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Abstract

Barcode Entropy for Symplectomorphisms Isotopic to the Identity

by

John Gabriel P. Pelias

Çineli, Ginzburg, and Gürel recently defined a new quantity, called the barcode

entropy, which is calculated using barcodes of a Floer-Novikov complex, similar

to barcodes arising in persistence homology and Morse theory. They were able

to relate this to the classical topological entropy, a number that quantifies the

complexity of the orbits of a map. This quantity is of high interest in dynamics

as its positivity indicates that the orbits of a dynamical system are more likely

chaotic. They were able to define barcode entropy and find a connection between

this quantity and topological entropy for the case when the map in question is a

Hamiltonian diffeomorphism. In this dissertation, we extend their results to the

case when the map is more generally just a symplectomorphism isotopic to the

identity.
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Chapter 1

Introduction

In this dissertation, we present how to extract the topological entropy of a

symplectomorphism isotopic to the identity from its Floer-Novikov complex, via

methods inspired by persistent homology. An important special class of symplec-

tomorphisms isotopic to the identity are the Hamiltonian diffeomorphisms. And

indeed, in [ÇGG21], Çineli, Ginzburg, and Gürel introduced for the first time a

Floer-theoretic invariant called the barcode entropy ~(ψ) of a Hamiltonian dif-

feomorphism ψ and demonstrated how this new invariant relates to the classical

topological entropy of ψ. The barcode entropy roughly measures the exponential

growth rate with respect to iterations of ψ of numbers of bars with length ex-

ceeding a threshold ε in the barcode of the Floer complex associated to ψ. The

so-called bars are differences in the action functional associated to the Hamilto-

nian diffeomorphism, which in turn are energies of pseudoholomorphic cylinders.

The investigation of such a barcode associated to a Floer complex is inspired by

recent trends of using techniques of persistent homology to study Morse theory

and Floer homology.

The definition of the barcode entropy somewhat resembles the definition of

topological entropy, as the latter also roughly measures the exponential growth
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rate with respect to iterations of ψ of numbers of orbit segments that are distin-

guishable up to an accuracy threshold ε. While the two definitions structurally

look similar, there is no a priori reason to believe that the barcode entropy is

immediately related—even more so, equal—to the topological entropy. The for-

mer is a Floer-theoretic invariant, while the latter is a dynamical invariant that is

defined for a general dynamical system even if the underlying manifold is absent

of a symplectic structure. It is not even apparent why there must be a connec-

tion between topological entropy and features of a Floer complex. And yet, in

[ÇGG21], Çineli, Ginzburg, and Gürel show in Theorems A and B that the two

quantities bound each other under certain conditions, and, in Theorem C, that

the two notions of entropy in fact coincide if the underlying symplectic manifold

is a closed surface.

As the authors have indicated in their work, the only prior work that hinted

towards possible connections between topological entropy and symplectic topology

are those by Alves such as in [Al16-1], [Al16-2], [Al19], in which the topological

entropy of a Reeb flow, symplectomorphism, or contactomorphism was related to

homological growth. While this inspired the authors, it is not exactly applicable to

their setting, since in the case of Hamiltonian diffeomorphisms, the Floer homology

is independent of the order of iteration and hence no homological growth registers.

Indeed, in [ÇGG21], the barcode entropy the authors have defined is a quantity

that depends on the map and its iterations, and hence lends itself more to a

connection with the more dynamical invariant that is the classical topological

entropy.

In this dissertation, we give generalizations of the results that Çineli, Ginzburg,

and Gürel proved in [ÇGG21]. We weaken the assumption that ϕ is a Hamilto-

nian diffeomorphism to the more general case that ϕ is only a symplectomorphism
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isotopic to the identity. Aside from the fact that symplectomorphisms isotopic to

the identity are a natural next step to generalize Hamiltonian diffeomorphisms, as

we will present in this work, under certain conditions, the action functional in our

setting differs from that in the Hamiltonian setting by a term that involves the

flux homomorphism. The fact that this is non-zero can be thought of as a mea-

sure of how far from being a Hamiltonian diffeomorphism the symplectomorphism

is. However, when considering the barcode and ultimately defining the barcode

entropy, the bars being action functional differences, this “flux term” disappears,

and so it is reasonable to believe that analogous results can be proved in our more

general setting.

Of course, the difficulty rests more on whether or not we can even define a

barcode and ultimately a barcode entropy for a symplectomorphism isotopic to

the identity, and indeed much of the first few stages of this work is devoted to

constructing the appropriate Floer complex to which we can associate an appro-

priate barcode. Certain conditions must be imposed on the underlying symplectic

manifold in order for our definitions to make sense. Indeed, in the entirety of this

work, we assume that (M,ω) is a weakly monotone symplectic manifold. This

will guarantee that no pseudo-holomorphic sphere will have negative Chern num-

ber. See, for instance, [HS]. We will denote the group of symplectomorphisms

ϕ : M →M by Symp(M,ω). The connected component of idM , i.e. the subgroup

of symplectomorphisms isotopic to the identity, will be denoted Symp0(M,ω). Let

S̃ymp0(M,ω) denote the universal cover of Symp0(M,ω).

The raison d’être of this dissertation is to prove the following theorems, which

are generalizations of the analogous theorems of Çineli, Ginzburg, and Gürel in

[ÇGG21]:

Theorem (Theorem A). Let ϕ ∈ Symp0(M,ω) and {ϕt} be a symplectic isotopy

3



connecting ϕ0 = idM to ϕ1 = ϕ. Then

~([ϕt]) ≤ htop(ϕ).

Theorem (Theorem B). Let ϕ ∈ Symp0(M,ω) and {ϕt} be a symplectic isotopy

connecting ϕ0 = idM to ϕ1 = ϕ. If K ⊆M is a locally maximal hyperbolic subset,

then

~([ϕt]) ≥ htop (ϕ|K) .

Corollary (Theorem C). If (M,ω) is a closed symplectic surface and ϕ ∈ Symp0(M,ω)

with symplectic isotopy {ϕt}, then

~([ϕt]) = htop(ϕ).

This dissertation is organized as follows: In Chapter 2, we construct the Floer-

Novikov complex of a symplectomorphism isotopic to the identity. We closely

follow constructions made by Batoréo in [Bat], which are ultimately based on the

constructions made by Burghelea and Haller in [BH].

In Chapter 3, we review the theory of persistent homology and barcodes. We

recall the barcodes arising classically in topological data analysis and Morse the-

ory, following for instance Polterovich, Rosen, Samvelyan, and Zhang in [PRSZ],

and those arising in Floer theory. Specifically, we recall barcodes associated to

Floer-type complexes as in the work of Usher and Zhang in [UZ].

In Chapter 4, we review the notion of topological entropy, and some classical

results on topological entropy and the closely related notion of measure-theoretic

entropy. In particular, we recall two important concepts—Yomdin’s Theorem

and horseshoes in hyperbolic dynamics—that will enable us to relate the classical

topological entropy with barcode entropy.
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Finally, in Chapter 5, we define the barcode entropy of a symplectomorphism

isotopic to the identity. It generalizes the barcode entropy of a Hamiltonian

diffeomorphism defined by Çineli, Ginzburg, and Gürel in [ÇGG21]. We then

restate and prove Theorems A, B, and C above.
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Chapter 2

Floer-Novikov Complex of a

Symplectomorphism Isotopic to

the Identity

In this chapter, we construct the Floer-Novikov complex associated to a sym-

plectomorphism isotopic to the identity. We will closely follow the construction of

Batoréo in [Bat], which is ultimately based on the construction of Burghelea and

Haller in [BH]. Let (M,ω) be a closed connected symplectic manifold of dimension

2n. Let ĉ1 ∈ Ω2(M) be a 2-form representing the first Chern class c1 ∈ H2(M,Z).

Recall that (M,ω) is weakly monotone if for every A ∈ π2(M),

3− n ≤ c1(A) < 0 =⇒ ω(A) ≤ 0.
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2.1 Flux and the Deformation Lemma

Let ϕ ∈ Symp0(M,ω). The lift of ϕ in S̃ymp0(M,ω) is then the homotopy

class, with fixed endpoints, of a path of symplectomorphisms {ϕt}0≤t≤1 connecting

ϕ0 = id to ϕ1 = ϕ. We will denote such a homotopy class by [ϕt].

Recall that there exists a homomorphism Flux : S̃ymp0(M,ω) → H1(M,R),

called the flux homomorphism, that associates to a lift [ϕt] ∈ S̃ymp0(M,ω) the

cohomology class [∫ 1

0
ω(Xt, ·)dt

]
=
[∫ 1

0
iXtωdt

]
,

where Xt is the vector field associated with {ϕt}, i.e.

d
dtϕt = Xt ◦ ϕt.

See [MSa17] for a proof, for instance. Clearly, if ϕ is a Hamiltonian diffeomor-

phism, then Flux[ϕt] = 0.

An important result of Banyaga (for instance in [Ban]) is that the kernel of

the flux homomorphism is in fact Ham(M,ω). Moreover, another standard fact

is that Flux is surjective. Hence, one can think of a non-zero cohomology class

in H1(M,R) as an obstruction to the corresponding symplectomorphism being

Hamiltonian. For instance, since H1(S2,R) = 0, we know that every symplecto-

morphism on the 2-sphere isotopic to the identity is in fact Hamiltonian. On the

other hand, H1(T2,R) = R2, and so there is a wealth of symplectomorphisms on

the 2-torus that are not Hamiltonian. For instance, whenever a symplectomor-

phism ϕ : T2 → T2 is of the form

ϕ(x, y) = (x+ α(x, y), y + β(x, y)),
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where either ∫
T2
αdxdy 6= 0 or

∫
T2
βdxdy 6= 0,

ϕ is not Hamiltonian. See [MSa17] for more details.

Let θ be a 1-form on M such that [θ] = Flux[ϕt]. By the Deformation Lemma

2.1 in [LO] proved by Lê and Ono, there exists an isotopy with fixed endpoints

within S̃ymp0(M,ω) that deforms the path of symplectomorphisms {ϕt} to a path

{ϕ′t} such that for all t ∈ [0, 1],

Flux[ϕ′t] = [θ] =
[
iX′tω

]
,

where X ′t is the vector field associated to {ϕ′t}, i.e.

d
dtϕ

′
t = X ′t ◦ ϕ′t.

Thus, there exists a Hamiltonian Ht : M → R periodic in t with period 1 such

that for all t ∈ [0, 1],

iX′tω = θ + dHt.

Define ηt := iX′tω = θ + dHt. Define the vector fields Xηt , Xθ, and XHt by

iXηtω = −ηt,

iXθω = −θ,

iXHtω = −dHt.

Note that while Xηt and XHt are time-dependent, Xθ is time-independent. More-

over,

Xηt = Xθ +XHt .

8



2.2 Loop Spaces

We will denote by LM the space of all smooth free loops x : S1 → M in

M . That is, LM := C∞(S1,M). Here, we treat S1 as R/Z. Note that for a

loop x ∈ LM , the tangent space Tx(LM) consists of vector fields ξ : S1 → TM

along the loop x. Let I ⊆ R be any interval. There is an obvious one-to-one

correspondence

Maps(I,LM) → Maps(I × S1,M)

ũ 7→ u

between the space Maps(I,LM) of mappings ũ : I → LM , i.e. “paths” in LM ,

and the space Maps(I × S1,M) of mappings u : I × S1 → M , i.e. “cylinders” in

M , given by

u(s, t) = (ũ(s))(t). (2.1)

Define the 1-form ω̄ ∈ Ω1(LM) by

ω̄x(ξ) :=
∫
S1
ωx(t) (ξ(t), ẋ(t)) dt,

for each loop x ∈ LM and vector field ξ ∈ Tx(LM) along x. Then, whenever

ũ : I → LM is a smooth path of loops in M ,

∫
I
ũ∗ω̄ =

∫
I
ω̄ũ(s)

(
dũ
ds

)
ds

=
∫
I

∫
S1
ω(ũ(s))(t)

(
dũ
ds ,

d
dt (ũ(s))

)
dtds

=
∫
I×S1

ωu(s,t)

(
∂u

∂s
,
∂u

∂t

)
dsdt,

=
∫
I×S1

u∗ω

9



where u : I × S1 →M is the map corresponding to ũ in (2.1).

Now, for each t0 ∈ S1, denote by evt0 : LM → M the evaluation map at t0.

That is, for a loop x : S1 →M ,

evt0 : x 7→ x(t0).

Then, for a path of loops ũ : I → LM with corresponding cylinder u : I×S1 →M

according to (2.1), we have the segment ev ◦ ũ : I →M in M given by

(evt0 ◦ ũ)(s) = (ũ(s)) (t0) = u(s, t0)

Define the 1-form % ∈ Ω1(LM) by % = −ω̄ + ev∗0θ. Thus, if ũ : I → LM ,

∫
I
ũ∗% = −

∫
I
ũ∗ω̄ +

∫
I
(ev0 ◦ ũ)∗θ

= −
∫
I
u∗ω +

∫
I
(u0)∗θ,

where u0 : I →M is the segment given by

u0(s) := u(s, 0) = (ev0 ◦ ũ)(s).

