models,69–71 we have proposed

collective learningmodels for human groups that explain how interper-

sonal appraisals evolve when individuals have access to a performance

signal; this work72,73 is documented in Figure 3. These models are the

first quantitative multiagent mathematical models for TMS. In these

models, interpersonal appraisals and workload changes occur simulta-

neously: each member elaborates personal appraisals of neighboring

members based on the performance exhibited on previous tasks,

while the workload is redistributed based on the current appraisal

estimates. We establish rigorous results characterizing the ability (or

the inability) of the group to correctly learn each other’s expertise and

thus converge to an allocationmaximizing the group’s performance.

We conclude this discussion about TMS in human–AI groups by

reviewing some open questions in this area. Broadly speaking, despite

all theoretical work so far, it remains valuable to investigate whether

the formation of a TMS can be monitored and whether TMS is a valid

predictor of high performance of the human–AI group. Accordingly,

it would be valuable to collect rich data sets on the emergence and

evolution of TMS in human–AI groups. Such data would allow us to

develop a detailed quantitative understanding of how accurate and

shared assessments are achieved and how they operate to elevate

group performance. Second, it would be important to design software

agents that can (1) monitor the real-time development of a TMS, based

on data on the communication among the individuals and the decisions

taken by the group, and (2) intervene in appropriate ways to facilitate

the learning process. Such software agents are potentially very useful

in practical applications.

COGNITIVE BIASES IN HUMAN–AI GROUPS

Psychological research has established that human decision making

is fundamentally based on cognitive biases and heuristics. Cognitive

biases and heuristics are ways for the human brain to quickly respond,

without having to recall and elaborate all relevant evidence. For exam-

ple, implicit confirmationa biases are widely established and irrational;

for example, see the famous study by MacNell et al.74 on gender

bias in teaching evaluations. The overconfidence effectb was originally

investigated by Oskamp,75 and it is now recognized as one of the most

“prevalent” and “potentially catastrophic” problems in decisionmaking

a Confirmation bias: The tendency to favor information that confirms previously held beliefs or,

similarly, to believe previously learnedmisinformation even after it has been corrected.
b Overconfidence bias: The tendency for a person’s subjective confidence in his or her judgments

to be reliably greater than the objective accuracy of those judgments.
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F IGURE 3 In References 72 and 73, we proposemathematical models of group learning in groups of individuals who collectively execute a
sequence of tasks andwhose actions are determined by individual skill levels and networks of interpersonal appraisals and influence. As
emphasized by italics in the figure, mathematical rules need to be specified for how (1) an interpersonal appraisal matrix A determines the work
assignmentsw, (2) the task performance of the individuals depends upon their latent skills x and their assignmentw, and (3) the feedback
performance signal affects the appraisal matrix A. Our models propose low-complexity idealizedmechanistic representations of interpersonal
appraisal, work assignment, learning of interpersonal skills, and influence systems. Themathematical models allow us to identify conditions under
which rational and optimal group behavior arises (or does not arise) along the task sequence

(Reference 76, Chapter 19). Related to overconfidence is the so-called

confidence heuristics, which postulates an expertise–confidence link

and a confidence–persuasion link; game theoretical models are given

by Reference 77 and empirical evidence is established by References

78 and 79. Finally, the classic study by Kruger and Dunning80 estab-

lishes how difficulties in recognizing one’s own incompetence leadc to

inflated self-assessments. Despite controversies and interpretation

challenges, cognitive biases are widespread and their study is an area

of active research, for example, see the recent edited handbook.81 It

is important to note that cognitive biases and heuristics are not only

sources of errors in judgment, but rather they may arise as bounded

rational deviations from logical thought82 and may lead to “useful

attitudes or behavior.”83 Reference 12 gives a compelling description

of “ecological rationality”; for example, the recognition heuristicd is

efficient and optimal under certain assumptions.

At the group level, a number of factors may affect decision making.

