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ABSTRACT OF THE DISSERTATION

Fast Solvers for Numerical Schemes Based On Finite Element Exterior Calculus
By
Lin Zhong
Doctor of Philosophy in Mathematics
University of California, Irvine, 2015

Long Chen, Chair

Finite element exterior calculus (FEEC) is a framework to design and understand finite element
discretizations for a wide variety of systems of partial differential equations. The applications are
already made to the Hodge Laplacian, Maxwell’s equations, the equations of elasticity, elliptic
eigenvalue problems [2]][3][4][S][6] and etc.. In this thesis, we propose fast solvers for several
numerical schemes based on the discretization of this approach and present theoretical analysis.
Specifically, in the first part, we propose efficient block diagonal and block triangular precondi-
tioners for solving the discretized linear system of the vector Laplacian by mixed finite element
methods. A variable V-cycle multigrid method with the standard point-wise Gauss-Seidel smoother
is proved to be a good preconditioner for the Schur complement. The major benefit of our approach
is that the point-wise Gauss-Seidel smoother is more algebraic and can be easily implemented as a
‘black-box’ smoother. The multigrid solver for the Schur complement will be further used to build
preconditioners for the original saddle point systems. In the second part, we propose a discretiza-
tion method for the Darcy-Stokes equations under the framework of FEEC. The discretization is
shown to be uniform with respect to the perturbation parameter. A preconditioner for the discrete
system is also proposed and shown to be efficient. In the last part, we focus on the stochastic
Stokes equations. The stochastic saddle-point linear systems are obtained by using finite element
discretization under the framework of FEEC in physical space and generalized polynomial chaos

expansion in random space. We prove the existence and uniqueness of the solutions to the contin-



uous problem and its corresponding stochastic Galerkin discretization. Optimal error estimates are
also derived. We construct block-diagonal/triangular preconditioners for use with the generalized
minimum residual method and the bi-conjugate gradient stabilized method. An optimal multigrid
solver is applied to efficiently solve the diagonal blocks that correspond to deterministic discrete
Stokes systems. To demonstrate the efficiency and robustness of the discretization methods and

proposed preconditioners, various numerical examples also are provided.
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Introduction

Partial differential equations (PDEs), which can be used to describe a wide variety of phenomena
such as fluid flow, electrostatics, elasticity or quantum mechanics, are applied in countless ways
to solve real world problems. While most PDEs cannot be explicitly solved, numerical algorithms
play as an essential tool to PDE models. The finite element method (FEM), which began over
half century ago, is proven to be a most important technology in numerically solving PDEs. Finite
element exterior calculus (FEEC), which is developed by Arnold, Falk, Winther in 2006 [2], is a
framework to design and understand finite element discretizations for a wide variety of systems of

PDEs.

This dissertation is on proposing fast solvers for the discrete numerical schemes based on FEEC,
and theoretically analyzing the efficiency and robustness of the discretization methods and pro-
posed solvers. Specifically, we study in deepth the numerical schemes for three different PDEs,
i.e., the vector Laplacian equations, the Darcy-Stokes equations, the Stokes equations with random

viscosity.



0.1 Multigrid Preconditioners for Mixed Finite Element Meth-

ods of Vector Laplacian

Discretization of the vector Laplacian in spaces H(curl) and H(div) by mixed finite element
methods is well-studied in [2]]. The discretized linear algebraic system is ill-conditioned and in the
saddle point form which leads to the slow convergence of classical iterative methods as the size of
the system becomes large. In [2], a block diagonal preconditioner has been developed and shown
to be an effective preconditioner. The purpose of this paper is to present alternative and effective

block diagonal and triangular preconditioner for solving these saddle point systems.

Due to the similarity of the problems arising from spaces H y(curl) and Hy(div), we use the mixed
formulation of vector Laplacian in Hy(curl) as an example to illustrate our approach. Choosing
appropriate finite element spaces S, C Hj (vertex element) and U, C H(curl) (edge element),

the mixed formulation is: Find o, € S}, u;, € U}, such that
—(on, ) + (up, grad7,) = 0 for all 7, € Sy,

(grad oy, vp,) + (curl uy, curlvy) = (f,vy,)  forall v, € Uy,

The corresponding matrix formulation is

—M, B o 0
= . (0.1.1)
BT CTMfC Up f

Here M, and M are mass matrices of the vertex element and the face element, respectively, BT

corresponds to the grad operator, and C' corresponds to the curl operator.

Based on the stability of (0.1.1) in H} x H(curl) norm, in [2], a block diagonal preconditioner

in the form

(I + BM-1BT)™! 0
9, (I +CTM,;C)!



is proposed and the preconditioned Krylov space method is shown to converge with optimal com-
plexity. To compute the inverse operators in the diagonal, multigrid methods based on additive or
multiplicative overlapping Schwarz smoothers (each smoothing need to invert a small system of
degree of freedoms surrounding a vertex) [3l], multigrid methods based on Hiptimair smoothers
[20L 21]], or auxiliary space preconditioner [23]] can be used. In all these methods, to achieve a
mesh independent condition number, a special smoother taking care of the large kernel of the curl

or div differential operators is needed.

In contrast, we shall use multigrid methods with standard point-wise Gauss-Seidel (G-S) smoother

to the Schur complement of

A=B"M;'B+C"M;C 0.1.2)
which is a matrix representation of the identity of the vector Laplacian

—Awu = — grad div u + curl curl u.

In (0.1.2)), the inverse of the mass matrix, i.e., M 1'is dense. To be practical, the exact Schur

complement can be replaced by an approximation
A=B"M'B+C"M;C,
with M, an easy-to-invert matrix, e.g., diagonal or mass lumping of M,,.

A variable V-cycle multigrid method with the standard point-wise Gauss-Seidel smoother is proved
to be a good preconditioner for the Schur complement A or its approximation A. The major benefit
of our approach is that the point-wise Gauss-Seidel smoother is more algebraic and can be easily
implemented as a ‘black-box” smoother. The block smoothers proposed in [3] for the H (curl) and
H (div) problems, however, requires more geometric information and solving local problems in

small patches.

Although the finite element spaces are nested and A (or A) is symmetric positive definite, due to



the inverse of the mass matrix, the bilinear forms in the coarse grid is non-inherited from the fine
one. To overcome this difficulty, we shall follow the multigrid framework developed by Bramble,
Pasciak, and Xu [8]]. In this framework, we only need to verify two conditions: (1) Regularity
and approximation assumption; (2) Smoothing property. Since A is SPD, the smoothing property
of the Gauss-Seidel smoother is well known, see e.g. [9]. To prove the approximation property,
we make use of error estimates of mixed methods established in [3] and thus have to assume the
full regularity of elliptic equations. Numerically our method works well for the case when the
full regularity does not hold. With the approximation and smoothing properties, we show that one
V-cycle is an effective preconditioner. As noticed in [9], W-cycle or two V-cycles may not be a
valid preconditioner as the corresponding operator may not be positive definite. In other words,
the proposed multigrid method for the Schur complement cannot be used as an iterative method

but one V-cycle can be used as an effective preconditioner.

The multigrid preconditioner for A will be used to build preconditioners for (0.1.1). We prove that

the preconditioned system with the block diagonal preconditioner

M7t O

- (0.1.3)
0O At

has a uniformly bounded conditional number. Following the framework of [24], we verify this by
establishing a new stability result of the saddle system (0.1.1)) in the || - || X || - || 4 norm. The action
M, can be further approximated by just one symmetric Gauss-Seidel iteration or by M; L and

A~ by one V-cycle.



0.2 Robust Error Estimate and Uniform Preconditioners of TMAC

Discretization of Darcy-Stokes Equations

[66]We consider the following singular perturbation problem

(I —EA)u+gradp = f in Q,
—divu= 0 in , 0.2.1)
u= 0 on 09,

where € € (0, 1] is a parameter and A is the Laplacian operator applied to vector functions. The
system (0.2.1)) is a steady state generalized Stokes equation when the perturbation parameter is
large, and it degenerates to the mixed formulation of the Darcy equation when the parameter goes
to zero. It can also be derived from time discretization of the transient Stokes equations, where the

parameter corresponds to the square roof of the time step.

We shall consider numerical methods which are robust to the parameter e. It is numerically verified
that most of the proposed finite element methods for Stokes problem or the Darcy problem are not
well behaved uniformly in the perturbation parameter [[/8]]. Design a finite element method robust
to both Darcy and Stokes equations is an active research topic and successful examples can be

found in |78 |84, [76].

Another related topic is a fast solver robust to the paraemeter €. For the generalized Stokes equa-
tions discretized from time discretization of transient Stokes equations, a robust multigrid method
using distributive or Uzawa smoothers has been developed and analyzed in [83]. Block-diagonal

preconditioners with uniformly bounded conditioners are considered in [[79, 82].

We shall apply the triangular MAC (TMAC) developed in [66] for Stokes equations to Darcy-
Stokes equations. We show TMAC has both merits: uniformly convergent rates and a uniform

preconditioner can be easily construct.

The idea of TMAC scheme is to use H(div) elements for the velocity and discontinuous polynomial



for pressure. It retains all the desirable properties of the MAC scheme: exact divergence-free,
solver-friendly, and local conservation of physical quantities. For Darcy-Stokes system, the most
relevant work is [76]]. The difference of our approach and that in [76] is the discretization of
vector Laplacian operator. In [[76], DG formulation is used while in [66], a weak rot;, differential
operator is introduced. It can be shown that in the simplest form (uniform rectangular grids), both

are equivalent to the classical MAC scheme.

The lowest order element is the RT)-P element. Use the superconvergence results of the Lagrange

interpolation of the linear element in [/], we can obtain a uniform error estimate
[un — wrlla + [lpn — prll S 207 Tog AV (J|ul|2.ee + || Tot lls) . (0.2.2)

where u; is the canonical interpolation of w on to the space RTy, p; is the L2-projection of p to

the piecewise constant space, uy, and py, are the RTo-Py approximation of (0.2.1), and || - || ac is the
energy norm defined by the SPD operator I — ¢2A. The convergence rate depends crucially on the
symmetry of the mesh through the parameter o (see Section 3 for a detailed definition). Roughly
speaking to obtain a first order scheme, two triangles sharing an edge should form a parallelogram.

For a class of grids violating this symmetry requirement, non-convergence is observed for Stokes

equations [60].

To relax the constraint of the mesh condition, we enrich the velocity space to BDM; plus a bubble
function and obtain another velocity-pressure discretization BDMY-P,,. The bubble function is
introduced such that a mass lumping can be applied to quadratic Lagrange elements. Now the

convergence rate is independent of the mesh symmetry and for a general quasi-uniform mesh:
lwn = willa+ llpn = pill S b (lullz + [[rot wl2) .

For general quasi-uniform grids, the BDME’-PO scheme will produce an optimal first-order approx-

imation for w and p. It is both robust and more accurate than the RT-P, element.

We then consider a uniform preconditioner for TMAC discretization of Darcy-Stokes equations.



Let us write the operator for the Darcy-Stokes equations as

I — €A grad
—div 0

A =

Let A, be the Laplacian operator with Neumann boundary condition defined on L2. Mardal and

Winther [[79] show that the block-diagonal preconditioner

B — (0.2.3)
0 (=A,) P+ €T

is a uniformly effective preconditioner of A, i.e., k(B A°) < C with a constant independent of

€. When move to the discrete level, x(55.A5) < C with a constant independent of both  and ¢

will be hold if a uniformly stable Fortin operator can be constructed [81]. In practice, a V-cycle

multigrid for the vector Laplacian developed in [15] can be used to approximate the (1, 1) block

and an auxiliary space preconditioner [8] can be used to approximate (—/A\,)~" in the (2, 2) block.

0.3 Block Triangular Preconditioner for Stochastic Stokes Equa-

tions

In the past decade, there has been growing interest in the study of numerical methods for solv-
ing stochastic partial differential equations (SPDEs). SPDEs are partial differential equations with
random input data (e.g., coefficient, boundary conditions, initial conditions, source terms, compu-
tational domain, etc.) and have been widely used to model uncertainty propagation and quantifi-
cation in complex physical and engineering applications, including flows in random porous media

[31} 132, 33], thermo-fluid processes [34, 35], flow-structure interactions [36], etc.

Usually, numerical methods for solving SPDEs are characterized as either non-intrusive type
(e.g., Monte Carlo method [37] or stochastic collocation method [38, 39, 40]) or intrusive type

(e.g., stochastic Galerkin method based on the generalized polynomial chaos (gPC) expansion



(41, 42, 143] 144]). In [45] 46], the authors show that the stochastic Galerkin method is compu-
tationally more efficient than the stochastic collocation method. However, this conclusion relies
on the assumption that specialized iterative solvers are available for solving the fully coupled lin-
ear systems arising from the stochastic Galerkin discretization. Many studies have centered on
iterative solvers for the stochastic Galerkin discretization of elliptic equations with random input
data [47, 148, 149,50, 51} 52]. For example, in [48]], an efficient multigrid solver is proposed. In
[53], they suggested a preconditioned conjugate gradient (PCG) method with a block-diagonal pre-
conditioner. When the random input variance is large, [54] demonstrates that a block triangular
preconditioner used with either generalized minimum residual (GMRes) method or generalized
preconditioned conjugate gradient (GPCG) method is more efficient and robust than PCG with a

block-diagonal preconditioner.

In the literature, there are several studies on stochastic Galerkin methods for Stokes equations and
Navier-Stokes equations with random input data [S3, 156, 34, 135, 157, 158, 159} 160, 61]. Conversely,
little work has been done involving efficient iterative solvers for the resulting saddle-point linear
systems with tensor product structure [62, |61]. Efficient block triangular preconditioners for dis-
crete stochastic Navier-Stokes systems are developed in [[62]]. In [63. 164} 165], the minimum residual
(MINRES) method preconditioned by block-diagonal preconditioners are investigated for solving
the saddle-point systems resulting from the stochastic Galerkin mixed formulation of elliptic prob-

lems with random diffusion coefficients.

In this work, we focus on the design of iterative solvers for saddle-point systems resulting from
the stochastic Galerkin discretizations of Stokes equations with random viscosity. In particular, we
use the H(div) conforming finite element discretization in physical space, which is a generalization
of the Marker and Cell (MAC) scheme to triangular meshes (TMAC) [66]. The TMAC scheme
retains all of the MAC scheme’s desirable properties: pointwise divergence free, solver friendly,
and local conservation of physical quantities. In probability space, we use gPC expansion [67]. The
resulting block-structured linear systems can be reformulated so each diagonal block corresponds
to a deterministic discrete Stokes system. Hence, we can take advantage of the optimal multigrid
solver developed in [68] for these deterministic systems and construct block-diagonal/triangular

preconditioners for use with the GMRes and bi-conjugate gradient stabilized (BiCGStab) methods



to solve the discrete stochastic Stokes systems. The efficiency and robustness of the proposed
preconditioners with respect to all the dicretization parameters are tested on Stokes equations with
random viscosity satisfying uniform or lognormal distribution. We also develop multigrid methods
with block Jacobi or block Gauss-Seidel methods as the smoother for solving the discrete stochastic

Stokes systems.



Chapter 1

Finite Elements, Exterior Calculus, and

Stochastic Finite Elements

In this chapter, we first recall the function spaces and finite element spaces which we are going to
work on, and then present preliminaries about finite element exterior calculus and general polyno-

mial chaos.

We assume that € is a bounded and convex polyhedron in R? or R? with a simple topology (ho-
momorphism to a disk or ball), and it is triangulated into a mesh 7;, with size h. We assume that

the mesh belongs to a shape regular and quasi-uniform family.

1.1 Function Spaces

Let us introduce notations of the differential operators we are going to work on. In R?, we will
use the curl operator acting on the scalar function and rot, div operators acting on vector function
respectively. For any scalar function 7, and vector function u = [u, v]*, we have:

e curlt = <3y7', —8x7>

10



o rotu = 0,v — Jyu

o divu = 0,u + 9,v

In R3, we will use the grad operator acting on the scalar function and curl, div operators acting
on vector function respectively. For any scalar function 7, and vector function u = [u, v, w]’, we

have:

e gradT = (8367‘, Oy T, aﬂ)
e curlu = <8yw — 0,v,0,u — O,w, 0pv — ay“)

o divu = d,u + 9,v + d,w

We use L?(€) to denote the space of all square integrable scalar or vector functions on 2. Given
a differential operator d = grad, curl, rot or div, we introduce the Sobolev space H (d, ) = {v €
L3(Q),dv € L*(Q)}. For d = grad, H(grad, Q) is the standard H'(f2) space. For simplicity, we
will suppress the domain €2 in the notation. We further introduce the following Sobolev spaces on

domain €2 with homogenous traces:

Hi ={ue€ H(Q):u=0 ondQ}

Hy(curl) = {uw € H(curl) : u x n =0 on 002}

Hy(div) ={u € H(div) : w-n =0 on 00}

Ly ={ue L*(Q): [,udr =0}

In R?, as curl is a rotation of grad, H(curl) = H' and Hy(curl) 2 H}. The inner product for L?

or L* is denoted by (-, -).

11



1.2 Finite Elements

To discretize partial differential equations, it is critical to choose appropriate discrete subspaces of

function spaces. Let us recall the following finite element spaces in R3:

o S C H{ is the well-known Lagrange elements, i.e., continuous and piecewise polynomials,

° Ug C H(curl) is the edge element space [26} 27],

Vg C H(div) is the face element space [28] 26, [11}, 27, 10, [12],

e W/ C L2 is discontinuous and piecewise polynomial space.

We will use the notations without subscript to denote the discrete subspaces without homogenous

traces, i.e., S* ¢ H', U" ¢ H(curl), V" ¢ H(div) and W" C L2

In R?, the elements are similar, and we keep the notation as S{)‘ C Hy(curl) for Lagrange element,
Vg C H(div) for edge element and W C L2 for discontinuous piecewise polynomial space.
We will discuss more about how to choose proper finite elements in each Sobolev spaces in the

next section.