Thus, if I = S1, so that ũ represents a loop of loops (or a “torus”) in M , and

[%] ∈ H1(LM) and [ũ] ∈ π1(LM) are the cohomology and homotopy classes of %

and ũ, respectively, we have

〈[%], [ũ]〉 = −
∫
S1×S1

u∗ω +
∫
S1

(u0)∗θ.

Now, for a fixed homotopy class ζ of loops S1 → M , fix a reference loop

z : S1 → M in ζ. For each loop x : S1 → M in ζ, there exists a homotopy

10



v : [0, 1]× S1 →M that connects x to z, i.e.

v(0, ·) = z(·),

v(1, ·) = x(·).

We shall call v a capping of x. In general, such cappings are cylinders. In the

special case when ζ is the trivial homotopy class, the reference loop z can be

chosen as a point and so the cappings become disks, leading us to the contractible

case.

In order for the action functional later to be well-defined, we will need to define

it on lifts of capped loops. Consider the space Lζ(M) of pairs (x, v) (which we

shall call capped loops), where x : S1 → M is a loop in ζ and v : [0, 1]× S1 → M

is a capping of x. Define an equivalence relation ∼ on this space as follows: Given

(x, v), (x′, v′) ∈ Lζ(M), let u = v#(−v′), the 2-torus obtained by concatenating

the cylinders v and −v′(s, ·) := v′(1− s, ·). We define (x, v) ∼ (x′, v′) if and only

if

x = x′,∫
S1×S1

u∗ĉ1 = 0, (2.2)∫
S1×S1

u∗ω =
∫
S1
u∗0θ, (2.3)

An equivalence class [x, v] := [(x, v)] will be called a lift of the capped loop (x, v),

and the space of such lifts will be denoted by L̃ζM .

11



2.3 Periodic Orbits and the Action Functional

Observe that the fixed points of ϕ = ϕ1 are in one-to-one correspondence with

the 1-periodic solutions of the differential equation

ẋ(t) = Xηt(t, x(t)). (2.4)

See also Lemma 3.2 of [BH]. Moreover, recall that such a periodic orbit x(t) of ϕ

is called nondegenerate if 1 is not an eigenvalue of the linearized return map

dϕx(0) : Tx(0)M → Tx(0)M.

If, furthermore, for each eigenvalue λ of dϕx(0), we have |λ| 6= 1, we say that ϕ

is hyperbolic. Finally, recall also that ϕ is said to be nondegenerate if each of its

1-periodic orbits is nondegenerate.

Define the action 1-form α[ϕt] ∈ Ω1(LM) by

(
α[ϕt]

)
x

(ξ) :=
∫
S1
ωx(t) (ẋ(t)−Xηt(t, x(t)), ξ(t)) dt, (2.5)

for a loop x : S1 → M and a tangent vector field ξ along x. Then the 1-periodic

solutions of (2.4) are precisely the zeroes of α[ϕt] (by non-degeneracy of ω). Note

that

(
α[ϕt]

)
x

(ξ) =
∫
S1

{
ωx(t)(ẋ(t), ξ(t))− iXηtωx(t)(ξ(t))

}
dt

=
∫
S1

{
ωx(t)(ẋ(t), ξ(t)) + (ηt)x(t)(ξ(t))

}
dt

=
∫
S1

{
ωx(t)(ẋ(t), ξ(t)) + θx(t)(ξ(t)) + (dHt)x(t)(ξ(t))

}
dt (2.6)

We are now in a position to define the action functional. Given [ϕt] ∈

12



S̃ymp0(M,ω), we define A[ϕt] : LζM → R by

A[ϕt](x, v) := −
∫

[0,1]×S1
v∗ω +

∫
S1

{(∫ 1

0
(vt)∗θ

)
+Ht(x(t))

}
dt, (2.7)

where v is a capping of x and vt : [0, 1]→M is the segment defined by

vt(s) = v(s, t).

Observe that if [x, v] = [x, v′] ∈ L̃ζM and u := v#(−v′), then, since θ is a closed

1-form on M ,

A[ϕt](x, v)−A[ϕt](x, v′) = −
∫
S1×S1

u∗ω +
∫ 1

0

(∫
S1

(ut)∗θ
)

dt

= −
∫
S1×S1

u∗ω +
∫ 1

0

(∫
S1

(u0)∗θ
)

dt

= −
∫
S1×S1

u∗ω +
∫
S1

(u0)∗θ

Now then, by (2.3),

A[ϕt](x, v)−A[ϕt](x, v′) = −
∫
S1×S1

u∗ω +
∫
S1

(u0)∗θ = 0.

Therefore, A[ϕt] descends to a map Ã[ϕt] : L̃ζM → R.

Now, in order to see the critical points of the action functional and its gradient

flowlines, let us compute dÃ[ϕt]. Fix a capped loop (x, v) ∈ LζM and a vector

field ξ ∈ Tx(LM). For sufficiently small ε ≥ 0, let xε be the loop in ζ obtained by

“moving” x along εξ, i.e. xε : [0, 1]→M is defined by

xε(t) = expx(t)(εξ(t)),

where expx(t) : Tx(t)M → M is the exponential map. Note that x0 = x. Define

13



vε : [0, 1]× S1 →M by

vε(s, t) = xsε(t),

i.e. vε is the cylinder connecting x to xε. Then,

(
dÃ[ϕt]

)
[x,v]

(ξ) = lim
ε→0

1
ε

(
Ã[ϕt][xε, v#vε]− Ã[ϕt]([x, v])

)
= lim

ε→0

1
ε

{
−
∫

[0,1]×S1
v∗εω +

∫
S1

∫ 1

0
(vε)∗t θdt

+
∫
S1

(Ht(xε(t))−Ht(x(t))) dt
}

We then have

− lim
ε→0

1
ε

∫
[0,1]×S1

v∗εω = − lim
ε→0

1
ε

∫
S1

∫ 1

0
ω

(
∂vε
∂s

,
∂vε
∂t

)
dsdt

= −
∫
S1

∫ 1

0
lim
ε→0

1
ε
ω

(
∂

∂s
(expx(t)(sεξ(t))),

dxsε
dt

)
dsdt

= −
∫
S1

∫ 1

0
lim
ε→0

1
ε
ω

(
εξ(t), dxsε

dt

)
dsdt

= −
∫
S1

∫ 1

0
lim
ε→0

ω

(
ξ(t), dxsε

dt

)
dsdt

= −
∫
S1

∫ 1

0
ω (ξ(t), ẋ(t)) dsdt

=
∫
S1
ω (ẋ(t), ξ(t)) dt
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and

lim
ε→0

1
ε

∫
S1

∫ 1

0
(vε)∗t θdt = lim

ε→0

1
ε

∫ 1

0

∫ 1

0
θ

(
d(vε)t

ds

)
dsdt

=
∫
S1

∫ 1

0
lim
ε→0

1
ε
θ

(
∂vε
∂s

)
dt

=
∫
S1

∫ 1

0
lim
ε→0

1
ε
θ

(
∂

∂s
(expx(t)(sεξ(t)))

)
dt

=
∫
S1

∫ 1

0
lim
ε→0

1
ε
θ (εξ(t)) dsdt

=
∫
S1

∫ 1

0
θ (ξ(t)) dsdt

=
∫
S1
θ (ξ(t)) dt.

Moreover,

lim
ε→0

1
ε

∫
S1

(Ht(xε(t))−Ht(x(t))) dt =
∫
S1

lim
ε→0

1
ε

(Ht(xε(t))−Ht(x0(t))) dt

=
∫
S1

d
dε

∣∣∣∣∣
ε=0

Ht(xε(t))dt

=
∫
S1

(dHt)x0(t)

(
d
dε

∣∣∣∣∣
ε=0

expx(t)(εξ(t))
)

dt

=
∫
S1

(dHt)x(t) (ξ(t)) dt.

That is,

(
dÃ[ϕt]

)
[x,v]

(ξ) =
∫
S1
ω (ẋ(t), ξ(t)) dt+

∫
S1
θ (ξ(t)) dt+

∫
S1

(dHt)x(t) (ξ(t)) dt

and thus by (2.6), (
dÃ[ϕt]

)
[x,v]

=
(
α[ϕt]

)
x
.

In particular, [x, v] ∈ L̃ζM is a critical point of the functional Ã[ϕt] if and only if

x is a zero of the 1-form α[ϕt]. Thus, there is a one-to-one correspondence between
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the critical points of Ã[ϕt] and the set of fixed points of ϕ = ϕ1. We shall denote

the set of critical points of Ã[ϕt] by Crit Ã[ϕt].

The action functional is homogeneous with respect to iterations of the sym-

plectomorphism in the following sense:

Lemma 2.3.1. For each k ∈ N, if [x, v]k denotes the lift of the capped loop

(xk, vk), where xk and vk are the k-th iterations of x and v, respectively, then

Ã[ϕkt ]([x, v]k) = kÃ[ϕt]([x, v]).

Proof. Note that we also take the k-th iteration of the reference loop z and hence

also the homotopy class ζ. First of all, clearly,

∫
vk
ω = k

∫
v
ω.

Moreover, since Flux is a group homomorphism, we have Flux([ϕkt ]) = [kθ] =

[kθ + dH\k
t ], where H\k

t denotes the k-th iteration of the Hamiltonian Ht. Now,

∫
S1

(∫
vkt

kθ

)
dt = k

∫
S1

(∫
vt
θ
)

dt

and ∫
S1
H\k
t (xk(t))dt =

∫
S1
Ht(x(t))dt.

Combining these immediately yields the desired result.

Furthermore, the manner by which the attachment of “tori” to the reference

loop affects the action functional is described by the following:

Lemma 2.3.2. If A = [a] ∈ π1(LζM), then

Ã[ϕt]([x, v#a]) = Ã[ϕt]([x, v]) + 〈[%], A〉.
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Proof. Indeed, the homotopy class A of the loop a of loops in LζM only affects

the first two terms in (2.7). More precisely, the Hamiltonian Ht depends only on

[ϕt]. Thus, by (2.3)

Ã[ϕt]([x, v#a])− Ã[ϕt]([x, v]) = −
∫
S1×S1

a∗ω +
∫
S1

(∫ 1

0
(at)∗θ

)
dt

= −
∫
S1×S1

a∗ω +
∫
S1

(∫
S1

(a0)∗θ
)

dt

= −
∫
S1×S1

a∗ω +
∫
S1

(a0)∗θ

= 〈[%], A〉,

as desired.

The constructions above heavily depend on the homotopy class ζ and the choice

of reference loop z in ζ. Moreover, note that if ϕ is a Hamiltonian diffeomorphism,

then Flux[ϕt] = 0 and it can be arranged that {ϕt} is furthermore a Hamiltonian

isotopy. See for instance Theorem 10.2.5 of [MSa17] or Theorem of [Po]. Thus, in

this case, the action functional becomes

A[ϕt](x, v) := −
∫

[0,1]×S1
v∗ω +

∫
S1
Ht(x(t))dt,

which coincides with the standard action functional for a Hamiltonian diffeomor-

phism, used for instance in the construction of the filtered Floer complex for a

Hamiltonian diffeomorphism in [ÇGG21] which we intend to generalize here.

2.4 Floer Equation

We now wish to understand the (negative) gradient flowlines of the action

functional. Recall that an almost complex structure J ∈ End(TM) is compatible
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with ω if ω is J-invariant and

ω(X, JX) > 0

for any X ∈ TM . Thus, the 2-form gJ ∈ Ω2(M) defined by

gJ(X, Y ) := ω(X, JY )

is a Riemannian metric on M . Denote by J (M,ω) the set of all almost com-

plex structures compatible with ω. It is a well-known theorem of Gromov that

J (M,ω) is non-empty and contractible. Pick any J ∈ J (M,ω). Denote by g̃J

the Riemannian metric induced by gJ on the loop space LM : If ξ1, ξ2 ∈ Tx(LM)

for x ∈ LM , i.e. ξ1, ξ2 are vector fields along the loop x : [0, 1]→M , then

g̃J(ξ1, ξ2) :=
∫ 1

0
(gJ)x(t)(ξ1(t), ξ2(t))dt.

Then, for a capped loop [x, v] ∈ L̃ζM and a vector field ξ along x,

(dÃ[ϕt])[x,v](ξ) = (α[ϕt])x(ξ)

=
∫ 1

0
ωx(t) (ẋ(t)−Xηt(t, x(t)), ξ(t)) dt

=
∫ 1

0
ωx(t)

(
Jx(t)(ẋ(t)−Xηt(t, x(t))), Jx(t)ξ(t)

)
dt

=
∫ 1

0
(gJ)x(t)

(
Jx(t) (ẋ(t)−Xηt(t, x(t))) , ξ(t)

)
dt

= (g̃J)x(J(ẋ−Xηt), ξ)

Thus, the gradient of Ã[ϕt] with respect to g̃J is the vector field ∇g̃J
Ã[ϕt] defined

by

∇g̃J
Ã[ϕt]([x, v]) = J(ẋ−Xηt)
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and hence a negative gradient flowline is a map ũ : R→ LM such that

dũ
ds = −J

(
d
dt ũ(s)−Xηt(ũ(s))

)
.