Individuals’ cognitive biases may be amplified or attenuated. More-

over, there exist social cognitive biases that affect groups so that

their deliberation may be dysfunctional or suboptimal because of

poor communication, irrational reasoning, or interpersonal influence

processes. The groupthink phenomenon described by Janis84 is a widely

known theory of how a bias toward social conformity and cohesion

elevates the risk of ill-considered decisions. The central tendency bias85

is the tendency of low-performing individuals to provide evaluations

with low differentiation—this phenomenon is akin to a social Dunning–

Kruger effect, whereby unskilled individuals not only overestimate

their own ability, but also fail to recognize different levels of ability in

others. Inaccurate evaluations in turn elevate the risks of suboptimal

decisions. This phenomenon is also understandable in the context

of social comparison theory.86,87 The influential work by Golub and

Jackson88 proposes a “naive learning model” explaining mathemati-

cally how social influence systems may decrease the decision-making

accuracy of a group based on the existence of prominent individuals

and information cascades. Note that, while Reference 88 focuses

on large populations, similar concepts related to biased influence

c Dunning–Kruger effect: The tendency for unskilled individuals to overestimate their own abil-

ity and the tendency for experts to underestimate their own ability.
d Recognition heuristic: If one of two objects is recognized and the other is not, then infer that

the recognized object has the higher value with respect to the criterion; see Reference 12.

centralities apply to small group decision making. A recent empirical

and theoretical work on the negative influence of information cas-

cades is given in Reference 89. In simple intellective tasks (such as

memory or estimation tasks), a rational strategy is arguably to adopt

expertise (e.g., measured as the rate of correct answers reached by the

individual) as the main driver of accorded interpersonal influence and,

therefore, accorded social power.

Experiments in the literature90 and in our own laboratory, as

summarized in Section “Some recent human–AI group experiments,”

demonstrate that other cognitive processes affect and potentially

distort decision making in intellective tasks. Specifically, in our exper-

iments (Section “Some recent human–AI group experiments”), we

found statistically significant evidence in support of the following

hypotheses:

H1 Individuals with higher expertise are accorded higher interper-

sonal influence from the group. [This effect is consistent with

expertise-based TMS and influence systems.]

H2 Individuals with higher confidence are accorded higher interper-

sonal influence from the group. [This effect is consistentwith over-

confidence bias.]

H3 Individuals with lower expertise have diminished ability to recog-

nize experts in the group. [This effect is consistent with a central

tendency bias and a social Dunning–Kruger effect.]

While the first effect describes a correct learning process, the

second and third effects lead the group to inaccurate performance

evaluations, inaccurate accorded influence, and, ultimately, to perfor-

mance deterioration.

Interestingly, in our experiments56 on human–AI groups (discussed

in detail in Section “Risky Decision Making in Human–AI Groups”),

we found evidence of a risk-aversion bias19,91 in the exploration-

versus-exploitation tradeoff: individuals were risk averse and did not

sufficiently explore the abilities of the AIs that they invoked. This may

be a form of pseudo-certainty effect,e namely, the tendency19 to make

risk-averse choices if the expected outcome is positive. Consistent

e Pseudo-certainty effect: The tendency to make risk-averse choices if the expected outcome is

positive, but make risk-seeking choices to avoid negative outcomes.
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with the literature, we also found evidence that exploration choices

can be understood via prospect theory (including framing biases) and

Bayesian approaches (we discuss these concepts in Section “Risky

Decision Making in Human–AI Groups”). Such experimental settings

are also valuable to study automation biasf92–94 and we plan to do so in

future studies.

We conclude this discussion about cognitive biases by reviewing

some open questions in this area. First, a broad important open

question is to identify the leading cognitive processes, heuristics, and

biases that underlie the formation of sociocognitive structures in the

human–AI group. In turn, these processes and structures will naturally

affect the accuracy of human–AI decision making. Second, it remains

unclear how to design software agents that help the group overcome

individual and social biases, such as overconfidence, central tendency,

and conformity pressure. In otherwords, it would be valuable to design

AI agents that can help the group accurately learn individual abilities

and achieve agreement despite the presence of cognitive biases.

