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ABSTRACT OF THE DISSERTATION

Uniting and Balancing Control Objectives:
Safety, Stability, Smoothness, and Resource Conservation

by

Pio Ong

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2022

Professor Jorge Cortés, Chair

Multi-robot systems can accomplish a variety of tasks through the power of coordination.
There are mutliple benefits. These systems have many advantages over a single very complex robot
in term of scalability, versatility, and adaptability. In many cases, the robots cannot accomplish
much by itself, but coordination empowers them the ability to complete various objectives. Even
when the individuals robots are very capable, coordination can increase robot efficiency by allo-
cating robots with fitting tasks. In both scenarios, the problem of balancing the system objectives
arise naturally, and properly addressing it can lead to better overall performance. Motivated by this

xv



observation, this dissertation seek to understand how different objectives can be put together and
how to strike a balance between them. We consider control objectives at the most fundamental level
to control systems, such as stability, system safety, smoothness of the controller, performance, and
resources spent for accomplishing tasks.

This dissertation is divided into two parts. The first part deals with control laws that con-
sider both stability and safety objectives. We design controllers that can satisfy simultaneously
conditions given by control Lyapunov functions and control barrier functions. Depending on the
smoothness properties of the given functions, we guarantee the continuity or smoothness of the
controller. In particular, we design a continuous controller for connectivity maintenance, and also
design a universal formula for smooth safe stabilization. In the second part, we study the resource-
efficient implementation of control laws using event-triggered control. We improve the existing
event-triggered control framework for stabilization by incorporating prescribed performance into
the design. The resulting framework further enhances the advantage of resource conservation char-
acteristic of event-triggered control. We build on the proposed framework to design an intrinsically
Zeno-free distributed triggering mechanisms for network systems. In addition, this dissertation
also explores unconventional ways to utilize the event-triggered control framework. In one way,
we deviate ourselves from trigger conditions that use Lyapunov functions replacing it instead with
barrier certificate and develop an event-triggered control framework for safety objectives. Another
interesting way we explore to use event-triggered control is in the context of human supervised
multiobjective optimization. In this setting, we consider the human as a valuable resource, which
should be used sparingly, and use event-triggered control to accommodate various models of human
performance, such as constraints on the response time and the interaction frequency.
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Chapter 1

Introduction

In the not so distant future, it is envisioned that robots will cooperate among themselves,
and with humans, in performing a multitude of tasks in everyday life, ranging from routine jobs to
dangerous missions. Thanks to the a rapid advances of computing, communication, and sensing
capabilities, robots have become more capable and more sophisticated. More importantly, they can
now be produced cheaply, making it more commonplace. In the past, most robots existed only in the
industrial sector helping with manufacturing (e.g., welding, painting, handling), and they were few
in numbers with minimal direct interactions with humans. Today, robots work alongside humans
in large number, interacting with humans in many ways. One example is the warehouse robots that
collaborate with humans in fulfillment centers. These robots move around in the same environment
with humans and take on tasks that are too tedious or laborious for humans. They also interact with
humans directly such as bringing items to humans for inspection and requesting human assistance
when they encounter problems. The introduction of robots to theseworkplaces has greatly enhanced
their production performance and efficiency. Following the trend of developments, it will not be
long before robots are introduced into different settings and become an integral part of our lives.
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We are interested in the possibilities for robots to interact among themselves and with hu-
mans. Robots are like smart devices in that they assist humans and facilitate our lives. We surround
ourselves with smart devices, e.g., our phones, our assistant devices, and our house appliances,
simply because they make our lives more comfortable. Undoubtedly, robots will follow suit and
become ubiquitous for the same reasons. The difference between robots and smart devices are that
robots will have some level of autonomy, possibly making decisions by themselves, and they may
also have the power to communicate effectively. This naturally begs the question of how they will
coordinate among themselves and how they should interact with humans. Today, we can observe
that smart devices, even with limited communication capabilities, work together as a network in or-
der to enhance their overall functionality and efficiency. Such concept is referred to as the internet
of things, and we predict that future robots will also inherit the concept. Individual robots, although
with their own autonomy and purposes, will be part of a bigger collaboration network that connects
the robots together in order to augment their collective abilities and capabilities.

Multi-robot systems rely on this exact principle as they coordinate simple robots to accom-
plish a variety of tasks. In many scenarios, a group of less capable robots are more versatile and
have better performance than a single specialized robot. For example, in a search-and-rescue oper-
ation, a group of robots can quickly cover a large search area and then coordinate among themselves
to provide appropriate resources where they are needed. In addition, the robots can avoid searching
the same area twice, and they can also reduce the total travel distance by having closest robots to
explore a point of interest. The strength of a multi-robot system here lies not in its number but in
the power of collaboration. With proper coordination, robots can reduce the total amount of work-
load. Indeed, there are also many scenarios where a specialized robot can outperform a multi-robot
system. However, it is not about which one is better than which, but how we can understand and
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utilize their respective strengths. It is not farfetched to think that future robots, regardless of how
sophisticate they become, will work in collaboration. We imagine that even when robots are ca-
pable of accomplishing tasks on their own, they will still coordinate with others in order to make
their tasks easier and obtain better performance.

There are still many technical challenges that we need to overcome before the aforemen-
tioned vision is realized. Robot coordination is an active field of research with many interesting
ideas. Common research topics include algorithmic solutions that allow robots to operate with
only partial network information, robustness of the coordination to failure of individual robots, and
scalability of the collaboration network. Indeed, outside of these popular topics, there are many
other aspects that we still need to explore and answer. This dissertation is motivated by the mul-
tiobjective nature of multi-robot systems. Since individual robots in the network may have their
own objectives to accomplish, we face the question of how to prioritize between their collective
objectives and how to come up with a solution that can satisfy all of the participating members.
Addressing the question of how to handle multiple objectives effectively and simultaneously is the
central theme of this dissertation.

Objectives in control systems can refer to goals other than stability of the desired equilib-
rium. Although we often seek to drive the systems to desired states, it is equally important to
consider how it is done. One type of system objectives to consider is trajectory safety. We use the
term safety objective to broadly refer to the goal of avoiding undesirable states, which may include
not only states that signify total loss of robots but also states where system performance diminishes.
An example of a safety objective is robot connectivity, where we want the robot network to avoid
the states where they lose connectivity. Regardless of the severity, safety is an important control
objective that can dictate how we stabilize an equilibrium of a system.
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Another type of control objectives is resource conservation. The advent of increasingly
capable devices operating in complex scenarios raises the question of using the available resources
efficiently in order to meet task specifications and provide algorithmic solutions that can scale up.
Typically spending the more resources leads to better system performance, but due to diminishing
returns, choosing to withhold some resources might be a more sensible option. Balancing control
objectives such as stability and safety with the efficient use of available resources is then an integral
part of the implementation of control laws.

This dissertation is divided into two parts. The first part (Chapters 3–4) focuses on scenar-
ios with both stability and safety objectives. We formulate both objectives as control constraints
and use them to design feedback controllers. In our treatment, we pay special attention to the conti-
nuity/smoothness properties of the resulting feedback controllers. The second part (Chapters 5–7)
investigates the implementation of the control laws with a focus on balancing resource usage and
system performance, either in term of stability or safety.

1.1 Literature Review

1.1.1 Smooth Safe Stabilization

Broadly speaking, safety is the concept of avoiding undesirable states, and it is directly
related to the concept of set invariance. There is a vast literature surrounding the concept of set
invariance in the context of optimization. Barrier methods, more popularly known as interior-
point methods [FGW02, BV04], were developed to ensure that solutions remain in a feasible set.
Although there was already a sizeable literature of set invariance in control [Bla99], the introduction
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of barrier functions to the field has greatly expanded its literature. Barrier Lyapunov Functions
(BLFs) [NMJ05,TGT09] integrate the ideas of barriermethods into Lyapunov theory. BLFs enforce
safety by specifying a Lyapunov function with each sublevel set contained in the safe set. Safety
is then a byproduct of stabilization, as the decrease of the Lyapunov function (i.e., stabilization)
leads to containment within sequentially nested sublevel sets. Nevertheless, the coupling between
safety and stabilization, in principle, makes the analysis more difficult. Another approach is to
isolate the safety analysis from stability. The notion of barrier certificate [PJ04] focuses solely
on safety. The certificate is defined to be positive for states that are safe, and it guarantees set
invariance through monotonicity of its time evolution. Control Barrier Functions [WA07] (CBF)
build on the notion, and are used to find choices of control inputs that makes the certificate increase,
guaranteeing forward invariance of a desired set. The CBF idea is refined further by using Nagumo
theorem [BM07] as the basis for set invariance, see [ACE+19]. This refined version introduces
the concept of letting the certificate also decrease, depending on the level of safety. CBFs are
commonly used in tandem with control Lyapunov functions (CLFs) in order to design a controller
for both safety and stability objectives.

There are two general approaches to exploiting the available CLFs and CBFs for safe sta-
bilization. The first is optimization-based, where a control input is selected through a point-
wise optimization over a feasible control set given by the conditions from CLFs and CBFs (see
e.g., [MPA13, AXGT17, XTGA15]). The drawback of this approach, as pointed out in [MPA15]
with a counterexample, is that the resulting feedback controller can be non-Lipschitz. To remedy
this, [AXGT17,XTGA15] propose relaxing the condition for stability in order to guarantee Lips-
chitzness of the feedback controller. Another approach, as introduced by [RJ16], is to combine a
CLF and a CBF into a CLBF and then use Sontag’s universal formula for stabilization [Son89].
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Although this method will guarantee smoothness of the controller, as long as CLFs and CBFs are
sufficiently smooth, the constructed CLBF will only work when it meets the restrictive criteria laid
out by [RJ16], which is discussed further in [BK17].

Nonsmooth Control Barrier Functions (NCBFs) [GCE17a] are a generalization of CBFs to
consider certificate that are not differentiable. However, care must be taken when using NCBFs
as there are many results that rely on the smoothness of the certificate function. Particularly, there
is no longer a guarantee on the continuity when using optimization-based controllers. The pa-
per [MPA15] uses perturbation theory to study the smoothness properties of optimization-based
controllers with CBFs. Nevertheless, the result is only applicable to continuously differentiable
CBFs. In Chapter 3, we apply NCBFs to the problem of connectivity maintenance to highlight the
continuity issue mentioned here.

Connectivity Maintenance is an important concept for multi-robot systems. In order to be
able to interchange information across the network, the interaction graph must be connected. The
concept of algebraic connectivity [GR01] of a graph, also known as Fiedler eigenvalue [Fie73],
characterizes the connectivity of a network graph by transforming it into an eigenvalue computation
problem. For multi-robot systems, the network graph is dynamically changing as the robots’ states
evolves and they navigate through their tasks. Typically, robot network graphs are determined
via proximity graphs [BCM09,ZP15], where the degree of connectivity changes along the robots’
trajectories. Connectivity maintenance of dynamic graphs can be categorized into two approaches,
local and global, depending on how connectivity is enforced. In the local approach, connectivity
is maintained by reasoning over the connections present in the initial graph. This includes the
direct method of preserving all initial connections, see e.g., [JE07], which limits the graph to one
arrangement. This method can be improved by considering instead multiple-hops neighbors and
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allowing rearrangements in the edges [ZP05, SC12], but its flexibility is still limited by the initial
robot configuration. The global approach reasons more broadly over network connectivity using
network-wide metrics such as algebraic connectivity. Under this approach, we find works that pose
connectivity as a problem of maximizing algebraic connectivity [Boy06, KM06]. The idea is to
find a robot motion that will increase the algebraic connectivity. A decentralized implementation
of this idea is explored in [dGJ06]. Nevertheless, maximizing the algebraic connectivity in all
scenarios can be overly restrictive. In this regard, [SCS13, SC09] introduce more flexibility by
allowing algebraic connectivity to decrease when its value is large.

We rely on set-valued theory to address continuity of the feedback controller. In safe stabi-
lization, the feasible control set, given jointly by a CLF and a CBF, can be viewed as a set-valued
map that changes across states. The idea behind set-valued map selection is to pick a control from
each feasible control set at each system state to construct a single-valued function. One important
selection theorem to note is Michael’s theorem [Mic56], which shows the existence of a continu-
ous feedback under mild conditions. Unfortunately, the proof is not constructive. One simple way
to find a continuous feedback is to use a minimum-norm controller [FK96], i.e., an optimization-
based controller where the objective function is a norm. Another notable work [YJ06] generalizes
minimum-norm controllers with a guide function. For a more general objective function, Berge
Maximum Theorem [AB99, Thm. 17.31] is a well-known result in parametric optimization that
guarantees continuity of the controller based on continuity of its constraint map. These tools men-
tioned so far only guarantee continuity of the selection function.

Not many works deal with the problem of smooth selection. The book [FK96] discusses
Lipschitz selections, but again does not give a constructive function. Smooth selection for polytope
set-valued functions is explored in [LD97,Luc97], which suggests using the vertex of the polytope,
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but smoothness is only guaranteed almost everywhere, and if the result is applied in the context of
controls, the control signal can be unnecessarily large. In controls, the idea of smooth stabilization
begins with [Art83], which shows that there exists a continuous control feedback for a control-
affine system with a differentiable CLF. As briefly mentioned in [Son89], the idea can be extended
to guarantee a smooth control feedback. However, the proof does not provide a construction of
such feedback. This motivates [Son89] to use the analyticity of the root of a quadratic function
with respect to its parameters to formulate the famous Sontag’s universal formula for stabilization.
As its name suggests, the formula does not take into account safety, which would further limit
the feasible control option. It should be noted that there are extension to the universal formula
in [LS91, LS95], which consider constrained inputs of u ∈ [0,∞) and u ∈ [0, 1]. However, these
constraints are static, unlike constraints from CBF that change across states. Chapter 4 explores a
new way to find a smooth selection function using the weighted centroid of the feasible set.

1.1.2 Event-Triggered Control

The event-triggered framework [Tab07, HJT12, HFO+17] seeks to determine criterions to
employ opportunistically the available control resources (e.g., actuation, sensing, communication)
in order to produce efficient implementations on digital systems. Such criterions, called trig-
gers, are commonly obtained by examining the evolution under aperiodic sample-and-hold ex-
ecutions of the Lyapunov certificates valid for their continuous-time counterparts. This can be
done in a derivative-based fashion, i.e., by monitoring the time derivative of the certificate, see
e.g., [Tab07,APDN16,PTNA15,HDT11,KAH17], or in a function-based fashion, i.e., by directly
monitoring the value of the certificate, see e.g., [VMB09, DMGC11,MAT09]. Both approaches
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are widely applicable. However, derivative-based approaches tend to be conservative because they
are evaluated at the current system state without taking into account how much the certificate has
decreased since the last update. This is tackled in dynamic event-triggering [Gir15] by introducing
an extra variable to store an estimate of this decrease and incorporate it into the trigger design.
On the other hand, function-based designs suffer from the lack of robustness to disturbances in the
value of the certificate. The work [SP11] uses both frameworks to mitigate these drawbacks by es-
timating how much the certificate will decrease after each trigger, which constitutes another source
of conservatism, together with its reliance on time triggering.

Chapter 5 takes a different approach to combine the derivative- and function-based design
methodologies inspired by the concept of control barrier functions, and particularly, Nagumo’s
Theorem, see e.g., [WA07,AXGT17,BM07,ACE+19]. The basic insight is to incorporate into the
trigger design the performance residual, i.e., how well the system is doing in regards to a prescribed
performance specification. This specification plays the role of the “barrier” that the system should
not exceed. This makes it possible to allow the certificate to deviate frommonotonically decreasing
at all times, with the amount of deviation allowed specified as a function of the size of the perfor-
mance residual. Interestingly, the dynamic event-triggered approach [Gir15] mentioned above can
be naturally interpreted within the framework proposed in this dissertation.

Our technical approach also builds on the literature of event-triggered approaches applied
to the distributed control of network systems, see e.g., [WL09, MT11, TC14, BDH16, DFJ12,
NGC19, BN21] and references therein. One known issue in this context is that Zeno behavior
may arise as a result of the partial availability of information to individual agents, despite it being
ruled out for its centralized counterpart. In such scenarios, it is common to use time regulariza-
tion [MT11,TC14,BDH16], i.e., preventing by design any update before certain fixed time (usually
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the minimum inter-event time from the centralized design) has elapsed. This requires an offline
computation and the resulting executions may behave like periodic time-triggered ones. An alter-
native way of avoiding Zeno behavior is to allow for the violation of the monotonic decrease of
the certificate at all times, see e.g., [DH12,GLM+12], at the cost of only achieving practical stabil-
ity. Other works avoid Zeno behavior by either requiring stronger system assumptions on the type
of certificates [WL11,GA12] or their solutions are problem-specific [CKSD14,BN21]. Here, we
combine the performance-barrier-based framework with dynamic average consensus [KSC+19] to
synthesize a Zeno-free distributed design that ensure asymptotic convergence for a general class of
nonlinear systems.

As investigated in Chapter 6, Zeno behavior also appears when event-triggered control is
used in the context of safety. One challenge in developing event-triggered control approaches
for safety is ensuring that the time between events, or interevent times, are lower bounded
[BH14, PSH19, BN21]. Such bounds ensure that the resulting controller and trigger law is free
from Zeno behavior. The notion of Input-to-State Stability (ISS) has been used to prove the ex-
istence of these bounds in the context of stabilization [LWL12, Tab07]. In contrast to the task
of stabilization, in the context of safety the dynamics of the system, and thus the error dynam-
ics, are not required to vanish as the quantity dictating the triggering of events vanishes. This can
lead to events occurring in rapid succession. Similar problem has been observed in the context of
output-based event-triggered control [DH12]. To combat the issue, a mixed event-triggered mech-
anism [BH14,HJT12] is employed to address the problem. The idea is to add a buffer constant to
define the trigger condition in order to guarantee a minimum interevent time. Following suit, Chap-
ter 6 uses the same strategy together with the notion of an input-to-state safe set (ISSf) [KA18] to
propose a Zeno-free event-triggered control law for safety certificate.
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Chapter 7 demonstrates the versatility of the event-triggered control by using it in the con-
text of human-robot interaction for multiobjective optimization. Interactive approaches in mul-
tiobjective optimization involve an algorithmic strategy that “interacts” with a human supervisor
to determine an acceptable solution to the problem. A comprehensive survey on interactive ap-
proaches can be found in [MRW08], which groups different techniques into three main categories:
the trade-off approach, the reference points approach, and the classification method. Algorithmic
solutions often combine elements of several of these categories. In the scenarios considered here,
the optimization problems arise as the human-robot system explore the world, and hence global
information is not available a priori. Most works in the trade-off approach focus on finding local
information, usually related to the gradient of an implicit preference function at each iteration that
ranks different outcomes [GDF72,Sak82,Yan99]. The implicit preference function is well-studied
and utilized in utility theory. For example, its existence is proven in an important result in [Deb54]
under mild assumptions. Using an implicit preference function is common for solving a multiob-
jective problem, see e.g., [GDF72, LYW09, MRW08]. The above reference list is relatively old
because newer methods often require global information, such as the knowledge of the optimizer
of each objective function or the knowledge of the Pareto front. For a list of newer methods with
brief summaries of them, we refer the readers to [XCC+18]. Event-triggered design approach has
been used successfully in the context of optimization, usually in distributed settings where commu-
nication among agents is viewed as a limited resource, see e.g., [WL11,WAJ12,KCM15, RC16].
The application of resource-aware ideas to a multiobjective optimization setting, with the human as
the resource available to the robot whose use should be minimized, are novel aspects of Chapter 7.

The literature of human-robot interaction has become vast with the accelerated pace of de-
velopment in robotics. A good overview is captured by the survey [GS07]. Our work can be classi-
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fied under the category of supervisory control. One of the many human factors often explored in the
human-robot interaction is the amount of workload on the human, see e.g., [PST+15,SFK+06]. An
important concept is neglect time and interaction time as presented in [CGDRON05]. Closely re-
lated is the concept of response and reaction time, which becomes important when the human needs
to work and respond to robots in the real world [HA17]. We employ techniques from event-triggered
control to accommodate these time factors. In dealing with time constraints, we utilize the flexi-
bility of event-triggered control to deal with delay, see e.g., [DBH17,LWL12,HDI06,WRGL15].
Although the results there are not directly applicable to our presented problem because of the par-
ticular features of the human-robot setup, we follow the idea of bounding interevent times to deal
with delay, cf. [Tab07,LWL12]. In addition, we also employ the novel idea in event-triggered con-
trol of allowing the certificate function to increase along trajectories. This idea can be found in
dynamic triggering [DBH14,Gir15] and in designs based on performance-based-barrier triggering
in Chapter 5, and allows us to consider more general constraints on human performance.

1.2 Statement of Contributions

The main focus of this dissertation is to explore how different objectives of control systems
can be put together. These objectives include stability, trajectory safety, and resource conservation.
Our contribution are structured in two blocks. We begin with the exploration on how the concept
stability and safety together can dictate how the safe stabilizing controllers are designed. In par-
ticular, we investigate the smoothness properties of the feedback controllers. Next, we turn our
attention to event-triggered control as an implementation method to conserve resources in the con-
text of both stability and safety. We also employ event-triggered control to accommodate human
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performance limitations in the context multiobjective optimization.

1.2.1 Smooth Safe Stabilization

The first part of the dissertation studies smooth safe stabilization. We look at the problem
of designing controllers that can satisfy simultaneously conditions for stability and safety, given by
a control Lyapunov function and a control barrier function, respectively. Our focus when designing
the controllers are on their its smoothness properties.

Chapter 3 considers the problem of global connectivity maintenance of the robot system that
is operating under some nominal control constraint maps (e.g., CLFs and CBFs). We synthesize two
different set-valued constraint maps for global connectivity maintenance using ideas based NCBFs,
and then we use the optimization-based design forumlation to propose a feedback controller. In
our treatment, we find that the nonsmoothness of the CBF can cause an issue in the continuity of
the feedback controller, and thus we make conservative adjustments to avoid abrupt changes in
the constraint sets where the algebraic connectivity has a higher multiplicity. We illustrates the
effectiveness of our results in a resource gathering problem, both in simulations and an experiment.
The problem consists a group of four robots trying to reach towards its assigned location, but cannot
do so directly without losing connectivity. We show that using our proposed results, each robot in
the network completes its tasks with continuous feedback control inputs, and the robot network
remains connected throughout.

Unlike Chapter 3, Chapter 4 deals with CBFs that are smooth. Particularly, we consider
the feedback controller design problem given a smooth CLF and a smooth CBF, or alternatively
two control-affine constraint maps, to be respected. Noticing that an optimization-based feedback
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controller does not guarantee regularity beyond continuity, we tackle the problem of designing a
feedback controller that retains the smoothness properties of the given constraint maps. Our design
is based on the idea of finding a weighted centroid of the admissible control set, using the weights
given by a probability density function of a normal distribution. Using our results, we are able to
achieve exactly what Sontag’s universal formula does, guaranteeing smoothness in the feedback
controller. Furthermore, our result has the additional flexibility to deal with two control-affine
constraint maps. In other words, we provide a formula for smooth safe stabilization.

Our contributions for this part go beyond the main contributions discussed above. In our
analyses, we provide a few important auxiliary results results, which may have useful applications
beyond the scope of this dissertation. One such result is the generalization of Artstein’s theorem.
We use this result to analyze the well-posedness of the safe stabilization problem. One question
that we answer is in regard to the existence of a smooth feedback control satisfying given constraint
maps. We use our result to deduce a mild and verifiable condition that guarantees our problem is
well-posed. This result extends beyond the problem we consider. For instance, the Artstein-like
result proposes the existence of a smooth controller for any number of nonempty intersecting con-
straint maps, suggesting the possibility of future work in the area of systems with multiple control
objectives. Another important results are the continuity results for any intersection of eigenspaces.
We use this result to study the change in algebraic connectivity, since its generalized gradient is
related to its associated eigenspace. However, not only does this result directly contribute to the
literature on regularity of algebraic connectivity, it also has the potential to be useful in other eigen-
value problems where the smoothness of the eigenvalues are important.
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1.2.2 Resource Aware Implementation of Control Laws

The second part of the dissertation shifts the focus from the design to the implementation of
control laws, with an emphasis on resource conservation. We use event-triggered control as the tool
to examine the tight coupling between physical and cyber processes, and to prescribe, in a principled
way, when to use the available resources while still guaranteeing a desired quality of service. In
this part, motivated by the concept of multi-robot systems operating with multiple objectives, we
develop various novel event-triggered control frameworks.

In Chapter 5, we revisit event-triggered control in the context of stabilization. We address
the problem of developing a digital feedback implementation that simultaneously retains the stabil-
ity properties, opportunistically updates the controller, and meets a prescribed performance. The
contributions of the chapter are threefold. The first contribution is the synthesis of a novel frame-
work for event-triggered control termed performance-barrier-based design. We combine derivative-
and function-based designs by incorporating into the trigger criterion both the time derivative and
the value of the certificate. The flexibility of the proposed approach stems from allowing the cer-
tificate to deviate from having to monotonically decrease at all times. In our design, a larger perfor-
mance residual, measured as the difference between the prescribed performance and the value of
the certificate, results in a larger amount potential deviation allowed. By construction, at any given
state, the performance-barrier-based design enjoys a longer inter-event time than the derivative-
based approach, while still achieving the prescribed performance. Our second contribution is the
characterization of the implementability and asymptotic stability properties of nonlinear systems
under the proposed framework. We introduce the concept of class- performance specification
function and establish, for general nonlinear systems, a uniform lower bound in the inter-event
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times of the proposed design, thereby ruling out the possibility of Zeno behavior. For the par-
ticular case of exponential performance specifications, which includes the case of linear control
systems, we provide an explicit expression of an improved minimum inter-event time with respect
to the derivative-based approach. Our third contribution builds on this characterization to develop
distributed triggers for network systems using the performance-barrier-based approach that ensure
asymptotic correctness. Our distributed design makes use of dynamic average consensus to esti-
mate, with some tracking error, the terms in the trigger criterion that require global information
to be evaluated. The guarantees on the design then rely on its ability to tolerate the tracking er-
rors. This is where we leverage the flexibility provided by the performance-barrier-based approach
to rule out Zeno behavior in the network executions without using any time regularization. We
illustrate the effectiveness of the proposed framework in a vehicle platooning problem.