1.3 Finite Elements Exterior Calculus

1.3.1 The de Rham Complex

To discretize the partial differential equations, we start from the following de Rham complex and

corresponding co-chain exact sequence:

curl div
e R*: 0—>H'—— H(div) >L2——(
) rot -grad )
0‘ Lo‘ H()(I'Ot)‘ Ho‘ O

12



grad curl div

e R 0—>H'— H(curl)—— H (div) >L2—(
-div curl -grad
O0<«—L2< H (div)«——Hy(curl)< Hi<—0

We choose appropriate degrees and types of finite element spaces such that the discrete de Rham

complex holds

curl div
e R2: 0——>3S" N >Wh—>0

grad curl div
o R3: 0—> S >U" >V >Wh—50

In R?, given an integer 7 > 1, a stable method is achieved by choosing S as the Lagrange element
of order r, Vg as the Raviart-Thomas element RT,_;, and W({L as the discontinuous piecewise
polynomial function space of order » — 1. The case » = 1 corresponds to the lowest-order ele-
ments discretization, i.e., P1-RTy-Py, see Fig. 1.1. Another method relies on choosing Sg as the
Lagrange elements of order r + 1, Vg as the Brezzi-Douglas-Marini elements BDM,, and W[? as
the discontinuous piecewise polynomial function space of order » — 1. The case » = 1 corresponds
to the lowest-order element in this sequence, i.e., Po-BDM;-Py, see Fig. 1.2. In R3, given an
integer 7 > 1, a stable method is achieved by choosing S? as the Lagrange element of order r,
U is the Nedelec edge element ND,, V' as the Raviart-Thomas element RT,_;, and W/ as the
discontinuous piecewise polynomial function space of order » — 1. The case » = 1 corresponds

to the lowest-order elements discretization, i.e., P;-ND;-RT(y-Py. The methods can be written as

sequences:
curl div
e R?: 0—>P, >RT,._; >P._1——0
curl div
o R%: 0—>P, >BDM, >P._;——0
grad curl div
o R3: 0—>P, >ND, >RT,_ >P,._1——0

13



1.3.2 The Co-differential Operators

We now define co-differential operators and introduce the following exact sequences in the reversed

ordering:
roty, gradh
o R%: 0«—S"< h < Whe—o~0
divy, curly, grad,,
o R3: 0«—5"< U'< Vi< Wh<«—0

In R?, the weak divergence rot, : V" — S" is defined as the adjoint of curl operator in the

L?-inner product, i.e., rot, w;, € S”, s.t.,
(rotpwy, vy) == (wp, curlv,)  forall vy, € S™. (1.3.1)
The weak grad,, operator is defined as the adjoint of — div, i.e., grad, w;, € vt st,

grad, wy,, vy) := —(wy,, divw,) forall v, € V. (1.3.2)
h

In R3, the weak divergence div, : U" — S" is defined as the adjoint of — grad operator in the

L2-inner product, i.e., div, w; € S", s.t.,
(divy, wy, vp) := —(wp, grad v,)  forall vy, € Sh. (1.3.3)

Weak curl operator curl, and weak grad operator grad, are defined similarly. For any w;, € V",

define curl, w" € U" as
(curl,wy, vy) := (wy, curlvy)  forall v, € U (1.3.4)
For any wy, € W", define grad, w;, € V" as

(grad,wp,, vy) == —(wp,, dive,)  forall v, € V" (1.3.5)

14



curl div

@) - Hdv) - LX(Q)

curl div
Pl e RTO — PO
[ B
0 0

Figure 1.1: Example of appropriate discrete subspaces choice in R?

Similarly, we can define co-differential operators on the spaces with homogenous traces:

roto,p gradg ,
o R%: 0«5} Ve Wi«—0
divg p, curlp p, grady j,
o R3: 0<«—35) U} v Wh<—o0

In R?, the weak divergence rotg; : V| — S is defined as the adjoint of curl operator in the

L-inner product, i.e., roty , wy, € SI, s.t.,
(roto pwp, vp) := (wp, curly,)  forall v, € Sg. (1.3.6)

The other co-differential operators for the spaces with homogenous traces can be similarly defined.

1.3.3 The Discrete Hodge Decomposition

The Hodge decomposition plays an important role in the analysis of well-posedness and error

analysis. On the continuous level, for example, the Hodge (or Helmholtz) decomposition in R? is

L? = curl Hy(curl) @ grad H'/R.
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H' — H(cwrt)—™— H(div) — [2

Figure 1.2: Example of appropriate discrete subspaces choice in R?

To prove well-posedness of discrete systems and handle the error analysis, we need analogous

decomposition on the discrete level. It is easy to verify that the following sequences are exact.

curl ,  div
o R% 0—> S >V >Wi——>0
roto,n grady ,
0<«—SP< Vi Wh<—o~0
grad , curl , div
o Rg 0—)5(}; ’UO ’VO > Oh ’O
divg p, curlp p, grado,h
0<«—S} Ul vh Wh<—o~0

According to these exact sequences, we have the discrete Hodge decompositions [2]:

e R%: Vi = curl S} & grad, , W
e R U} = grad S! @ curly, Vi

o R%: Vi =curlUj @ grad, , W/

16



These discrete version of Hodge decompositions split the subspaces into irrotational and solenoidal

components, and plays an important role in the analysis.

1.4 Stochastic Finite Elements

In this section, let us introduce the notations and stochastic function spaces.

1.4.1 Notations and Function Spaces.

For the stochastic Stokes equations, we use notation €2 for the random space, and D for the physical
domain. Let D C RR? be a bounded convex polygonal domain with boundary 0D. (9, F,P)
denotes a complete probability space, where 2 is the set of outcomes, F C 29 is the o —algebra
of random events, and P is the probability measure. Let u(é ) be a random variable in (2, F, P).
We denote its expected value by E|u fQ w(w fr y)dy and its variance by

Var(p) = E[u?) — E[u]?, where pg(-) denotes the densny function of f :

For the stochastic functions, we introduce the tensor spaces endowed with the corresponding inner

products as follows:

L*(T) @ Hy(D) =

—_

u(é,x): T x D —=R*|u(& ) € Hy(D)ae.onT, and u(-, ) € L*(I') a.e. on D},
L*(T) ® L(D) =

{q(¢,2) : T x D —R|q(¢ ) € Li(D)ae.onT, and q(-, ) € L*(T') a.e. on D},
(w, ) 2(ryemy(py = El(rotw,rot ) + (divu, dive)] Vu,v € L*(T) @ Hy(D),

(P,

Q) 2myeiimo) = Elp. @), Vp,q € L*(T) ® L§(D).

17



1.4.2 The Discrete Spaces

To discretize stochastic partial differential equations, we introduce some discrete spaces to approx-
imate L*(T), Hy(D), and L2(D). For the probability space, the generalized polynomial chaos
(gPC) basis functions are chosen to span the approximation space. We denote the approximation
subspace as:

Y™ = span{Wy, Uy, -, Uy} C L*(D),

where N¢ = m + 1 is the dimension and m is the highest degree of gPC. We assume these basis
functions are orthogonal and normalized, i.e., forany é,j = 1,--- ,m + 1, E[V,;¥;] = ¢;;. For

instance, if £ ~ U(—1, 1), the natural choice is the Legendre orthogonal normalized polynomials

1 [2k+1 d*

We denote the basis of V1 as {®,--- , ®y, }, and the basis of W as {x1, -, xw, }, where N,

and N, are the dimensions of the respective spaces.

The tensor spaces Y™ ® VI ¢ L*(I') ® Hy(div) and Y™ @ W} C L*(T') ® L2(D) are the finite

dimensional spaces used for the discrete functions, respectively.
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Chapter 2

Multigrid Preconditioners for Mixed Finite

Element Methods of Vector Laplacian

Due to the indefiniteness and poor spectral properties, the discretized linear algebraic system of the
vector Laplacian by mixed finite element methods is hard to solve. A block diagonal preconditioner
has been developed and shown to be an effective preconditioner by Arnold, Falk, and Winther. The
purpose of this paper is to propose an alternative and efficient block diagonal preconditioner for
solving this saddle point problem. A variable V-cycle multigrid method with the standard point-
wise Gauss-Seidel smoother is proved to be a good preconditioner for the Schur complement A.
The major benefit of our approach is that the point-wise Gauss-Seidel smoother is more algebraic
and can be easily implemented as a ‘black-box’ smoother. The multigrid solver for the Schur

complement will be further used to build preconditioners for the original saddle point systems.

In this chapter, we propose an efficient block diagonal preconditioner for solving the discretized
linear system of the vector Laplacian by mixed finite element methods. This problem is considered
in R3. While all the function spaces in this chapter will be the ones with homogenous traces, we

simplify the notations as follows:

e the discrete spaces S, V', and U}, are used to denote S/, Vg and Ug respectively;
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e the co-differential operators curly, grad, and div,, are used to denote curly p,, grad, , and

divg , respectively.

2.1 The Continuous and Discrete Formulations of Vector Lapla-

cian

2.1.1 Discrete Formulations of Vector Laplacian.

On the continuous level, the mixed formulation of the vector Laplacian in space H(curl) is: Find

o € Hj,u € H(curl) such that

—(o,7) + (u,grad 1) = 0 for all 7 € Hy,
2.1.1)
(grad o, v) + (curlwu, curlv) = (f,v) forall v € Hy(curl).
The problem (2.1.1)) on the discrete level is: Find o), € Sy, u;, € U}, such that
—(on, ) + (up, grad m,) =0 for all 7, € Sj,,
(2.1.2)
(grad oy, vp,) + (curlwy, curlvy,) = (f,v,) forall v, € Uy,.
Note that the first equation of (2.1.2) can be interpreted as o, = — divj, u;, and in the second
equation of (2.1.2) the term (grad o, v,) = —(oy, div, vy,). After eliminating oy, from the first
equation, we can write the discrete vector Laplacian for edge elements as
—Ajuy, := curl, curl uy, — grad divy, uy, (2.1.3)

which is a discretization of the identity

—Awu = curl curl u — grad div .
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Choosing appropriate basis for the finite element spaces, we can represent the spaces Sj, and V',
by R4m 5 and R4 Ve respectively. In the following, we shall use the same notation for the vector
representation of a function if no ambiguity arises. Then we have the corresponding operator and
matrix formulations as: L§ : S, x U, = S, x U Y
Op —M B Op 0
LS = ! = . (2.1.4)
Up B T CT M fC Uy, f
Here M, and M are mass matrices of the vertex element and the face element, respectively, BT
corresponds to the grad operator, and C' to the curl operator. We follow the convention of Stokes
equations to reserve B for the (negative) divergence operator. Note that to form the corresponding

matrices of weak derivative operators, the inverse of mass matrices will be involved. The Schur

complement
A5 = BTM'B + CTM;C (2.1.5)

is the matrix representation of discrete vector Laplacian (2.1.3)). The system (2.1.4) can be reduced

to the Schur complement equation

Ay = F. (2.1.6)

Similarly, the mixed formulation of the vector Laplacian in space H ((div) is: Find o0 € H(curl),u €

H ((div) such that

—(o,7) + (u,curl ) =0 for all 7 € H(curl),
2.1.7)
(curlo,v) + (divu,dive) = (f,v) forallv € Hy(div).
The corresponding discrete mixed formulation is: Find o}, € Uy, uj, € V', such that
—(op, Th) + (up, curl7,) =0 forall 7, € Uy,
(2.1.8)

(curloy, vp) + (divuy, divey) = (f,v,) forall v, € V.
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Eliminating o, from the first equation of (2.1.8), we have the discrete vector Laplacian for face

elements as
—Aiuh := curl curl,u, — grad, div up, (2.1.9)

and the operator and matrix formulations are: £¢ : U, x V, — U’ x V',

d g —Me CT oy 0
L = = , (2.1.10)
uy, C  B'M;B) \u, I

where M; denotes the mass matrix of the discontinuous and piecewise polynomial element. The

Schur complement A = CM_'CT + BT M,B is the matrix representation of discrete vector

Laplacian (2.1.9). Similarly, the reduced equation of (2.1.10) is

Ay, = f. (2.1.11)

We shall develop multigrid methods for solving (2.1.6) and (2.1.11)) and use them to construct effi-

cient preconditioners for the corresponding saddle point systems (2.1.4) and (2.1.10)), respectively.

2.1.2 Discrete Poincaré Inequality and Inverse Inequality

In this subsection, we define the norms associated with the discrete vector Laplacian, and prove

discrete Poincaré and inverse inequalities.

Definition 2.1.1. For u;, € Uy}, define ||uy|
defined as

?42 = a§ (un, wy), where the bilinear form a5,(-,-) is

ay (wp, vy) = (curluy, curlv,) + (divy, wp, divy, vy).

Similarly, for uy, € V', define ||up|%, = af.(wn, wp), where the bilinear form af (-, -) is defined as
h

ai(uh, vy) = (curlyuy, curlyvy) + (div uy, div vy).
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Lemma 2.1.1 (Discrete Poincaré Inequality). We have the following discrete Poincaré inequali-

ties:

unll S llunllas  forall w, € Up; (2.1.12)

[unll S llunllag  foralluy, € V. (2.1.13)

Proof. Let us prove the first inequality. From the discrete Hodge decomposition, we have for

uy, € Uy, there exist p € Sy, and ¢ € V', Nker(curly,)* such that
up, = grad p + curl, ¢. (2.1.14)
Applying — divy, to (2.1.14)), we have — div, u;, = — divy, grad p, thus
| grad p||* = (= diva un, p) < [[divs uallllp]l < || dive wn || grad o,
which leads to

| grad pl| < || divy wsl|. (2.1.15)

To control the other part, we first prove a discrete Poincaré inequality in the form

lo|l < ||curly@||  for ¢ € V), Nker(curly)™. (2.1.16)

By the exactness of the discrete complex, ker(curl,) = img(grad,) and thus for ¢ € V, N
ker(curlh){ we have div¢ = 0. Then by the exactness of the de Rham complex, there exists

v € U}, Nker(curl)* such that ¢ = curl v. We recall another Poincaré inequality [25}, 22]]

|v|| < || curlw|| forall v € Uy, Nker(curl)*.
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Then we have

1$l1* = (¢, curlv) = (curlpg, v) < [curly@|[v] S [[curlu|l]| curlv|] = [|curl, ||| |-

Canceling one ||¢||, we obtain the desirable inequality (2.1.16).

Applying curl to the Hodge decomposition (2.1.14) and using the inequality (2.1.16), we have

curl uw;, = curl curl, @, thus
leurly@||* = (cwrlug, @) < || curluy||[|@] S [ curlwy|[[[curlygl],
which leads to the inequality

lcurl, || < || curl wy|. (2.1.17)

Combine inequalities (2.1.15]) and (2.1.17), we have proved that

lun| < |l grad pl| + [leurly@|| S || divi wn|| + || curlwp || S [Jun | ag -

Analogously, applying appropriate differential operations to the discrete Hodge decomposition of

uy, € V', and Poincaré inequality leads to the inequality [|up|| < [|wnl] 4. O

Remark 2.1.2. The result and the proof can be easily generalized to mixed discretization of Hodge
Laplacian in discrete differential forms [2]. We keep the concrete form for the easy access of these

results. O]

Lemma 2.1.2 (Inverse Inequality). We have the following inverse inequalities:

lnllaz < B lunll - for all wy € Up;

[wnllag S h Hunll - forallw, € Vi,
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Proof. It suffices to prove that

|| divy ws|| < b7 ug||  forall wy, € Uy; (2.1.18)

|curlyun || < A7 H|uy||  forall wy, € V. (2.1.19)
since for conforming cases, the inverse inequalities

| grad oy|| < h7Y|owl| forall oy € Sp;

| curlwp || < A7 H|uy||  forall wy, € Uy,

are well known.

For any u;, € Uy, let 0, = — div;, uy, then we have

| divy, wn|® = —(divy, wn, 0n) = (wn, grad an) S h~us[lon]),

which implies (2.1.18)). The proof of (2.1.19) is analogous. O

2.2 The Multigrid Methods for Discrete Vector Laplacian

In this section, we describe a multigrid algorithm to solve the Schur complement equations (2.1.6)

and (2.1.T1)), and prove it is a good preconditioner.

2.2.1 Problem Setting

Let us assume that nested tetrahedral partitions of {2 are given as
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and the corresponding H}, H(curl) and H(div) finite element spaces are

51C"'CSJ:Sh,
U1C"'CUJ:Uh,
Vic---CcV,;=V,.

For a technical reason, we assume that we use piecewise polynomials which have degree more
than 2 to approximate the H space and consequently the edge element space contains full linear
polynomial. When no ambiguity can arise, we replace subscripts h by the level index & for k =

1,2,...,J.

The discretization (2.1.1)) of the mixed formulation of vector Laplacian in space H(curl) based

on 7T, fork =1,2,...,J, can be written as
— M, B o 0
* : = . 2.2.1)
Bg Cng7ka Uy fk
Eliminating oy, from (2.2.3)), we get the reduced Schur complement equation

The discretization (2.1.7)) of the mixed formulation of vector Laplacian in space H(div) on Ty,

fork =1,2,...,.J, can be written as
—M, cr o 0
* k "l = : (2.2.3)
Cr  BFM,;.By Uy S
and the reduced Schur complement equation is
Afuy, = (B Myp By + Ce M C)ug = £ (2.2.4)

We are interested in solving the Schur complement equations in the finest level, i.e., k = J.
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Notice that A§ and A¢ are defined by the discretization of the vector Laplacian on the trianglulation
T, but not by the Galerkin projection of A or A% since the inverse of mass matrix is involved. In

other words, A¢ and A¢ are not inherited.

When necessary, we use the notation without the superscript ¢ and d to unify the discussion. The

notation V. is used to represent both U, and V' spaces.

2.2.2 A Variable V-cycle Multigrid Method

Before we present the multigrid algorithm to solve (2.2.2) and (2.2.4), let us introduce some op-

erators. Let Rj denote a smoothing operator on level £, which is assumed to be symmetric and
convergent. Let [}, denote the prolongation operator from level k£ — 1 to level &, which is the natural
inclusion since finite element spaces are nested. The transpose I/ then represents the restriction
from level £ to level k£ — 1. The Galerkin projection P, which is from level k to level £ — 1, is

defined as: for any given uy € Vi, Py_1ui, € V)1 satisfies

ag—1(Pr-1Ug, Vg—1) = ag(wg, [fvr—1) = ar(ug, v5—1) forallvg_, € Vi,

The variable V-cycle multigrid algorithm is as following.