INFLUENCE SYSTEMS IN HUMAN–AI GROUPS

The seminal work by References 95 and 96 in social psychology

catalogs the bases of social influence. Social influence is broadly under-

stood as a “change in the belief, attitude, or behavior of a person (the

target of influence) that results from the action of another person (an

influencing agent)”, and social power is defined as the potential for such

influence. French and Raven explain how social power is accorded on

the grounds of six possible dimensions: coercive power, reward power,

legitimate power, referent power, expertise power, and information

power. It cannot be generally assumed that interpersonal influence sys-

tems generate faulty or regrettable decisions, and it cannot generally

assumed that a group of disagreeing or like-minded experts will settle

on the correct or optimal decision. Conflicting positions on scientific

issues exist among physicists, economists, indeed, in every field of sci-

ence. Hence, while groups of experts are a desirable platform, themiti-

gationofmisleading conclusions remains anopenanddifficult problem.

In the context of group decision making and forecasting, various

models and intervention strategies have been proposed in the liter-

ature to enhance the performance of decision-making groups. The

ground-breaking work at RAND Corporation in the 1960s led to the

design of the first “engineered influence system”: the Delphi method.

Key references include the seminal work by Dalkey and Helmer97 the

elaboration,98 and an influential survey by Telesford et al.99 TheDelphi

method is widely studied and accepted as one of the most successful

and rigorous design for expert forecasting and rational decision

making. Paraphrasing the survey,99 the Delphi method is a controlled

iterative process to encourage a group of individuals (possibly experts

in the subject matter) to develop informed opinions about a topic and

converge to closer evaluations, possibly consensus. At each iteration:

f Automation bias: The tendency for humans to favor suggestions from automated decision-

making systems and to ignore contradictory information made without automation, even if it

is correct.

(i) individuals express an opinion and arguments in favor/against the

various alternatives,

(ii) a coordinator anonymizes the various responses, aggregates them

in some statistical sense, and shares themwithin the group, and

(iii) individualsmay adjust their opinion in response to the information

they receive.

The ultimate result is meant to represent the best possible forecast.

The Delphi iterative process has numerous critical features: (1) group

members are provided anonymity, (2) information and feedback is

shared in a controlled manner, and (3) appropriate statistical analysis

techniques are adopted. From Reference 99, these features are engi-

neered to “offset the shortcomings of conventional means of pooling

opinions obtained from a group interaction (i.e., influences of domi-

nant individuals, noise, and group pressure for conformity and other

spurious effects).” The Delphi process is an attempt to systematize

and engineer the opinion dynamics process inside an influence system

and to lend it greater objectivity. Numerous variations have been

proposed, for example, the wideband Delphi,100 the wisdom of select

crowds,101 and the resistance to social influencemethod.102

Extinguishing individual cognitive biases is a central concern in the

above studies. Approaches to improving the judgment and decision-

making abilities of individuals are reviewed in a recent empirical

study;103 these include debiasing training, incentive design, and nudg-

ing strategies. Special attention is given to debiasing training, in which

individuals are made aware of cognitive biases and their implications.

In the context of debiasing training, Reference 104 encourages the

consideration of information that is likely to be underweighted in intu-

itive judgment. For example, Reference 105 suggests training people

on statistical reasoning and normative rules of which they may be

unaware. Similarly, in the context of training to adopt decision-making

strategies, Reference 106 focuses on how to reduce stereotypes

(gender stereotypes, in particular). Along with debiasing training,

Reference 106 recommends a structured recall strategy in which (1)

explicit evaluation criteria are established, (2) specific evidence of

positive and negative behavior is recalled, (3) options are rated on

each criterion, and (4) only finally a summary evaluation is publicly

expressed and obtained by the group.