Chapter 6 examines event-triggered control in the context of safety. The problem consid-
ered in this chapter is the same as the one in Chapter 5, except that instead of stability, trajectory
safety is desired. Despite the many similarities between the two concepts, event-triggered control
ideas do not translate well to the new settings. We provide an example that demonstrates how a
naive triggering scheme imitating the one for stability leads to Zeno-behavior. To fix the issue we
introduce the concept of strong Input-to-State Safety and proposes a Zeno-free triggering mecha-
nism. We note importantly that the trigger design proposed can be used in conjunction with another
for stability, e.g., the triggers proposed in Chapter 5, to implement a safe stabilizing controller in
an opportunistic fashion.

In Chapter 7, we look at the possibility of using a human to help out robot systems to
balance many control objectives they may have. We consider a convex multiobjective optimization
problem where a robot (a simplification from a multi-robot system) works alongside a human to
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find a Pareto optimal solution. Based on its knowledge of the multiple objective functions, the robot
presents outcomes to the human, who expresses her preference among them. The human cannot
express in closed form the function she uses to evaluate the outcomes, but can provide its gradient
(this is a convenient abstraction of the ability of the human to express preferences about an outcome
being better than another). Throughout the chapter, we consider models of increasing complexity
about how the human can interact with the robot. Our contributions are multiple fold. Our first
contribution considers the ideal case, where the human can respond instantaneously to the robot
queries. We propose an event-triggered design that allows the robot to interact with the human in
an opportunistic fashion as required by the solution of the overarching multiobjective optimization
problem, thereby reducing human workload. Our design is based on examining the evolution of
the value of the outcomes along the robot trajectories and ensuring that it is decreasing. We next
move on to consider timing constraints on human performance. Our second contribution considers
the “need to rest” case, where the human needs some time after responding to a query before she
can respond to a new one. In effect, this means that the robot might not get the information it
requires if two queries are formulated in quick succession. We examine to what extent our original
trigger design case can be made valid for this case by tuning a design parameter and characterize
the human resting times that can be tolerated. To accommodate longer resting times, we propose
an alternative trigger design that allows the certificate to increase at times during the evolution,
as long as it decreases when evaluated at consecutive human’s queries. To do this, our technical
treatment introduces the important concepts of critical time and grace period. Critical time refers to
how long without human input and by how much the robot can guarantee the monotonic decrease
of the certificate. After the critical time, grace period refers to the amount of time the robot can
still wait without querying the human while the certificate potentially increases, but not beyond the
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value it had when information was last received from the human. We show that this design can
accommodate longer resting times than our original design. Our third contribution considers the
“need to think” case, where the human needs some time before responding to a query. Our design is
based on the robot anticipating the evolution of the certificate for the period of time the human may
take in responding, and using this information to query the human sufficiently in advance by tuning
appropriately a design parameter in our original design. Finally, our last contribution considers
the model of human performance that combines both “need to rest” and “need to think” timing
constraints. For each model, we provide a complete analytical treatment of the proposed design
that includes establishing the monotonic decrease of the certificate, a uniform lower bound on the
minimum time between consecutive queries (thereby ruling out Zeno behavior), and the asymptotic
correctness of the resulting algorithm to the desired optimal solution. Throughout the paper, we
provide explicit expressions of the lower bounds on the minimum interevent time which, together
with the characterization of the convergence rates of the dynamics, provide a mean to assess the
trade-offs between the frequency of human queries and the algorithm performance. Simulations
on an example in multiobjective robot motion planning show the reductions in human workload
obtained by the proposed event-triggered design versus algorithms that require continuous human
involvement. We also illustrate the trade-offs between design convergence rate, human workload,
and human response time.
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Chapter 2

Preliminaries

This chapter reviews key concepts in which we rely on. These include concepts in graph the-
ory, convex analysis, set-valued theory, nonsmooth analysis, and nonsmooth control barrier func-
tions. We begin by introducing our basic notation.

2.1 Notation

The symbols ℕ, ℝ, ℝ≥0, and ℝ>0 represent the set of natural, real, real nonnegative, and
real positive numbers, respectively. We write Symn for the space of n× n symmetric matrices with
real values. For m, n ∈ ℕ, we denote [m ∶ n] = {m,… , n}, and we write [1 ∶ n] simply as [n].
Given a finite set , || is its cardinality. The convex closure of a set  is represented by co().
Given x ∈ ℝN , ‖x‖ denotes its Euclidean norm. We use the symbol 1 for the vector of all ones (of
appropriate dimension). The unit sphere in ℝn is denoted by Sn =

{

v ∈ ℝn
| ‖v‖ = 1

}. The open
ball of radius � > 0 centered at x∗ ∈ ℝN is B�(x∗) =

{

x ∈ ℝN
| ‖x − x∗‖ < �

}. Given matrices
A,B ∈ ℝn×n, the Frobenius product isA⋅B = ∑

i,j AijBij . We note the property that vv⊤⋅A = v⊤Av,
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for v ∈ ℝn. The Frobenius norm is given by ‖A‖F = (A ⋅A)1∕2. A continuous function � ∶ ℝ → ℝ

is of extended class if � is strictly increasing, and �(0) = 0. In addition, the function is class-∞

if it also satisfies limr→∞ �(r) = ∞. A function f ∶ ℝn → ℝn is locally Lipschitz if, for every
compact set 0 ⊂ ℝn, there existsL > 0 such that ‖f (x)−f (y)‖ ≤ L‖x−y‖, for all x, y ∈ 0. We
write supp(f) for the support of the function f , i.e., the set of x where f (x) ≠ 0. For a continuously
differentiable f , Jf ∶ ℝn → ℝm×n denotes its Jacobian matrix. For f and g ∶ ℝm → ℝ , the
composition of functions is g◦f ∶ ℝn → ℝ, i.e., (g◦f )(x) = g(f (x)) for x ∈ ℝn.

2.2 Graph Theory

A graph is a triplet  = (V ,E,A), where V is a set of vertices, E ⊆ V × V is a set of
edges, and A ∈ ℝ|V |×|V | is the adjacency matrix, with Aij > 0 if (i, j) ∈ E, and Aij = 0 otherwise.
The graph is undirected if A is symmetric. A path is an ordered sequence of vertices such that
all pairs of consecutive vertices are elements of E. The graph is connected if there exists a path
between any two vertices. The degree matrix D ∈ ℝ|V |×|V | is a diagonal matrix whose ith element
is Dii =

∑

j∈V Aij .

2.2.1 Laplacian Spectrum

The LaplacianmatrixL, defined byL ∶= D−A, is symmetric and positive semidefinite, and
consequently has real and nonnegative eigenvalues. We denote these eigenvalues with �m ∈ ℝ≥0,
ordering them in an increasing manner with the subscripts m ∈ [|V |], i.e., 0 = �1 ≤ �2 ≤ … ≤

�
|V |. The eigenvalue �1 = 0 is simple (with associated eigenvector 1) if and only if the graph

is connected. This justifies the terminology of �2 as the algebraic connectivity (also known as
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Fiedler eigenvalue). For network systems, graphs are used to described the underlying interaction
topology, and they can vary according to the system states. A state-dependent graph x ↦ (x) is
called a proximity graph [BCM09]. In such a case, the Laplacian matrix x ↦ L(x) is then also a
function of state. We define the function �m(x) ∶= (�m◦L)(x) to be the Laplacian’s eigenvalues as
a function of the state. Given a trajectory t↦ x(t), a graph remains robustly connected at all times
if �2(x(t)) ≥ ", where " ∈ ℝ>0 is a threshold parameter providing a robustness margin in ensuring
connectivity.

2.2.2 Dynamic Average Consensus

Consider a group of N agents communicating over an undirected graph . Each agent
i ∈  = [N] has a continuously differentiable reference signal Wi ∶ [0,∞) → ℝ. Dynamic
average consensus aims at making the agents track asymptotically the average of the reference
signals. For convenience, letW = (W1,… ,WN ). Here we employ the dynamic average consensus
algorithm [KSC+19],

ẏ = Ẇ − �Ly, (2.1)

where each component of y ∈ ℝN is the agents’ estimate of the average, � > 0 is a rate of conver-
gence parameter, and L is the Laplacian matrix of the graph. The following result shows that with
the correct initialization and a suitable assumption on the evolution ofW , each state yi asymptot-
ically tracks the average 1⊤W (t)∕N of the reference signal. The following result is a refinement
of [KSC+19, Thm.2] to reference signals whose time derivative is bounded exponentially.

Lemma 2.2.1. (Tracking Error Bound). Consider the dynamic average consensus dynamics (2.1)
with a reference signal W whose time derivative is bounded exponentially, i.e., ‖Ẇ (t)‖ ≤
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cẆ exp(−rt) with a constant cẆ > 0, for time t ∈ [0, s). Define the tracking error as � ∶=

y − 11
⊤W ∕N . If the initialization of y is such that 1⊤y(0) = 1

⊤W (0)∕N , then the tracking

error is also bounded for time t ∈ [0, s) as

‖�(t)‖ ≤
cẆ

��2 − r
exp(−rt) +

(

‖�(0)‖ −
cẆ

��2 − r

)

exp(−��2t) (2.2)

where �2 is the second smallest eigenvalue of the Laplacian matrix L.

Proof. We begin the proof by writing the dynamics of the tracking error,

�̇ = ẏ − 11
⊤Ẇ ∕N

= Ẇ − �L(� − 11
⊤W ∕N) − 11

⊤Ẇ ∕n

= −�L� + (I − 11
⊤∕N)Ẇ

where we have used the fact that L1 = 0. Note also that 1⊤�̇ = 0, so 1⊤� = 0 by construction.
Hence, at all time, there is no component of � along the eigenvector 1 associated with the eigenvalue
0 of the Laplacian matrix L. Consequently, we can bound

d
dt
‖�‖2 = −��⊤(L + L⊤)� + 2�⊤(I − 11

⊤∕N)Ẇ

≤ −2��2‖�‖2 + 2‖�‖‖I − 11
⊤∕N‖‖Ẇ ‖

≤ −2��2‖�‖2 + 2cẆ exp(−rt)‖�‖
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for time t ∈ [tk, tk+1). It can be verified through substitution that the solution

v =
cẆ

��2 − r
exp(−rt) +

(

v(0) −
cẆ

��2 − r

)

exp(−��2t).

satisfies the Bernoulli differential equation [Inc56]

vdv
dt
= −��2v2 + cẆ exp(−rt)v.

Note that when v ≠ 0, this reduces to

dv
dt
= −��2v + cẆ exp(−rt),

which is linear, with the right-hand side locally Lipschitz in v. Then, with v(0) = ‖�(0)‖ ≠ 0, we
can deduce ‖�‖2 ≤ v2 by applying the Comparison Lemma [Kha02, Lemma 3.4]. Whenever ‖�‖ =
0, it is possible (depending on Ẇ ) for � to remain zero for some time interval. On such interval,
the Comparison Lemma does not apply; however, the case is trivial, and the bound ‖e‖2 ≤ v2 still
holds. Finally, by noting that v ≥ 0 because v(0) ≥ 0, we obtain ‖�‖ ≤ |v| = v as stated.

2.3 Convex Analysis

For a twice continuously differentiable, scalar-valued function g ∶ ℝn → ℝ, we let ∇g ∶
ℝn → ℝn and ∇2g ∶ ℝn → ℝn×n denote its gradient and Hessian functions. g is convex on  if,
for all x ∈  , ∇2g(x) ⪰ 0; strictly convex if ∇2g(x) ≻ 0; and strongly convex if there exists � > 0
such that ∇2g(x) ⪰ �In. If g is strongly convex on  , its sublevel sets contained in  are bounded.
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This implies that there exists M > 0 such that ∇2g ⪯ MIn on  . In fact, if x∗ is the minimizer
of g, then

1
2M

‖∇g(x)‖2 ≤ g(x) − g(x∗) ≤ 1
2�

‖∇g(x)‖2. (2.3)

2.4 Set-Valued Theory

A set-valued map  ∶ ℝn →→ ℝm assigns a subset of ℝm to each point in ℝn. A set-valued
map is closed-valued, convex-valued, compact-valued, and has a nonempty interior if its image
at each point of its domain is closed, convex, compact, and has a nonempty interior, respectively.
All set operations, e.g., union and intersection, between set-valued maps are performed pointwise.
We consider set-valued maps arising from a single-valued function g ∶ ℝN ×ℝM → ℝd as follows:

 (x) = {u ∈ ℝM
| g(x,u) ≤ 0}. (2.4)

Given x, we say u strictly satisfies  (x) if g(x,u) < 0.

2.4.1 Continuity of Set-Valued Maps

The concept of continuity for set-valued maps is more intricate than the one for single-
valued functions. Continuity of set-valued maps is often broken down into different types of hemi-
continuity. Here we present the two that we rely on: upper and lower hemicontinuity1.

Definition 2.4.1. (Set-Valued Map Continuity [Bor85]). A set-valued map  ∶ ℝN →→ ℝM is

∙ upper hemicontinuous (UHC) at x if for any neighborhood ̄ of  (x), there exists � > 0

1Sometimes referred to as semicontinuity, see e.g., [LS85].
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such that, if ‖x − x′‖ < �, then  (x′) ⊂ ̄ ;

∙ lower hemicontinuous (LHC) at x if for each u ∈  (x) and for any sequence {xk}k∈ℕ con-

verging to x, there exists a sequence {uk}k∈ℕ converging to u with uk ∈  (xk);

∙ continuous at x if it is both UHC and LHC at x.

Note here that UHC and LHC are equivalent for single-valued functions. For convenience,
the map (hemi)continuous if it is (hemi)continuous for all x. Interestingly for set-valued maps of
the form (2.4), even g being continuous is not enough to ensure the map is continuous. In fact, to
ensure UHC and LHC, we will resort to the additional requirements stated in the following results.

Lemma 2.4.2. (UHC Requirements [Sti18, Lem 5.7]). Assume g is continuous. If g is convex in

u, and  (x) is nonempty and compact at x, then  is UHC at x. □

Lemma 2.4.3. (LHC Requirements [Sti18, Lem 5.2]). Assume g is continuous. If  has a

nonempty interior and is convex-valued, then  is LHC. □

In our treatment, we also rely on various results on how hemicontinuity is preserved under
set-valued map intersections.

Lemma 2.4.4. (Intersection of UHC maps [Bor85, 11.21a]). Let the set-valued maps 1,2 ∶

ℝN →→ ℝM be UHC and closed-valued at x. The intersection 1 ∩ 2 is also UHC at x if it is

nonempty at x. □

Lemma 2.4.5. (Intersection of LHC maps [LS85, Thm. B])). Let the set-valued maps 1,2 ∶

ℝN →→ ℝM be LHC and locally convex-valued at x. The intersection 1 ∩2 is also LHC at x if

it has a nonempty interior at x. □
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2.5 Nonsmooth Analysis

Here we present basic notions of nonsmooth analysis following [Cla83]. Given a locally
Lipschitz function ℎ ∶ ℝN → ℝ, the generalized directional derivative of ℎ at x ∈ ℝN in the
direction d ∈ ℝN is

ℎ◦(x;d) = lim sup
x′→x,s↓0

ℎ(x′ + sd) − ℎ(x′)
s

.

The generalized gradient of ℎ at x is then given by

)ℎ(x) = {� ∈ ℝN
| ℎ◦(x;d) ≥ �⊤x, ∀d ∈ ℝN}.

If the function ℎ is continuously differentiable at x, the generalized gradient is a singleton, )ℎ(x) =
{∇ℎ(x)}.

In our analysis, we find it useful to describe how a nonsmooth function changes along the
trajectories of a dynamical system. Consider the nonlinear system,

ẋ = f (x,u), (2.5)

with f ∶ ℝN ×ℝM → ℝN , where x is the state and u is the control input. The weak set-valued Lie
derivative [GCE17b,SP94] is

fℎ(x,u) =
{

�⊤f ∈ ℝ | � ∈ )ℎ(x)
}

.

The Lie derivative describes the rate of change of ℎ along a trajectory of the system. Let t → u(t)
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be a control signal, and t→ x(t) be a Carathéodory solution2 to the differential equation (2.5), then

d
dt
ℎ(x(t)) ∈ fℎ(x(t),u(t)), a.e. t ≥ 0. (2.6)

In essence, the weak set-valued Lie derivative contains all the possible rates of change of the func-
tion ℎ along a solution of the dynamical system.

2.6 Nonsmooth Control Barrier Functions

We use Nonsmooth Control Barrier Functions (NCBF) [GCE17b] to establish forward in-
variance of a desired set. Consider the dynamical system (2.5) and a set  = {x ∈ ℝN

| ℎ(x) ≥ 0}

with a locally Lipschitz continuous ℎ ∶ ℝN → ℝ, referred to as a nonsmooth control barrier func-
tion. Indeed, for a continuous trajectory t→ x(t), we can ensure ℎ remains positive if we constrain
ℎ from decreasing whenever ℎ(x(t)) = 0. This can be done by imposing a constraint, as a function
of network state x, on our choice of the input u with a set-valued map

 (x) =
{

u ∈ ℝM
| minFℎ(x,u) ≥ −�(ℎ(x))

}

,

where � is a locally Lipschitz extended class  function. Given (2.6), by taking the minimum
element of the set-valued Lie derivative, the constraint map enforces the bound even for the worst-
case rate of change of ℎ. Note importantly that the above constraint map does not only limit the
choice of u for x at the boundary of  where ℎ(x) = 0, but also in the interior where ℎ(x) > 0, even
when it is not necessary. Rather than outright allowing any choice of u, the constraint map gradually

2A Carathéodory solution is an absolutely continuous trajectory that satisfies the system dynamics at almost every
time, in the sense of Lebesgue measure.
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becomes stricter for states closer to the boundary. The idea here is to begin consider the necessary
constraint as the trajectory approaches the boundary, and thereby provide some robustness to how
the set  is rendered forward invariant.

28



Part I

Smooth Safe Stabilizing Feedback

Controllers
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Chapter 3

Connectivity Maintenance as a Safety

Objective

This chapter considers the problem of maintaining global connectivity of a multi-robot
system while executing a desired coordination task. Our approach builds on optimization-based
feedback design formulations, where the nominal cost function and constraints encode desirable
control objectives for the resulting input. We take advantage of the flexibility provided by control
barrier functions to produce additional constraints that guarantee that the resulting optimization-
based controller is continuous and maintains network connectivity. Our solution uses the algebraic
connectivity of the multi-robot interconnection topology as a control barrier function and criti-
cally embraces its nonsmooth nature. The technical treatment combines elements from set-valued
theory, nonsmooth analysis, and algebraic graph theory to imbue the proposed constraints with reg-
ularity properties so that they can be smoothly combined with other control constraints. We provide
simulations and experimental results illustrating the effectiveness and continuity of the proposed
approach in a resource gathering problem.
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3.1 Problem Statement

Consider a group of n robots, evolving according to a single-integrator dynamics of the form

ẋr = ur, ∀r ∈ [n], (3.1)

where xr ∈ ℝdr and ur ∈ ℝdr are the state and the control input associated with the r-th robot (note
that the state dimensions of each robot might be different). For convenience, we define state and
input variables for the network system as follows: letN =

∑

r∈[n] dr and denote x =
[

x⊤1 ,… , x⊤n
]⊤ ∈

ℝN and u =
[

u⊤1 ,… , u⊤n
]⊤ ∈ ℝN . We use the shorthand notation fsi ∶ ℝN × ℝN → ℝN to

refer compactly to the dynamics (3.1) for the whole group of agents. The underlying interaction
topology is specified by a proximity graph x ↦ (x) = ([n], E(x),A(x)), for which we assume that
the function x ↦ A(x) is continuously differentiable1.

We are interested in designing a continuous controller k ∶ ℝN → ℝN such that the network
system under feedback u = k(x) enjoys some desirable performance and asymptotic guarantees.
Continuity is an important property, both from a theoretical and practical viewpoint. Regarding the
former, continuity guarantees the existence of Carathéodory solutions [Hal69, Thm. 5.1]. At the
same time, continuity makes it easier for the desired feedback control signal to be implemented on
digital platforms.

A commonly used design methodology to synthesize controllers is based on optimization
1This assumption is satisfied by commonly employed weight assignments [SC12,GSU17].
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and takes the form

kopt(x) = argmin
u∈ (x)

J (x,u), (3.2)

where J ∶ ℝN × ℝN → ℝ is a cost function encoding some desirable objective (e.g., minimum-
energy control specifications) and  ∶ ℝN →→ ℝM is a set-valued map encoding constraints on
the control input at each x (e.g., bounds on magnitude). This formulation is flexible as it allows to
address simultaneously different performance requirements: the map can be itself an intersection
of multiple set-valued maps, each representing a different control constraint from a performance
aspect (input boundedness, infinitesimal decrease of certificate).

We consider the scenario where the robot group has a nominal control constraint map x ↦

nom(x), defined via a function gnom ∶ ℝN ×ℝN → ℝdnom as

nom(x) = {u ∈ ℝN
| gnom(x,u) ≤ 0}.

The components of gnom here represent constraints that the robot group must respect to achieve
different control performances and goals. This nominal constraint map, however, does not encode
any network connectivity constraint. We are then interested in solving the following problem.

Problem 1. (Continuous Connectivity Controller Design Problem). Consider the multi-robot
system (3.1) operating with the optimization-based controller (3.2). Design the constraint map 

so that:

∙ the controller kopt is continuous;

∙ the nominal constraint map is respected, i.e.,  ⊆ nom;
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∙ the underlying graph  remains connected at all time. ∙

In order to make Problem 1 tractable, we make some assumptions on the cost function J and
the nominal constraint mapnom. As one can expect, continuity of kopt is related to continuity of the
cost function J and the constraint map . In this regard, Berge Maximum Theorem [AB99, Thm.
17.31] states that, if J and are continuous, is compact-valued, and the resulting kopt is single-
valued, then kopt is continuous. Based on this result, we make the following continuity assumption.

Assumption 3.1.1. (Continuity Assumption on Cost and Nominal Constraint). The functions J

and gnom are continuous. ∙

We do not make a direct assumption on the continuity of nom for greater generality. In
fact, such assumption would rule out many commonly used constraint maps (e.g., control affine
constraint maps are typically not UHC). As such, we rely instead on the following assumption.

Assumption 3.1.2. (Convexity Assumption on Cost and Nominal Constraint). The function J is

strictly convex in u and gnom is convex in u. ∙

Although convexity is not required by Berge Maximum Theorem, the above assumption
is justified by several reasons. First, the assumption helps us make the optimization problem that
defines the controller a convex program, which opens the way to employing available convex op-
timization methods to compute the controller. In addition, the strict convexity assumption also
ensures that the controller is single-valued for any given x, which is a requirement of Berge Max-
imum Theorem. More importantly, the convexity assumption also opens up the possibility of 
being defined by unbounded constraints, despite the compact-valued requirement in Berge Maxi-
mum Theorem. To reconcile this, we consider the sublevel sets of J . Suppose for each x, there
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exists a control x ↦ ū(x) such that ū(x) ∈  (x), and define

ū(x) = {u ∈ ℝN
| ‖J (x,u)‖ ≤ ‖J (x, ū(x))‖ + �J} (3.3)

with �J ∈ ℝ>0. Note that this set-valued map is compact-valued due to strict convexity of J . In
addition, whenū is considered in conjunction with , it is always inactive at the optimizer because
ū is a feasible point. Consequently, for a properly designed  , even if it is not compact-valued,
we may consider ∩ū as the constraint map without changing the optimizer at each x and apply
Berge Maximum Theorem.

3.2 Discontinuity in the Naive Connectivity Maintenance Solu-

tion

In this section we make a first attempt at solving Problem 1 using algebraic connectivity
as a nonsmooth control barrier function. We show that the proposed solution falls short because
the resulting feedback controller is discontinuous. This exercise serves two purposes. On the one
hand, it motivates the technical refinement pursued in our exposition later. On the other, it helps
us pinpoint the obstructions associated with solving Problem 1, providing the necessary exposition
for the rationale behind our solutions.

Formaintaining connectivity, it seems natural to use the algebraic connectivity as a NCBF to
guarantee �2 remains positive along the trajectory. This is essentially the approach taken in [CS20]
(with the difference that we explicitly account for the nonsmoothness of �2 in the exposition here).
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Consider the safe set of connected robot configurations

" ∶=
{

x ∈ ℝN
| �2(x) ≥ "

}

,

with " ∈ ℝ>0. Let x ↦ ℎ(x) = �2(x) − " be our candidate NCBF. Resorting to the discussion of
Section 2.6, we specify a constraint map for the purpose of connectivity maintenance.

Lemma 3.2.1. (Connectivity Maintenance Constraint Map). Consider the multi-robot sys-

tem (3.1) operating with a controller x ↦ k(x). Given a locally Lipschitz extended class  func-

tion �, define the constraint map

cm(x) ∶=
{

u ∈ ℝN
| minfsi�2(x,u) ≥ −�(�2(x) − ")

}

.

If k(x) ∈ cm(x) for all x ∈ ", then for any initial connected network configuration x0 ∈ ",

�2(x(t)) ≥ " along all Carathéodory solutions of the closed-loop system under u = k(x), ensuring

that network connectivity is maintained.

Lemma 3.2.1 is a direct result of using ℎ(x) = �2(x) − " as a NCBF, cf. [GCE17b, Thm.3].
Note importantly that connectivity maintenance is only guaranteed along Carathéodory solutions,
which may not exist if k is not continuous. In particular, consider an optimization-based con-
troller (3.2) naively defined with the connectivity maintenance constraint map,

kdis(x) ∶= argmin
u∈cm(x)

J (x,u). (3.4)

Unfortunately, this controller is not continuous. Indeed, this is becausecm itself is not continuous

35



and does not meet the requirement of Berge Maximum Theorem.
To pinpoint the root cause of the discontinuity of cm, we review the generalized gradient

of the Laplacian’s eigenvalues. Each eigenvalue function �m is globally Lipschitz with respect to
the entries of the Laplacian matrix (cf., [SC12, Lem. 1] and [Lew96, Thm. 2.4]). As a result, if
L is a continuously differentiable function of the network state, then �m = �m◦L is also Lipschitz.
Therefore, generalized gradients are well-defined for the eigenvalue functions. Mathematically, the
generalized gradient of � is given by, cf. [SC12, Thm. 1],

)�m(L) = co{vmv⊤m | vm ∈ m(L)
}

, (3.5)

wherem(L) ∶= {vm ∈ Sn | Lvm = �m(L)vm} is the set of normalized eigenvectors associated with
�m. Using the nonsmooth chain rule [Cla83, Thm. 2.3.10], the expression for the weak set-valued
Lie derivative [GCE17b, Rmk. 2.1] of �m with respect to the system (3.1) is

fsi�m(x,u) = )�m(L(x)) ⋅
(

∑

i∈[N]

)L
)xi

ui
)

.