Now, the one-to-one correspondence ũ 7→ u defined in (2.1) allows us to view

the gradient flowlines of Ã[ϕt] as mappings u : R × S1 → M satisfying the Floer

equation
∂u

∂s
+ J

(
∂u

∂t
−Xηt(u(s, t))

)
= 0. (2.8)

Thus, from this point forward, we view the gradient flowlines as J-holomorphic

cylinders, i.e. maps u : R× S1 →M satisfying the Floer equation (2.8).

If [x−, v−], [x+, v+] ∈ Crit Ã[ϕt], then the gradient flowlines from x− to x+ can

be viewed as the mappings u : R × S1 → M satisfying the Floer equation (2.8)

and the boundary conditions

lim
s→−∞

u(s, t) = x−(t),

lim
s→+∞

u(s, t) = x+(t).

Denote by M([x−, v−], [x+, v+]) the space of all mappings u : R × S1 → M sat-

isfying the Floer equation and the above boundary conditions. These mappings

are called the connecting trajectories from [x−, v−] to [x+, v+]. More particularly,

M([x−, v−], [x+, v+]) is the space of connecting trajectories that are stably asymp-

totic to x+ and unstably asymptotic to x−.

The energy of a connecting trajectory u ∈M([x−, v−], [x+, v+]) is given by

E(u) :=
∫
R

∣∣∣∣∣dũds
∣∣∣∣∣
2

g̃J

ds =
∫
R

∫
S1

∣∣∣∣∣∂u∂s
∣∣∣∣∣
2

gJ

dtds =
∫
R

∫
S1
ω

(
∂u

∂s
, J
∂u

∂s

)
dtds

A standard result is that the energy of a connecting trajectory coincides with the
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action difference of the capped orbits to which it is asymptotic, i.e.

E(u) = Ã[ϕt]([x−, v−])− Ã[ϕt]([x+, v+]).

See for instance [BH].

Now, weak monotonicity of M guarantees that no bubbling can occur. Thus,

by Propositions 4.5 and 4.6 of [BH], if the periodic orbits x− and x+ are non-

degenerate, then the operator F : W 1,2(R × S1;M) → L2(R × S1;M) defined

by

F (u) = ∂u

∂s
+ J

(
∂u

∂t
−Xηt(u(s, t))

)

is Fredholm andM([x−, v−], [x+, v+]) is a smooth manifold with dimension given

by

dimM([x−, v−], [x+, v+]) = ind F ,

where ind F denotes the Fredholm index of F . For more details, see for instance

[SZ], [HS]. There is an obvious R-action on the space of connecting trajectories

by reparametrization: For each a ∈ R, there is an endomorphism u 7→ ua of

M([x−, v−], [x+, v+]), where ua : R× S1 →M is given by

ua(s, t) = u(s− a, t).

Thus, the quotient space M̂([x−, v−], [x+, v+]) :=M([x−, v−], [x+, v+])/R by this

action, called the moduli space of connecting trajectories, is a manifold of dimen-

sion ind F − 1. In particular, if ind F = 1, the moduli space of connecting

trajectories is a 0-dimensional manifold.
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2.5 Floer-Novikov Complex of a Symplectomor-

phism Isotopic to the Identity

Let the ground field be F = F2 := Z/2, and consider the universal Novikov

field

Λ :=

∑
j≥0

fjT
aj : {fj} ⊂ F, {aj} ⊂ R, either {aj : fj 6= 0} is finite or lim

j→∞
aj =∞

 .
Equivalently,

Λ =

∑
j≥0

fjT
aj : {fj} ⊂ F, {aj} ⊂ R, and ∀r ∈ R, {aj : fj ≤ r} is finite

 .
For more details on Novikov rings, see for instance [Fa], and for Novikov’s original

motivation for their construction, see [No]. By viewing the complex over the

Novikov field, one circumvents the difficulty arising from sequences of connecting

trajectories with index difference 1 whose energy tends to∞. Let CF ([ϕt]) denote

the vector space generated over Λ by Crit Ã[ϕt]. We will treat these generators as

just the orbits themselves and drop the capping. That is, we have

CF ([ϕt]) =
⊕

x∈Crit Ã[ϕt]

Λx.

The Floer complex associated to [ϕt] is then defined to be the (ungraded) com-

plex (CF ([ϕt]), ∂) where the boundary map ∂ : CF ([ϕt]) → CF ([ϕt]) is defined

as follows: For each generator xi ∈ Crit Ã[ϕt], define

∂xi =
∑
j∈I

∑
[v]∈Sj

f([v])T−〈[%],[v]〉xj, (2.9)
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where:

(i) I =
{
j : xj ∈ Crit Ã[ϕt] for which dimM([xi, vi], [xj, vj]) = 1

}
, where vi are

vj are fixed cappings of xi and xj, respectively,

(ii) for each j ∈ I, Sj is the set of homotopy classes of recappings of xj, i.e.

Sj = {[vj#a] : [a] ∈ π1(LζM, z)},

and

(iii) for each recapping v of xj, f([v]) is the Z/2Z-count of the moduli space

M̂([xi, vi], [xj, v]).

Note that the condition that dimM([xi, vi], [xj, vj]) = 1 and the orbits xi and

xj be nondegenerate guarantees that M̂([xi, vi], [xj, v]) is finite for any [v] ∈ Sj.

See for instance Proposition 4.6 of [BH]. This proposition also asserts that for

any r ∈ R,

{A = [a] ∈ π1(LζM) : −〈[%], A〉 ≤ r andM([xi, vi], [xj, vj#a]) 6= ∅}

is finite. Thus, for any r ∈ R, the number of [v] = [vj#a] ∈ Sj such that

−〈[%], [v]〉 = −〈[%], [vj]〉 − 〈[%], [a]〉 ≤ r

and f([v]) 6= 0 is finite. This guarantees that the coefficient of each xj in (2.9) is

indeed in the universal Novikov field Λ.

To define the differential ∂ on the whole complex, we simply extend (2.9)
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Λ-linearly to CF ([ϕt]): For xi ∈ Crit Ã[ϕt] and λi ∈ Λ, we define

∂

(∑
i

λixi

)
:=
∑
i

λi∂xi.

We will refer to ∂ as the Floer differential. Under the assumption thatM is weakly

monotone, this defines a boundary map, making the floer complex an authentic

cochain complex. See Proposition 5.4 of [BH].
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Chapter 3

Persistent Homology and

Barcodes

In this chapter, we recall the theory of barcodes. The notion of a barcode

was originally introduced in topology as an algebraic and compact way to record

the persistent homology associated to a simplicial complex. We review persistent

homology and barcodes in Section 3.3, following mainly the discussion and devel-

opment by Polterovich, Rosen, Samvelyan, and Zhang in [PRSZ]. As one finds

in [PRSZ], one can also associate a barcode to a Morse complex, and ultimately,

as shown by Usher and Zhang in [UZ], to a filtered Floer complex. This is the

context that is most relevant to our work. Hence, we review some preliminaries

on filtered Floer complexes as developed in [UZ] in Sections 3.1 and 3.2.
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3.1 Non-Archimedean Vector Spaces and Singu-

lar Value Decompositions

As our theory involves filtered Floer complexes, let us first recall some facts

about orthogonalizable non-archimedean vector spaces and singular value decom-

positions of maps between such spaces. We closely follow the notions developed

by Usher and Zhang in [UZ].

A valuation ν on a field Λ is a function ν : Λ → R ∪ {∞} satisfying the

following axioms:

(i) ν(λ) =∞ if and only if λ = 0;

(ii) ν(λµ) = ν(λ) + ν(µ) for any λ, µ ∈ Λ; and

(iii) ν(λ+ µ) ≥ min{ν(λ), ν(µ)} for any λ, µ ∈ Λ.

If Λ is the universal Novikov field, one can define a valuation ν : Λ→ R∪{∞}

as follows: Whenever {fj} ⊂ F and {aj} ⊂ R are sequences such that either

{aj : fj 6= 0} is finite or lim
j→∞

aj =∞, define

ν

∑
j≥0

fjT
aj

 := min {aj : fj 6= 0}

Note that the conditions on the sequences {fj} and {aj} guarantee that this

minimum always exists.

If Λ is a field endowed with a valuation ν : Λ→ R ∪ {∞}, a non-archimedean

vector space over Λ is a pair (C,A), where C is a vector space over Λ and A :

C → R ∪ {−∞} is a function satisfying the following axioms:

(i) A(x) = −∞ if and only if x = 0;
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(ii) A(λx) = A(x)− ν(λ), for any x ∈ C and λ ∈ Λ; and

(iii) A(x+ y) ≤ max{A(x),A(y)}, for any x, y ∈ C.

The function A above is called a filtration for C.

A standard fact, proved as Proposition 2.3 in [UZ], is that we actually have

A(x+ y) = max{A(x),A(y)}

whenever A(x) 6= A(y).

We define a filtration A : CF ([ϕt]) → R, which we will also refer to as the

action filtration, on the Floer complex as follows: For each λ ∈ Λ and x ∈

Crit Ã[ϕt], we define

A(λx) := Ã[ϕt](x)− ν(λ).

In particular, since ν vanishes on the ground field F, we have A(x) = Ã[ϕt](x) for

any generator x ∈ Crit Ã[ϕt]. Now, for λi ∈ Λ and xi ∈ Crit Ã[ϕt], we define

A
(∑

i

λixi

)
:= max

i
A(λixi).

We then refer to the triple (CF ([ϕt]), ∂,A) as the filtered Floer complex of [ϕt].

A finite ordered collection (x1, . . . , xm) of vectors in a non-archimedean vector

space (C,A) over a field Λ with valuation ν is said to be orthogonal if for all

λ1, . . . , λm ∈ Λ,

A
(

m∑
i=1

λixi

)
= max

1≤i≤m
A(λixi)

Note that an orthogonal set of non-zero vectors in C is necessarily linearly in-

dependent over Λ. Indeed, suppose (x1, . . . , xm) is an orthogonal ordered set of
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non-zero vectors. Suppose λ1, . . . , λm ∈ Λ such that

m∑
i=1

λixi = 0.

Then

max
1≤i≤m

A(λixi) = A
(

m∑
i=1

λixi

)
= −∞.

Thus, for each i, A(λixi) = −∞, and so λixi = 0. Since xi 6= 0, λi = 0 for each i.

A non-archimedean vector space is said to be orthogonalizable if it admits an

orthogonal basis. If (C,AC) and (D,AD) are orthogonalizable non-archimedean

vector spaces over Λ and ∂ : C → D is a a Λ-linear map with rank r, a singular

value decomposition of ∂ is a choice of orthogonal ordered bases (y1, . . . , yn) for C

and (x1, . . . xm) for D such that

(i) (yr+1, . . . , yn) is an orthogonal ordered basis for ker ∂;

(ii) (x1, . . . , xr) is an orthogonal ordered basis for im ∂;

(iii) ∂yi = xi for i ∈ {1, . . . , r}; and

(iv) AC(y1)−AD(x1) ≥ AC(y2)−AD(x2) ≥ · · · ≥ AC(yr)−AD(xr).

Usher and Zhang proved in [UZ] as Theorem 3.4 that any linear map between

orthognalizable non-archimedean vector spaces over a field Λ admits a singular

value decomposition. Moreover, it is not difficult to see that one can rearrange

the yi and xi so that the inequalities above are reversed. Thus, in our situation,

if the Λ-linear Floer differential ∂ : CF ([ϕt]) → CF ([ϕt]) has rank r, then there

exist orthogonal ordered bases (y1, . . . , yn) and (x1, . . . , xn) for CF ([ϕt]) such that

(i) ∂yi = 0, for all i = r + 1, . . . , n;

(ii) ∂yi = xi, for all i = 1, . . . , r.
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(iii) A(y1)−A(x1) ≤ A(y2)−A(x2) ≤ · · · ≤ A(yr)−A(xr)

3.2 Floer-Type Complexes and Floer Packages

Let Λ be the universal Novikov field. A Floer-type complex over Λ is a triple

(C∗, ∂∗,A), where (C∗, ∂∗) is a chain complex over Λ and A : C∗ → R ∪ {−∞}

is a function such that
(
Ck, A|Ck

)
is an orthogonalizable non-archimedean vector

space over Λ for each k, and A(∂x) ≤ A(x) for each x ∈ Ck. A two-storey

Floer-type complex is a Floer-type complex whose chain complex is of the form

· · · 0 C1 C0 0 · · ·∂

We will also use a convenient notion used in [ÇGG21]: A Floer package over

Λ is a quadruple (C, {xi}, ∂,A), where C is a finite-dimensional vector space over

Λ with a prescribed set of generators {xi}, ∂ : C → C is a boundary map, and A

is an action filtration on C such that ∂ is strictly action-decreasing. Observe that

whenever (C,A) is orthogonalizable, the Floer package gives rise to a two-storey

Floer-type complex, by simply taking C1 = C0 = C.

In our case, we consider the Floer package (CF ([ϕt]), {γi, αj}, ∂,A), giving

rise to the two-storey Floer-type complex with chain complex

· · · 0 CF ([ϕt]) CF ([ϕt]) 0 · · ·∂ .

We verify that the Floer differential is indeed action-decreasing: First, if xi ∈

CritA[ϕt] with

∂xi =
∑
j

fijT
%(uij)xj,
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then

A(∂xi) ≤ max
j
A
(
fijT

%(uij)xj
)

= max
j

(
Ã{ϕt}(xj)− %(uij)

)
.

