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ORIGINAL RESEARCH REPORT

CAU1 c o-Emergence of Specialized Endothelial Cells
from Embryonic Stem Cells

AU2 c Nicole Madfis,1 Zhiqiang Lin,2 Ashwath Kumar,2 Simone A. Douglas,3 Manu O. Platt,3

Yuhong Fan,2 and Kara E. McCloskey1,4

A well-formed and robust vasculature is critical to the health of most organ systems in the body. However, the
endothelial cells (ECs) forming the vasculature can exhibit a number of distinct functional subphenotypes like
arterial or venous ECs, as well as angiogenic tip and stalk ECs. In this study, we investigate the in vitro
differentiation of EC subphenotypes from embryonic stem cells (ESCs). Using our staged induction methods
and chemically defined mediums, highly angiogenic EC subpopulations, as well as less proliferative and less
migratory EC subpopulations, are derived. Furthermore, the EC subphenotypes exhibit distinct surface markers,
gene expression profiles, and positional affinities during sprouting. While both subpopulations contained greater
than 80% VE-cad+/CD31+ cells, the tip/stalk-like EC contained predominantly Flt4+/Dll4+/CXCR4+/Flt-1-

cells, while the phalanx-like EC was composed of higher numbers of Flt-1+ cells. These studies suggest that the
tip-specific EC can be derived in vitro from stem cells as a distinct and relatively stable EC subphenotype
without the benefit of its morphological positioning in the sprouting vessel.

Keywords: embryonic stem cells, endothelial cells, angiogenesis, tip cells, phalanx cells

Introduction

The field of vascular biologyAU4 c has firmly rejected the
antiquated belief that blood vessels are merely ‘‘plumb-

ing’’ for the distribution of blood. We now know that endo-
thelial cells (ECs) play a dynamic role in regulating immune
cell responses [1], leukocyte trafficking [2], vascular tone [3],
blood coagulation and clotting [4], vascular permeability [5],
tissue repair [6,7], and tumor growth [8]. In addition to the
range of EC functions, EC specialization has been observed
aligning with the specific needs of the tissue in which they
reside [9–12] potentially designated before blood vessel
maturation [13–15]. For example, arterial ECs are largely
quiescent ECs that exhibit antithrombotic activity and release
vasoactive molecules that control vessel relaxation. Con-
versely, postcapillary venular ECs are the primary site of
trafficking for white blood cells [16,17]. EC morphology of
the smallest arterioles is longer and narrower compared with
arterial ECs. The microvascular ECs are involved in initiation
of inflammatory signals following injury and infection, as
well as angiogenesis and vascular pruning [16]. These ECs
also exhibit distinct functions correlating with their ana-
tomical location [13] and respond differentially to a variety of

angiogenic stimuli [18,19]. The heterogeneity of EC genes
expressed between tissue specific capillary beds reflects the
importance of extracellular surface expression in function of
EC subphenotypes [12].

Morphologically distinct vascular EC subphenotypes are
also found within a sprouting blood vessel. Positioned at
the leading edge of a sprouting vessel, ‘‘tip’’ ECs have
been shown to upregulate delta-like ligand 4 (Dll4) [20,21],
CXCR4 [22], Flt-4 [20,23], Nrp1 [20,24], and Unc5B [20],
exhibit more organized stress fibers with numerous probing
filopodia, and readily migrate toward an angiogenic stimulus
[20]. However, tip ECs do not proliferate significantly
or form lumens [20,25,26]. The ‘‘stalk’’ ECs are found
trailing behind the tip ECs forming the stalk of the sprouting
vessel. Unlike tip cells, stalk cells exhibit greater cell pro-
liferation, lumen formation, increased extracellular matrix
(ECM) production, and shorter filopodia [21]. Moreover,
Notch signaling from the tip cells dampens the vascular
endothelial growth factor (VEGF)-induced expression of
Dll4 on stalk cells [20,21] allowing the tip cells to maintain
their position at the leading edge of the sprouting vessel. It is
thought that the downregulation of VEGFR2 (KDR/Flk-1)
and Dll4 in the stalk cells also helps maintain balanced
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numbers of tip cells for more efficient sprouting and net-
work formation [21].