In the constraint map cm, we use the minimal value of this set to bound the worst-case rate of
change of �m along the control choice u. Unfortunately, this minimal value is not a continuous
function of x. The following result helps us understand why.

Lemma 3.2.2. (Equivalent Minimization of the Eigenvalue’s Set-Valued Lie Derivative). Con-

sider the multi-robot system (3.1). For m ∈ [N], let (x,u)↦ �m(x,u),

�m(x,u) ∶= min
v∈m(x)

v⊤
(

∑

i∈[N]

)L
)xi

ui
)

v. (3.6)
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Then minfsi�m(x,u) = �m(x,u) for any x and u.

Proof. Let D ∈ )�m(L(x)) be the element of the generalized gradient (3.5) corresponding to the
minimum value in fsi�m(x,u), i.e.,

minfsi�m(x,u) = D ⋅
(

∑

i∈[N]

)L
)xi

ui
)

.

Since D ∈ ℝn×n, there exists n2 + 1 points {Di}n
2+1
i=1 (cf. Carathéodory theorem on convex

hulls [Roc70, Thm. 17.1]) in {

vmv⊤m | vm ∈ m(L(x))
} such that D =

∑n2+1
i=1 �iDi, with

∑n2+1
i=1 �i = 1. Therefore,

minfsi�m(x,u) = (
n2+1
∑

i=1
�iDi) ⋅

(

∑

i∈[N]

)L
)xi

ui
)

.

Because of theminimization, we can reason byway of contradiction thatD = Di for all i ∈ [n2 + 1].
Hence, D ∈

{

vmv⊤m | vm ∈ m(x)
}, and �m(x,u) = minfsi�m(x,u), concluding the proof.

Lemma 3.2.2 transforms theminimization of the set-valued Lie derivative into an equivalent
one with respect to eigenvectors. From this perspective, it is easy to identify the reason for the
discontinuity in the minimum value. Whenever the multiplicity of an eigenvalue changes, so does
the dimension of its eigenspace. Consequently, the minimization may abruptly drop in value. We
rely on this key insight to synthesize our design in the next section.
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3.3 Continuous Connectivity Maintenance Constraint Maps

In this section, we propose our solution to Problem 1. We construct two constraint maps
for the purpose of connectivity maintenance. The first solution directly addresses the discontinuity
issue in the naive solution. This is done by adjusting conservatively the discontinuous term dis-
cussed in Section 3.2. Our second solution refines the first to reduce its conservatism. For clarity
of exposition, here we just explain the proposed solutions, and delay the formal technical analysis
to Section 3.4 below.

We first design a connectivity maintenance constraint map by replacing the discontinuous
term �m. The discontinuity in �m is due to the abrupt change in the eigenspace being considered in
the minimization (3.6). One possible fix is to augment the eigenspace preemptively so that there is
no abrupt expansion. For  ⊆ [n], consider

(x) ∶= span
{

⋃

p∈
p(x)

}

∩ Sn,

the normalized span of eigenspaces corresponding to the eigenvalues {�p}p∈ at x. We refer to the
set-valued map  as the normalized merged eigenspace. We use this set-valued map to define

�(x,u) ∶= min
v∈ (x)

v⊤
(

∑

i∈[N]

)L
)xi

ui
)

v, (3.7)

which we refer to as the merged lower bound (of the eigenvalues’ rate of change) as it bounds the
rate of change of all the eigenvalues {�p}p∈ at x for a given u.

We are interested in using the merged lower bound to replace the discontinuous function �2
used incm, in order to avoid sudden changes in its value. For instance, noticing how the eigenspace
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2 expands into [2∶3] when �2 = �3, we want to replace �2 with �[2∶3]. This way, we avoid the
abrupt change in the connectivity maintenance constraint map that occurs when �2 = �3. However,
with this approach, a discontinuity would still arise when �3 = �4 since the eigenspace of �4 is not
considered in the merged eigenspace. To address this, we can indeed use �[2∶n], corresponding to
the merged eigenspace of all nonzero eigenvalues, as stated in the following result.

Theorem 3.3.1. (Strict Connectivity Constraint Map for Continuous Controller). Consider the

multi-robot system (3.1). Given a locally Lipschitz extended class function �, define the constraint

map

str(x) ∶=
{

u ∈ ℝN
| �[2∶n](x,u) ≥ −�(�2(x) − ")

}

. (3.8)

If, for each x, there exists a control input u ∈ ℝN that strictly satisfies the constraint map str ∩

nom(x), then under Assumptions 3.1.1 and 3.1.2, the optimization-based controller

kstr(x) ∶= argmin
u∈str∩nom(x)

J (x,u) (3.9)

is continuous on ", and the closed-loop feedback u = kstr(x) renders �2(x(t)) ≥ " at all time,

ensuring that network connectivity is maintained, for any given initial condition x0 ∈ ".

While Theorem 3.3.1 provides a solution to Problem 1, it is undoubtedly conservative. By
design, the constraint map str bounds the rate of change of �2 as if it always has the highest
possible multiplicity of n − 1 for a connected robot configuration. As a result, in the situation
when the multiplicity of �2 is unlikely to change, e.g., when �2 is far apart from �3, the design is
conservative. This conservatism is also illustrated later in our simulations of Section 3.5.

To be less conservative, our next design takes into account how far the multiplicity of the
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eigenvalues is from changing. Instead of defining a NCBF constraint map for only �2, the design
considers NCBFs for all the nonzero eigenvalues. We then replace each �m with the merged lower
bound �[2∶m]. Formally, for each m ∈ [2 ∶ n], consider the constraint maps,

[2∶m](x) ∶=
{

u ∈ ℝN
| �[2∶m](x,u) ≥ −�(�m(x) − ")

}

with a locally Lipschitz extended class  function � and a constant " ∈ ℝ>0. The aggregations of
the constraint maps of this form gives rise to our design for connectivity maintenance.

Theorem 3.3.2. (Aggregate Connectivity Constraint Map for Continuous Controller). Consider

the multi-robot system (3.1). Given a locally Lipschitz extended class  function �, define the

constraint map

agg(x) ∶=
⋂

m∈[2∶n]
[2∶m](x). (3.10)

If, for each x, there exists a control input u ∈ ℝN that strictly satisfies agg ∩nom(x), then under

Assumptions 3.1.1 and 3.1.2, the optimization-based controller

kagg(x) ∶= argmin
u∈agg(x)∩nom(x)

J (x,u) (3.11)

is continuous on ", and the closed-loop feedback u = kagg(x) renders �2(x(t)) ≥ " at all time,

ensuring that network connectivity is maintained, for any given initial condition x0 ∈ ".

The idea behind the design of the aggregate constraint (3.10) is as follows. Consider a state
x where �m−1(x) = �m(x). At this state,[2∶m−1](x) abruptly shrinks to[2∶m−1](x) due to the value of
the merged lower bound �[2∶m−1](x,u) dropping to that of �[2∶m](x,u), for any given u. Nevertheless,
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the constraint map[2∶m] is also considered in the aggregate constraint mapagg, and the fact that it
experiences no abrupt change there is enough to preventagg from changing abruptly at that state.

Both constraint maps (3.8) and (3.10) ensure continuity of the corresponding optimization-
based controller and solve Problem 1. In general, for m ∈ [2 ∶ n], one has str ⊆ [2∶m] because
�[2∶n] ≤ �[2∶m] and �m ≥ �2. Therefore, str ⊆ agg, with equality holding on those states where
�n(x) = �2(x). Consequently,agg imposes less conservative constraints thanstr . This is because
the aggregate constraint agg only gradually becomes stricter as the gap between each eigenvalue
and the lowest �m − �2 gets smaller, unlike the strict constraint str that is agnostic to the gap.

Remark 3.3.3. (Strictly Satisfying Feasible Controls Requirement). We note that both Theo-
rems 3.3.1 and 3.3.2 require the existence, at each x, of a control u strictly satisfying the corre-
sponding constraint map. This is our conceptualization of the fact that, in order for Problem 1 to
be solvable, there must exist at each state a control that can simultaneously maintain connectivity
and satisfy the nominal constraints. The choice of class  function also provides flexibility in this
regard because, if a control exists that satisfies the constraints at x for �1, then the same control
strictly satisfies the constraints for �2 with �1 < �2, as long as �2(x) ≠ ". Finally, as we show later
in our analysis (cf. Lemma 3.4.4), the existence of strictly satisfying feasible control at each state is
enough to guarantee the existence of a continuous controller. While this latter condition would be
enough to establish Theorems 3.3.1 and 3.3.2, the existence of strictly satisfying feasible control is
easier to check as it consists of a pointwise condition at each network state x, instead of the analysis
across the states required to ensure continuity. ∙

Remark 3.3.4. (Computation of Proposed Controllers). For each x, the computation of the con-
trollers kstr and kagg are convex optimization problems (as we show later, the constraint maps are
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convex-valued, and the cost function J is convex by assumption). Thismeans that one can utilize the
wide variety of existing methods and solvers available for convex optimization, cf. [BV09,Roc70],
to compute the controllers. In implementing these methods, one must pay attention to the fact that
obtaining the value of each merged lower bound function �[2∶m] is itself an optimization problem.
Nevertheless, this can be addressed by casting the computation of the merged lower bounds as an
eigenvalue problem. To see why this is so, note the following relationship

�[2∶m](x,u) = min
v∈[2∶m](x)

v⊤
(

∑

i∈[N]

)L
)xi

ui
)

v

= min
�∈m−1

�⊤[v]⊤2∶m(x)
(

∑

i∈[N]

)L
)xi

ui
)

[v]2∶m(x)�

∶= min
�∈Sm−1

�⊤Zm(x,u)�,

where [v]2∶m(x) is the matrix created by concatenating orthonormal eigenvectors of {�p}p∈[2∶m].
It then follows that �[2∶m](x,u) is the minimum eigenvalue of the matrix Zm(x,u) defined above.
This formulation as eigenvalue problem is advantageous for two reasons: it makes the evaluation
of the function easy using standard linear algebraic routines and, for gradient-based optimization
methods, it facilitates the computation of the generalized gradient of the merged lower bound. ∙

3.4 Technical Analysis of the Proposed Solutions

This section provides the proofs of the results presented in Section 3.3. Before presenting
them, we establish a number of auxiliary results that characterize the properties of the merged lower
bounds involved in the construction of the constraint set-valued maps.
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3.4.1 Properties of Merged Lower Bounds

We first examine the properties of functions � of the form (3.7) defining our proposed
constraint sets. The definition of such functions relies critically on the normalized merged
eigenspace  . The following result characterizes the continuity properties of the latter.

Theorem 3.4.1. (Continuity of Normalized Merged Eigenspaces). Let L ∶ ℝN → Symn be a

continuous function. Given  ⊂ [n], the normalized merged eigenspace  is continuous at any x

such that �i(x) ≠ �j(x) for all i ∈  and j ∉ , i.e., where none of the considered eigenvalues is

equal to any of the remaining eigenvalues.

Due to its length, the proof of this result is provided in the Appendix. Building on this
result, the continuity of the merged lower bounds follows from a direct application of the Berge
Maximum Theorem [AB99, Thm. 17.31].

Corollary 3.4.2. (Continuity of Merged Lower Bounds). Given  ⊂ [n], the function � is con-

tinuous at any (x,u) such that �i(x) ≠ �j(x) for all i ∈  and j ∉ . □

In particular, we consider indices  = [2 ∶ m] of ordered eigenvalues on the domain where
the graph remains connected " (i.e., where �1(x) ≠ �2(x)). Thus, �[2∶m] is continuous at any x such
that �m(x) ≠ �m+1(x), and �[2∶n] is continuous everywhere on " ×ℝN .

Besides continuity of �[2∶m], another crucial property to show is convexity of the constraint
maps str and agg. To this end, we establish the concavity property of the merged lower bounds.

Lemma 3.4.3. (Concavity of Merged Lower Bounds). For any  ⊆ [n], � is concave in u.

Consequently, the constraint maps str and agg are convex-valued.
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Proof. Given any u1,u2 ∈ ℝN and 0 ≤ 
 ≤ 1, we have

�(x,
u1 + (1 − 
)u2)

= min
v∈ (x)

v⊤
(

∑

i∈[N]

)L
)xi
(
u1i + (1 − 
)u

2
i )
)

v

≥ min
v∈ (x)

(


v⊤
(

∑

i∈[N]

)L
)xi

u1i
)

v
)

+ min
v∈ (x)

(

(1 − 
)v⊤
(

∑

i∈[N]

)L
)xi

u2i
)

v
)

= 
�(x,u1) + (1 − 
)�(x,u2).

Therefore, � is concave in u.

Having established the continuity and concavity properties of the merged lower bounds � ,
we next turn our attention to characterize the properties of the constraint maps.

3.4.2 Equivalent Constraint Maps

In general, the constraintmapsstr andaggmight not beUHCbecause they are unbounded.
To make sure the requirements of Lemma 2.4.2 as well as Berge Maximum Theorem are met, we
explain here how to consider, following Section 3.1, equivalent constraint maps that are compact-
valued. This procedure involves using sublevel sets of the cost function J , which are compact due
to Assumption 3.1.2. In order to do so, we require a feasible control function x ↦ ū(x) to define ū

as in (3.3). Note, importantly for our purposes, that the function ū must be continuous so that ū

is also continuous. The next result shows that, under the assumptions of Theorems 3.3.1 and 3.3.2,
such continuous feasible control function always exists.
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Lemma 3.4.4. (Generalization of Artstein’s Theorem). Consider a set-valued map  ∶ ℝN →→

ℝM defined with a vector-valued function g ∶ ℝN → ℝM as

 (x) = {u ∈ ℝM
| g(x,u) ≤ 0}.

If g is continuous and is convex-valued, and, for each x, there exists a control input u that strictly

satisfies  (x), then there exists a ∞ function ū ∶ ℝN → ℝM such that ū(x) ∈  (x).

Proof. For each x, let uint(x) denote the control input such that g(x,uint(x)) > 0. Due to continuity
of g, there exists a neighborhood of x, denoted by (x), such that uint(x) ∈  (x). The collection
of {(x)}x∈ℝN is an open cover for ℝN . Then, because we deal with a Euclidean space that is a
differentiable manifold, there exists a countable partition of unity { j} subordinate to the cover,
cf. [War89a, Theorem 1.11]. In other words, for each j, there exists an x such that supp( j) is a
subset of (x), each of which has an associated control ujint ∈  (x) for x ∈ supp( j). Then we
define ū(x) = ∑

j  j(x)u
j
int, which satisfies the statement due to convexity of the map  .

Lemma 3.4.4 is a generalization of Artstein’s Theorem [Art83, Thm. 4.1] on the existence
of a continuous controller given a control Lyapunov function. The proof of the result, included here
for completeness, is also a slight modification of the original proof. For each of the cases = str

and  = agg, Lemma 3.4.4 provides a continuous feasible control function ū, which we use to
define the corresponding set-valued map ū. This map is convex-valued and compact-valued due
to it being a sublevel set of a strictly convex function J , cf. Assumption 3.1.2. Then according to
Lemmas 2.4.2 and 2.4.3, it is also continuous due to the functions ū and J being continuous, cf.
Assumption 3.1.1. We then consider the intersectionsstr ∩nom∩ū andagg∩nom∩ū, where
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the inclusion of ū make these constraint maps compact-valued. For the purpose of our analysis,
we equivalently define kstr and kagg with these constraint maps as the constraint to the optimization.

3.4.3 Continuity of the Connectivity Maintenance Controllers

With the preparations from prior sections, we are now ready to prove our results on conti-
nuity of kstr and kagg.

Proof of Theorem 3.3.1. Consider the constraint setstr∩nom∩ū. We note the followings: (i) all
the functions defining the constraint map are continuous due to Assumption 3.1.1 and �[2∶n] being
continuous everywhere (on " × ℝN ); (ii) the map is convex-valued because all intersecting maps
are convex-valued; (iii) the map has a nonempty interior by assumption; (iv) the map is compact-
valued because the intersecting maps are closed-valued and u is compact-valued. Thus, we may
apply Lemmas 2.4.2 and 2.4.3, to show continuity of this constraint map. By Berge Maximum
Theorem [AB99, Thm. 17.31], kstr is a continuous function as stated. Lastly, from the relationship

minfsi�2(x,u) = �2(x,u) ≥ �[2∶n](x,u),

it follows that kstr(x) ∈ str(x) ⊆ cm(x). As a result, Lemma 3.2.1 ensures �2(x(t)) ≥ ", and the
proof concludes.

We next prove the continuity result for kagg, which is more complicated due to the merged
lower bounds used not being continuous everywhere.

Proof of Theorem 3.3.2. Consider the constraint mapagg ∩nom ∩ū. Because each �[2∶m] is not
continuous everywhere, we can only conclude continuity using Lemmas 2.4.2 and 2.4.3 wherever
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�[2∶m] are continuous for all m ∈ [2 ∶ n]. For the remaining states, we show continuity of the con-
straint map by proving separately below that it is UHC and LHC.Note that oncewe prove continuity,
the theorem statements are established analogously as we did in the proof of Theorem 3.3.1

Upper Hemicontinuity: We begin by consider the partial constraint map ū ∩[2∶n]. This
set-valued map is continuous on " because of the continuity of �[2∶n]. Consider its intersection
with ū ∩[2∶n−1]. At the states where �n(x) = �n−1(x), notice that [2∶n](x) = [2∶n−1](x), so the
intersection ū∩(

⋂

m∈[n−1∶n][2∶m])(x) is exactly the same set as ū∩[2∶n](x) at those x. For other
states x, we know that the former map is a subset of the latter. Then, directly from the definition
of UHC for ū ∩ [2∶n], we can conclude UHC for the intersection ū ∩ (

⋂

m∈[n−1∶n][2∶m]) at x
where �n(x) = �n−1(x). Elsewhere, the intersection can be proven UHC directly via Lemma 2.4.2,
so it is continuous everywhere on ". With the same line of reasoning, we can continue to show by
induction that ū ∩ agg is UHC on ". Then intersecting with nom, we conclude the set-valued
map agg ∩nom ∩ ū is UHC from Lemma 2.4.4.

Lower Hemicontinuity: We begin by defining the following auxiliary set-valued maps for
m ∈ [2 ∶ n],

m(x) =
{

u ∈ ℝn
| �[2∶m](x,u) ≥ −�(�m−1(x) − ")

}

.

By definition, m(x) ⊆ [2∶m−1](x) because �[2∶m](x,u) ≤ �[2∶m−1](x,u), and m(x) ⊆ [2∶m](x)

because �m−1(x) ≤ �m(x). In addition, note that m is convex-valued because the merged lower
bound �[2∶m] in concave in u, cf. Lemma 3.4.3, and it has a nonempty interior as it is a subset
of [2∶m], which has a nonempty interior by assumption. Then, by Lemma 2.4.3 it is LHC for all
x ∈ " where �m(x) ≠ �m+1(x) (with n continuous everywhere on ").

We prove LHC ofagg by induction. We start by considering the maps[2∶n] andn, which
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are both LHC on ". We then consider the intersection [2∶n] with [2∶n−1]. For x where �n(x) =
�n−1(x), the two eigenvalues share the same eigenspaces. Thus, it is also the case that �[2∶n](x) =
�[2∶n−1](x), and we find thatn(x) = [2∶n](x) ∩[2∶n−1](x) for all x where the two eigenvalues are
equal. From this and the fact thatn is a subset of[2∶n] ∩[2∶n−1] in general, we can use the LHC
of n, at x where �n(x) = �n−1(x) to deduce LHC for [2∶n] ∩ [2∶n−1] there. Elsewhere, the set
[2∶n] ∩[2∶n−1] can be proven continuous directly from Lemma 2.4.3, so it is LHC everywhere on
". Then using Lemma 2.4.5, we also deduce that the intersection n ∩ ([2∶n] ∩[2∶n−1]) is LHC
on ".

To continue with the induction proof, assume the set-valued maps

⋂

m≤p≤n
[2∶p] and m ∩

⋂

m≤p≤n
[2∶p]

are LHC. Then we can follow the arguments above to also deduce that their intersections with
[2∶m−1] are also LHC. Hence, agg is LHC. Then the LHC of the intersection agg ∩ nom ∩ ū

follows via Lemma 2.4.5, concluding the proof.

3.5 Simulations and Experimental Validation

In this section we report the simulations and the experiment we have carried out to verify
the effectiveness of the proposed controller. We consider a resource gathering problemwith a group
of four (n = 4) robots, moving in a two-dimensional space (dr = 2 for all agents). Each robot is
tasked with visiting its own target region. If the robots were to individually move directly to their
targets, the network will be disconnected. Therefore, we prioritize the order in which the robots
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reach their targets and use our proposed controller to maintain the connectivity among them. We
consider the mission accomplished when the target location is visited by the corresponding robot,
and we change the task prioritization to the next robot.

The nominal controller carries each robot towards the corresponding target with a conical
potential field:

unom,r(xr) = vnom
er(xr)
‖er(xr)‖

, ∀ ∈ [n], (3.12)

where xr is the position of the r-th robot and er(xr) = xtarget,r − xr is the error between the center
of the robot’s target region and its position, and vnom ∈ ℝ>0 is a constant velocity parameter. By
denoting knom(x) = [unom,1(x1)⊤,… , unom,4(x4)⊤]⊤, our cost function

J (x,u) = ‖u − knom(x)‖2 (3.13)

measures the deviation of the control decision from the nominal controller. In order to ensure
that our prioritized robot, indexed P , makes progress towards its target, we enforce the following
constraint map,

nom(x) =
{

u ∈ ℝN
| kv2nom − u

⊤
nom,PuP ≤ 0

}

, (3.14)

where k ∈ ℝ>0 is a constant parameter to restrict how much uP should point in the direction
of unom,P . Once the robot reaches its assigned target region, its unom,P is set equal to zero. This
represents the fact that after having accomplished its task, the robot is relieved from its mission,
and prefers to conserve energy by not moving. Note that it continues to collaborate at maintaining
the connectivity. Also after the prioritized robot achieves its mission, we adjust nom by changing
the index to correspond to the next robot that has yet to achieve its goal.

49



Note that the objective (3.13) and the nominal constraint (3.14) verify both Assump-
tions 3.1.1 and 3.1.2 for any priority robot (we disregard the jumps in nom due to the transitions
when a robot reaches its target region and the identity of the priority robot changes). We show that
our proposed controllers from Theorem 3.3.1 and 3.3.2 are continuous for the duration between
events when the prioritized robots achieve its goal. For both our simulations and our experiment,
we use projected saddle-point dynamics [CGC17] to solve the convex optimization problems and
compute our controllers in MATLAB®.

3.5.1 Simulations

Our simulations highlight the differences among the different controllers: kdis, defined
in (3.4), kstr , defined in (3.9), and kagg, defined in (3.11). The initial positions, the robots’ tar-
gets, and the parameters (vnom = 0.5, k = 0.75, " = 0.1) are the same in each simulation. Fig. 3.1
reports the eigenvalues of the Laplacian matrix during the simulations. It is clear how both the ag-
gregate (Fig. 3.1a) and the strict controller (Fig. 3.1b) maintain the connectivity constraint, unlike
the discontinuous one that leads to disconnection (Fig. 3.1c). Regarding overall performance, the
aggregate controller (1542 steps) outperforms the strict one (2199 steps). This corroborates the hy-
pothesis that the strict controller over-constrains the robots’ motion, hence resulting in a worse per-
formance in terms of the total time it takes for the network to complete its goals. Figs. 3.2a and 3.2b
show the continuous input produced by the aggregate and the strict controllers, and Fig. 3.2c shows
the discontinuous one generated by the discontinuous controller. Fig. 3.3 reports the evolution
of the function defining the nominal constraint map nom under the strict and the aggregate con-
trollers. In the corresponding slot of time, the robot that has the target with the highest priority
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respects the constraint, while the others cooperate to maintain connectivity, minimally changing
their nominal control law. We do not report the plot for the discontinuous controller as it is highly
jittering, confirming what is already displayed in Fig. 3.2c.
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(a) Aggregate controller
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(b) Strict controller
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(c) Discontinuous controller
Figure 3.1: Eigenvalue evolution during the simulations under the different controllers. The dashed
black lines represent the end of the network task.
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(a) Aggregate controller
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(c) Discontinuous controller
Figure 3.2: Control inputs during the simulations of different controllers. We report all the com-
ponents of the control input for each robot.
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(a) Aggregate controller
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(b) Strict controller
Figure 3.3: Nominal constraint (3.14) during the simulations. The dashed red lines represent the
instant in which the robot priority changes, due to the fact that a target has been reached. The
number for each time slot corresponds to the robot with the highest priority.
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3.5.2 Experimental Validation

Figure 3.4: Experimental setup: 4 ePucks and their corresponding targets.

We also carry out an experiment for the same resource gathering problem, cf Fig. 3.4. We
use four small wheeled robots (ePucks) that are controlled via Bluetooth from a central unit that
performs the calculations. The central unit is also connected to an Optitrack system, which pro-
vides the position of the robots. In order to transform the input calculated for the single-integrator
dynamics to the unicycle dynamics of the robots, we use a simple input-output state-feedback lin-
earization [OLV02]. We tested only the proposed controller kagg, as the simulations in Section 3.5.1
verified that it is the best both in terms of performance and connectivity maintenance. We set the
main parameters as vnom = 0.1, k = 0.75, and " = 0.3. We report an example of the experiments
in an accompanying video.

