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ABSTRACT OF THE DISSERTATION

Fast Solvers for Numerical Schemes Based On Finite Element Exterior Calculus

By

Lin Zhong

Doctor of Philosophy in Mathematics

University of California, Irvine, 2015

Long Chen, Chair

Finite element exterior calculus (FEEC) is a framework to design and understand finite element

discretizations for a wide variety of systems of partial differential equations. The applications are

already made to the Hodge Laplacian, Maxwell’s equations, the equations of elasticity, elliptic

eigenvalue problems [2][3][4][5][6] and etc.. In this thesis, we propose fast solvers for several

numerical schemes based on the discretization of this approach and present theoretical analysis.

Specifically, in the first part, we propose efficient block diagonal and block triangular precondi-

tioners for solving the discretized linear system of the vector Laplacian by mixed finite element

methods. A variable V-cycle multigrid method with the standard point-wise Gauss-Seidel smoother

is proved to be a good preconditioner for the Schur complement. The major benefit of our approach

is that the point-wise Gauss-Seidel smoother is more algebraic and can be easily implemented as a

‘black-box’ smoother. The multigrid solver for the Schur complement will be further used to build

preconditioners for the original saddle point systems. In the second part, we propose a discretiza-

tion method for the Darcy-Stokes equations under the framework of FEEC. The discretization is

shown to be uniform with respect to the perturbation parameter. A preconditioner for the discrete

system is also proposed and shown to be efficient. In the last part, we focus on the stochastic

Stokes equations. The stochastic saddle-point linear systems are obtained by using finite element

discretization under the framework of FEEC in physical space and generalized polynomial chaos

expansion in random space. We prove the existence and uniqueness of the solutions to the contin-

x



uous problem and its corresponding stochastic Galerkin discretization. Optimal error estimates are

also derived. We construct block-diagonal/triangular preconditioners for use with the generalized

minimum residual method and the bi-conjugate gradient stabilized method. An optimal multigrid

solver is applied to efficiently solve the diagonal blocks that correspond to deterministic discrete

Stokes systems. To demonstrate the efficiency and robustness of the discretization methods and

proposed preconditioners, various numerical examples also are provided.
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Introduction

Partial differential equations (PDEs), which can be used to describe a wide variety of phenomena

such as fluid flow, electrostatics, elasticity or quantum mechanics, are applied in countless ways

to solve real world problems. While most PDEs cannot be explicitly solved, numerical algorithms

play as an essential tool to PDE models. The finite element method (FEM), which began over

half century ago, is proven to be a most important technology in numerically solving PDEs. Finite

element exterior calculus (FEEC), which is developed by Arnold, Falk, Winther in 2006 [2], is a

framework to design and understand finite element discretizations for a wide variety of systems of

PDEs.

This dissertation is on proposing fast solvers for the discrete numerical schemes based on FEEC,

and theoretically analyzing the efficiency and robustness of the discretization methods and pro-

posed solvers. Specifically, we study in deepth the numerical schemes for three different PDEs,

i.e., the vector Laplacian equations, the Darcy-Stokes equations, the Stokes equations with random

viscosity.
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0.1 Multigrid Preconditioners for Mixed Finite Element Meth-

ods of Vector Laplacian

Discretization of the vector Laplacian in spaces H0(curl) and H0(div) by mixed finite element

methods is well-studied in [2]. The discretized linear algebraic system is ill-conditioned and in the

saddle point form which leads to the slow convergence of classical iterative methods as the size of

the system becomes large. In [2], a block diagonal preconditioner has been developed and shown

to be an effective preconditioner. The purpose of this paper is to present alternative and effective

block diagonal and triangular preconditioner for solving these saddle point systems.

Due to the similarity of the problems arising from spacesH0(curl) andH0(div), we use the mixed

formulation of vector Laplacian in H0(curl) as an example to illustrate our approach. Choosing

appropriate finite element spaces Sh ⊂ H1
0 (vertex element) and Uh ⊂ H0(curl) (edge element),

the mixed formulation is: Find σh ∈ Sh,uh ∈ Uh such that

 −(σh, τh) + (uh, grad τh) = 0 for all τh ∈ Sh,

(gradσh,vh) + (curluh, curlvh) = (f ,vh) for all vh ∈ Uh.

The corresponding matrix formulation is−Mv B

BT CTMfC

σh
uh

 =

0

f

 . (0.1.1)

Here Mv and Mf are mass matrices of the vertex element and the face element, respectively, BT

corresponds to the grad operator, and C corresponds to the curl operator.

Based on the stability of (0.1.1) in H1
0 ×H0(curl) norm, in [2], a block diagonal preconditioner

in the form(I +BM−1
e BT )−1 O

O (I + CTMfC)−1



2



is proposed and the preconditioned Krylov space method is shown to converge with optimal com-

plexity. To compute the inverse operators in the diagonal, multigrid methods based on additive or

multiplicative overlapping Schwarz smoothers (each smoothing need to invert a small system of

degree of freedoms surrounding a vertex) [3], multigrid methods based on Hiptimair smoothers

[20, 21], or auxiliary space preconditioner [23] can be used. In all these methods, to achieve a

mesh independent condition number, a special smoother taking care of the large kernel of the curl

or div differential operators is needed.

In contrast, we shall use multigrid methods with standard point-wise Gauss-Seidel (G-S) smoother

to the Schur complement of (0.1.1)

A = BTM−1
v B + CTMfC (0.1.2)

which is a matrix representation of the identity of the vector Laplacian

−∆u = − grad divu+ curl curlu.

In (0.1.2), the inverse of the mass matrix, i.e., M−1
v is dense. To be practical, the exact Schur

complement can be replaced by an approximation

Ã = BTM̃−1
v B + CTMfC,

with M̃v an easy-to-invert matrix, e.g., diagonal or mass lumping of Mv.

A variable V-cycle multigrid method with the standard point-wise Gauss-Seidel smoother is proved

to be a good preconditioner for the Schur complementA or its approximation Ã. The major benefit

of our approach is that the point-wise Gauss-Seidel smoother is more algebraic and can be easily

implemented as a ‘black-box’ smoother. The block smoothers proposed in [3] for theH(curl) and

H(div) problems, however, requires more geometric information and solving local problems in

small patches.

Although the finite element spaces are nested and A (or Ã) is symmetric positive definite, due to

3



the inverse of the mass matrix, the bilinear forms in the coarse grid is non-inherited from the fine

one. To overcome this difficulty, we shall follow the multigrid framework developed by Bramble,

Pasciak, and Xu [8]. In this framework, we only need to verify two conditions: (1) Regularity

and approximation assumption; (2) Smoothing property. Since A is SPD, the smoothing property

of the Gauss-Seidel smoother is well known, see e.g. [9]. To prove the approximation property,

we make use of error estimates of mixed methods established in [3] and thus have to assume the

full regularity of elliptic equations. Numerically our method works well for the case when the

full regularity does not hold. With the approximation and smoothing properties, we show that one

V-cycle is an effective preconditioner. As noticed in [9], W-cycle or two V-cycles may not be a

valid preconditioner as the corresponding operator may not be positive definite. In other words,

the proposed multigrid method for the Schur complement cannot be used as an iterative method

but one V-cycle can be used as an effective preconditioner.

The multigrid preconditioner for Ã will be used to build preconditioners for (0.1.1). We prove that

the preconditioned system with the block diagonal preconditionerM−1
v O

O Ã−1

 (0.1.3)

has a uniformly bounded conditional number. Following the framework of [24], we verify this by

establishing a new stability result of the saddle system (0.1.1) in the ‖ · ‖×‖ · ‖A norm. The action

M−1
v can be further approximated by just one symmetric Gauss-Seidel iteration or by M̃−1

v and

Ã−1 by one V-cycle.

4



0.2 Robust Error Estimate and Uniform Preconditioners of TMAC

Discretization of Darcy-Stokes Equations

[66]We consider the following singular perturbation problem
(I − ε2∆)u+ grad p = f in Ω,

− divu = 0 in Ω,

u = 0 on ∂Ω,

(0.2.1)

where ε ∈ (0, 1] is a parameter and ∆ is the Laplacian operator applied to vector functions. The

system (0.2.1) is a steady state generalized Stokes equation when the perturbation parameter is

large, and it degenerates to the mixed formulation of the Darcy equation when the parameter goes

to zero. It can also be derived from time discretization of the transient Stokes equations, where the

parameter corresponds to the square roof of the time step.

We shall consider numerical methods which are robust to the parameter ε. It is numerically verified

that most of the proposed finite element methods for Stokes problem or the Darcy problem are not

well behaved uniformly in the perturbation parameter [78]. Design a finite element method robust

to both Darcy and Stokes equations is an active research topic and successful examples can be

found in [78, 84, 76].

Another related topic is a fast solver robust to the paraemeter ε. For the generalized Stokes equa-

tions discretized from time discretization of transient Stokes equations, a robust multigrid method

using distributive or Uzawa smoothers has been developed and analyzed in [83]. Block-diagonal

preconditioners with uniformly bounded conditioners are considered in [79, 82].

We shall apply the triangular MAC (TMAC) developed in [66] for Stokes equations to Darcy-

Stokes equations. We show TMAC has both merits: uniformly convergent rates and a uniform

preconditioner can be easily construct.

The idea of TMAC scheme is to use H(div) elements for the velocity and discontinuous polynomial
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for pressure. It retains all the desirable properties of the MAC scheme: exact divergence-free,

solver-friendly, and local conservation of physical quantities. For Darcy-Stokes system, the most

relevant work is [76]. The difference of our approach and that in [76] is the discretization of

vector Laplacian operator. In [76], DG formulation is used while in [66], a weak roth differential

operator is introduced. It can be shown that in the simplest form (uniform rectangular grids), both

are equivalent to the classical MAC scheme.

The lowest order element is the RT0-P0 element. Use the superconvergence results of the Lagrange

interpolation of the linear element in [7], we can obtain a uniform error estimate

‖uh − uI‖A + ‖ph − pI‖ . hmin(1,σ)| log h|1/2 (‖u‖2,∞ + ‖ rotu‖2) . (0.2.2)

where uI is the canonical interpolation of u on to the space RT0, pI is the L2-projection of p to

the piecewise constant space, uh and ph are the RT0-P0 approximation of (0.2.1), and ‖ · ‖Aε is the

energy norm defined by the SPD operator I − ε2∆. The convergence rate depends crucially on the

symmetry of the mesh through the parameter σ (see Section 3 for a detailed definition). Roughly

speaking to obtain a first order scheme, two triangles sharing an edge should form a parallelogram.

For a class of grids violating this symmetry requirement, non-convergence is observed for Stokes

equations [66].

To relax the constraint of the mesh condition, we enrich the velocity space to BDM1 plus a bubble

function and obtain another velocity-pressure discretization BDMb
1-P0. The bubble function is

introduced such that a mass lumping can be applied to quadratic Lagrange elements. Now the

convergence rate is independent of the mesh symmetry and for a general quasi-uniform mesh:

‖uh − uI‖A + ‖ph − pI‖ . h (‖u‖2 + ‖ rotu‖2) .

For general quasi-uniform grids, the BDMb
1-P0 scheme will produce an optimal first-order approx-

imation for u and p. It is both robust and more accurate than the RT0-P0 element.

We then consider a uniform preconditioner for TMAC discretization of Darcy-Stokes equations.
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Let us write the operator for the Darcy-Stokes equations as

Aε =

I − ε2∆ grad

− div 0

 .

Let ∆p be the Laplacian operator with Neumann boundary condition defined on L2
0. Mardal and

Winther [79] show that the block-diagonal preconditioner

Bε =

(I − ε2∆)−1 0

0 (−4p)
−1 + ε2I

 (0.2.3)

is a uniformly effective preconditioner of Aε, i.e., κ(BεAε) ≤ C with a constant independent of

ε. When move to the discrete level, κ(BεhAεh) ≤ C with a constant independent of both h and ε

will be hold if a uniformly stable Fortin operator can be constructed [81]. In practice, a V-cycle

multigrid for the vector Laplacian developed in [15] can be used to approximate the (1, 1) block

and an auxiliary space preconditioner [8] can be used to approximate (−4p)
−1 in the (2, 2) block.

0.3 Block Triangular Preconditioner for Stochastic Stokes Equa-

tions

In the past decade, there has been growing interest in the study of numerical methods for solv-

ing stochastic partial differential equations (SPDEs). SPDEs are partial differential equations with

random input data (e.g., coefficient, boundary conditions, initial conditions, source terms, compu-

tational domain, etc.) and have been widely used to model uncertainty propagation and quantifi-

cation in complex physical and engineering applications, including flows in random porous media

[31, 32, 33], thermo-fluid processes [34, 35], flow-structure interactions [36], etc.

Usually, numerical methods for solving SPDEs are characterized as either non-intrusive type

(e.g., Monte Carlo method [37] or stochastic collocation method [38, 39, 40]) or intrusive type

(e.g., stochastic Galerkin method based on the generalized polynomial chaos (gPC) expansion
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[41, 42, 43, 44]). In [45, 46], the authors show that the stochastic Galerkin method is compu-

tationally more efficient than the stochastic collocation method. However, this conclusion relies

on the assumption that specialized iterative solvers are available for solving the fully coupled lin-

ear systems arising from the stochastic Galerkin discretization. Many studies have centered on

iterative solvers for the stochastic Galerkin discretization of elliptic equations with random input

data [47, 48, 49, 50, 51, 52]. For example, in [48], an efficient multigrid solver is proposed. In

[53], they suggested a preconditioned conjugate gradient (PCG) method with a block-diagonal pre-

conditioner. When the random input variance is large, [54] demonstrates that a block triangular

preconditioner used with either generalized minimum residual (GMRes) method or generalized

preconditioned conjugate gradient (GPCG) method is more efficient and robust than PCG with a

block-diagonal preconditioner.

In the literature, there are several studies on stochastic Galerkin methods for Stokes equations and

Navier-Stokes equations with random input data [55, 56, 34, 35, 57, 58, 59, 60, 61]. Conversely,

little work has been done involving efficient iterative solvers for the resulting saddle-point linear

systems with tensor product structure [62, 61]. Efficient block triangular preconditioners for dis-

crete stochastic Navier-Stokes systems are developed in [62]. In [63, 64, 65], the minimum residual

(MINRES) method preconditioned by block-diagonal preconditioners are investigated for solving

the saddle-point systems resulting from the stochastic Galerkin mixed formulation of elliptic prob-

lems with random diffusion coefficients.

In this work, we focus on the design of iterative solvers for saddle-point systems resulting from

the stochastic Galerkin discretizations of Stokes equations with random viscosity. In particular, we

use the H(div) conforming finite element discretization in physical space, which is a generalization

of the Marker and Cell (MAC) scheme to triangular meshes (TMAC) [66]. The TMAC scheme

retains all of the MAC scheme’s desirable properties: pointwise divergence free, solver friendly,

and local conservation of physical quantities. In probability space, we use gPC expansion [67]. The

resulting block-structured linear systems can be reformulated so each diagonal block corresponds

to a deterministic discrete Stokes system. Hence, we can take advantage of the optimal multigrid

solver developed in [68] for these deterministic systems and construct block-diagonal/triangular

preconditioners for use with the GMRes and bi-conjugate gradient stabilized (BiCGStab) methods
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to solve the discrete stochastic Stokes systems. The efficiency and robustness of the proposed

preconditioners with respect to all the dicretization parameters are tested on Stokes equations with

random viscosity satisfying uniform or lognormal distribution. We also develop multigrid methods

with block Jacobi or block Gauss-Seidel methods as the smoother for solving the discrete stochastic

Stokes systems.
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Chapter 1

Finite Elements, Exterior Calculus, and

Stochastic Finite Elements

In this chapter, we first recall the function spaces and finite element spaces which we are going to

work on, and then present preliminaries about finite element exterior calculus and general polyno-

mial chaos.

We assume that Ω is a bounded and convex polyhedron in R2 or R3 with a simple topology (ho-

momorphism to a disk or ball), and it is triangulated into a mesh Th with size h. We assume that

the mesh belongs to a shape regular and quasi-uniform family.

1.1 Function Spaces

Let us introduce notations of the differential operators we are going to work on. In R2, we will

use the curl operator acting on the scalar function and rot, div operators acting on vector function

respectively. For any scalar function τ , and vector function u = [u, v]t, we have:

• curl τ =
(
∂yτ,−∂xτ

)

10



• rotu = ∂xv − ∂yu

• divu = ∂xu+ ∂yv

In R3, we will use the grad operator acting on the scalar function and curl, div operators acting

on vector function respectively. For any scalar function τ , and vector function u = [u, v, w]t, we

have:

• grad τ =
(
∂xτ, ∂yτ, ∂zτ

)
• curlu =

(
∂yw − ∂zv, ∂zu− ∂xw, ∂xv − ∂yu

)
• divu = ∂xu+ ∂yv + ∂zw

We use L2(Ω) to denote the space of all square integrable scalar or vector functions on Ω. Given

a differential operator d = grad, curl, rot or div, we introduce the Sobolev space H(d,Ω) = {v ∈

L2(Ω), dv ∈ L2(Ω)}. For d = grad, H(grad,Ω) is the standard H1(Ω) space. For simplicity, we

will suppress the domain Ω in the notation. We further introduce the following Sobolev spaces on

domain Ω with homogenous traces:

• H1
0 = {u ∈ H1(Ω) : u = 0 on ∂Ω}

• H0(curl) = {u ∈ H(curl) : u× n = 0 on ∂Ω}

• H0(div) = {u ∈ H(div) : u · n = 0 on ∂Ω}

• L2
0 = {u ∈ L2(Ω) :

∫
Ω
u dx = 0}

In R2, as curl is a rotation of grad, H(curl) ∼= H1 and H0(curl) ∼= H1
0 . The inner product for L2

or L2 is denoted by (·, ·).
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1.2 Finite Elements

To discretize partial differential equations, it is critical to choose appropriate discrete subspaces of

function spaces. Let us recall the following finite element spaces in R3:

• Sh0 ⊂ H1
0 is the well-known Lagrange elements, i.e., continuous and piecewise polynomials,

• Uh
0 ⊂H0(curl) is the edge element space [26, 27],

• V h
0 ⊂H0(div) is the face element space [28, 26, 11, 27, 10, 12],

• W h
0 ⊂ L2

0 is discontinuous and piecewise polynomial space.

We will use the notations without subscript to denote the discrete subspaces without homogenous

traces, i.e., Sh ⊂ H1, Uh ⊂H(curl), V h ⊂H(div) and W h ⊂ L2.

In R2, the elements are similar, and we keep the notation as Sh0 ⊂ H0(curl) for Lagrange element,

V h
0 ⊂ H0(div) for edge element and W h

0 ⊂ L2
0 for discontinuous piecewise polynomial space.

We will discuss more about how to choose proper finite elements in each Sobolev spaces in the

next section.