There potentially exists a distinct nonsprouting, less
proliferative, and less migratory EC subphenotype, named a
‘‘phalanx’’ EC [20,27]. These cells are recognized by their
‘‘cobblestone’’ morphology and high levels of soluble and
membrane bound Flt-1 that mitigate VEGF signaling, as
well as potentially increased extracellular VE-cadherin ex-
pression [20,27]. Although phalanx-type ECs are capable of
responding to VEGF signaling, VEGF signaling in phalanx
ECs acts as an apoptosis rescue from serum-deprived con-
ditions, rather than as the migratory and proliferative re-
sponses seen in tip and stalk ECs [27]. The current dogma
views the specification of an EC as a tip, stalk, or phalanx
EC to be a stochastic process with ample plasticity and re-
versibility between these phenotypes during sprouting [25].

Using staged differentiation and chemically defined me-
dia to generate ECs from human and mouse ESCs [28–32],
we discovered the co-emergence of sprouting tip and stalk-
containing ECs and nonsprouting phalanx-containing ECs
within our two-dimensional derivations [33]. Specifically,
the phalanx ECs were purified from the tip/stalk-containing
cultures, and both cultures sequentially expanded for up to
9–10 passages using the identical cell culture medium for-
mulations. The expanded tip/stalk ECs stably exhibited in-
creased levels of cell migration, proliferation, and increased
vasculogenic- and angiogenic-like sprouting on Matrigel�
compared with the phalanx ECs [33]. The tip/stalk ECs also
exhibited extensive and complex actin networks and phos-
phorylation of HSP27—required to release the cap ends
from actin filaments and allow the generation of new po-
lymerization required for cell migration [34,35]. Con-
versely, the phalanx-like ECs contained greater numbers of
cells expressing Flt-1, Tie-1, and Tie-2 [33]. This was the
first report of stable distinct subphenotypes emerging to-
gether in vitro from stem cells. Subsequently, a second
group found that in vitro cultured sprouting ECs expressing
low levels of CD143 exhibit enhanced angiogenic pot-
ential in alleviating local ischemia [36]. In this study, we
further examined these distinct phenotypes for unique sur-
face markers, gene expression profiles, gel degradation/
remodeling, and positional affinities during sprouting. The
results show that the tip-specific EC is a distinct and rela-
tively stable EC subphenotype, even in the absence of its
morphological association within the sprouting vessel.

Methods

Generation of tip/stalk-like and phalanx-like EC

The formulations and stage-specific derivation methodol-
ogy (F1 c Fig. 1) using chemically defined mediums were con-
ducted as previously reported [28,29,33]. Briefly, R1 murine
embryonic stem cells (mESCs) were maintained on 0.5%
gelatin coated plates in serum-free medium containing
Knockout Dulbecco’s modified Eagle’s medium (KO-DMEM;
Invitrogen), 15% Knockout Serum Replacer (KSR; Invitro-
gen), 1· Penicillin-Streptomycin (Invitrogen), 1· nonessential
amino acids (Invitrogen), 2 mM l-glutamine (Invitrogen),
0.1 mM 2-mercaptoethanol (Calbiochem), 2,000 U/mL of
leukemia inhibitory factor (LIF-ESGRO; Chemicon), and
10 ng/mL of bone morphogenetic protein-4 (BMP-4; R&D

Systems). The initial induction that was induced using a me-
dium optimized by our laboratory was named ‘‘NS1D2b.’’
This consists of alpha-MEM (Cellgro), 20% KSR (Invitrogen),
1 · penicillin-streptomycin (Invitrogen), 1 · nonessential ami-
no acids (NEAA; Invitrogen), 2 mM l-glutamine (Invitrogen),
0.05 mM 2-mercaptoethanol (Calbiochem), 30 ng/mL of
VEGF (R&D Systems), and 5 ng/mL BMP-4 (R&D Systems).
After 2 days, the Flk-1+ cells were stained with APC-conjugated
anti-mouse CD309 (1:200, BioLegend) and viability fixative
efluor760 (eBioscience) and enriched using Fluorescence
Activated Cell Sorting (FACS, Aria II). The 10,000 Flk-1+

cells/cm2 were then seeded onto 50mg/mL fibronectin-coated
dishes in ‘‘LDSk’’ medium containing 70% alpha-MEM
(Mediatech) and 30% DMEM (Invitrogen) plus 100 ng/mL
VEGF (R&D Systems), 1% Nutridoma CS (Roche), 50 ng/mL
bFGF (Sigma), 2 mM l-glutamine (Invitrogen), 1 · penicillin-
streptomycin (Invitrogen), 1 · nonessential amino acids (In-
vitrogen), and 0.1 mM 2-mercaptoethanol (Calbiochem) [28].
After approximately 10 days, the cobblestone-shaped Flk-1+