Fig. 3.5 reports the eigenvalue evolution during the experiment, further confirming the ef-
fectiveness of the proposed method in maintaining connectivity. Fig. 3.6 shows the trajectories
followed by the robots, accomplishing the gathering task. It is evident how each target had been
reached by the corresponding robot, and in the final positions (reported with triangles) it is possible
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Figure 3.5: Eigenvalue evolution during the experiment. The dashed black lines represents the end
of the task.

to see how the robots that have already reached their target cooperate to connectivity. Fig. 3.7 shows
the applied control inputs: here, the jittering is due both to the non-idealities introduced while us-
ing wheeled robots, which hardly instantaneously follow an omnidirectional dynamics, and the time
needed for the calculation, which sometimes introduces a small delay. In fact, the time required to
let the saddle-point dynamics converge is longer than the time needed to update the control input
of the robots, which run at 10 Hz. Despite the limitations of the calculation and of the input of the
robots, we achieve good performance also in satisfying the nominal constraint, cf. Fig. 3.8.
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Figure 3.6: Trajectories followed by the robots during the experiment. The dotted red circles
represent the region where we consider the target reached (circle of 15 cm of radius around the
target). The numbers represent the order of priority of the targets. The initial and final positions
are reported with asterisks and triangles, respectively.
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Figure 3.7: Control input applied to the robots in the experiment. We report all the components of
the control input for each robot. These inputs have been transformed via input-output state-feedback
linearization to be executed by the robots.
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Figure 3.8: Nominal constraint (3.14) during the experiment. The dashed red lines represent the
instant in which the robot priority changes, due to the fact that a target has been reached. The
number for each time slot corresponds to the robot with the highest priority.
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3.6 Chapter Appendix

Here we provide several results on the continuity properties of eigenspaces, with the ulti-
mate goal of establishing that the merged eigenspaces are a continuous function of the state as long
as its dimension remains constant, cf. Theorem 3.4.12.

Given indices  ∈ [n], consider the merged eigenspaces  . For the purpose of analysis,
instead of writing  as a span, we write out the full set definition as follows

(x) =
{

v ∈ ℝn
| (L(x) − �i(x)I)�i = 0, ∀i ∈ , v =

∑

i∈
ci�i, c ∈ ℝ||, ‖v‖ = 1

}

. (3.15)

For this set-valued map, we will show UHC and LHC separately.

3.6.1 Upper Hemicontinuity of Merged Eigenspaces

For the analysis of (3.15), it is convenient to use the eigenbasis as the coordinate system.
Given a state x∗ ∈ ℝN at which we seek to prove continuity, let the matrix T ∈ ℝn×n be an
orthonormal eigenbasis of the symmetric matrix L(x∗). Furthermore, for each eigenvalue �i(x∗),
we define Ti ∈ ℝn×n with a permutation so that the eigenvectors associated with �i(x∗) appear in
the last columns of the matrix. As a consequence, we can define the similar matrix

D(i)(x) ∶= T⊤i L(x)Ti.

2Although this result is seemingly intuitive, we have not found it in the literature. There are results (e.g., [Kat76, Ch.
2.5.3]) that study the continuity properties of eigenvectors when their eigenvalues have multiplicity of one, a case where
the eigenvectors can be viewed as a single-valued function. Instead, we investigate eigenspaces of eigenvalues with
higher multiplicity, which requires set-valued analysis.
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Note importantly that the matrix Ti is defined in relation to the state x∗ and is constant for all x, so
D(i) is continuous. On the other hand, Ti being constant does not guarantee thatD(i) will be diagonal
at the states other than x∗. Furthermore, by defining the matrix B(i)(x) ∶= D(i)(x) − �i(x)I, we can
equivalently write each eigenequation with

⎡

⎢

⎢

⎢

⎣

B(i)aa(x) B(i)ab(x)

B(i)ab(x)
⊤ B(i)bb(x)

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

wi,a

wi,b

⎤

⎥

⎥

⎥

⎦

= 0, (3.16)

wherewi is the vector �i in the coordinate system Ti, i.e., �i = Tiwi. Above, we partition the matrix
B(i) and the vector wi so that wi,b has the same dimension as the eigenspace associated with �i at
x∗. The next result shows that each individual eigenspace, when normalized, is already UHC.

Lemma 3.6.1. (UHC of individual eigenspaces). Consider a continuous function L ∶ ℝN →

Symn. Given a state x∗ and �w > 0, there exists �x > 0 small enough such that if x ∈ B�x(x
∗),

then for any wi satisfying B(i)(x)wi = 0, there exists w∗ satisfying B(i)(x∗)w∗ = 0 with ‖wi−w∗
‖ <

�w‖wi‖.

Proof. Because B(i)aa(x
∗) is invertible, there exists �̄x > 0 such that B(i)aa(x) remains invertible for

each x ∈ B�̄x(x
∗). From (3.16),

wi,a = B(i)aa(x)
−1B(i)ab(x)wi,b.

Because B(i)aa(x)
−1B(i)ab(x) is continuous on B�̄x(x

∗), given �w, there exists 0 < �x < �̄x such that
‖B(i)aa(x)

−1B(i)ab(x)‖F < �w∕
√

2 for all x ∈ B�x(x
∗). Then,

‖wi,a‖ ≤ ‖B(i)aa(x)
−1B(i)ab(x)‖F‖wi,b‖ < �w‖wi‖∕

√

2.
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This also implies ‖wi,b‖ > ‖wi‖(1 − �w∕
√

2). Let w∗ =
[

0 w⊤
i,b‖wi‖∕‖wi,b‖

]⊤

(and w∗ = 0 if
‖wb‖ = 0), then B(i)(x∗)w∗ = 0 because B(i)ab(x∗) and B(i)bb(x

∗) are zero by construction. Also, we
can bound the distance

‖wi − w∗
‖ =

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎣

wi,a

wi,b

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎣

0

wi,b‖wi‖∕‖wi,b‖

⎤

⎥

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

‖

‖

= (‖wi,a‖
2 + ‖wi,b‖

2(1 − ‖wi‖∕‖wi,b‖)2)1∕2

= (‖wi,a‖
2 + (‖wi,b‖ − ‖wi‖)2)1∕2

< �w‖wi‖,

and the proof concludes.

From this result for individual eigenspaces, we can deduce further that any merged
eigenspace is UHC.

Theorem 3.6.2. (UHC of Merged Eigenspaces). Consider a continuous function L ∶ ℝN →

Symn. For any  ⊆ [n], the merged eigenspace  is UHC.

Proof. Given any v ∈ (x) in (3.15), we assume, without loss of generality, that if �j(x) = �i(x)
for some i > j, the associated eigenvector �j is zero. This way, there is only one nonzero vector �i
from each eigenspace. In addition, by scaling �i, we can assume c = 1. Using these simplifications,
‖�i‖ ≤ 1 because of the orthogonality of eigenspaces and the fact ‖v‖ = 1. Thus, when we
transform the coordinate frame wi = T⊤i �i, we also guarantee ‖wi‖ ≤ 1. This is particularly useful
when we apply Lemma 3.6.1 as follows.

Consider any arbitrary x∗ at which we wish to prove UHC for  . Lemma 3.6.1 guarantees
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for any given �w > 0 the existence of a small enough neighborhood B�x(x
∗) such that for every x ∈

B�x(x
∗), anywi satisfyingB(i)(x)wi = 0 has a correspondingw∗

i ∈ B�w(w) satisfyingB(i)(x∗)w∗
i = 0.

Through coordinate transformation �∗i = Tiw∗
i , we deduce that given the set of vectors {�i}i∈

defining v, there exists a corresponding set of vectors {�∗i }i∈ such that �i ∈ B�w(�i) and (L(x) −
�i(x)I)�∗i = 0. We then define v∗ = (

∑

�∗i )∕‖
∑

�∗i ‖, which is an element of the set (x∗) by
definition.

We next prove that v∗ is close to v for a small enough �w. From the condition 1 = ‖v‖ =

‖

∑

(�∗i + (�i − �
∗
i ))‖, we can bound the norm ‖

∑

�∗i ‖ ∈ (1 − n�w, 1 + n�w). With these facts, we
bound the distance

‖v − v∗‖ =
‖

‖

‖

‖

‖

∑

�i −
∑

�∗i
‖

∑

�∗i ‖

‖

‖

‖

‖

‖

≤ ‖

∑

(�i − �∗i )‖ +
‖

‖

‖

‖

‖

∑

(

�∗i −
�∗i

‖

∑

�∗i ‖

)

‖

‖

‖

‖

‖

≤ n�w + (1 + n�w)n�w∕(1 − n�w)

= 2n�w∕(1 − n�w).

Given any �v, we can pick �w small enough so that ‖v − v∗‖ < �v, i.e., v ∈ B�v(v
∗).

We have shown that given any �v > 0, there exists �x > 0 such that any v ∈ (x), for
x ∈ B�x(x

∗), has a corresponding v∗ ∈ (x∗) such that v ∈ B�v(v
∗). In other words, (x), for

x ∈ B�x(x
∗), is a subset of a �v neighborhood of (x∗), which is precisely the definition of UHC,

concluding the proof. □
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3.6.2 Lower Hemicontinuity of Merged Eigenspaces

Unlike the case of UHC, individual normalized eigenspaces are not LHC everywhere.
Therefore, we proceed directly to the analysis of the merged eigenspaces. We define, for an in-
dex set  ⊆ [n], an orthonormal eigenbasis matrix T ∈ ℝn×n, with the eigenvectors associated
with �i(x∗) for i ∈  showing up in the last columns of the matrix. Then, we define the matrix

D(x) = T⊤L(x)T .

The next result establishes the LHC property of the merged eigenspaces.

Theorem 3.6.3. (LHC ofMerged Eigenspaces). Consider a continuous functionL ∶ ℝN → Symn.

For any  ⊆ [n], the merged eigenspace is LHC at x where �i(x) ≠ �j(x) for all i ∈  and

j ∉ , i.e., where none of the eigenvalues considered in the span is equal to any of the remaining

eigenvalue.

Proof. Consider the change of coordinate frame �i = Twi, for each i ∈ [n]. The merged
eigenspace given by (3.15) can be rewritten as

(x) =
{

v ∈ ℝn
| (D(x) − �i(x)I)wi = 0, ∀i ∈ , v = TWc, c ∈ ℝ||, ‖v‖ = 1

}

,

where W ∈ ℝn×|| is a matrix constructed by stacking wi together. By construction, given an

element v∗ ∈ (x∗), it must take the form v∗ = T

⎡

⎢

⎢

⎢

⎣

0

 

⎤

⎥

⎥

⎥

⎦

for some  ∈ ℝ||.

Consider x∗ at whichwewish to prove LHC for . We next show the existence of v ∈ (x)
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close enough to v∗ for all x close enough to x∗. First, we partition the eigenequations,

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

D
aa(x) D

ab(x)

D
ab(x)

⊤ D
bb(x)

⎤

⎥

⎥

⎥

⎦

− �i(x)I
⎞

⎟

⎟

⎟

⎠

⎡

⎢

⎢

⎢

⎣

wi,a

wi,b

⎤

⎥

⎥

⎥

⎦

= 0,

so that wi,b has the dimension of ||. The matrix D
aa(x

∗) is a diagonal matrix of eigenvalues �j(x∗)
for j ∉ . Because �j(x∗) ≠ �i(x∗) for any i ∈  and j ∉ , the matrix D

aa(x)−�i(x)I is invertible
at x = x∗. Then due to continuity of the matrix, there exists �̄x such that it remains invertible for
x ∈ B�̄x(x

∗), and we can find the following relationship,

wi,a = (D
aa(x) − �i(x)I)

−1D
ab(x)wi,b.

Due to continuity of the matrixD and the fact thatD
ab(x) is a zero matrix at x = x∗, we can further

find that given �w, there exists 0 < �x ≤ �̄x such that ‖wi,a‖ ≤ �w‖wi,b‖ for all x ∈ B�x(x
∗). With

this property, we construct v ∈ (x) with the following procedure.
We begin by selecting the set of eigenvectors {wi}i∈ to be orthonormal to one another.

This set of eigenvectors must exist becauseD(x) is symmetric. With this choice, we can show that

when we partition the matrixW =

⎡

⎢

⎢

⎢

⎣

Wa

Wb

⎤

⎥

⎥

⎥

⎦

,Wb is an invertible matrix for x ∈ B�x(x
∗). We prove this

statement by contradiction. Assume thatWb is not full rank, then there exists a vector 0 ≠ c ∈ ℝ||

such thatWbc = 0. In addition,W⊤W = I because wi are orthogonal to each other. Thus,

‖c‖ = ‖W⊤Wc‖ = ‖W⊤
aWac‖ ≤ �2w||

2
‖c‖,
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which is a contradiction for small �w. SinceWb is invertible, we can define the vector

v̄ = TWW−1
b  = T

⎡

⎢

⎢

⎢

⎣

WaW−1
b  

 

⎤

⎥

⎥

⎥

⎦

,

which we use to construct v ∈ (x) Before doing so, we upper boundWaW−1
b  . Note that

‖WaW−1
b  ‖ = ‖Wa(W ⊤

b Wb)−1W⊤
b ‖

≤ ‖Wa‖‖(W⊤
bWb)−1‖‖Wb‖.

Here, we can bound ‖Wb‖ ≤ || due to normality of each wi. Also from the earlier fact ‖wi,a‖ ≤

�w‖wi,b‖ ≤ �w, we bound ‖Wa‖ ≤ �w||. As for the ‖(W⊤
bWb)−1‖, we investigate the smallest

eigenvalue of (W⊤
bWb). Due to orthonormality,

w⊤
i,bwj,b =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−w⊤
i,awj,a i ≠ j,

1 − w⊤
i,awj,a i = j.

Combined with the fact ‖wi,a‖ ≤ �w, we upper bound the off-diagonal entries of W⊤
bWb with �2w,

and we lower bound the diagonal entries with 1−�2w. Using the Gershgorin circle theorem [BCM09,
Thm. 1.3], the smallest eigenvalue ofW⊤

bWb is lower bounded by 1 − ||�2w. Using these bounds,
we find

‖WaW−1
b  ‖ ≤

�w||
1 − �2w

∶= �v.

Note importantly that smaller �v corresponds to small �w < 1.
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Finally, we select c = w−1
b  ∕‖v̄‖ to construct v = v̄∕‖v̄‖, which is an element of (x).

Let � be the angle between the unit vectors v and v∗. Then, we bound

‖v − v∗‖ ≤ � ≤ tan � =
‖WaW−1

b  ‖
‖ ‖

≤ �v.

Thus, we have proven that given any �v > 0, there exists �x > 0 such that if x ∈ B�x(x
∗), then there

exists v ∈ (x) where v ∈ B�v(v
∗). This is sufficient to prove that given any sequence {xk}k∈ℕ

converging to x∗, there exists a sequence {vk}k∈ℕ, with vk ∈ (xk), converging to v∗, concluding
the proof.
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Chapter 4

Smooth Safe Stabilization Formula

This chapter formulates a safe and stabilizing control state feedback law for a control affine
nonlinear system. We assume that there exist a known control Lyapunov function (CLF) and a
control barrier function (CBF) that are compatible, i.e., there exists a control choice satisfying the
conditions given by both the CLF and CBF at each given state. In contrast to the approach in the
literature of finding a minimum-norm control using optimization on the feasible control set, we take
a different approach by finding and combining different weighted centroids of the feasible control
set. As a result, we can propose a control feedback law with guaranteed smoothness everywhere
except at the origin, and with guaranteed continuity at the origin if small control property holds.

4.1 Problem Statement

Consider a nonlinear control-affine system of the form

ẋ = f (x) + g(x)u, (4.1)
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where x ∈ ℝn is the state and u ∈ ℝm is the input. The system vector fields f ∶ ℝn → ℝn and
g ∶ ℝn → ℝn×m are assumed to be smooth, and f (0) = 0 so that the origin is an equilibrium
of the unforced system. The goal of this paper is to find a control feedback k ∶ ℝm → ℝn such
that u = k(x) guarantees both the global asymptotic stability of the origin and the safety of the
trajectories for the closed-loop system. We address the problem of asymptotic stability and safety
with a control Lyapunov function and a control barrier function, resp., whose definitions we recall
next.

Definition 4.1.1. (Control Lyapunov Function). Given a function � ∶ ℝn → ℝ≥0, a continuously

differentiable function V ∶ ℝn → ℝ is a �-relaxed Control Lyapunov Function (�-CLF) for the

system (4.1) if

(i) V is proper, i.e., {x ∈ ℝn
| V (x) ≤ c} is a compact set for all c > 0;

(ii) V is positive definite;

(iii) For each x ∈ ℝn ⧵ {0}, ∃u ∈ ℝm such that

LfV (x) + LgV (x)u < �(x). ⋄ (4.2)

The standard notion of CLF (cf. [FK96, Section 3.3.1]) corresponds to �(x) = 0 in this
definition when applied specifically to the system (4.1), and we refer to it by 0-CLF. One can indeed
find in the literature different variations of this notion: for example, the right-hand side of the
inequality (4.2) may include a negative definite function [Son99] or the function V might only
be continuous, in which case the monotonic property in (iii) is expressed in terms of directional
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derivatives [SS96]. Throughout the paper, we focus the definition above, even though our results
are generalizable to other cases as well. Similarly, we define a CBF as follows.

Definition 4.1.2. (Control Barrier Function [AXGT17,XTGA15]). Given a open set  ⊂ ℝn, a

function ℎ ∶ ℝn → ℝ, continuously differentiable on ℝn ⧵ is a control barrier function (CBF)

for the system (4.1) if

(i) ℎ(x) = 0 for all x ∈ );

(ii) ℎ(x) < 0 for all x ∈ ℝn ⧵;

(iii) For each x ∈ ℝn ⧵, ∃u ∈ ℝm such that

Lfℎ(x) + Lgℎ(x)u ≤ �(−ℎ(x)) (4.3)

where � is a Lipschitz class- function. ⋄

The set  is referred to as the unsafe set. The purpose of a CBF is to guarantee that all
trajectories with an initial condition outside of  will not enter it. For instance, when the right-
hand side of inequality (4.3) is zero, then the condition guarantees that the value of the function
ℎ does not increase along the trajectory. Therefore, if the initial condition is outside , where the
value of ℎ is negative, then the function will remain negative, and the trajectory will not enter the
set. The function � in the right-hand side allows for the value of ℎ to actually increase on points
in the interior of ℝn ⧵. As a result, the trajectory still avoids the set .

We assume for the rest of the paper that the system (4.1) admits a 0-CLF and a CBF. With
these functions, one can deduce particularly that, if there exists a feedback u = k(x) satisfying
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inequalities (4.2) and (4.3), global asymptotic stability of the origin and safety of the trajectories
can be guaranteed. This motivates us to introduce the concept of compatibility.

Definition 4.1.3. (Compatibility). We refer to a collection of inequalities of the form a(x)+b(x)u <

0 or a(x) + b(x)u ≤ 0 as (strictly) compatible on  ⊂ ℝn if, for each x ∈  , there exists a

corresponding u ∈ ℝm satisfying all inequalities (strictly). We call a �-CLF V and a CBF ℎ

compatible if their inequalities (4.2) and (4.3) are compatible on ℝn ⧵ ( ∪ {0}). ⋄

Given a 0-CLF V and a CBF ℎ, we want to emphasize the importance of their compatibility.
If they are not compatible, this means that there exists at least a state x where there is no control
u that can satisfy inequalities (4.2) and (4.3) simultaneously, and either stability or safety needs to
be sacrificed. In the literature, it is common to sacrifice stability by allowing �(x) ≠ 0 to ensure
compatibility. We come back to this point later in Section 4.5.

On top of compatibility, it is also important that the control as a feedback function is at least
Lipschitz continuous, to guarantee the existence and uniqueness of solutions. This motivates the
formulation of the main problem.

Problem 2. (Feedback Safe Stabilization). Assume we are given a 0-CLF V ∶ ℝn → ℝ and

a CBF ℎ ∶ ℝn → ℝ for the system (4.1) which are compatible. Find a smooth control feedback

k ∶ ℝm → ℝn such that u = k(x) satisfies both inequalities (4.2) and (4.3) for all x ∈ ℝn⧵(∪{0}).

In what follows, we show that the problem above has a solution when the 0-CLF and a CBF
are strictly compatible, and provide a constructive formula for the feedback.
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4.2 Existence of a Smooth Control Feedback

In this section, we examine the existence of the solution to Problem 2. The work [Son89]
shows that it is possible to construct a smooth control feedback when stability is our only concern.
Prior to providing its formula for universal stabilization, the work suggests that the existence of a
smooth feedback controller can be derived through extending Artstein’s Theorem for the existence
of a continuous feedback controller (cf. [Art83]) by considering a partition of unity. Incidentally,
using the same concept, we can extend Artstein’s Theorem even further to when more than one
control-affine inequalities are considered.

Proposition 4.2.1. (Extension of Artstein’s Theorem). Consider a collection of n inequalities of

the form a(x)+b(x)u < 0 or a(x)+b(x)u ≤ 0 each defined on the domaini ⊆ ℝn with ai ∶ i → ℝ

and bi ∶ i → ℝm continuous. If the inequalities are strictly compatible on ∩i∈[n]i, then there

exists a ∞ selection function k ∶ ∩i∈[n]i → ℝm such that u = k(x) satisfy all the inequalities for

all x ∈ ∩i∈[n]i. □

Proof. For each x, let v(x) denote the given u that strictly satisfies all inequalities. Due to continuity
of ai and bi, there exists a neighborhood of x, denoted by(x), where v(x) strictly satisfies all the
inequalities for all y ∈(x). The collection of {(x)}x∈∩i∈[n]i is an open cover for ∩i∈[n]i. Then,
because we deal with a Euclidean space which is a differentiable manifold, there exists a countable
partition of unity { j} subordinate to the cover, cf. [War89b, Theorem 1.11]. In other words, for
each j, there exists an x such that supp( j) is a subset of (x), each of which has an associated
control v(x) satisfying all inequalities, whichwe now label as vj . Thenwe define k(x) = ∑

j  j(x)vj

which satisfies the statement because of convexity.

In the context of safe stabilization, Proposition 4.2.1 provides a non-constructive statement
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suggesting that there exists a smooth control feedback for a given 0-CLF and any number of CBFs
as long as they are all strictly compatible.

Corollary 4.2.2. (Existence of Smooth Safe Stabilizing Control Feedback). For the system (4.1)
with continuous f and g, Let the system admit a 0-CLF and a CBF that are compatible. IfLgℎ(x) =

0m ⟹ Lfℎ(x) < �(−ℎ(x)), then there exists a control feedback k ∶ ℝn ⧵ ( ∪ {0}) → ℝm, ∞

on ℝn ⧵ ( ∪ {0}) such that u = k(x) satisfies both (4.2) and (4.3) for each x ∈ ℝn ⧵ ( ∪ {0}),

and hence, global asymptotically safely stabilizes the closed-loop system (4.1) when � = 0. □

Proof. By the definition of compatibility of the �-CLF and the CBF, for each x ∈ ℝn ⧵ ( ∪ {0}),
there exists a corresponding u ∈ ℝm satisfying (4.2) and (4.3). When Lgℎ(x) ≠ 0m, if the given
u satisfy (4.3) with an equality, there must exist a u′ that satisfy the inequality strictly because the
inequality in (4.2) is strict. Under the assumption that Lgℎ(x) = 0m ⟹ Lfℎ(x) < �(−ℎ(x)),
inequalities (4.2) and (4.3) are strictly compatible. With LfV , LgV , Lfℎ, Lgℎ, and � all being
continuous, the assumptions of Proposition 4.2.1 are met, and the proof concludes.

This result shows that there is a solution to Problem 2 under the additional assumption that
Lgℎ(x) = 0m ⟹ Lfℎ(x) < �(−ℎ(x)). Although we have not yet worked out a counterexample,
we suspect there is one when the condition does not hold. Therefore, we require this condition
to hold. Note that in the literature (e.g., minimum-norm controller [AXGT17, XTGA15]), it is
common to require that Lgℎ(x) ≠ 0, a condition stricter than what we require. The result above
does not give a constructive formula. Here, we follow [Son89] and shall construct a formula based
on the available 0-CLF and CBF. As a result, the smoothness of the controller will rely heavily
on the smoothness of the mentioned functions. As opposed to finding a ∞ function given only
a continuously differentiable 0-CLF and a continuously differentiable CBF, much like Sontag’s
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universal formula in [Son89], we will require that the two functions are l+1 for which we will give
a l control feedback formula.

Sontag’s universal formula provides, in addition to the smoothness of the controller, conti-
nuity at the origin under the small control property of the admissible control set. We shall do the
same here for our formula, so we provide the following definition.

Definition 4.2.3. (Small Control Property). Given an admissible control set-valued function  ∶

ℝn →→ ℝm. Small control property holds with if for every � > 0, there exists ! > 0 so that there

exists ‖u‖ < � such that u ∈  (x) for all ‖x‖ < !. ⋄

Note that the usual definition of small control property is tied directly to the control set
associated with inequality (4.2) of a 0-CLF. However, since we deal in this paper not only with a
0-CLF, but also an additional condition from a CBF, we give above definition to suit our purpose.

4.3 Alternative Universal Formula for Smooth Stabilization

In finding a constructive control feedback formula, one might want to begin by building
on Sontag’s universal formula for stabilization (cf. [Son89]) because it already handles smooth
stabilization by satisfying inequality (4.2). We will briefly mention here the trouble in generalizing
the formula to the case with multiple inequalities. Sontag’s formula relies on the fact that the roots
of a quadratic function behave analytically with respect to the function’s parameters and the fact
that function must be decreasing at one of the roots. To guarantee the satisfaction of inequality
(4.2), a function quadratic in u is constructed so that the condition for the function decreasing at
the root is precisely inequality (4.2). The root is the desired input, and can be computed using the
quadratic formula. To develop a universal formula for the case with two inequalities (4.2) and (4.3)
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to satisfy, one would have to consider a 2-dimensional quadratic function, and find a formula to the
root at which its function’s derivative describes both inequalities. Unlike the one-dimensional case,
finding such a root can be problematic and its analyticity with respect to the function’s parameters
is unclear. This motivates the alternative formula proposed here.

Assume V ∶ ℝn → ℝ is a 0-CLF for the system (4.1). The inequality (4.2) limits the choice
of admissible controls for stabilization. Because of the dependency on x, we write the admissible
inputs as a set-valued function 1 ∶ ℝn →→ ℝm,

1(x) = {u ∈ ℝm
| LfV (x) + LgV (x)u < 0}.

Clearly, if we select u = k(x) ∈ 1(x) for each x ∈ ℝn⧵{0}, then (4.2) is satisfied. However, this is
not enough to guarantee stabilization, because the continuity properties of the control might not be
enough to guarantee the existence and uniqueness of solutions. To do so, we need a control feedback
that is at least Lipschitz continuous. To define this, we rely on the function � ∶ (ℝm)×ℝ≥0 → ℝm,

�( , �) =
∫ u exp(−u

⊤u∕(2�2))du
∫ exp(−u⊤u∕(2�2))du

. (4.4)

The function can be interpreted as the mean of a set  with weights from a zero-mean, �2-variance
Gaussian probability density distribution. We are now ready to propose our alternative universal
formula for stabilization.