Observe that for each j, if vi and vj are cappings of xi and xj, respectively, then

vi#uij is a capping of xj equivalent to vj. Thus, for each j,

Ã[ϕt](xj)− Ã[ϕt](xi) = −
∫

[0,1]×S1
(uij)∗ω +

∫
S1

(∫ 1

0
(uij)∗t θ

)
dt

= −
∫
R×S1

(uij)∗ω +
∫
R
(uij)∗0θ

= %(uij)

Thus

A(∂xi) ≤ max
j

(
Ã[ϕt](xj)− %(uij)

)
= Ã[ϕt](xi).

Now, for a general x =
∑
i

λixi where {xi} ⊆ Crit Ã[ϕt],

A(∂x) = A
(∑

i

λi∂xi

)
≤ max

i
(A(∂xi)− ν(λi))

≤ max
i

(A(xi)− ν(λi))

= A
(∑

i

λixi

)
= A(x),

since the action values A(λixi) are pairwise distinct.

3.3 Persistent Homology and Barcodes

To a Floer-type complex, we can associate a persistence module, and hence-

forth, a barcode. To this end, we recall some facts about persistent homology
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and barcodes. One can find full details and proofs in a more general context in

[PRSZ], for instance. In our paper, we will need persistent homology in the context

of Floer complexes; more details and proofs can be found in [UZ]. A persistence

module (V ∗, σ∗) consists of a family {V t}t∈R of vector spaces V t over a fixed field

Λ such that each pair of vector spaces (V s, V t) for which s ≤ t is equipped with

a homomorphism σs,t : V s → V t satisfying the following functoriality properties:

(i) whenever s ≤ t ≤ u, the diagram

V s V u

V t

σs,t

σs,u

σt,u

commutes; and

(ii) for any s ∈ R, σs,s : V s → V s is the identity automorphism on V s.

Given a field Λ and an interval I ⊆ R, one can construct a canonical persistence

module (Λ∗I , π∗I ), called the interval module for I over Λ, as follows: Define

Λt
I :=


Λ, if t ∈ I;

0, if t /∈ I.

Whenever s ≤ t for which s, t ∈ I so that Λs
I = Λt

I = Λ, define πs,tI : Λs
I → Λt

I to

be the identity automorphism on Λ. Otherwise, define πs,tI to be the zero map.

If (V ∗, σ∗) and (W ∗, τ ∗) are two persistence modules over a field Λ, a morphism

A∗ : (V ∗, σ∗) → (W, τ ∗) consists of a family of Λ-linear maps At : V t → W t such
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that whenever s ≤ t, the diagram

V s V t

W s W t

σs,t

As At

τs,t

commutes. This allows us to speak of the category of persistence modules. In

particular, if A∗ : (V ∗, σ∗)→ (W, τ ∗) and B∗ : (W ∗, τ ∗)→ (U∗, ρ∗) are morphisms

of persistence modules, the composition (B ◦ A)∗ : (V ∗, σ∗) → (U∗, ρ∗) is the

morphism such that for each t ∈ R,

(B ◦ A)t = Bt ◦ At : V t → U t.

Moreover, we have the identity morphism id∗ : (V ∗, σ∗) → (V ∗, σ∗), where for

each t ∈ R, idt : V t → V t is just the identity automorphism on V t.

A morphism A∗ : (V ∗, σ∗) → (W ∗, τ ∗) of persistence modules is an isomor-

phism if there exists a morphism B∗ : (W ∗, τ ∗) → (V ∗ → σ∗) such that both

(A ◦ B)∗ and (B ◦ A)∗ are the identity morphisms on (W ∗, τ ∗) and (V ∗, σ∗), re-

spectively. If there is an isomorphism A∗ : (V ∗, σ∗) → (W ∗, τ ∗), we say that the

two persistence modules (V ∗, σ∗) and (W ∗, τ ∗) are isomorphic.

If (V ∗, σ∗) and (W ∗, τ ∗) are persistence modules, the direct sum (V ∗, σ∗) ⊕

(W ∗, τ ∗) is the persistence module ((V ⊕W )∗, (σ ⊕ τ)∗) defined as follows: For

each t ∈ R, (V ⊕W )t := V t ⊕W t and whenever s ≤ t, the linear map (σ ⊕ τ)s,t :

V s ⊕W t → V t ⊕W t is defined by

(σ ⊕ τ)s,t(v, w) =
(
σs,t(v), τ s,t(w)

)
.

A standard result on persistence modules is the following structure theorem.
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For instance, see [PRSZ] for a proof.

Theorem 3.3.1 (Normal Form Theorem for Persistence Modules). Let (V, σ) be

a persistence module over the field Λ. Then there exists a family {Iα} of intervals

Iα ⊆ R such that

(V ∗, σ∗) ∼=
⊕
α

(
Λ∗Iα , π

∗
Iα

)
(3.1)

The intervals Iα in the above decomposition are not necessarily distinct. Thus,

the family {Iα} can be viewed as a set of intervals, each counted with multiplicity.

To formalize this, we use the notion of a multiset: A multiset M is a pair (S, µ),

where S is a set and µ : S → N∪{∞} is a function, called the multiplicity function

of M . One should think of µ as the function that counts the number of copies

of an element in the multiset. A multiset (S, µ) for which S is a set of intervals

Iα ⊆ R is called a barcode.

Thus, for example, the Normal Form Theorem for Persistence Modules enables

us to associate to any persistence module (V ∗, σ∗) the barcode (S, µ), where S

is the set of intervals Iα in the direct sum decomposition (3.1), and for each

Iα ∈ S, µ(Iα) is the number of times Iα appears in the decomposition. This

specific multiset of intervals is then called the (persistent homology) barcode of

the persistence module (V ∗, σ∗).

Now, returning to our context, consider a Floer-type complex (C∗, ∂∗,A). For

each t ∈ R, let

Ct
k := {x ∈ Ck : A(x) ≤ t}.

Note that for any x ∈ Ct
k,

A(∂x) ≤ A(x) ≤ t,

and hence ∂x ∈ Ct
k−1. Thus there is a subcomplex (Ct

∗, ∂
t
∗,A), where ∂tk : Ct

k →

Ct
k−1 is the restriction of ∂k on Ct

k, with codomain restricted to Ct
k−1.
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Now for each k ∈ Z, let V t
k := Hk(Ct

∗, ∂
t
∗), the k-th homology group of (Ct

∗, ∂
t
∗).

Whenever s ≤ t, define σs,tk : V s
k → V t

k as follows: For x ∈ ker ∂sk,

σs,tk (x+ im ∂sk+1) = x+ im ∂tk+1. (3.2)

To see that this is well-defined, observe that whenever x ∈ ker ∂sk, A(x) ≤ s and

∂k(x) = 0. Thus, with s ≤ t, A(x) ≤ t as well, and hence x ∈ ker ∂tk. Moreover, if

x′ ∈ ker ∂sk such that x′ − x ∈ im ∂sk+1, then x′ − x ∈ im ∂k+1 with A(x′ − x) ≤ s.

Again, since s ≤ t, A(x′ − x) ≤ t as well and hence x′ − x ∈ im ∂tk+1.

It is also clear that whenever s ≤ t ≤ u,

σt,uk
(
σs,tk (x+ im ∂sk+1)

)
= σt,uk (x+ im ∂tk+1)

= x+ im ∂uk+1

= σs,uk (x+ im ∂sk+1).

i.e. σs,uk = σt,uk ◦ σ
s,t
k , and that σs,sk is just the identity on V s

k . Thus, (V ∗k , σ∗k) is a

persistence module. The Normal Theorem for Persistence Modules then associates

a barcode to (V ∗k , σ∗k). Now, Usher and Zhang prove in [UZ] the following theorem

that allows us to obtain this barcode via a singular value decomposition:

Theorem 3.3.2. Let (C∗, ∂∗,A) be a Floer-type complex over Λ. Let k ∈ Z and

(V ∗k , σ∗k) be the persistence module for which V ∗k = Hk(C∗, ∂∗) and σs,tk is defined

as in (3.2). If ((y1, . . . , yn), (x1, . . . , xm)) is a singular value decomposition of

the boundary map ∂k+1 : Ck+1 → ker ∂k (with codomain restricted to ker ∂k) and

r = rank(∂k+1), then the barcode for (V ∗k , σ∗k) consists precisely of:

• an interval [A(xi),A(yi)) for each i ∈ {1, . . . , r} such that A(yi) > A(xi);

and
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• an interval [A(xi),∞) for each i ∈ {r + 1, . . . ,m}.

Usher and Zhang then define the degree-k verbose barcode of (C∗, ∂∗,A) as the

multiset of elements of R× [0,∞] consisting of

(i) a pair (A(xi),A(yi)−A(xi)) for i ∈ {1, . . . , r}; and

(ii) a pair (A(xi),∞) for i ∈ {r + 1, . . . ,m}.

The submultiset of the verbose barcode consisting of pairs of the first type above

is then called the concise barcode of (C∗, ∂∗,A). Elements of the concise barcode

capture the left endpoints and the lengths of the finite bars of the persistent

homology barcode.

Going back to our context, we adopt conventions in [ÇGG21]. Consider the

ungraded filtered Floer complex (CF ([ϕt]),A) with boundary map the Floer dif-

ferential ∂ : CF ([ϕt])→ CF ([ϕt]). We consider the two-storey Floer-type complex

· · · 0 CF ([ϕt]) CF ([ϕt]) 0 · · ·∂

Suppose n = dimΛCF ([ϕt]) and r = rank ∂. Note then that if Z := ker ∂,

dimΛ Z = n−r, and since im ∂ ⊆ ker ∂, r ≤ n−r. Suppose that the orthogonal or-

dered basis (γ1, . . . , γr, α1, . . . , αn−r) for CF (ϕ) and the orthogonal ordered basis

(η1, . . . , ηr, β1, . . . , βn−2r) for Z, respectively, that form a singular value decom-

position for ∂ : CF ([ϕt]) → Z. That is, (α1, . . . , αn−r) is an orthogonal ordered

basis for ker ∂, (η1, . . . , ηr) is an orthogonal ordered basis for im ∂, ∂γi = ηi for

each i ∈ {1, . . . , r}, and

A(γ1)−A(η1) ≤ A(γ2)−A(η2) ≤ · · · ≤ A(γr)−A(ηr).

For each t ∈ R, let Ct := {x ∈ CF ([ϕt]) : A(x) ≤ t} and V t = H1(Ct
∗, ∂

t
∗). Then,
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by Theorem 3.3.2, the verbose barcode for the persistence module (V ∗, σ∗) is the

multiset (B, µ) consisting of the pairs

(A(η1),A(γ1)−A(η1)), . . . , (A(ηr),A(γr)−A(ηr))

and the pairs

(A(β1),∞), . . . , (A(βn−2r),∞).

Definition 3.3.3. The barcode associated to the homotopy class [ϕt] of a symplec-

tic isotopy {ϕt}, denoted B([ϕt]), is the multiset consisting of the second elements

of the pairs in the verbose barcode for the persistence module (V ∗, σ∗) defined

above.

That is, B([ϕt]) is the multiset of lengths of the bars in the concise barcode and

∞ counted (n − 2r) times. We shall also refer to these lengths as “bars;” more

precisely, the lengths will be unpinned bars, as opposed to the actual intervals

being pinned bars.

Note that the number of finite bars in B([ϕt]), i.e. the number of bars in the

concise barcode (counting multiplicities), is the rank of ∂. Moreover, observe that

dimΛHF ([ϕt]) = dimΛ ker ∂ − dimΛ im ∂ = (n− r)− r = n− 2r.

where HF ([ϕt]) denotes the homology of the ungraded complex (CF ([ϕt]), ∂).

That is, the number of infinite bars (counting multiplicities) in B([ϕt]) is the

dimension of the total homology of the Floer complex for [ϕt]. We will also denote

the total number of bars (counting multiplicities) in the barcode by b([ϕt]). Note

that

b([ϕt]) = r + (n− 2r) = n− r = dimΛ ker ∂.
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For instance, observe that b([ϕt]) gives a lower bound for the number of critical

points of the action functional Ã[ϕt]:

b([ϕt]) = n− r ≤ n = dimΛCF ([ϕt]) = # Crit Ã[ϕt].

3.4 Bottleneck Distance and Interpolating Dis-

tance

We recall in this section two notions of distance, that of the bottleneck dis-

tance between barcodes and that of the interpolating distance between Floer-type

complexes. We also recall the Isometry Theorem which relates these two distances.

Recall that for δ > 0, a δ-matching between two concise barcodes B1 and B2

is a bijection µ : C1 → C2, where C1 ⊆ B1 and C2 ⊆ B2, satisfying the following

conditions:

(i) each bar from B1 of length greater than 2δ belongs to C1;

(ii) each bar from B2 of length greater than 2δ belongs to C2;

(iii) whenever (a, b] ∈ C1 and (c, d] ∈ C2 such that µ((a, b]) = (c, d], (a, b] ⊆

(c− δ, d+ δ] and (c, d] ⊆ (a− δ, b+ δ]

The bottleneck distance between the barcodes B1 and B2 is then the infimum of

all δ > 0 for which there exists a δ-matching between B1 and B2.