Algorithm 2. Multigrid Algorithm: u¢ = MG(f; ul, my.)

Set MG, = Al_l. For k > 2, assume that M Gj_; has been defined and define M Gy (f,) for

i € Vi as follows:

e Pre-smoothing: Define ui forl =1,2,--- ,my by

ul = ul '+ Rp(f), — Apul ).
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me+1

e Coarse-grid correction: Define u,, uZ‘k + I,_1€e,_1, where

er1 = MGy (I, (f), — A );0,mp 1),

e Post-smoothing: Define u} for | = my, +2,--- ,2my + 1 by
uh = ub "t + Ry(f), — Apulh).

Define u)/¢ = ;™!

In this algorithm, my, is a positive integer which may vary from level to level, and determines the

number of smoothing iterations on the k-th level, see [I8,9].

2.2.3 Multigrid Analysis Framework

We employ the multigrid analysis framework developed in [8]. Denoted by ) the largest eigen-
value of Aj. For the multigrid algorithm to be a good preconditioner to Ay, we need to verify the

following assumptions:

(A.1) “Regularity and approximation assumption”: For some 0 < av < 1,

| Apu|?

lar((I = Pe—1)ug, ug)| < Cy < 3
K

) ag(wy, wg) ™ for all u;, € V4,

holds with constant C'4 independent of k;
(A.2) “Smoothing property”:

s

\ < CR(Rk’U,k, uk) for all u;, € Vi,
k

holds with constant C' independent of k.
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We begin with estimating the largest eigenvalue of A.

Lemma 2.2.1. The largest eigenvalue of Ay, \i, satisfies A\, = h,;Z fork=1,2,... J.

Proof. By the inverse inequality, the maximal eigenvalue of A} can be bounded above by

AC C
AL = sup —( ) = sup e\ %) (u,u)
ozuet, (W, U)  ozwcu, (U, u)
— sw (divy, w, divy w) + (curl u, curl w) <n?
0£ueUy, (u,u)

One the other hand, let w = grad ;, where ¢; is a basis function of Lagrangian element, then it

holds

N = sup (Afu,u) > <A%ﬁiﬁ> _ aigﬁlﬁ)
0#ueUy (u7 u) (u7 u) ( ) u)
_ (divy grad ¢;, divy, grad ;) _ |Ap;||? _ 2
(grad , grad ;) IVelP ~
Thus, we have )\, = hlf. Similarly, we have this result for Aﬁ. O

2.2.4 Smoothing Property

The symmetric Gauss-Seidel or a properly weighted Jacobi iteration both satisfy the smoothing
property (A.2), a proof of which can be found in [9]. For completeness we present a short proof

below.

Recall that Gauss-Seidel iteration can be understood as a successive subspace correction method
apply to the basis decomposition V;, = Zf\fl Vi with exact local solvers [29]]. For u € V4, let
u = Zf\fl u; be the basis decomposition. By the X-Z identity [30, [14] for the multiplicative
method, we have

N
—-1
(Resw,w) = [[ulli, + Y 112> ull,
i=0

J>i
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where R is a symmetrized Gauss-Seidel iteration. We then estimate the second term as

N N N
YUY T willZ, <D0 lulE S MY sl S el
i=0 ) i=0

j>i i=0 jen(i

Here we use the sparsity of Aj such that the repetition in the summation is bounded above by a
constant. The last step is from the stability of the basis decomposition in L2-norm which holds for

all finite element spaces under consideration.

We have thus proved that (Eééu, u) < Ai|lu||* which is equivalent to the smoothing property by

a simple change of variable. Proof for Jacobi iteration is similar.

2.2.5 Approximation Property
Forany 2 < k < J,let Ty = Tr_1 and T;, = Tj. Let
Zy =4z, € V| divz, =0} = curlUy, = curl curl, Vi,

and Q7 : L? — Zj be the L? projection to Z;. Denoted by Q!V : L? — W, the L? projection
h proj Yy &y, proj

onto W},. The following error estimates are obtained in [3]].

Lemma 2.2.2. Given u,;, € curl,Vy, let wy be the unique element in curl, V g satisfying curl uy =

Q% curluy,. Then

lun —un| S HI| carluy],

|| curl(w, — wgy)|| < H||curly, curl wy]|.

In Lemma|2.2.2} by the exactness of the co-differential operators, i.e., ker(divy) = curl,(Vy), the
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function wy is uniquely determined by the Maxwell equations

(curluy, curlvy) = (curluy, curlvy), forallvy € Uy (2.2.5)

(up,gradpy) =0, forall oy € Sy. (2.2.6)

The well-posedness and error estimate of (2.2.5)-(2.2.6) is well understood. The difficulty of

getting estimate in Lemma is the estimate using norms of the source curl u;, only.

Lemma 2.2.3. Give v, € grad, W), let vy be the unique element of grad, Wy satisfying divvy =

W div vy,. Then

lon —vall S H| div o],

|| div(vy, —vg)|| < Hllgrad, divvy||.

Similarly, the function vy in Lemma [2.2.3]is uniquely determined by the mixed Poisson equation

(vg,uy) — (py,divuy) =0, foralluy € Vg

(diV’UH,qH) = (divvh,qH), for all qH € WH

Approximation Property in H(curl)

Let u;, € Uy, be the solution of equation

ay (up,vn) = (fh, vn) for all v, € Uy, (2.2.7)

and uy € Uy C Uy, be the solution of equation

af(ug,vy) = (f,,vn) forallvgy € Upg. (2.2.8)
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By the Hodge decomposition, we have

up = grad ¢p @ wop, Pn € Sp, o € curly Vi, (2.2.9)
U :grad(bg@(uo,H%—eH), (bH S SH, U0, H and ey EcurthH, (2.2.10)
[, = grad g, @ curl,g,, for some g, € Sy, q; € carlU;, C V. (2.2.11)

Where w5 is the unique element in curl, V' p satisfying
_ Nz
curlwo g = Qg curl ug p,.

Then by Lemma [2.2.2] we immediately get the following estimate.

Lemma 2.2.4. Let ug ), and u i be defined as in equations (2.2.9) and (2.2.10). It holds

lwon — ol S HHUhHA,i-

Now we turn to the estimate of ey being given in equation (2.2.10)).

Lemma 2.2.5. Let ey € curl,V iy be defined as in equation (2.2.10). It holds

lenlla; S HI| Az

Proof. By equations (2.2.7) and (2.2.8]), we have

(curlug p, curlvy) = (g, curlvy,), for all vy, € curl, V,

(curl(uo g + en),curlvy) = (grad gn, ve) + (g, curlvy), forallvy € curl, Vg,

where g, and g,, are defined in equation (2.2.11). Then

(curl ey, curlvy) = (grad gn, vy) forall vy € curl,Vg. (2.2.12)
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Note that, for g, € S, C Hy (), there exists an e € H(curl) such that
(grad gn,e) =0 and |le —ey| < Hl curley]|.

Then,
(curley,curley) = (gradgn, en) = (gradgn, ey —e) S H| grad gp|||| curl ey ||.

It holds
|curley|| < Hl grad gul| < HI|f|| = H||Ajus||.

Now we turn to the estimate of || divy, ey ||. Not that we also can find e;, € curl, V), satisfying that
(grad g, en) = 0, and ||e, — ey|| < h|| curley]|.
Then by inverse inequality, it holds
: : 1 H c
Idivien|| = || divi(en — en)l| S A7 llen — enll S 5[ curlen|| S H| Azunl.

The desired results follow. O]

We now explore the relation between ¢y, ¢, and g;, defined in equations (2.2.9)-(2.2.11).

Lemma 2.2.6. Let ¢y, € S), and ¢y € Sy be defined as in equations (2.2.9) and (2.2.10). It holds

| grad ¢n — grad ¢ || < H ||l

Ag -

Proof. For equation (2.2.7), test with v, € grad .S, to get

(divy, grad ¢p,, divy, vy) = (grad g, vy) = —(gn, divy vy),
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which implies — divy, grad ¢, = — div, up = g, i.€.,

—Apdn = gn. (2.2.13)

From equation (2.2.13)), we can see that ¢, is the Galerkin projection of ¢ to Sy, where ¢ € HJ ()

satisfies the Poisson equation:

—A¢ = gp.

Therefore by the standard error estimate of finite element methods, we have

Vo = Voul < Hllgnll

Let P; denote the H'-projection to the space Sy. For equation (2.2.8)), choose vy = grad iy €

grad Sy, we have

(divy grad ¢, divy vyr) = (grad gy, gradvyr) = (grad Pyigs, grad i),

which implies — divy grad ¢ = P gy, i.e.,

—Apoy = Pgn. (2.2.14)

From equation (2.2.14), we can see that ¢ is the Galerkin projection of ¢ 1o Sy, where ¢ € H Q)
satisfies the Poisson equation:

—Aé = Pflgh-

The H'-projection Pj is not stable in L?-norm. However, applied to functions in Sj,, we can

recover one as follows

I(Z = Pignll < Hl grad(I = P)gull < Hll grad gull < H/hllgnll < llgnll
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In the last step, we use the fact that the ratio of the mesh size between consecutive levels is bounded,

ie, H/h <C.

We then have
| grad(¢ — o)l S HI|Pgnll < Hllgnll + HII(I = P)gnll S Hllgnl-
And

lerad(én — o)l < |l grad(¢n — 9)|| + Il grad(é — )I| + || grad(¢ — o)

< Hllgnll + llgn — Prrgnll-1-

By the error estimate of negative norms and the inverse inequality, we have

lgn — Piignll—1 < H?|\gnlli < Hllgnl|-

Here we use H ! norm estimate, which requires that the piecewise polynomials in Sy have degree

greater than or equal to 2. Noticing that g;, = divy, uy, we thus get

which implies the desired result. U

As a summary the the above results, we have the following theorem.

Theorem 2.2.1. Condition (A.1) holds with o« = % i.e. for any uy, € Uy, there hold

1
cu 2\ 2 1
af(I — Pey)ug,ug) S (W—;”) af (wg, ug) 2. (2.2.16)

Proof. We use h to denote k and H to denote k — 1. Let f, = Afu;, and uy = Pyuy, then we
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have

ap(up,vy) = (fp,vn) for all v;, € Uy,

ay(ug,vg) = ap(up,ve) = (F,,vn) forallvy € Uy.

up, uy and f, can be decomposed as in equations (2.2.9)-2.2.11). Let I; = wo — won, Io =
grad ¢, — grad ¢y, by Lemmas[2.2.4] [2.2.5|and [2.2.6] it holds

ap (I — Pr)wup, up) = aj (L1, wp) + aj (o, up) + aj (e, up)
< [l AR nll + [ L2[l[[ AR en ]| + llen | g llwn ] a;

S Hllul

Ag AfluhH

[

Approximation Property in H(div)
Let u;, € V;, be the solution of equation

al(uy,vy) = (f),,vn)  forallv, € V7, (2.2.17)
and uy € Vg C V, be the solution of equation

ad(ug,vy) = (f),,vg) forallvy € V. (2.2.18)
We can easily see that f, = A%u;,. By the Hodge decomposition, we have

up = curlg, S ugy, @) € curl,Vy, ugy € grad, Wy, (2.2.19)

ug =curl ¢y & (uog +en) ¢y € curl,Vy, uypyand ey € grad, Wy, (2.2.20)

f, =curlg, ®grad,q, forsome g, € curl, V1, ¢, € Wy, (2.2.21)
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where ug i € grad, Wy is the unique element satisfying
div U H = leg div U h-

By Lemma[2.2.3] we immediately have the following result.

Lemma 2.2.7. Let ug;, € grad, W), and ug g € grad, Wy be defined as in equations (2.2.19) and
(2.2.20). It holds

[wo.n — wonll S HI div g,

Now we turn to the estimate of ey € grad, Wy defined in equation (2.2.20).

Lemma 2.2.8. Assume that ey € grad, Wy be defined as in equation (2.2.20). Then it holds

lenllag < [ AGunl:
Proof. The equations (2.2.17) and (2.2.18)) imply

(divugp,dive,) = —(qn, divoy) for all v;, € grad W,
h

(div (uo i + em),divoy) = —(qn,divoy) + (curlg,,vy) forallvy € grad Wy,
H

where wgn, U, €y, g, and g, are defined as in equations (2.2.19)-2.2.21). Namely ¢, =

—div wg, and

(divey,divvy) = (curlg,,vy) forall vy € grad, Wy.

Note the fact that for ey € V g, there exist e € Hy(div) and p € H}(€2), such that

e = grad
SECP and |le—en| < H| diven].
dive = divey
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Then

(curlgy, e) = (divecurlg,,p) = 0.

and
(divey,divey) = (curlg,,ey)= (curlg,, ey —e)
< lewrlgyllllen —ell S Hl curl g, ||| div e ||
< lARuslll dives|l.
Which implies

I diven|| < HIAjunll

Now we turn to the estimate of ||curl,ey||. Note that we can also find e}, € grad, W}, and p;, € W},

satisfying
e = grad
" SAGRPR and flen — e < H| diven].
div e, = div €y
Then by inverse inequality it holds
[eurlyen || = [[curly(en — en)|| S h7'len —enl| S || dives]|.
The desired result follows. O]

We now explore the relation between ¢;, ¢y, and g, defined in equations (2.2.19)-(2.2.21).

Firstly, we define
M = grad Hy(9) and M), = grad Sy,

and
M+ = {u € Hy(curl)| (u,grads) =0, foralls € Hj(Q)} and M, = curl,V,.
Then we have the following lemma.
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Lemma 2.2.9. Assume that 1, € M-, let ¢, € M- be the solution of equation
(curl ¢, curl 7)) = (2, 71)  forall T, € M,

and ¢ € M+ be the solution of equation

(curl ¢ curlT) = (QM'op,,7) forall T e M*
divg = 0

where QM H(curl) — M+ is the L? projection operator. Then, it holds
[eurl(¢ — Cu)Il < Allepnll
Proof. By the definition of ¢ and (;,, we have
(curl(¢ — &), curl 7y) = (¢, — QM apy,7)  forall 7, € Uy,

Thus

Jewl(¢ =GP = (curl(¢ = ) eurl(¢ = TFC)) + (curl(¢ = ), ewrl(T1F¢ - ¢,))
= (ewl(¢ — ), ewrl(¢ — 7)) + (v, — Qi . (IC ~ €))
S hlleurl(¢ = ¢l eurl €l + (0, — QA (€ = ¢,))|
S hllearl(¢ = Gl + | (a6 — QX s (C = €,)|.

We can decompose I1Y¢ — ¢, as
/¢ — ¢ =w+gradp,  weM", peHi(Q),
and we can also write I1Y¢ — ¢, as

I,/ ¢ — ¢, = I w + grad py, w € M™*, pj, € Sp.
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Thus

(), — %Liph? (ch —Cu) = (¥, — hMLqphang) = (), — ,]ylz,bh,ﬂ,[{w —w)

€L
S bl — Q) Yulllwlly S Al curl w]]
= Al curl(IT ¢ — &)l = Rllepy, |1y curl(¢ — ¢,,)|
S bl curl(€ =€) l-
The desired result follows. L]

Lemma 2.2.10. Let ¢, € U}, and ¢y € Uy be defined as in equations (2.2.19) and (2.2.20)). It
holds

[ curl @y, — curl @y || < Hllwn | ag-

Proof. Let v;, = curlwy,, w;, € Uy, equation (2.2.17) implies

(curlpuy, curl, curlwy) = (curl, curl ¢y, curl, curl wy,) = (curl ¢y, curl curly, curl wy,)

= (fy,curlwy) = (curl g, curlwy) = (g, curl, curl wy,)

Let 75, = curl, curlw,, € curl,V;, C Uy, we get
(curl ¢p, curl 7,) = (g, 1) for all 7, € curl, curlU}, = curl, V,.

Which implies curly, curl ¢;, = curl,u;, = g,,. We can see that ¢, is the Galerkin projection of ¢

to curl,V;, C Uy, where ¢ € M~ satisfying the Maxwell equation:
curl curl p = QMLgh, diveg = 0.

Therefore by Lemma[2.2.9] we have
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[ curl(e — &,)|| < hllgyll-

Similarly, equation (2.2.18)) implies
(curl o, curl ) = (gp, TH) for all 7y € curly, curlU g = curl, V.

where g;; = PHg, and PY : curl,V}, — curl,Vy is a projection in (curl(-), curl(-)). Which
implies curly, curl ¢; = PHg,. We can see that ¢ is the Galerkin projection of ¢ to curl, Vi,

where ¢ € Hy(curl) satisfies the Maxwell equation:
curl curl ¢ = QMLngh, dive = 0.

The H (curl)-projection P is not stable in L2-norm. However, applied to functions in U}, we can

recover one as follows
(I — Pi)gll S H| cwrl(I — Pp)g,ll S H| curl g, || < H/hllgull < llgall-

In the last step, we use the fact that the ratio of the mesh size between consecutive levels is bounded,

i.e., H/h < C. We then have

lewrl(¢ — @)l S H|Pirgull < Hllgyll + HII(I — Pip)gull < Hlgall

Now we turn to the estimate of || curl(¢ — @)|. We have ¢ and ¢ in M, satisfying

(curl @, curlep) = (QM'g,,v) forallep € Mt
(P, ) = 0

and
(curl , curlep) = (QM g, %) forallep € Mt

(b,9) = 0
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Thus, for all ¢ € M+

(curl(¢ep — {b), curly) = (g, — gu, ¥) = (G, — 9, V),

where g, and g, are in M+ and satisfying curl g, = curl g, and curl g, = curl g, respectively.