Proposition 4.3.1. (Alternative Universal Formula for Smooth Stabilization). Let V ∶ ℝn → ℝ

be a 0-CLF for the system (4.1) and � ∶ ℝn → ℝ be a l positive definite function. If LfV

and LgV are l, then �◦(1 × �) is l on ℝn ⧵ {0}. In addition, the feedback control u(x) =
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�(1(x), �(x)) satisfies (4.2) for each x ∈ ℝn⧵{0} and hence globally asymptotically stabilizes the

origin. Furthermore, if the small control property holds with1, the function k is also continuous

at the origin. □

Proof. We begin by noting that because 1 is a halfspace, all the components of the weighted
centroid along the direction perpendicular to LgV must evaluate to zero due to symmetry. As such,
the solution to the integral must be

�(1(x), �(x)) =
LgV (x)⊤

‖LgV (x)‖
v(x)

where v ∶ ℝn → ℝ is a scalar function resulting from an integration along the LgV (x) direction.
v(x) can be directly obtained through calculating a weighted centroid in one dimension. As such,
we simply need to show that the result in single input case m = 1 is smooth.

Consider a halfspace (a, b) = {v ∈ ℝ | a + bv < 0} where a < 0 when b = 0. Through
direct integration, one can find

�((a, b), �) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�p(−a∕(b�)
1−Φ(−a∕(b�))

, b < 0

0, b = 0

−�p(−a∕(b�))
Φ(−a∕(b�))

, b > 0

where p andΦ are the probability and cumulative density function of the standard normal distribu-
tion, resp. One can check that �((a, b), �) and all its derivative are identically zero as b→ 0, and
therefore it is C∞ with respect to a, b and �. With a = LfV (x) and b = LgV (x) and the fact that
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LfV (x) < 0 when LgV (x) = 0 from condition (iii) in Definition 4.1.1 of a 0-CLF, we deduce that
�◦(1 × �) is l.

Next, if small control property holds, we need to show that the control feedback is contin-
uous at x = 0. We first note that � approaches zero near the origin because it is a positive definite
function. As a result, the weight determined by a Gaussian probability density is higher at the states
closer to the origin. As such, when x → 0, the mean �◦(1 × �) is in a small neighborhood of
the control in the feasible control set with the minimum norm, i.e., argminu∈1(x) ‖u‖. From small
control property, we have that for all � > 0 there exists a neighborhood of the origin such that there
exists a u ∈ 1(x) such that ‖u‖ < �. In other words, the minimum-norm control also converges
to zero. Hence, continuity holds.

Lastly, the satisfaction of inequality (4.2) is derived from the fact that �◦(1 × �)(x) is
the weighted centroid of ̄1(x). Because 1(x) is convex, �◦(1 × �)(x) ∈ int(1(x)), which
concludes the proof.

Proposition 4.3.1 provides an alternative design to Sontag’s universal formula for exploiting
the existence of a 0-CLF for global feedback stabilization. Furthermore, as we show in the forth-
coming discussion, the construction behind the proposed formula can be extended to accommodate
satisfaction of an additional inequality, particularly inequality (4.3) corresponding to a CBF.

4.4 Universal Formula for Smooth Safe Stabilization

In this section we build on the developments of Section 4.3 to deal with an additional in-
equality from a CBF. Before we move on to give our formula, we first define here a useful auxiliary
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function. The following function s ∶ ℝ → [0, 1] is ∞, (cf. [War89b, Eq (3) in Lemma 1.10]),

s(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, t ≤ 0

(

1 + e1∕t

e1∕(1−t)

)−1
, 0 < t < 1

1, t ≥ 1

(4.5)

The function above is strictly increasing from 0 to 1 in the interval (0, 1). Notably, the function is
flat (derivatives with respect to t of all order are zeros) at t = 0 and t = 1. As a result, the function
is particularly useful for smoothly transitioning from one function to another in a convex set. Also,
we denote with a shorthand notation the following

�[1,2](x) = �(1(x) ∩2(x), �(x)),

�1(x) = �(1(x), �(x)),

�2(x) = �(2(x), �(x)).

where 1 ∶ ℝn →→ ℝm and 2 ∶ ℝn →→ ℝm are defined as

1(x) = {u ∈ ℝm
| Ineq. (4.2) holds},

2(x) = {u ∈ ℝm
| Ineq. (4.3) holds}.

With above, we are ready to give our main result.

Theorem 4.4.1. (Universal Formula for Smooth Safe Stabilization). Let V ∶ ℝn → ℝ and

76



ℎ ∶ ℝn → ℝ be a 0-CLF and a CBF that are compatible for the system (4.1). Also let � ∶ ℝn → ℝ

be a l positive definite function. Define

k(x) = s(�(x))(�1(x) + �2(x)) + [1 − s(�(x))]�[1,2](x) (4.6)

where �(x) = LgV (x)Lgℎ(x)⊤

‖LgV (x)‖‖Lgℎ(x)‖
. If the following hold,

(i) LfV , LgV , Lfℎ, Lgℎ, and � are l on ℝn ⧵ ( ∪ {0});

(ii) Lgℎ(x) = 0m ⟹ Lfℎ(x) < �(−ℎ(x)),

then k is l on ℝn ⧵ ( ∪ {0}). In addition, the feedback control u = k(x) satisfies both (4.2) and
(4.3) for each x ∈ ℝn ⧵ (∪{0}) and hence, global asymptotically safely stabilizes the closed-loop

system (4.1). Furthermore, if small control property holds with 1 ∩ 2, the function k is also

continuous at the origin. □

Proof. For this proof, we omit the dependency on x for each function for brevity when it is clear .
Also, for convenience of the proof, when ‖LgV ‖ ≠ 0 and ‖Lgℎ‖ ≠ 0, we rewrite the inequalities
(4.2) and (4.3) as

c⊤1 u > d1, c
⊤
2 u ≥ d2

where now the coefficients of u are unit vectors

c1 = −
LgV
‖LgV ‖

, c2 = −
Lgℎ

‖LgV ‖
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and d1 and d2 are the bounds scaled appropriately,

d1 =
LfV
‖LgV ‖

, d2(x) =
Lfℎ − �(−ℎ)

‖LgV ‖
.

We begin the proof of smoothness by considering the single-input case, m = 1. In this case,
� = sign(c1c2) can only evaluate to ±1 or 0. Note that k = �1 + �2 when � = 1, which is smooth as
proven in Proposition 4.3.1. For � = −1,

k = �[1,2] = �c1
p(d1∕�) − p(d2∕�)
Φ(d2∕�) − Φ(d1∕�)

where p and Φ are the Gaussian probability and cumulative density function. Therefore, k is also
smooth on � = −1. Next, we check for the case � = 0. This implies that either ‖LgV ‖ or ‖Lgℎ‖
is zero, so either 1 = ℝ or 2 = ℝ. As a result, k is either �1 or �2 on � = 0, both of which
are smooth. Finally we check the transition between these 3 cases. One can use LgV → 0 ⟹

LfV < 0 from compatibility, and verify that �1 → 0 and �[1,2] → �2 as a function. In addition, all
derivatives with respect to c1 and d1 approach zero because p and Φ are flat at d1 = −∞. Similar
argument for smoothness of k applies when Lgℎ→ 0. As a result, k is C l with respect to x for the
single-input case.

Now we prove for the cases m ≥ 2. We note again that �1 and �2 are smooth, and we will
be focusing on showing the smoothness of �[1,2]. We consider different regions in ℝn ⧵ ( ∪ {0})

with the following conditions:

∙ ‖LgV (x)‖ = 0,

∙ ‖Lgℎ(x)‖ = 0,
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∙ �(x) = −1,

∙ �(x) ≠ 0, LgV (x) ≠ 0, and Lgℎ(x) ≠ 0.

For the first three items, the function �[1,2] can be given with the closed form solution in the
single input case. As shown earlier, �[1,2] is smooth for all x in those regions. Next, for the last item
on the list, we write C =

[

c1 c2

]

, and have the following closed form solution (cf. [Tal61,Tal65]),

�[1,2] =
�C
m

⎡

⎢

⎢

⎢

⎣

p(d1∕�)(1 − Φ(q12))

p(d2∕�)(1 − Φ(q21))

⎤

⎥

⎥

⎥

⎦

,

q12 =
d2 − �d1
�(1 − �2)

, q21 =
d1 − �d2
�(1 − �2)

,

where m is the total mass,

m = ∫1∩2

exp(−u⊤u∕(2�2))du

= 1 − Φ
(

d1
�

)

− Φ
(

d2
�

)

+ Φ(2)
(

d1
�
,
d2
�

)

withΦ(2) is the joint cumulative function with zero mean and the covariance matrixC⊤C =

⎡

⎢

⎢

⎢

⎣

1 �

� 1

⎤

⎥

⎥

⎥

⎦

.

From the given solution, we deduce that �[1,2] is smooth for all x inside the fourth region.
We examine next the smoothness at x on the boundary of the listed regions, i.e., where

one condition changes to another. The transition between the first three items is equivalent to the
transition in the single input cases which we have already shown the smoothness. What remains to
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consider is the transition between the fourth item to each of the rest. Consider first when ‖LgV ‖ →

0, then d1 → −∞ due to property of CLF. Because p andΦ are flat at ±∞, it is clear that at xwhere
this transition occurs,

lim
‖LgV ‖→0

�[1,2] ≡
�c2

1 − Φ(d1∕�)
p(d2∕�) = �2.

Similarly, because of the assumption Lgℎ(x) = 0m ⟹ Lfℎ(x) < �(−ℎ(x)), we can reason that
‖Lgℎ‖ → 0 ⟹ �[1,2] ≡ �1. Next, we look at the case �→ −1. This implies c2 → −c1, and from
compatibility condition, we can derive that d1 < −d2. As a result, q12 and q21 approach −∞. We
then find that

lim
�→−1

�[1,2] ≡ �c1
p(d1∕�) − p(d2∕�)
Φ(d2∕�) − Φ(d1∕�)

,

which is precisely the closed form formula for the single input case m = 1.
To summarize, we have shown so far the smoothness of �[1,2] at x such that �(x) ≠ 1.

Because�1 and�2 are smooth, k is then smoothwhere �(x) ≠ 1. For � = 1, we note that k = �1+�2,
so the function is smooth there. Last, we show the smoothness of k at x where � ≠ 1 transits to
� = 1. In this case, q12 and q21 have opposite signs and approach ±∞. �[1,2] then approach either
�1 or �2 which are smooth and all the derivative are bounded. Consequently, [1 − s(�)]�[1,2] ≡ 0,
so the smoothness of k holds. In conclusion, we have shown for all cases and all transition points
that k is smooth.

Wemove on to proving the satisfaction of (4.2) and (4.3). First, we note that�[1,2](x) satisfies
both inequalities for all x due to it being a weighted centroid of the convex set 1(x) ∪2(x), and
k = �[1,2] when � < 0. For � ≥ 0, we write out the solution,

�i = �ci
p(di∕�)

1 − Φ(di∕�)
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when ‖LgV ‖ ≠ 0, ‖Lgℎ‖ ≠ 0 for i = 1, 2 resp., and otherwise �i = 0. Because the fraction is
always positive, we have c1�2 ≥ 0 and c2�1 ≥ 0 when � = c⊤1 c2 ≥ 0. As a consequence, (4.2) and
(4.3) hold with u = �1(x) + �2(x) for �(x) ≥ 0. Because the set1(x) ∪2(x) is convex, u = k(x)
satisfies both inequalities at all x.

Finally, the continuity of the controller at the origin under small control property is reasoned
the same way as in the proof of Proposition 4.3.1.

Theorem 4.4.1 gives a constructive formula for a strict compatible pair of 0-CLF and CBF.
The control feedback given by (4.6) will achieve smooth safe stabilization. The main idea behind
the construction of the controller is to exploit weighted centroid �[1,2], which is already smooth
almost everywhere. Note this is done by examining the closed form solution (cf. [Tal61, Tal65]).
For the place where it is not smooth, we can conveniently transition the controller into �1 + �2
because both �[1,2] and �1 + �2 become either �1 or �2 there. Using the property of the weighted
centroid, the proposed controller can satisfy both control inequality constraints.

Remark 4.4.2. (Generalization to Control-Affine Inequality Constraints). We stated Theo-

rem 4.4.1 for the control inequality constraints given by a 0-CLF and a CBF. However, the proposed

controller also applies for satisfying two different control-affine inequality constraints as long as

strict compatibility holds. Application to a pair of a 0-CLF and a CBF is simply a special yet very

important case. ∙.

4.5 Discussion on � and compatibility

In this section, we have a further discussion on compatibility and how we can obtain it
through using a �-CLF. Our results rely heavily on the compatibility of the given 0-CLF and CBF.
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Here, we consider the scenario where compatibility does not hold for the 0-CLF and the CBF with
the property Lgℎ(x) = 0 ⟹ Lfℎ < 0, i.e., there exists an x where there exists no u satisfying
both inequalities (4.2) and (4.3). Particularly, we can reason with contraposition that this scenario
must occur when the unsafe set  is bounded because there can be no smooth feedback control as
proven in [BK17]. In any case, the question remains: what can be done when compatibility does
not hold.

To answer the question, we review the literature to see how the problem of incompatibility
is dealt. We recall from the literature the minimum-norm controller (cf. [AXGT17, XTGA15]).
Given a 0-CLF and a CBF, a minimum-norm controller kmin ∶ ℝm → ℝn is computed through
solving pointwise the following quadratic programming

[

kmin(x) �(x)

]⊤

= argmin
ũ=[u⊤,w]⊤∈ℝm+1

ũ⊤ũ

s.t. LfV (x) +
[

LgV (x) −1

]

ũ < 0,

Lgℎ(x) +
[

Lgℎ(x) 0

]

ũ ≤ �(−ℎ(x)).

Notice that the first inequality constraint is no longer inequality (4.2) from the 0-CLF because of
the relaxation input w. Instead, it represents the inequality (4.2) associated with a �-CLF. Thus,
stability of the origin is no longer guaranteed. The reason behind this sacrifice is to guarantee
the feasibility of the quadratic programming. By introducing a relaxation input w, there exists a ũ
satisfying the inequality constraints for each x because the coefficient of ũ from the two inequalities
are always linearly independent.

We can integrate the idea of introducing a relaxation input to obtain compatibility into our
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universal formula. First, we redefine 1 and 2 appropriately with the relaxation input

1(x) = {ũ | LfV (x) +
[

LgV (x) −1

]

ũ < 0},

2(x) = {ũ | Lfℎ(x) +
[

Lgℎ(x) 0

]

ũ ≤ �(−ℎ(x))}.

where ũ =
[

u w

]⊤

∈ ℝm+1. With �[1,2], �1, and �2 redefined with the above set-valued functions,
we find a smooth control feedback,

Proposition 4.5.1. (Exploiting � for Compatibility). Let the system (4.1) V ∶ ℝn → ℝ and

ℎ ∶ ℝn → ℝ be a 0 − CLF and a CBF that are not necessarily compatible. If the following

assumptions hold,

(i) LfV , LgV , Lfℎ, Lgℎ, and � are l;

(ii) Lgℎ(x) = 0 ⟹ Lfℎ(x) < �(−ℎ(x)),

then with a l positive definite function � ∶ ℝn → ℝ, and � redefined as

�(x) =

[

LgV (x) −1

] [

Lgℎ(x) 0

]⊤

‖

[

LgV (x) −1

]

‖‖

[

Lgℎ(x) 0

]

‖

,

the function k defined as in (4.6) is l on ℝn ⧵ ( ∪ {0}). In addition, the control feedback

u =
[

Im 0m

]

k(x) satisfies the inequality (4.3) for each x ∈ ℝn ⧵ ( ∪ {0}) and hence, guar-

antees the safety of the trajectories for the closed-loop system (4.1). Also, the control feedback

u =
[

Im 0m

]

k(x) satisfies the inequality (4.3) associated with the �-CLF where the relaxation

function given by �(x) =
[

0⊤m 1

]

k(x), for each x ∈ ℝn ⧵ (∪ {0}). Furthermore, if small control
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property holds with 1 ∩2, the function k is also continuous at the origin. □

Proof. We begin by proving the compatibility of the inequalities associated with the set 1 and
2. Note that

[

LgV (x) −1

]

and
[

Lgℎ(x) 0

]

are linearly independent when Lgℎ(x) ≠ 0, so
there must exist a ũ satisfying both inequalities. In addition, when Lgℎ(x) = 0, because we have
that Lfℎ < �(−ℎ(x)), any ũ in the set 1 holds for both inequalities. As such, compatibility on
ℝn ⧵  holds. Next, because compatibility holds and Lgℎ(x) = 0 ⟹ Lfℎ(x) < �(−ℎ(x)), we
can show smoothness of k by following the proof of Theorem 4.4.1. Doing so, we can also show
that ũ = k(x) belongs to 2(x) for each x ∈ ℝn ⧵ ( ∪ {0}). We can deduce the following,

Lfℎ(x) +
[

Lgℎ(x) 0

]

k(x) ≤ �(−ℎ(x))

Lfℎ(x) + Lgℎ(x)
[

Im 0m

]

k(x) ≤ �(−ℎ(x)).

As such, u =
[

Im 0m

]

k(x) satisfies (4.3) for each x ∈ ℝn⧵(∪{0}) and the proof concludes.

Proposition 4.5.1 provides a feedback controller for when the system (4.1) admits a CLF
and a CBF that are not compatible. The idea is to introduce a relaxation input w and then apply
the universal formula. As a result, we can find that the new set of inequalities are compatible. The
downside of introducing a relaxation input is that we no longer guarantee the stability of the origin.
We satisfy instead the condition for a �-CLF. However, because � is a smooth function, it will be
upper bounded on any compact domain. Regardless, it must be noted again that stability is no
longer guaranteed. Nevertheless, this method eliminates the need to search for a compatible �-CLF
and has been proven useful in the literature.

84



4.6 Numerical Example

In this section, we apply our results to an example. Consider a unicycle dynamics subjected
to a drift with the following dynamics,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ẋ

ẏ

�̇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

−y

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos � 0

sin � 0

0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u

v

⎤

⎥

⎥

⎥

⎦

.

For the states, we write z =
[

x y �

]⊤

. One can check that V (z) = 1
2
‖z‖2 is a 0-CLF. Next,

suppose unsafe states are given by the set =
{

z ∈ ℝ3
| y > (2x+1)2+1

}. We use the following
CBF candidate.

ℎ(z) = y − (2x + 1)2 − 1

We find that ℎ(z) = 0 on the boundary of the unsafe set and ℎ(z) < 0 on ℝn ⧵. Next we check if
the function is a CBF by checking if there exists a u satisfying (4.3) for each x. We pick the simplest
class- function for �(−ℎ(z)) = −kℎ(z) where k is a positive constant. Now we evaluate,

Lfℎ(z) + Lgℎ(z)u = −y − 4(2x + 1)u cos � + u sin �.
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For k ≥ 1, we find that

−y ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ky, y < 0

0, 0 ≤ y < (2x + 1)2 + 1

<

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ky + k((2x + 1)2 + 1), y < 0

−k(y − (2x + 1)2 − 1), 0 ≤ y < (2x + 1)2 + 1

< −kℎ(z), ∀z ∈ ℝ3 ⧵.

Therefore, for k ≥ 1, u = 0 satisfies (4.3) on ℝ3 ⧵ , and ℎ is a CBF. We pick k = 5 for the
simulation. Also note here that with Lfℎ(z) < −kℎ(z), we can immediately satisfy the assumption
Lgℎ(z) = 0 ⟹ Lfℎ(z) < −kℎ(z).

Next, we examine the compatibility of the 0-CLF and CBF. First, it is clear that u = 0 satisfy
both (4.2) and (4.3) for y ≠ 0, y ∉ . Then for y = 0, we can find that

LgV (z) =
[

x cos � �

]

Lgℎ(z) =
[

−(8x + 4) cos � + sin � 0

]

.

We only need to consider when these two vectors are linear dependent because otherwise there
always exists a control that can satisfy both (4.2) and (4.3). As such, we consider when � = 0. For
compatibility, we need a u satisfying

xu < 0, − (8x + 4)u ≤ 0
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In other words, we want 0 < (7x−4)u. Clearly, a u with the same sign as 7x−4 exists, and we can
pick it arbitrarily small, so that small control property holds.

With initial conditions of
[

−1 2 �

]⊤

and
[

0 2 �

]⊤

, we simulate our proposed con-
troller given by (4.6) with �(z) = 1 − exp(z⊤z). The resulting trajectory is shown in Figure 4.1 in
a thin solid curve. In comparison to Sontag’s universal formula, given in dashed curve, our pro-
posed controller results in a trajectory that avoids the unsafe states as predicted. In addition, the
minimum-norm controller discussed Section 4.5 in is plotted in a dotted line for comparison. For
this controller, a relaxation input is introduced to guarantee Lipschitzness of the controller. Also,
we add a negative definite function, −0.1z⊤z, on the right hand side of the CLF inequality (4.2)
to “force" control effort; otherwise, the minimum-norm controller will be identically zero. For its
plot, although the trajectory appears to converge towards the origin, there is no real guarantee that
it will do so. This is not to mention that the controller is not differentiable at some point along the
trajectory, which can be an undesirable property. In contrast, the control signals of our proposed
formula are plotted in Figure 4.2. As guaranteed by Theorem 4.4.1, the signals are smooth and go
to zero
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Figure 4.1: Trajectories for different types of controllers with two different initial conditions. Using
Sontag’s universal feedback formula results in a trajectory that violates the state constraint because
it does not take safety into account. Both the minimum-norm and our proposed controller produce
safe trajectories that progress towards the origin (however, there is no guarantee that the minimum-
norm controller will reach it).
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Figure 4.2: The control inputs along trajectory using our control feedback formula (4.6) with the
two different initial conditions. Both control inputs appear smooth in simulation as predicted. In
addition, because the small control property holds, the control both converges to zero as the state
converges towards the origin.

89



Acknowledgements

This chapter, in part, is a reprint of the material [OC19] as it appears in ‘Universal formula
for smooth safe stabilization’ by P. Ong and J. Cortés, in IEEE Conference on Decision and Control,
2019. The dissertation author was the primary investigator and author of this paper. The work in
this chapter was partially supported by NSF Award CNS-144689.

90



Part II

Resource-Aware Implementation of Control
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Chapter 5

Improved Event-Triggered Control

This chapter proposes a novel framework for resource-aware control design termed
performance-barrier-based triggering. Given a feedback policy, along with a Lyapunov function
certificate that guarantees its correctness, we examine the problem of designing its digital imple-
mentation through event-triggered control while ensuring a prescribed performance is met and trig-
gers occur as sparingly as possible. Our methodology takes into account the performance resid-
ual, i.e., how well the system is doing in regards to the prescribed performance. Inspired by the
notion of control barrier function, the trigger design allows the certificate to deviate from mono-
tonically decreasing, with leeway specified as an increasing function of the performance residual,
resulting in greater flexibility in prescribing update times. We study different types of performance
specifications, with particular attention to quantifying the benefits of the proposed approach in the
exponential case. We build on this to design intrinsically Zeno-free distributed triggers for net-
work systems. A comparison of event-triggered approaches in a vehicle platooning problem shows
how the proposed design meets the prescribed performance with a significantly lower number of
controller updates.
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5.1 Problem Formulation

Consider a nonlinear control system of the form

ẋ = F (x, u), x ∈ ℝn, u ∈ ℝm,

with F ∶ ℝn × ℝm → ℝn. The digital implementation of a desired feedback policy � ∶ ℝn → ℝm

as u = �(x) can be accomplished through a sample-and-hold strategy. This consists of updating
the control signal at a specific time tk, for k ∈ {0} ∪ℕ, and keeping it constant up until tk+1, when
the evaluation of the feedback policy provides the next adjustment. As a result, the closed-loop
system is

ẋ = F (x, �(x + e)) = f (x, e), (5.1)

where the error e = xk − x is the state deviation from the last update at iteration k (here, we
use the shorthand notation xk = x(tk)). The challenge is then how to prescribe the sequence of
update times {tk} in order to ensure that the digital implementation retains the convergence and
performance properties of the original continuous-time system.

Event-triggered control looks past time-periodic implementations to identify a state-
dependent trigger criterion to determine the update times. To come up with such a criterion for
a general nonlinear system, a common starting point is to assume that there exists an Input-to-State
Stability (ISS) Lyapunov function for (5.1), see e.g., [Tab07,APDN16,PTNA15]. Formally, we as-
sume there exists a smooth function V ∶ ℝn → ℝ and class-∞ functions �, �, �, and 
 satisfying
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�(‖x‖) ≤ V (x) ≤ �(‖x‖), (5.2a)

fV (x, e) ≤ −�(‖x‖) + 
(‖e‖). (5.2b)

The seminal work [Tab07] provides the trigger design

tk+1 =
{

t ≥ tk | − ��(‖x(t)‖) + 
(‖e(t)‖) = 0
}

, (5.3)

with design parameter � ∈ (0, 1). Under (5.3), the rate of change of the Lyapunov function
along (5.1) satisfies

d
dt
V (x(t)) ≤ (� − 1)�(‖x(t)‖).

Therefore, by design, the certificate V decreases along the trajectories of the sample-and-hold im-
plementation. Stability cannot be established from this fact alone, however, due to the possibility
of Zeno behavior: the state-dependency of the trigger criterion makes it possible for the inter-event
time between consecutive updates to become increasingly small. This, in turn, leaves open the pos-
sibility of an infinite number of updates within a finite period of time. A common strategy to rule out
Zeno behavior is to establish the existence of a minimum inter-event time (MIET). For the trigger
design (5.3), the existence of a MIET can be established under mild assumptions, cf. [Tab07].