outgrowths were purified by manual selection (Fig. 1). These
ECs have been shown to be consistent with phalanx EC sub-
phenotype [33]. Both the selected phalanx-like and remain-
ing nonselected tip/stalk-containing EC were subsequently
maintained in a medium composed of 50% LDSk and 50%
serum-free EGM-2� supplemented with the EGM-2 Bullet-
Kit� containing hydrocortisone, bFGF, VEGF, IGF, ascorbic
acid, hEGF, heparin, and GA-1000 (Lonza), mixture called
‘‘LDSF.’’

Control EC

The isolation of primary mouse aortic endothelial cells
(MAECs) from adult mice was approved by the Institutional
Animal Care and Use Committee (IACUC) at the University
of California, Merced. Briefly, adult 129/Sv+c/+p mice
( Jackson Laboratories) were anesthetized using isoflurane
before cervical dislocation. The abdominal aorta was ex-
cised, stripped of the tunica adventitia, cut into small pieces,
and sandwiched on Matrigel drops with 0.1–0.2 mL of
EBM-2 media (with EGM-2 BulletKit Supplements; Lonza)
with 50 ng/mL VEGF. MAEC was allowed to migrate out of
the aortas for 7 days before aortas were removed to prevent
smooth muscle cell migration. MAEC outgrowths were
purified using a combination of manual selection from the
aorta outgrowths and then purified by FACS for CD31/
CD144 positive cells. A commercially available immortal-
ized murine cardiac endothelial cell ( b AU5MCEC; CELLutions
Biosystems) was also used, cultured in the same medium as
described above.

Staining for FACS analysis

EC cultures were collected by incubating the cells with
Cell Dissociation Buffer (Life Technologies) for 10 min and
resuspended in PBS with 1% bovine serum albumin (BSA),
mouse Fc Block (1:1,000; BD Biosciences), and fixable
viability dye e780 (BD Biosciences). Live cells were stained
for the following surface markers with corresponding IgG
controls: anti-mouse CD31 PECy7 (1:200; BioLegend),
anti-mouse Dll4 APC (1:400; BioLegend), anti-mouse
Notch1 PE (1:200; eBioscience), anti-mouse VE-cad BV421
(1:400; BioLegend), anti-mouse Flt-4 Alexa Fluor� 488
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(1:200; R&D), and anti-mouse Flt-1 Alexa Fluor 488 (1:100;
RND systems). Titration optimizations were performed on all
antibodies before analysis using fluorescence activated cell
scanning (FACS; BD LSR II). Live cell populations were
positively selected according to nonfluorescence and FSC/
SSC dot plots. Data analysis and gating statistics were ob-
tained using FlowJo software.

Staining for fluorescence imaging

Samples of purified cultures at passage 9 were fixed using
4% paraformaldehyde (PFA) for 15 min and permeabilized
with 1% Triton (Sigma) for 5 min, then blocked in 5% don-
key serum. Samples were incubated overnight in the fol-
lowing antibodies and compared against corresponding IgG
controls: goat DDR2 (1:200; Santa Cruz), goat calponin-1
(1:200; Santa Cruz), and rabbit alpha-smooth muscle actin
FITC (1:400; Santa Cruz). The secondary antibodies for anti-
goat FITC (1:200; Santa Cruz) and anti-rabbit PE (1:200;
Santa Cruz) were incubated for 1 h and counterstained with
DAPI. Images were obtained using a Nikon Zeiss Microscope.

Fibrin bead sprouting assay

The tip/stalk-like EC was stained with 4 mm of Cell-
Tracker� Green CMFDA Dye (Molecular Probes), while
the phalanx-like EC was stained with 4 mm of CellTracker
Red CMFDA Dye (Molecular Probes) for 45 min. EC cul-
tures were filtered through a 70mm nylon mesh filter and
incubated with Cytodex� three microcarrier beads (200 cells
per bead; Sigma) precoated with 50 mg/mL fibronectin. To
facilitate attachment, the cell was placed on a nutator and
incubated with microcarrier beads for 3 h. After confirming