Let ¢ € M+ satisfying

(curl¢,curlT) = (¢, 7) forallT e M+
divg = 0

Then,

(9r —gm ) = (cwl(, curl(g, —gy)) = (cwl, curl(g), — gp))

= (curl(¢ — P{¢), curl(g, — gy))

< |eurl(¢ = Pz¢)ll curl(g, — gp)l
S HilcurlCll2llgyll S Hl curl | [ig,ll

which implies

| curl(¢p — @)|| S Hllg,l-
Then

lewrl(¢py, — ¢p)l| < || curl(ey, — @)I| + || cwrl(@y — @)I| + || cwrl(@ — @)I| S Hllgy-

[
As a summary the the above results, we have the following theorem.
Theorem 2.2.2. Condition (A.1) holds with o« = % i.e. for any uy, € V', there hold
d 1At 2\ 2 g !
Gl = P uwy) S (PE0) 7 af (e, we) (2.2.22)
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Proof. We use h to denote £ and H to denote & — 1. Let f;, = Aﬁ’u,h and ug = Pyuy, then we

have

al(up,vy) = (Fy,vn) for all v, € V7,

ad(umg,vg) = al(un,vy) = (f,,vn) forallvy € V.

up, ug and f; can be decomposed as in equations (2.2.9)-2.2.11). Let I} = wop — won, Io =
curl ¢, — curl ¢4, by Lemmas[2.2.7,[2.2.8|and 2.2.10] it holds

af (I — Py)up, wp) = ai (I, up) + af (la, uy) + af (eq, up)
< [0l Afunll + 1 22l [ Al + le]]aglleen ]l a9

S Hllwn|| ag [l A7l

2.2.6 Results

According to the multigrid framework in [8]], we conclude that the variable V-cycle multigrid
algorithm is a good preconditioner for the Schur complement equations (2.1.6) and (2.1.11). We

summarize the result in the following theorem.

Theorem 2.2.3. Let V). denote the operator of one V-ycle of M G, in Algorithm 2 with homogenous

data, i.e., f; = 0. Assume the smoothing steps my, satisfy
Bomy < my_1 < Brmy,.

Here we assume that 3y and 31 are constants which are greater than one and independent of k.

Then the condition number of V; Ay is O(1).

Remark 2.2.4. As noticed in [9)], W-cycle or two V-cycles may not be a valid preconditioner as

the corresponding operator may not be positive definite. In other words, the proposed multigrid
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method for the Schur complement cannot be used as an iterative method but one V-cycle can be

used as an effective preconditioner.

2.3 Uniform Preconditioner

In this section, we will show that the multigrid solver for the Schur complement equations can
be used to build efficient preconditioners for the mixed formulations of vector Laplacian (2.1.4)
and (2.1.10). We also apply the multigrid preconditioner of the vector Laplacian to the Maxwell
equation discretized as a saddle point system. We prove that the preconditioned systems have

condition numbers independent of mesh parameter /.

2.3.1 Block Diagonal Preconditioner

It is easy to see that the inverses of the symmetric positive definite matrices M, M., A, and
A¢ exist, which implies the existence of the operators (£5)~!, (£¢)~!, and the block diagonal

preconditioners defined as following.
Definition 2.3.1. We define the operator P{ : S, x U}, — Sy, x U}, with the matrix representation
M;* 0

pe - T 2.3.1)
0 (43)

and the operator P{ : U}, x V', — U}, x V', with the matrix representation

p M1 0
Pl — _ (2.3.2)
0 (4™

In the sequel, to unify the notation, we use M for the mass matrix and A the vector Laplacian. The

inverse of the mass matrix can be thought of as the matrix representation of the Riesz representation
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induced by the L2-inner product and the inverse of A is the Riesz representation of the A-inner
product. The preconditioners P¢ and P are Riesz representation of L? x A-inner product. Let

(-, -) be the duality pair. We clarify the norm notations using M/ and A as follows:

o [l owlld = (Mo, on);

o [[1lar unlly = (Apun, un);

o [ Mz lgnll3— = (M g, gn);
o |- llas 1 allPs = (AL fos f)-

Follow the framework in [24]], it suffices to prove the boundedness of operators £ and £¢ and their
inverse in the appropriate norms. The following lemma gives a bound of the Schur complement

BA~'BT similar to the corresponding result of the Stokes equation.

Lemma 2.3.1. We have the inequality

(B(AS) ' BT ép, b)) < (Myn, dn)  for all ¢y, € Sy, (2.3.3)

Proof. Let vy, = (AS) BT ¢y,. Then

(B(A}) " B ¢, én) = ((A5) 7' B  on, B' ¢n) = (Ajon, vi) = [lvnl3-

Now we identify v;, € V', by the Riesz map in the A-inner product, and then we have

B (Vn, un)a (BT, up) (&n, Bup,)
|vplla= sup ———— = sup ————— = sup ————
unevy nlla wevy,  llualla uneVy,  |[unlla
B B
< sup H¢hHMH uhHM 1 < ||¢h||M
ur€Vy, l|wnla

In the last step, we have used the identity (2.1.5)) which implies || Bup|[y-1 < ||un||a. The desir-
able result (2.3.3)) then follows easily. O
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We present a stability result of the mixed formulation of vector Laplacian which is different with

that established in [2]].

Theorem 2.3.2. The operators LS, L4 and there inverse are both bounded operators:

L5 1180051 x5 1L L@ x v x v )
are bounded and independent of h from (|| - ||pr-1, || - la=2) = (|| - lazs || - [|4), and
||(52)_1||L(s;lxugl,shxuh)a ||(£%)_1”L(U;l><v’h,Uh><Vh)
are bounded and independent of h from (| - ||ar || - [|a) = (|| - l|az=1, 1] - ||a-1)-
Proof. We prove the H y(curl) case below. The proof of the H(div) case is similar.

Let (o4, up) € Sy, x Uy, and (g, f,) € S, x Uy, be given by the relation with

e[ Z —M, B on ) _ | 9n (2.3.4)
" up BT CTMfO up fh

To prove || L5 [|L(s, xv,.5; xu) S 1, itis sufficient to prove
lgnllar— + [ Fplla— S llonllar + [lunla (2.3.5)

From (2:34)), we have g, = —M,0p, + Buy, and f, = ASu;, — BT M, *g;,. The norm of gy, is easy

to bound as follows
gnll3r-1 < 2| Myonll3— + 2 Bun||3-1 < 2llonll3; + 2wl
To bound the norm of f,, we first have

1FnllZer < 2B M gnllir + 20 Al < 20 BT M gnlli-n + 2[|ualf.
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Let ¢, = M, ' gy, by Lemma[2.3.1] we have

1B M g2 = 1B onlli-2 = (B(AR) ™' B én, dn) < nll3r = llgnlli-
Thus we get

Il < 2llgnllir— + 2lunlll < 4llonllas + 6wl

Then the desired inequality (2.3.3) follows from the bound of ||gp,||3,—1 and || £, || a-1-

To prove [|(£5,) " lL(s: x5, xu,) S 1, We need to prove
lonllar + llwnlla S lgnllar— + |1 Falla-r. (2.3.6)
From (2.3.4)), we have u;, = (A$)~1(f, + BT M 'g;). Then

[l = £ + B My gull%-

<2l + 2B M gnllh < 20 Fallh-1 + 2lgnllh
We also have oj, = M, ' (Buy, — g;) and thus
ol = 1Bun — gnll3r—+ < 20 Bunlla + 2llgnlli+ < 2llunlly + 2lignli -+

Combining with the bound for ||uy]| 4, we obtain the desirable stability (2.3.6).

From Theorem [2.3.2] we can conclude that the proposed preconditioners are uniformly bounded

with respect to h.

Theorem 2.3.3. The Pf and Py are uniform preconditioners for LS, and LS, respectively, i.e., the
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corresponding operator norms

”,Pii‘CEHL(ShXUmShXUh)’ H( ;:zlpli)_IHL(ShXUmShXUh)’

IPLLA L@ xvnunsx v [(PRLE) @ xviunx v

are bounded and independent with parameter h.

2.3.2 Mass Lumping

The inverse of the mass matrices M, ! and M are in general dense. To be practical, the exact

Schur complement can be replaced by an approximation

As = B"M'B + 0T M;C, (2.3.7)

Al =com1c” + BT M, B, (2.3.8)

with M, and M, easy-to-invert matrices, e.g., diagonal or mass lumping of M, and M., respec-
tively. In this way, we actually change the L?-inner product of spaces Sj, and U, into a discrete L?
inner product. We then define the adjoint operators with respect to the discrete L?-inner product.

For example, we define div,wy; € Sy, s.t.,

—~

(divywp, vp)p = —(wp, gradvy,)  forall v, € Sy, (2.3.9)
where (-, -), is the discrete L2-inner product defined by M,,.
The operator and matrix formulations of the vector Laplacian Zi S, x Uy, — S x Uy,

—~ Op —Mv B Op, 0
L5 = = : (2.3.10)
Uy BT CTMfC uyp f
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And LU, x Vi, —» U, x V),

—~ [ Op —]W6 CT oy 0
cé = = . (2.3.11)
up C  BTM,B)| \u, f

The associated diagonal preconditioners are

(MY 0
Pi={ (2.3.12)
0 (43)
and
—~ M0
Pl=1| ° . : (2.3.13)
0 (4

It is not hard to see that the modification of the L2-inner product will not bring any essential
difficulty to the proof of the previous results. We can easily reproduce all the results that we have
proved in the previous sections with the help of the following proposition whose proof can be

found in [[66].

Proposition 2.3.4. Assume that the discrete L* norm is equivalent to the L? norm. Then the norm

| - Hﬁf is equivalent to || - || a¢, and || - ng is equivalent to || - HAZ ie.,
lullze < llullag S llullz. forallu e Uy; (2.3.14)
lullze < llullag S llullzg forallu e V. (2.3.15)

2.3.3 Triangular Preconditioner

When a diagonal mass matrix is used, we can make use of the block decomposition

-M, B I M 'B -M, 0
= ) (2.3.16)
BT CcTMm;C) \0 I BT A
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to obtain a triangular preconditioner.

Definition 2.3.5. We define the operator Gj, : S}, x U, — S, xU,

- ~ —1
I M;'B\ (=, 0
G = ) , (2.3.17)
0 I BT A¢

and the operator G : U, x V', — Uy, x V,
. 3 -1
[ 8T\ (=81, o

Gl = ) . (2.3.18)
0 I cr o Ad

—~ 1 —~ 1
From the definition, it is trivial to verify that G; = £§ and Q,?f = L5  and thus conclude that

the proposed triangular preconditioners are uniform.

Theorem 2.3.6. Assume M is spectrally equivalent to M. Then the Gf and G are uniform pre-

conditioners for LS and LS, respectively, i.e., the corresponding operator norms

1G5 LNl LS xUn,snxtm)s 1(L£5G5) " IL(ShxUn S0 xU )5

IGLLE L@ x vz v 1GHLE) @ x v onxva)

are bounded and independent with parameter h.

In both diagonal and triangular preconditioners, to be practical, we do not compute A~! or AL

Instead we apply one and only one V-cycle multigrid for AL

2.3.4 Maxwell Equations with Divergence-Free Constraint

We consider a prototype of Maxwell equations with divergence-free constraint

curlcurlu = f, divu =0, in ), u X n = 0 on 0f).

50



The solution w is approximated using edge element space U ,. The divergence-free constraint can
then be understood in the weak sense, i.e., divy, v = 0. By introducing a Lagrangian multiplier
p € Sy, the matrix form is

ctm,;C BT u f

= ) (2.3.19)
B O P g

We can apply the augmented Lagrangian method [19], by adding BT M ! B to the first equation,

to get an equivalent matrix equation

A BT U f+B"M; g
= ) (2.3.20)
B O P g

Now the (1,1) block A = CTM;C + BT M, ' B in (2.3.20) is a discrete vector Laplacian and the
whole system (2.3.20)) is in Stokes type.

We can thus use the following diagonal preconditioner.

Theorem 2.3.7. The following block-diagonal matrix

At 0
(2.3.21)
0 M,!
A BT
is a uniform preconditioner for the regularized Maxwell operator
B O

Proof. It suffices to prove that the Schur complement S = BA~! BT is spectral equivalent to M,.
The inequality (Sp,p) < (M,p,p) for all p € S}, has been proved in Lemma To prove
the inequality in the other way, it suffices to prove the inf-sup condition: there exists a constant (3

independent of A such that

B
inf sup —( U, 1)

_ g0 (2.3.22)
PLESH vp €Uy thHAHQhH
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Given p, € S, we solve the Poisson equation A¢ = p; with homogenous Dirichlet boundary
condition and let v = grad¢. Then v € Hjy(curl) and diveo = p;, holds in L2 We define
vy, = Qnv where Qy, : H(curl) — Uy, is the L? projection. Then (divy, vs, qn) = (vp, grad q,) =
(v,gradqn) = —(divw,qn) = (pn, qn), i-e., divy vy, = py. To control the norm of curl vy, we

denote v as the piecewise constant projection of v. Then
leurlwy|| = || curl(vy, — vo)l| S b7 vw — voll < [|vlly < [lpall-

In the last step, we have used the H?-regularity result.

In summary, given p, € Sj,, we have found a v;, € U, such that (Bvy,py) = ||pn|* while
lvn|% = || divy val|* + || curlvg]|* < ||pn||*>. Therefore the inf-sup condition (2.3.22)) has been

proved which implies the inequality (Sp,p) > 82(M,p, p). O

To design an efficient triangular preconditioner for (2.3.20), we explore the commutator
AG = GA,, (2.3.23)

where G = M BT is the matrix representation of the gradient operator S;, — Uy, G = BT M
is another scaled gradient operator, and A, = BG represents the discrete Laplacian operator S;, —

Sh. The identity (2.3.23)) is a discrete version of the following identity
A grad = grad A, (2.3.24)

where the first A is the vector Laplacian operator and the second A is the scalar Laplacian, and

can be verified by noticing that C'G = curl grad = 0.

With (2.3.23), we have the following block factorization

A BT I G A O
= _ (2.3.25)

B 0)\o —M;4, B A,

When S, is the linear (P;) element, M, ! can be approximated accurately by using the mass lump-
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A mesh for the unit square A mesh for a L-shape domain A mesh for a crack domain

Figure 2.1: Meshes for Example 5.1

Table 2.1: Iteration steps and CPU time of the diagonal and the triangular preconditioners for the
vector Laplace equation in H(curl) space: the square domain (0, 1)2.

h Dof Iteration (D) | Time | Iteration (T) | Time
1/32 4,225 28 0.20s 13 0.18s
1/64 16,641 28 0.68 s 14 0.34s
1/128 | 66,049 27 1.90 s 14 1.30s
1/256 | 263,169 27 8.80s 14 6.80s

Table 2.2: Iteration steps and CPU time of the diagonal and the triangular preconditioners for the
lowest order discretization of the vector Laplace equation in H(curl) space: the L-shape

domain (—1,1)%\ {[0,1] x [-1,0]}.

h Dof Iteration (D) | Time | Iteration (T) | Time
1/32 3,201 33 0.24 s 15 0.19s
1/64 12,545 35 0.63s 16 0.40s
17128 | 49,665 39 2.50s 16 1.90s
1/256 | 197,633 41 7.20 s 16 5.50s

Table 2.3: Iteration steps and CPU time of the diagonal and the triangular preconditioners for the
lowest order discretization of the vector Laplace equation in H(curl) space: the crack

domain {|z| + |y| < 1}\{0 <z <1,y = 0}.

h Dof Iteration (D) | Time | Iteration (T) | Time
1/16 2,145 34 0.13s 15 0.08 s
1/32 8,385 38 0.54 s 15 0.30s
1/64 33,153 41 1.60 s 16 1.00 s
17128 | 131,841 44 6.70 s 16 3.60 s
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) ~4\|

A mesh for the unit cube

\
N

A mesh for a L-shaped domain

Figure 2.2: Meshes for Example 5.2

Table 2.4: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of the vector Laplace equation in H y(curl) space in three dimensions:
the unit cube domain.

h Dof Iteration (D) | Time | Iteration (T) | Time
1/4 729 21 0.25s 12 0.15s
1/8 4913 29 0.48s 16 0.28 s
1/16 | 35,937 33 3.90 s 18 4.0s
1/32 | 274,625 33 40s 19 27s

ing of the P element. Therefore we can easily solve (2.3.19) by inverting two Laplacian operators:
one is a vector Laplacian of the edge element and another is a scalar Laplacian for the P; element.
In general M ' will be replaced by a sparse approximation M; ' and (2.3.23)) can be used to

construct effective block-triangular preconditioners:

~ -1
iAo
B A,

I G
O —M;'A,

(2.3.26)

Again in practice, the A~'and A ! will be replaced by one multigrid V-cycle.

2.4 Numerical Examples

In this section, we will show the efficiency and the robustness of the proposed diagonal and trian-

gular preconditioners. We perform the numerical experiments using the :FEM package [13].
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Table 2.5: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of the vector Laplace equation in H y(curl) space in three dimensions:
L-shape domain (—1,1)3\ {(—=1,0) x (0,1) x (0,1)}.

h Dof Iteration (D) | Time | Iteration (T) | Time
172 665 20 0.03 s 12 0.06 s
1/4 4,401 34 0.54 s 16 0.37s
1/8 31,841 42 550s 20 3.60s
1/16 | 241,857 48 48 s 23 33s

Table 2.6: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of Maxwell equations in the saddle point form in three dimensions:
the unit cube domain.

h Dof Iteration (D) | Time | Iteration (T) | Time
1/4 729 21 0.40s 12 0.80 s
1/8 4,913 27 1.3s 16 1.3s
1/16 | 35,937 31 430s 18 48s
1/32 | 274,625 31 40 s 19 39s

Example 2.4.1 (Two Dimensional Vector Laplacian using Edge Elements). We first consider the

mixed system (2.1.4)) arising from the lowest order discretization of the vector Laplace equation in

H y(curl) space.

We consider three domains in two dimensions: the unit square (0, 1)?, the L-shape domain (—1, 1)\ {[0, 1] x

and the crack domain {|z| + |y| < 1}\{0 <z <1,y = 0}.