1.3 Finite Elements Exterior Calculus

1.3.1 The de Rham Complex

To discretize the partial differential equations, we start from the following de Rham complex and

corresponding co-chain exact sequence:

• R2: 0GGGAH1
curl

GGGGGGGAH(div)
div

GGGGGGGAL2
GGGA0

0DGGGL2
0

rot
DGGGGGGH0(rot)

-grad
DGGGGGGGGGH1

0DGGG0
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• R3: 0GGGAH1
grad

GGGGGGGGAH(curl)
curl

GGGGGGGAH(div)
div

GGGGGGGAL2
GGGA0

0DGGGL2
0

-div
DGGGGGGGH0(div)

curl
DGGGGGGGH0(curl)

-grad
DGGGGGGGGGH1

0DGGG0

We choose appropriate degrees and types of finite element spaces such that the discrete de Rham

complex holds

• R2: 0GGGASh
curl

GGGGGGGAV h
div

GGGGGGGAW h
GGGA0

• R3: 0GGGASh
grad

GGGGGGGGAUh
curl

GGGGGGGAV h
div

GGGGGGGAW h
GGGA0

In R2, given an integer r ≥ 1, a stable method is achieved by choosing Sh0 as the Lagrange element

of order r, V h
0 as the Raviart-Thomas element RTr−1, and W h

0 as the discontinuous piecewise

polynomial function space of order r − 1. The case r = 1 corresponds to the lowest-order ele-

ments discretization, i.e., P1-RT0-P0, see Fig. 1.1. Another method relies on choosing Sh0 as the

Lagrange elements of order r + 1, V h
0 as the Brezzi-Douglas-Marini elements BDMr, and W h

0 as

the discontinuous piecewise polynomial function space of order r−1. The case r = 1 corresponds

to the lowest-order element in this sequence, i.e., P2-BDM1-P0, see Fig. 1.2. In R3, given an

integer r ≥ 1, a stable method is achieved by choosing Sh0 as the Lagrange element of order r,

Uh
0 is the Nedelec edge element NDr, V h

0 as the Raviart-Thomas element RTr−1, and W h
0 as the

discontinuous piecewise polynomial function space of order r − 1. The case r = 1 corresponds

to the lowest-order elements discretization, i.e., P1-ND1-RT0-P0. The methods can be written as

sequences:

• R2: 0GGGAPr

curl
GGGGGGGARTr−1

div
GGGGGGGAPr−1GGGA0

• R2: 0GGGAPr

curl
GGGGGGGABDMr

div
GGGGGGGAPr−1GGGA0

• R3: 0GGGAPr

grad
GGGGGGGGANDr

curl
GGGGGGGARTr−1

div
GGGGGGGAPr−1GGGA0
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1.3.2 The Co-differential Operators

We now define co-differential operators and introduce the following exact sequences in the reversed

ordering:

• R2: 0DGGGSh
roth

DGGGGGGGGV h
gradh

DGGGGGGGGGW h
DGGG0

• R3: 0DGGGSh
divh

DGGGGGGGGUh
curlh

DGGGGGGGGGV h
gradh

DGGGGGGGGGW h
DGGG0

In R2, the weak divergence roth : V h → Sh is defined as the adjoint of curl operator in the

L2-inner product, i.e., rothwh ∈ Sh, s.t.,

(rothwh, vh) := (wh, curl vh) for all vh ∈ Sh. (1.3.1)

The weak gradh operator is defined as the adjoint of − div, i.e., gradhwh ∈ V h, s.t.,

(gradhwh,vh) := −(wh, div vh) for all vh ∈ V h. (1.3.2)

In R3, the weak divergence divh : Uh → Sh is defined as the adjoint of − grad operator in the

L2-inner product, i.e., divhwh ∈ Sh, s.t.,

(divhwh, vh) := −(wh, grad vh) for all vh ∈ Sh. (1.3.3)

Weak curl operator curlh and weak grad operator gradh are defined similarly. For any wh ∈ V h,

define curlhw
h ∈ Uh as

(curlhwh,vh) := (wh, curlvh) for all vh ∈ Uh. (1.3.4)

For any wh ∈W h, define gradhwh ∈ V h as

(gradhwh,vh) := −(wh, div vh) for all vh ∈ V h. (1.3.5)

14



⋃
P1

H1(Ω)

∂

curl

curl

⋃
RT0

H(div)

∂

div

div

⋃
P0

L2(Ω)

roth − gradh

Figure 1.1: Example of appropriate discrete subspaces choice in R2

Similarly, we can define co-differential operators on the spaces with homogenous traces:

• R2: 0DGGGSh0

rot0,h

DGGGGGGGGGV h
0

grad0,h

DGGGGGGGGGGGW h
0 DGGG0

• R3: 0DGGGSh0

div0,h

DGGGGGGGGGUh
0

curl0,h
DGGGGGGGGGGV h

0

grad0,h

DGGGGGGGGGGGW h
0 DGGG0

In R2, the weak divergence rot0,h : V h
0 → Sh0 is defined as the adjoint of curl operator in the

L2-inner product, i.e., rot0,hwh ∈ Sh0 , s.t.,

(rot0,hwh, vh) := (wh, curl vh) for all vh ∈ Sh0 . (1.3.6)

The other co-differential operators for the spaces with homogenous traces can be similarly defined.

1.3.3 The Discrete Hodge Decomposition

The Hodge decomposition plays an important role in the analysis of well-posedness and error

analysis. On the continuous level, for example, the Hodge (or Helmholtz) decomposition in R2 is

L2 = curlH0(curl)⊕ gradH1/R.
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∂

−divh

grad

grad

∂

curlh

curl

curl

∂

−gradh

div

div

P1 ND1 RT0 P0

H1 H(curl) H(div) L2⋃ ⋃ ⋃ ⋃

Figure 1.2: Example of appropriate discrete subspaces choice in R3

To prove well-posedness of discrete systems and handle the error analysis, we need analogous

decomposition on the discrete level. It is easy to verify that the following sequences are exact.

• R2: 0GGGASh0
curl

GGGGGGGAV h
0

div
GGGGGGGAW h

0 GGGA0

0DGGGSh0

rot0,h

DGGGGGGGGGV h
0

grad0,h

DGGGGGGGGGGGW h
0 DGGG0

• R3: 0GGGASh0

grad
GGGGGGGGAUh

0

curl
GGGGGGGAV h

0

div
GGGGGGGAW h

0 GGGA0

0DGGGSh0

div0,h

DGGGGGGGGGUh
0

curl0,h
DGGGGGGGGGGV h

0

grad0,h

DGGGGGGGGGGGW h
0 DGGG0

According to these exact sequences, we have the discrete Hodge decompositions [2]:

• R2: V h
0 = curlSh0 ⊕ grad0,hW

h
0

• R3: Uh
0 = gradSh0 ⊕ curl0,h V

h
0

• R3: V h
0 = curlUh

0 ⊕ grad0,hW
h
0 .
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These discrete version of Hodge decompositions split the subspaces into irrotational and solenoidal

components, and plays an important role in the analysis.

1.4 Stochastic Finite Elements

In this section, let us introduce the notations and stochastic function spaces.

1.4.1 Notations and Function Spaces.

For the stochastic Stokes equations, we use notation Ω for the random space, andD for the physical

domain. Let D ⊂ R2 be a bounded convex polygonal domain with boundary ∂D. (Ω,F ,P)

denotes a complete probability space, where Ω is the set of outcomes, F ⊂ 2Ω is the σ−algebra

of random events, and P is the probability measure. Let µ(ξ) be a random variable in (Ω,F ,P).

We denote its expected value by E[µ] =
∫

Ω
µ(ω)dP(ω) =

∫
Γ
µ(y)ρξ(y)dy and its variance by

V ar(µ) = E[µ2]− E[µ]2, where ρξ(·) denotes the density function of ξ.

For the stochastic functions, we introduce the tensor spaces endowed with the corresponding inner

products as follows:

L2(Γ)⊗H1
0(D) =

{u(ξ,x) : Γ×D → R2 | u(ξ, ·) ∈H1
0(D) a.e. on Γ, and u(·,x) ∈ L2(Γ) a.e. on D},

L2(Γ)⊗ L2
0(D) =

{q(ξ,x) : Γ×D → R | q(ξ, ·) ∈ L2
0(D) a.e. on Γ, and q(·,x) ∈ L2(Γ) a.e. on D},

(u,v)L2(Γ)⊗H1
0(D) = E[(rotu, rotv) + (divu, div v)] ∀u,v ∈ L2(Γ)⊗H1

0(D),

(p, q)L2(Γ)⊗L2
0(D) = E[(p, q)], ∀p, q ∈ L2(Γ)⊗ L2

0(D).
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1.4.2 The Discrete Spaces

To discretize stochastic partial differential equations, we introduce some discrete spaces to approx-

imate L2(Γ), H1
0(D), and L2

0(D). For the probability space, the generalized polynomial chaos

(gPC) basis functions are chosen to span the approximation space. We denote the approximation

subspace as:

Y m := span{Ψ1,Ψ2, · · · ,ΨNξ} ⊂ L2(Γ),

where Nξ = m + 1 is the dimension and m is the highest degree of gPC. We assume these basis

functions are orthogonal and normalized, i.e., for any i, j = 1, · · · ,m + 1, E[ΨiΨj] = δij . For

instance, if ξ ∼ U(−1, 1), the natural choice is the Legendre orthogonal normalized polynomials

Ψk(y) =
1

2kk!
·
√

2k + 1

2
· d

k

dyk
[(y2 − 1)k] on Γ = (−1, 1), k = 0, 1, · · · ,

We denote the basis of V h
0 as {Φ1, · · · ,ΦNu}, and the basis of W h

0 as {χ1, · · · , χNp}, where Nu

and Np are the dimensions of the respective spaces.

The tensor spaces Y m ⊗ V h
0 ⊂ L2(Γ)⊗H0(div) and Y m ⊗W h

0 ⊂ L2(Γ)⊗ L2
0(D) are the finite

dimensional spaces used for the discrete functions, respectively.
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Chapter 2

Multigrid Preconditioners for Mixed Finite

Element Methods of Vector Laplacian

Due to the indefiniteness and poor spectral properties, the discretized linear algebraic system of the

vector Laplacian by mixed finite element methods is hard to solve. A block diagonal preconditioner

has been developed and shown to be an effective preconditioner by Arnold, Falk, and Winther. The

purpose of this paper is to propose an alternative and efficient block diagonal preconditioner for

solving this saddle point problem. A variable V-cycle multigrid method with the standard point-

wise Gauss-Seidel smoother is proved to be a good preconditioner for the Schur complement A.

The major benefit of our approach is that the point-wise Gauss-Seidel smoother is more algebraic

and can be easily implemented as a ‘black-box’ smoother. The multigrid solver for the Schur

complement will be further used to build preconditioners for the original saddle point systems.

In this chapter, we propose an efficient block diagonal preconditioner for solving the discretized

linear system of the vector Laplacian by mixed finite element methods. This problem is considered

in R3. While all the function spaces in this chapter will be the ones with homogenous traces, we

simplify the notations as follows:

• the discrete spaces Sh, V h and Uh are used to denote Sh0 , V h
0 and Uh

0 respectively;

19



• the co-differential operators curlh, gradh and divh are used to denote curl0,h, grad0,h and

div0,h respectively.

2.1 The Continuous and Discrete Formulations of Vector Lapla-

cian

2.1.1 Discrete Formulations of Vector Laplacian.

On the continuous level, the mixed formulation of the vector Laplacian in spaceH0(curl) is: Find

σ ∈ H1
0 ,u ∈H0(curl) such that

 −(σ, τ) + (u, grad τ) = 0 for all τ ∈ H1
0 ,

(gradσ,v) + (curlu, curlv) = (f ,v) for all v ∈H0(curl).
(2.1.1)

The problem (2.1.1) on the discrete level is: Find σh ∈ Sh,uh ∈ Uh such that

 −(σh, τh) + (uh, grad τh) = 0 for all τh ∈ Sh,

(gradσh,vh) + (curluh, curlvh) = (f ,vh) for all vh ∈ Uh.
(2.1.2)

Note that the first equation of (2.1.2) can be interpreted as σh = − divh uh and in the second

equation of (2.1.2) the term (gradσh,vh) = −(σh, divh vh). After eliminating σh from the first

equation, we can write the discrete vector Laplacian for edge elements as

−∆c
huh := curlh curluh − grad divh uh, (2.1.3)

which is a discretization of the identity

−∆u = curl curlu− grad divu.
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Choosing appropriate basis for the finite element spaces, we can represent the spaces Sh and V h

by RdimSh and RdimV h respectively. In the following, we shall use the same notation for the vector

representation of a function if no ambiguity arises. Then we have the corresponding operator and

matrix formulations as: Lch : Sh ×Uh → S ′h ×U ′h

Lch

σh
uh

 :=

−Mv B

BT CTMfC

σh
uh

 =

0

f

 . (2.1.4)

Here Mv and Mf are mass matrices of the vertex element and the face element, respectively, BT

corresponds to the grad operator, and C to the curl operator. We follow the convention of Stokes

equations to reserve B for the (negative) divergence operator. Note that to form the corresponding

matrices of weak derivative operators, the inverse of mass matrices will be involved. The Schur

complement

Ach = BTM−1
v B + CTMfC (2.1.5)

is the matrix representation of discrete vector Laplacian (2.1.3). The system (2.1.4) can be reduced

to the Schur complement equation

Achuh = f . (2.1.6)

Similarly, the mixed formulation of the vector Laplacian in spaceH0(div) is: Findσ ∈H0(curl),u ∈

H0(div) such that

 −(σ, τ ) + (u, curl τ ) = 0 for all τ ∈H0(curl),

(curlσ,v) + (divu, div v) = (f ,v) for all v ∈H0(div).
(2.1.7)

The corresponding discrete mixed formulation is: Find σh ∈ Uh,uh ∈ V h such that

 −(σh, τ h) + (uh, curl τ h) = 0 for all τ h ∈ Uh,

(curlσh,vh) + (divuh, div vh) = (f ,vh) for all vh ∈ V h.
(2.1.8)
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Eliminating σh from the first equation of (2.1.8), we have the discrete vector Laplacian for face

elements as

−∆d
huh := curl curlhuh − gradh divuh, (2.1.9)

and the operator and matrix formulations are: Ldh : Uh × V h → U ′h × V ′h

Ldh

σh
uh

 :=

−Me CT

C BTMtB

σh
uh

 =

0

f

 , (2.1.10)

where Mt denotes the mass matrix of the discontinuous and piecewise polynomial element. The

Schur complement Adh = CM−1
e CT + BTMtB is the matrix representation of discrete vector

Laplacian (2.1.9). Similarly, the reduced equation of (2.1.10) is

Adhuh = f . (2.1.11)

We shall develop multigrid methods for solving (2.1.6) and (2.1.11) and use them to construct effi-

cient preconditioners for the corresponding saddle point systems (2.1.4) and (2.1.10), respectively.

2.1.2 Discrete Poincaré Inequality and Inverse Inequality

In this subsection, we define the norms associated with the discrete vector Laplacian, and prove

discrete Poincaré and inverse inequalities.

Definition 2.1.1. For uh ∈ Uh, define ‖uh‖2
Ach

= ach(uh,uh), where the bilinear form ach(·, ·) is

defined as

ach(uh,vh) := (curluh, curlvh) + (divh uh, divh vh).

Similarly, for uh ∈ V h, define ‖uh‖2
Adh

= adh(uh,uh), where the bilinear form adh(·, ·) is defined as

adh(uh,vh) := (curlhuh, curlhvh) + (divuh, div vh).
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Lemma 2.1.1 (Discrete Poincaré Inequality). We have the following discrete Poincaré inequali-

ties:

‖uh‖ . ‖uh‖Ach for all uh ∈ Uh; (2.1.12)

‖uh‖ . ‖uh‖Adh for all uh ∈ V h. (2.1.13)

Proof. Let us prove the first inequality. From the discrete Hodge decomposition, we have for

uh ∈ Uh, there exist ρ ∈ Sh and φ ∈ V h ∩ ker(curlh)
⊥ such that

uh = grad ρ+ curlhφ. (2.1.14)

Applying − divh to (2.1.14), we have − divh uh = − divh grad ρ, thus

‖ grad ρ‖2 = (− divh uh, ρ) ≤ ‖ divh uh‖‖ρ‖ . ‖ divh uh‖‖ grad ρ‖,

which leads to

‖ grad ρ‖ . ‖ divh uh‖. (2.1.15)

To control the other part, we first prove a discrete Poincaré inequality in the form

‖φ‖ . ‖curlhφ‖ for φ ∈ V h ∩ ker(curlh)
⊥. (2.1.16)

By the exactness of the discrete complex, ker(curlh) = img(gradh) and thus for φ ∈ V h ∩

ker(curlh)
⊥, we have div φ = 0. Then by the exactness of the de Rham complex, there exists

v ∈ Uh ∩ ker(curl)⊥ such that φ = curlv. We recall another Poincaré inequality [25, 22]

‖v‖ . ‖ curlv‖ for all v ∈ Uh ∩ ker(curl)⊥.
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Then we have

‖φ‖2 = (φ, curlv) = (curlhφ,v) ≤ ‖curlhφ‖‖v‖ . ‖curlhφ‖‖ curlv‖ = ‖curlhφ‖‖φ‖.

Canceling one ‖φ‖, we obtain the desirable inequality (2.1.16).

Applying curl to the Hodge decomposition (2.1.14) and using the inequality (2.1.16), we have

curluh = curl curlhφ, thus

‖curlhφ‖2 = (curluh,φ) ≤ ‖ curluh‖‖φ‖ . ‖ curluh‖‖curlhφ‖,

which leads to the inequality

‖curlhφ‖ . ‖ curluh‖. (2.1.17)

Combine inequalities (2.1.15) and (2.1.17), we have proved that

‖uh‖ ≤ ‖ grad ρ‖+ ‖curlhφ‖ . ‖ divh uh‖+ ‖ curluh‖ . ‖uh‖Ach .

Analogously, applying appropriate differential operations to the discrete Hodge decomposition of

uh ∈ V h and Poincaré inequality leads to the inequality ‖uh‖ . ‖uh‖Adh .

Remark 2.1.2. The result and the proof can be easily generalized to mixed discretization of Hodge

Laplacian in discrete differential forms [2]. We keep the concrete form for the easy access of these

results.

Lemma 2.1.2 (Inverse Inequality). We have the following inverse inequalities:

‖uh‖Ach . h−1‖uh‖ for all uh ∈ Uh;

‖uh‖Adh . h−1‖uh‖ for all uh ∈ V h.
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Proof. It suffices to prove that

‖ divh uh‖ . h−1‖uh‖ for all uh ∈ Uh; (2.1.18)

‖curlhuh‖ . h−1‖uh‖ for all uh ∈ V h. (2.1.19)

since for conforming cases, the inverse inequalities

‖ gradσh‖ . h−1‖σh‖ for all σh ∈ Sh;

‖ curluh‖ . h−1‖uh‖ for all uh ∈ Uh.

are well known.

For any uh ∈ Uh, let σh = − divh uh, then we have

‖ divh uh‖2 = −(divh uh, σh) = (uh, gradσh) . h−1‖uh‖‖σh‖,

which implies (2.1.18). The proof of (2.1.19) is analogous.

2.2 The Multigrid Methods for Discrete Vector Laplacian

In this section, we describe a multigrid algorithm to solve the Schur complement equations (2.1.6)

and (2.1.11), and prove it is a good preconditioner.

2.2.1 Problem Setting

Let us assume that nested tetrahedral partitions of Ω are given as

T1 ⊂ · · · ⊂ TJ = Th,
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and the corresponding H1
0 ,H0(curl) andH0(div) finite element spaces are

S1 ⊂ · · · ⊂ SJ = Sh,

U 1 ⊂ · · · ⊂ UJ = Uh,

V 1 ⊂ · · · ⊂ V J = V h.

For a technical reason, we assume that we use piecewise polynomials which have degree more

than 2 to approximate the H1
0 space and consequently the edge element space contains full linear

polynomial. When no ambiguity can arise, we replace subscripts h by the level index k for k =

1, 2, . . . , J .

The discretization (2.1.1) of the mixed formulation of vector Laplacian in space H0(curl) based

on Tk, for k = 1, 2, . . . , J , can be written as −Mv,k Bk

BT
k CT

kMf,kCk

 σk

uk

 =

 0

fk

 . (2.2.1)

Eliminating σk from (2.2.3), we get the reduced Schur complement equation

Ackuk = (BT
kM

−1
v,kBk + CT

kMf,kCk)uk = fk. (2.2.2)

The discretization (2.1.7) of the mixed formulation of vector Laplacian in space H0(div) on Tk,

for k = 1, 2, . . . , J , can be written as −Me,k CT
k

Ck BT
kMt,kBk

 σk

uk

 =

 0

fk

 , (2.2.3)

and the reduced Schur complement equation is

Adkuk = (BT
kMt,kBk + CkM

−1
e,kC

T
k )uk = fk. (2.2.4)

We are interested in solving the Schur complement equations in the finest level, i.e., k = J .
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Notice thatAck andAdk are defined by the discretization of the vector Laplacian on the trianglulation

Tk, but not by the Galerkin projection of AcJ or AdJ since the inverse of mass matrix is involved. In

other words, Ack and Adk are not inherited.

When necessary, we use the notation without the superscript c and d to unify the discussion. The

notation Vk is used to represent both U k and V k spaces.

2.2.2 A Variable V-cycle Multigrid Method

Before we present the multigrid algorithm to solve (2.2.2) and (2.2.4), let us introduce some op-

erators. Let Rk denote a smoothing operator on level k, which is assumed to be symmetric and

convergent. Let Ik denote the prolongation operator from level k−1 to level k, which is the natural

inclusion since finite element spaces are nested. The transpose ITk then represents the restriction

from level k to level k − 1. The Galerkin projection Pk, which is from level k to level k − 1, is

defined as: for any given uk ∈ Vk, Pk−1uk ∈ Vk−1 satisfies

ak−1(Pk−1uk,vk−1) = ak(uk, Ikvk−1) = ak(uk,vk−1) for all vk−1 ∈ Vk−1.

The variable V-cycle multigrid algorithm is as following.

Algorithm 2. Multigrid Algorithm: uMG
k = MGk(fk;u

0
k,mk)

Set MG1 = A−1
1 . For k ≥ 2, assume that MGk−1 has been defined and define MGk(fk) for

fk ∈ Vk as follows:

• Pre-smoothing: Define ulk for l = 1, 2, · · · ,mk by

ulk = ul−1
k +Rk(fk − Akul−1

k ).
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• Coarse-grid correction: Define umk+1
k = umkk + Ik−1ek−1, where

ek−1 = MGk−1(ITk−1(fk − Aku
mk
k ); 0,mk−1).