cell attachment, the cell-coated beads were resuspended in
fresh media and incubated overnight. Fibrin gels were
formed by resuspending cell-coated beads in 0.15 U/mL
aprotinin and 2 mg/mL bovine plasma fibrinogen (Sigma).
Bovine thrombin solution (0.625 U/mL; Sigma) was placed
in the bottom of each well of a 24-well plate and the fi-
brinogen/bead-cell mixture was gently mixed into each well
for 5 min, then allowed to polymerize at 37�C. After 15 min,
1 mL of ESC-EC maintenance media (LDSF) containing
*20,000 normal lung human fibroblasts (Lonza) was added
to the top of each gel. The media was replaced every other
day, and images were taken (Nikon Zeiss Microscope) every
24 h for up to 7 days (or until the fibrin gel degraded).
Sprouting was quantified (sprout number and average length)
on 100–150 beads per experimental condition.

RNA-Seq

Total RNAs were isolated with TRIzol reagent (Life
Technologies) and RNAeasy Kit (Qiagen) according to the
manufacturer’s instructions. Ribo-Zero Gold rRNA Removal
Kit (Illumina) was used to remove ribosomal RNA before
preparation of sequencing libraries using the ScriptSeq RNA-
Seq Library Prep Kit (Illumina). Sequencing was performed
with Illumina HiSeq 4000 systems, and raw sequence reads
were examined for quality using FastQC [37]. The reads were
subsequently trimmed to remove adaptors and filtered for bad
quality bases using Trim Galore [38,39]. Clean sequence
reads were aligned to mouse genome, mm10, using STAR
aligner [40]. Gene counts were called using HTSeq (5), and
differentially expressed genes were identified using DESeq2
R package [41]. Gene ontology (GO) analysis was carried out
using DAVID [42,43] to identify enriched biological func-
tional groups and processes.

FIG. 1. Derivation of tip- and stalk-like EC and phalanx EC. Mouse ESCs were first induced into Flk-1+ VPCs on
fibronectin matrix in medium supplemented with BMP-4 and VEGF. The purified Flk-1+ cells were then replated, again on
fibronectin matrix in medium supplemented with bFGF and VEGF for EC specification. The Flk-1+ outgrowths from the
Flk-1+ cells contained tip-, stalk-, and phalanx-like EC. These populations are then purified further with the cobblestone-
shaped EC replated in a separate dish. These two EC subcultures maintain distinct subphenotypic expansion for *10
passages. EC, endothelial cell; ESC, embryonic stem cell; VPC, vascular progenitor cell; VEGF, vascular endothelial
growth factor.
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Cathepsin andAU6 c MMP zymography

Total protein concentration was determined from the tip/
stalk- and phalanx-containing EC lysates. Equal amounts
were loaded for cathepsin or MMP zymography, as previ-
ously described [44,45]. Zymogram gels were imaged with
an ImageQuant LAS 4000 (GE Healthcare), and densitom-
etry was performed with ImageJ (NIH) to quantify cleared
white bands, indicative of proteolytic activity.

Statistical analysis

Data are representative of at least three independent as-
says (N = 3). Student’s unpaired t-test was used to establish
significance.

Results

Emerging tip/stalk and phalanx EC

To further delineate the subphenotype of co-emerging
sprouting and nonsprouting EC subpopulations, we have
examined these subpopulations (F2 c Fig 2A), as well as two
mouse EC control cell populations (Fig. 2B). In both EC
subpopulations, EC markers Flk-1 [33], VE-cad, and CD31
were all expressed at high levels, with slightly greater ex-
pression of VE-cad and CD31 in the phalanx-like ECs
compared to tip/stalk EC. Tip/stalk-containing EC subpop-
ulations also consisted of higher numbers of tip-specific
Dll4+ [21] and Flt-4+ [20,23] ECs and lower numbers of
phalanx-specific Flt-1+ cells [25,27] compared with
phalanx-like EC. As one would expect, the EC marker ex-
pression profile of the emerging phalanx EC corresponded
more closely with the MAEC and MCEC control cells
compared with the tip/stalk-containing ECs (Fig. 2B). Ex-
tracellular expression of Nrp1 [20,24] and Jagged1 [46] was
also analyzed, but not detected on any of the emerging EC
subphenotypes or EC control cells (not shown).