We use the diagonal preconditioner (2.3.12)) in the MINRES method and the triangular precondi-
tioner (2.3.17) in GMRES (with the restart step 20) to solve (2.1.4). In these preconditioners, one

and only one variable V-cycle is used for approximating A~!. In the variable V-cycle, we chose

my = 2 and my, = [1.57"%m,] for k = J,...,1. We stop the Krylov space iteration when the

relative residual is less than or equal to 1078, Iteration steps and CPU time are summarized in

Table 2.1} [2.2] and [2.3]

Example 2.4.2 (Three Dimensional Vector Laplacian using Edge Elements). We then consider the

three dimensional case. Still consider the lowest order discretization of the vector Laplace equation

in H(curl) space. We use almost the same setting except m; = 3 for which the performance is

more robust.
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Table 2.7: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of Maxwell equations in the saddle point form in three dimensions:
L-shape domain (—1,1)3\ {(—=1,0) x (0,1) x (0,1)}.

h Dof Iteration (D) | Time | Iteration (T) | Time
172 665 20 0.47s 10 0.68 s
1/4 4,401 28 0.58 s 14 1.10s
1/8 31,841 34 570s 17 4.00 s
1/16 | 241,857 37 40 s 19 38s

We consider two domains. One is the unit cube (0, 1) for which the full regularity assumption
holds and another is a L-shape domain (—1,1)\ {(—1,0) x (0,1) x (0,1)} which violates the

full regularity assumption. Iteration steps and CPU time are summarized in Table [2.4] and [2.5

Based on these tables, we present some discussion on our preconditioners.

1. Both diagonal and triangular preconditioners perform very well. The triangular one is more

robust and efficient.

2. The diagonal preconditioner is more sensitive to the elliptic regularity result as the iteration
steps are slowly increased, which is more evident in the three dimensional case; see the third
column of Table 2.4/ and For general domains, the H(curl) N H (div) is a strict sub-
space of H' and thus the approximation property may fail. On the other hand, the numerical
effectiveness even in the partial regularity cases is probably due to the fact that the full reg-
ularity of elliptic equation always holds in the interior of the domain. Additional smoothing

for near boundary region might compensate the loss of full regularity.

3. Only the lowest order element is tested while our theory assumes the finite element space
should contain full linear polynomial to ensure the approximation property. This violation
may also contribute to the slow increase of the iteration steps. We do not test the second type
of edge element due to the complication of the prolongation operators. The lowest order
edge element is the most popular edge element. For high order edge elements, we prefer to
use the V-cycle for the lowest order element plus additional Gauss-Seidel smoothers in the

finest level to construct preconditioners.
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Example 2.4.3 (Three dimensional Maxwell equations with divergent-free constraint). We con-
sider the lowest order discretization of Maxwell equations in the saddle point form (2.3.19) and
solve the regularized formulation (2.3.20). We test the block-diagonal preconditioner (2.3.21)) and
triangular preconditioner (2.3.26)). We use the same setting as in Example 5.2 and report the itera-
tion steps and corresponding CPU time in Table [2.6and

From these results, we conclude our block-diagonal and block-triangular preconditioners works
pretty well for the Maxwell equations discretized in the saddle point form. The iteration steps
may increase but very slowly. Although the block-triangular preconditioner requires less iteration
steps, the computational time is almost the same. This is due to the fact, now for the (2, 2) block,
the block-triangular preconditioners requires a V-cycle for the scalar Laplacian while in the block-

diagonal preconditioner it is only a diagonal approximation of the mass matrix.
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Chapter 3

Robust Error Estimate and Uniform
Preconditioners of TMAC Discretization of

Darcy-Stokes Equations

In this chapter, we propose a discretization method for the Darcy-Stokes equations. The discretiza-
tion is shown to be uniform with respect to the perturbation parameter. A preconditioner for the
discrete system is also proposed and shown to be efficient. We follow the notations from the

previous chapter.
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3.1 TMAC Discretization

3.1.1 Weak Formulation of Darcy-Stokes Equations

Let V and W denote the velocity space and the pressure space, respectively. A weak formulation

of the Darcy-Stokes equations (0.2.1)): find (u,p) € V' x W satisfying

a“(u,v) + b(v,p) = (f,v) forall veV,

(3.1.1)
b(u,q) =0 forall ¢ € W,
where the bilinear forms a*(-, -) and b(-, -) are defined as
a‘(u,v) = (u,v) + € [(rot u, rot v) + (div u, divv)] for all u,v € Hj,
b(v,q) := —(divwv,q) forall v € H}, g€ L2

Let the operator A° : V' — V" introduced by the bilinear form a°(-,-) and B : V' — W introduced
by b(-, ). We can write the operator form of (3.1.1))

A¢ BT\ [u f
- . (3.1.2)
B O P 0

It is well known that (3.1.1) is well posed if and only if the following so-called Brezzi condi-

tions [12]] hold for an appropriate norms || - ||y for V and || - ||y for W:

1. Continuity of bilinear forms a“(+,-) and b(-, -): there exist constants c,, ¢, > 0 such that

a‘(u,v) < c.llullvivllv, b, q) <aclv|vigllw, forallu,veV, ,geW.

2. Coercivity of a(-, ) in the kernel space. There exists a constant cv > 0 such that

a“(u,u) > af|u||? forall u € ker(B),
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where ker(B) = {v € V : b(v,q) = 0forall ¢ € W}.
3. Inf-sup condition of b(-, -). There exists a constant 5 > 0 such that

inf sup M > f.

PEWP£0 pev 720 ||V v [[pllw
Furthermore to get a scheme robust to ¢, all constants involved in these conditions should be -

independent.

We then discuss one possible choice of spaces and verify all these conditions. A natural space for
the pressure is W = L2. Based on a(-,-), we can use H' with a scaled H' norm induced by
a‘(-,-). But to impose the uniform continuity of bilinear form b(-, -), we need to include H (div)

norm into the space V. In summary we chose V' = H},, W = L2 with norms:

?46 + | divvﬂz)l/2

[vllv = (|lv] » lallw = llqll

The continuity and the coercivity of a“(-, -) in the null space of div is obvious. The inf-sup condi-
tion is derived from that of Stokes equation, i.e., for any p € L2, we can find a v € H such that
dive = pand ||Vv|| < ||p||. Then by the Poincaré inequality, we can also control the L?-norm of

loll S Vol < lipll-

3.1.2 TMAUC Discretization

We shall chose Hy(div) conforming finite element spaces for velocity and discontinuous poly-
nomial space for pressure. Suppose that the mesh 7, is a shape regular mesh. Suppose that
S, C H(curl), V;, C Hy(div) and W), C L2 are appropriate finite element spaces so that the

following sequence is exact

0 — Sy, N Hy(curl) 25 v, 2% W, — 0. (3.1.3)

Since div V';, C W), div uy, = 0 implies wy, is divergence free point-wisely.
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We shall discretize the vector Laplacian operator based on the following identity:
—A = —grad div + curlrot .

Since we use H (div) conforming element for the velocity, div operator is a natural discretization.
To discretize the vector Laplacian for a H(div) element, we introduce the weak rot; operator as

the dual of curl operator .

Definition 3.1.1. The linear operator roty, : V,, — S}, is defined as follows: for a given u € V',

rotpu € Sy, such that

(rotpu, 7) = (u, curl 7) forall T € Sy. (3.1.4)

The operators rot;, is well defined, since the system involved is a non-singular finite dimensional
square system. The auxiliary variable w;, = rot; u can be thought of as an approximation of the

vorticity w.

With the help of operator rot,, we define the discrete bilinear form a,(+, -) on the discrete space

V, as
a5 (u,v) = (u,v) + € [(rot,u, rot,v) + (div u, div v)] for u,v € V. (3.1.5)
The TMAC discretization of (3.1.1)) is: find (un, pr) € V', X W), such that:

ay,(wn, vy) + b(vy, pr) = (F,vy) forallv, € Vi,
h (3.1.6)

b(up,qn) =0 for all ¢, € W,

For u € V,, define

||u\|fh = (rotpu, rot,w) + (divu, dive), ||ul?i. = a(u,u).

lellV, = llwll® + €llulli, + [ dive]* = [Jull3 + || dive]*
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In [66] we have proved the following discrete Poincaré inequality.

Lemma 3.1.1 (Discrete Poincaré Inequality [66]). We have the following discrete Poincaré in-

equality with respect to || - ||1 p:

lunl| S llunllin  forallwy, € Vi, (3.1.7)

According to Lemma(3.1.1], we can obtain the continuity and coercivity of the bilinear form aj (-, -)

restricted to the null space

1. Continuity: af(u,v) < ||ully, ||v]||v;;

2. Coercivity in the null space of B: aj,(u,u) = [|[ul|f, forallu € V), Nker(B).

Lemma 3.1.2. For any q;, € W), there exists v, € V', such that
divw, = gn, and ||vplv, < [lanl-
Proof. First of all the following inf-sup condition
divw, = gn, and [[pll1n S llanll-

is established in [66]. By the discrete Poincaré inequality, we can control the ||vy|| < ||vn||1,, and

thus the inf-sup condition in ||v||y, norm follows. O

By Lemma and continuity and coercivity of aj, (-, -), we have the wellposedness of the weak

formulation.

Theorem 3.1.2. There exists a unique solution (up,py) € V', X W), to the weak formulation of

the Darcy-Stokes equations (3.1.6), and

lnlvi, + llpnll S W1l

where || f|lyv: = sup (£, vn)
" vueVy ”vhHVh

< [I£1-
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3.2 Error Analysis

In this section, we prove that for the RTy-P, approximation, the convergence order depends on the
symmetry of the mesh, and both velocity and pressure can achieve optimal first-order convergence
on mildly structured meshes. For the BDM;-P, approximation, first-order convergence is always

achieved. The convergence rates are uniform with respect to the parameter e.

We will employ the canonical interpolation operators for H(curl) and H(div) elements and use
subscript (-); to denote such interpolation. It is well known that the canonical interpolations is

commuted with the corresponding differential operators [22].

3.2.1 Basic Error Bound

Denoted by Q;, : L? — S}, the L? projection.

Theorem 3.2.1. Assume that the solution of the Darcy-Stokes equations satisfies w € H} and
rot w € H(curl). Let wy, and py, be the solution of the TMAC discretization (3.1.6). Then, we have

the following error estimate

[[een — i

Ac + lpn — prl| < €l|rotw — rotpur|| + €| curl(I — Qp)rotu|| + ||u — u;|.

Proof. Use f = €*(curl curl — graddiv)u + uw + Vp and divu = divu, = divu; = 0, for

vy, € ker(div), we obtain the error equation

CLZ('U,;L —uy, ’Uh)
= (f,up —up) — €(rotpur, vy) — (ug,vp)
= ¢(curl rotu, vy,) — €2(rotpur, rotyvy) + (w0 — wuy, vy)

= e(rotu — rotpur, rotyvy) + €(curl(l — Qp)rotu, vy) + (u — ur, vy).
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Here in the third step, we use

(rot u, rotpvy) = (Qp rot u, rotyvy) = (curl @, rot w, vy,)

Substitute v;, = u;, — u; and apply Cauchy-Schwarz inequality to get the desired error estimate of

H’Ll,h — ’l,l,[’ AZ'

To prove the error estimate of the pressure, by the inf-sup condition presented in Lemma[3.1.2] we

can choose v;, € V', such that

div vy, = pr — pr, and [|vpl|ac < [|pr — pall-

With such vy, we have

b(pr — pn,vn) = b(pr, vn) + aj,(un, vi) — (f,vn)
= [a;(uh, vy,) — €(curlrot u, vy,) — (u, vh)] + b(pr — p,vp)

= e%(rotpuy, — rot u, rotyvy) + (curl(Qy — I)rotu, vy) + (uy — u,vy).
Here we use the fact that p; is the L? projection of p to W, space and thus
b(pr — p,vp) = (pr — p,dive,) = 0.

Apply Cauchy-Schwarz inequality and notice that div v, = p; — pp, and ||v,|

As, S llpr — pnll, we

get

lpr — pnll < €] rot w — rotpuy|| + €| curl(I — Q) rot u|| + [|u — wy||

S llur — upllac + effrotw — rotpur|| + flu — wrl| + | curl(I — Q) rot ul|.

Remark 3.2.2. Notice that divu, = 0 and divu; = divIly, u = Iy, divu = 0. Then

|un — wrlly;, = [[un — wrllag .-
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The interpolant u; can be changed to any divergence free interpolant of w. But when interpolant p;
is replaced by an easy computable one p;;(e.g. the nodal interpolation at the center of elements),

an additional term ||p — p;/|| should be included in the estimate of ||p, — prs]|- O

We then study the three terms in the error estimate obtained in Theorem [3.2.1] First of all, the

following approximation properties of the L? projection are well known.

Lemma 3.2.1. For any quasi-uniform mesh with mesh size h, the L? projection @Q;, : L* — P,
satisfies

| — @noll + hlo — Quoly S P7[0]s  forall g € H”,

where 1 < s < r, and P, denotes the polynomial up to degree r for an positive integer r.

The interpolation error in L?-norm is also well known. If the polynoimal space P is contained in

V., thenforu € H":

' — wrl| < B |ful,. (3.2.1)

The subtle term is the interpolation error: |[rotw — rot,u;||. The convergence rate of this term
depends on the symmetry of the triangulation for RTy-P( scheme, while the first-order convergence
can be guaranteed for BDM;-P, scheme on general quasi-uniform grids. We show the details in

the following two subsections.

3.2.2 Error Analysis of BDM;-P,.

In this subsection, we present the error estimates for the discrete formulation (3.1.6) with the
BDM;-P, element.

Lemma 3.2.2 (Lemma 13 in Chen, Wang and Zhong [66]). Assume that w € H? N H}, and
divu = 0. Let u; be the canonical interpolation of u on to BDM;. Then, we have the error
estimate

| rot w — rotpus|| S hljulls.

65



So we get the error estimates for the BDM;-Py.

Theorem 3.2.3. Assume that the solution of the Darcy-Stokes equations satisfies uw € H* N H
and rot w € H?. Let uy, and py, be the solution of the BDM,-P, approximation using formulation

(3.1.6). Then, we have the following error estimate

[ = wrllv, + llpn = pill S (eh+ B?)[[ullz + €Al rot ull..

As ¢ — 0, we obtain the second order convergence of L?-norm of the BDM;-P, approximation of
Darcy system and when € — 1, we obtain the first order convergence of a H '-type norm for Stokes

equations.

Note that the computation of rot; operator requires inverting the mass matrix of S space. For
BDM; -Py pair, the S}, space is the quadratic Lagrange element for which an accurate mass lumping
1s not available. We follow [85]] to add a cubic bubble into P, and can thus obtain a accurate mass
lumping. The resulting scheme will be denoted by BDMP-P, element. Details of the mass lumping

and the error estimate can be found in [66]].

3.2.3 Error Analysis of RT(-P.

The estimate of Ry is more complicated. Let us recall the definition for the irregular triangulation

following Bank and Xu [7], and two approximation properties.

Definition 3.2.4. A triangulation Ty, is O(h*) irregular if the following holds:
(a) Let £ = & @ &, denote the set of interior edges in the triangulation mesh. For any e € &1, two
triangles 7, and 7} containing e form an O(h*) approximate parallelogram, and y .. || +|7}| =

O(h>).
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(b) Let P = P & Py denote the set of boundary vertices. The elements associated with each

x € Py form an O(h?) approximate parallelogram, and |Ps| = k, where k is independent of h.
Lemma 3.2.3 (Lemma 8 in Chen, Wang, and Zhong [60]). Assume that u € W>*nH (1), divu =
0, and the triangulation is O(h*7) irregular. We have the error estimate:

[ ot w — rotpay|| S A" Tog hl'/2|||2,c-

Theorem 3.2.5. Assume that the solution of the Darcy-Stokes equations satisfies uw € W>>° N H
and rot w € H?. Assume the triangulation mesh is O(h*?) irregular. Let w;, and py, be the solution

of the RT-Py approximation using formulation (3.1.6). Then, we have the error estimate

lwn, = willvy, + [l = prll S eh™ 7 log A2 |lul|zc + €Al rot ]|z + Allullr.

As € — 0, we obtain the first order convergence of L?-norm since RT, contains only piecewise
constant polynomial not full linear polynomial. When ¢ — 1, we obtain near first order conver-

gence of a H!-type norm if the mesh is symmetry in the sense that o > 1.

3.3 A uniform preconditioner

We shall use the framework developed in [80]. Roughly speaking if an operator £ from an Hilbert
space X to its dual X™* is continuous and stable in the inner product (-, -)x, then the Riesz repre-

sentation induced by this inner product will be a good preconditioner of L.

Therefore stability in Section 2 leads to a preconditioner in the form

(I, — €A — graddiv)™' O
O I

p

(3.3.1)

As ¢ — 0, a fast solver for inverting [, — grad div is needed which requires a special smoother

taking care of the large null space of div operator. We could expect the multigrid methods for
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H(div) problems developed in [3| 20] will work using preconditioner (3.3.T].

Here we shall follow [79]] to establish a stability in a different norm. We first introduce the inter-
section and the sum of two Hilbert spaces. For Hilbert spaces X and Y, which are both contained
in some larger Hilbert space, the intersection X N Y and the sum X + Y are both Hilbert spaces

with norms given by
=%y = ll2llx + ll=]¥
and

2 _ : 2 2
oWery = int_ (lall% + loli)

Furthermore, when X MY are dense in both spaces X and Y,
(XNY)=X"4+4Y" (X4+Y)=X"NnY". (3.3.2)

For detailed proof of (3.3.2), we refer to [82].

Let us write the system (0.2.1)) in the operator form

A° = (3.3.3)
P 0
where
I — A grad
A = . (3.3.4)
—div 0

We define the spaces X, =V x W and X} = V" x W* by
X.=(L*NeH}) x (H' ML) + e 'L2)

and

X' =(L*+¢'H Y x (Hy' neld),
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where H, ' := (H' N L2)*. The norm for velocity space L* N eH  is
[0l Z2ncey = l0l* + €[V [* = a*(v,v),
and the norm for pressure space is
Pl ccmszz = dmf L IpallE €l = pal”

Note that spaces chosen here are equivalent to the choices in Section 2 as linear spaces but with

different norms.

By the definition of these norms, we can easily the continuity and the coercivity of bilinear form

a(-, ). We then verify the continuity of b(-, -) in this norm.