A general structural theory of social influence with deep connec-

tions to the broad area of social psychology, social networks, and

network science is described in Reference 13. Here is a synopsis of the

central mathematical model in this theory. Starting with the seminal

French–Harary–DeGroot107–109 weighted-averaging opinion update

mechanism, the Friedkin–Johnsen13,110 generalization describes the

evolution of the opinion xi(k) of individual i at discrete time k by

xi(k + 1) = (1 − wii)
n∑

j=1

wijxj(k) + wiixi(0),

where xi(0) denotes the initial opinion of individual i, xj(k) denotes

the opinion of all individuals j, and wij are the interpersonal influ-

ence weights that individual i accords to individual j and that satisfy

0 ≤ wij ≤ 1 and
∑n

j=1 wij = 1. To the best of our knowledge, this
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Friedkin–Johnsen formalization is currently the only model on which

a sustained line of human-subject experiments has confirmed the

model’s predictions of opinion changes. This line of experiments

includes our early foundational work,110,111 as well as a sequence

of experiments on reflective appraisal and social power in risky

issues,59 problem solving and intellective tasks,58 resource allocation

and bounded rationality,37 multidimensional attitudes and appraisal

spaces,60 and intellectivememory tasks.55,56 Indeed, thismodel is con-

sistent with the dynamics we observed in our experiments described

in Section “Some recent human–AI group experiments.” Overall, this

body of work provides a comprehensive influence systems theory,

grounded in social psychology.

Specifically, in Reference 55, we study interpersonal influence in

small groupsof individualswhocollectively executea sequenceof intel-

lective tasks. As discussed in Sections “TransactiveMemory Systems in

Human–AI Groups” and “Cognitive Biases in Human–AI Groups,” our

experiments provide empirical evidence in support of TMS and cogni-

tive biases theory aswell as on their impact on social influence systems.

Inspired by these theories and based upon the three empirically

validated hypotheses presented in Section “Cognitive Biases in

Human–AI Groups,” we propose (1) a cognitive dynamical model

that describes the process by which individuals adjust interpersonal

influences over time, and (2) a deep neural network model based on

a pretrained text embedding model for predicting the influence of

individuals. Using message contents, message times, and individual

correctness collected during tasks, we are able to accurately predict

individuals’ self-reported influence over time. Extensive experiments

verify the accuracy of the both models compared to baselines. While

the neural networks model is the most accurate, the dynamical model

is the most interpretable for influence prediction. In summary, these

results illustrate how ML models can be used to quantify influence

systems arising from TMS theory and cognitive biases theory; in

other words, these results instantiate the first “ML model” arrow in

Figure 2.

We conclude this discussion about influence systems by reviewing

some open questions in this area. The broad open question is how

to monitor the process that leads from expertise to interpersonal

influence and, ultimately, to social power. First, a key question relates

to understanding what cognitive processes and heuristics dominate

discussions about intellective issues: does the human–AI group’s

influence system mitigate or exacerbate the effect of inefficient

heuristics? Precisely as we discuss in the previous section about TMS,

we hypothesize that influence system formation in the presence of

AI agents can be monitored and is a predictor of high performance

in the human–AI group. But this hypothesis needs further validation.

Second, it is yet unclear if it is possible to design software agents that

help the formation of efficient and accurate influence systems. For

example, it would be valuable to design a Delphi-style AI moderator

that will suggest (or force, by a software redesign) that the group

follows a discussion procedure similar to the Delphi method. This

would be an important step, as we transition from analysis of human

and human–AI groups, to the design of coordination and supervision

strategies. After the introduction of a Delphi-style moderator, it would

be important to monitor the dynamics of the influence system and,

specifically, monitor phenomena, such as reflected appraisal, expertise

learning, exploration/exploitation of expert AI agents and decision

processes.

RISKY DECISION MAKING IN HUMAN–AI GROUPS

We first recapitulate existing work on risky decision making in human

groups and its relationship to influence systems (Figure 1). Starting

with the seminal works,112,113 a line of research has developed on

choice dilemmas: these are issues on which individuals decide on the

minimum probability of success they require to choose an option

with greater rewards and greater chance of failure over an option

with smaller rewards and smaller chance of failure. Individuals have

heterogeneous initial positions on the minimum chance of success

that they require to select the more risky option, and when a group

of individuals is considering such issue, a choice shift usually occurs

(the mean of a group’s settled position differs from the mean of its

members initial positions). The type of shift varies. Itmay bemovement

toward greater or smaller risk tolerance. Reference 114 shows that

such choice shifts depend on the influence system and the relative

influence centralities of the group’s members. It remains an open

question whether additional information, provided by an AI-agent

during deliberation, on the probability distributions of success for

the risky option (1) importantly affects the emergent relative influ-

ence centralities of a group’s members and (2) alters individuals’

prospect theory S-shaped risk tolerance traits along a sequence

of issues.