• Post-smoothing: Define ulk for l = mk + 2, · · · , 2mk + 1 by

ulk = ul−1
k +Rk(fk − Akul−1

k ).

Define uMG
k = u2mk+1

k

In this algorithm, mk is a positive integer which may vary from level to level, and determines the

number of smoothing iterations on the k-th level, see [8, 9].

2.2.3 Multigrid Analysis Framework

We employ the multigrid analysis framework developed in [8]. Denoted by λk the largest eigen-

value of Ak. For the multigrid algorithm to be a good preconditioner to Ak, we need to verify the

following assumptions:

(A.1) “Regularity and approximation assumption”: For some 0 < α ≤ 1,

|ak((I − Pk−1)uk,uk)| ≤ CA

(
‖Akuk‖2

λk

)α
ak(uk,uk)

1−α for all uk ∈ Vk,

holds with constant CA independent of k;

(A.2) “Smoothing property”:

‖uk‖2

λk
≤ CR(Rkuk,uk) for all uk ∈ Vk,

holds with constant CR independent of k.
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We begin with estimating the largest eigenvalue of Ak.

Lemma 2.2.1. The largest eigenvalue of Ak, λk, satisfies λk h h−2
k for k = 1, 2, . . . , J .

Proof. By the inverse inequality, the maximal eigenvalue of Ack can be bounded above by

λk = sup
06=u∈Uk

(Acku,u)

(u,u)
= sup

06=u∈Uk

ack (u,u)

(u,u)

= sup
0 6=u∈Uk

(divk u, divk u) + (curlu, curlu)

(u,u)
. h−2

k .

One the other hand, let ũ = gradϕi, where ϕi is a basis function of Lagrangian element, then it

holds

λk = sup
0 6=u∈Uk

(Acku,u)

(u,u)
≥ (Ackũ, ũ)

(ũ, ũ)
=
ack(ũ, ũ)

(ũ, ũ)

=
(divk gradϕi, divk gradϕi)

(gradϕi, gradϕi)
=
‖∆ϕi‖2

‖∇ϕi‖2
h h−2

k .

Thus, we have λk h h−2
k . Similarly, we have this result for Adk.

2.2.4 Smoothing Property

The symmetric Gauss-Seidel or a properly weighted Jacobi iteration both satisfy the smoothing

property (A.2), a proof of which can be found in [9]. For completeness we present a short proof

below.

Recall that Gauss-Seidel iteration can be understood as a successive subspace correction method

apply to the basis decomposition Vk =
∑Nk

i=1 Vk,i with exact local solvers [29]. For u ∈ Vk, let

u =
∑Nk

i=1 ui be the basis decomposition. By the X-Z identity [30, 14] for the multiplicative

method, we have

(R
−1

GSu,u) = ‖u‖2
Ak

+
N∑
i=0

‖Pi
∑
j>i

uj‖2
Ak
,
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where RGS is a symmetrized Gauss-Seidel iteration. We then estimate the second term as

N∑
i=0

‖Pi
∑
j>i

uj‖2
Ak
≤

N∑
i=0

∑
j∈n(i)

‖uj‖2
Ak

. λk

N∑
i=0

‖uj‖2 . λk‖u‖2.

Here we use the sparsity of Ak such that the repetition in the summation is bounded above by a

constant. The last step is from the stability of the basis decomposition in L2-norm which holds for

all finite element spaces under consideration.

We have thus proved that (R
−1

GSu,u) . λk‖u‖2 which is equivalent to the smoothing property by

a simple change of variable. Proof for Jacobi iteration is similar.

2.2.5 Approximation Property

For any 2 < k ≤ J , let TH = Tk−1 and Th = Tk. Let

Zh = {zh ∈ V h| div zh = 0} = curlUh = curl curlhV h,

and QZ
h : L2 7→ Zh be the L2 projection to Zh. Denoted by QW

h : L2 7→ Wh the L2 projection

onto Wh. The following error estimates are obtained in [3].

Lemma 2.2.2. Givenuh ∈ curlhV h, letuH be the unique element in curlhV H satisfying curluH =

QZ
H curluh. Then

‖uh − uH‖ . H‖ curluh‖,

‖ curl(uh − uH)‖ . H‖curlh curluh‖.

In Lemma 2.2.2, by the exactness of the co-differential operators, i.e., ker(divH) = curlh(VH), the
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function uH is uniquely determined by the Maxwell equations

(curluH , curlvH) = (curluh, curlvH), for all vH ∈ UH (2.2.5)

(uH , gradφH) = 0, for all φH ∈ SH . (2.2.6)

The well-posedness and error estimate of (2.2.5)-(2.2.6) is well understood. The difficulty of

getting estimate in Lemma 2.2.2 is the estimate using norms of the source curluh only.

Lemma 2.2.3. Give vh ∈ gradhWh, let vH be the unique element of gradhWH satisfying div vH =

QW
H div vh. Then

‖vh − vH‖ . H‖ div vh‖,

‖ div(vh − vH)‖ . H‖gradh div vh‖.

Similarly, the function vH in Lemma 2.2.3 is uniquely determined by the mixed Poisson equation

(vH ,uH)− (pH , divuH) = 0, for all uH ∈ V H

(div vH , qH) = (div vh, qH), for all qH ∈ WH .

Approximation Property inH0(curl)

Let uh ∈ Uh be the solution of equation

ach(uh,vh) = (fh,vh) for all vh ∈ Uh, (2.2.7)

and uH ∈ UH ⊂ Uh be the solution of equation

acH(uH ,vH) = (fh,vH) for all vH ∈ UH . (2.2.8)
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By the Hodge decomposition, we have

uh = gradφh ⊕ u0,h, φh ∈ Sh, u0,h ∈ curlhV h, (2.2.9)

uH = gradφH ⊕ (u0,H + eH), φH ∈ SH , u0,H and eH ∈ curlhV H , (2.2.10)

fh = grad gh ⊕ curlhqh, for some gh ∈ Sh, qh ∈ curlUh ⊂ V h. (2.2.11)

Where u0,H is the unique element in curlhV H satisfying

curlu0,H = QZ
H curlu0,h.

Then by Lemma 2.2.2, we immediately get the following estimate.

Lemma 2.2.4. Let u0,h and u0,H be defined as in equations (2.2.9) and (2.2.10). It holds

‖u0,h − u0,H‖ . H‖uh‖Ach .

Now we turn to the estimate of eH being given in equation (2.2.10).

Lemma 2.2.5. Let eH ∈ curlhV H be defined as in equation (2.2.10). It holds

‖eH‖Ach . H‖Achuh‖.

Proof. By equations (2.2.7) and (2.2.8), we have

(curlu0,h, curlvh) = (qh, curlvh), for all vh ∈ curlhV h

(curl(u0,H + eH), curlvH) = (grad gh,vH) + (qh, curlvH), for all vH ∈ curlhV H ,

where gh and qh are defined in equation (2.2.11). Then

(curl eH , curlvH) = (grad gh,vH) for all vH ∈ curlhV H . (2.2.12)
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Note that, for gh ∈ Sh ⊂ H1
0 (Ω), there exists an e ∈H0(curl) such that

(grad gh, e) = 0 and ‖e− eH‖ . H‖ curl eH‖.

Then,

(curl eH , curl eH) = (grad gh, eH) = (grad gh, eH − e) . H‖ grad gh‖‖ curl eH‖.

It holds

‖ curl eH‖ . H‖ grad gh‖ ≤ H‖fh‖ = H‖Achuh‖.

Now we turn to the estimate of ‖ divh eH‖. Not that we also can find eh ∈ curlhV h satisfying that

(grad gh, eh) = 0, and ‖eh − eH‖ ≤ h‖ curl eH‖.

Then by inverse inequality, it holds

‖ divh eH‖ = ‖ divh(eH − eh)‖ . h−1‖eh − eH‖ .
H

h
‖ curl eH‖ . H‖Achuh‖.

The desired results follow.

We now explore the relation between φh, φH , and gh defined in equations (2.2.9)-(2.2.11).

Lemma 2.2.6. Let φh ∈ Sh and φH ∈ SH be defined as in equations (2.2.9) and (2.2.10). It holds

‖ gradφh − gradφH‖ . H‖uh‖Ach .

Proof. For equation (2.2.7), test with vh ∈ gradSh to get

(divh gradφh, divh vh) = (grad gh,vh) = −(gh, divh vh),
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which implies − divh gradφh = − divh uh = gh, i.e.,

−∆hφh = gh. (2.2.13)

From equation (2.2.13), we can see that φh is the Galerkin projection of φ to Sh, where φ ∈ H1
0 (Ω)

satisfies the Poisson equation:

−∆φ = gh.

Therefore by the standard error estimate of finite element methods, we have

‖∇φ−∇φh‖ . H‖gh‖.

Let P S
H denote the H1-projection to the space SH . For equation (2.2.8), choose vH = gradψH ∈

gradSH , we have

(divH gradφH , divH vH) = (grad gh, gradψH) = (gradP S
Hgh, gradψH),

which implies − divH gradφH = P S
Hgh, i.e.,

−∆HφH = P S
Hgh. (2.2.14)

From equation (2.2.14), we can see that φH is the Galerkin projection of φ̃ to SH , where φ̃ ∈ H1
0 (Ω)

satisfies the Poisson equation:

−∆φ̃ = P S
Hgh.

The H1-projection P S
H is not stable in L2-norm. However, applied to functions in Sh, we can

recover one as follows

‖(I − P S
H)gh‖ . H‖ grad(I − P S

H)gh‖ . H‖ grad gh‖ . H/h‖gh‖ . ‖gh‖.
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In the last step, we use the fact that the ratio of the mesh size between consecutive levels is bounded,

i.e., H/h ≤ C.

We then have

‖ grad(φ̃− φH)‖ . H‖P S
Hgh‖ ≤ H‖gh‖+H‖(I − P S

H)gh‖ . H‖gh‖.

And

‖ grad(φh − φH)‖ ≤ ‖ grad(φh − φ)‖+ ‖ grad(φH − φ̃)‖+ ‖ grad(φ− φ̃)‖

. H‖gh‖+ ‖gh − P S
Hgh‖−1.

By the error estimate of negative norms and the inverse inequality, we have

‖gh − P S
Hgh‖−1 . H2‖gh‖1 . H‖gh‖.

Here we use H−1 norm estimate, which requires that the piecewise polynomials in SH have degree

greater than or equal to 2. Noticing that gh = divh uh, we thus get

‖ grad(φh − φH)‖ . H‖ divh uh‖. (2.2.15)

which implies the desired result.

As a summary the the above results, we have the following theorem.

Theorem 2.2.1. Condition (A.1) holds with α = 1
2
, i.e. for any uk ∈ U k, there hold

ack((I − Pk−1)uk,uk) .
(
‖Ackuk‖

2

λk

) 1
2
ack(uk,uk)

1
2 . (2.2.16)

Proof. We use h to denote k and H to denote k − 1. Let fh = Achuh and uH = PHuh, then we
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have

ach(uh,vh) = (fh,vh) for all vh ∈ Uh,

acH(uH ,vH) = ach(uh,vH) = (fh,vH) for all vH ∈ UH .

uh, uH and fh can be decomposed as in equations (2.2.9)-(2.2.11). Let I1 = u0,h − u0,H , I2 =

gradφh − gradφH , by Lemmas 2.2.4, 2.2.5 and 2.2.6, it holds

ach((I − PH)uh,uh) = ach(I1,uh) + ach(I2,uh) + ach(eH ,uh)

≤ ‖I1‖‖Achuh‖+ ‖I2‖‖Achuh‖+ ‖eH‖Ach‖uh‖Ach
. H‖uh‖Ach‖A

c
huh‖.

Approximation Property inH0(div)

Let uh ∈ V h be the solution of equation

adh(uh,vh) = (fh,vh) for all vh ∈ V h, (2.2.17)

and uH ∈ V H ⊂ V h be the solution of equation

adH(uH ,vH) = (fh,vH) for all vH ∈ V H . (2.2.18)

We can easily see that fh = Adhuh. By the Hodge decomposition, we have

uh = curlφh ⊕ u0,h φh ∈ curlhV h, u0,h ∈ gradhWh, (2.2.19)

uH = curlφH ⊕ (u0,H + eH) φH ∈ curlhV H , u0,H and eH ∈ gradhWH , (2.2.20)

fh = curl gh ⊕ gradhqh for some gh ∈ curlhV h, qh ∈ Wh, (2.2.21)
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where u0,H ∈ gradhWH is the unique element satisfying

divu0,H = QW
H divu0,h.

By Lemma 2.2.3, we immediately have the following result.

Lemma 2.2.7. Let u0,h ∈ gradhWh and u0,H ∈ gradhWH be defined as in equations (2.2.19) and

(2.2.20). It holds

‖u0,h − u0,H‖ . H‖ divu0,h‖.

Now we turn to the estimate of eH ∈ gradhWH defined in equation (2.2.20).

Lemma 2.2.8. Assume that eH ∈ gradhWH be defined as in equation (2.2.20). Then it holds

‖eH‖Adh . ‖A
d
huh‖.

Proof. The equations (2.2.17) and (2.2.18) imply

(divu0,h, div vh) = −(qh, div vh) for all vh ∈ grad
h

Wh,

(div (u0,H + eH), div vH) = −(qh, div vH) + (curl gh,vH) for all vH ∈ grad
H

WH ,

where u0,h, u0,H , eH , qh and gh are defined as in equations (2.2.19)-(2.2.21). Namely qh =

− divu0,h and

(div eH , div vH) = (curl gh,vH) for all vH ∈ gradhWH .

Note the fact that for eH ∈ V H , there exist e ∈ H0(div) and p ∈ H1
0 (Ω), such that e = grad p

div e = div eH
, and ‖e− eH‖ . H‖ div eH‖.
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Then

(curl gh, e) = (div curl gh, p) = 0.

and

(div eH , div eH) = (curl gh, eH) = (curl gh, eH − e)

≤ ‖ curl gh‖‖eH − e‖ . H‖ curl gh‖‖ div eH‖

. ‖Adhuh‖‖ div eH‖.

Which implies

‖ div eH‖ . H‖Adhuh‖.

Now we turn to the estimate of ‖curlheH‖. Note that we can also find eh ∈ gradhWh and ph ∈ Wh

satisfying  eh = gradhph

div eh = div eH
, and ‖eh − eH‖ . H‖ div eH‖.

Then by inverse inequality it holds

‖curlheH‖ = ‖curlh(eH − eh)‖ . h−1‖eH − eh‖ . ‖ div eH‖.

The desired result follows.

We now explore the relation between φh, φH , and gh defined in equations (2.2.19)-(2.2.21).

Firstly, we define

M = gradH1
0 (Ω) and Mh = gradSh,

and

M⊥ =
{
u ∈H0(curl)| (u, grad s) = 0, for all s ∈ H1

0 (Ω)
}

and M⊥
h = curlhV h.

Then we have the following lemma.
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Lemma 2.2.9. Assume that ψh ∈M⊥
h , let ζh ∈M⊥

h be the solution of equation

(curl ζh, curl τ h) = (ψh, τ h) for all τ h ∈M⊥
h ,

and ζ ∈M⊥ be the solution of equation (curl ζ, curl τ ) = (QM⊥ψh, τ ) for all τ ∈M⊥

div ζ = 0

where QM⊥ : H0(curl) 7→M⊥ is the L2 projection operator. Then, it holds

‖ curl(ζ − ζh)‖ . h‖ψh‖.

Proof. By the definition of ζ and ζh, we have

(curl(ζ − ζh), curl τ h) = (ψh −QM⊥

h ψh, τ h) for all τ h ∈ Uh.

Thus

‖ curl(ζ − ζh)‖2 = (curl(ζ − ζh), curl(ζ − ΠU
h ζ)) + (curl(ζ − ζh), curl(ΠU

h ζ − ζh))

= (curl(ζ − ζh), curl(ζ − ΠU
h ζ)) + (ψh −QM⊥

h ψh, (Π
U
h ζ − ζh))

. h‖ curl(ζ − ζh)‖‖ curl ζ‖1 +
∣∣∣(ψh −QM⊥

h ψh, (Π
U
h ζ − ζh))

∣∣∣
. h‖ curl(ζ − ζh)‖‖ψh‖+

∣∣∣(ψh −QM⊥

h ψh, (Π
U
h ζ − ζh))

∣∣∣ .

We can decompose ΠU
h ζ − ζh as

ΠU
h ζ − ζh = w + grad p, w ∈M⊥, p ∈ H1

0 (Ω),

and we can also write ΠU
h ζ − ζh as

ΠU
h ζ − ζh = ΠU

hw + grad ph, w ∈M⊥, ph ∈ Sh.
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Thus

(ψh −QM⊥

h ψh, (Π
U
h ζ − ζh)) = (ψh −QM⊥

h ψh,Π
U
hw) = (ψh −QM⊥

h ψh,Π
U
hw −w)

. h‖ψh −QM⊥

h ψh‖‖w‖1 . h‖ψh‖ curlw‖

= h‖ψh‖‖ curl(ΠU
h ζ − ζh)‖ = h‖ψh‖‖ΠV

h curl(ζ − ζh)‖

. h‖ψh‖‖ curl(ζ − ζh)‖.

The desired result follows.

Lemma 2.2.10. Let φh ∈ Uh and φH ∈ UH be defined as in equations (2.2.19) and (2.2.20). It

holds

‖ curlφh − curlφH‖ . H‖uh‖Adh .

Proof. Let vh = curlwh, wh ∈ Uh, equation (2.2.17) implies

(curlhuh, curlh curlwh) = (curlh curlφh, curlh curlwh) = (curlφh, curl curlh curlwh)

= (fh, curlwh) = (curl gh, curlwh) = (gh, curlh curlwh)

Let τh = curlh curlwh ∈ curlhV h ⊂ Uh, we get

(curlφh, curl τh) = (gh, τh) for all τh ∈ curlh curlUh = curlhV h.

Which implies curlh curlφh = curlhuh = gh. We can see that φh is the Galerkin projection of φ

to curlhV h ⊂ Uh, where φ ∈M⊥ satisfying the Maxwell equation:

curl curlφ = QM⊥gh, divφ = 0.

Therefore by Lemma 2.2.9, we have
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‖ curl(φ− φh)‖ . h‖gh‖.

Similarly, equation (2.2.18) implies

(curlφH , curl τH) = (gH , τH) for all τH ∈ curlh curlUH = curlhV H .

where gH = PU
H gh and PU

H : curlhV h 7→ curlhV H is a projection in (curl(·), curl(·)). Which

implies curlh curlφH = PU
Hgh. We can see that φH is the Galerkin projection of φ̃ to curlhV H ,

where φ̃ ∈ H0(curl) satisfies the Maxwell equation:

curl curl φ̃ = QM⊥PU
Hgh, div φ̃ = 0.

The H(curl)-projection PU
H is not stable in L2-norm. However, applied to functions inUh, we can

recover one as follows

‖(I − PU
H )gh‖ . H‖ curl(I − PU

H )gh‖ . H‖ curl gh‖ . H/h‖gh‖ . ‖gh‖.

In the last step, we use the fact that the ratio of the mesh size between consecutive levels is bounded,

i.e., H/h ≤ C. We then have

‖ curl(φ̃− φH)‖ . H‖PU
Hgh‖ ≤ H‖gh‖+H‖(I − PU

H )gh‖ . H‖gh‖.

Now we turn to the estimate of ‖ curl(φ− φ̃)‖. We have φ and φ̃ in M⊥, satisfying (curlφ, curlψ) = (QM⊥gh,ψ) for all ψ ∈M⊥

(φ,ψ) = 0

and  (curl φ̃, curlψ) = (QM⊥gH ,ψ) for all ψ ∈M⊥

(φ̃,ψ) = 0
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Thus, for all ψ ∈M⊥

(curl(φ− φ̃), curlψ) = (gh − gH ,ψ) = (g̃h − g̃H ,ψ),

where g̃h and g̃H are in M⊥ and satisfying curl g̃h = curl gh and curl g̃H = curl gH , respectively.

Let ζ ∈M⊥ satisfying  (curl ζ, curl τ ) = (ψ, τ ) for all τ ∈M⊥

div ζ = 0

Then,

(g̃h − g̃H ,ψ) = (curl ζ, curl(g̃h − g̃H)) = (curl ζ, curl(gh − gH))

= (curl(ζ − PU
Hζ), curl(gh − gH))

≤ ‖ curl(ζ − PU
Hζ)‖‖ curl(gh − gH)‖

. H‖ curl ζ‖2‖gh‖ . H‖ curlψ‖‖gh‖.

which implies

‖ curl(φ− φ̃)‖ . H‖gh‖.