Lemma 3.3.1. The bilinear form b(-, -) is continuous, i.e.,
b(v,p) < HUHL%GH(I) HPHHlJre—ng-
Proof. Forany g € H' N L3,

b(v,p) = —(divw,p — q) — (divw, q)
< el divolle t|p —ql| + ||v]||| grad ¢
< (Joll + el divol)) (e Hp — qll + llallr)

S Ivllzncey 1Pl s ez

The inf-sup condition in these non-standard norm can be derived from the existence of a right

inverse of div operator

SeL(L3, Hy)NL(H;Y, L?) and divSf = f.
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The operator S is known as Bogovskii operator and can be found in many places, e.g. [17, [18]]. We

include the simple proof in [81] for the completeness.

Lemma 3.3.2. The bilinear form b(-, -) satisfies the inf-sup condition:

. b(v, q)
inf sup
9€W vev ||,U||L206H(1)||q||H1+671L%

> 3,

where the positive constant (3 is independent of the parameter e.

Proof. Forany q € L%(), we have

.00 o {dvSgq b(v, )

~Y

lallgserpz = sup =
e gE€H, 'NeL? ||9||HglmeLg

Y

gEH ' NeL? HSQHL%EH}) veV HUHL2QEH(1).

The well-posedness of the operator A from X, — X leads to the block diagonal preconditioner

(I —e2A)! 0
B = ) (3.3.5)
0 (—A N)_l + €27
where —A y is the operator of Laplacian equation with pure Neumann boundary condition. The

preconditioned operator B°A¢ is uniformly bounded and consequently the inverse of 3°A° can be

computed efficiently by Krylov space method.

We then move to the TMAC discretization. The discrete system (3.1.6) can be written as

u
A () = Fn (3.3.6)
Dh 0
where
M, — €A, grad
Al = h o grady ’ (3.3.7)

—div 0
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with the discrete vector Laplacian —A,, = curl rot, —grad,, div. The corresponding block diagonal

and positive definite operator is given by

(Mu — EQAh)il 0
B, = , (3.3.8)
0 (—Anxp)t+ eQMp_1
where —Ay ;, = — div grad, and M,,, M, are mass matrices for velocity and pressure, respectively.

Notice that our pressure space is not a subspace of H' and thus we cannot follow [81] by con-

structing a Fortin operator stable in both L? and H'-norm. Instead we follow the approach in [82]].

Let P, denote the orthogonal projection V;/ — grad,,(W},) in the A; " inner product. Let us intro-

duce a lemma in [82] which presents a characterization of this operator.

Lemma 3.3.3. Let I : V}, — V) be the Riesz isomorphism induced by the inner product (-, )1 p,
ie, (Iu,v) = (rotpu,rotyv) + (divu, divw). For f € V), let (up, pr) € (Vi, Wh,) be the unique

solution of

Tuy, + grad,p, = f, (3.3.9)

—divuy, = 0. (3.3.10)
Define the solution operator as R : V| — W), by f — py. Then Py, = grad, R.

Introduce the vorticity wy;, = roty u; and stream function ¢y, so that w;, = curl ¢,. Then equations

(3:3.9)-(3.3.10)) is equivalent to the mixed formulation of biharmonic equation

Awp =rot £, wp = A¢y.

Note that if f € L2, then curl w;, = f holds in L? and

b(vn, pr) = (f,vr) — (curlwy, v,), forall v, € V.

It suffices to verify the L? stability of the H ! type projection P,.
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Lemma 3.3.4. Assume the H>-regularity holds for Stokes equation. For BDM,-P, element, we

have
IPa Sl S N Fnll- (3.3.11)

Proof. By definition, we have P, f;, = grad, p, = grad, Rf;, where R is defined as in Lemma
B33

Use the same data f,, we solve Stokes equations to get w € H? and let w = rotwu. Then

curlw = f, holds in L? and by the H?-regularity assumption |[w|; = ||u| < || £ll-
We start from the identity

b(vn, pr) (curlw — curl wy,, vy)

| Pufnll = | grgdphll = sup

vpEV) thH vpEV th” ’

and get || P, f,|| < || curlw — curl wy,||. We then estimate the error || curl w — curl wy, || as follows.

Let w; be a quasi-interpolation of w satisfying
lw = wil| + A cwrl(w — wi)[| S hljwl],
Then

| curlw — curlwy|| < || curlw — curlwy|| + A~ ||wy — wy||
S lwlls + A7 (lw = wil] + [Jw — w))

S Fall-

In the third step, we use the error estimate obtained in [[1]] for biharmonic equation

lw —wi|l S Al F4ll;

which only true when H?2-regularity result holds and the degree of the polynomial space for wy, is

greater than or equal to 2 which is equivalent to using BDM; for velocity. [
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According to Lemma3.3.4} we can apply Theorem 4.2 in [82] to conclude that (—Ay,;) ' +€* M,

is equivalent to the Schur complement of system .Aj,.

Theorem 3.3.1. Assume the H?-regularity holds for Stokes equation. Let S, = (—Ayxp)t +
M and S, = — div(M, — €?A)~" grad,,. There exist positive constant cq, independent of h

and €, such for all py, € W, the following holds:

ca(Snpn,pn) < (Shpn, pn) < 2(Shpn, pn)-

Consequently, B;, is a uniform preconditioner of Aj,.

It is easy to verify that 53} is a uniform preconditioner of A5 by following the framework of [79],

and similar proof can be found in [[15].

3.4 Numerical Experiments

In the numerical tests with the square domain [—1, 1] x [—1, 1], the Dirichlet boundary condition

for u are chosen, and the analytical solutions are
u(z,y) = curlsin?(7z)sin?(ry), p(x,y) = sin(rz).

Thus the righthand side f = u — e2Au — grad p.

We present numerical tests for both the RT-P discretization and the BDM}f—PO discretization. In
order to avoid taking the inverse of the mass matrix in the discrete system, we consider the lumped
schemes only. For both schemes, we consider two different types of grids: a crisscross grid (also
referred to as a bisection grid), a three-directional structured grid (all triangles are formed by
edges parallel to three directions only). We refer to Figure [3.1|for an illustration. We use a uniform
bisect strategy for refining the bisection grid. That is the triangle is bisected twice by connecting
the midpoint of the longest edge to its opposite vertex. In the so-called red refinement the triangle

is divided into four congruent sub-triangles by connecting the midpoint of each edge. We use a
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uniform red refinement for refining the three-directional grids such that the resulting grids remains

three-directional.

Figure 3.1: Bisection grids and three-directional structured grids of a square domain.

We implemented the schemes by using the MATLAB® software package iFEM [13].

3.4.1 Uniform convergence

In this subsection, we present that the discrete systems are uniformly convergent. By using
BDMI1b-Fy or R1j-Fp, the convergence rates is uniform with respect to the perturbation parameter

€ by red refinement meshes.

22 273 24 275 26 Rate

1 0.5633 | 0.1515 | 0.0383 | 0.0096 | 0.0024 || 1.9739
272 0.5625 | 0.1515 | 0.0383 | 0.0096 | 0.0024 || 1.9735
21 0.5593 | 0.1516 | 0.0383 | 0.0096 | 0.0024 || 1.9719
278 0.5583 | 0.1538 | 0.0386 | 0.0096 | 0.0024 || 1.9732

0 0.5583 | 0.1539 | 0.0387 | 0.0096 | 0.0024 || 1.9730

Table 3.1: ||u — uy|| obtained by BDM1b- P, element by red refinement
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272 273 24 277 26 Rate
8.2503 | 3.2262 | 0.9753 | 0.2614 | 0.0724 || 1.7289
2.0820 | 0.8101 | 0.2441 | 0.0653 | 0.0173 || 1.7457
0.5921 | 0.2151 | 0.0623 | 0.0164 | 0.0043 || 1.7955
0.3004 | 0.0701 | 0.0118 | 0.0019 | 0.0003 || 2.4775
0.2988 | 0.0688 | 0.0110 | 0.0015 | 0.0002 || 2.6739

Table 3.2: ||u;, — u ||y, obtained by BDM1b-P, element by red refinement

2—2

2—3

2—4

2—5

2—6

Rate

0.9424
0.2676
0.2603
0.2602
0.2602

0.2944
0.1319
0.1307
0.1307
0.1307

0.1024
0.0656
0.0654
0.0654
0.0654

0.0421
0.0328
0.0327
0.0327
0.0327

0.0188
0.0164
0.0164
0.0164
0.0164

1.4104
1.0071
0.9982
0.9980
0.9980

Table 3.3: ||p — py|| obtained by BDM1b-P, element by red refinement

272

273

274

275

276

Rate

2.1312
2.0815
2.0244
2.0221
2.0221

1.1086
1.1028
1.0947
1.0942
1.0942

0.5609
0.5601
0.5591
0.5590
0.5590

0.2813
0.2812
0.2810
0.2810
0.2810

0.1407
0.1407
0.1407
0.1407
0.1407

0.9820
0.9745
0.9655
0.9651
0.9651

Table 3.4: ||u — uy|| obtained by RTy- P, element by red refinement

272 273 24 277 26 Rate
4.6551 | 1.2145 | 0.3038 | 0.0766 | 0.0315 || 1.8403
1.1194 | 0.2965 | 0.0741 | 0.0185 | 0.0056 || 1.9295
0.4932 | 0.1415 | 0.0360 | 0.0090 | 0.0022 || 1.9531
0.4731 | 0.1410 | 0.0368 | 0.0093 | 0.0023 || 1.9253
0.4730 | 0.1410 | 0.0368 | 0.0093 | 0.0023 || 1.9247
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. 272 273 24 270 26 Rate
1 37024 | 1.0016 | 0.2614 | 0.0717 | 0.0229 || 1.8480
272 0.3856 | 0.1510 | 0.0682 | 0.0331 | 0.0164 | 1.1300
24 0.2705 | 0.1321 | 0.0656 | 0.0327 | 0.0164 || 1.0106
2-8 0.2672 | 0.1316 | 0.0655 | 0.0327 | 0.0164 || 1.0065
0 0.2672 | 0.1316 | 0.0655 | 0.0327 | 0.0164 || 1.0065

Table 3.6: ||p — py|| obtained by RTp-P, element by red refinement

3.4.2 Robustness to meshes

In this subsection, we present the convergence rates of BDM1b-Fj element and R7y-F, element
by bisection refinement meshes. We can see that the convergence rate of BDM1b-F;, element is
robust to the meshes, while ||u, — u;||y;, obtained by RT)-F, element by bisection refinement

diverges for some values of e.

. h 272 273 24 275 276 Rate
1 0.5633 | 0.1442 | 0.0366 | 0.0092 | 0.0023 || 1.9850
272 0.5625 | 0.1441 | 0.0366 | 0.0092 | 0.0023 || 1.9845
278 0.5593 | 0.1436 | 0.0366 | 0.0092 | 0.0023 || 1.9824
278 0.5583 | 0.1443 | 0.0366 | 0.0092 | 0.0023 || 1.9826
0 0.5583 | 0.1444 | 0.0367 | 0.0092 | 0.0023 || 1.9826

Table 3.7: ||u — uy|| obtained by BDM1b- Py element by bisection refinement

. h 272 273 24 27° 276 Rate
1 8.2503 | 2.8396 | 1.2806 | 0.6139 | 0.3040 || 1.1734
272 2.0820 | 0.7137 | 0.3206 | 0.1535 | 0.0759 || 1.1772
21 0.5921 | 0.1928 | 0.0818 | 0.0386 | 0.0190 || 1.2250
278 0.3004 | 0.0739 | 0.0172 | 0.0046 | 0.0015 || 1.9273
0 0.2988 | 0.0730 | 0.0164 | 0.0039 | 0.0009 || 2.0838

Table 3.8: ||u;, — u ||y, obtained by BDM1b-F; element by bisection refinement
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2—2

2—3

2—4

2—5

2—6

Rate

0.9424
0.2676
0.2603
0.2602
0.2602

0.2993
0.1319
0.1307
0.1307
0.1307

0.1035
0.0656
0.0654
0.0654
0.0654

0.0426
0.0328
0.0327
0.0327
0.0327

0.0189
0.0164
0.0164
0.0164
0.0164

1.4085
1.0070
0.9982
0.9980
0.9980

Table 3.9: ||p — py|| obtained by BDM1b-F, element by bisection refinement

2—2

2—3

2—4

2—5

2—6

Rate

2.1312
2.0815
2.0244
2.0221
2.0221

1.0628
1.0544
1.0398
1.0373
1.0373

0.5263
0.5255
0.5240
0.5235
0.5235

0.2626
0.2625
0.2623
0.2622
0.2622

0.1312
0.1312
0.1312
0.1311
0.1311

1.0060
0.9982
0.9883
0.9878
0.9878

Table 3.10: ||u — || obtained by RTy-Fy element by bisection refinement

272 273 24 27° 276 Rate
4.6551 | 10.1485 | 9.8943 | 9.8522 | 9.8532 || -0.2121
1.1194 | 2.5551 | 2.4806 | 2.4650 | 2.4638 | -0.2224
0.4932 | 0.7273 | 0.6489 | 0.6240 | 0.6179 | -0.0429
0.4731 | 0.3776 | 0.2031 | 0.1086 | 0.0640 || 0.7569
0.4730 | 0.3756 | 0.1995 | 0.1016 | 0.0511 || 0.8305

Table 3.11: ||u;, — u||y, obtained by RT)-F, element by bisection refinement

272 273 24 277 26 Rate
3.7024 | 1.7085 | 0.9651 | 0.6409 | 0.4453 || 0.7526
0.3856 | 0.1721 | 0.0896 | 0.0519 | 0.0323 || 0.8885
0.2705 | 0.1315 | 0.0656 | 0.0328 | 0.0165 || 1.0078
0.2672 | 0.1309 | 0.0654 | 0.0327 | 0.0164 || 1.0059
0.2672 | 0.1309 | 0.0654 | 0.0327 | 0.0164 || 1.0059

77

Table 3.12: ||p — py|| obtained by RTp-P, element by bisection refinement




3.4.3 Uniform Preconditioner

In this subsection, we can see that the preconditioned discrete systems can be solved by Minres

with uniformly bounded steps.

272 273 274 275 276

€
1 21 | 13 | 11 9 9
272 21 |25 | 27 | 29 | 17
24 21 | 23 | 25| 29 | 31
278 23 | 23 | 23 | 23 | 21
0 23 | 23 | 23 | 23 | 23

Table 3.13: Minres iteration steps to 1075 obtained by BDM;-P, element with red refinement

2721273274 | 275|276

€
1 21 | 13 | 11 9 7
272 21 | 21 | 21 | 23 | 15
24 21 | 19 | 19 | 21 | 17
278 23 | 17 | 17 | 15 | 15
0 23 | 17 | 17 | 15 | 15

Table 3.14: Minres iteration steps to 10~% obtained by B.D M- P element with bisection refinement

272|273 | 274 | 27° | 276

€
1 19 | 11 | 11 9 7
272 19 | 21 | 25 | 27 | 17
21 19 | 21 | 23 | 25 | 29
278 23 | 23 | 23 | 21 | 19
0 23 | 23 | 23 | 23 | 23

Table 3.15: Minres iteration steps to 10~% obtained by RTy- Py element with red refinement
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272|273 | 271 | 27° | 276

1 19 | 19 | 11 9 9
272 19 | 19 | 21 | 21 | 15
21 19 | 17 | 19 | 21 | 17
278 23 | 13 | 13 | 13 | 13

0 23 | 11 | 11 9 9

Table 3.16: Minres iteration steps to 10~% obtained by RTy- P element with bisection refinement
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Chapter 4

Block Triangular Preconditioner for the

Stochatic Stokes Equations

We study efficient iterative solvers for the stochastic Galerkin discretization of the Stokes equations
with random viscosity. The stochastic saddle-point linear systems are obtained by using H(div)
finite element discretization in physical space and generalized polynomial chaos expansion in ran-
dom space. We prove the existence and uniqueness of the solutions to the continuous problem and
its corresponding stochastic Galerkin discretization. Optimal error estimates are also derived. We
construct block-diagonal/triangular preconditioners for use with the generalized minimum residual
method and the bi-conjugate gradient stabilized method. An optimal multigrid solver is applied
to efficiently solve the diagonal blocks that correspond to deterministic discrete Stokes systems.
We also design a multigrid method with either the block Jacobi method or block Gauss-Seidel
method as the smoother for solving the stochastic saddle-point systems. It is shown that the multi-
grid method using the block Gauss-Seidel smoother is more efficient and robust than that using the
block Jacobi smoother. To demonstrate the efficiency and robustness of the proposed block precon-
ditioners and multigrid method with respect to all discretization parameters and random viscosity

variance, various numerical examples also are provided.

We use notation (2 for the random space, and D for the physical domain. Let D C R? be a
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bounded convex polygonal domain with boundary 0D. (€2, F,P) denotes a complete probability
space, where () is the set of outcomes, F C 29 is the o —algebra of random events, and P is the

probability measure.

4.1 Stokes Equations with Random Viscosity

We consider the following steady-state Stokes equations with random coefficient:

—v(w)Au(w, ) + grad p(w,z) = f(z) in Qx D,
—divu(w,z) = 0 in Q x D, (4.1.1)

u(w,x) = gp(zr) on Qx 9D,

where wu is the velocity field, p is the pressure, v is random viscosity, and f is an external force
field. For simplicity, we assume that f and g, are deterministic functions. We also assume that v

is bounded and uniformly coercive, i.e.,

EImea Vmaz € (07 +OO) : P(w SO V(w> < [Vmi’m Vmaa:]) =1 (412)

In this paper, we consider a special case where the viscosity is given in the form v(w) = v({(w)),
and ¢ is assumed to be a random variable, having probability density function pe : I' — R™ with
bounded I' := £(€2). We also assume that the Dirichlet boundary condition g, (z) = 0. By the
Doob-Dynkin lemma [69]], the random fields w and p can also be expressed as functions of &, i.e.,
u = u(&,z) and p = p(&, z). Then, the stochastic Stokes equations can be written in the

following deterministic parameterized form:

—v(§)Au(&, z) + gradp(&,z) = f(x) in'x D,
~divu(&,z) = 0 in T x D, (4.1.3)

ul,z)= 0 on I" x 9D.
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4.1.1 The Velocity-Pressure Formulation.