In a series of experiments, we modeled individuals’ risk/reward

profiles using prospect theory, the change in risky behaviors when

individuals arrive in a group setting, and explanations of the shift

using influence systems. We first asked each individual a series of

questions (such as whether they prefer gamble 1 vs. gamble 2) to

estimate their prospect theory parameters. Then, we engaged them in

a group environment and again asked them a series of questions: first

before a group discussion and second following a group discussion.

In individual settings, we found that prospect theory-based models

are more predictive than alternate models based on utility theory,20

or models that maximize gains or minimize losses. Let IND denote a

prospect theory-based model for individuals before they arrive in a

group environment. Let PRE denote a prospect theory-based model

when the human subjects assembled into groups but prior to a group

discussion. Finally, let POST denote a prospect theory-based model

when the human subjects assembled into groups and after a group

discussion. We found that individuals become less risk-averse and

become more sensitive to gain/loss increases in a group environment.

Interestingly, these shifts correlate with the initial magnitudes of the

parameters.

The prospect theory parameters of IND, PRE, and POST can also

be used to compare the similarity of individuals’ behaviors. For most
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groups, pairwise IND distances were higher than pairwise PRE dis-

tances that were themselves higher than pairwise POST distances.

This suggests that the behavior of individuals shifts toward consensus

in a group setting. We also find that the distance of an individual’s

behavior between INDandPOST correlateswith the average influence

that the group exerts on the individual, and that this shift occursmostly

during the initial rounds of group discussions.

As discussed in Section “Some recent human–AI group experi-

ments,” we designed another series of experiments to understand

the predictive power of ML in mixed human–AI groups. In these

experiments, groups were asked a sequence of intellective questions

(with a verifiable answer) from different domains. The human groups

were also assisted by AI agents with heterogeneous accuracy levels.

The groups attempted to answer each question without consulting an

agent; if they were unsure, they could consult one of the agents and

use the obtained answer to provide the final response. Thus, there

were two subsequent rounds of decision making: whether to consult

an AI agent and next how to incorporate the answer obtained into a

final response. In summary, these results illustrate how ML models

can be used to quantify risky decision-making strategies arising from

influence systems theory; in other words, these results instantiate the

second “MLmodel” arrow in Figure 2.

We proposed four predictive models for what the groups would do

based on ML and prospect theory. The first two models capture the

appraisal process in a group, while the last two capture the appraisal

process as well as prospect theory-based risk/reward tradeoff. The

first model, NB (Naive Bayes), captures the accuracy of a human/AI-

agent using a beta distribution that is updated at each round (after

observing whether it was correct or incorrect) using the Bayes rule.

A Naive Bayes assumption is used to integrate the responses of the

human/AI-agents. The second model, CENT (centrality), integrates

individual responses through an interpersonal influence system. The

probability of the group choosing an option is computed as the sum

of the eigenvector centrality values of each individual choosing that

option. A similar weighting process is used to integrate the group’s

evaluation of the AI-agents. The third model, PT-NB (prospect theory

coupledwithNaive Bayes), uses prospect theory to analyze the actions

of the group as a set of prospects. The probabilities of success and

reward of each prospect are computed as in the model NB. The group

chooses among these prospects based on prospect theory parameters

of the group (learned through an initial training sequence). The final

model, PT-CENT (prospect theory coupled with centrality), again

uses prospect theory to analyze the actions of the group as a set of

prospects. The probabilities of success and reward of each prospect

are computed as in the model CENT. A group chooses among these

prospects based on prospect theory.