Then

‖ curl(φh − φH)‖ ≤ ‖ curl(φh − φ)‖+ ‖ curl(φH − φ̃)‖+ ‖ curl(φ− φ̃)‖ . H‖gh‖.

As a summary the the above results, we have the following theorem.

Theorem 2.2.2. Condition (A.1) holds with α = 1
2
, i.e. for any uk ∈ V k, there hold

adk((I − Pk−1)uk,uk) .
(
‖Adkuk‖

2

λk

) 1
2
adk(uk,uk)

1
2 . (2.2.22)
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Proof. We use h to denote k and H to denote k − 1. Let fh = Adhuh and uH = PHuh, then we

have

adh(uh,vh) = (fh,vh) for all vh ∈ V h,

adH(uH ,vH) = adh(uh,vH) = (fh,vH) for all vH ∈ V H .

uh, uH and fh can be decomposed as in equations (2.2.9)-(2.2.11). Let I1 = u0,h − u0,H , I2 =

curlφh − curlφH , by Lemmas 2.2.7, 2.2.8 and 2.2.10, it holds

adh((I − PH)uh,uh) = adh(I1,uh) + adh(I2,uh) + adh(eH ,uh)

≤ ‖I1‖‖Adhuh‖+ ‖I2‖‖Adhuh‖+ ‖eH‖Adh‖uh‖Adh
. H‖uh‖Adh‖A

d
huh‖.

2.2.6 Results

According to the multigrid framework in [8], we conclude that the variable V-cycle multigrid

algorithm is a good preconditioner for the Schur complement equations (2.1.6) and (2.1.11). We

summarize the result in the following theorem.

Theorem 2.2.3. Let Vk denote the operator of one V-ycle ofMGk in Algorithm 2 with homogenous

data, i.e., fk = 0. Assume the smoothing steps mk satisfy

β0mk ≤ mk−1 ≤ β1mk.

Here we assume that β0 and β1 are constants which are greater than one and independent of k.

Then the condition number of VJAJ is O(1).

Remark 2.2.4. As noticed in [9], W-cycle or two V-cycles may not be a valid preconditioner as

the corresponding operator may not be positive definite. In other words, the proposed multigrid
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method for the Schur complement cannot be used as an iterative method but one V-cycle can be

used as an effective preconditioner.

2.3 Uniform Preconditioner

In this section, we will show that the multigrid solver for the Schur complement equations can

be used to build efficient preconditioners for the mixed formulations of vector Laplacian (2.1.4)

and (2.1.10). We also apply the multigrid preconditioner of the vector Laplacian to the Maxwell

equation discretized as a saddle point system. We prove that the preconditioned systems have

condition numbers independent of mesh parameter h.

2.3.1 Block Diagonal Preconditioner

It is easy to see that the inverses of the symmetric positive definite matrices Mv, Me, Ach and

Adh exist, which implies the existence of the operators (Lch)−1, (Ldh)−1, and the block diagonal

preconditioners defined as following.

Definition 2.3.1. We define the operator Pch : S ′h×U ′h → Sh×Uh with the matrix representation

Pch =

M−1
v 0

0 (Ach)
−1

 , (2.3.1)

and the operator Pdh : U ′h × V ′h → Uh × V h with the matrix representation

Pdh =

M−1
e 0

0 (Adh)
−1

 . (2.3.2)

In the sequel, to unify the notation, we use M for the mass matrix and A the vector Laplacian. The

inverse of the mass matrix can be thought of as the matrix representation of the Riesz representation
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induced by the L2-inner product and the inverse of A is the Riesz representation of the A-inner

product. The preconditioners Pch and Pdh are Riesz representation of L2 × A-inner product. Let

〈·, ·〉 be the duality pair. We clarify the norm notations using M and A as follows:

• ‖ · ‖M : ‖σh‖2
M = 〈Mσh, σh〉;

• ‖ · ‖A: ‖uh‖2
A = 〈Ahuh, uh〉;

• ‖ · ‖M−1: ‖gh‖2
M−1 = 〈M−1gh, gh〉;

• ‖ · ‖A−1 : ‖fh‖2
A−1 = 〈A−1

h fh, fh〉.

Follow the framework in [24], it suffices to prove the boundedness of operators Lch and Ldh and their

inverse in the appropriate norms. The following lemma gives a bound of the Schur complement

BA−1BT similar to the corresponding result of the Stokes equation.

Lemma 2.3.1. We have the inequality

〈B(Ach)
−1BTφh, φh〉 ≤ 〈Mvφh, φh〉 for all φh ∈ Sh, (2.3.3)

Proof. Let vh = (Ach)
−1BTφh. Then

〈B(Ach)
−1BTφh, φh〉 = 〈(Ach)−1BTφh, B

Tφh〉 = 〈Achvh,vh〉 = ‖vh‖2
A.

Now we identify vh ∈ V ′h by the Riesz map in the A-inner product, and then we have

‖vh‖A = sup
uh∈V h

(vh,uh)A
‖uh‖A

= sup
uh∈V h

〈BTφh,uh〉
‖uh‖A

= sup
uh∈V h

〈φh, Buh〉
‖uh‖A

≤ sup
uh∈V h

‖φh‖M‖Buh‖M−1

‖uh‖A
≤ ‖φh‖M .

In the last step, we have used the identity (2.1.5) which implies ‖Buh‖M−1 ≤ ‖uh‖A. The desir-

able result (2.3.3) then follows easily.
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We present a stability result of the mixed formulation of vector Laplacian which is different with

that established in [2].

Theorem 2.3.2. The operators Lch,Ldh and there inverse are both bounded operators:

‖Lch‖L(Sh×Uh,S
′
h×U

′
h), ‖Ldh‖L(Uh×V h,U

′
h×V

′
h),

are bounded and independent of h from (‖ · ‖M−1 , ‖ · ‖A−1)→ (‖ · ‖M , ‖ · ‖A), and

‖(Lch)−1‖L(S′h×U
′
h,Sh×Uh), ‖(Ldh)−1‖L(U ′h×V

′
h,Uh×V h)

are bounded and independent of h from (‖ · ‖M , ‖ · ‖A)→ (‖ · ‖M−1 , ‖ · ‖A−1).

Proof. We prove theH0(curl) case below. The proof of theH0(div) case is similar.

Let (σh,uh) ∈ Sh ×Uh and (gh,fh) ∈ S ′h ×U ′h be given by the relation with

Lch

σh
uh

 =

−Mv B

BT CTMfC

σh
uh

 =

gh
fh

 . (2.3.4)

To prove ‖Lch‖L(Sh×Uh,S
′
h×U

′
h) . 1, it is sufficient to prove

‖gh‖M−1 + ‖fh‖A−1 . ‖σh‖M + ‖uh‖A. (2.3.5)

From (2.3.4), we have gh = −Mvσh +Buh and fh = Achuh−BTM−1
v gh. The norm of gh is easy

to bound as follows

‖gh‖2
M−1 ≤ 2‖Mvσh‖2

M−1 + 2‖Buh‖2
M−1 ≤ 2‖σh‖2

M + 2‖uh‖2
A.

To bound the norm of fh, we first have

‖fh‖2
A−1 ≤ 2‖BTM−1

v gh‖2
A−1 + 2‖Achuh‖2

A−1 ≤ 2‖BTM−1
v gh‖2

A−1 + 2‖uh‖2
A.
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Let φh = M−1
v gh, by Lemma 2.3.1, we have

‖BTM−1
v gh‖2

A−1 = ‖BTφh‖2
A−1 = 〈B(Ach)

−1BTφh, φh〉 ≤ ‖φh‖2
M = ‖gh‖2

M−1 .

Thus we get

‖fh‖2
A−1 ≤ 2‖gh‖2

M−1 + 2‖uh‖2
A ≤ 4‖σh‖2

M + 6‖uh‖2
A.

Then the desired inequality (2.3.5) follows from the bound of ‖gh‖M−1 and ‖fh‖A−1 .

To prove ‖(Lch)−1‖L(S′h×U
′
h,Sh×Uh) . 1, we need to prove

‖σh‖M + ‖uh‖A . ‖gh‖M−1 + ‖fh‖A−1 . (2.3.6)

From (2.3.4), we have uh = (Ach)
−1(fh +BTM−1

v gh). Then

‖uh‖2
A = ‖fh +BTM−1

v gh‖2
A−1

≤ 2‖fh‖2
A−1 + 2‖BTM−1

v gh‖2
A−1 ≤ 2‖fh‖2

A−1 + 2‖gh‖2
M−1 .

We also have σh = M−1
v (Buh − gh) and thus

‖σh‖2
M = ‖Buh − gh‖2

M−1 ≤ 2‖Buh‖2
M−1 + 2‖gh‖2

M−1 ≤ 2‖uh‖2
A + 2‖gh‖2

M−1 .

Combining with the bound for ‖uh‖A, we obtain the desirable stability (2.3.6).

From Theorem 2.3.2, we can conclude that the proposed preconditioners are uniformly bounded

with respect to h.

Theorem 2.3.3. The Pch and Pdh are uniform preconditioners for Lch and Ldh, respectively, i.e., the

47



corresponding operator norms

‖PchLch‖L(Sh×Uh,Sh×Uh), ‖(LchPch)−1‖L(Sh×Uh,Sh×Uh),

‖PdhLdh‖L(Uh×V h,Uh×V h), ‖(PdhLdh)−1‖L(Uh×V h,Uh×V h)

are bounded and independent with parameter h.

2.3.2 Mass Lumping

The inverse of the mass matrices M−1
v and M−1

e are in general dense. To be practical, the exact

Schur complement can be replaced by an approximation

Ãch = BTM̃−1
v B + CTMfC, (2.3.7)

Ãdh = CM̃−1
e CT +BTMtB, (2.3.8)

with M̃v and M̃e easy-to-invert matrices, e.g., diagonal or mass lumping of Mv and Me, respec-

tively. In this way, we actually change the L2-inner product of spaces Sh andUh into a discrete L2

inner product. We then define the adjoint operators with respect to the discrete L2-inner product.

For example, we define d̃ivhwh ∈ Sh, s.t.,

〈d̃ivhwh, vh〉h := −(wh, grad vh) for all vh ∈ Sh, (2.3.9)

where 〈·, ·〉h is the discrete L2-inner product defined by M̃v.

The operator and matrix formulations of the vector Laplacian L̃ch : Sh ×Uh → S ′h ×U ′h

L̃ch

σh
uh

 :=

−M̃v B

BT CTMfC

σh
uh

 =

0

f

 . (2.3.10)
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And L̃dh : Uh × V h → U ′h × V ′h

L̃dh

σh
uh

 :=

−M̃e CT

C BTMtB

σh
uh

 =

0

f

 . (2.3.11)

The associated diagonal preconditioners are

P̃ch =

M̃−1
v 0

0 (Ãch)
−1

 (2.3.12)

and

P̃dh =

M̃−1
e 0

0 (Ãdh)
−1

 . (2.3.13)

It is not hard to see that the modification of the L2-inner product will not bring any essential

difficulty to the proof of the previous results. We can easily reproduce all the results that we have

proved in the previous sections with the help of the following proposition whose proof can be

found in [66].

Proposition 2.3.4. Assume that the discrete L2 norm is equivalent to the L2 norm. Then the norm

‖ · ‖Ãch is equivalent to ‖ · ‖Ach , and ‖ · ‖Ãdh is equivalent to ‖ · ‖Adh i.e.,

‖u‖Ãch . ‖u‖Ach . ‖u‖Ãch for all u ∈ Uh; (2.3.14)

‖u‖Ãdh . ‖u‖Adh . ‖u‖Ãdh for all u ∈ V h. (2.3.15)

2.3.3 Triangular Preconditioner

When a diagonal mass matrix is used, we can make use of the block decomposition−M̃v B

BT CTMfC

I M̃−1
v B

0 I

 =

−M̃v 0

BT Ãch

 (2.3.16)
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to obtain a triangular preconditioner.

Definition 2.3.5. We define the operator Gch : S ′h ×U ′h → Sh ×Uh

Gch =

I M̃−1
v B

0 I

−M̃v 0

BT Ãch

−1

, (2.3.17)

and the operator Gdh : U ′h × V ′h → Uh × V h

Gdh =

I M̃−1
e CT

0 I

−M̃e 0

CT Ãdh

−1

. (2.3.18)

From the definition, it is trivial to verify that Gch = L̃ch
−1

and Gdh = L̃ch
−1

and thus conclude that

the proposed triangular preconditioners are uniform.

Theorem 2.3.6. Assume M̃ is spectrally equivalent to M . Then the Gch and Gdh are uniform pre-

conditioners for Lch and Ldh, respectively, i.e., the corresponding operator norms

‖GchLch‖L(Sh×Uh,Sh×Uh), ‖(LchGch)−1‖L(Sh×Uh,Sh×Uh),

‖GdhLdh‖L(Uh×V h,Uh×V h), ‖(GdhLdh)−1‖L(Uh×V h,Uh×V h)

are bounded and independent with parameter h.

In both diagonal and triangular preconditioners, to be practical, we do not compute A−1 or Ã−1.

Instead we apply one and only one V-cycle multigrid for Ã−1.

2.3.4 Maxwell Equations with Divergence-Free Constraint

We consider a prototype of Maxwell equations with divergence-free constraint

curl curlu = f , divu = 0, in Ω, u× n = 0 on ∂Ω.
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The solution u is approximated using edge element space Uh. The divergence-free constraint can

then be understood in the weak sense, i.e., divh u = 0. By introducing a Lagrangian multiplier

p ∈ Sh, the matrix form isCTMfC BT

B O

u
p

 =

f
g

 . (2.3.19)

We can apply the augmented Lagrangian method [19], by adding BTM−1
v B to the first equation,

to get an equivalent matrix equationA BT

B O

u
p

 =

f +BTM−1
v g

g

 . (2.3.20)

Now the (1, 1) block A = CTMfC + BTM−1
v B in (2.3.20) is a discrete vector Laplacian and the

whole system (2.3.20) is in Stokes type.

We can thus use the following diagonal preconditioner.

Theorem 2.3.7. The following block-diagonal matrixA−1 0

0 M−1
v

 (2.3.21)

is a uniform preconditioner for the regularized Maxwell operator

A BT

B O

 .

Proof. It suffices to prove that the Schur complement S = BA−1BT is spectral equivalent to Mv.

The inequality (Sp, p) ≤ (Mvp, p) for all p ∈ Sh has been proved in Lemma 2.3.1. To prove

the inequality in the other way, it suffices to prove the inf-sup condition: there exists a constant β

independent of h such that

inf
ph∈Sh

sup
vh∈Uh

(Bvh, ph)

‖vh‖A‖qh‖
= β > 0. (2.3.22)
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Given ph ∈ Sh, we solve the Poisson equation ∆φ = ph with homogenous Dirichlet boundary

condition and let v = gradφ. Then v ∈ H0(curl) and div v = ph holds in L2. We define

vh = Qhv where Qh : H0(curl)→ Uh is the L2 projection. Then (divh vh, qh) = (vh, grad qh) =

(v, grad qh) = −(div v, qh) = (ph, qh), i.e., divh vh = ph. To control the norm of curlvh, we

denote v0 as the piecewise constant projection of v. Then

‖ curlvh‖ = ‖ curl(vh − v0)‖ . h−1‖vh − v0‖ ≤ ‖v‖1 . ‖ph‖.

In the last step, we have used the H2-regularity result.

In summary, given ph ∈ Sh, we have found a vh ∈ Uh such that (Bvh, ph) = ‖ph‖2 while

‖vh‖2
A = ‖ divh vh‖2 + ‖ curlvh‖2 . ‖ph‖2. Therefore the inf-sup condition (2.3.22) has been

proved which implies the inequality (Sp, p) ≥ β2(Mvp, p).

To design an efficient triangular preconditioner for (2.3.20), we explore the commutator

AG = G̃Ap, (2.3.23)

where G = M−1
e BT is the matrix representation of the gradient operator Sh → Uh, Ĝ = BTM−1

v

is another scaled gradient operator, and Ap = BG represents the discrete Laplacian operator Sh →

Sh. The identity (2.3.23) is a discrete version of the following identity

∆ grad = grad ∆, (2.3.24)

where the first ∆ is the vector Laplacian operator and the second ∆ is the scalar Laplacian, and

can be verified by noticing that CG = curl grad = 0.

With (2.3.23), we have the following block factorizationA BT

B O

 I G

O −M−1
v Ap

 =

A O

B Ap

 . (2.3.25)

When Sh is the linear (P1) element, M−1
v can be approximated accurately by using the mass lump-
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A mesh for the unit square A mesh for a L-shape domain A mesh for a crack domain

Figure 2.1: Meshes for Example 5.1

Table 2.1: Iteration steps and CPU time of the diagonal and the triangular preconditioners for the
vector Laplace equation inH0(curl) space: the square domain (0, 1)2.

h Dof Iteration (D) Time Iteration (T) Time
1/32 4,225 28 0.20 s 13 0.18s
1/64 16,641 28 0.68 s 14 0.34s

1/128 66,049 27 1.90 s 14 1.30s
1/256 263,169 27 8.80 s 14 6.80s

Table 2.2: Iteration steps and CPU time of the diagonal and the triangular preconditioners for the
lowest order discretization of the vector Laplace equation inH0(curl) space: the L-shape
domain (−1, 1)2\ {[0, 1]× [−1, 0]}.

h Dof Iteration (D) Time Iteration (T) Time
1/32 3,201 33 0.24 s 15 0.19s
1/64 12,545 35 0.63 s 16 0.40s

1/128 49,665 39 2.50 s 16 1.90s
1/256 197,633 41 7.20 s 16 5.50s

Table 2.3: Iteration steps and CPU time of the diagonal and the triangular preconditioners for the
lowest order discretization of the vector Laplace equation in H0(curl) space: the crack
domain {|x|+ |y| < 1}\{0 ≤ x ≤ 1, y = 0}.

h Dof Iteration (D) Time Iteration (T) Time
1/16 2,145 34 0.13 s 15 0.08 s
1/32 8,385 38 0.54 s 15 0.30 s
1/64 33,153 41 1.60 s 16 1.00 s

1/128 131,841 44 6.70 s 16 3.60 s
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A mesh for the unit cube A mesh for a L-shaped domain

Figure 2.2: Meshes for Example 5.2

Table 2.4: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of the vector Laplace equation inH0(curl) space in three dimensions:
the unit cube domain.

h Dof Iteration (D) Time Iteration (T) Time
1/4 729 21 0.25 s 12 0.15 s
1/8 4,913 29 0.48 s 16 0.28 s
1/16 35,937 33 3.90 s 18 4.0 s
1/32 274,625 33 40 s 19 27 s

ing of the P1 element. Therefore we can easily solve (2.3.19) by inverting two Laplacian operators:

one is a vector Laplacian of the edge element and another is a scalar Laplacian for the P1 element.

In general M−1
v will be replaced by a sparse approximation M̃−1

v and (2.3.25) can be used to

construct effective block-triangular preconditioners:

 I G

O −M̃−1
v Ap

Ã O

B Ap

−1

. (2.3.26)

Again in practice, the Ã−1 and A−1
p will be replaced by one multigrid V-cycle.

2.4 Numerical Examples

In this section, we will show the efficiency and the robustness of the proposed diagonal and trian-

gular preconditioners. We perform the numerical experiments using the iFEM package [13].
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Table 2.5: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of the vector Laplace equation inH0(curl) space in three dimensions:
L-shape domain (−1, 1)3\ {(−1, 0)× (0, 1)× (0, 1)}.

h Dof Iteration (D) Time Iteration (T) Time
1/2 665 20 0.03 s 12 0.06 s
1/4 4,401 34 0.54 s 16 0.37 s
1/8 31,841 42 5.50 s 20 3.60 s
1/16 241,857 48 48 s 23 33 s

Table 2.6: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of Maxwell equations in the saddle point form in three dimensions:
the unit cube domain.

h Dof Iteration (D) Time Iteration (T) Time
1/4 729 21 0.40 s 12 0.80 s
1/8 4,913 27 1.3 s 16 1.3 s
1/16 35,937 31 4.30 s 18 4.8 s
1/32 274,625 31 40 s 19 39 s

Example 2.4.1 (Two Dimensional Vector Laplacian using Edge Elements). We first consider the

mixed system (2.1.4) arising from the lowest order discretization of the vector Laplace equation in

H0(curl) space.

We consider three domains in two dimensions: the unit square (0, 1)2, the L-shape domain (−1, 1)2\ {[0, 1]× [−1, 0]},

and the crack domain {|x|+ |y| < 1}\{0 ≤ x ≤ 1, y = 0}.