For any u € H (D), the following identity for the vector Laplacian holds in H ~*(D) topology:
—Awu = curlrot u — grad div .

A variational formulation of the stochastic Stokes equations (@.1.3) is: find u € L*(T") ® H (D)
and p € L*(T") ® L3(D) such that

A(u,v) + B(v,p) = E[(f,v)] forall ve L*(T)® H}(D), “14)
B(u,q) =0 forall ¢ € LA(T) ® L3(D), -

where the bilinear forms A(-, -) and B(-,-) are defined as: for u,v € L*(I") ® H{(D),
A(u,v) := E[v(§)(rot u,rot v) + (&) (divu, div v)];
and for v € L*(T') ® H}(D), q € L*(I') ® L3(D),

B(v,q) := —E[(div v, q)].

4.1.2 The Wellposedness.
According to the definition of the bilinear forms A(u,v) and B(v,q) and the boundedness and
coercivity of the random variable v/(&), it is straightforward to verify both the continuity and coer-

civity of 4, i.e., for all w,v € L*(I") ® H}(D)

|A(u, v)| < Vmax”““L?(F)@Hg(D)||’U||L2(F)®H(1)(D),

|A(u, w)| > VminHuH%Q(F)(@H(l)(D)’
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and the continuity of B, i.e., forall u € L*(I') ® H{(D) and ¢ € L*(T") ® L3(D)

|B(u,q)| < HUHLQ(F)@H}J(D)HQHL2(F)®L§(D)-

Hence, to prove the well-posedness of (4.1.4), it is sufficient to prove the inf-sup condition for
the bilinear form B(-, -). Thus, we prove the following lemma, which is equivalent to the inf-sup

condition.

Lemma 4.1.1. For any q(¢,x) € L*(I') ® L2(D), there exists a v(¢, z) € L*(T') @ Hy(D) such

that

divv=¢q, and ||’U||L2(r)®H5(D) 5 ||CIHL2(F)®L3(D)-

Proof. Forany q(¢,z) € L*(T") ® L3(D), we can expand ¢(¢, x) in the form:
(&) =) q'(@)Vi(6),
=1

where ¢'(x) = E[q(&,2)V;(€)] € L2(D). Then, the tensor norm can be written as the summation

of the L? norm of each coefficient, i.e., ||q”i2(F)®L2(D) =>2 ld(2))>
0

It is already known that for each ¢'(x) € L2(D), there exists a corresponding v'(x) € Hy(D),
such that
dive'(z) = ¢'(z) and [[v'(z)[: < clq'(z)],

where ¢ > 0 (see [70]). With v’(x) as the coefficients, we can define the function v (¢, ) :=

2o v (@) Wi ().

o0

lo(& @)l 2myemmyo) = Y (ot o' (@) |* + | dive'(@)[*) < 2¢ ) [lg' ()|
1=1

i=1

< 2c)|q(&, @) || L2 (yer2(p) < ©-
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Then, v(¢,x) € L*(I') ® Hy(D) and satisfies

diveo = ¢, and [V 2memyp) S a2 @myerzo)-

Then, we prove that v (£, x) is a well-defined function, which satisfies the conditions. [l

In summary, we acquire the following result for the well-posedness of the variational formulation

4.1.4)

Theorem 4.1.1. There exists a unique solution u € L*(I') ® Hy(D) and p € L*(I') ® L3(D) to
the variational formulation (4.1.4), and

Hu||L2(F)®H(1](D) + ||P||L2(r)®Lg(D) N HfHLz(F)@)Hgl(D)a

El(f,v)]

) H/UHLQ(F)Q@H}](D).

where ||f||L2(r)®H51(D) = SUPyer2(IeHL(D

4.2 The Discrete Problem

4.2.1 The Discrete Problem.

In the tensor space L*(I') ® V', we define the following inner product and the associated norm:
Definition 4.2.1. For any u,v € L*(T') ® V'},, the inner product

(U, V) o)y = El(rotpu, rotyv) + (divu, divv)]

defines an associated norm

||'UJH%2(F)®V3 = (uau)L2(F)®Vg~

By following [66], we can easily verify the well-posedness of the discrete operator rot;, and the

inner product (-, +) ;>(r)gys- Based on these, we obtain a discrete variational formulation of (4.1.4):
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find w,,, € Y™ ® V{ and p,,, € Y™ @ W, such that

Ah(um,h7 Um,h) + B(,Um,hapm,h) = E[(.f) ,Um,h)] for all Um,h ey” ® V(})L, (4 2 1)
Bty Gmp) =0 forall g, € Y™® W,

where the discrete bilinear form Ay, is defined as: for w,, 5, vy p € Y™ ® Vg

Ap(Wi ), O p) = E[v (&) (rotp U, TOt RV 1) + V(E) (ALY Uppy p, IV Uy 1)

4.2.2 The Matrix Form

The bilinear forms A;, and B can be represented by the tensor product of the spacial matrices:

K= ( /D rot B (@)rota®; (@) + div By(a) div @i(w)dm) |

i, j=1,-,Nu
W = (/ div @i(m)xj(m)da:) )
D i=1,~+,Ne, j=1,...,Np
and the stochastic matrices:
Go = ( / \Ifxy)wj(y)pg(y)dy) ,
r i, j=1,,Ne
e = ( / u(ywi(y)%(y)pg(y)dy)
r i, j=1,,Ne
With the expansion
Ne N, Ne Ny
U = Z Z UG-nyn,+i®i(@)V;(E),  pmp = Z Z Pi—nyn,+ixi(@)¥;(6),
j=1 i=1 j=1 i=1

85



we obtain the matrix form of the discrete formulation (4.2.1)) :

U GioK GoaW'\ (U F
Ll ] := Sl =1_1; 4.2.2)
P Go@W 0 P 0
where F(jfl)Nqui = E[(f,q)i(ﬁ)‘l’j(f))], F = (E)z:l ..... NuxNgs ﬁ (Uz)zzl ..... NuxNgs ]3

4.2.3 Well-posedness of the Discrete Problem.

At the discrete level, we consider the velocity u € Y™ @ Vi C L*(T') ® H(div), which is not
in L*(I') ® H}(D). We prove the well-posedness of the discrete variational formulation (#.2.1])

based on a weaker norm on the subspace L?(T') ® V7.

Theorem 4.2.2. There exists a unique solution ., € Y™ ® Vg and pp,p € Y ® Wél to the

variational formulation (¢.2.1)), and
[wmnllzmevy + 1Pmpll2eyerzo) S NF2ryev
where H-fHLQ(F)®V8/ = SUPyer2(nev}

According to the definition of the norm || -|[ ;2 gy » and the bilinear operators, it is straightforward
to show the continuity and coercivity of the bilinear form Ay(-,-) and the continuity of B(-,-).

Hence, to prove Theorem 4.2.2] it is sufficient to show the following inf-sup condition:

Lemma 4.2.1. For any g, (£, 2) € Y™ @ W), there exists a v, 1,(€,2) € Y™ @ VI, such that
div v, n = Gmpn, and vahHL?(F)@V{; S HQm,hHL2(F)®L3(D)'

Proof. Using the deterministic result in [66] that for any ¢(z) € W, there exists v(z) € VI, such
that

divo(r) = g(z) and [lv(@)|lvy < ella(@)]),
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where ¢ > 0, ||v]| (rot, v, oty v) + (div v, div v), and following the proof of Lemma4.1.1}

2 pu—
Vi

we can obtain the desired result. O] O]

4.3 Error Analysis

In this section, we prove that, on mildly structured meshes, the solution of the discrete problem
(4.2.)) can achieve the optimal first-order convergence on the spacial approximation, and the opti-

mal order on the stochastic approximation.

Let us introduce the gPC orthogonal projection operator

Ro: LPT) = Y™ Raf = ffUx(6), f*=E[f(¢)],

k=1

and the L? projection operator

Qn: L* (D) =", (Qunf,7)=(f,7) forallT € 2"

We present analyses of these interpolations and projections, which will be used in the error esti-

mates of the stochastic Stokes equations, as the following three lemmas.

Lemma 4.3.1. (Chen, Wang, and Zhong [166]]) Assume that v € W>>(D) (" H}(D), divev = 0,

and the triangulation is O(h?) irregular. We have the error estimate:
| rot v — rotyIly vl < h[log hM2|v]|2.00-
Lemma 4.3.2. The R,, projection holds the optimality:

- R, = inf — ,
| f Sz Jer (F)Hf gl 2y

n—1

where P,_1(D) is the linear space of all polynomials of T of degrees up to n — 1.
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Remark 4.3.1. In Lemma the convergence rate depends on the smoothness of the function,
e.g. if f(x) € H?[=1,1], p > 0, then || f — R fllr2@y S (0 — 1) 7P|\ fllarj—1 (see [71)]). This
optimality is also valid on smaller tensor spaces, such as L*(T') @ H'(D) and L*(I") @ H*(D).

Hereafter, we use the following notation:

x) = Zul(w)\lfl(f), vahu Zul
i=1
) = Zp%x)%(&), pi(, x) Z My’ ( pr
um,] - mu] ZUI a pm,] - mpI ij

Theorem 4.3.2. Assume that the solution of the stochastic Stokes equations satisfies u € L*(T") ®
(W2>(D) N Hy(D)), rotu € L*T') @ H{(D), p € L*T) @ (HY(D)L3(D)). Assume
the triangulation is O(h?) irregular. Let (uz,p;) be the canonical interpolation of (u,p), and

(Win.h, Pm.n) be the solution to the discrete problem (4.2.1)). We have:

|ur — umh”L2 ovh T |p1 = Pl 2 (T)®L2(D)
< hllog h|1/2\|u\|L2(r)®W2»°°(Q) + hl[rot || t2(rye 2 () + PPl L2 ()0 (D)

+ inf v —rot ull L2 (yerzp) + inf

— 2 .
wEPy 1(D)®H2(D) 4EPm 1 (D)EL(D) le=pllemergo)

Proof. We expand the solution w,, j, and p,, j, as:
m

umﬁ(fvm) = Zu;n,h(x)\lll(f)a Pmh g JZ meh

i=1
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According to the definitions and the boundedness of (&), we obtain:

Ap(Wm,p = U, 1, Umn)
=E[(f,vmn)] — B(Vmph, Pmp) — An(Wm,1, Um,p)
=E[v(S) - (curlrot w, vy,)]
— E[v(§) - (xotntn,1, 1060 0m1)] — E[(p = P, div vm )]
=E[v(¢) -
Elv(¢

Winae E[(rot w — 1ot wy, 1, 106,V 1))

(rot u — 1oty Uy, 1, TOLLV,, h)]
)

(curl(f — Qp) rot w, v p)] — E[(p — Pmop, div U, 1))

+ Upmaz E[(curl(f — Qp) rotw, v, )] — E[(p — P, diV U 1)

::Vma:vll + Vmazl2 + I3-
To estimate the first part, we apply Lemma and have:

I

El(rot w — rot, W, 1, T0t Vs 1 )]

NE

(rot u’(x) — rotyu’(z), rothvmh( )

<.
Il

|| rot u'(z) — rotpuj(x)|l||roty vy, ()

H'Mg

h|log h|'/? Z 1" () |2.00[[roth vy, 4 (@) ]

< hllog A2 v (@)l 2wy Z [ () [l2,0c-
Applying the standard property of the L? projection ()}, that

|f = Qufll + hlf — Qufli S K?|flo forall fe H*(D),
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we obtain the estimate of the second part:
I, = E[(curl({ — Qp) rot w, v,, )] = Z(curl([ — Qp) rot u'(z), vinh(x))

=1

<D lewrl(I = Q) rot w' (@) [0}, ()| S Rllwmn (@)l ryovy Z Irot w'(2)]|2.

Let v,, , = Wy, — U, 1, While the differential operator div commutes with the canonical inter-
polations, i.e., HW(? divu = div vau = 0 [[72]. Then it is readily verifiable that divwv,,; =
divu,, ,, — divw,, ; = 0, whereupon the third part /3 disappears. Applying the coercivity of the

bilinear form Ay(+,-), and the previous estimates,

||umh_umll|i2 ®Vh§Ah(umh_umIaumh_umI)

< Vb = s oy B0 h2 S (o ||2oo+h2||rotu I8

=1

From this, we obtain:

s~ vy S Blloghl2 S (e ||2w+h2||rotu )l

i=1
By the triangular inequality, we have:

| wmn — UIHL2 ®V’L<Humh umIHL2 ®Vh+HumI UI”L2 yoVh-
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To estimate the second term, we have:

o0

|, — u1||%2(r)®vg — Z(FOth’UJin,] — roth'u,il, rothufnjl — rothuil)
=1
o o
= Y rotpufl* S > (||lrotu’ — rotuj||* + [ rot w'|?)
i=m-+1 i=m+1
oo o
< Y Rfloghlllui(@)|3 .+ > ot wl|?
i=m-+1 i=m-+1

S D Wlloghl|u!(@)[50 + 11 = Ryn) rot ul.

i=m+1
Combining Lemma we obtain:

et s = wrllpamyevs S Y hllog b2 (|w (2) 2,00
i=m+1

+ inf v —rotu )
veP,, 1 (T®H?2(D) H ”LQ(F)®L§(D)

By uniting the two parts, we obtain:

Wi = wrll 2y Shilog W ||| g2 ryewoe + bl Tot wll 2 rye m2 )

+ inf v —rotu .
vEP,_1(T)@H?2(D) | HL2(F)®L3(D)

To estimate the pressure error, using Lemma we can choose v, , € Y™(T') ® V'{,, such that

—divonn = P — Pmp, a0d [V pll 20yeve S IPmr — Pmpllz2myerzo)-

With this v, 5, we have:

1Dm,r = Pl 22 yor2(py = BPmt = Dmpis Um,n)

B(pm.1, Vmn) + An(Wmn, Vin) — E[(f, Vmp)]
= B(Pm.1 — D, Vmn) + {An(Umpn, Vi p) — E[v(€)(curlrot w, v, )]}

= 14 + 15.
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For the term I, because p; is the L? projection of p to the space LQ(F) X Wél, we have:
I = E[(pm.s — p, div vp)] = El(pms = PPt — D)l = > (05 — D' Dl — Pls) = 0.

=1

For the term [5, we obtain the following estimate by applying Lemma[4.3.1]and the error estimates

in [66]:

Is < Voo B[ (r0tp W p, TOLRVm 1) — (rOt W, 10tV 1) + (curl(Qp — I) rot w, vy, 1)

m m
< Vinaz Z(rothufmh — rot u', oty v}, ;) + Z(curl(Qh — Irotu’, v, ;)
=1 =1
K2 . (2
S omallamyevy D (Al log h'2[u|lo.00 + hl| rot u'l|2)
i=1

S Pt = pnllzmyerzm) D (A1 log b2 [ullze + Al rot w'l2).
i=1

For the third inequality featured in the preceding estimate, we use the standard property of the L?

projection ()p,.

Combining both [, and I5 leads to:

| D, — pm,hHLQ(F)®L2(D) < hllog h|l/2HuHL2(F)®W2’°° + hl|rot uHL2(F)®H2(D)‘

Using the triangular inequality, we have:

||p1 - pm,hHLZ(r)®L2(D) < Hpm,l - pm,h||L2(F)®L2(D) + le — Pm,I||L2(I)®L2(D)

oo
S Npmt = Pmsllmerzo) + Y (10" = pill + [12])
i=m-+1

S Mot = Pmallzmerzoy + Y (Rllp' Il + 11p')
i=m—+1

5 h| ].Og h|1/2||u||L2(F)®W2,oo + h” rOt u||L2(F)®H2(D)

+h + inf —ll.
||P||L2(F)®H1(D) 4€Pm 1 (D)BIA(D) ||q P||
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4.4 Efficient Solvers of Stochastic Stokes Equations

In this section, we construct preconditioners and multigrid solvers for the coupled block linear
systems (4.2.2). We first reorganize the linear systems and make them more solver-friendly. In fact,
after reorganization, each diagonal block corresponds to a deterministic Stokes problem. Based on
fast solvers for the deterministic Stokes system developed in [68]], we construct block-diagonal and
block-triangular preconditioners for use with Krylov subspace iterative methods, such as GMRes
and BiCGStab. In addition, we introduce multigrid methods with block Jacobi and block Gauss-

Seidel smoothers to solve stochastic Stokes systems.

4.4.1 Reorganization of the Linear System.

Let

!

= (U(ifl)Nu+17 ) UiNu)t7

LS

.

t
(P(’i—l)Np—‘rl? Tty RNI,) )

(

satl
I
k|

t
(i—1)Np+15 """ » FZNP) .

By grouping the velocity gPC coefficients U; with the corresponding pressure gPC coefficients P,
(4.2.2)) can be reorganized as the following linear system:

- K 0 0o w 0 0
LZ:G1® +GQ® +G0® y
0 0 0 O W 0
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U, F,
P, 0

Ll : | =1 :1. (4.4.1)
U'NE ﬁNg
13NE 0

Figure4.1{and 4.2 compare the different structures of L and L.

Figure 4.2: The structure of matrices when N¢ = 5, v(§) = 1 + €' ¢, where £ ~ N(0, 1).

4.4.2 Block Preconditioners.

Block preconditioners have been shown to perform well for elliptic-type SPDEs [53,163, 51,165,152,
54]. In the following, we propose two block preconditioners for the stochastic Stokes equations.

Their efficiency and robustness are demonstrated numerically in Section .5
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Block-diagonal Preconditioner.