Distinct EC subpopulations

To highlight the distinct subpopulations of EC, the tip/
stalk and phalanx EC were co-stained for VE-cad, PECAM-
1, Flt-1, and Dll4 (Fig. 2C). Both EC subpopulations con-
tained 80%–90% PECAM-1+/VE-cad+ ECs, but a subset of
the PECAM-1+ (also called CD31+) EC tip/stalk-containing
cultures did not express VEGF decoy receptor, Flt-1, con-
taining *20% Flt-1- cells, while the phalanx-containing
cultures did not contain significant numbers of Flt-1- cells.
These data corroborate that the Flt-1 marker is not expressed
in the tip ECs [47].

Percentage of tip EC is a function of confluence

Because the percentage of Flt-1- ECs within tip/stalk-
containing cultures varied significantly from derivation to
derivation, it was hypothesized that the EC may be con-
verting from Flt-1- tip-specific ECs to Flt-1+ stalk-specific
ECs as physical space for tip cell migration was mitigated
with increasing confluence. Therefore, we compared tip/
stalk EC cultured at lower confluence (50% dish coverage)
with the same cells cultured at higher confluence (80% dish
coverage). The tip/stalk ECs contained approximately 20%
Flt-1- ECs when cultured at low confluence, but this number

was reduced <5% in confluent cultures (Fig. 2D). These data
suggest that either tip EC is not proliferating as robustly as
the stalk EC or that the tip cells are converting to stalk cells
as a result of greater numbers of cell-to-cell contacts in the
confluent dishes.

EC subpopulations maintain phenotypic stability

The phenotypic stability of the emergent EC subpopula-
tions was analyzed using a fibrin bead sprouting assay [48].
The tip/stalk-like EC (green) and phalanx-like EC (red)
were coated onto dextran microcarrier beads independently
and as a 1:1 mixture ( b F3Fig. 3). The tip/stalk-containing EC
generated 2 · more sprouts per bead compared with the
phalanx EC (Fig. 3A, B). The average sprout lengths for the
tip/stalk EC were also 2 · longer compared with phalanx EC
(Fig. 3C). When the tip/stalk (green) and phalanx (red) EC
were mixed together, sprouting occurred more quickly
(Fig. 3B) with total sprout numbers consistent with the tip/
stalk EC. Moreover, the tip/stalk EC and phalanx EC self-
organized within the angiogenic sprouts according to their
preestablished subphenotypes—with the tip/stalk EC seen at
the tips and stalks of the migrating sprouts and the phalanx
EC located at the base of the sprout (Fig. 3A). Quantifying
the contributing cells within these sprouts confirmed that
75% of the cells came from the tip/stalk EC subpopulation
and only 25% from the phalanx EC (Fig. 3D).

Distinct gene expression patterns of
EC subpopulations

To identify gene expression signatures associated with
EC subpopulations, we performed RNA-Seq of the purified
tip/stalk ECs and phalanx ECs, respectively. These two EC
subpopulations display distinct expression profiles, and a
total of 1,002 genes exhibit more than twofold expression
changes ( b F4Fig. 4A). Compared to the tip/stalk-containing EC,
670 genes were upregulated and 332 genes were down-
regulated in phalanx-containing EC (Fig. 4B). Gene ontol-
ogy analysis suggested that different categories of gene
signatures are associated with EC subpopulations. Com-
pared with gene expression profiles in tip/stalk cells, the
genes had higher expression in the phalanx-containing EC
included in those known to be associated with mature EC
function like wound healing, blood vessel morphogenesis,
cell-to-cell adhesions, response to hypoxia, and regulation
of cell proliferation. Other genes upregulated in phalanx EC
include coagulation, thrombospondin, and lymphocyte
trafficking selectin. The genes downregulated in the phalanx
EC compared with the tip/stalk-containing EC encode reg-
ulation of proliferation, chromatin remodeling complexes,
and histone proteins, suggesting that these cells are enriched
in key biological processes regulating chromatin and cell
proliferation.