Triggering according to state-triggered criteria like (5.3) might lead to fewer controller up-
dates than a time-triggered implementation at the cost of impacting performance (as measured, for

94



(a) (b)
Figure 5.1: Prescribed performance (dashed line) and evolution of the certificate (solid line) under
state-dependent triggering. (a) the controller update (black circle) prescribed by (5.3) does not
take into account the performance residual, which would otherwise be positive until the curve of
the certificate meets the prescribed performance (empty circle). (b) a possible evolution of the
certificate that momentarily violates (gray area) the derivative condition on the certificate specified
by (5.3), does not require a controller update while always meeting the performance specification.

instance, by the rate of decrease of the certificate V ). Ideally, one would like the system to trigger as
sparingly as possible while still guaranteeing a prescribed performance regarding convergence. In
that regard, (5.3) tends to overprescribe updates, as the criterion looks exclusively at the derivative
of the certificate without taking into account how much the certificate has decreased since the last
update, cf. Figure 5.1(a). We refer to the difference between the prescribed performance and the
value of the certificate as the performance residual. Presumably, allowing the certificate to mo-
mentarily violate the derivative condition, with leeway specified as an increasing function of the
performance residual, could result in executions with even fewer controller updates that still meet
the performance requirements, cf. Figure 5.1(b). In the context of network systems, the overpre-
scription of controller updates is also related to the fact that the design of distributed event-triggered
schemes based on (5.3) might result, in general, in sample-and-hold implementations that do not
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have a MIET, see [HJT12,DH12,TC14,BH14].
The formalization of the ideas described above leads us to propose the performance-barrier-

based design methodology for trigger design. In Section 5.2, we limit our discussion to linear
systems to motivate and introduce the basic idea. We develop it further for general nonlinear sys-
tems in Section 5.3. As we show in our exposition, the new approach naturally leads to longer
inter-event times while meeting the specified performance. This provides the necessary ground-
work for tackling the design of Zeno-free distributed event-triggered schemes for network systems
in Section 5.4.

5.2 Performance-Barrier-Based Event-Triggered Control De-

signs for Linear Systems

Here we introduce the performance-barrier-based ETC framework. In this section, we limit
our discussion to linear systems for simplicity of exposition. Consider the sample-and-hold linear
control system

ẋ = Ax + BKxk = (A + BK)x + BKe, (5.4)

with matrices A ∈ ℝn×n, B ∈ ℝn×m and K ∈ ℝm×n so that A + BK is Hurwitz. In this case, it is
easy to guarantee the existence of an ISS Lyapunov function satisfying (5.2). In fact, using the fact
that A + BK is Hurwitz, there exists positive definite matrices P and Q such that

V (x) = x⊤Px (5.5a)
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is an ISS Lyapunov function with

fV (x, e) = −x⊤Qx + 2x⊤PBKe

≤
(

‖PBK‖

�
− �min(Q)

)

‖x‖2 + �‖PBK‖‖e‖2

∶= −c�‖x‖2 + c
‖e‖2, (5.5b)

where �min(Q) is the minimum eigenvalue of Q and Young’s inequality [HLP52] is applied with
� > 0 selected appropriately so that c�, c
 are positive. In particular, for the original continuous-
time system (e ≡ 0 in (5.4)), one obtains the performance guarantee

V (x(t)) ≤ V (x0) exp
(

c�‖P‖
−1t

)

, (5.6)

where x0 denotes the initial condition. We next turn to the trigger design.

5.2.1 Derivative- and Function-Based Trigger Designs

For the sample-and-hold linear system (5.4), the derivative-based trigger design (5.3) takes
the form

tk+1 = min
{

t ≥ tk | − �c�‖x‖2 + c
‖e‖2 = 0
}

,
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with the certificate along any trajectory satisfying d
dt
V (x(t)) ≤ (� − 1)c�‖x(t)‖2. Using this in-

equality, the evolution of the certificate satisfies

V (x(t)) ≤ V (x0) exp
(

(� − 1)c�‖P‖−1t
)

. (5.7)

A higher value of � ∈ (0, 1) results in a longer inter-event time and a slower exponential rate on
the evolution of the certificate. This presents a trade-off for design. In order to compare different
designs fairly, it would seem reasonable to establish a common performance criterion. Given the
exponential convergence characteristic of linear systems, prescribing a desired rate of convergence
r > 0 is a natural candidate. Formally, we specify

V (x(t)) ≤ V (x0) exp(−rt), (5.8)

at all time and for any initial condition. Given the performance (5.6) of the continuous state-
feedback system, we require r < c�‖P‖−1. Since the derivative-based trigger is guaranteed to
perform according to (5.7), one can see that � = 1 − r‖P‖

c�
is the value that yields the longest inter-

event time (for the derivative-based design) while still satisfying the performance specification.
The following result summarizes the asymptotic convergence properties under the derivative-based
trigger design.

Lemma 5.2.1. (Derivative-Based Design – Linear Case). Consider the sample-and-hold linear

system (5.4) with an ISS Lyapunov function (5.5). Given a desired rate of convergence r < c�‖P‖−1

98



and � ∈ (0, 1 − r‖P‖
c�
), let g ∶ ℝn ×ℝn → ℝ be any function such that

fV (x, e) ≤ g(x, e) ≤ (� − 1)c�‖x‖2 + c
‖e‖2.

Define the derivative-based trigger time as

tdk+1 = min
{

t ≥ tk | g(x(t), e(t)) + rV (x(t)) ≥ 0
}

. (5.9)

There exists a MIET �d� > 0 such that if V (x(tk)) ≤ V (x0) exp(−rtk), then tdk+1 − tk ≥ �d� . As a

consequence, if the trigger sequence {tk}∞k=0 is defined iteratively via the derivative-based trigger,

then V (x(t)) < V (x0) exp(−rt) for all t > 0, and the origin is globally exponentially stable. ■

Lemma 5.2.1 is essentially presented in [Tab07]. We omit its proof as it is a special case
of Proposition 5.2.3 below. The basic idea behind the design (5.9) is to keep the time derivative of
the Lyapunov function below an amount that, by application of the Comparison Lemma [Kha02,
Lemma 3.4], would make the system satisfy the desired performance, i.e., d

dt
V (x(t)) < −rV (x(t)).

As a result, the gap V (x0) exp(−rt) − V (x(t)) between the desired performance and the Lyapunov
function, which we call performance residual, is always increasing until the next update, see Fig-
ure 5.1. While meeting the desired specifications means keeping the performance residual nonneg-
ative, doing so by having it always increase is overly conservative. To produce a less conservative
design, one can instead look at the value of the Lyapunov function itself (rather than its time deriva-
tive), as specified in the following result.

Lemma 5.2.2. (Function-Based Design – Linear Case). Consider the sample-and-hold linear

system (5.4) with an ISS Lyapunov function (5.5). Given a desired rate of convergence r < c�∕‖P‖,
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define the function-based trigger time as

tfk+1=min
{

t > tk | 0 ≥ V (x0) exp(−rt) − V (x(t))
}

. (5.10)

There exists a MIET � fr > 0 such that if V (x(tk)) ≤ V (x0) exp(−rtk), then tfk+1 − tk ≥ � fr . As a

consequence, if the trigger sequence {tk}∞k=0 is defined iteratively via the function-based trigger,

then V (x(t)) ≤ V (x0) exp(−rtk), and the origin is globally exponentially stable. ■

The function-based design relies on the idea of directly enforcing V (x(t)) ≤ V (x0) exp(−rt).
A problem with this design, however, is that it waits until the last moment, i.e., when the perfor-
mance residual becomes zero (empty circle in Fig. 5.1(a)), to prescribe a controller update. Con-
sequently, the implementation is not robust to errors (e.g., delays in evaluation or actual imple-
mentation). The performance-barrier-based trigger design, proposed next, is motivated by the idea
of overcoming the conservatism of the derivative-based design and the lack of robustness of the
function-based one.

5.2.2 Performance-Barrier-Based Trigger Design

Our ensuing design builds on the observation that to ensure that the evolution of V satisfies
the specified performance, V needs to decrease faster than (or at the same rate as) the specification
only when their values are equal. Formally, this can be established using Nagumo theorem [BM07]:
V (x(t)) ≤ V (x0) exp(−rt) if and only if

d
dt
V (x(t)) ≤ −rV (x(t)) when V (x(t)) = V (x0) exp(−rt). (5.11)
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Note that this condition does not restrict how fast V changes when V (x(t)) < V (x0) exp(−rt), no
matter how small the performance residual is. One can readily see that the condition (5.11) suffers
from the same lack of robustness as the function-based design. To address this, and inspired by
how control barrier functions [AXGT17,ACE+19] restrict the speed of their own evolution as the
state approaches the boundary of the safe set, we instead prescribe

d
dt
V (x(t)) + rV (x(t)) ≤ c�

(

V (x0) exp(−rt) − V (x(t))
)

,

with a nonnegative constant c� ≥ 0. The key idea is restricting how fast V can increase propor-
tionally to the performance residual. The following result summarizes the asymptotic convergence
properties under this type of prescription.

Proposition 5.2.3. (Performance-Barrier-Based Design – Linear Case). Consider the sample-

and-hold linear system (5.4) with an ISS Lyapunov function (5.5). Given a desired rate of conver-

gence r < c�∕‖P‖ and � ∈ (0, 1 − r‖P‖
c�
), let g be as in Lemma 5.2.1. Define the performance-

barrier-based trigger time as

tpk+1 = min
{

t ≥ tk | g(x(t), e(t)) + rV (x(t)) ≥ c�
(

V (x0) exp(−rt) − V (x(t))
)}

. (5.12)

Let G(�) = exp(A�) + ∫ �
0 exp(A(� − s))dsBK and

M(�) = c�P exp(−r�) − c
‖I − G(�)‖2 − G(�)⊤((c� + r)P + (� − 1)c�I)G(�). (5.13)
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The constant

�p� ∶= min{� > 0 | det(M(�)) = 0}, (5.14)

is a MIET such that if V (x(tk)) ≤ V (x0) exp(−rtk), then t
p
k+1 − tk ≥ �p� . As a consequence, if

the trigger sequence {tk}∞k=0 is defined iteratively via the performance-barrier-based trigger, then

V (x(t)) ≤ V (x0) exp(−rt) for all time, and the origin is globally exponentially stable.

Proof. First, we note that we can derive from the trigger design, V (x(t)) ≤ V (x0) exp(−rt) for
every interval [tk, tpk+1), but we have omitted the proof here because it will appear in the proof of
Proposition 5.3.3 later for the more general case. Nevertheless, we will prove here the result on the
MIET, which will rule out the the sequence {tk}∞k=0 converging to a finite value (Zeno behavior).
We start by deducing for each update

V (x(tk)) ≤ V (x0) exp(−rtk)

V (x(tk)) exp(−rΔtk) ≤ V (x0) exp(−rt)

for the time t ∈ [tk, tk+1] where Δtk = t − tk. Using this bound to lower bound the right-hand side
of the trigger condition in (5.12), as well as using the definition of g to upper bound the left-hand
side, we derive the condition

x⊤(rP + (� − 1)c�I)x + c
‖e‖2 = c�(V (xk) exp(−rΔtk) − x⊤Px) (5.15)

which must be met earlier. Note we have replaced inequality with equality due to continuity of all
the terms along the trajectory. Under system (5.4), we can find the expression for the state during
each iteration as x(t) = G(Δtk)xk. Substituting the state and moving everything of the left-hand
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side to the right, (5.15) becomes
0 = x⊤kM(Δtk)xk.

We know that M(0) ≻ 0 because the right-hand side of (5.15) is zero, and the left-hand side is
negative at time tk due to the definition of r. The MIET is given by when M(�) transits from
positive definite to semi-positive definite which is when there exists an xk such that the condition
is satisfied. Therefore, the MIET is given by (5.14). As a result, V (x(t)) < V (x0) exp(−rt) for all
time. Lastly, the origin can be deemed exponentially stable as we can derive

‖x‖ ≤ ‖x0‖
‖P‖1∕2

�min(P )1∕2
exp(−rt∕2),

concluding the proof.

Proposition 5.2.3 generalizes both Lemmas 5.2.1 and 5.2.2. Note that the trigger de-
sign (5.9) is recovered by selecting c� = 0 in (5.12), and the trigger design (5.10) corresponds to
the limit of (5.12) as c� →∞. Directly from the construction of the trigger designs, one can deduce
tdk+1 ≤ tpk+1 ≤ tfk+1 (inequalities are strict if g is continuous). Therefore, we can adjust the parameter
c� to control the inter-event times, which is also evident in the expression for the MIET. Note that
the performance-barrier-based design enjoys longer inter-event times than the derivative-based one
while still being able to achieve the prescribed performance. Although the performance-barrier-
based strategy does not have a MIET as large as the function-based one, it does not suffer from
the same lack of robustness to errors The design also includes the flexibility of using the surrogate
function g if it is more convenient or easier to evaluate. Finally, Proposition 5.2.3 also provides a
method to calculating the MIET using the design (5.12) for linear control systems. The expression
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only depends on time (not on the state), which means that it can be calculated offline.

5.3 Performance-Barrier-Based Event-Triggered Control De-

signs for Nonlinear Systems

In this section we expand our presentation of the performance-barrier-based event-triggered
control design to general nonlinear systems (5.1). Our starting point is the availability of an ISS
Lyapunov function (5.2) in tandem with the feedback policy �. Unlike the case of linear systems,
the evolution of the Lyapunov function along the trajectories of the closed-loop system might not
be exponentially decaying, and this raises the question of how to suitably define a performance
specification. We do this by considering a continuously differentiable, time-dependent function
S(⋅; x0) ∶ ℝ+ → ℝ+, parametrized by the initial condition x0, encoding the desired behavior as

V (x(t)) ≤ S(t; x0). (5.16)

We useNagumo theorem [BM07] towrite an equivalent condition (assuming thatV (x0) ≤ S(0; x0))
to the requirement (5.16) as

d
dt
V (x(t)) ≤ d

dt
S(t; x0) when V (x(t)) = S(t; x0). (5.17)

With this in mind, we seek to identify different types of performance specification functions S
that allow us to establish the existence of a MIET. In the following, we discuss several classes of
specification functions.
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5.3.1 Class- Derivative Performance Specification

This class of specification function is an extension of the exponential decrease of the linear
case. In particular, note that the desired convergence rate r is limited in the linear case by the
performance (5.6) of the original continuous-time system. Similarly, in the nonlinear case, we look
at the performance under the continuous-time controller implementation (e ≡ 0 in (5.1)). Hence,
let ℎ ∶ ℝ+ → ℝ+ be such that

fV (x, 0) ≤ −�(‖x‖) < −ℎ(V (x)),

for all x. In other words, ℎ expects a slower convergence than the natural convergence of the system
with a continuous controller.

Definition 5.3.1. (Class- Derivative Specification). For �∗ ∈ (0, 1), let ℎ ∶ ℝ+ → ℝ+ be locally
Lipschitz and class-with ℎ(V (x)) ≤ (1−�∗)�(‖x‖) for all x. A function S(⋅; x0) ∶ ℝ+ → ℝ+ is a
class- derivative performance specification if it is the unique solution to the differential equation

Ṡ = −ℎ(S), S(0; x0) ≥ V (x0),

for any initial condition x0. ∙

According to this definition, S is strictly decreasing in time and limt→∞ S(t; x0) = 0 for all
x0, and is increasing in ‖x0‖, cf. [Kha02, Lemma 4.4] (with a slight abuse of notation, writing the
specification in the form S(‖x0‖, t) makes it a class  function). Note that the exponential rate
specification is a particular case of Definition 5.3.1 (by setting ℎ(s) = −r s). The following result
expands the treatment in [Tab07] regarding derivative-based triggers to account for this notion of
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performance specification and follows a similar line of reasoning.

Proposition 5.3.2. (Derivative-Based Design – Class- Derivative). Consider the sample-and-

hold nonlinear system (5.1) with an ISS Lyapunov function (5.2). Given a class- derivative per-

formance specification S and � ∈ (0, �∗), let g ∶ ℝn ×ℝn → ℝ be any function such that

fV (x, e) ≤ g(x, e) ≤ (� − 1)�(‖x‖) + 
(‖e‖).

Define the derivative-based trigger time as

tdk+1 = min
{

t ≥ tk | g(x(t), e(t)) + ℎ(V (x(t))) ≥ 0
}

. (5.18)

Under the assumption that F , �, 
 , �−1 are locally Lipschitz, there exists a MIET �d� > 0 such that

if V (x(tk)) ≤ S(tk; x0), then tdk+1 − tk ≥ �d� . As a consequence, if the sequence {tk}∞k=0 is defined

iteratively via the derivative-based trigger, then V (x(t)) ≤ S(t; x0) for all time, and the origin is

globally asymptotically stable.

Proof. The trigger design directly enforces g(x(t), e(t)) < −ℎ(V (x(t)) for t ∈ [tk, tdk+1). Therefore,

d
dt
V (x(t)) = fV (x(t), e(t)) ≤ −ℎ(V (x(t))).

Consequently, if V (x(tk)) ≤ S(t; x0), one can guarantee V (x(t)) ≤ S(t; x0) for all t ∈ [tk, tdk+1] via
the Comparison Lemma [Kha02, Lemma 3.4]. Next, we prove the existence of aMIET. Because the
sublevel set {x ∈ ℝn

| V (x) ≤ S(0; x0)}) is forward invariant and compact, ‖e‖ = ‖x − xk‖ must
be bounded by some constantE > 0 and hence the error remains in the compact set {e | ‖e‖ ≤ E}.
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On these compact sets, let L
 and L�−1 denote the Lipschitz constants for the functions 
 and �−1,
respectively. Then,

tdk+1 = min
{

t ≥ tk | g(x, e) + ℎ(V (x)) ≥ 0
}

≥ min
{

t ≥ tk | g(x, e) + (1 − �∗)�(‖x‖) ≥ 0
}

≥ min
{

t ≥ tk | (� − �∗)�(‖x‖) + 
(‖e‖) = 0
}

≥ min
{

t ≥ tk |
L


�∗ − �
‖e‖ = �(‖x‖)

}

≥ min
{

t ≥ tk |
L�−1L

�∗ − �

‖e‖ = ‖x‖
}

= min
{

t ≥ tk |
‖e‖
‖x‖

= D−1},

whereD = L�−1L

�∗−�

. Using Lemma 5.6.1, the time at which the condition in the last equation is met is
lower bounded by tk+ 1

LfD+Lf
, whereLf is the Lipschitz constant for f with respect to (x, e) (which

exists because F and � are locally Lipschitz). This establishes the existence of a positive MIET
bound, ruling out the possibility of Zeno behavior in the sequence {tk}∞k=0. Finally, asymptotic
stability follows from the fact that S is strictly decreasing and limt→∞ S(t; x0) = 0, concluding the
proof.

Next, we build on the ideas presented in Sections 5.1 and 5.2 to introduce the performance-
barrier-based trigger design (5.19) for the nonlinear case. The proposed design is based on enforcing
the condition (5.17) to ensure the performance specification is met. In doing so, we take advan-
tage of the performance residual S(t; x0) − V (x(t)) to avoid overconstraining the evolution of the
Lyapunov certificate V when V (x(t)) < S(t; x0).

Proposition 5.3.3. (Performance-Barrier-Based Design – Class- Derivative). Consider the
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sample-and-hold nonlinear system (5.1) with an ISS Lyapunov function (5.2). Given a class-

derivative performance specification S and � ∈ (0, �∗), let g be as in Proposition 5.3.2 and let �

be any ∞ function on [0,∞). Define the performance-barrier-based trigger time as

tpk+1 = min
{

t ≥ tk | g(x(t), e(t)) + ℎ(V (x(t))) ≥ �
(

S(t; x0) − V (x(t))
)}

. (5.19)

Under the assumption that F , �, 
 , �−1 are locally Lipschitz, there exists a MIET �p� > 0 such that

if V (x(tk)) ≤ S(t; x0), then t
p
k+1 − tk ≥ �p� . As a consequence, if the sequence {tk}∞k=0 is defined

iteratively via the performance-barrier-based trigger, then V (x(t)) ≤ S(tk; x0) for all time, and the

origin is globally asymptotically stable.

Proof. The trigger design directly enforces

g(x(t), e(t)) + ℎ(V (x(t))) < �
(

S(t; x0) − V (x(t))
)

, (5.20)

for t ∈ [tk, t
p
k+1). Thus, when S(t; x0) = V (x(t)), we find g(x(t), e(t)) + ℎ(S(t; x0)) < 0, and

hence fV (x(t), e(t)) < −ℎ(S(t; x0)) from the properties of g. Since S is a derivative performance
specification, it follows that

d
dt
V (x(t)) < d

dt
S(t; x0),

implying (5.17). Consequently, V (x(t)) ≤ S(t; x0) for all t ∈ [tk, tpk+1). We can also use this fact to
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deduce

tpk+1 ≥ min
{

t ≥ tk | g(x(t), e(t)) + ℎ(V (x(t))) = 0
}

,

implying that the performance-barrier-based trigger time must occur after the derivative-based trig-
ger one (5.18). Thus, �d� from Proposition 5.3.2 is a valid MIET for the performance-barrier-based
trigger as well, ruling out the possibility of Zeno behavior in {tk}∞k=0. Finally, asymptotic stability
follows from the properties of S.

Note that the function � in Proposition 5.3.3 restricts the speed of evolution of the Lyapunov
certificate V when V (x(t)) < S(t; x0) as a function of the performance residual.

Remark 5.3.4. (Comparison with Derivative-Based Approach: Longer Inter-Event Times). As
pointed out by Propositions 5.3.2 and 5.3.3, both the derivative- and performance-barrier-based ap-
proaches meet the performance specification defined by S. However, since the performance resid-
ual on the right-hand side of (5.19) always remains greater than zero by design, the performance-
barrier-based approach, for a given system state, has a longer inter-event time than the derivative-
based one, and is therefore less conservative. In general, it is challenging to provide an explicit
bound between the respective MIETs due to the generality of the system dynamics and the perfor-
mance requirement. We show later in Section 5.3.2 that in the case of exponential performance
specification this difference in MIETs can be quantified analytically. ∙

Remark 5.3.5. (Comparison with Function-Based Approach: Robustness to Input Distur-

bances). A purely function-based design would correspond to (5.19) with the left-hand side sub-
stituted by zero. Note that the error term does not show up explicitly in such design, in contrast to
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the performance-barrier-based approach. Much like how one can use the ISS notion to deal with
disturbances, the performance-barrier-based design allows for the analysis and mitigation of input
disturbances. This is the intention of the presence of the parameter � in the definition of g, that
reserves a part of the negativity of the Lyapunov function decay. ∙

Remark 5.3.6. (Connection with Dynamic Trigger Design). We note that dynamic triggering
can be interpreted as a particular case of the performance-barrier-based trigger design, where the
performance function is specified in an online fashion. We elaborate on this point here. Formally,
and with the same notation employed in Proposition 5.3.3, the dynamic trigger [Gir15] would take
the form

tdynk+1 = min
{

t ≥ tk | �g(x(t), e(t)) ≥ �(t)
}

, (5.21a)

for � > 0, where the variable � follows the dynamics

�̇ = −�(�) − g(x, e) (5.21b)

with a locally Lipschitz class-∞ function �. The basic idea is to store the decrease of V in the
variable � through (5.21b) and use it to increase the inter-event times in (5.21a). The term �(�)

represents a decay in the stored amount, ensuring that the system as a whole loses total “energy”
over time.

Interestingly, the dynamic design (5.21) can be interpreted from the perspective of
performance-barrier-based ETC. Selecting the performance specification function S(t; x0) = �(t)+
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V (x(t; x0)), one can see that the design (5.21) ensures

d
dt
V (x(t; x0)) −

d
dt
S(t; x0) < �(S(t; x0) − V (x(t; x0))

with �(�) = �(�) + �∕� (note the parallelism with the performance-barrier-based design (5.19)),
implying (5.17) is satisfied. Note that this performance specification S is not known a priori and
is instead determined in an online fashion, tailored to the concrete initial condition of the system
trajectory. In particular, this means that the explicit performance guarantee of the design is difficult
to obtain unless additional assumptions are made on the dynamics. A final observation is that errors
in the evaluation of the decrease of V might jeopardize the convergence properties of dynamic
triggering, whereas the evaluation of the performance residual in a feedback fashion characteristic
of the performance-barrier-based ETC approach makes it naturally robust to errors. ∙

5.3.2 Exponential Performance Specification

Here we discuss the exponential performance specification. This is a subfamily of the class-
 derivative performance specifications in Section 5.3.1 for which an explicit analysis of the per-
formance residual leads us to an improved MIET with respect to the derivative-based approach.

In this case, in lieu of the conditions (5.2) for the ISS Lyapunov function V ∶ ℝn → ℝ,
assume the following stronger set of conditions hold: there exist positive constants c1, c2, c3, and
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c4 such that

c1‖x‖
2 ≤ V (x) ≤ c2‖x‖

2, (5.22a)
dV
dx

f (x, 0) ≤ −c3‖x‖2, (5.22b)
‖

‖

‖

‖

dV
dx

‖

‖

‖

‖

≤ c4‖x‖, (5.22c)

for all x ∈ ℝn. Under the additional assumption that F and � are globally Lipschitz, and using
Young’s inequality [HLP52], the following inequality holds for all (x, e),

fV (x, e) =
dV
dx

f (x, e) ≤ −c3‖x‖2 + c4Lf‖x‖‖e‖

≤ −c�‖x‖2 + c
‖e‖2, (5.23)

for some positive constants Lf , c�, and c
 . Notice that the functions �, �, �, and 
 for this ISS
Lyapunov function are defined as quadratic functions with constants c1, c2, c�, c
 , respectively.
Note that in the absence of error, the value of V converges exponentially. Hence, we consider
the exponential performance specification S(t; x0) = V (x0) exp(−rt) with r < c�∕c2, which is of
class- since it is the unique solution to Ṡ = −rS, cf. Definition 5.3.1.

The next result provides an expression for the MIET for the performance-barrier-based trig-
ger design (5.19) and shows it is strictly larger than the MIET �d� of the derivative-based trigger
design.

Proposition 5.3.7. (Performance-Barrier-Based Design – Exponential Performance). Consider

the sample-and-hold nonlinear system (5.1) with a Lyapunov function (5.22). Given an exponential
performance specification S and � ∈ (0, 1 − rc2

c�
), let g be as in Proposition 5.3.2, and �(z) = c�z
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with a positive c� . Define

�exp� ∶= min
{

� ≥ 0 | (�(�) + r) exp
(

∫

�

0
�(s)ds

)

= c�

(

exp(−r�) − exp
(

∫

�

0
�(s)ds

))

}

(5.24)
where

�d� = �
−1(−r) ∶=

√

((1 − �)c� − r)∕c

Lf + Lf

√

((1 − �)c� − r)∕c

,

�∗ = �−1(0) ∶=

√

(1 − �)c�∕c

Lf + Lf

√

(1 − �)c�∕c

,

�(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

((� − 1)c� + c
�(�)2)∕c2 0 ≤ � < �∗

((� − 1)c� + c
�(�)2)∕c1 �∗ ≤ �

,

�(�) =
Lf�

1 − Lf�
.