We found that though appraisal-based models NB and CENT per-

formadequately in explaining a human–AI group’s decisionmaking, the

prospect theory- basedmodels PT-NB and PT-CENT are better, imply-

ing that modeling the inherent risk in decision making improves the

models. Overall, we observed that humans develop accurate interper-

sonal appraisals but have a difficult time appraising the AI agents. Fur-

thermore, we found that when a group decides to consult an AI agent,

it is ultimately over-reliant upon the AI agent. Inaccurate appraisals

and over-reliance upon the AI agents clearly lead to poor performance.

Human subjects in a human–AI group find it difficult to properly rec-

oncile an incorrect response from the AI agent with potentially correct

answers from other group members. A similar observation extends

to how a group performs in comparison to its constituent humans

and AI agents. The groups exceed individual performances when the

inputs come from humans or when the AI agents provide correct

responses.

The above findings open up interesting directions for future

research. How to incorporate resource limits (as in the number of

queries to agents and the time remaining) as a part of the group deci-

sion making? The problem now becomes similar to a Markov decision

process115 in which resources can be modeled as part of the current

state. The group now needs a policy that integrates the consumption

of resources as part of its value/action function. How a group reaches

a consensus on such a policy is of utmost interest. Questions to be

examined include: How far does a group look ahead?Howdoes a group

compute the expected reward in a future state? How do the influence

system and the prospect theory parameters affect the choice of

actions? It is likely that the modeling of an agent’s risk/reward tradeoff

through prospect theory parameters and the modeling of an agent’s

biases through the influence matrix provide the right representation

of an agent’s beliefs. It is also likely that maximizing the total reward

is the “desire” of every agent and as such, there is uniformity in the

group’s and the individuals’ actions. But these hypotheses need to be

validated.

The other general research direction is that of active participation

by AI agents in decision making. If the reward functions are known for

the group, then the AI agents can decide the optimal policy by comput-

ing the expected rewards at every future step and backing up to the

current state using dynamic programming. An AI agent can intervene

during group deliberations by suggesting such a policy. The adoption of

such a policy will depend on the influence structure among the group,

on how a group appraises itself, and the group’s risk/reward profile.

However, one key open question is how does the group establish a

common reward function for the entire group through composition

of the reward functions of the individual members. A mechanistic

explanation of this process through theory and empirical validation

will be extremely useful.

CONCLUSIONS AND FUTURE WORK

This review has highlighted some fundamental cognitive processes and

psychological/algorithmic constructs that provide a possible frame-

work to model, analyze, and design mixed human–AI groups. We have

borrowed from existing mechanistic models in social science theory

(that explain human groups) and AI models (that explain algorithmic

behavior). How and when to combine these dual models to explain

decision making in mixed human–AI groups remains a challenge.

Future research directions include (1) how to validate these models

longitudinally, over long periods of time, for dynamically evolving
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human–AI groups, and (2) how to design AI that facilitate group learn-

ing processes and the establishment of effective sharedmentalmodels.

All of the above proposed designs for group decision making entail

strong assumptions that specify the conditions under which they are

justified. In general, the empirical evaluation and validation of partic-

ular designs of group decision making require data on a population of

groups, their within-group networks, their members’ displayed initial

opinions on issues, their decisions, and the performance consequences

of their decisions, under various designed or natural conditions that

have constrained or guided each group’s process of reaching a con-

sensus decision. Anything less than such a massive enterprise will not

serve to advance the reliable evaluation and exploitation of ML and

AI components in group decision making. The mere availability of ML

and AI tells us nothing unless they are subject to an evaluation of their

contributions to group decision making. The usefulness of ML and

AI components in group decision making depends entirely on their

particular construction, and their construction is based on the human

groups that have designed theML and AI involved. An institutionalized

decision-making group may demand the construction of an AI with

particular properties.

Human–AI decision-making groups present a set of complex prob-

lems related to optimizing group performance. When the issue being

considered can be reduced to a matter of gathering information and

partitioning facts and fictions, human–AI groups are ideal. However,

group decision making becomes challenging when variables related to

social justice cannot be ignored.While technology advances, its proper

applications are subject to negotiation.
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