The block-diagonal part of the reorganized system Lis given by:

) K 0 0o w
D :=diag (G;) ® +Go® ;
0 0 W 0
where the matrix diag(() is the diagonal part of GG;. Clearly, each 2 x 2 block corresponds to a
discrete deterministic Stokes system (see Figure 4.1 and 4.2). Because these 2 x 2 block systems
are completely decoupled, they can be solved in parallel by existing fast solvers for deterministic

Stokes problems. In our study, we apply the optimal multigrid solver using a distributive Gauss-

Seidel smoother (see [68]]).
Theorem 4.4.1. The eigenvalues of DL are positive real numbers, which belong to the interval

min{Vin, 1} max{vmaz, 1}

max{Vmaz, 1} min{vpin, 1} |

Proof. Let \ be the eigenvalue, [v, g|" be the corresponding eigenvector. We have

1.e.,

K 0 w’ v
G ® + Gy ®
0 O W 0 q
) K 0 0o w v
=\ | diag (G1) ® + Gy ®
0 0 W 0 q

We can rewrite the above system as following
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K 0
(Gh1 —Go) ® +Go®

0 0 W 0 q
, K 0 K W v
=\ | (diag (G1) — Go) ® + Gy ®
0 0 w0 q
-1
1 K W .
Applying G~ ® on both sides, we have
W 0
~1
. K W K 0 v
w0 0 0 q
—1
o K W K 0 v
= A | Gyt (diag (Gy) — Go) @ +1
W 0 0 0 q
-1
: : : K W K L
It is easy to verify that the eigenvalues of is either 1 or O.
W 0 0 0

For any z € R™¢, we define a function ¢(y) = > z;¥,(y), then

r'Ghr = /F v(y)e(y) o) pe(y)dy > Vinin /F o)) pe(y)dy = Vinina'Go.

Gy = / v ()0 )0)Pe()dy < Vs / o)) pe(y)dy = Vmana' G,

The eigenvalues of diag (G1) is also bounded by v, and v,,;,,, because

G = /F v(y)i(y)Vi(y)pe(y)dy > Vinin /F () Vi) pe(y)dy = Viin, Vi,

Gl = /F ()i (y) () pe (Y)Y < Vinas /F Vi) Viw)re(y)dy = Vimaz, Vi

While the normalized orthogonal polynomials are used, we have Gy = 1.
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All together, we have

1 + min{ v, — 1,0} <)< 1 + max{Vma, — 1,0}
1+ max{tmar — 1,0} = = 1+ min{v, — 1,0}

Block-triangluar Preconditioner.

The block-triangular preconditioner 7" is defined as:

K 0
T :=tril (Gl) X +Go® )
0 0 w0

where the matrix tril(G) denotes the lower triangular of GG;. The block-triangular preconditioner
system can be solved efficiently by applying blockwise forward substitution and using a fast deter-

ministic Stokes solver to approximately solve each diagonal 2 x 2 block system.
Theorem 4.4.2. The eigenvalues of T~'L are positive real numbers, which belong to the interval

min{Vin, 1} max{vmaz, 1}

max{Vmaz, 1} min{tpim, 1} |

Proof. The proof is very similar to Theorem 4.4.1] noticing that the eigenvalues of D are the same

with those of T. O

4.4.3 Multigrid Method.

In the following, we present a multigrid method using block Jacobi and block Gauss-Seidel smoothers

for the stochastic Stokes systems.

We first describe the block Jacobi and block Gauss-Seidel iterations for the system Lz = bas

follows: let ¢, be the previous solution, then x;., can be computed by
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e block Jacobi: Dy 1 = b — (L — D)ay,

e block Gauss-Seidel: Txy 1 = b — ([? — T)xy.

The multigrid V-cycle is depicted by the following procedure.

x < Veycle(py, pa, z, b)

1. Relax i, times on L& = b by block Jacobi or block Gauss-Seidel iteration.
2. Form the fine space residual

r=b—- Lx

and restrict the residual to the coarse grid 77 = Resr.
3. Solve the coarse residual equation

Le" ="

with one multigrid V-cycle procedure, i.e., e < Veycle(juy, iz, 0, 717).
4. Interpolate the coarse grid correction to the fine grid e = Prof e, and update the fine grid
approximation

T < x+ e.

5. Relax p times on Lz = b by block Jacobi or block Gauss-Seidel iteration.

4.5 Numerical Experiments

This section demonstrates the performance of the proposed block preconditioners and the multigrid
methods with block smoothers applied to the discrete stochastic Stokes equations with random
viscosity. All computations are done in the MATLAB package iFEM [13] on a laptop with a 2.4

GHz Intel Core 2 Duo processor and 4 GB of memory. In the following, we select the spacial
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domain to be the unite square (0,1) x (0,1). The triangular meshes used in our experiments are
obtained by uniform (red) refinement on an initial three-directional structured grid. We consider

the following two examples with random viscosity satisfies uniform or lognormal distribution.

Example 1. Let v(§) = 2 + &, where £ is a uniformly distributed random variable, i.e., £ ~

U(—1,1). The exact solution is given by:

28
5 6(302 — 223 + 2%)(2y — 6y2 + 4y®) + 200zy3
u(&,w,y) = 28 )
m@x — 622 4 422) (y? — 29 + y*) + 502 — 50y*

(&, 2,y) = 106(602°y — 20y° — 5) — 2°(2 — 12z + 122%)(y* — 2¢° + y*).

Example 2. Let v(€) = 1+ €%, where £ ~ N(0, 1) is a normal random variable. The exact solution
is given by:
200zy3

u(,z,y) = ,
5024 — 50y*

p(&, 2, y) = e*(602%y — 20y> — 5).

In this case, the pressure p is a random function, but the velocity w is deterministic.

In the following, we first verify the convergence rate of the stochastic Galerkin discretization for
the Stokes equations with random viscosity. Then, we demonstrate the efficiency and robustness
of the proposed preconditioners and multigrid solver with respect to the discretization parameters
(e.g., mesh size h, gPC order m) and the variance of the random viscosity. Finally, a benchmark lid-
driven cavity problem is examined to show the propagation of uncertainty from random viscosity

to the velocity and pressure fields.
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4.5.1 Spatial and Stochastic Convergence.
Uniform Distributed Viscosity.

In Figures[4.3|and 4.4 the convergence of the errors of the mean value and variance with respect to
the mesh size h is shown when the gPC expansion order is fixed as m = 4. The convergence of the
errors of the mean velocity in norm || - va and the mean pressure in L? norm are both higher than
first order, which is better than the theoretical result in Theorem 4.3.2] Figure {.4] shows the first
order accuracy for the variances of both velocity and pressure in the L? norm. We also compute
the errors in other different norms for completeness. It is worth noting that the maximum norm of

the pressure error does not converge.

To check the error convergence in stochastic space, we fix a small mesh size h = 1/128 and
observe that before the spatial discretization error starts to dominate the overall error, the solution

errors decay exponentially with respect to the gPC expansion order m (see Figure 4.5).

—e—IElp-p, i
___opese

ch
—o—IElp, =P, I,
g ppese

(o

VP, = Pyl
1o 11694
o Ch

10" 10
log(1/h) log(1/h)

(A) mean value of velocity (B) mean value of pressure

Figure 4.3: The convergence of the mean error with respect to mesh size h (m = 4).

Lognormal Distributed Viscosity.

Lognormal random variables are unbounded. Hence, Theorem does not apply in this case.
However, the error convergence rates are similar to those using uniform distributed viscosity (see

Figures [4.6] and [4.8). Notice that Figure 4.7 shows that velocity variance error is close to the
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Figure 4.4: The convergence of the variance error with respect to mesh size h (m = 4).
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Figure 4.5: The convergence of the velocity and pressure error with respect to gPC degree m.
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machine precision 1071, and the horizontal line in Figure 4.8indicates there is no stochastic error

for the velocity. These observations are consistent with the fact that velocity is deterministic.
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Figure 4.6: Convergence of the mean value with respect to the spatial parameter h.
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Figure 4.7: Convergence of the variance with respect to the spatial parameter h.

4.5.2 The Solver Parameters.

We use the preconditioned, preconditioned BiCGStab, and V-cycle multigrid methods to solve
the discrete stochastic Stokes systems. The block preconditioner systems and block smoothers
are solved approximately using a deterministic W-cycle distributive Gauss-Seidel (DGS) multgird
method. Hence, a balance between the inner and outer iterations through the choice of parameters

(e.g., tolerance, number of smoothing steps) is important for achieving good overall performance.

In Tables and we list outer iteration counts, inner iteration counts for solving each block,

and the total CPU time for each given inner tolerance ranging from 107! to 1078, The star *
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Figure 4.8: Convergence of velocity and pressure with respect to the gPC degree m.

inner tol 1071 1072 1074 1078
M BD 132 9.92s * ok ox 7 6 9.78s |5 1210.09s
! BT 7 6 6.48s * & Kk 3 6 620s |2 126.17s
M BD 7.52 9.75s 6.54 10.20s |5 6 995s | 4.512 15.76s
2 BT 4 2 6.12s 3 4 5.46s 2.56 5.64s | 0.5122.07s
M BI(1) 272 28.56s | 314 4390s | 316 79.07s| 31 12 143.03s
3 BI(2) 7 2 14208 |7 4 21.81s |7 6 3537s| 7 1268.21s
BJ(3) 7 2 21.78s |5 4 2256s |4 6 29.21s|4 1257.18s
BGS(1) | 7 2 8.42s 5 4 8.17s 4 6 10.03s|1 125.56s
BGS12) |7 2 1517s |4 4 13.60s |3 6 1542s| 1 1210.20s

Table 4.1: Legendre polynomial to degree m=4. h = 1/64. v(§) = 14 0.5¢, & ~ U(—1,1). M;:
GMRes, M,: BiCGStab, Ms;: V-cycle multigrid.

means the solver diverges or does not reach the tolerance within a maximum number of 100 it-
erations. The results in these two tables suggest using a relatively large inner tolerance for the
block-diagonal preconditioner and block Jacobi smoother, but smaller inner tolerance is better for
the block-triangular preconditioner and block Gauss-Seidel smoother. Notice that preconditioned
GMRes may fail to converge for certain inner tolerance. The divergence of the V-cycle multigrid
with block-Jacobi smoother is mainly due to the large variance of the random variable (addressed

in the subsection that follows). We also test the weighted block Jacobi smoother with an under- or

over-relaxation parameter, which also fails for the same testing case as in Table
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inner tol 1071 1072 1074 1078
M BD * % % * ok %k 9 6 12.66s |7 1218.64s
L BT 132 9.45s * ok Ok 3 6 6.02s 2 12 6.50s
M BD 202 22.26s | 284 43.83s | 146 32.20s | 7.51228.97 s
2 BT 8 2 9.89s 6 4 9.67s 4 6 9.42s 0.512 2.11s
BJ kook ok k k ok kook sk ko ok ok
Ms BGS(1) | * * * * ok ok * ok % 1 125.33s
BGS(2) | 282 56.53s | 894 256.23s| 196 99.42s | 1 1210.48s
BGS(3) |9 2 27.70s |7 4 3223s |4 6 3194s |1 1215.36s

Table 4.2: Hermite polynomial to degree m=4. h = 1/64. v(¢) = 1 + €5, & ~ N(0,1). M;:
GMRes, M,: BiCGStab, Ms: V-cycle multigrid.

4.5.3 Robustness with respect to Discretization Parameters and Variance of

Viscosity.

Herein, we investigate the robustness of the two block preconditioners used with the GMRes and
BiCGStab methods and the multigrid method with block smoothers in terms of discretization pa-
rameters (e.g., spatial mesh size h, gPC degree m) and the variance of v(£). The outer iterations

of these solvers are terminated when the relative error reaches the tolerance 107%.

Mesh size h.

At each level of the outer multigrid V-cycle, the equations are relaxed twice for the block Jacobi,
and once for the block Gauss-Seidel. During the block Jacobi and block Gauss-Seidel iterations,
each diagonal block is solved to reach a tolerance of 10~ and 1078, respectively. This fixed solver
parameter setting may not be the best choice for all testing cases. However, we retain the same

setting for a clean and tidy presentation.

We fix the gPC expansion order to be m = 4. Two different types of random variables, i.e., uniform
and lognormal distributed, are tested and presented in Tables {.3| and 4.4} respectively. The outer
iteration counts, the inner iteration counts for solving each block, and the CPU time are listed for

each given mesh size. As illustrated by Tables[4.3]and the results are robust with respect to h.
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h 1/16 1/32 1/64 1/128
M, BD |5 12223s |5 12356s |5 12982s |5 12 32.32s
BT |1 12 1.60s |2 12225 |2 12 6.31s 1 12 12.50s
M, BD | 4512 2778s | 4512 5.17s | 4512 15.45s | 4.512 47.82s
BT [ 0512 1.43s | 0512 096s | 0512 2.0ls | 0.512 6.53s
M; B |7 2 254s |7 2 454s |7 2 14.00s |7 2 44.10s
BGS |1 12 1.79s 1 12 181s |1 12517s |1 12 16.15s

Table 4.3: Legendre polynomial to degree m=4. v(§) = 14 0.5¢, £ ~ U(—1,1). M;: GMRes, Ms:
BiCGStab, Ms: V-cycle multigrid.

gPC expansion order m

To investigate the performance of the proposed iterative solvers with respect to the gPC expansion
order m, we fix h = 1/32. In Table the outer iteration counts are listed. The inner iteration
counts in this table are ignored because they are similar to those in Table {.1] ~ 4.4l Clearly,
the block-triangular preconditioned GMRes, BiCGStab, and the multigrid solvers are robust with
respect to m. As m increases, the outer iteration numbers of the diagonally preconditioned GMRes

and BiCGStab increase at the beginning and quickly reach a uniform upper bound.

Variance of viscosity.

Here, we fix both m and h, the mean value of v({), and change the variance of v(£) by changing
the parameter a. From Table the block-triangular preconditioned GMRes, BiCGStab, and the
multigrid solver with block Gauss-Seidel relaxation method are quite robust with respect to the
variance of v(£). The outer iteration numbers of the block-diagonal preconditioned GMRes and

BiCGStab also are quite robust in a. However, the multigrid with block Jacobi fails for large a.

According to Tables 4.6| the triangluar preconditioner is more robust and efficient than the
diagonal preconditioner. Compared to the block Jacobi smoother, the block Gauss-Seidel smoother

has better performance in both robustness and efficiency.
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h 1/16 1/32 1/64 1/128
M, BD |12 12 418 |7 12 6.06s |7 12 16.68s |7 12 54.62s
BT |1 120578 |2 12229s |2 12 6.07s |2 12 19.56s
M BD |8 12 335s | 7512 9.65s | 7.512 29.07s | 7.512 85.57s
> BT [ 0512 042s | 0512 0.67s |0.512 2.14s | 0.512 6.96s
BJ | * =® = R I I
Ms BGS |1 12 0.68s 1 12 1.87s 1 12 5.26s 1 12 16.34s

Table 4.4: Hermite polynomial to degree m=4. v(¢) = 1+ ¢, € ~ N(0,1). M;: GMRes, Mo:
BiCGStab, M3: V-cycle multigrid.

V(&) =1+40.56 v(€) =1+ e
m | 4 6 8 10 12 144 6 8 10 12 14
v | BDS 79 9 9 977 8 1219 19 19
'B8T |2 2 2 2 2 2|2 2 2 2 2 2
v, | BD |45 65 8 85 85 854 45 55 6 65 75
2/ BT |05 05 05 05 05 0505 05 05 05 05 05
Msipggs|1 1 1 1 1 1]1 1 1 1 1 1

Table 4.5: The mesh size h = 1/32. §&; ~ U(—1,1). £& ~ N(0,1). M;: GMRes, My: BiCGStab,
Ms: V-cycle multigrid.

V(&) =1+a& V(&) =14
a 0.1 02 04 06 08 1001 02 04 06 08 1.0
BD 5 7 7 7 7 7 5 6 6 6 6 8

Milgrlao 2 2 2 2 212 2 2 2 2 2
A, | BD [35 45 45 45 45 575 13 21 75 75 75
2/ BT |05 05 05 05 05 0505 05 05 05 05 05
MgBJ6771047*6723***

BGS | 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.6: The gPC order to m = 4, the mesh size h = 1/32. & ~ U(—1,1). & ~ N(0,1). My:
GMRes, My: BiCGStab, M3: V-cycle multigrid.
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4.5.4 Lid-driven Cavity Flow Problem.

The classical lid-driven cavity flow problem has been used as a benchmark to test many numerical
methods for fluid dynamics. It models incompressible flow in a square domain driven by the motion
of the upper lid. In [39], a stochastic lid-driven cavity flow with random boundary condition (i.e.,
the lid velocity) and fixed constant viscosity is investigated, and the effect of uncertainty on flow
fields is demonstrated. Here, we study the stochastic Stokes flow in a lid-driven cavity with random

viscosity and deterministic lid velocity.

The computational domain is the unite square [0, 1] x [0, 1], and the external force is set at zero.
The boundary condition for the velocity is w = (1,0)" on the top lid and zero everywhere else. The
random viscosity is set to be v(§) = vy + 11, where £ ~ U(—1, 1) and vy, v; are positive numbers
chosen such that v(£) > 0. For the spatial discretization, we use the RT, — F, pair on a uniform
triangular mesh size h = 1/128, and for the stochastic discretization, we use Legendre polynomials
of degree £ = 5. The resulting saddle-point linear systems are solved using the iterative solvers

proposed in the previous sections.

For the stochastic Stokes flow with random viscosity v, and deterministic boundary conditions,
the flow velocity field w does not depend on v and the pressure p depends linearly on v [62].
Our numerical experiments demonstrate this fact. The variance of the computed velocity field w
scales around 10!, and the mean of the velocity field (Figure is the same as the deterministic
velocity field obtained by solving Stokes equations with mean viscosity. Moreover, the mean of p
depends linearly on 1, and the standard deviation of p depends linearly on v, (see Figures {.1T}
4.13). Figure[4.10|plots the mean streamline contours for the velocity field, which shows the main

eddy in the center and two small Moffatt eddies in the corners.
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velocity u, velocity uy

0 0 0 o

Figure 4.9: The mean value of the numerical velocity.

stream contour

Figure 4.10: The contour of the streamlines.
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(B) pressure deviation

Figure 4.11: Contours of pressure mean and pressure deviation when v(§) = 1 + 0.5¢, where £ ~
U(-1,1).
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Figure 4.12: Contours of pressure mean and pressure deviation when v(§) = 2 + 0.5, where £ ~
U(-1,1).
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Figure 4.13: Contours of pressure mean and pressure deviation when v(§) = 2 + &, where  ~
U(-1,1).
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