Under the assumption that F and � are globally Lipschitz, �exp� is a MIET such that if V (x(tk)) ≤

V (x0) exp(−rtk), then t
p
k+1 − tk ≥ �exp� > �d� . As a consequence, if the trigger sequence {tk}∞k=0 is

defined iteratively with the exponential performance-barrier-based trigger (5.19), then V (x(t)) ≤
V (x0) exp(−rt) for all time, and the origin is globally exponentially stable.

Proof. The statements on performance and stability follow with the same arguments used in the
proof of Proposition 5.3.3. Here, we only establish the MIET expression given for �exp� . First, we
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use (5.22a) and Lemma 5.6.1 to find

g(x(t), e(t)) ≤ ((� − 1)c� + c
�(t − tk)2)‖x‖2

≤ �(t − tk)V (x),

where we have used that �(�∗)2 = (1 − �)c�∕c
 . This gives the bound

tpk+1 ≥ min
{

t ≥ tk | (�(t − tk) + r)V (x(t)) ≥ c�(V (x0) exp(−rt) − V (x(t)))
}

.

In addition, we can bound the Lyapunov function along the trajectory using the differential form of
Gronwall’s inequality [Kha02, Lemma A.1] as

V (x(t)) ≤ V (xk) exp
(

∫

t

tk

�(s − tk)ds
)

. (5.25)

This helps us isolate the state component, which in turn allows us to bound the trigger time with
only the time variable as follows

tpk+1 ≥ min
{

t ≥ tk | (�(t − tk) + r) exp
(

∫

t

tk

�(s)ds
)

≥ c�

(

exp(−r(t − tk)) − exp
(

∫

t

tk

�(s − tk)ds
))

}

.

With the change of variables � = t − tk, and using continuity, the condition defining the set is as
in (5.24). Next, because � is strictly increasing and �(�d�) = −r, the left-hand side of the condition
is nonpositive for � ≤ �d� . At the same time, the right-hand side of the condition must always be
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positive. Hence, the condition must be met at �exp� > �d� , concluding the proof.

Note that the expression (5.24) in Proposition 5.3.7 for the MIET of the performance-
barrier-based design with exponential specification does not depend on the state, and can there-
fore be calculated a priori, before the actual implementation of the controller. We take advantage
of the ability to quantify the benefits of the performance-barrier-based approach for exponential
specifications when discussing its application to network systems in our forthcoming discussion.

5.4 Performance-Barrier-Based Triggering for Network Sys-

tems

In this section we discuss the application of the performance-barrier-based triggering ap-
proach to the design of distributed triggers for network systems. Specifically, we consider expo-
nential performance specifications and take advantage of the additional flexibility provided by the
performance residual to ensure the existence of a MIET.

Consider a network ofN agents whose interconnection is represented by a connected undi-
rected graph  = ([N], ). By this, we mean that each agent can only communicate with its
neighbors, and hence has access to limited information about the system. We make the assumption
that the Lyapunov function satisfying (5.22) can be expressed as an aggregate

V (x) =
N
∑

i=1
Vi(xi

),

with each function Vi depending on the local information available to agent i. We assume each Vi
to be continuously differentiable with Lipschitz gradient. Our goal is to design distributed triggers
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that can be evaluated by individual agents with the information available to them.

5.4.1 Challenges for ETC in Network Systems

Here we describe the challenges in transcribing the derivative-based trigger approach to net-
work systems. The direct transcription of (5.18) to the network setting would result in a centralized
trigger that requires global information to be evaluated. Making use of the aggregate decomposition
of V , one can instead define

tk+1 = min
{

t ≥ tk | ∃i ∈ [N] ∋ (� − 1)c�‖xi(t)‖2 + c
‖ei(t)‖2 + rVi(xi
(t)) ≥ 0

}

. (5.26)

Note the slight abuse of notation here, where xi and ei now refer to the states associated with agent
i, rather than the i-th component of vectors x and e, resp. This trigger corresponds to partition-
ing (5.18) across the network into multiple triggers, one per agent, that can be individually evalu-
ated with local information. Note that the design means that when an agent triggers, a controller
update request is sent network-wide. This relies on the observation that such messages, which do
not require any state information, can be easily propagated through the network. The design is
more conservative than the centralized one and, as a consequence, results in shorter inter-event
times for an arbitrary network state. In fact, this type of distributed trigger schemes can suffer
from Zeno behavior, see e.g., [HJT12,DH12,TC14,BH14]. A common practice to address this is
to explicitly incorporate a MIET at the design stage, a process known as time regularization, see
e.g., [BDH16,MT11, TC14]. For instance, with a slight modification to suit our context, [MT11]
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proposes the following

tk+1 = min
{

t ≥ tk + �d� | ∃i ∈ [N] ∋ (� − 1)c�‖xi(t)‖
2 + c
‖ei(t)‖2 + rVi(xi

(t)) ≥ bi(tk)
}

,

where b ∈ ℝn is a budget variable satisfying 1⊤b = 0, which we discuss below. Time regulariza-
tion discards the possibility of Zeno behavior by forcing the inter-event time to be above the MIET
known from the centralized design. The design builds on the fact that, from the analysis in Sec-
tion 5.3, we know controller updates are not necessary for �d� seconds after the last update in order
to meet the performance specification. Consequently, agents can ignore the trigger conditions for
this amount of time and only start enforcing them thereafter.

However, note that time regularization does not change the fact that the error ‖ei‖ might
have already surpassed the level at which the trigger would occur as soon as the trigger condition
starts getting monitored, see e.g., [BH14]. The variable b seeks to address this by re-balancing the
budget that each agent has in its trigger condition, allowing for the possibility of allocating at the
triggering times some budget from a node where the condition has not been violated to another
node where it has (in order to have the latter not trigger immediately next time once �d� seconds
have elapsed). Among the potential disadvantages of the design (5.27) from a network perspective,
we point out the following:

(i) the computation of the MIET �d� can be challenging and requires the execution of a dedicated
distributed algorithm prior to the controller implementation. Moreover, the value obtained
may turn out to be too conservative, making the trigger occur more frequently than necessary;

(ii) the proposed scheme requires a central entity, albeit only at each triggering time, to calculate
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and assign budgets to all the agents;

(iii) without further assumptions on the nonlinear system, the evolution of the trigger condition
cannot be predicted, and consequently there is no guarantee that the selected budgets b will
successfully extend the inter-event time.

Our proposed method addresses these problems by designing a trigger that intrinsically exhibits a
MIET and relying on distributed computation and communication among the agents to calculate
their budgets.

5.4.2 Intrisically Zeno-Free Distributed ETC Design

We use two different elements to propose a distributed trigger scheme: dynamic average
consensus algorithm and the performance-barrier-based trigger design. We approach the Zeno
problem by attacking directly its root cause in distributed settings: partial information of the sys-
tem states is insufficient to inform agents of system’s overall performance. For this reason, our
distributed trigger design makes use of dynamic average consensus algorithm to estimate, with
some tracking errors, the global terms in the centralized version of the trigger. Doing so trans-
forms the problem into ascertaining how well the trigger design can tolerate errors. This is where
we leverage the additional flexibility provided by the performance-barrier-based approach over the
derivative-based one regarding handling of the tracking errors. Particularly, as we will show later
in the analysis of our design, the performance residual term offered by performance-barrier-based
ETC plays a key role in ruling out Zeno behavior.
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We begin by defining some notation functions for compactness of presentation. Let

x(x) = (� − 1)c�‖x‖2 + (r + c�)V (x),

xe(x, e) =x(x) + c
‖e‖2.

These functions can be decomposed as sums of the following functions, respectively,

x
i (xi

) = (� − 1)c�‖xi‖2 + (r + c�)Vi(xi
),

xe
i (xi

, ei) =x
i (xi

) + c
‖ei‖2.

For convenience, we letW x andW xe be vector-valued functions with componentsW x
i =x

i and
W xe

i =xe
i , respectively. We omit the dependency on xi

and ei when it is clear from the context.
Notice that 1⊤W x = x and 1⊤W xe = xe. The centralized performance-barrier-based trigger
design (5.19) can be rewritten compactly as

texpk+1 = min
{

t ≥ tk | xe(t) = c�V (x0) exp(−rt)
}

. (5.27)

This trigger has a MIET, cf. Proposition 5.3.7, but the direct computation of xe requires global
information. However, given the aggregate decomposition 1⊤W xe = xe and the fact that agent
i knows xe

i , a dynamic average consensus algorithm enables the agents to estimate the average
xe∕N . This leads to the following trigger design,

tk+1 = min
{

t ≥ tk | ∃i ∈ [N] ∋ ai(t) = c�V (x0) exp(−rt)∕N
}

, (5.28a)
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ȧ = Ẇ xe − �aLa, (5.28b)

where �a > 0 and L ∈ ℝN×N is the graph’s Laplacian. With this formulation, we denote the
tracking error by �a ∶= a − 11

⊤W xe∕N . In order for the dynamic average consensus to track the
right variable, it is crucial to initialize a so that 1⊤�a = 0. As such, we assume that a(0) is so that
�a(0) = 0 at the initial time t = 0. Since the tracking error’s mean 1⊤�a is conserved along the
dynamics (5.28b), this ensures 1⊤�a = 0 until the next triggering time. However, the value ofxe

jumps tox at each trigger time tk due to e being reset to zero, and therefore the average estimate
amust be reinitialized at each trigger time tk to keep the tracking error’s mean zero. To do this, we
use another dynamic average consensus to keep track ofx as

ż = Ẇ x − �zLz (5.28c)

where �z > 0, with the initial condition z(0) = 1x(x0)∕N . Similarly, we denote the tracking
error by �z ∶= z − 11

⊤W x∕N . Note that the variable z does not depend on e, so it does not need
to reinitialize at each tk. With the new tracking variable, we reinitialize a to z at each trigger time
with a jump map,

a+ = z, t ∈ {tk}∞k=0. (5.28d)

Remark 5.4.1. (Distributed Implementation). The design (5.28) does not require a central entity
to estimate the evolution of the trigger condition, relying instead on dynamic average consensus.
To implement (5.28), the i-th agent, with local exchange information on ai and zi, can evaluate the
dynamic average consensus dynamics (5.28b) and (5.28c) if the time derivative of the reference
signals Ẇ xe

i and Ẇ x
i are available to it. Each agent i has the information of the states xi and ei
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and the dynamics ẋi and ėi. However, due to dependency on xi
, the calculation of Ẇ xe

i and Ẇ x
i

requires knowledge of xi
and ẋi

. The computation of the latter requires two-hop communication
in the graph (alternatively, only one-hop communication is required if the decomposition of the
Lyapunov function takes the form V (x) =

∑N
i=1 Vi(xi)). ∙

Remark 5.4.2. (Extensions to Discrete-Time Consensus and Directed Graphs). Instead of the
continuous-time algorithms in (5.28b) and (5.28c), the design (5.28) could employ discrete-time
implementations of the dynamic average consensus algorithm, see e.g., [KSC+19]. Since the effec-
tive timescales of (5.28b) and (5.28c) scale linearly with �a and �z, respectively, cf. Lemma 2.2.1,
the stepsizes of such discrete-time implementations would scale linearly with 1∕�a and 1∕�z, re-
spectively. A technical analysis analogous to the one presented in Section 5.4.3 below could be
developed, albeit we do not pursue it here for simplicity of exposition. A similar observation can
be made about the interconnection structure of the network, which could easily be extended from
undirected to weight-balanced, strongly connected directed graphs, cf. [BCM09]. ∙

5.4.3 Convergence Analysis

In this section we show that the proposed distributed trigger design (5.28), with suitable
choices of the parameters c� , �a, and �z, makes the origin asymptotically stable. Our analysis in-
cludes establishing performance satisfaction and aMIET. Regarding the former, from the definition
of the trigger, we have that

xe(t)∕N + �a,i(t) = ai(t) < c�V (x0) exp(−rt)∕N (5.29)
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along the trajectory for all i ∈ [N]. Using the fact that 1⊤�a = 0 at all time and summing (5.29),
we deduce that xe(t) < c�V (x0) exp(−rt), i.e., the same condition enforced by the centralized
trigger (5.27). This shows the satisfaction of performance. Establishing MIET is more compli-
cated. The inequality (5.29) suggests that �a,i being nonzero can make the distributed trigger (5.28)
occur prematurely in comparison to the centralized trigger (5.27). However, our analysis below
shows that, by tuning different parameters appropriately, we can ensure that at least for the time
interval [tk, tk+�d�), the presence of �a,i does not have this effect, and (5.28) is not triggered. Before
establishing this fact, we show next that the reference signalsW xe andW x have an exponentially
bounded time derivative. Its proof is given in the appendix.

Lemma 5.4.3. (Exponential Bounds for Reference Signals). Consider the distributed trigger

design (5.28) for the sample-and-hold nonlinear system (5.1) with Lipschitz F and �. Assume that

each Vi is continuously differentiable with Lipschitz gradient. Given a desired rate of convergence

r < c�∕c2 and � ∈ (0, 1 −
rc2
c�
), there exists Ωxe > 0 such that, for all k ∈ {0} ∪ ℕ,

‖Ẇ xe(t)‖ ≤ ΩxeV (xk) exp(−rΔtk)

for t ∈ [tk, tk + �d�). Furthermore if c� > (1 − �)(c�∕c1) − r, there exists Ω
x > 0 such that

‖Ẇ x(t)‖ ≤ ΩxV (x0) exp(−rt)

for all time along the trajectory.

Lemma 5.4.3 ensures that the requirements to apply Lemma 2.2.1 hold, allowing us to bound
�a and �z. We are now ready to state the main result of this section.
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Theorem 5.4.4. (Distributed ETC with Exponential Performance). Consider the sample-and-

hold nonlinear system (5.1) with a Lyapunov function (5.22). Given a desired rate of convergence

r < c�∕c2 and � ∈ (0, 1 − rc2
c�
), let tk+1 be determined iteratively according to the performance-

barrier-based distributed trigger (5.28) with c� > (1 − �)(c�∕c1) − r. Under the assumption that F
and � are Lipschitz and that each Vi is continuously differentiable with Lipschitz gradient, let the

constant �d� be defined as in Proposition 5.3.7. Then, there exist �a and �z large enough such that

tk+1 − tk ≥ �d� ,

for all k ∈ {0} ∪ ℕ. Consequently, the performance requirement V (x(t)) ≤ V (x0) exp(−rt) is

enforced for all time and the origin is rendered globally exponentially stable.

Proof. Our proof strategy is to show that, for each k ∈ {0}∪ℕ,maxi∈[N] ai−c�V (x0) exp(−rt)∕N <

0 during the time period [tk, tk + �d�), which implies that no trigger occurs in said period. Note the
bound

max
i∈[N]

ai = maxi∈[N]
�a,i +xe∕N ≤ ‖�a‖ +xe∕N.

Therefore, it is enough to prove instead that

‖�a‖ +
1
N
(

xe − c�V (x0) exp(−rt)
)

< 0. (5.30)

We start bounding the second summand. Using the bounds ‖e‖ ≤ �(t− tk)‖x‖ from Lemma 5.6.1
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and ‖x‖2 ≥ V (x)∕c2 from (5.22a),

xe ≤
(

(� − 1)c� + c
�(Δtk)2
)

‖x‖2 + (r + c�)V (x)

≤

(

(� − 1)c� + c
�(Δtk)2

c2
+ r + c�

)

V (x)

= (�(Δtk) + r + c�)V (x)

for t ∈ [tk, tk + �d�]. Notice from the second inequality that with c� > (1 − �)(c�∕c1) − r, the
coefficient of V (x) is positive, so we can use the upper bound of V from (5.25) to get

xe − c�V (x0) exp(−rt) =xe − c�V (xk) exp(−rΔtk) − c�(V (x0) exp(−rt) − V (xk) exp(−rΔtk))

≤ (�(Δtk) + r)V (xk) exp
(

∫

Δtk

0
�(s)ds

)

− c�V (xk)
(

exp(−rΔtk) − exp
(

∫

Δtk

0
�(s)ds

))

− c�(V (x0) exp(−rt) − V (xk) exp(−rΔtk)).

Consider the first two terms in this expression. Both terms are strictly negative in the time interval
[tk, tk + �d�), so the maximum value of their sum must be negative. Therefore, there exists Ω∗ > 0
(which can be found explicitly by examining its derivative and endpoints on the time intervalΔtk ∈
[0, �d�] ) independent of xk such that

xe − c�V (x0) exp(−rt) ≤ −Ω∗V (xk) − c�
(

V (x0) exp(−rt) − V (xk) exp(−rΔtk)
)

= −Ω∗V (xk) − c�
(

V (x0) exp(−rtk) − V (xk)
)

exp(−rΔtk)

≤ −Ω∗V (xk) − c�
(

V (x0) exp(−rtk) − V (xk)
)

exp(−r�d�). (5.31)
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Note here that both terms in the bound are non-positive.
Regarding the first summand ‖�a‖ in (5.30), we resort to Lemma 2.2.1 to bound it. We

write (2.2), with a change of variable to shift time by tk, for �a,

‖�a(t)‖ ≤
ΩxeV (xk)
�a�2 − r

exp(−rΔtk) +
(

‖�a(tk)‖ −
ΩxeV (xk)
��2 − r

)

exp(−��2Δtk).

Over the time interval Δtk ≥ 0, the bound either achieves the maximum value at Δtk = 0 or
where its time derivative is zero on the positive interval Δtk > 0. In other words, ‖�a(t)‖ ≤

max{‖�a(tk)‖,
ΩxeV (xk)
�a�2−r

}. We consider these two scenarios separately.
First, consider the case where the ‖�a(tk)‖ ≤ ΩxeV (xk)

�a�2−r
. By selecting �a > (1∕�2)(NΩxe∕Ω∗+

r), we can ensure that ΩxeV (xk)
�a�2−r

< Ω∗V (xk)∕N . This shows that the first term in the upper
bound (5.31) is enough to dominate ‖�a(t)‖, guaranteeing that (5.30) holds.

Next, consider the case where ‖�a(tk)‖ > ΩxeV (xk)
�a�2−r

. Because W xe(tk) = W x(tk) holds at
the update time tk, we deduce from the jump map (5.28d) that �a(tk) = �z(tk). Thus, the size of
‖�a(tk)‖ directly depends on how well the dynamic average consensus (5.28c) performs, so we tune
�z appropriately so that (5.30) holds. Particularly, we look at the possibility that

‖�z(tk)‖ ≥ c�(V (x0) exp(−rtk) − V (xk)) exp(−r�d�)∕N

(otherwise, the second term of the upper bound (5.31) already dominates ‖�a(t)‖). From (2.2), and
given the initialization of z with �z(0) = 0, we have

‖�z(tk)‖ ≤
ΩxV (x0)
�z�2 − r

(

exp(−rtk) − exp(−�z�2tk)
)

.
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Since exp(−�z�2tk) ≥ 0, we obtain the relationship

ΩxV (x0)
�z�2 − r

exp(−rtk) ≥ ‖�z(tk)‖ ≥ c�(V (x0) exp(−rtk) − V (xk)) exp(−r�d�)∕N. (5.32)

After some algebraic manipulations, this implies

V (x0) exp(−rtk) ≤
c� exp(−r�d�)

c� exp(−r�d�) −
NΩx

�z�2−r

V (xk),

if the denominator of the right-hand side is positive. For this to be the case, we have to make sure
that our choice of �z satisfies �z > (1∕�2)(

NΩx

c� exp(−r�d� )
+ r). Substituting the bound above into the

upper bound in (5.32), we get

‖�z(tk)‖ ≤
Ωxc� exp(−r�d�)

c� exp(−r�d�)(�z�2 − r) −NΩx
V (xk).

Now, any selection of �z such that

�z >
1
�2

(

NΩx

Ω∗
+ NΩx

c� exp(−r�d�)
+ r

)

,

ensures that

Ωxc� exp(−r�d�)
c� exp(−r�d�)(�z�2 − r) −NΩx

< Ω∗
N
,

and therefore ‖�z(tk)‖ < Ω∗V (xk)∕N , implying that the first term of the upper bound in (5.31)
dominates ‖�a(t)‖. Therefore, (5.30) holds for t ∈ [tk, tk + �d�), and �d� is a MIET for the distributed
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trigger design (5.28). With the existence of the MIET, performance satisfaction and global expo-
nential stability follow.

Theorem 5.4.4 shows that, with the appropriate tuning of the design parameters, (5.28) is an
intrinsically Zeno-free event-triggered design for network systems with exponential performance
(without the need to prescribe theMIET in the design as in (5.27)). This property relies critically on
the performance-barrier-based design approach, particularly on the robustness to errors provided
by the performance residual.

Remark 5.4.5. (Conservativeness in Design Parameters). The required bounds for the design
parameters �a and �z developed in the proof of Theorem 5.4.4 are conservative and, in fact, we
have observed in practice that values that violate these bounds also result in successful executions.
Such bounds must be computed offline, a requirement that is also shared by the time-regularization
method regarding the computation of the MIET. However, the key difference, beyond the fact that
the method proposed here overcomes the challenges (i)-(iii) described in Section 5.4.1, is that con-
servativeness in the MIET computation leads to higher actuation resource usage, whereas con-
servativeness in the bounds of Theorem 5.4.4 imposes requirements on the communication and
computational resources of the agents, without affecting the timing of the triggers. ∙

5.5 Simulations on Vehicle Platooning

To illustrate the effectiveness of the performance-barrier-based trigger design approach, we
consider a vehicle platooning problem with N = 5 vehicles driving in a line formation along a
rectilinear curve. Following [DPH17], we seek to take advantage of the inter-agent communication
resources to minimize the usage in actuation resources. The goal is to synchronize the speed vi of
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each vehicle i ∈ {2,… , 5} to the leader’s desired speed vdes, and the vehicle’s following distance di
to a safe distance ddes,i = d0+Tvvi. Here, d0 is the standstill following distance and Tv represents the
factor for the additional distance to keep with respect to the vehicle’s speed. Vehicle 1 is the leader
and measures distance with respect to a virtual reference vehicle. We define �i ∶= di − ddes,i and
� ∶= vi − vdes to be the mismatch between the actual and the desired variables. Each vehicle uses
a dynamic feedback controller to compute its control input ui, which directly affects the vehicle’s
acceleration qi. The closed-loop dynamics of the leading car, with state xi =

[

�i �i qi ui

]⊤

, can
be written as

ẋ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −1 −Tv 0

0 1 0 0

0 0 − 1
Td

1
Td

kp
Tv

−kd
Tv

−kd − 1
Tv

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x1 +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

1
Td

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

e1

= Ādiagx1 + Ēe1,

where e1 = x1,4(tk) − x1,4 encodes the fact that the actual control input u is sampled at time tk and
held constant until tk+1. We use the system parameters kp = 0.2, kd = 0.7, Tv = 0.6, and Td = 0.1.
Vehicles {2,… , 5} have dynamics that depend on the cars in front of them, as follows

ẋi = Ādiagxi + Āoffxi−1 + Ēei,
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where ei = xi,4(tk) − xi,4 is the sample-and-hold error and

Āoff =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

0 0 0 0

0 0 0 0

0 kd
Tv

0 1
Tv

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We next explain how we obtain an ISS Lyapunov function. First, we find  > 0 such that Ā⊤
diag +

Ādiag = −I (this corresponds to ignoring the interconnection of each following vehicle with the
one in front). Next, we define

V (x) =
N
∑

i=1
�N−ix⊤i xi,

where � is a weight factor to be chosen. Note that this definition naturally places more weight to
the vehicles towards the front of the platoon. The Lie derivative of V is given by

LfV (x, e) = − �N−1‖x1‖2 +
N
∑

i=2
�N−i(−‖xi‖2 + 2x⊤i Āoffxi−1) +

N
∑

i=1
�N−i2x⊤i Ēei.

Using Young’s inequality [HLP52], we can bound the cross terms as 2x⊤i P Āoffxi−1 ≤

5‖Āoff‖2‖xi−1‖2 + (1∕5)‖xi‖2. Selecting then � = 31.25‖Āoff‖2, we find, after some alge-
braic manipulations, that

LfV (x, e) ≤ −0.145V (x) +
N
∑

i=1
�N−i2x⊤i Ēei.
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This implies a rate of convergence of r∗ = 0.145 in the absence of sample-and-hold error e. In
our simulations, we specify the desired exponential convergence rate r = 0.08 < 0.75r∗ for the
triggered implementations.

With all the elements in place, we are ready to provide a comparison of different event-
triggered control approaches. We implement the centralized performance-barrier-based trigger de-
sign, specifically the linear one in (5.12), and compare it to the derivative-based design (5.9). For
this, we use

g(x, e) = −0.75�N−1‖x1‖2 + 0.75
N
∑

i=2
�N−i(−‖xi‖2 + 2x⊤i Āoffxi−1) +

N
∑

i=1
�N−i2x⊤i Ēei, (5.33)

and c� = 1. Each simulation lasts 400 seconds. Figure 5.2 shows the evolution of the Lyapunov
functions in logarithmic scale for different trigger designs and Table 5.1 shows the empirical MIET
(which might be larger than the actual MIET) and average number of controller updates across 50
different trajectories with random initial conditions. As expected, both designs satisfy the required
performance. However, it is evident from Figure 5.2 that the derivative-based design outperforms
the requirement, meaning that the number of updates could be significantly reduced. This is pre-
cisely what the performance-barrier-based design accomplishes by tuning the timing of the updates
to the degree of satisfaction of the prescribed performance, reducing their number by almost 20-fold
on average.

We also compare the proposed designs with the dynamic trigger approach, cf. Remark 5.3.6.
To do so, we choose a linear decay function �(�) = c��, and consider different values of c�. According
to (5.21), the degree of decay of the Lyapunov function V grows with the value of c�, but it is not
possible to determine in advance whether a given value of c� will guarantee that the evolution meets
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Figure 5.2: Evolution of the Lyapunov function for different trigger designs.

the desired performance specification. We first use c� = 1, and observe, cf. Figure 5.2, that the
evolution of V is, similarly to that of the derivative-based design, too conservative. Consequently,
we employ c� = 0.05, which leads to a significant decrease in the number of updates, cf. Table 5.1,
at the cost of not meeting the performance specification any more, cf. Figure 5.2. One could go
through the exercise of fine-tuning the value of c� to make sure the trajectories meet the desired
performance, but this would have to be verified a posteriori in an empirical way, rather than a priori
by design, as the performance-barrier-based approach does.