We use the diagonal preconditioner (2.3.12) in the MINRES method and the triangular precondi-

tioner (2.3.17) in GMRES (with the restart step 20) to solve (2.1.4). In these preconditioners, one

and only one variable V-cycle is used for approximating Ã−1. In the variable V-cycle, we chose

mJ = 2 and mk = d1.5J−kmJe for k = J, . . . , 1. We stop the Krylov space iteration when the

relative residual is less than or equal to 10−8. Iteration steps and CPU time are summarized in

Table 2.1, 2.2, and 2.3.

Example 2.4.2 (Three Dimensional Vector Laplacian using Edge Elements). We then consider the

three dimensional case. Still consider the lowest order discretization of the vector Laplace equation

in H0(curl) space. We use almost the same setting except mJ = 3 for which the performance is

more robust.
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Table 2.7: Iteration steps and CPU time of the diagonal and triangular preconditioners for the lowest
order discretization of Maxwell equations in the saddle point form in three dimensions:
L-shape domain (−1, 1)3\ {(−1, 0)× (0, 1)× (0, 1)}.

h Dof Iteration (D) Time Iteration (T) Time
1/2 665 20 0.47 s 10 0.68 s
1/4 4,401 28 0.58 s 14 1.10 s
1/8 31,841 34 5.70 s 17 4.00 s
1/16 241,857 37 40 s 19 38 s

We consider two domains. One is the unit cube (0, 1)3 for which the full regularity assumption

holds and another is a L-shape domain (−1, 1)3\ {(−1, 0)× (0, 1)× (0, 1)} which violates the

full regularity assumption. Iteration steps and CPU time are summarized in Table 2.4 and 2.5.

Based on these tables, we present some discussion on our preconditioners.

1. Both diagonal and triangular preconditioners perform very well. The triangular one is more

robust and efficient.

2. The diagonal preconditioner is more sensitive to the elliptic regularity result as the iteration

steps are slowly increased, which is more evident in the three dimensional case; see the third

column of Table 2.4 and 2.5. For general domains, the H0(curl) ∩H(div) is a strict sub-

space ofH1 and thus the approximation property may fail. On the other hand, the numerical

effectiveness even in the partial regularity cases is probably due to the fact that the full reg-

ularity of elliptic equation always holds in the interior of the domain. Additional smoothing

for near boundary region might compensate the loss of full regularity.

3. Only the lowest order element is tested while our theory assumes the finite element space

should contain full linear polynomial to ensure the approximation property. This violation

may also contribute to the slow increase of the iteration steps. We do not test the second type

of edge element due to the complication of the prolongation operators. The lowest order

edge element is the most popular edge element. For high order edge elements, we prefer to

use the V-cycle for the lowest order element plus additional Gauss-Seidel smoothers in the

finest level to construct preconditioners.
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Example 2.4.3 (Three dimensional Maxwell equations with divergent-free constraint). We con-

sider the lowest order discretization of Maxwell equations in the saddle point form (2.3.19) and

solve the regularized formulation (2.3.20). We test the block-diagonal preconditioner (2.3.21) and

triangular preconditioner (2.3.26). We use the same setting as in Example 5.2 and report the itera-

tion steps and corresponding CPU time in Table 2.6 and 2.7.

From these results, we conclude our block-diagonal and block-triangular preconditioners works

pretty well for the Maxwell equations discretized in the saddle point form. The iteration steps

may increase but very slowly. Although the block-triangular preconditioner requires less iteration

steps, the computational time is almost the same. This is due to the fact, now for the (2, 2) block,

the block-triangular preconditioners requires a V-cycle for the scalar Laplacian while in the block-

diagonal preconditioner it is only a diagonal approximation of the mass matrix.
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Chapter 3

Robust Error Estimate and Uniform

Preconditioners of TMAC Discretization of

Darcy-Stokes Equations

In this chapter, we propose a discretization method for the Darcy-Stokes equations. The discretiza-

tion is shown to be uniform with respect to the perturbation parameter. A preconditioner for the

discrete system is also proposed and shown to be efficient. We follow the notations from the

previous chapter.
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3.1 TMAC Discretization

3.1.1 Weak Formulation of Darcy-Stokes Equations

Let V and W denote the velocity space and the pressure space, respectively. A weak formulation

of the Darcy-Stokes equations (0.2.1): find (u, p) ∈ V ×W satisfying

 aε(u,v) + b(v, p) = 〈f ,v〉 for all v ∈ V ,

b(u, q) = 0 for all q ∈ W,
(3.1.1)

where the bilinear forms aε(·, ·) and b(·, ·) are defined as

aε(u,v) := (u,v) + ε2 [(rotu, rotv) + (divu, div v)] for all u,v ∈H1
0,

b(v, q) := −(div v, q) for all v ∈H1
0, q ∈ L2

0.

Let the operatorAε : V → V ′ introduced by the bilinear form aε(·, ·) andB : V → W ′ introduced

by b(·, ·). We can write the operator form of (3.1.1)

Aε BT

B O

u
p

 =

f
0

 . (3.1.2)

It is well known that (3.1.1) is well posed if and only if the following so-called Brezzi condi-

tions [12] hold for an appropriate norms ‖ · ‖V for V and ‖ · ‖W for W :

1. Continuity of bilinear forms aε(·, ·) and b(·, ·): there exist constants ca, cb > 0 such that

aε(u,v) ≤ ca‖u‖V ‖v‖V , b(v, q) ≤ cb‖v‖V ‖q‖W , for all u,v ∈ V , q ∈ W.

2. Coercivity of aε(·, ·) in the kernel space. There exists a constant α > 0 such that

aε(u,u) ≥ α‖u‖2
V for all u ∈ ker(B),
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where ker(B) = {v ∈ V : b(v, q) = 0 for all q ∈ W}.

3. Inf-sup condition of b(·, ·). There exists a constant β > 0 such that

inf
p∈W,p6=0

sup
v∈V ,τ 6=0

b(v, p)

‖v‖V ‖p‖W
≥ β.

Furthermore to get a scheme robust to ε, all constants involved in these conditions should be ε-

independent.

We then discuss one possible choice of spaces and verify all these conditions. A natural space for

the pressure is W = L2
0. Based on aε(·, ·), we can use H1 with a scaled H1 norm induced by

aε(·, ·). But to impose the uniform continuity of bilinear form b(·, ·), we need to include H(div)

norm into the space V . In summary we chose V = H1
0,W = L2

0 with norms:

‖v‖V :=
(
‖v‖2

Aε + ‖ div v‖2
)1/2

, ‖q‖W = ‖q‖.

The continuity and the coercivity of aε(·, ·) in the null space of div is obvious. The inf-sup condi-

tion is derived from that of Stokes equation, i.e., for any p ∈ L2
0, we can find a v ∈ H1

0 such that

div v = p and ‖∇v‖ . ‖p‖. Then by the Poincaré inequality, we can also control the L2-norm of

‖v‖ . ‖∇v‖ . ‖p‖.

3.1.2 TMAC Discretization

We shall chose H0(div) conforming finite element spaces for velocity and discontinuous poly-

nomial space for pressure. Suppose that the mesh Th is a shape regular mesh. Suppose that

Sh ⊂ H(curl), V h ⊂ H0(div) and Wh ⊂ L2
0 are appropriate finite element spaces so that the

following sequence is exact

0→ Sh ∩H0(curl)
curl−→ V h

div−→ Wh → 0. (3.1.3)

Since divV h ⊂ Wh, div uh = 0 implies uh is divergence free point-wisely.

60



We shall discretize the vector Laplacian operator based on the following identity:

−∆ = − grad div + curl rot .

Since we use H(div) conforming element for the velocity, div operator is a natural discretization.

To discretize the vector Laplacian for a H(div) element, we introduce the weak roth operator as

the dual of curl operator .

Definition 3.1.1. The linear operator roth : V h → Sh is defined as follows: for a given u ∈ V h,

rothu ∈ Sh such that

(rothu, τ) = (u, curl τ) for all τ ∈ Sh. (3.1.4)

The operators roth is well defined, since the system involved is a non-singular finite dimensional

square system. The auxiliary variable ωh = roth u can be thought of as an approximation of the

vorticity ω.

With the help of operator roth, we define the discrete bilinear form aεh(·, ·) on the discrete space

V h as

aεh(u,v) := (u,v) + ε2 [(rothu, rothv) + (divu, div v)] for u,v ∈ V h. (3.1.5)

The TMAC discretization of (3.1.1) is: find (uh, ph) ∈ V h ×Wh such that:

 aεh(uh,vh) + b(vh, ph) = (f ,vh) for all vh ∈ V h,

b(uh, qh) = 0 for all qh ∈ Wh.
(3.1.6)

For u ∈ V h, define

‖u‖2
1,h = (rothu, rothv) + (divu, div v), ‖u‖2

Aε = aεh(u,u).

‖u‖2
Vh

= ‖u‖2 + ε2‖u‖2
1,h + ‖ divu‖2 = ‖u‖2

Aε + ‖ divu‖2.
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In [66] we have proved the following discrete Poincaré inequality.

Lemma 3.1.1 (Discrete Poincaré Inequality [66]). We have the following discrete Poincaré in-

equality with respect to ‖ · ‖1,h:

‖uh‖ . ‖uh‖1,h for all uh ∈ V h. (3.1.7)

According to Lemma 3.1.1, we can obtain the continuity and coercivity of the bilinear form aεh(·, ·)

restricted to the null space

1. Continuity: aεh(u,v) . ‖u‖Vh‖v‖Vh ;

2. Coercivity in the null space of B: aεh(u,u) = ‖u‖2
Vh

for all u ∈ V h ∩ ker(B).

Lemma 3.1.2. For any qh ∈ Wh, there exists vh ∈ V h such that

div vh = qh, and ‖vh‖Vh . ‖qh‖.

Proof. First of all the following inf-sup condition

div vh = qh, and ‖vh‖1,h . ‖qh‖.

is established in [66]. By the discrete Poincaré inequality, we can control the ‖vh‖ . ‖vh‖1,h and

thus the inf-sup condition in ‖v‖Vh norm follows.

By Lemma 3.1.2 and continuity and coercivity of aεh(·, ·), we have the wellposedness of the weak

formulation.

Theorem 3.1.2. There exists a unique solution (uh, ph) ∈ V h ×Wh to the weak formulation of

the Darcy-Stokes equations (3.1.6), and

‖uh‖Vh + ‖ph‖ . ‖f‖V ′h ,

where ‖f‖V ′h = sup
vh∈V h

(f ,vh)

‖vh‖Vh
≤ ‖f‖.
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3.2 Error Analysis

In this section, we prove that for the RT0-P0 approximation, the convergence order depends on the

symmetry of the mesh, and both velocity and pressure can achieve optimal first-order convergence

on mildly structured meshes. For the BDM1-P0 approximation, first-order convergence is always

achieved. The convergence rates are uniform with respect to the parameter ε.

We will employ the canonical interpolation operators for H(curl) and H(div) elements and use

subscript (·)I to denote such interpolation. It is well known that the canonical interpolations is

commuted with the corresponding differential operators [22].

3.2.1 Basic Error Bound

Denoted by Qh : L2 → Sh the L2 projection.

Theorem 3.2.1. Assume that the solution of the Darcy-Stokes equations satisfies u ∈ H1
0 and

rotu ∈ H(curl). Let uh and ph be the solution of the TMAC discretization (3.1.6). Then, we have

the following error estimate

‖uh − uI‖Aεh + ‖ph − pI‖ . ε‖rotu− rothuI‖+ ε2‖ curl(I −Qh)rotu‖+ ‖u− uI‖.

Proof. Use f = ε2(curl curl− grad div)u + u + ∇p and divu = divuh = divuI = 0, for

vh ∈ ker(div), we obtain the error equation

aεh(uh − uI ,vh)

= (f ,uh − uI)− ε2(rothuI ,vh)− (uI ,vh)

= ε2(curl rotu,vh)− ε2(rothuI , rothvh) + (u− uI ,vh)

= ε2(rotu− rothuI , rothvh) + ε2(curl(I −Qh)rotu,vh) + (u− uI ,vh).
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Here in the third step, we use

(rotu, rothvh) = (Qh rotu, rothvh) = (curlQh rotu,vh)

Substitute vh = uh−uI and apply Cauchy-Schwarz inequality to get the desired error estimate of

‖uh − uI‖Aεh .

To prove the error estimate of the pressure, by the inf-sup condition presented in Lemma 3.1.2, we

can choose vh ∈ V h such that

div vh = pI − ph, and ‖vh‖Aεh . ‖pI − ph‖.

With such vh, we have

b(pI − ph,vh) = b(pI ,vh) + aεh(uh,vh)− (f ,vh)

=
[
aεh(uh,vh)− ε2(curl rotu,vh)− (u,vh)

]
+ b(pI − p,vh)

= ε2(rothuh − rotu, rothvh) + ε2(curl(Qh − I) rotu,vh) + (uh − u,vh).

Here we use the fact that pI is the L2 projection of p to Wh space and thus

b(pI − p,vh) = (pI − p, div vh) = 0.

Apply Cauchy-Schwarz inequality and notice that div vh = pI − ph and ‖vh‖Aεh . ‖pI − ph‖, we

get

‖pI − ph‖ ≤ ε‖ rotu− rothuh‖+ ε2‖ curl(I −Qh) rotu‖+ ‖u− uh‖

. ‖uI − uh‖Aεh + ε‖rotu− rothuI‖+ ‖u− uI‖+ ε2‖ curl(I −Qh) rotu‖.

Remark 3.2.2. Notice that divuh = 0 and divuI = div ΠVhu = ΠWh
divu = 0. Then

‖uh − uI‖Vh = ‖uh − uI‖Aεh .
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The interpolant uI can be changed to any divergence free interpolant of u. But when interpolant pI

is replaced by an easy computable one pII(e.g. the nodal interpolation at the center of elements),

an additional term ‖p− pII‖ should be included in the estimate of ‖ph − pII‖.

We then study the three terms in the error estimate obtained in Theorem 3.2.1. First of all, the

following approximation properties of the L2 projection are well known.

Lemma 3.2.1. For any quasi-uniform mesh with mesh size h, the L2 projection Qh : L2 → Pr

satisfies

‖φ−Qhφ‖+ h|φ−Qhφ|1 . hs|φ|s for all φ ∈ Hs,

where 1 ≤ s ≤ r, and Pr denotes the polynomial up to degree r for an positive integer r.

The interpolation error in L2-norm is also well known. If the polynoimal space P r is contained in

V h, then for u ∈ Hr:

‖u− uI‖ . hr‖u‖r. (3.2.1)

The subtle term is the interpolation error: ‖rotu − rothuI‖. The convergence rate of this term

depends on the symmetry of the triangulation for RT0-P0 scheme, while the first-order convergence

can be guaranteed for BDM1-P0 scheme on general quasi-uniform grids. We show the details in

the following two subsections.

3.2.2 Error Analysis of BDM1-P0.

In this subsection, we present the error estimates for the discrete formulation (3.1.6) with the

BDM1-P0 element.

Lemma 3.2.2 (Lemma 13 in Chen, Wang and Zhong [66]). Assume that u ∈ H2 ∩ H1
0, and

divu = 0. Let uI be the canonical interpolation of u on to BDM1. Then, we have the error

estimate

‖ rotu− rothuI‖ . h‖u‖2.
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So we get the error estimates for the BDM1-P0.

Theorem 3.2.3. Assume that the solution of the Darcy-Stokes equations satisfies u ∈ H2 ∩H1
0

and rotu ∈ H2. Let uh and ph be the solution of the BDM1-P0 approximation using formulation

(3.1.6). Then, we have the following error estimate

‖uh − uI‖Vh + ‖ph − pI‖ . (εh+ h2)‖u‖2 + ε2h‖ rotu‖2.

As ε→ 0, we obtain the second order convergence of L2-norm of the BDM1-P0 approximation of

Darcy system and when ε→ 1, we obtain the first order convergence of a H1-type norm for Stokes

equations.

Note that the computation of roth operator requires inverting the mass matrix of Sh space. For

BDM1-P0 pair, the Sh space is the quadratic Lagrange element for which an accurate mass lumping

is not available. We follow [85] to add a cubic bubble into P2 and can thus obtain a accurate mass

lumping. The resulting scheme will be denoted by BDMb
1-P0 element. Details of the mass lumping

and the error estimate can be found in [66].

3.2.3 Error Analysis of RT0-P0.

The estimate of RT0 is more complicated. Let us recall the definition for the irregular triangulation

following Bank and Xu [7], and two approximation properties.

Definition 3.2.4. A triangulation Th is O(h2σ) irregular if the following holds:

(a) Let E = E1 ⊕E2 denote the set of interior edges in the triangulation mesh. For any e ∈ E1, two

triangles τe and τ ′e containing e form anO(h2) approximate parallelogram, and
∑

e∈E2 |τe|+|τ
′
e| =

O(h2σ).
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(b) Let P = P1 ⊕ P2 denote the set of boundary vertices. The elements associated with each

x ∈ P1 form an O(h2) approximate parallelogram, and |P2| = κ, where κ is independent of h.

Lemma 3.2.3 (Lemma 8 in Chen, Wang, and Zhong [66]). Assume that u ∈W 2,∞∩H1
0, divu =

0, and the triangulation is O(h2σ) irregular. We have the error estimate:

‖ rotu− rothuI‖ . hmin(1,σ)| log h|1/2‖u‖2,∞.

Theorem 3.2.5. Assume that the solution of the Darcy-Stokes equations satisfies u ∈W 2,∞∩H1
0

and rotu ∈H2. Assume the triangulation mesh isO(h2σ) irregular. Let uh and ph be the solution

of the RT0-P0 approximation using formulation (3.1.6). Then, we have the error estimate

‖uh − uI‖Vh + ‖ph − pI‖ . εhmin(1,σ)| log h|1/2‖u‖2,∞ + ε2h‖ rotu‖2 + h‖u‖1.

As ε → 0, we obtain the first order convergence of L2-norm since RT0 contains only piecewise

constant polynomial not full linear polynomial. When ε → 1, we obtain near first order conver-

gence of a H1-type norm if the mesh is symmetry in the sense that σ � 1.

3.3 A uniform preconditioner

We shall use the framework developed in [80]. Roughly speaking if an operator L from an Hilbert

space X to its dual X∗ is continuous and stable in the inner product (·, ·)X , then the Riesz repre-

sentation induced by this inner product will be a good preconditioner of L.

Therefore stability in Section 2 leads to a preconditioner in the form(Iu − ε2∆− grad div)−1 O

O I−1
p

 . (3.3.1)

As ε → 0, a fast solver for inverting Iu − grad div is needed which requires a special smoother

taking care of the large null space of div operator. We could expect the multigrid methods for
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H(div) problems developed in [3, 20] will work using preconditioner (3.3.1).

Here we shall follow [79] to establish a stability in a different norm. We first introduce the inter-

section and the sum of two Hilbert spaces. For Hilbert spaces X and Y , which are both contained

in some larger Hilbert space, the intersection X ∩ Y and the sum X + Y are both Hilbert spaces

with norms given by

‖x‖2
X∩Y = ‖x‖2

X + ‖x‖2
Y

and

‖z‖2
X+Y = inf

x∈X,y∈Y,z=x+y

(
‖x‖2

X + ‖y‖2
Y

)
.

Furthermore, when X ∩ Y are dense in both spaces X and Y ,

(X ∩ Y )∗ = X∗ + Y ∗ (X + Y )∗ = X∗ ∩ Y ∗. (3.3.2)

For detailed proof of (3.3.2), we refer to [82].

Let us write the system (0.2.1) in the operator form

Aε
u
p

 =

f
0

 (3.3.3)

where

Aε =

I − ε2∆ grad

− div 0

 . (3.3.4)

We define the spaces Xε = V ×W and X∗ε = V ∗ ×W ∗ by

Xε = (L2 ∩ εH1
0)× ((H1 ∩ L2

0) + ε−1L2
0)

and

X∗ε = (L2 + ε−1H−1)× (H−1
0 ∩ εL2

0),
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where H−1
0 := (H1 ∩ L2

0)∗. The norm for velocity space L2 ∩ εH1
0 is

‖v‖2
L2∩εH1

0
= ‖v‖2 + ε2‖∇v‖2 = aε(v,v),

and the norm for pressure space is

‖p‖2
H1+ε−1L2

0
= inf

p1∈H1∩L2
0

‖p1‖2
1 + ε−2‖p− p1‖2.

Note that spaces chosen here are equivalent to the choices in Section 2 as linear spaces but with

different norms.

By the definition of these norms, we can easily the continuity and the coercivity of bilinear form

aε(·, ·). We then verify the continuity of b(·, ·) in this norm.