We recall the notion of δ-quasiequivalence, as formulated by Usher and Zhang

in [UZ] as their version of the more classical notion of interleaving distance in gen-

eral persistent homology theory. If δ > 0 and (C∗, ∂C ,AC) and (D∗, ∂D,AD) are
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Floer-type complexes, then a δ-quasiequivalence between C∗ andD∗ is a quadruple

(Φ,Ψ, KC , KD) where:

(i) Φ : C∗ → D∗ and Ψ : D∗ → C∗ are chain maps, with AD(Φ(c)) ≤ AC(c) + δ

and AC(Ψ(d)) ≤ AD(d) + δ for all c ∈ C∗ and d ∈ D∗;

(ii) KC : C∗ → C∗+1 and KD : D∗ → D∗+1 obey the homotopy equations

Ψ ◦ Φ− IC∗ = ∂CKC +KC∂C and Φ ◦Ψ− ID∗ = ∂DKD +KD∂D

and for all c ∈ C∗ and d ∈ D∗,

AC(KCc) ≤ AC(c) + 2δ and AD(KDd) ≤ AD(d) + 2δ.

The quasiequivalence distance dQ((C∗, ∂C ,AC), (D∗, ∂D,AD)) between (C∗, ∂C ,AC)

and (D∗, ∂D,AD) is then given by the infimum of all δ ≥ 0 for which there exists a

δ-equivalence between (C∗, ∂C ,AC) and (D∗, ∂D,AD). The bottleneck distance be-

tween barcodes and the quasiequivalence distance between Floer-type complexes

are then related via the Stability Theorem:

Theorem 3.4.1 (Stability Theorem). For any Floer-type complexes (C∗, ∂C ,AC)

and (D∗, ∂D,AD) with barcodes BC and BD, respectively,

dQ((C∗, ∂C ,AC), (D∗, ∂D,AD)) ≤ dB(BC ,BD) ≤ 2dQ((C∗, ∂C ,AC), (D∗, ∂D,AD)).

More details and the proof of the theorem can be found in [UZ]. A stronger

and somewhat more complicated related notion is that of the interpolating dis-

tance. Recall that for δ > 0, a δ-interpolation between two Floer-type complexes

(C∗, ∂C ,AC) and (D∗, ∂D,AD) is a family of Floer-type complexes (Cs
∗ , ∂

s
C ,AsC)

indexed by a parameter s ∈ [0, 1] \ S, for some finite S ⊂ (0, 1), such that
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(i) (C0
∗ , ∂

0
C ,A0

C) = (C∗, ∂C ,AC) and (C1
∗ , ∂

1
C ,A1

C) = (D∗, ∂D,AD); and

(ii) for all s, t ∈ [0, 1]\S, (Cs
∗ , ∂

s
C ,AsC) and (Ct

∗, ∂
t
C ,AtC) are δ|s−t|-quasiequivalent.

Now then the interpolating distance dP between the Floer-type complexes (C∗, ∂C ,AC)

and (D∗, ∂D,AD) is the infimum of the set of all δ ≥ 0 for which there exists a δ-

interpolation between (C∗, ∂C ,AC) and (D∗, ∂D,AD). Usher and Zhang also prove

in [UZ] a result that is stronger than the Stability Theorem; this is the Isometry

Theorem that equates the interpolating distance and the bottleneck distance:

Theorem 3.4.2 (Isometry Theorem). For any Floer-type complexes (C∗, ∂C ,AC)

and (D∗, ∂D,AD) with barcodes BC and BD, respectively,

dB(BC ,BD) = dP ((C∗, ∂C ,AC), (D∗, ∂D,AD)).

This result is reminiscent of the classical Isometry Theorem of persistent ho-

mology theory, which likewise equates the interleaving distance between two per-

sistence modules and the bottleneck distance between their associated barcodes.
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Chapter 4

Topological Entropy

One of the primary goals of this paper is to extract the topological entropy

of a symplectomorphism isotopic to the identity from the barcode associated to

a symplectic isotopy connecting it to the identity. This number is of interest in

dynamics as it is an attempt to quantify chaotic behavior of dynamical systems. In

this chapter, we recall some facts about topological entropy in a general context. In

Section 4.1, we recall how topological entropy is defined and some of its properties.

In Section 4.2, we recall how measure-theoretic entropy is defined and how it

is related to topological entropy via the Variational Principle. In Section 4.3,

we recall special properties of topological entropy in the context of hyperbolic

dynamics, and specifically in the presence of horseshoes. Finally, in Section 4.4, we

recall how topological entropy is related to volume growth via Yomdin’s Theorem.

Note that much of the content of this chapter are standard notions and facts

from the theory of dynamical systems and ergodic theory. For more details, the

reader is encouraged to consult the excellent expositions by Katok and Hasselblatt

in [KH], Barreira and Pesin in [BP], Coudène in [Co], Walters in [Wa], Gucken-

heimer and Holmes in [GH], and Brin and Stuck in [BS].
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4.1 Topological Entropy

Let (M,d) be a compact metric space and ϕ : M →M a continuous map. For

each k ∈ N, define the k-shadowing metric dϕk on M by

dϕk (x, y) := max
0≤i≤k−1

d
(
ϕi(x), ϕi(y)

)
.

It is a standard fact that this is a metric on M for each k ∈ N. For each ε > 0,

set

Bϕ(x, ε, k) := {y ∈ X : dϕk (x, y) < ε} ,

the ε-neighborhood of x with respect to the k-shadowing metric. Recall that a

subset E ⊆ X is said to be (k, ε)-spanning for X if

X ⊆
⋃
x∈E

Bϕ(x, ε, k).

Denote by Sd(ϕ, ε, k) the ε-spanning number for the metric space (X, dϕk ), i.e. the

minimal cardinality of a (k, ε)-spanning set for X. Define

hd(ϕ, ε) := lim sup
k→∞

logSd(ϕ, ε, k)
k

.

One can interpret logSd(ϕ, ε, k) as the quantity of information needed to specify

a point of M to accuracy ε up to k iterations of ϕ, and hence hd(ϕ, ε) can be

interpreted as the asymptotic behavior (as the number of iteration steps becomes

arbitrarily large) of the average quantity of information per iteration step needed

to specify an orbit under ϕ to accuracy ε.

Finally, the topological entropy is obtained by also observing the asymptotic

behavior of the above quantity as the accuracy threshold ε is made arbitrarily
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small. That is, set

hd(ϕ) := lim
ε↘0

hd(ϕ, ε).

so that, hd(ϕ) roughly measures the exponential growth rate of divergence of or-

bits. Now, it is a standard fact that if d′ is another metric on X that induces

the same metric topology as d, then hd′(ϕ) = hd(ϕ). We then define this com-

mon quantity that depends on the topology rather than the actual metric as the

topological entropy of ϕ, and denote it by htop(ϕ).

There are other ways to compute topological entropy. One way is via covering

numbers. Let Cd(ϕ, ε, k) be the ε-covering number of (X, dϕk ), i.e. the minimal

cardinality of a cover of X consisting of subsets whose diameter in the metric

dϕk is at most ε. It is not difficult to see that the sequence {logCd(ϕ, ε, k)}∞k=0 is

sub-additive, and hence

lim
k→∞

logCd(ϕ, ε, k)
k

exists (or is −∞). It turns out that this limit is exactly hd(ϕ, ε), and hence

htop(ϕ) = lim
ε↘0

lim
k→∞

logCd(ϕ, ε, k)
k

Another way of computing topological entropy is via separated numbers. Let

Nd(ϕ, ε, k) be the ε-separated number of (X, dϕk ), i.e. the maximum cardinality of

a subset Y ⊆ X consisting of points which are pairwise separated by a dϕk -distance

greater than ε. It turns out that

Cd(ϕ, 2ε, k) ≤ Nd(ϕ, ε, k) ≤ Cd(ϕ, ε, k)
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and hence it is not difficult to see that

htop(ϕ) = lim
ε↘0

lim sup
k→∞

logNd(ϕ, ε, k)
k

.

We recall some properties of topological entropy and collect them in the next

theorem. See [KH] for instance, for proofs.

Theorem 4.1.1. Let (M,d) be a compact metric space and ϕ : M → M a

continuous map.

(i) If ϕ′ : M ′ →M ′ is a continuous map of a compact metric space (M ′, d′) and

f : M →M ′ is a homeomorphism such that ψ = fϕf−1, then

htop(ψ) = htop(ϕ).

That is, topological entropy is an invariant of topological conjugacy.

(ii) If Y ⊆ X is a closed ϕ-invariant subset, then

htop (ϕ|Y ) ≤ htop(ϕ).

(iii) If m ∈ N and X1, . . . , Xm ⊆ X are closed ϕ-invariant subsets such that

X =
m⋃
i=1

Xi,

then htop(ϕ) = max
1≤i≤m

htop
(
ϕ|Xi

)
.

(iv) Suppose furthermore that ϕ is a homeomorphism. Then, for any k ∈ Z,

htop
(
ϕk
)

= |k|htop(ϕ).
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(v) If ϕ′ : M ′ → M ′ is a continuous map of a compact metric space (M ′, d′),

define ϕ× ψ : M ×M ′ →M ×M ′ by

(ϕ× ψ)(x, y) = (ϕ(x), ψ(y)).

Then htop(ϕ× ψ) = htop(ϕ) + htop(ψ).

As we mentioned previously, the positivity of topological entropy typically

indicates chaotic behavior of a dynamical system. For example, it is not difficult

to see that if ϕ : X → X is an isometry of a metric space X, then htop(ϕ) = 0.

Indeed, an isometry is as far from being chaotic as possible. As a special example,

any isometry of the torus, and more specifically any rotation of the torus R2/Z2

which lifts to a translation of R2, has zero topological entropy. In contrast, the

famous “cat map” of Arnold, which is the hyperbolic toral automorphism f :

R/Z→ R/Z given by

f(x+ Z, y + Z) = (2x+ y + Z, x+ y + Z),

has topological entropy log λ, where λ = 3 +
√

5
2 is the greater of the two eigen-

values λ and 1/λ of the matrix

Af :=

2 1

1 1



representing f . Evidently, λ > 1 and so htop(f) = log λ > 0. And indeed, Arnold’s

cat map is a prototypical example of a chaotic dynamical system, evidenced by

the fact that its stable and unstable manifolds are dense in the torus. We must

mention however that Arnold’s cat map, while being a symplectomorphism, is not
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isotopic to the identity. As a matter of fact, there does not exist an isotopy of f to

the identity consisting of just continuous maps (let alone symplectomorphisms),

as f induces a map on homology, represented precisely by Af .

4.2 Measure-Theoretic Entropy and the Varia-

tional Principle

In this section, we recall measure-theoretic entropy and how it is related to

topological entropy. While topological entropy is a quantity extracted from topo-

logical dynamics, the measure-theoretic entropy is a quantity extracted from an

invariant measure. While topological entropy measures

In particular, while the definition of topological entropy starts with a space

endowed with a metric topology, the definition of measure-theoretic entropy begins

instead with a measure space.

Let (M,B, µ) be a measure space. Recall that a map ϕ : M →M is measure-

preserving, and that the measure µ is ϕ-invariant, if

µ(ϕ−1(B)) = B

for every measurable subset B ∈ B.

Recall that if (M,B, µ) is a probability space and I is a finite or countable

set of indices, a measurable partition of M is a collection of measurable subsets

ξ = {Cα ∈ B : α ∈ I} satisfying

µ

(
X \

⋃
α∈I

Cα

)
= 0
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and, for any indices α1 6= α2,

µ (Cα1 ∩ Cα2) = 0.

If ξ is a measurable partition of M , then the entropy of ξ is

Hµ(ξ) := −
∑
α∈I

µ(Cα) log µ(Cα) ∈ [0,+∞),

where in this sum, we define 0 log 0 := 0.

Now we are ready to recall measure-theoretic entropy. If ξ and η are two

partitions of M , define the joint partition as

ξ ∨ η := {X ∩ Y : X ∈ ξ, Y ∈ η, µ(X ∩ Y ) > 0}.

If ξ is a measurable partition of M and ϕ : M →M is measure-preserving, set

ξϕ−n := ξ ∨ ϕ−1(ξ) ∨ · · · ∨ ϕ−n+1(ξ).

Then the metric entropy of the transformation ϕ relative to the partition ξ is

hµ(ϕ, ξ) := lim
n→∞

1
n
H(ξϕ−n).

This limit always exists as an extended nonnegative real number since the se-

quence {H(ξϕ−n)}∞n=1 is sub-additive. Finally, the (measure-theoretic) entropy of

the transformation ϕ with respect to µ (or the entropy of the measure µ) is defined

to be

hµ(ϕ) := sup{hµ(ϕ, ξ) : ξ is a measurable partition with H(ξ) <∞}.
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We collect in the next theorem some standard properties of measure-theoretic

entropy.

Theorem 4.2.1. Let (M,B, µ) be a probability space and ϕ : M → M a µ-

preserving transformation.

(i) If ψ : (M ′,B′, µ′) → (M ′,B′, µ′) is a µ′-preserving transformation that is a

factor of ϕ : (M,B, µ)→ (M,B, µ), then

hµ′(M ′) ≤ hµ(M).