Active matrix degrading proteases

To determine differences between the EC subphenotypes
in active amounts of proteolytic enzymes capable of de-
grading ECM proteins and promoting angiogenesis, zymo-
graphy was used on cell lysates from each of the cell
populations. There were greater amounts of active MMP2 in
the sprouting tip/stalk-containing EC compared with phalanx
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b AU10

FIG. 2. Tip/stalk EC and phalanx EC differentially express specialized EC markers. (A) Representative single color
histograms of tip/stalk-containing and phalanx-containing EC stained with a range of EC markers all plotted against isotype
controls. (B) The mean percentages and standard deviations of tip/stalk-containing (N = 4) and phalanx-containing EC (N = 4),
as well as mouse aortic endothelial cells (MAECs; N = 3) to mouse cardiac endothelial cells (MCECs; N = 3), control EC.
Student’s unpaired t-tests were used to establish significance between tip/stalk EC and phalanx EC, **P < 0.001. (C) Re-
presentative scatter plots of double stained tip/stalk-containing and phalanx-containing EC stained with VE-cad+/CD31+ and
CD31+/Flt-1+ subsets. Note that mature EC markers VE-cad and CD31 indicate single EC population, but the Flt-1 marker
indicates two distinct subpopulations in the tip- and stalk-containing EC. (D) Representative scatter plots of double stained tip/
stalk-containing EC stained with CD31+/Flt-1+ and Notch1+/Flt-1+ subsets of tip/stalk EC cultured at low and high confluence
show that the Flt-1- ECs are more prominent in cultures at low confluence. MAEC, mouse aortic endothelial cell.
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EC that contained greater levels of pro-MMP2, the zymogen
form that must be cleaved to be active (F5 c Fig. 5A, B). Cathe-
psins are another class of proteases implicated in angiogenic
pathways, and we profiled amounts of active cathepsins in the
EC subphenotypes. Sprouting EC showed increased amounts
of active cathepsins; specifically, greater cathepsin L activity
was found in the sprouting tip/stalk-containing EC as indi-
cated in the zymograms developed at pH 4, which is preferred
for cathepsin L [45] (Fig. 5C, D). This was corroborated in the
zymograms incubated at pH 6 by the 20 kDa band of active
cathepsin L being significantly higher in the tip/stalk-
containing EC, while the 15 and 22 kDa fragments were found
in the phalanx EC (Fig. 5E, F). Taken together, ECM de-
grading enzymes appear to be involved in the sprouting be-
haviors of the tip/stalk EC, which may be associated with
angiogenic pathways.

Discussion

Our results demonstrate the emergence of distinct
sprouting and nonsprouting endothelial subphenotypes from
Flk-1/KDR+ cells during in vitro EC-specific differentia-
tion. Moreover, once sorted and cultured separately, these
cells are phenotypically stable [33]. In addition to sprouting
affinity, we identified that key distinctions between the
sprouting cells and nonsprouting EC included expression of
EC markers, gene expressions, and amounts of active ca-
thepsins. Sprouting EC contained more cells expressing tip-
specific CXCR4+, Dll4+, and Flt-4+ markers and reduced
numbers of Flt-1+ cells. Co-staining for CD31+/Flt-1+ and
Notch-1+/Flt-1+ verifies that two subpopulations of EC are
present within the tip/stalk-containing EC, but not in the
phalanx EC.

FIG. 3. Sprouting dynamics of tip/stalk- versus phalanx-containing EC. (A) Fluorescent images of sprouting tip/stalk EC
(green) and phalanx EC (red) seeded separately and together on fibronectin-coated beads and embedded in fibrin gels,
scale = 200mm. (B) The average number of sprouts and (C) average sprout lengths were quantified for over 5 days. (D) The
percentage of green and red cells in the sprouts of the mixed cells was also quantified on day 3. For each experimental
condition, data were collected from 100 sprouting beads in three distinct assays (N = 3). Student’s unpaired t-test was used to
establish significance, *P < 0.05 and **P < 0.001.

4C c
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FIG. 4. Gene expression of
phalanx-containing EC com-
pared with tip/stalk-containing
EC. (A) Hierarchical clustering
analysis of genes upregulated
(red) in phalanx EC compared
with tip/stalk-containing EC,
as well as genes downregu-
lated (green) in phalanx EC
compared with tip/stalk-con-
taining EC. Genes with ex-
pression differences more than
twofold were selected for
analysis (P < 0.05). (B) GO
Analysis of the differentially
expressed genes. x-axis: -lg(P
value). GO, gene ontology. b 4C

FIG. 5. Zymography Data. (A, B) Pro-MMP2 is greater in phalanx EC, while MMP2 is greater in tip/stalk-containing EC.
(C, D) Cathepsin L expression at ph 4. (E, F) ph 6. *Indicates statistical significance at P < 0.01.
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The stability of the tip/stalk-containing EC and phalanx
EC subpopulations was also examined using a competitive
sprouting assay. The tip/stalk-containing cells exhibited
greater radial invasion compared with the phalanx EC,
even if premixed and competing for morphological posi-
tion. Most significantly, these findings provide convincing
data challenging the previous thinking that sprouting
ECs are homogeneous cells simply competing to maintain
their morphological position within the sprouting vessel
[49,50].