Lemma 3.3.1. The bilinear form b(·, ·) is continuous, i.e.,

b(v, p) . ‖v‖L2∩εH1
0
‖p‖H1+ε−1L2

0
.

Proof. For any q ∈ H1 ∩ L2
0,

b(v, p) = −(div v, p− q)− (div v, q)

≤ ε‖ div v‖ε−1‖p− q‖+ ‖v‖‖ grad q‖

. (‖v‖+ ε‖ div v‖)(ε−1‖p− q‖+ ‖q‖1)

. ‖v‖L2∩εH1
0
‖p‖H1+ε−1L2

0
.

The inf-sup condition in these non-standard norm can be derived from the existence of a right

inverse of div operator

S ∈ L(L2
0,H

1
0) ∩ L(H−1

0 ,L2) and divSf = f.
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The operator S is known as Bogovskii operator and can be found in many places, e.g. [17, 18]. We

include the simple proof in [81] for the completeness.

Lemma 3.3.2. The bilinear form b(·, ·) satisfies the inf-sup condition:

inf
q∈W

sup
v∈V

b(v, q)

‖v‖L2∩εH1
0
‖q‖H1+ε−1L2

0

≥ β,

where the positive constant β is independent of the parameter ε.

Proof. For any q ∈ L2
0(Ω), we have

‖q‖H1+ε−1L2
0

= sup
g∈H−1

0 ∩εL2
0

〈g, q〉
‖g‖H−1

0 ∩εL2
0

. sup
g∈H−1

0 ∩εL2
0

〈divSg, q〉
‖Sg‖L2∩εH1

0

. sup
v∈V

b(v, q)

‖v‖L2∩εH1
0

.

The well-posedness of the operator Aε from Xε → X∗ε leads to the block diagonal preconditioner

Bε =

(I − ε2∆)−1 0

0 (−∆N)−1 + ε2I

 , (3.3.5)

where −∆N is the operator of Laplacian equation with pure Neumann boundary condition. The

preconditioned operator BεAε is uniformly bounded and consequently the inverse of BεAε can be

computed efficiently by Krylov space method.

We then move to the TMAC discretization. The discrete system (3.1.6) can be written as

Aεh

uh
ph

 =

fh
0

 (3.3.6)

where

Aεh =

Mu − ε2∆h gradh

− div 0

 , (3.3.7)
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with the discrete vector Laplacian−∆h = curl roth−gradh div. The corresponding block diagonal

and positive definite operator is given by

Bεh =

(Mu − ε2∆h)
−1 0

0 (−∆N,h)
−1 + ε2M−1

p

 , (3.3.8)

where−∆N,h = − div gradh andMu,Mp are mass matrices for velocity and pressure, respectively.

Notice that our pressure space is not a subspace of H1 and thus we cannot follow [81] by con-

structing a Fortin operator stable in both L2 and H1-norm. Instead we follow the approach in [82].

Let Ph denote the orthogonal projection V ′h → gradh(Wh) in the A−1
h inner product. Let us intro-

duce a lemma in [82] which presents a characterization of this operator.

Lemma 3.3.3. Let I : Vh → V ′h be the Riesz isomorphism induced by the inner product (·, ·)1,h,

i.e., 〈Iu,v〉 = (rothu, rothv) + (divu, div v). For f ∈ V ′h, let (uh, ph) ∈ (Vh,Wh) be the unique

solution of

Iuh + gradhph = f , (3.3.9)

− divuh = 0. (3.3.10)

Define the solution operator as R : V ′h → Wh by f → ph. Then Ph = gradhR.

Introduce the vorticity wh = roth uh and stream function φh so that uh = curlφh. Then equations

(3.3.9)-(3.3.10) is equivalent to the mixed formulation of biharmonic equation

∆wh = rotf , wh = ∆φh.

Note that if f ∈ L2, then curlwh = f holds in L2 and

b(vh, ph) = (f ,vh)− (curlwh,vh), for all vh ∈ Vh.

It suffices to verify the L2 stability of the H−1 type projection Ph.
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Lemma 3.3.4. Assume the H2-regularity holds for Stokes equation. For BDM1-P0 element, we

have

‖Phfh‖ . ‖fh‖. (3.3.11)

Proof. By definition, we have Phfh = gradh ph = gradhRfh where R is defined as in Lemma

3.3.3.

Use the same data fh, we solve Stokes equations to get u ∈ H2 and let w = rotu. Then

curlw = fh holds in L2 and by the H2-regularity assumption ‖w‖1 = ‖u‖ . ‖fh‖.

We start from the identity

‖Phfh‖ = ‖ grad
h

ph‖ = sup
vh∈V h

b(vh, ph)

‖vh‖
= sup

vh∈V h

(curlw − curlwh,vh)

‖vh‖
,

and get ‖Phfh‖ . ‖ curlw− curlwh‖. We then estimate the error ‖ curlw− curlwh‖ as follows.

Let wI be a quasi-interpolation of w satisfying

‖w − wI‖+ h‖ curl(w − wI)‖ . h‖w‖1

Then

‖ curlw − curlwh‖ . ‖ curlw − curlwI‖+ h−1‖wI − wh‖

. ‖w‖1 + h−1 (‖w − wI‖+ ‖w − wh‖)

. ‖fh‖.

In the third step, we use the error estimate obtained in [1] for biharmonic equation

‖w − wh‖ . h‖fh‖,

which only true when H2-regularity result holds and the degree of the polynomial space for wh is

greater than or equal to 2 which is equivalent to using BDM1 for velocity.
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According to Lemma 3.3.4, we can apply Theorem 4.2 in [82] to conclude that (−∆N,h)
−1+ε2M−1

p

is equivalent to the Schur complement of system Aεh.

Theorem 3.3.1. Assume the H2-regularity holds for Stokes equation. Let S̃h = (−∆N,h)
−1 +

ε2M−1
p and Sh = − div(Mu − ε2∆)−1 gradh. There exist positive constant cd, independent of h

and ε, such for all ph ∈ Wh the following holds:

cd(S̃hph, ph) ≤ (Shph, ph) ≤ 2(S̃hph, ph).

Consequently, Bεh is a uniform preconditioner of Aεh.

It is easy to verify that Bεh is a uniform preconditioner of Aεh by following the framework of [79],

and similar proof can be found in [15].

3.4 Numerical Experiments

In the numerical tests with the square domain [−1, 1] × [−1, 1], the Dirichlet boundary condition

for u are chosen, and the analytical solutions are

u(x, y) = curl sin2(πx)sin2(πy), p(x, y) = sin(πx).

Thus the righthand side f = u− ε2∆u− grad p.

We present numerical tests for both the RT0-P0 discretization and the BDMb
1-P0 discretization. In

order to avoid taking the inverse of the mass matrix in the discrete system, we consider the lumped

schemes only. For both schemes, we consider two different types of grids: a crisscross grid (also

referred to as a bisection grid), a three-directional structured grid (all triangles are formed by

edges parallel to three directions only). We refer to Figure 3.1 for an illustration. We use a uniform

bisect strategy for refining the bisection grid. That is the triangle is bisected twice by connecting

the midpoint of the longest edge to its opposite vertex. In the so-called red refinement the triangle

is divided into four congruent sub-triangles by connecting the midpoint of each edge. We use a
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uniform red refinement for refining the three-directional grids such that the resulting grids remains

three-directional.

Figure 3.1: Bisection grids and three-directional structured grids of a square domain.

We implemented the schemes by using the MATLAB c© software package iFEM [13].

3.4.1 Uniform convergence

In this subsection, we present that the discrete systems are uniformly convergent. By using

BDM1b-P0 orRT0-P0, the convergence rates is uniform with respect to the perturbation parameter

ε by red refinement meshes.

HHH
HHHε
h

2−2 2−3 2−4 2−5 2−6 Rate

1 0.5633 0.1515 0.0383 0.0096 0.0024 1.9739
2−2 0.5625 0.1515 0.0383 0.0096 0.0024 1.9735
2−4 0.5593 0.1516 0.0383 0.0096 0.0024 1.9719
2−8 0.5583 0.1538 0.0386 0.0096 0.0024 1.9732
0 0.5583 0.1539 0.0387 0.0096 0.0024 1.9730

Table 3.1: ‖u− uh‖ obtained by BDM1b-P0 element by red refinement
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HH
HHHHε

h
2−2 2−3 2−4 2−5 2−6 Rate

1 8.2503 3.2262 0.9753 0.2614 0.0724 1.7289
2−2 2.0820 0.8101 0.2441 0.0653 0.0173 1.7457
2−4 0.5921 0.2151 0.0623 0.0164 0.0043 1.7955
2−8 0.3004 0.0701 0.0118 0.0019 0.0003 2.4775
0 0.2988 0.0688 0.0110 0.0015 0.0002 2.6739

Table 3.2: ‖uh − uI‖Vh obtained by BDM1b-P0 element by red refinement

HHH
HHHε
h

2−2 2−3 2−4 2−5 2−6 Rate

1 0.9424 0.2944 0.1024 0.0421 0.0188 1.4104
2−2 0.2676 0.1319 0.0656 0.0328 0.0164 1.0071
2−4 0.2603 0.1307 0.0654 0.0327 0.0164 0.9982
2−8 0.2602 0.1307 0.0654 0.0327 0.0164 0.9980
0 0.2602 0.1307 0.0654 0.0327 0.0164 0.9980

Table 3.3: ‖p− ph‖ obtained by BDM1b-P0 element by red refinement

H
HHH

HHε
h

2−2 2−3 2−4 2−5 2−6 Rate

1 2.1312 1.1086 0.5609 0.2813 0.1407 0.9820
2−2 2.0815 1.1028 0.5601 0.2812 0.1407 0.9745
2−4 2.0244 1.0947 0.5591 0.2810 0.1407 0.9655
2−8 2.0221 1.0942 0.5590 0.2810 0.1407 0.9651
0 2.0221 1.0942 0.5590 0.2810 0.1407 0.9651

Table 3.4: ‖u− uh‖ obtained by RT0-P0 element by red refinement

HH
HHHHε

h
2−2 2−3 2−4 2−5 2−6 Rate

1 4.6551 1.2145 0.3038 0.0766 0.0315 1.8403
2−2 1.1194 0.2965 0.0741 0.0185 0.0056 1.9295
2−4 0.4932 0.1415 0.0360 0.0090 0.0022 1.9531
2−8 0.4731 0.1410 0.0368 0.0093 0.0023 1.9253
0 0.4730 0.1410 0.0368 0.0093 0.0023 1.9247

Table 3.5: ‖uh − uI‖Vh obtained by RT0-P0 element by red refinement
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HHH
HHHε
h

2−2 2−3 2−4 2−5 2−6 Rate

1 3.7024 1.0016 0.2614 0.0717 0.0229 1.8480
2−2 0.3856 0.1510 0.0682 0.0331 0.0164 1.1300
2−4 0.2705 0.1321 0.0656 0.0327 0.0164 1.0106
2−8 0.2672 0.1316 0.0655 0.0327 0.0164 1.0065
0 0.2672 0.1316 0.0655 0.0327 0.0164 1.0065

Table 3.6: ‖p− ph‖ obtained by RT0-P0 element by red refinement

3.4.2 Robustness to meshes

In this subsection, we present the convergence rates of BDM1b-P0 element and RT0-P0 element

by bisection refinement meshes. We can see that the convergence rate of BDM1b-P0 element is

robust to the meshes, while ‖uh − uI‖Vh obtained by RT0-P0 element by bisection refinement

diverges for some values of ε.

H
HHH

HHε
h

2−2 2−3 2−4 2−5 2−6 Rate

1 0.5633 0.1442 0.0366 0.0092 0.0023 1.9850
2−2 0.5625 0.1441 0.0366 0.0092 0.0023 1.9845
2−8 0.5593 0.1436 0.0366 0.0092 0.0023 1.9824
2−8 0.5583 0.1443 0.0366 0.0092 0.0023 1.9826
0 0.5583 0.1444 0.0367 0.0092 0.0023 1.9826

Table 3.7: ‖u− uh‖ obtained by BDM1b-P0 element by bisection refinement

HH
HHHHε

h
2−2 2−3 2−4 2−5 2−6 Rate

1 8.2503 2.8396 1.2806 0.6139 0.3040 1.1734
2−2 2.0820 0.7137 0.3206 0.1535 0.0759 1.1772
2−4 0.5921 0.1928 0.0818 0.0386 0.0190 1.2250
2−8 0.3004 0.0739 0.0172 0.0046 0.0015 1.9273
0 0.2988 0.0730 0.0164 0.0039 0.0009 2.0838

Table 3.8: ‖uh − uI‖Vh obtained by BDM1b-P0 element by bisection refinement
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HH
HHHHε

h
2−2 2−3 2−4 2−5 2−6 Rate

1 0.9424 0.2993 0.1035 0.0426 0.0189 1.4085
2−2 0.2676 0.1319 0.0656 0.0328 0.0164 1.0070
2−4 0.2603 0.1307 0.0654 0.0327 0.0164 0.9982
2−8 0.2602 0.1307 0.0654 0.0327 0.0164 0.9980
0 0.2602 0.1307 0.0654 0.0327 0.0164 0.9980

Table 3.9: ‖p− ph‖ obtained by BDM1b-P0 element by bisection refinement

HHH
HHHε
h

2−2 2−3 2−4 2−5 2−6 Rate

1 2.1312 1.0628 0.5263 0.2626 0.1312 1.0060
2−2 2.0815 1.0544 0.5255 0.2625 0.1312 0.9982
2−4 2.0244 1.0398 0.5240 0.2623 0.1312 0.9883
2−8 2.0221 1.0373 0.5235 0.2622 0.1311 0.9878
0 2.0221 1.0373 0.5235 0.2622 0.1311 0.9878

Table 3.10: ‖u− uh‖ obtained by RT0-P0 element by bisection refinement

H
HHH

HHε
h

2−2 2−3 2−4 2−5 2−6 Rate

1 4.6551 10.1485 9.8943 9.8522 9.8532 -0.2121
2−2 1.1194 2.5551 2.4806 2.4650 2.4638 -0.2224
2−4 0.4932 0.7273 0.6489 0.6240 0.6179 -0.0429
2−8 0.4731 0.3776 0.2031 0.1086 0.0640 0.7569
0 0.4730 0.3756 0.1995 0.1016 0.0511 0.8305

Table 3.11: ‖uh − uI‖Vh obtained by RT0-P0 element by bisection refinement

HH
HHHHε

h
2−2 2−3 2−4 2−5 2−6 Rate

1 3.7024 1.7085 0.9651 0.6409 0.4453 0.7526
2−2 0.3856 0.1721 0.0896 0.0519 0.0323 0.8885
2−4 0.2705 0.1315 0.0656 0.0328 0.0165 1.0078
2−8 0.2672 0.1309 0.0654 0.0327 0.0164 1.0059
0 0.2672 0.1309 0.0654 0.0327 0.0164 1.0059

Table 3.12: ‖p− ph‖ obtained by RT0-P0 element by bisection refinement
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3.4.3 Uniform Preconditioner

In this subsection, we can see that the preconditioned discrete systems can be solved by Minres

with uniformly bounded steps.

H
HHH

HHε
h

2−2 2−3 2−4 2−5 2−6

1 21 13 11 9 9
2−2 21 25 27 29 17
2−4 21 23 25 29 31
2−8 23 23 23 23 21
0 23 23 23 23 23

Table 3.13: Minres iteration steps to 10−6 obtained by BDM1-P0 element with red refinement

HH
HHHHε

h
2−2 2−3 2−4 2−5 2−6

1 21 13 11 9 7
2−2 21 21 21 23 15
2−4 21 19 19 21 17
2−8 23 17 17 15 15
0 23 17 17 15 15

Table 3.14: Minres iteration steps to 10−6 obtained byBDM1-P0 element with bisection refinement

HHH
HHHε
h

2−2 2−3 2−4 2−5 2−6

1 19 11 11 9 7
2−2 19 21 25 27 17
2−4 19 21 23 25 29
2−8 23 23 23 21 19
0 23 23 23 23 23

Table 3.15: Minres iteration steps to 10−6 obtained by RT0-P0 element with red refinement
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HH
HHHHε

h
2−2 2−3 2−4 2−5 2−6

1 19 19 11 9 9
2−2 19 19 21 21 15
2−4 19 17 19 21 17
2−8 23 13 13 13 13
0 23 11 11 9 9

Table 3.16: Minres iteration steps to 10−6 obtained by RT0-P0 element with bisection refinement
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Chapter 4

Block Triangular Preconditioner for the

Stochatic Stokes Equations

We study efficient iterative solvers for the stochastic Galerkin discretization of the Stokes equations

with random viscosity. The stochastic saddle-point linear systems are obtained by using H(div)

finite element discretization in physical space and generalized polynomial chaos expansion in ran-

dom space. We prove the existence and uniqueness of the solutions to the continuous problem and

its corresponding stochastic Galerkin discretization. Optimal error estimates are also derived. We

construct block-diagonal/triangular preconditioners for use with the generalized minimum residual

method and the bi-conjugate gradient stabilized method. An optimal multigrid solver is applied

to efficiently solve the diagonal blocks that correspond to deterministic discrete Stokes systems.

We also design a multigrid method with either the block Jacobi method or block Gauss-Seidel

method as the smoother for solving the stochastic saddle-point systems. It is shown that the multi-

grid method using the block Gauss-Seidel smoother is more efficient and robust than that using the

block Jacobi smoother. To demonstrate the efficiency and robustness of the proposed block precon-

ditioners and multigrid method with respect to all discretization parameters and random viscosity

variance, various numerical examples also are provided.

We use notation Ω for the random space, and D for the physical domain. Let D ⊂ R2 be a
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bounded convex polygonal domain with boundary ∂D. (Ω,F ,P) denotes a complete probability

space, where Ω is the set of outcomes, F ⊂ 2Ω is the σ−algebra of random events, and P is the

probability measure.

4.1 Stokes Equations with Random Viscosity

We consider the following steady-state Stokes equations with random coefficient:
−ν(ω)∆u(ω, x) + grad p(ω, x) = f(x) in Ω×D,

− divu(ω, x) = 0 in Ω×D,

u(ω, x) = gD(x) on Ω× ∂D,

(4.1.1)

where u is the velocity field, p is the pressure, ν is random viscosity, and f is an external force

field. For simplicity, we assume that f and gD are deterministic functions. We also assume that ν

is bounded and uniformly coercive, i.e.,

∃νmin, νmax ∈ (0,+∞) : P(ω ∈ Ω : ν(ω) ∈ [νmin, νmax]) = 1. (4.1.2)

In this paper, we consider a special case where the viscosity is given in the form ν(ω) = ν(ξ(ω)),

and ξ is assumed to be a random variable, having probability density function ρξ : Γ → R+ with

bounded Γ := ξ(Ω). We also assume that the Dirichlet boundary condition gD(x) = 0. By the

Doob-Dynkin lemma [69], the random fields u and p can also be expressed as functions of ξ, i.e.,

u = u(ξ, x) and p = p(ξ, x). Then, the stochastic Stokes equations (4.1.1) can be written in the

following deterministic parameterized form:
−ν(ξ)∆u(ξ, x) + grad p(ξ, x) = f(x) in Γ×D,

− divu(ξ, x) = 0 in Γ×D,

u(ξ, x) = 0 on Γ× ∂D.

(4.1.3)
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4.1.1 The Velocity-Pressure Formulation.

For any u ∈H1
0(D), the following identity for the vector Laplacian holds inH−1(D) topology:

−∆u = curl rotu− grad divu.

A variational formulation of the stochastic Stokes equations (4.1.3) is: find u ∈ L2(Γ) ⊗H1
0(D)

and p ∈ L2(Γ)⊗ L2
0(D) such that

A(u,v) +B(v, p) = E[(f ,v)] for all v ∈ L2(Γ)⊗H1
0(D),

B(u, q) = 0 for all q ∈ L2(Γ)⊗ L2
0(D),

(4.1.4)

where the bilinear forms A(·, ·) and B(·, ·) are defined as: for u,v ∈ L2(Γ)⊗H1
0(D),

A(u,v) := E[ν(ξ)(rotu, rotv) + ν(ξ)(divu, div v)];

and for v ∈ L2(Γ)⊗H1
0(D), q ∈ L2(Γ)⊗ L2

0(D),

B(v, q) := −E[(div v, q)].

4.1.2 The Wellposedness.

According to the definition of the bilinear forms A(u,v) and B(v, q) and the boundedness and

coercivity of the random variable ν(ξ), it is straightforward to verify both the continuity and coer-

civity of A, i.e., for all u,v ∈ L2(Γ)⊗H1
0(D)

|A(u,v)| ≤ νmax‖u‖L2(Γ)⊗H1
0(D)‖v‖L2(Γ)⊗H1

0(D),

|A(u,u)| ≥ νmin‖u‖2
L2(Γ)⊗H1

0(D),
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and the continuity of B, i.e., for all u ∈ L2(Γ)⊗H1
0(D) and q ∈ L2(Γ)⊗ L2

0(D)

|B(u, q)| ≤ ‖u‖L2(Γ)⊗H1
0(D)‖q‖L2(Γ)⊗L2

0(D).