(ii) If A ⊂M is ϕ-invariant and µ(A) > 0, then

hµ(ϕ) = µ(A)hµA(ϕ) + µ(M \ A)hµX\A(ϕ).

(iii) If ν is another ϕ-invariant probability measure forM , then for any p ∈ [0, 1],

hpµ+(1−p)ν(ϕ) ≥ phµ(ϕ) + (1− p)hν(ϕ).

Now, let us recall a way to relate measure-theoretic entropy and topological

entropy. Perhaps at first seemingly in an ironic fashion, such a connection can be

found by observing the following contrast between the two notions of entropy: As

we can see in the theorem above, the measure-theoretic entropy on the union of two

invariant subsets is the measure-weighted sum of the measure-theoretic entropies

of the two subsets. On the other hand, recall that the topological entropy on a

union is the maximum of the entropies of the components, by Theorem 4.1.1.

Perhaps, a connection can be found if there is a special measure with respect to

which the measure-theoretic entropy is taken. Indeed, this is what the Variational
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Principle below provides. For a homeomorphism ϕ, let M(ϕ) denote the set of all

ϕ-invariant Borel probability measures on M .

Theorem 4.2.2 (Variational Principle). If ϕ : M → M is a homeomorphism of

a compact metric space (M,d), then

htop(f) = sup{hµ(ϕ) : M(ϕ)}

In particular, if µ is a measure of maximal entropy with respect to ϕ, then the

entropy of µ with respect to ϕ is exactly the topological entropy of ϕ.

4.3 Entropy and Horseshoes

Topological entropy attempts to measure the orbit complexity of a dynamical

system. The lore in dynamics is that positivity of the topological entropy is an in-

dication of complexity in orbit growth and hence interesting “chaotic” dynamics.

For instance, a classical example is that of the horseshoe map, originally intro-

duced by Smale in 1967 in [Sm]. The horseshoe map is also a classical example of

a dynamical system exhibiting hyperbolic behavior, and indeed a further lore in

dynamics is that hyperbolic behavior typically create positive topological entropy.

Recall that if λ < µ, then a sequence of invertible linear maps {Lm : Rn → Rn} is

said to admit a (λ, µ)-splitting if there exist decompositions Rn = E+
m ⊕ E−m such

that LmE±m = E±m+1 and

∥∥∥Lm|E−m∥∥∥ ≤ λ and
∥∥∥∥L−1

m

∣∣∣
E+
m+1

∥∥∥∥ ≤ 1
µ
.

A set K ⊆ M is called hyperbolic for a smooth map ϕ : M → M if there exists a

Riemannian metric, called a Lyapunov metric, in an open neighborhood U of K
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and λ < 1 < µ such that for any point x ∈ K, the sequence of differentials

{
(Dϕ)ϕm(x) : Tϕm(x)M → Tϕm+1(x)M

}
m∈Z

admits a (λ, µ)-splitting. A compact invariant subset K ⊆ M of ϕ is said to be

locally maximal or basic if there exists a neighborhood U ⊃ K, called an isolating

neighborhood, such that K is the maximal ϕ-invariant subset of U , i.e.

K = {x ∈ U : ϕm(x) ∈ U for all m ∈ Z} =
⋂
m∈Z

ϕm(U).

Smale originally defined his version of the horseshoe in the following manner:

Let ∆ = [0, 1] × [0, 1], the unit square in R2, and let f : ∆ → R2 be a diffeo-

morphism of ∆ onto its image such that ∆ ∩ f(∆) consists of two “horizontal”

rectangles ∆0 and ∆1 and the restriction of f to each component ∆i ⊆ f−1(∆)

is a hyperbolic affine map that contracts in the vertical direction and expands in

the horizontal direction. The maximal invariant subset

Λ =
∞⋂

n=−∞
fn(∆)

of ∆ under f then turns out to be the product of two Cantor sets (which is then

itself a Cantor set). Having the maximal invariant set of a dynamical system be a

Cantor set is characteristic of chaotic systems. This thus motivates us to consider

dynamical systems having horseshoes as subsystems. Moreover, a standard fact

about the horseshoe map is that its topological entropy is log 2 (which is evidently

positive).

Recall that a homeomorphism ϕ : X → X of a metric space (X, d) is called

expansive if there exists δ > 0 such that for any distinct x, y ∈ M , there exists
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m ∈ Z such that

d(ϕm(x), ϕm(y)) ≥ δ.

It is known that the restriction of any diffeomorphism to a hyperbolic subset is

an expansive map. For instance, see Corollary 6.4.10 of [KH].

Hyperbolicity is an interesting condition since it typically gives rise to many

periodic orbits. Recall that if ε > 0, a sequence of points x0, x1, . . . , xm−1, xm = x0

is a periodic ε-orbit or an ε-pseudo-orbit if d(ϕ(xk), xk+1) < ε for k = 0, 1, . . . ,m−

1.

Theorem 4.3.1 (Anosov Closing Lemma). If K is a hyperbolic set for ϕ, then

there exists an open neighborhood V ⊃ K and C, ε0 > 0 such that for any ε < ε0

and any ε-pseudo-orbit x̂ = (x0, x1, . . . , xk) in V , there exists y0 ∈ U such that

ϕk(y0) = y0 and d(ϕi(y0), xi) < Cε for i = 0, 1, . . . , k − 1.

We then say that the periodic orbit ŷ := {ϕi(y0) : i ∈ Z/kZ} of y shadows the

pseudo-orbit x. Thus, in particular, near any point of a hyperbolic subset whose

orbit almost returns to the point, there is an actual periodic orbit that shadows

the pseudo-orbit.

Locally maximal hyperbolic sets provide a setting in which the topological

entropy coincides with the exponential growth rate of periodic points. See, for

instance, [KH] for a proof.

Theorem 4.3.2 (Theorem 18.5.1 in [KH]). Let M be a compact Riemannian

manifold, U ⊆ M open, ϕ : U → M a diffeomorphism, and K ⊂ U a compact

locally maximal hyperbolic set for ϕ. Then

htop(ϕ|K) = lim sup
k→∞

log+ Pk(ϕ|K)
k

,

where Pk(ϕ|K) is the number of periodic points of ϕ with period k (not necessarily
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minimal), i.e. the number of fixed points of ϕk in K.

Moreover, the topological entropy of the restriction of ϕ on a hyperbolic set

can be made arbitrarily close to the entropy of the restriction on some locally

maximal hyperbolic set. More precisely, we have the following lemma:

Lemma 4.3.3. Let K ⊂M be a hyperbolic set. Then, for any δ > 0, there exists

a locally maximal hyperbolic set K ′ ⊂M such that htop(ϕ|K′) ≥ htop(ϕ|K)− δ.

Proof. Let δ > 0. By Katok’s Approximation [Theorem 3.3 in [ACW]], for any

ϕ-invariant ergodic probability measure µ on M , there exists a locally compact

hyperbolic set K ′ such that

htop(ϕ|K′) > hµ(ϕ|K)− δ.

Now, by the Variational Principle (Theorem 4.5.3 in [KH]), htop(ϕ|K) is the supre-

mum of all measure-theoretic entropies hµ(ϕ|K). Thus, taking the supremum of

the above inequality yields the desired inequality.

This result will be instrumental in the proof of Theorem B.

4.4 Entropy, Volume Growth, and Yomdin’s The-

orem

To prove Theorem A, we will need a connection between topological entropy

and the rates of growth of volumes of certain embedded submanifolds. This is

provided by what we shall refer to in this work as Yomdin’s Theorem, which

Yomdin proved in [Yo]. See also the survey by Gromov in [Gr] for an excellent

exposition of Yomdin’s Theorem.
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Theorem 4.4.1 (Yomdin’s Theorem). LetM be a compactm-dimensional smooth

manifold with fixed Riemannian metric. Let ϕ : M → M be a smooth map and

N ⊆M a compact n-dimensional smooth submanifold. Then

lim sup
k→∞

log vol Gr
(
ϕk
∣∣∣
N

)
k

≤ htop (ϕ|N) ≤ htop(ϕ),

where Gr
(
ϕk
∣∣∣
N

)
⊆ N × M is the graph of the restriction of ϕk to N and vol

denotes the n-dimensional Riemannian volume.

That is, the topological entropy bounds the growth rates of the volumes of the

graphs of the iterates of the map. Around a year later, Newhouse proved in [Ne]

an inequality that can be considered roughly the reverse of Yomdin’s inequality:

Theorem 4.4.2. For `, k ∈ N, let Σ(k, l) be the collection of Ck-maps σ : Ql →

M , where Ql := [0, 1]l, the l-dimensional unit cube. Let vol(σ) denote the l-

dimensional volume of the image of σ in M counted as many times as σ covers

its image. For n = 1, . . . , k and l ≤ m, let

Vl,k(ϕ) := sup
σ∈Σ(k,l)

lim sup
n→∞

1
n

log vol(ϕn ◦ σ),

V (ϕ) := max
l
Vl,∞(ϕ),

R(ϕ) := lim
n→∞

1
n

log max
x∈M
‖Dϕn(x)‖.

If ϕ is C1+ε(M) for any ε > 0, then

htop(ϕ) ≤ V (ϕ).
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Chapter 5

Barcode Entropy

In this chapter, we define the barcode entropy of a symplectic isotopy to the

identity and relate it with topological entropy. Our construction generalizes the

construction of the barcode entropy of a Hamiltonian diffeomorphism by Çineli,

Ginzburg, and Gürel in [ÇGG21].
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5.1 Barcode Entropy of a Symplectomorphism

Isotopic to the Identity

In Chapter 3, we defined the barcode B([ϕt]) for a homotopy class of a sym-

plectic isotopy. We now proceed to define the barcode entropy for [ϕt]. For each

ε > 0, define

bε([ϕt]) :=
∑
{µ(`) : ` ∈ B([ϕt]), ` > ε} ,

the number of bars in the barcode (counting multiplicities) whose lengths are

greater than ε. To see how these numbers are affected by Hamiltonian perturba-

tions, recall that Hofer defined in [Ho] a norm, which we now call the Hofer norm,

of a Hamiltonian diffeomorphism ψ ∈ Ham(M,ω), by

‖ψ‖H := inf
{∫

S1
(max
M

Ht −min
M

Ht) : Ht is 1-periodic and generates ψ
}
.

That this defines a norm on Ham(M,ω) is indeed a nontrivial fact. The reader

can consult for instance [Po] and [MSa17] for more details. Now, if two symplec-

tomorphisms ϕ and ϕ′ are Hamiltonian isotopic to each other, i.e. ϕ = ϕ′ψ for

some ψ ∈ Ham(M,ω), we define the distance between ϕ and ϕ′ to be

d(ϕ, ϕ′) := ‖ϕ−1ϕ′‖H .

The numbers bε([ϕt]) are fairly stable under Hamiltonian perturbations, as

expressed more precisely by the following:

Lemma 5.1.1. If ϕ ∈ Symp0(M,ω), with symplectic isotopy {ϕt}0≤t≤1, and ψ ∈

Ham(M,ω) such that ‖ψ‖H < ε/2, then for every δ > ε,

bδ+ε([(ψ ◦ ϕ)t]) ≤ bδ([ϕt]) ≤ bδ−ε([(ψ ◦ ϕ)t]).
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The key idea in the proof is that a symplectomorphism ϕ isotopic to the iden-

tity perturbed by a Hamiltonian diffeomorphism ψ has the same flux as the original

symplectomorphism ϕ; hence, comparing bar counts of the two barcodes is equiv-

alent to comparing barcodes if we instead pretended that ϕ was a Hamiltonian

diffeomorphism (as the flux entirely becomes irrelevant in the action differences).

Proof. Indeed, observe that [ψt] being in the kernel of the flux homomorphism,

we have Flux[ψt ◦ ϕt] = Flux[ϕt] = [θ] and hence for any (x, v) ∈ LζM ,

A[ψt◦ϕt](x) = −
∫

[0,1]×S1
v∗ω +

∫
S1

{(∫ 1

0
(vt)∗θ

)
+ (Gt\Ht)(x(t))

}
dt,

where Gt : M → R is a 1-periodic-in-t Hamiltonian such that XGt generates the

Hamiltonian isotopy {ψt}. Thus,

A[ψt◦ϕt](x) = A[ϕt](x) +
∫
S1

(Gt\Ht −Ht)(x(t))dt

Hence, whenever we have A[ϕt](y1)−A[ϕt](x1) > δ, we have

A[ψt◦ϕt](y1)−A[ψt◦ϕt](x1) = A[ϕt](y1)−A[ϕt](x1) +
∫
S1

(Gt\Ht −Ht)(y1(t))dt

+
∫
S1

(Gt\Ht −Ht)(x1(t))dt

≤ A[ϕt](y1)−A[ϕt](x1) + 2‖ψ‖H

< A[ϕt](y1)−A[ϕt](x1) + ε.

Thus, for every bar in the barcode for [(ψ ◦ϕ)t] of length greater than δ+ ε, there

exists a bar in the barcode for [ϕt] of length greater than δ. Therefore,

bδ+ε([(ψ ◦ ϕ)t]) ≤ bδ([ϕt])
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Likewise, observing that ‖ψ−1‖H = ‖ψ‖H a similar computation then shows that

A[ϕt](y1)−A[ϕt](x1) < A[ψt◦ϕt](y1)−A[ψt◦ϕt](x1) + ε.