The appearance of sprouting tip EC in our vascular stem
cell derivation cultures is relatively unique, only reported by
one other group [36]. This observation is likely due to the
following key elements: (a) the use of a staged derivation
approach that purifies early Flk-1/KDR vascular and car-
diovascular lineage-committed cells [28], (b) replacing fetal
bovine serum (FBS), which is known to enhance the pro-
liferation of contaminating smooth muscle cells [51], with a
fully characterized serum-replacement (Nutridoma�-SP;
Sigma-Aldrich), and (c) the incorporation of high levels of
VEGF treatment known to strongly signal tip-specific EC
within a sprouting blood vessel [26,52,53]. However, it is
important to also note that the high levels of VEGF in the
cell culture medium of the purified phalanx EC do not in-
duce the phalanx-specific EC to revert to tip-specific ECs,
providing more evidence that the tip cells are derived from
vascular precursors and less likely derived from mature ECs.
Note, while these studies suggest that the tip-specific EC is a
distinct and relatively stable EC subphenotype from the
phalanx EC, it remains unclear whether the phalanx EC is a
distinct subphenotype, or if the phalanx EC is the same EC
as a stalk EC in the absence of tip EC.

Thinking more deeply at what might be distinct in the
tip/stalk-containing EC, we looked at the protease activity in
the sprouting and nonsprouting cell populations and found—
consistent with the invasive and migratory EC subphenotype
of the tip/stalk-containing cells—increased matrix metallo-
protease MMP2 activity and cathepsin L fragments in the
sprouting EC subpopulations. Although increased cathepsin
L is associated with cell invasion and neovascularization
[54,55], it has been shown to be upregulated in endothelial
progenitor cells compared with mature ECs [54,55]. How-
ever, its increased activity is not necessarily always associ-
ated with angiogenesis. In fact, Dennemarker et al., suggest a
protective effect by mouse cathepsin L (AU7 c CTSL) [56] whose
substrates also include angiostatic peptides such as en-
dostatin. At a slightly acidic pH, mouse Cathepsin L (catL)
was higher in phalanx EC suggesting that catL is multi-
functional and its context within specialized EC populations.
The angiogenic shift that controls CTSL activity between EC
subphenotypes is not clear. In humans, CTSL expression has
been associated with an increase in angiogenic EC behaviors
and increased expression in cell cycle genes that is consistent
with highly increased proliferation necessary for vascular
sprout elongation [57], but the mechanism has not yet been
explored. It has been suggested that the invasive behaviors of
the sprouting EC could be positively regulated through
multiple pathways. ADAM17 leads to activation of MMP2
during angiogenesis [58], while overexpression of ADAM17
has been shown to reduce the expression of antiangiogenic
molecules [59] and contribute to an invasive EC sub-
phenotype [60].

Overall, this work shows that the sprouting and non-
sprouting populations are differentially regulated as vascular
endothelial subtypes. The nonsprouting cultures have in-
creased expression of mature endothelial associated genes
despite high CD31+/VE-cad+ populations in both cultures. The
sprouting cultures have increased expression of chromatin
remodeling complexes and associated genes, suggesting an
important role of epigenetic control in EC subphenotype
specification.

Conclusions

Currently, in vitro models of vascular biology almost
exclusively use human umbilical vein endothelial cells.
However, the use of human tip, stalk, or phalanx EC sub-
phenotypes would more accurately reflect the EC biology
being examined. Pro-angiogenic tip/stalk ECs would be
most appropriate for studying angiogenesis and perhaps in
microvascularization of tissue engineering products while
the less proliferative and less migratory phalanx EC would
be best for studies on atherosclerosis and perhaps better for
lining small diameter vascular grafts [61,62]. The ability to
derive and maintain distinct EC subphenotypes in vitro from
mouse ESC, and eventually human ESC and iPS cells, is a
significant advancement in the specification of differential
EC fates and in developing appropriate in vitro models for
studying angiogenesis, inflammation, vascular homeostasis,
and disease.
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