Hence, to prove the well-posedness of (4.1.4), it is sufficient to prove the inf-sup condition for

the bilinear form B(·, ·). Thus, we prove the following lemma, which is equivalent to the inf-sup

condition.

Lemma 4.1.1. For any q(ξ,x) ∈ L2(Γ) ⊗ L2
0(D), there exists a v(ξ,x) ∈ L2(Γ) ⊗H1

0(D) such

that

div v = q, and ‖v‖L2(Γ)⊗H1
0(D) . ‖q‖L2(Γ)⊗L2

0(D).

Proof. For any q(ξ,x) ∈ L2(Γ)⊗ L2
0(D), we can expand q(ξ,x) in the form:

q(ξ,x) =
∞∑
i=1

qi(x)Ψi(ξ),

where qi(x) = E[q(ξ,x)Ψi(ξ)] ∈ L2
0(D). Then, the tensor norm can be written as the summation

of the L2 norm of each coefficient, i.e., ‖q‖2
L2(Γ)⊗L2

0(D)
=
∑∞

i=1 ‖qi(x)‖2.

It is already known that for each qi(x) ∈ L2
0(D), there exists a corresponding vi(x) ∈ H1

0(D),

such that

div vi(x) = qi(x) and ‖vi(x)‖1 ≤ c‖qi(x)‖,

where c > 0 (see [70]). With vi(x) as the coefficients, we can define the function v(ξ,x) :=∑∞
i=1 v

i(x)Ψi(ξ).

‖v(ξ,x)‖L2(Γ)⊗H1
0(D) =

∞∑
i=1

(‖ rotvi(x)‖2 + ‖ div vi(x)‖2) ≤ 2c
∞∑
i=1

‖qi(x)‖2

≤ 2c‖q(ξ,x)‖L2(Γ)⊗L2
0(D) <∞.
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Then, v(ξ,x) ∈ L2(Γ)⊗H1
0(D) and satisfies

div v = q, and ‖v‖L2(Γ)⊗H1
0(D) . ‖q‖L2(Γ)⊗L2

0(D).

Then, we prove that v(ξ,x) is a well-defined function, which satisfies the conditions.

In summary, we acquire the following result for the well-posedness of the variational formulation

(4.1.4)

Theorem 4.1.1. There exists a unique solution u ∈ L2(Γ) ⊗H1
0(D) and p ∈ L2(Γ) ⊗ L2

0(D) to

the variational formulation (4.1.4), and

‖u‖L2(Γ)⊗H1
0(D) + ‖p‖L2(Γ)⊗L2

0(D) . ‖f‖L2(Γ)⊗H−1
0 (D),

where ‖f‖L2(Γ)⊗H−1
0 (D) = supv∈L2(Γ)⊗H1

0(D)

E[(f ,v)]

‖v‖L2(Γ)⊗H1
0(D)

.

4.2 The Discrete Problem

4.2.1 The Discrete Problem.

In the tensor space L2(Γ)⊗ V h
0 , we define the following inner product and the associated norm:

Definition 4.2.1. For any u,v ∈ L2(Γ)⊗ V h
0 , the inner product

(u,v)L2(Γ)⊗V h
0

:= E[(rothu, rothv) + (divu, div v)]

defines an associated norm

‖u‖2
L2(Γ)⊗V h

0
:= (u,u)L2(Γ)⊗V h

0
.

By following [66], we can easily verify the well-posedness of the discrete operator roth and the

inner product (·, ·)L2(Γ)⊗V h
0
. Based on these, we obtain a discrete variational formulation of (4.1.4):
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find um,h ∈ Y m ⊗ V h
0 and pm,h ∈ Y m ⊗W h

0 , such that

Ah(um,h,vm,h) +B(vm,h, pm,h) = E[(f ,vm,h)] for all vm,h ∈ Y m ⊗ V h
0 ,

B(um,h, qm,h) = 0 for all qm,h ∈ Y m ⊗W h
0 ,

(4.2.1)

where the discrete bilinear form Ah is defined as: for um,h,vm,h ∈ Y m ⊗ V h
0

Ah(um,h,vm,h) := E[ν(ξ)(rothum,h, rothvm,h) + ν(ξ)(divum,h, div vm,h)].

4.2.2 The Matrix Form

The bilinear forms Ah and B can be represented by the tensor product of the spacial matrices:

K =

(∫
D

rothΦi(x)rothΦj(x) + div Φi(x) div Φi(x)dx

)
i, j=1,··· ,Nu

,

W =

(∫
D

div Φi(x)χj(x)dx

)
i=1,··· ,Ne, j=1,...,Np

,

and the stochastic matrices:

G0 =

(∫
Γ

Ψi(y)Ψj(y)ρξ(y)dy

)
i, j=1,··· ,Nξ

,

G1 =

(∫
Γ

ν(y)Ψi(y)Ψj(y)ρξ(y)dy

)
i, j=1,··· ,Nξ

.

With the expansion

um,h =

Nξ∑
j=1

Nu∑
i=1

U(j−1)Nu+iΦi(x)Ψj(ξ), pm,h =

Nξ∑
j=1

Np∑
i=1

P(j−1)Np+iχi(x)Ψj(ξ),
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we obtain the matrix form of the discrete formulation (4.2.1) :

L

~U
~P

 :=

G1 ⊗K G0 ⊗W ′

G0 ⊗W 0

~U
~P

 =

~F

~0

 , (4.2.2)

where F(j−1)Nu+i = E[(f ,Φi(x)Ψj(ξ))], ~F = (Fi)i=1,...,Nu×Nξ , ~U = (Ui)i=1,...,Nu×Nξ , ~P =

(Pi)i=1,...,Np×Nξ .

4.2.3 Well-posedness of the Discrete Problem.

At the discrete level, we consider the velocity u ∈ Y m ⊗ V h
0 ⊂ L2(Γ) ⊗H0(div), which is not

in L2(Γ) ⊗H1
0(D). We prove the well-posedness of the discrete variational formulation (4.2.1)

based on a weaker norm on the subspace L2(Γ)⊗ V h
0 .

Theorem 4.2.2. There exists a unique solution um,h ∈ Y m ⊗ V h
0 and pm,h ∈ Y m ⊗W h

0 to the

variational formulation (4.2.1), and

‖um,h‖L2(Γ)⊗V h
0

+ ‖pm,h‖L2(Γ)⊗L2
0(D) . ‖f‖L2(Γ)⊗V h′

0
,

where ‖f‖L2(Γ)⊗V h′
0

= supv∈L2(Γ)⊗V h
0

E[(f ,v)]

‖v‖L2(Γ)⊗V h
0

.

According to the definition of the norm ‖·‖L2(Γ)⊗V h
0

and the bilinear operators, it is straightforward

to show the continuity and coercivity of the bilinear form Ah(·, ·) and the continuity of B(·, ·).

Hence, to prove Theorem 4.2.2, it is sufficient to show the following inf-sup condition:

Lemma 4.2.1. For any qm,h(ξ, x) ∈ Y m ⊗W h
0 , there exists a vm,h(ξ, x) ∈ Y m ⊗ V h

0 , such that

div vm,h = qm,h, and ‖vm,h‖L2(Γ)⊗V h
0
. ‖qm,h‖L2(Γ)⊗L2

0(D).

Proof. Using the deterministic result in [66] that for any q(x) ∈ W h
0 , there exists v(x) ∈ V h

0 , such

that

div v(x) = q(x) and ‖v(x)‖V h
0
≤ c̃‖q(x)‖,
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where c̃ > 0, ‖v‖2
V h

0
= (roth v, roth v) + (div v, div v), and following the proof of Lemma 4.1.1,

we can obtain the desired result.

4.3 Error Analysis

In this section, we prove that, on mildly structured meshes, the solution of the discrete problem

(4.2.1) can achieve the optimal first-order convergence on the spacial approximation, and the opti-

mal order on the stochastic approximation.

Let us introduce the gPC orthogonal projection operator

Rn : L2(Γ)→ Y n−1, Rnf =
n∑
k=1

fkΨk(ξ), fk = E[fΨk(ξ)],

and the L2 projection operator

Qh : L2(D)→ Σh, (Qhf, τ) = (f, τ) for all τ ∈ Σh,

We present analyses of these interpolations and projections, which will be used in the error esti-

mates of the stochastic Stokes equations, as the following three lemmas.

Lemma 4.3.1. (Chen, Wang, and Zhong [66]) Assume that v ∈W 2,∞(D)
⋂
H1

0(D), div v = 0,

and the triangulation is O(h2) irregular. We have the error estimate:

‖ rotv − rothΠV h
0
v‖ . h| log h|1/2‖v‖2,∞.

Lemma 4.3.2. The Rn projection holds the optimality:

‖f −Rnf‖L2(Γ) = inf
g∈Pn−1(Γ)

‖f − g‖L2(Γ),

where Pn−1(D) is the linear space of all polynomials of Γ of degrees up to n− 1.
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Remark 4.3.1. In Lemma 4.3.2, the convergence rate depends on the smoothness of the function,

e.g., if f(x) ∈ Hp[−1, 1], p > 0, then ‖f − Rnf‖L2(Γ) . (n − 1)−p‖f‖Hp[−1,1] (see [71]). This

optimality is also valid on smaller tensor spaces, such as L2(Γ)⊗H1(D) and L2(Γ)⊗H2(D).

Hereafter, we use the following notation:

u(ξ, x) =
∞∑
i=1

ui(x)Ψi(ξ), uI(ξ, x) =
∞∑
i=1

ΠV h
0
ui(x)Ψi(ξ) :=

∞∑
i=1

uiI(x)Ψi(ξ),

p(ξ, x) =
∞∑
i=1

pi(x)Ψi(ξ), pI(ξ, x) =
∞∑
i=1

ΠWh
0
pi(x)Ψi(ξ) :=

∞∑
i=1

piI(x)Ψi(ξ),

um,I = RmuI =
m∑
i=1

uiI(x)Ψi(ξ), pm,I = RmpI =
m∑
i=1

piI(x)Ψi(ξ).

Theorem 4.3.2. Assume that the solution of the stochastic Stokes equations satisfies u ∈ L2(Γ)⊗

(W 2,∞(D) ∩ H1
0(D)), rotu ∈ L2(Γ) ⊗ H1

0(D), p ∈ L2(Γ) ⊗ (H1(D)
⋂
L2

0(D)). Assume

the triangulation is O(h2) irregular. Let (uI , pI) be the canonical interpolation of (u, p), and

(um,h, pm,h) be the solution to the discrete problem (4.2.1). We have:

‖uI − um,h‖L2(Γ)⊗V h
0

+ ‖pI − pm,h‖L2(Γ)⊗L2(D)

. h| log h|1/2‖u‖L2(Γ)⊗W 2,∞(Ω) + h‖ rotu‖L2(Γ)⊗H2(D) + h‖p‖L2(Γ)⊗H1(D)

+ inf
v∈Pm−1(Γ)⊗H2(D)

‖v − rotu‖L2(Γ)⊗L2
0(D) + inf

q∈Pm−1(Γ)⊗L2
0(D)
‖q − p‖L2(Γ)⊗L2

0(D).

Proof. We expand the solution um,h and pm,h as:

um,h(ξ, x) =
m∑
i=1

uim,h(x)Ψi(ξ), pm,h(ξ, x) =
m∑
i=1

pim,h(x)Ψi(ξ).
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According to the definitions and the boundedness of ν(ξ), we obtain:

Ah(um,h − um,I ,vm,h)

=E[(f ,vm,h)]−B(vm,h, pm,h)− Ah(um,I ,vm,h)

=E[ν(ξ) · (curl rotu,vm,h)]

− E[ν(ξ) · (rothum,I , rothvm,h)]− E[(p− pm,h, div vm,h)]

=E[ν(ξ) · (rotu− rothum,I , rothvm,h)]

+ E[ν(ξ) · (curl(I −Qh) rotu,vm,h)]− E[(p− pm,h, div vm,h)]

≤νmaxE[(rotu− rothum,I , rothvm,h)]

+ νmaxE[(curl(I −Qh) rotu,vm,h)]− E[(p− pm,h, div vm,h)]

:=νmaxI1 + νmaxI2 + I3.

To estimate the first part, we apply Lemma 4.3.1 and have:

I1 = E[(rotu− rothum,I , rothvm,h)]

=
m∑
i=1

(rotui(x)− rothu
i
I(x), rothv

i
m,h(x))

≤
m∑
i=1

‖ rotui(x)− rothu
i
I(x)‖‖rothv

i
m,h(x)‖

. h| log h|1/2
m∑
i=1

‖ui(x)‖2,∞‖rothv
i
m,h(x)‖

. h| log h|1/2‖vm,h(x)‖L2(Γ)⊗V h
0

m∑
i=1

‖ui(x)‖2,∞.

Applying the standard property of the L2 projection Qh that

‖f −Qhf‖+ h|f −Qhf |1 . h2|f |2 for all f ∈ H2(D),
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we obtain the estimate of the second part:

I2 = E[(curl(I −Qh) rotu,vm,h)] =
m∑
i=1

(curl(I −Qh) rotui(x),vim,h(x))

≤
m∑
i=1

‖ curl(I −Qh) rotui(x)‖‖vim,h(x)‖ . h‖vm,h(x)‖L2(Γ)⊗V h
0

m∑
i=1

‖ rotui(x)‖2.

Let vm,h = um,h − um,I , while the differential operator div commutes with the canonical inter-

polations, i.e., ΠWh
0

divu = div ΠV h
0
u = 0 [72]. Then it is readily verifiable that div vm,h =

divum,h − divum,I = 0, whereupon the third part I3 disappears. Applying the coercivity of the

bilinear form Ah(·, ·), and the previous estimates,

‖um,h − um,I‖2
L2(Γ)⊗V h

0
≤ Ah(um,h − um,I ,um,h − um,I)

. ‖um,h − um,I‖L2(Γ)⊗V h
0

[
h| log h|1/2

m∑
i=1

‖ui(x)‖2,∞ + h
m∑
i=1

‖ rotui(x)‖2

]
.

From this, we obtain:

‖um,h − um,I‖L2(Γ)⊗V h
0
. h| log h|1/2

m∑
i=1

‖ui(x)‖2,∞ + h
m∑
i=1

‖ rotui(x)‖2.

By the triangular inequality, we have:

‖um,h − uI‖L2(Γ)⊗V h
0
≤ ‖um,h − um,I‖L2(Γ)⊗V h

0
+ ‖um,I − uI‖L2(Γ)⊗V h

0
.
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To estimate the second term, we have:

‖um,I − uI‖2
L2(Γ)⊗V h

0
=
∞∑
i=1

(rothu
i
m,I − rothu

i
I , rothu

i
m,I − rothu

i
I)

=
∞∑

i=m+1

‖rothu
i
I‖2 .

∞∑
i=m+1

(‖ rotui − rothu
i
I‖2 + ‖ rotui‖2)

.
∞∑

i=m+1

h2| log h|‖ui(x)‖2
2,∞ +

∞∑
i=m+1

‖ rotui‖2

.
∞∑

i=m+1

h2| log h|‖ui(x)‖2
2,∞ + ‖(I −Rm) rotu‖2.

Combining Lemma 4.3.2, we obtain:

‖um,I − uI‖L2(Γ)⊗V h
0
.

∞∑
i=m+1

h| log h|1/2‖ui(x)‖2,∞

+ inf
v∈Pm−1(Γ)⊗H2(D)

‖v − rotu‖L2(Γ)⊗L2
0(D).

By uniting the two parts, we obtain:

‖um,h − uI‖L2(Γ)⊗V h
0
.h| log h|1/2‖u‖L2(Γ)⊗W 2,∞ + h‖ rotu‖L2(Γ)⊗H2(D)

+ inf
v∈Pm−1(Γ)⊗H2(D)

‖v − rotu‖L2(Γ)⊗L2
0(D).

To estimate the pressure error, using Lemma 4.2.1, we can choose vm,h ∈ Y m(Γ)⊗ V h
0 , such that

− div vm,h = pm,I − pm,h, and ‖vm,h‖L2(Γ)⊗V h
0
. ‖pm,I − pm,h‖L2(Γ)⊗L2

0(D).

With this vm,h, we have:

‖pm,I − pm,h‖2
L2(Γ)⊗L2(D) = B(pm,I − pm,h,vm,h)

= B(pm,I ,vm,h) + Ah(um,h,vm,h)− E[(f ,vm,h)]

= B(pm,I − p,vm,h) + {Ah(um,h,vm,h)− E[ν(ξ)(curl rotu,vm,h)]}

:= I4 + I5.
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For the term I4, because pI is the L2 projection of p to the space L2(Γ)⊗W h
0 , we have:

I4 = E[(pm,I − p, div vm,h)] = E[(pm,I − p, pm,I − pm,h)] =
m∑
i=1

(piI − pi, pim,I − pim,h) = 0.

For the term I5, we obtain the following estimate by applying Lemma 4.3.1 and the error estimates

in [66]:

I5 6 νmaxE[(rothum,h, rothvm,h)− (rotu, rothvm,h) + (curl(Qh − I) rotu,vm,h)]

6 νmax

m∑
i=1

(rothu
i
m,h − rotui, rothv

i
m,h) +

m∑
i=1

(curl(Qh − I) rotui,vim,h)

. ‖vm,h‖L2(Γ)⊗V h
0

m∑
i=1

(h| log h|1/2‖ui‖2,∞ + h‖ rotui‖2)

. ‖pm,I − pm,h‖L2(Γ)⊗L2
0(D)

m∑
i=1

(h| log h|1/2‖ui‖2,∞ + h‖ rotui‖2).

For the third inequality featured in the preceding estimate, we use the standard property of the L2

projection Qh.

Combining both I4 and I5 leads to:

‖pm,I − pm,h‖L2(Γ)⊗L2(D) . h| log h|1/2‖u‖L2(Γ)⊗W 2,∞ + h‖ rotu‖L2(Γ)⊗H2(D).

Using the triangular inequality, we have:

‖pI − pm,h‖L2(Γ)⊗L2(D) ≤ ‖pm,I − pm,h‖L2(Γ)⊗L2(D) + ‖pI − pm,I‖L2(Γ)⊗L2(D)

. ‖pm,I − pm,h‖L2(Γ)⊗L2(D) +
∞∑

i=m+1

(‖pi − piI‖+ ‖pi‖)

. ‖pm,I − pm,h‖L2(Γ)⊗L2(D) +
∞∑

i=m+1

(h‖pi‖1 + ‖pi‖)

. h| log h|1/2‖u‖L2(Γ)⊗W 2,∞ + h‖ rotu‖L2(Γ)⊗H2(D)

+ h‖p‖L2(Γ)⊗H1(D) + inf
q∈Pm−1(Γ)⊗L2

0(D)
‖q − p‖.
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4.4 Efficient Solvers of Stochastic Stokes Equations

In this section, we construct preconditioners and multigrid solvers for the coupled block linear

systems (4.2.2). We first reorganize the linear systems and make them more solver-friendly. In fact,

after reorganization, each diagonal block corresponds to a deterministic Stokes problem. Based on

fast solvers for the deterministic Stokes system developed in [68], we construct block-diagonal and

block-triangular preconditioners for use with Krylov subspace iterative methods, such as GMRes

and BiCGStab. In addition, we introduce multigrid methods with block Jacobi and block Gauss-

Seidel smoothers to solve stochastic Stokes systems.

4.4.1 Reorganization of the Linear System.

Let

~Ui = (U(i−1)Nu+1, · · · , UiNu)t,

~Pi = (P(i−1)Np+1, · · · , PiNp)t,

~Fi = (F(i−1)Np+1, · · · , FiNp)t.

By grouping the velocity gPC coefficients ~Ui with the corresponding pressure gPC coefficients ~Pi,

(4.2.2) can be reorganized as the following linear system:

L̃ := G1 ⊗

K 0

0 0

+G0 ⊗

0 W ′

0 0

+G0 ⊗

 0 0

W 0

 ,
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L̃



~U1

~P1

...

~UNξ

~PNξ


=



~F1

~0
...

~FNξ

~0


. (4.4.1)

Figure 4.1 and 4.2 compare the different structures of L and L̃.

L L̃ D T

Figure 4.1: The structure of matrices when Nξ = 5, ν(ξ) = 1 + 0.5ξ, where ξ ∼ U(−1, 1).

L L̃ D T

Figure 4.2: The structure of matrices when Nξ = 5, ν(ξ) = 1 + e1+ξ, where ξ ∼ N(0, 1).