Thus, for every bar in the barcode for [ϕt] of length greater than δ, there exists a

bar in the barcode for [(ψ ◦ ϕ)t] of length greater than δ − ε. Therefore,

bδ([ϕt]) ≤ bδ−ε([(ψ ◦ ϕ)t])

We are now ready to define the barcode entropy of a symplectomorphism

isotopic to the identity. For this purpose, we define log+ : [0,∞)→ R by

log+(x) :=


log2 x, if x > 0,

0, if x = 0.

Note that for any integer m ≥ 0,

log+(m) = log2 max{m, 1}.

Definition 5.1.2. Let ϕ ∈ Symp0(M,ω) and [ϕt] be the homotopy class of a

symplectic isotopy connecting ϕ0 = id to ϕ1 = ϕ. For each ε > 0, define

~([ϕt], ε) := lim sup
k→∞

log+ bε([ϕkt ])
k

.

Then, the barcode entropy of [ϕt] is defined to be

~([ϕt]) := lim
ε↘0

~([ϕt], ε).
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Note that if the sequence {bε[ϕkt ]}k∈N eventually stabilizes, for instance if it is

constant, then ~([ϕt]) = 0. In particular, ~([id]) = 0.

Moreover, we recall that if ϕ is a Hamiltonian symplectomorphism, then for

every k ∈ N, the barcode B([ϕkt ]) coincides with the barcode B(ϕk) as constructed

in [ÇGG21].

The following proposition lists some properties of barcode entropy that are

analogous to those of topological entropy.

Proposition 5.1.3. Let ϕ ∈ Symp0(M,ω) and {ϕt} be a symplectic isotopy con-

necting ϕ0 = idM to ϕ1 = ϕ.

(i) For every m ∈ N, ~([ϕmt ]) ≤ m~([ϕt]).

(ii) If (M ′, ω′) is a closed connected symplectic manifold, ψ ∈ Symp0(M ′, ω′),

and {ψt} is a symplectic isotopy connecting ψ0 = idM ′ to ψ1 = ψ, then

~([ϕt × ψt]) ≤ ~([ϕt]) + ~([ψt]).

(iii) For the symplectic isotopy {ϕ−1
t } connecting idM to ϕ−1, we have

~([ϕ−1
t ]) = ~([ϕt]).

(iv) For any symplectomorphism ψ : M →M ,

~([ψ ◦ ϕt ◦ ψ−1]) = ~([ϕt]).

That is, barcode entropy is invariant under symplectic conjugacy.

Proof. Let ε > 0.
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(i) For any m ∈ N,

~([ϕmt ], ε) = lim sup
k→∞

log+ bε([ϕmkt ])
k

= m lim sup
k→∞

log+ bε([ϕmkt ])
mk

≤ m lim sup
k→∞

log+ bε([ϕkt ])
k

= m~({ϕt}, ε)

The result then follows by passing to the limit as ε↘ 0.

(ii) First of all, note that naturally,

CF ([ϕt × ψt]) ∼= CF ([ϕt])⊕ CF ([ψt]),

and hence by the Normal Theorem for Persistence Modules, B([ϕt×ψt]) will

just be the multiset union of B([ϕt]) and B([ψt]). Thus,

bε([ϕt × ψt]) = bε([ϕt]) + bε([ψt]),

and hence

~([ϕt × ψt], ε) = lim sup
k→∞

log+ bε([ϕkt × ψkt ])
k

= lim sup
k→∞

log+
(
bε([ϕkt ]) + bε([ψkt ])

)
k

≤ lim sup
k→∞

log+ bε([ϕkt ]) + log+ bε([ψkt ])
k

≤ lim sup
k→∞

log+ bε([ϕkt ])
k

+ lim sup
k→∞

log+ bε([ψkt ])
k

= ~([ϕt], ε) + ~([ψt], ε)
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The result then follows by passing to the limit as ε↘ 0.

(iii) We first observe that the fixed points of ϕ−1 are precisely the fixed points

of ϕ. Moreover, since Flux is a group homomorphism,

Flux[ϕ−1
t ] = −Flux[ϕt].

Indeed, ifXt is a vector field generating {ϕt}, then−Xt generates {ϕ−1ϕ1−t},

which is homotopic to {ϕ−1
t }. Hence, we get the usual Poincaré duality:

A[ϕ−1
t ] is just the negative of A[ϕt] (up to a constant) and the usual reversal

of flowlines for A[ϕt] yields the connecting trajectories for A[ϕ−1
t ]. Thus, the

bars in the barcodes for [ϕt] and [ϕ−1
t ] are exactly the same, except that the

γi and ηi are switched. Trivially then,

bε([ϕ−1
t ]) = bε([ϕt]),

and hence the result immediately follows.

(iv) Note that if Xt is a vector field generating the isotopy {ϕt}, it will also

generate the isotopy {ψ ◦ϕt ◦ψ−1}. Moreover, if Gt is a Hamiltonian corre-

sponding to [ψt] via the Deformation Lemma, then Gt\Ht\G
−1
t is a Hamil-

tonian for [ψ ◦ ϕt ◦ ψ−1]. Finally, note that x ∈ Fix(ψ ◦ ϕ ◦ ψ−1) if and only

if ψ−1(x) ∈ Fix(ϕ). Thus, ψ(Fix(ϕ)) = Fix(ψ ◦ ϕ ◦ ψ−1).

Thus B([ϕt]) = B([ψϕtψ−1]), and so the result immediately follows.
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5.2 Barcode Entropy as a Lower Bound for Topo-

logical Entropy

Analogous to Theorem A in [ÇGG21] for Hamiltonian diffeomorphisms, the

barcode entropy of a homotopy class of a symplectic isotopy connecting the iden-

tity to a symplectomorphism also provides a lower bound for the topological en-

tropy of the symplectomorphism.

Theorem 5.2.1 (Restatement of Theorem A). Let ϕ ∈ Symp0(M,ω) and {ϕt}

be a symplectic isotopy connecting ϕ0 = idM to ϕ1 = ϕ. Then

~([ϕt]) ≤ htop(ϕ).

Recall that in order to prove Theorem A, Çineli, Ginzburg, and Gürel con-

structed in [ÇGG21] a Lagrangian tomograph and then used it to prove a Crofton-

type inequality. We follow a similar program. We begin by recalling the notion

of Lagrangian tomographs. We follow the definition and results as presented in

[ÇGG21] and [ÇGG22a]. Recall that the Hofer distance dH(L,L′) between two

Lagrangian submanifolds L,L′ of a symplectic manifold (M ′, ω′) is given by

dH(L,L′) := inf{‖ψ‖ : ψ ∈ Ham(N,ωN), ψ(L) = L′}.

Definition 5.2.2. If L is a Lagrangian submanifold of a symplectic manifold M ′,

a Lagrangian tomograph is a map Ψ : B × L→M ′, where B is some closed ball

in some Rd, satisfying the following:

(i) Ψ is a submersion onto its image,
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(ii) for each s ∈ B, the map Ψs := Ψ|{s}×L is a smooth embedding,

(iii) Ψ0 = id, and

(iv) for each s ∈ B, the image Ls := Ψ({s}×L) is a Lagrangian submanifold of

N that is Hamiltonian isotopic to L, with

dH(L0, Ls) ≤ O(‖s‖).

The number d will be called the dimension of the Lagrangian tomograph.

The following lemma provides us a setting in which Lagrangian tomographs

exist:

Lemma 5.2.3 (Lemma 5.6 in [ÇGG21]). A Lagrangian tomograph with dimension

d exists if and only if the Lagrangian submanifold L admits an immersion into

Rd.

See the proof in [ÇGG21]. Moreover, Çineli, Ginzburg, and Gürel proved in

the same paper a variant of Crofton’s inequality:

Lemma 5.2.4 (Crofton’s Inequality). Let L be a Lagrangian submanifold of a

symplectic manifold (X,ωX) and let Ψ : B × L → X be a Lagrangian tomo-

graph, with Ls := Ψ({s} × L). Then, there exists a constant C > 0 that for any

Lagrangian submanifold L′ of X, the function N : B → R defined by

N(s) := |Ls ∩ L′|.

is integrable and satisfies

∫
B
N(s)ds ≤ C vol(L′).
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This inequality is called a version of Crofton’s inequality as it resembles the

original Crofton formula that relates, which in turn inspired Crofton densities in

the context of double fibrations. See for instance the works of Álvarez-Paiva and

Fernandes ([APF98] and [APF07]) and Gelfand and Smirnov ([GS]).

We now use this lemma to prove a result that relates the numbers of fixed

points of Hamiltonian perturbations of a symplectomorphism ϕ isotopic to the

identity and the volume of the graph of ϕ.

Lemma 5.2.5 (Crofton’s Inequality for Symplectomorphisms). Let (M,ω) be a

closed symplectic manifold. Then, for each ε > 0, there exist sufficiently large

d > 0, a closed ball B ⊆ Rd, and a family

{ψs : s ∈ B} ⊆ Ham(M,ω)

of Hamiltonian diffeomorphisms parametrized by B satisfying the following:

(i) ψ0 = idM ;

(ii) dH(ψs, idM) < ε/2 for every s ∈ B; and

(iii) there exists C > 0 such that for any ϕ ∈ Symp(M,ω), the function N : B →

R defined by

N(s) = |Fix(ψs ◦ ϕ)| (5.1)

is integrable and satisfies

∫
B
N(s)ds ≤ C vol Gr(ϕ).

Proof of Lemma 5.2.5. Let L = ∆ = {(x, x) : x ∈ M}, the diagonal in M .

Clearly L is a Lagrangian submanifold of X := M ×M that admits an immersion
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into Rd for some d ≥ 4 dimM . Thus, by Lemma 5.2.3, there exists a Lagrangian

tomograph Ψ : B × L → X, for some ball B ⊂ Rd. Note that since the Hofer

distance between ∆ and Ls := Ψ({s}×∆) is O(‖s‖), given ε > 0, we may choose

the ball B small enough so that

dH(∆, Ls) < ε/2.

Moreover, for each s ∈ B, Ls is Hamiltonian isotopic to ∆, and hence there exists

ψs ∈ Ham(M,ω) such that

Gr(ψs)−1 = Ls.

Note that ψ0 = idM and, for each s ∈ B, dH(ψs, id) = dH(Ls,∆). Now, since

graphs of symplectomorphisms are Lagrangian submanifolds of the product, tak-

ing L′ = Gr(ϕ) in Lemma 5.2.4, we conclude that there exists C > 0 such that

for any ϕ ∈ Symp0(M,ω), the function N1 : B → R defined by

N1(s) := |Ls ∩ L′|

satisfies Crofton’s inequality.

Finally, observe that (x, y) ∈ Ls ∩ L′ = Gr(ψs)−1 ∩ Gr(ϕ) if and only if

(ψs)−1(x) = ϕ(x), i.e. x = ψs(ϕ(x)). Thus, there is a one-to-one correspon-

dence between Ls ∩ L′ and Fix(ψs ◦ ϕ). Thus, N1 coincides with the function N

defined by (5.1), and hence

∫
B
N(s)ds ≤ C vol(L′) = C vol(Grϕ),

as desired.

We are now in a position to prove Theorem 5.2.1.
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Proof of Theorem A. Without loss of generality, we may assume that ~([ϕt]) > 0,

since otherwise the inequality is trivial. Fix ε > 0. Let α := ~([ϕt], 2ε) and δ > 0.

Then, by definition, there exists a subsequence {ki}∞i=1 of {k}∞k=1 such that

α− δ < lim
i→∞

log b2ε([ϕkit ])
ki

≤ α.

Hence

2(α−δ)ki ≤ b2ε([ϕkit ]). (5.2)

Now, by Lemma 5.2.5, there exist a ball B ⊆ Rd for some large enough d, a

family of Hamiltonian diffeomorphisms {ψs : s ∈ B} parametrized by B, and a

constant C depending on ε, B and {ψs} such that for each s ∈ B, dH(ψs, idM) <

ε/2 and for each k ∈ N, the function Nk : B → R defined by

Nk(s) =
∣∣∣Fix(ψs ◦ ϕk)

∣∣∣
satisfies ∫

B
Nk(s)ds ≤ C vol Gr(ϕk).

Thus, with Lemma 5.1.1, we have

b2ε([ϕkit ]) ≤ bε([(ψs ◦ ϕki)t]) ≤ Nki(s)

and hence, with (5.2),

2(α−δ)ki vol(B) ≤
∫
B
Nki(s)ds ≤ C vol Gr(ϕki).

Note that C and B are independent of i. Thus, with Yomdin’s Theorem, we
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obtain

α− δ ≤ lim sup
k→∞

log vol Gr(ϕk)
k

≤ htop(ϕ)

Since δ > 0 was arbitrary, we have α ≤ htop(ϕ), i.e.

~([ϕt], 2ε) ≤ htop(ϕ).

Passing to the limit as ε→ 0, we obtain the desired inequality.

5.3 Topological Entropy as a Lower Bound for

Barcode Entropy

A lower bound for the barcode entropy that involves topological entropy can

also be obtained in the context of hyperbolic sets such as horseshoes, as is the

case with Theorem B in [ÇGG21].