4.4.2 Block Preconditioners.

Block preconditioners have been shown to perform well for elliptic-type SPDEs [53, 63, 51, 65, 52,

54]. In the following, we propose two block preconditioners for the stochastic Stokes equations.

Their efficiency and robustness are demonstrated numerically in Section 4.5.
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Block-diagonal Preconditioner.

The block-diagonal part of the reorganized system L̃ is given by:

D := diag (G1)⊗

K 0

0 0

+G0 ⊗

 0 W ′

W 0

 ,

where the matrix diag(G1) is the diagonal part of G1. Clearly, each 2 × 2 block corresponds to a

discrete deterministic Stokes system (see Figure 4.1 and 4.2). Because these 2 × 2 block systems

are completely decoupled, they can be solved in parallel by existing fast solvers for deterministic

Stokes problems. In our study, we apply the optimal multigrid solver using a distributive Gauss-

Seidel smoother (see [68]).

Theorem 4.4.1. The eigenvalues of D−1L̃ are positive real numbers, which belong to the interval

[
min{νmin, 1}
max{νmax, 1}

,
max{νmax, 1}
min{νmin, 1}

]
.

Proof. Let λ be the eigenvalue, [v, q]t be the corresponding eigenvector. We have

L̃

v
q

 = λ

v
q

 ,

i.e.,

G1 ⊗

K 0

0 0

+G0 ⊗

 0 W ′

W 0

v
q


= λ

diag (G1)⊗

K 0

0 0

+G0 ⊗

 0 W ′

W 0

v
q

 .

We can rewrite the above system as following
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(G1 −G0)⊗

K 0

0 0

+G0 ⊗

K W ′

W 0

v
q


= λ

(diag (G1)−G0)⊗

K 0

0 0

+G0 ⊗

K W ′

W 0

v
q

 .

Applying G−1
0 ⊗

K W ′

W 0

−1

on both sides, we have

G−1
0 (G1 −G0)⊗

K W ′

W 0

−1K 0

0 0

+ I

v
q


= λ

G−1
0 (diag (G1)−G0)⊗

K W ′

W 0

−1K 0

0 0

+ I

v
q

 .

It is easy to verify that the eigenvalues of

K W ′

W 0

−1K 0

0 0

 is either 1 or 0.

For any x ∈ RNξ , we define a function ϕ(y) =
∑
xiΨi(y), then

xtG1x =

∫
Γ

ν(y)ϕ(y)ϕ(y)ρξ(y)dy ≥ νmin

∫
Γ

ϕ(y)ϕ(y)ρξ(y)dy = νminx
tG0x.

xtG1x =

∫
Γ

ν(y)ϕ(y)ϕ(y)ρξ(y)dy ≤ νmax

∫
Γ

ϕ(y)ϕ(y)ρξ(y)dy = νmaxx
tG0x,

The eigenvalues of diag (G1) is also bounded by νmax and νmin, because

G
(i,i)
1 =

∫
Γ

ν(y)Ψi(y)Ψi(y)ρξ(y)dy ≥ νmin

∫
Γ

Ψi(y)Ψi(y)ρξ(y)dy = νmin, ∀i,

G
(i,i)
1 =

∫
Γ

ν(y)Ψi(y)Ψi(y)ρξ(y)dy ≤ νmax

∫
Γ

Ψi(y)Ψi(y)ρξ(y)dy = νmax, ∀i.

While the normalized orthogonal polynomials are used, we have G0 = I .
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All together, we have

1 + min{νmin − 1, 0}
1 + max{νmax − 1, 0}

≤ λ ≤ 1 + max{νmax − 1, 0}
1 + min{νmin − 1, 0}

.

Block-triangluar Preconditioner.

The block-triangular preconditioner T is defined as:

T := tril (G1)⊗

K 0

0 0

+G0 ⊗

 0 W ′

W 0

 ,

where the matrix tril(G1) denotes the lower triangular of G1. The block-triangular preconditioner

system can be solved efficiently by applying blockwise forward substitution and using a fast deter-

ministic Stokes solver to approximately solve each diagonal 2× 2 block system.

Theorem 4.4.2. The eigenvalues of T−1L̃ are positive real numbers, which belong to the interval

[
min{νmin, 1}
max{νmax, 1}

,
max{νmax, 1}
min{νmin, 1}

]
.

Proof. The proof is very similar to Theorem 4.4.1, noticing that the eigenvalues of D are the same

with those of T.

4.4.3 Multigrid Method.

In the following, we present a multigrid method using block Jacobi and block Gauss-Seidel smoothers

for the stochastic Stokes systems.

We first describe the block Jacobi and block Gauss-Seidel iterations for the system L̃x = b as

follows: let xk be the previous solution, then xk+1 can be computed by
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• block Jacobi: Dxk+1 = b− (L̃−D)xk

• block Gauss-Seidel: Txk+1 = b− (L̃− T )xk.

The multigrid V-cycle is depicted by the following procedure.

x← V cycle(µ1, µ2,x, b)

1. Relax µ1 times on L̃x = b by block Jacobi or block Gauss-Seidel iteration.

2. Form the fine space residual

r = b− L̃x

and restrict the residual to the coarse grid rH = ResHr.

3. Solve the coarse residual equation

L̃eH = rH

with one multigrid V-cycle procedure, i.e., eH ← V cycle(µ1, µ2,0, r
H).

4. Interpolate the coarse grid correction to the fine grid e = ProHeH , and update the fine grid

approximation

x← x+ e.

5. Relax µ2 times on L̃x = b by block Jacobi or block Gauss-Seidel iteration.

4.5 Numerical Experiments

This section demonstrates the performance of the proposed block preconditioners and the multigrid

methods with block smoothers applied to the discrete stochastic Stokes equations with random

viscosity. All computations are done in the MATLAB package iFEM [13] on a laptop with a 2.4

GHz Intel Core 2 Duo processor and 4 GB of memory. In the following, we select the spacial
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domain to be the unite square (0, 1) × (0, 1). The triangular meshes used in our experiments are

obtained by uniform (red) refinement on an initial three-directional structured grid. We consider

the following two examples with random viscosity satisfies uniform or lognormal distribution.

Example 1. Let ν(ξ) = 2 + ξ, where ξ is a uniformly distributed random variable, i.e., ξ ∼
U(−1, 1). The exact solution is given by:

u(ξ, x, y) =

 − 28

2 + ξ
(x2 − 2x3 + x4)(2y − 6y2 + 4y3) + 200xy3

28

2 + ξ
(2x− 6x2 + 4x3)(y2 − 2y3 + y4) + 50x4 − 50y4

 ,

p(ξ, x, y) = 10ξ(60x2y − 20y3 − 5)− 28(2− 12x+ 12x2)(y2 − 2y3 + y4).

Example 2. Let ν(ξ) = 1 + eξ, where ξ ∼ N(0, 1) is a normal random variable. The exact solution

is given by:

u(ξ, x, y) =

 200xy3

50x4 − 50y4

 ,

p(ξ, x, y) = eξ(60x2y − 20y3 − 5).

In this case, the pressure p is a random function, but the velocity u is deterministic.

In the following, we first verify the convergence rate of the stochastic Galerkin discretization for

the Stokes equations with random viscosity. Then, we demonstrate the efficiency and robustness

of the proposed preconditioners and multigrid solver with respect to the discretization parameters

(e.g., mesh size h, gPC orderm) and the variance of the random viscosity. Finally, a benchmark lid-

driven cavity problem is examined to show the propagation of uncertainty from random viscosity

to the velocity and pressure fields.
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4.5.1 Spatial and Stochastic Convergence.

Uniform Distributed Viscosity.

In Figures 4.3 and 4.4, the convergence of the errors of the mean value and variance with respect to

the mesh size h is shown when the gPC expansion order is fixed as m = 4. The convergence of the

errors of the mean velocity in norm ‖ · ‖V h
0

and the mean pressure in L2 norm are both higher than

first order, which is better than the theoretical result in Theorem 4.3.2. Figure 4.4 shows the first

order accuracy for the variances of both velocity and pressure in the L2 norm. We also compute

the errors in other different norms for completeness. It is worth noting that the maximum norm of

the pressure error does not converge.

To check the error convergence in stochastic space, we fix a small mesh size h = 1/128 and

observe that before the spatial discretization error starts to dominate the overall error, the solution

errors decay exponentially with respect to the gPC expansion order m (see Figure 4.5).
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Figure 4.3: The convergence of the mean error with respect to mesh size h (m = 4).

Lognormal Distributed Viscosity.

Lognormal random variables are unbounded. Hence, Theorem 4.3.2 does not apply in this case.

However, the error convergence rates are similar to those using uniform distributed viscosity (see

Figures 4.6, 4.7, and 4.8). Notice that Figure 4.7 shows that velocity variance error is close to the
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Figure 4.4: The convergence of the variance error with respect to mesh size h (m = 4).
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Figure 4.5: The convergence of the velocity and pressure error with respect to gPC degree m.
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machine precision 10−16, and the horizontal line in Figure 4.8 indicates there is no stochastic error

for the velocity. These observations are consistent with the fact that velocity is deterministic.
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Figure 4.6: Convergence of the mean value with respect to the spatial parameter h.
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Figure 4.7: Convergence of the variance with respect to the spatial parameter h.

4.5.2 The Solver Parameters.

We use the preconditioned, preconditioned BiCGStab, and V-cycle multigrid methods to solve

the discrete stochastic Stokes systems. The block preconditioner systems and block smoothers

are solved approximately using a deterministic W-cycle distributive Gauss-Seidel (DGS) multgird

method. Hence, a balance between the inner and outer iterations through the choice of parameters

(e.g., tolerance, number of smoothing steps) is important for achieving good overall performance.

In Tables 4.1 and 4.2, we list outer iteration counts, inner iteration counts for solving each block,

and the total CPU time for each given inner tolerance ranging from 10−1 to 10−8. The star ∗
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Figure 4.8: Convergence of velocity and pressure with respect to the gPC degree m.

inner tol 10−1 10−2 10−4 10−8

M1
BD 13 2 9.92s * * * 7 6 9.78s 5 12 10.09s
BT 7 6 6.48s * * * 3 6 6.20s 2 12 6.17s

M2
BD 7.52 9.75s 6.54 10.20s 5 6 9.95s 4.512 15.76s
BT 4 2 6.12s 3 4 5.46s 2.56 5.64s 0.512 2.07s

M3
BJ(1) 27 2 28.56s 31 4 43.90s 31 6 79.07s 31 12 143.03s
BJ(2) 7 2 14.20s 7 4 21.81s 7 6 35.37s 7 12 68.21s
BJ(3) 7 2 21.78s 5 4 22.56s 4 6 29.21s 4 12 57.18s

BGS(1) 7 2 8.42s 5 4 8.17s 4 6 10.03s 1 12 5.56s
BGS(2) 7 2 15.17s 4 4 13.60s 3 6 15.42s 1 12 10.20s

Table 4.1: Legendre polynomial to degree m=4. h = 1/64. ν(ξ) = 1 + 0.5ξ, ξ ∼ U(−1, 1). M1:
GMRes, M2: BiCGStab, M3: V-cycle multigrid.

means the solver diverges or does not reach the tolerance within a maximum number of 100 it-

erations. The results in these two tables suggest using a relatively large inner tolerance for the

block-diagonal preconditioner and block Jacobi smoother, but smaller inner tolerance is better for

the block-triangular preconditioner and block Gauss-Seidel smoother. Notice that preconditioned

GMRes may fail to converge for certain inner tolerance. The divergence of the V-cycle multigrid

with block-Jacobi smoother is mainly due to the large variance of the random variable (addressed

in the subsection that follows). We also test the weighted block Jacobi smoother with an under- or

over-relaxation parameter, which also fails for the same testing case as in Table 4.2.
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inner tol 10−1 10−2 10−4 10−8

M1
BD * * * * * * 9 6 12.66 s 7 12 18.64s
BT 13 2 9.45s * * * 3 6 6.02s 2 12 6.50s

M2
BD 20 2 22.26s 28 4 43.83 s 14 6 32.20 s 7.512 28.97 s
BT 8 2 9.89s 6 4 9.67s 4 6 9.42s 0.512 2.11s

M3
BJ * * * * * * * * * * * *

BGS(1) * * * * * * * * * 1 12 5.33s
BGS(2) 28 2 56.53s 89 4 256.23s 19 6 99.42s 1 12 10.48s
BGS(3) 9 2 27.70s 7 4 32.23s 4 6 31.94s 1 12 15.36s

Table 4.2: Hermite polynomial to degree m=4. h = 1/64. ν(ξ) = 1 + eξ, ξ ∼ N(0, 1). M1:
GMRes, M2: BiCGStab, M3: V-cycle multigrid.

4.5.3 Robustness with respect to Discretization Parameters and Variance of

Viscosity.

Herein, we investigate the robustness of the two block preconditioners used with the GMRes and

BiCGStab methods and the multigrid method with block smoothers in terms of discretization pa-

rameters (e.g., spatial mesh size h, gPC degree m) and the variance of ν(ξ). The outer iterations

of these solvers are terminated when the relative error reaches the tolerance 10−8.

Mesh size h.

At each level of the outer multigrid V-cycle, the equations are relaxed twice for the block Jacobi,

and once for the block Gauss-Seidel. During the block Jacobi and block Gauss-Seidel iterations,

each diagonal block is solved to reach a tolerance of 10−1 and 10−8, respectively. This fixed solver

parameter setting may not be the best choice for all testing cases. However, we retain the same

setting for a clean and tidy presentation.

We fix the gPC expansion order to bem = 4. Two different types of random variables, i.e., uniform

and lognormal distributed, are tested and presented in Tables 4.3 and 4.4, respectively. The outer

iteration counts, the inner iteration counts for solving each block, and the CPU time are listed for

each given mesh size. As illustrated by Tables 4.3 and 4.4, the results are robust with respect to h.
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h 1/16 1/32 1/64 1/128

M1
BD 5 12 2.23s 5 12 3.56s 5 12 9.82s 5 12 32.32s
BT 1 12 1.60s 2 12 2.25s 2 12 6.31s 1 12 12.50s

M2
BD 4.5 12 2.78s 4.5 12 5.17s 4.5 12 15.45s 4.5 12 47.82s
BT 0.5 12 1.43s 0.5 12 0.96s 0.5 12 2.01s 0.5 12 6.53s

M3
BJ 7 2 2.54s 7 2 4.54s 7 2 14.00s 7 2 44.10s

BGS 1 12 1.79s 1 12 1.81 s 1 12 5.17 s 1 12 16.15 s

Table 4.3: Legendre polynomial to degree m=4. ν(ξ) = 1+0.5ξ, ξ ∼ U(−1, 1). M1: GMRes, M2:
BiCGStab, M3: V-cycle multigrid.

gPC expansion order m

To investigate the performance of the proposed iterative solvers with respect to the gPC expansion

order m, we fix h = 1/32. In Table 4.5, the outer iteration counts are listed. The inner iteration

counts in this table are ignored because they are similar to those in Table 4.1 ∼ 4.4. Clearly,

the block-triangular preconditioned GMRes, BiCGStab, and the multigrid solvers are robust with

respect tom. Asm increases, the outer iteration numbers of the diagonally preconditioned GMRes

and BiCGStab increase at the beginning and quickly reach a uniform upper bound.

Variance of viscosity.

Here, we fix both m and h, the mean value of ν(ξ), and change the variance of ν(ξ) by changing

the parameter a. From Table 4.6, the block-triangular preconditioned GMRes, BiCGStab, and the

multigrid solver with block Gauss-Seidel relaxation method are quite robust with respect to the

variance of ν(ξ). The outer iteration numbers of the block-diagonal preconditioned GMRes and

BiCGStab also are quite robust in a. However, the multigrid with block Jacobi fails for large a.

According to Tables 4.3∼4.6, the triangluar preconditioner is more robust and efficient than the

diagonal preconditioner. Compared to the block Jacobi smoother, the block Gauss-Seidel smoother

has better performance in both robustness and efficiency.
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h 1/16 1/32 1/64 1/128

M1
BD 12 12 4.18s 7 12 6.06s 7 12 16.68s 7 12 54.62s
BT 1 12 0.578s 2 12 2.29s 2 12 6.07s 2 12 19.56s

M2
BD 8 12 3.35s 7.5 12 9.65s 7.5 12 29.07s 7.5 12 85.57s
BT 0.5 12 0.42s 0.5 12 0.67s 0.5 12 2.14s 0.5 12 6.96s

M3
BJ * * * * * * * * * * * *

BGS 1 12 0.68s 1 12 1.87s 1 12 5.26s 1 12 16.34s

Table 4.4: Hermite polynomial to degree m=4. ν(ξ) = 1 + eξ, ξ ∼ N(0, 1). M1: GMRes, M2:
BiCGStab, M3: V-cycle multigrid.

ν(ξ1) = 1 + 0.5ξ1 ν(ξ2) = 1 + eξ2

m 4 6 8 10 12 14 4 6 8 10 12 14

M1
BD 5 7 9 9 9 9 7 8 12 19 19 19
BT 2 2 2 2 2 2 2 2 2 2 2 2

M2
BD 4.5 6.5 8 8.5 8.5 8.5 4 4.5 5.5 6 6.5 7.5
BT 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

M3
BJ 7 7 7 7 7 7 * * * * * *

BGS 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.5: The mesh size h = 1/32. ξ1 ∼ U(−1, 1). ξ2 ∼ N(0, 1). M1: GMRes, M2: BiCGStab,
M3: V-cycle multigrid.

.

ν(ξ1) = 1 + aξ1 ν(ξ2) = 1 + eaξ2

a 0.1 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.4 0.6 0.8 1.0

M1
BD 5 7 7 7 7 7 5 6 6 6 6 8
BT 2 2 2 2 2 2 2 2 2 2 2 2

M2
BD 3.5 4.5 4.5 4.5 4.5 5 7.5 13 21 7.5 7.5 7.5
BT 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

M3
BJ 6 7 7 10 47 * 6 7 23 * * *

BGS 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.6: The gPC order to m = 4, the mesh size h = 1/32. ξ1 ∼ U(−1, 1). ξ2 ∼ N(0, 1). M1:
GMRes, M2: BiCGStab, M3: V-cycle multigrid.
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4.5.4 Lid-driven Cavity Flow Problem.

The classical lid-driven cavity flow problem has been used as a benchmark to test many numerical

methods for fluid dynamics. It models incompressible flow in a square domain driven by the motion

of the upper lid. In [59], a stochastic lid-driven cavity flow with random boundary condition (i.e.,

the lid velocity) and fixed constant viscosity is investigated, and the effect of uncertainty on flow

fields is demonstrated. Here, we study the stochastic Stokes flow in a lid-driven cavity with random

viscosity and deterministic lid velocity.

The computational domain is the unite square [0, 1] × [0, 1], and the external force is set at zero.

The boundary condition for the velocity is u = (1, 0)t on the top lid and zero everywhere else. The

random viscosity is set to be ν(ξ) = ν0 + ν1ξ, where ξ ∼ U(−1, 1) and ν0, ν1 are positive numbers

chosen such that ν(ξ) > 0. For the spatial discretization, we use the RT0 − P0 pair on a uniform

triangular mesh size h = 1/128, and for the stochastic discretization, we use Legendre polynomials

of degree k = 5. The resulting saddle-point linear systems are solved using the iterative solvers

proposed in the previous sections.

For the stochastic Stokes flow with random viscosity ν, and deterministic boundary conditions,

the flow velocity field u does not depend on ν and the pressure p depends linearly on ν [62].

Our numerical experiments demonstrate this fact. The variance of the computed velocity field u

scales around 10−19, and the mean of the velocity field (Figure 4.9) is the same as the deterministic

velocity field obtained by solving Stokes equations with mean viscosity. Moreover, the mean of p

depends linearly on ν0, and the standard deviation of p depends linearly on ν1 (see Figures 4.11-

4.13). Figure 4.10 plots the mean streamline contours for the velocity field, which shows the main

eddy in the center and two small Moffatt eddies in the corners.
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Figure 4.9: The mean value of the numerical velocity.

Figure 4.10: The contour of the streamlines.
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(A) pressure mean

(B) pressure deviation

Figure 4.11: Contours of pressure mean and pressure deviation when ν(ξ) = 1 + 0.5ξ, where ξ ∼
U(−1, 1).
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(A) pressure mean

(B) pressure deviation

Figure 4.12: Contours of pressure mean and pressure deviation when ν(ξ) = 2 + 0.5ξ, where ξ ∼
U(−1, 1).
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(A) pressure mean

(B) pressure deviation

Figure 4.13: Contours of pressure mean and pressure deviation when ν(ξ) = 2 + ξ, where ξ ∼
U(−1, 1).
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