We are now ready to state our version of Theorem B in [ÇGG21] for symplec-

tomorphisms isotopic to the identity.

Theorem 5.3.1 (Restatement of Theorem B). Let ϕ ∈ Symp0(M,ωM) and {ϕt}

be a symplectic isotopy connecting ϕ0 = idM to ϕ1 = ϕ. If K ⊆ M is a locally

maximal hyperbolic subset, then

~([ϕt]) ≥ htop (ϕ|K) .

We also recall the Crossing Energy Theorem, which asserts that the energy

required for a Floer trajectory to approach a hyperbolic orbit and cross a fixed

neighborhood of it is bounded below by a positive constant independent of the
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iteration. It Let S1
k := R/kZ. Fix a 1-periodic family of almost complex structures

{Jt} ⊂ J (M,ω). Let Σ ⊂ R × S1
k be a closed domain, i.e. a closed subset with

non-empty interior. It will be convenient to work on the extended phase spaces

M̃k := S1
k ×M . The time-dependent flow ϕt lifts to the genuine flow ϕ̃t on M̃k

defined by

ϕ̃t(θ, p) =
(
θ + t, ϕt(p)

)
,

generated by the vector field ∂
∂θ

+ Xηt , where t in the first coordinate is treated

as an element of S1
k . For every map u : R× S1

k → U ⊂ M , we will denote its lift

by ũ : R× S1
k → Ũ ⊂ M̃ .

Suppose x is a k-periodic orbit of ϕ. A solution u : Σ → M of the Floer

equation (2.8) is said to be asymptotic to x at ∞ if there exists s0 ∈ R such that

[s0,∞)× S1
k ⊂ Σ and

lim
s→∞
‖u(s, ·)− x‖M = 0,

where ‖ ·‖M denotes the C0-norm onM . Moreover, we say that u is asymptotic to

K at ∞ if for any neighborhood Ũ of K̃, there exists sŨ ∈ R such that [sŨ ,∞)×

S1
k ⊂ Σ and

ũ([sŨ ,∞)) ⊂ Ũ .

In particular, if u is asymptotic at ∞ to x and x(0) ∈ K, then u is asymptotic

to K at ∞. Note that it is sufficient that x(0) ∈ K; it is not necessary that the

entire orbit x is contained in K.

We similarly define the notion of a solution asymptotic to K at −∞.

The energy of a solution u : Σ→M of the Floer equation (2.8) is given by

E(u) :=
∫

Σ

∣∣∣∣∣∂u∂s
∣∣∣∣∣
2

g

dsdt.
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Recall that when Σ = R × S1
k and u is asymptotic to the k-periodic orbit x at

−∞ and to the k-periodic orbit y at ∞, we have

E(u) = A[(ϕk)t](x)−A[(ϕk)t](y).

In the following, U denotes the closure of U .

Theorem 5.3.2 (Crossing Energy Theorem). Let U be a sufficiently small open

neighborhood of x with smooth boundary ∂U := U \ U . Then, there exists a

constant c∞ > 0, independent of k and Σ, such that for all k-periodic almost

complex structures sufficiently C∞-close to J uniformly on R × U and for any

solution u of the Floer equation (2.8) for {J ′t} that is asymptotic to K as s→∞

or s→ −∞ and satisfying either

(i) ∂Σ 6= ∅ and u(∂Σ) ⊂ ∂U , or

(ii) Σ = R× S1
k and u(Σ) 6⊂ U ,

we have E(u) > c∞.

A key result that will be useful in the proof of Theorem 5.3.1 is the following

lemma that gives a lower bound to action differences of periodic orbits.

Lemma 5.3.3. Let K be a locally maximal hyperbolic invariant set for ϕ. There

exists a constant εK > 0 such that for any k ∈ N, there exists δ > 0 such that for

any k-periodic family {J ′t} of almost complex structures that is C∞-close to {Jt}

by δ, any k-periodic orbits x and y of ϕt with x(0) ∈ K, and any Floer trajectory

u asymptotic to x and y with positive energy,

E(u) =
∣∣∣A[ϕkt ](x)−A[ϕkt ](y)

∣∣∣ > εK .
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In order to prove this lemma, we need the following result:

Lemma 5.3.4. There exists sufficiently small δ > 0 such that for any solution

u : R×S1
k →M of the Floer equation (2.8) with E(u) < δ and for any s ∈ R, the

set

ẑ := {zi = u(s, i) : i ∈ Z/kZ}

is an ε-pseudo-orbit of ϕ, where ε→ 0 as E(u)→ 0.

Proof. First, observe that whenever ∂u
∂t

is uniformly C∞-close to Xηt by ε, ẑ is an

η-pseudo-orbit of ϕ. Indeed, if Ψ : M ↪→ RN is some embedding of M into some

Euclidean space of sufficiently high dimension, then for some 0 ≤ t′ ≤ 1,

d(ϕ(zi), zi+1) = |Ψ(ϕ(zi))−Ψ(zi+1)|

= |Ψ(ϕ(zi))−Ψ(zi) + Ψ(zi)−Ψ(zi+1)|

= |Ψ(ϕ1(zi))−Ψ(ϕ0(zi)) + Ψ(u(s, i))−Ψ(u(s, i+ 1))|

=
∣∣∣∣∣ d
dt

∣∣∣∣∣
t=t′
{Ψ(ϕt(zi))−Ψ(u(s, i+ t))}

∣∣∣∣∣
=

∣∣∣∣∣
(
Xηt −

∂u

∂t

)∣∣∣∣∣
t=t′

∣∣∣∣∣
≤

∥∥∥∥∥∂u∂t −Xηt

∥∥∥∥∥ .
Now, for any solution u of the Floer equation (2.8),

∥∥∥∥∥∂u∂t −Xηt

∥∥∥∥∥ =
∥∥∥∥∥J ∂u∂s

∥∥∥∥∥ =
∥∥∥∥∥∂u∂s

∥∥∥∥∥ .
Finally, by Fish’s target-local compactness result (see [Fi]),

∥∥∥∥∥∂u∂s
∥∥∥∥∥→ 0 as E(u)→ 0.
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Thus, for any ε > 0, there exists δ > 0 such that

E(u) < δ ⇒
∥∥∥∥∥∂u∂t −Xηt

∥∥∥∥∥ < ε.

We now give a proof of the previous lemma.

Proof of Lemma 5.3.3. Let U be an isolating neighborhood for K. Suppose x and

y are k-periodic orbits of ϕt with x(0) ∈ K, so that the entire orbit {x(t) : t ∈ R}

is also contained inK. Let c∞ be the lower bound in the Crossing Energy Theorem

for U . We consider two cases. First, suppose y(0) /∈ K. Take εK = c∞. Note

that there exists t0 ∈ S1
k such that y(t0) = ϕt0(y(0)) /∈ U . Now then there exists

sufficiently large s∞ > 0 such that u(s∞, t0) /∈ U . Thus u(Σ) 6⊂ U , and by the

Crossing Energy Theorem, E(u) > c∞ = εK .

Now suppose y(0) ∈ K, so that both orbits {x(t) : t ∈ R} and {y(t) : t ∈ R}

are entirely contained in K. We proceed by contradiction: Suppose that for

any ε > 0 there exists a Floer trajectory u asymptotic to x and y such that

0 < E(uε) ≤ ε. Without loss of generality, we may assume that U is sufficiently

small so that both the Crossing Energy Theorem and Anosov Closing Lemma

apply. Moreover, we may assume without loss of generality that u is asymptotic

to x at −∞. Let c∞ be as in the conclusion of the Crossing Energy Theorem,

ε0 be as in the Anosov Closing Lemma, and δ and η be as in Lemma 5.3.4. By

choosing ε < c∞ and the Crossing Energy Theorem, we have ũε(Σ) ⊂ Ũ . By

choosing ε < δ, we have by Lemma 5.3.4 that for any s ∈ R,

ẑs := {zsi = uε(s, i) : i ∈ Z/kZ}

is a periodic η-orbit of ϕ. Since η → 0 as E(u)→ 0, we can choose ε small enough
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so that

E(uε) < ε ⇒ η < ε0,

and so by the Anosov Closing Lemma, for every s ∈ R, there exists a true periodic

orbit ŵs in K shadowing ẑ, i.e. for some constant C > 0 that depends only on U

and ϕ, we have

d(zsi , wsi ) < Cη

for all i ∈ Z/kZ. Now, since K is a hyperbolic set, ϕ|K is expansive. Thus, for

some constant δ′ > 0 that depends only on ϕ and K, any two distinct orbits of ϕ

in K are separated by a distance of at least δ′. Thus, by choosing ε sufficiently

small so that Cη < δ′/2 as well, we have for each s ∈ R that ẑs = ŵs. Clearly

lim
s→−∞

ẑs = x

uniformly with respect to the C0-norm, with each ẑs a periodic orbit of ϕ. By

nondegeneracy of x, x must be isolated, and therefore ẑs = x for all s sufficiently

large negative. By continuity of ẑs in s, we then have ẑs = x for all s ∈ R. That

is, u(s, t) = x(t) for all s ∈ R and so x = y and E(u) = 0. Contradiction.

Finally, it would be convenient to recall the notion of a Floer graph, which

was also used in [ÇGG21] to prove the analogous result for Hamiltonian diffeomor-

phisms and introduced for the first time in [ÇGG22b]. The Floer graph for a Floer

package (C, {xi}, ∂,A) is the directed graph whose vertices are the generators xi

of C and edges are (xi, xj), where xj appears in ∂xi. That is, if

∂xi =
∑
j

fijT
aijxj.

we have an edge (xi, xj) in the Floer graph if and only if fij = 1. We label the
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edge (xi, xj) by aij. We let the length of the arrow representing this edge be the

action difference

A(xi)−A(T aijxj) = A(xi)−A(xj) + aij.

A vertex xi is said to be ε-isolated if every possible edge (xi, xj) or (xj, xi) has

length strictly greater than ε. We recall Proposition 3.8 in [ÇGG21], which allows

us to extract from the Floer graph a lower bound for bε(C):

Lemma 5.3.5. Let ε > 0. Suppose that the Floer graph of (C, {xi}, ∂,A) has p

ε-isolated vertices. Then

bε(C) ≥
p

2 .

See [ÇGG21] for a proof.

Proof of Theorem B. First, by Lemma 4.3.3, we can assume without loss of gen-

erality that K is a locally maximal hyperbolic set. Thus, by Theorem 4.3.2,

htop(ϕ|K) = lim sup
k→∞

log+ Pk(ϕ|K)
k

.

Thus, it suffices to show that

bε([ϕkt ]) ≥
Pk(ϕ|K)

2 .

Indeed, taking the logarithm, dividing through by k, passing to the upper limit

as k →∞, and passing to the limit as ε↘ 0 yields ~([ϕt]) ≥ htop(ϕ|K).

Let εK > 0 be the lower bound as in Lemma 5.3.3. That is, for any positive-

70



energy Floer trajectory u asymptotic to k-periodic orbits x and y with x(0) ∈ K,

E(u) =
∣∣∣A[ϕkt ](x)−A[ϕkt ](y)

∣∣∣ > εK .

Note that there are exactly Pk(ϕ|K) k-periodic points of ϕ in K. Thus, there are

at least this many generators for the Floer complex for [ϕkt ]. By Lemma 5.3.3, for

any 0 < ε < εK , each of these generators corresponds to an ε-isolated vertex of

the Floer graph for the Floer package associated to [ϕkt ]. Therefore, by Lemma

5.3.5, for any 0 < ε < εK ,

bε([ϕkt ]) ≥
Pk(ϕ|K)

2 ,

as desired.

As a consequence, in the case of a surface, we achieve equality between barcode

entropy and topological entropy.

Corollary 5.3.6 (Restatement of Theorem C). If (M,ω) is a closed symplectic

surface and ϕ ∈ Symp0(M,ω) with symplectic isotopy {ϕt}, then

~([ϕt]) = htop(ϕ).

Proof. We already generally have ~([ϕt]) ≤ htop(ϕ) by Theorem 5.2.1. Thus, it

only remains to show that ~([ϕt]) ≥ htop(ϕ) for the case when dimM = 2.

To this end, recall from [BP] that if dimM = 2, then

htop(ϕ) = sup{htop(ϕ|K) : K is a hyperbolic horseshoe},

where in this context, K is said to be a horseshoe if K is a closed invariant set

such that ϕ|K is topologically conjugate to a subshift of finite type. Now, observe

that in this case, then for any two points p, q ∈ K sufficiently near each other, the
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local stable manifold Ws(p) of p and the local unstable manifold Wu(q) intersect

transversely at a unique point. This is equivalent to saying that K is locally

maximal, for instance by Theorem 5.4 of [AY].

Thus, every hyperbolic horseshoe is a hyperbolic locally maximal subset, and

so

htop(ϕ) ≤ sup{htop(ϕ|K) : K is hyperbolic and locally maximal}.

Now, by Theorem 5.3.1, ~([ϕt]) ≥ htop(ϕ|K) for any locally maximal hyperbolic

subset K. Thus, ~([ϕt]) ≥ htop(ϕ), as desired.
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