Lastly, we also report the simulation results of the distributed trigger design (5.28) with
�a = 10 and �z = 20. In fact, notice that both the Lyapunov function V and g in (5.33) can be
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Table 5.1: Empirical MIET and average number of updates from 50 different random initial
conditions

Design MIET (s) Avg. no. of updates
Derivative-Based (5.9) 0.009 198.28
Performance-Barrier-Based (5.12) 0.009 9.94
Dynamic (5.21) 0.013 108.48
Dynamic (5.21) – small decay 0.013 7.18
Distributed (5.28) 0.003 96.38

expressed as the sum of functions, one per agent, whose value can be computed by each agent with
local information,

Vi(xi) = �N−ix⊤i xi, W x
1 (x1) = −0.75�

N−1
‖x1‖

2,

W x
i (xi

) = 0.75�N−i(−‖xi‖2 + 2x⊤i Āoffxi−1), ∀i ≥ 2

W xe
i (xi

, ei) = W x
i (xi

) + �N−i2x⊤i Ēei, ∀i ≥ 1.

The distributed implementationmeets the prescribed performance, cf. Figure 5.2 and is free of Zeno
behavior, as guaranteed by Theorem 5.4.4. This implementation triggers less often than the cen-
tralized derivative-based approach and, as expected, more often than the centralized performance-
barrier-based design, cf. Table 5.1.

5.6 Chapter Appendix

Proof of Lemma 5.4.3. Note that, since F and � are Lipschitz, then f is Lipschitz too. Consider
the column vector composed of {Vi}Ni=1 and let JV (x) be its Jacobian. Then, because each Vi have
Lipschitz gradients, there exist constants LdV and Lf on the compact sublevel set {x | V (x) ≤
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V (x0)
} such that

‖Ẇ xe
‖ = ‖

(

(� − 1)c�x⊤ − c
e⊤ + (r + c�)JV (x)
)

f (x, e)‖

≤
(

(1 − �)c�‖x‖ + c
‖e‖ + (r + c�)LdV ‖x‖
)

(Lf (‖x‖ + ‖e‖)). (5.34)

We next bound the quadratic terms ‖x‖2, ‖e‖2 and ‖x‖‖e‖ in terms of V (xk) exp(−rΔtk) for the
duration of the interval [tk, tk+�d�). First, knowing that V (x) ≤ V (xk) exp(−rΔtk) over the interval,
we can immediately bound ‖x‖2 ≤ V (xk) exp(−rΔtk)∕c1. Next, for ‖e‖2, recall that �d� is the
minimum inter-event time for the derivative-based design, and we can therefore bound

‖e‖2 ≤ (1∕c
)
(

(1 − �)c�‖x‖2 − rV (x)
)

≤ (1∕c
)((1 − �)c�∕c1 − r)V (x)

≤ (1∕c
)((1 − �)c�∕c1 − r)V (xk) exp(−rΔtk),

for t ∈ [tk, tk + �d�). Finally, it follows that

‖x‖‖e‖ ≤

√

(1 − �)c�∕c1 − r
c1c


V (xk) exp(−rΔtk),

for t ∈ [tk, tk + �d�). Substituting the bounds back into (5.34) leads to the identification of Ωxe > 0,
proving the claim for ‖Ẇ xe

‖.
For the bound of ‖Ẇ x

‖, we consider the entire time interval t ∈ [tk, tk+1). Using the
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performance satisfaction, we bound

‖x‖2 ≤ V (x)∕c1 ≤ V (x0) exp(−rt)∕c1.

From the trigger condition and c� > (1 − �)(c�∕c1) − r,

c
‖e‖
2 ≤ c�V (x0) exp(−rt) − (r + c� + (� − 1)

c�
c1
)V (x)

≤ c�V (x0) exp(−rt)

The result now follows using the same line of reasoning as in the proof of the bound for ‖Ẇ xe
‖ to

conclude the existence of Ωx > 0 as stated.

For the sake of completeness, we state the following result on the sample-and-hold error
bound.

Lemma 5.6.1. (Sample-and-Hold Error Bound [Tab07, Thm III.1]). Consider the sample-and-

hold nonlinear system (5.1). If the functions f is Lipschitz with a constant Lf , then for t ∈ [tk, tk+

1∕Lf ), the state deviation is bounded as

‖e‖ ≤ �(t − tk)‖x‖

where �(�) = Lf �

1−Lf �
. ■
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Chapter 6

Event-Triggered Safety

The efficient utilization of available resources while simultaneously achieving control ob-
jectives is a primary motivation in the event-triggered control paradigm. In many modern control
applications, one such objective is enforcing the safety of a system. The goal of this paper is to carry
out this vision by combining event-triggered and safety-critical control design. We discuss how a
direct transcription, in the context of safety, of event-triggered methods for stabilization may re-
sult in designs that are not implementable on real hardware due to the lack of a minimum interevent
time. We provide an example showing this phenomena and, building on the insight gained, propose
an event-triggered control approach via Input-to-State Safe Barrier Functions that achieves safety
while ensuring that interevent times are uniformly lower bounded.

6.1 Event-Triggered Stability

In this section we discuss event-triggered control and review the problem of event-triggered
stabilization following [Tab07]. This review will motivate our approach for achieving event-
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triggered safety presented in Sections 6.3 and 6.4.
Consider the nonlinear control system given by:

ẋ = f (x,u), (6.1)

where x ∈ ℝn, u ∈ ℝm, and f ∶ ℝn × ℝm → ℝn is locally Lipschitz continuous in both arguments
on ℝn × ℝm. We further assume that f (0,u0) = 0 for some u0 ∈ ℝm. Under the choice of a
Lipschitz continuous state-feedback controller k ∶ ℝn → ℝm, with k(0) = u0, the closed-loop
system dynamics are given by:

ẋ = f (x,k(x)). (6.2)

The assumption on local Lipschitz continuity of f and k implies that for any initial condition x0 ∶=
x(0) ∈ ℝn, there exists a maximum time interval I(x0) = [0, tmax) such that x(t) is the unique
solution to (6.2) on I(x0). In the case f (⋅,k(⋅)) is forward complete, tmax = ∞.

In an event-triggered context, the implementation of the feedback control law k is done
by sampling the state at sequential time instances, t0, t1, t2,…, and evaluating the controller on the
corresponding states x(t0), x(t1), x(t2),…Between measurements the control input is held constant:

u(t) = k(x(ti)) ∀t ∈ [ti, ti+1). (6.3)

The time instances at which the controller is updated are determined by a state-dependent execution
rule or trigger law. We define the measurement error as:

e(t) = x(ti) − x(t) ∀t ∈ [ti, ti+1), (6.4)
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noting that this in conjunction with (6.3) implies:

ẋ(t) = −ė(t) = f (x(t),k(x(ti))) ∀t ∈ [ti, ti+1), (6.5)

The closed-loop dynamics (6.5) can alternatively be written as:

ẋ = f (x,k(x + e)). (6.6)

where e ∈ ℝn is the measurement error.
Event-triggered stabilization relies on the robustness to disturbances of the original dynam-

ics, formalized through Input-to-State Stable Lyapunov Functions (ISS-LF) [SW95,Son08].
Notation: Throughout the paper we make use of the following basic definitions. A continuous
function � ∶ [0, a)→ ℝ+, with a > 0, is class (� ∈ ) if �(0) = 0 and � is strictly monotonically
increasing. If a = ∞ and limr→∞ �(r) = ∞, then � is class ∞ (� ∈ ∞). A continuous function
� ∶ (−b, a) → ℝ, with a, b > 0, is extended class  (� ∈ e) if �(0) = 0 and � is strictly
monotonically increasing. If a, b = ∞, limr→∞ �(r) = ∞, and limr→−∞ �(r) = −∞, then � is
extended class ∞ (� ∈ ∞,e)

Definition 6.1.1 (ISS Lyapunov Function (ISS-LF)). A continuously differentiable function V ∶

ℝn → ℝ+ is an Input-to-State Stable Lyapunov Function (ISS-LF) for (6.6), with respect to mea-

surement errors e, if there exists �1, �2, �3 ∈ ∞ and 
 ∈ ∞ such that for all x, e ∈ ℝn:

�1(‖x‖2) ≤ V (x) ≤ �2(‖x‖2), (6.7a)
)V
)x
(x)f (x,k(x + e)) ≤ −�3(‖x‖2) + 
(‖e‖2). (6.7b)
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As in [Tab07], if we define the trigger law to enforce:


(‖e(t)‖2) ≤ ��3(‖x(t)‖2) 0 < � < 1, (6.8)

the ISS-LF condition (6.7b) leads to:

)V
)x
(x)f (x,k(x + e)) ≤ (� − 1)�3(‖x‖2), (6.9)

implying asymptotic stability of (6.6) to x⋆ = 0. The inequality in (6.8) can be enforced by defining
the trigger law as:

ti+1 = min
{

t ≥ ti | 
(‖e(t)‖2) = ��3(‖x(t)‖2)
}

. (6.10)

As is typical in event-triggered control formulations, it is critical to show that such a trigger law
does not lead to the control being updated at arbitrarily close time instances [PTNA15], or that the
interevent times {ti+1 − ti}i∈ℕ are lower bounded by a positive constant � ∈ ℝ, � > 0, referred to
as the minimum interevent time (MIET). This differs slightly from preventing the stronger notion
of Zeno behavior [BH14], in which the series of interevent times converges (implying the lack
of a MIET). The results of [Tab07] ensure that a MIET exists under the trigger (6.9) under the
assumption of Lipschitz continuity on compacts of f , k, �, and 
 .

6.2 Input-to-State Safety

In this section we provide background information on Barrier Functions (BFs) and Input-
to-State Safe Barrier Functions (ISSf-BFs) that will be used to construct an event-triggered control
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paradigm that ensures safety.
Consider a set  ⊆ ℝn defined as the 0-superlevel set of a continuously differentiable func-

tion ℎ ∶ ℝn → ℝ, yielding:

 ≜ {x ∈ ℝn ∶ ℎ(x) ≥ 0} , (6.11a)

) ≜ {x ∈ ℝn ∶ ℎ(x) = 0}, (6.11b)

Int() ≜ {x ∈ ℝn ∶ ℎ(x) > 0}. (6.11c)

We assume that  is nonempty and has no isolated points, that is, Int() ≠ ∅ and Int() = . We
refer to  as the safe set. This construction motivates the following definitions:

Definition 6.2.1 (Forward Invariant & Safety). A set  is forward invariant if for every x0 ∈ , the

solution x(t) to (6.2) satisfies x(t) ∈  for all t ∈ I(x0). The system (6.2) is safe on  if the set is

forward invariant.

Verifying that the system (6.2) is safe on a set  can be done via a Barrier Function:

Definition 6.2.2 (Barrier Function (BF)). A continuously differentiable function ℎ ∶ ℝn → ℝ is

a Barrier Function (BF) for (6.2) on a set  ⊂ ℝn defined as in (6.11a)-(6.11c), if there exists

� ∈ ∞,e such that for all x ∈ ℝn:

)ℎ
)x
(x)f (x,k(x)) ≥ −�(ℎ(x)), (6.12)

As shown in [XTGA15], the existence of a barrier function for (6.2) on a set  is sufficient
to prove the safety and asymptotic stability of . To consider the impact of measurement errors on
safety, we consider the notion of input-to-state safety [KA18].
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Definition 6.2.3 (Input-to-State Safety (ISSf)). Let the signal e ∶ ℝ+ → ℝn be essentially bounded

and define ‖e‖∞ = ess supt≥0 ‖e(t)‖2. The closed-loop system (6.6) is input-to-state safe (ISSf) on
 with respect to measurement errors e if there exists 
 ∈ ∞ and a set e ⊃  defined as:

e ≜
{

x ∈ ℝn ∶ ℎ(x) + 
(‖e‖∞) ≥ 0
}

, (6.13a)

)e ≜ {x ∈ ℝn ∶ ℎ(x) + 
(‖e‖∞) = 0}, (6.13b)

Int(e) ≜ {x ∈ ℝn ∶ ℎ(x) + 
(‖e‖∞) > 0}, (6.13c)

such that (6.6) is safe on e.

We refer to  as an input-to-state safe set (ISSf set) if such a set e exists. This definition
implies that though the set  may not be safe, a larger set e, depending on e, is safe. If e ≡ 0, we
recover that the set  is safe. This motivates the following definition of Input-to-State Safe Barrier
Functions:

Definition 6.2.4 (Input-to-State Safe Barrier Function (ISSf-BF)). A continuously differentiable

function ℎ ∶ ℝn → ℝ is an Input-to-State Safe Barrier Function (ISSf-BF) for (6.6) on a set  ⊂ ℝn

defined as in (6.11a)-(6.11c), if there exists � ∈ ∞,e and � ∈ ∞ such that for all x, e ∈ ℝn:

)ℎ
)x
(x)f (x,k(x + e)) ≥ −�(ℎ(x)) − �(‖e‖2), (6.14)

As shown in [KA18], the existence of an ISSf-BF for (6.6) on  implies  is an ISSf set,
implying safety and asymptotic stability to the set e.
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6.3 Towards Resource-Aware Safety: from Lyapunov to Barri-

ers

To more efficiently utilize actuation resources when implementing safe controllers, we seek
to unify the preceding concepts of event-triggered control and input-to-state safety. In this section
we discuss challenges that arise in directly transferring ideas from event-triggered stabilization to
safety. Given the similarity of the ISS-LF constraint (6.7b) and the ISSf-BF constraint (6.14), it is
natural to propose a trigger law that enforces:

�(‖e(t)‖2) ≤ ��(ℎ(x(t))) 0 < �, (6.15)

implying:
)ℎ
)x
(x)f (x,k(x + e)) ≥ −(1 + �)�(ℎ(x)). (6.16)

This can be interpreted as allowing the system to more quickly approach the boundary of the safe
set at the expense of actuation resources. It is important to note that, inside , it is possible to satisfy
(6.15) and thus enforce safety, but the inequality is impossible to satisfy outside  as �(ℎ(x)) < 0
if x ∉ . This type of behavior does not arise in the context of event-triggered stabilization, where
convergence is to a point. One way to solve this issue is to instead define the trigger law:

�(‖e(t)‖2) ≤ �|�(ℎ(x(t)))| 0 < � < 1, (6.17)
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which enforces (6.16) if x ∈  and enforces:

)ℎ
)x
(x)f (x,k(x + e)) ≥ −(1 − �)�(ℎ(x)), (6.18)

if x ∉ . In this formulation, the system is not only allowed to more quickly approach the bound-
ary, but is also not required to converge to the set as quickly when outside of the set. This is a
generalization of event-triggered stabilization to a set.

Even with this solution, it is not guaranteed that this trigger law will have aMIET. Although
ruling out Zeno behavior is not required to guarantee safety, unlike stabilization, it is important to
have a MIET in term of implementation of the controller (cf. [BH14]). The key difference between
stability and safety leading to the failure of a MIET to exist for a safe event-triggered controller lies
in how the system dynamics must behave close to an equilibrium point compared to how they can
behave close to the boundary of the safe set. In stabilization, continuity of the dynamics requires
the dynamics to vanish as the equilibrium is approached, leading to the error dynamics in (6.5)
vanishing. In safety, the dynamics close to the boundary of the safe set need not vanish as the
boundary is approached, such that the error dynamics in (6.5) need not vanish. We provide the
following example to illustrate how this difference can lead to a MIET failing to exist for the trigger
design (6.17).
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6.3.1 Example

Consider the following system:

d
dt

⎡

⎢

⎢

⎢

⎣

x1

x2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

x2

−x1

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

x1

x2

⎤

⎥

⎥

⎥

⎦

u. (6.19)

for which we wish to ensure the safety of the set , given by the 0-superlevel set of the continuously
differentiable function ℎ(x) = 1 − x21 − x22 = 1 − ‖x‖22. The time derivative of this function along
solutions to (6.19) is given by ℎ̇(x, u) = −2(x21 + x22)u, for which the state-feedback controller
k(x) = 1

2
(1 − x21 − x

2
2) yields ℎ̇(x) = −(x21 + x22)ℎ(x) ≥ −ℎ(x), which implies ℎ is a valid BF for the

set .
In an event triggered context, the closed-loop dynamics of the system are then given by:

ẋ(t) =
⎡

⎢

⎢

⎢

⎣

k(x(ti)) 1

−1 k(x(ti))

⎤

⎥

⎥

⎥

⎦

x(t), (6.20)

for each time t ∈ [ti, ti+1). This leads to the time derivative of ℎ along solutions to (6.20) being
given by:

ℎ̇(x(t), e(t)) = −‖x(t)‖22ℎ(x(ti)) = −‖x(t)‖
2
2ℎ(x(t) + e(t))

for each time t ∈ [ti, ti+1), where e(t) = x(ti) − x(t). To see that the BF ℎ is in fact an ISSf-BF, we
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note its time derivative can be bounded as follows (we omit the time dependence):

ℎ̇(x, e) = −‖x‖22ℎ(x + e)

= −‖x‖22(1 − ‖x‖22 − 2x
⊤e − ‖e‖22)

≥ −‖x‖22(1 − ‖x‖22) − 2‖x‖
3
2‖e‖2

≥ −(1 − ‖x‖22) − 2‖x‖
3
2‖e‖2

≥ −ℎ(x) − 2r3‖e‖2,

for ‖x‖2 ≤ r. Given that ℎ is an ISSf-BF on some domain containing the unit circle (choose r > 1),
the trigger law enforcing (6.17) is given by:

ti+1 = min{t ≥ ti | 2r3‖e(t)‖2 = �|ℎ(x(t))|}, (6.21)

with 0 < � < 1. This will guarantee that  is safe as:

ℎ̇(x, e) ≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−(1 + �)ℎ(x), ‖x‖2 ≤ 1,

−(1 − �)ℎ(x), 1 < ‖x‖2 ≤ r.

Despite f , k, �, and � being Lipschitz continuous on compacts as sufficient in the case of stabiliza-
tion, the following results shows the trigger design lacks a MIET.

Lemma 6.3.1 (MIET does not exist). The system (6.20) with the trigger law defined as in (6.21)
does not possess a MIET.

Proof. To show that the interevent times {ti+1 − ti}i∈ℕ are not lower bounded, we will proceed via
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contradiction. In particular, let us assume that there exists � > 0 such that ti+1− ti ≥ � for all i ∈ ℕ.
If the state xi = x(ti) at event time ti is used as an initial condition, the solution to (6.20) is:

x(t) = exp
(

ℎ(xi)Δti
2

)

⎡

⎢

⎢

⎢

⎣

cosΔti sinΔti

− sinΔti cosΔti

⎤

⎥

⎥

⎥

⎦

xi,

=Mi(Δti)xi,

for t ∈ [ti, ti+1) with Δti = t− ti. Denoting !i = ℎ(xi)Δti, we see that the norm of the error is lower
bounded by a function monotonically increasing in time:

‖e(t)‖2 = ‖(I −Mi(Δti))xi‖2,

=
√

(

exp (!i) − 2 exp
(!i
2

)

cos(Δti) + 1
)

‖xi‖2,

≥
|

|

|

|

exp
(!i
2

)

− 1
|

|

|

|

‖xi‖2.

This lower bound on the error grows unbounded in time. This implies that no matter the state in
Int() that an event occurs, another event must occur at some time in the future (or the bound in
(6.21) will be violated as ℎ is upper bounded on ). Thus, for all T > 0, there exists an event time
ti > T .

Next, we show that limt→∞ ℎ(x(t)) = 0. Note that:

ℎ(x(t)) = 1 − ‖x(t)‖22 = 1 − exp (ℎ(xi)Δti)‖xi‖
2
2,
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with time derivative:
ℎ̇(x(t)) = −ℎ(xi) exp (ℎ(xi)Δti)‖xi‖22,

for t ∈ [ti, ti + 1). Within the safe set we have that ℎ̇(x(t)) ≤ 0, such that ℎ(x(t)) is monotonically
decreasing in time. The safety of  implies ℎ(x(t)) is lower bounded by 0, and thus we can conclude
that limt→∞ ℎ(x(t)) exists. Assume that this limit is some value 0 < c < 1. Thus for any � > 0,
there exists T > 0 such that for t > T , ℎ(x(t)) < c+ �. Since there are an infinite number of events,
we deduce there exists ti > T such that ℎ(x(ti)) < c + �. As ℎ(x(t)) is monotonically decreasing, it
also follows ℎ(x(t)) ≥ c for all t. This implies:

ℎ̇(x(t)) ≤ −c exp (cΔti)(1 − (c + �)) ≤ −c + c2 + c� < 0.

for t ≥ ti where � is chosen small enough to enforce the strict inequality with 0. Thus between two
events we have:

ℎ(x(ti+1)) ≤ ℎ(x(ti)) + �(−c + c2 + c�),

where � is the assumedMIET. Choosing � < �(c−c2)∕(1+�c) implies ℎ(x(ti+1)) < c, contradicting
the assumption that c ≠ 0 (and maintaining the assumption on the existence of �).

To complete the proof, note e(ti) = 0 and take the second-order (one-sided) Taylor expan-
sion of ‖e(t)‖22 at t = ti:

‖e(t)‖22 =
(

ė(ti)⊤ė(ti)
)

(t − ti)2 + ((t − ti)3)

= (1 + k(x(ti)))‖x(ti)‖22(t − ti)
2 + ((t − ti)3)

≥ ‖x(ti)‖22(t − ti)
2 − c3(t − ti)3,
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with c3 > 0. The first term in the inequality follows from k(x(ti)) ≥ 0 for x(ti) ∈ . The second
term follows if we view d3

dt3
‖e(t)‖22 as a continuous function of the state, which remains within the

compact set . Then d3

dt3
‖e(t)‖22 will be bounded for all time as  is forward invariant. We can use

this bound in conjunction with Lagrange’s Remainder Formula [Abb01] to assert the existence of
c3.

At trigger time ti, let ℎ(x(ti)) = �i with �i > 0 arbitrarily small due to the existence of infinite
triggers and convergence of ℎ. This implies ‖x(ti)‖22 = 1 − �i. Let n ∈ ℕ be such that 1

c3
< n� and

define t⋆i = ti + 1
n

(

1−�i
c3

)

, noting t⋆i < ti + �. It follows from the Taylor expansion that:

‖e(t⋆i )‖
2
2 ≥

(1 − �i)3

c23

n − 1
n3

.

As �i can be chosen arbitrarily small, we choose it such that:

(1 − �i)3 ≥
�2n3

4r6(n − 1)
�2i ,

which indicates that:
2r3‖e(t⋆i )‖2 ≥ �|ℎ(x(ti))| ≥ �|ℎ(x(t⋆))|,

as ℎ(x(t)) is monotonically decreasing. As t⋆i < ti+�, this contradicts that � is theMIET. Figure 6.1
shows the number of events as a function of time and distance from the barrier. The blue curves in
Figure 6.2 correspond to the interevent times.

Throughout the proof of Lemma 6.3.1, a critical concept arises at multiple steps. The fact
that the state dynamics (6.20) are not required to converge to 0 at the boundary of the safe set  leads
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to the derivative of the measurement error, d
dt
‖e(ti)‖2, being uniformly lower bounded at event times

ti, which, together with the convergence of ℎ to 0, cf. Figure 6.1, leads in turn to arbitrarily small
interevent times. In particular, the dynamics are allowed to evolve tangentially to the boundary of
the safe set, which leads to growing measurement error while moving arbitrarily close to the 0-level
set of ℎ.

As the original controller may have additional objectives beyond safety (such as stabiliza-
tion), it is desirable that the event-triggered implementation not completely eliminate tangential
motion near the boundary that may be necessary to achieve the other objectives. To accommodate
this, we will introduce a trigger law that limits dynamic evolution tangential to the boundary of the
safe set.
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Figure 6.1: Simulation results for the system (6.20) using the trigger law (6.21). Even as the
boundary of the safe set is approached ℎ(t) → 0, the growth rate of the error does not diminish,
leading to arbitrarily small interevent times.
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6.4 Event-Triggered Safety

In this section, we propose an alternative trigger to the one formulated in Section 6.3 that
ensures a MIET exists. To resolve the issues highlighted in the preceding example, we introduce
the following definition:

Definition 6.4.1 (Strong ISSf Barrier Property). An ISSf-BF ℎ satisfies the strong ISSf barrier

property if there exists d ∈ ℝ with d > 0 such that for all x, e ∈ ℝn:

)ℎ
)x
(x)f (x,k(x + e)) ≥ −�(ℎ(x)) + d − �(‖e‖2), (6.22)

This property introduces a positive constant, d, into the ISSf-BF condition (6.14). In the
presence of zero measurement error, this enforces that the state dynamics must lie in the interior of
the tangent cone [BM07] when on the boundary of the safe set . It also enforces that d

dt
|�ℎ(x(ti))|

will be greater than a positive constant as we approach the boundary, similarly to d
dt
‖e(ti)‖22. We

now show this property is sufficient to design a trigger law that ensures safety with a MIET.

Theorem 6.4.2 (Trigger Law for Safety Critical Systems). Let ℎ be an ISSf-BF for (6.6) on a set

 ⊂ ℝn defined as in (6.11a)-(6.11c), with corresponding functions � ∈ ∞,e and � ∈ ∞. Let

� ∈ ∞,e, � ∈ (0, 1]. If the following assumptions hold:

(i) ℎ satisfies the strong ISSf barrier property for a constant d ∈ ℝ, d > 0,

(ii) � is Lipschitz continuous with Lipschitz constant L�,

(iii) there exists F ∈ ℝ, F > 0, such that for all x, e ∈ ℝn:

‖f (x,k(x + e))‖2 ≤ F ,
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(iv) �(r) ≥ �(r) for all r ∈ ℝ,

then the trigger law:

ti+1 = min
{

t ≥ ti | �(‖e(t)‖2) = �(ℎ(x(t))) − �(ℎ(x(t))) + �d
}

, (6.23)

deployed recursively enforces:

ℎ̇(x, e) = )ℎ
)x
(x)f (x,k(x + e)) ≥ −�(ℎ(x)), (6.24)

thus rendering the set  safe and asymptotically stable. Furthermore, there exists a MIET given

by:

ti+1 − ti ≥ � ≜ �d
L�F

, i ∈ ℕ.

Before proving the result, we make a few observations regarding its assumptions. Assump-
tion 3 on the boundedness of the dynamics need not hold over the entire state space for safety, but
can hold for (x, e) ∈  × ℝn. Furthermore, if  is compact, the trigger law enforces the existence
of a compact set E ⊂ ℝn such that e ∈ E. Thus, the continuity of f and k implies the assumption
is satisfied on  × E, which also would be sufficient for the result to hold. Assumption 4 ensures
the right-hand side of the equality in the trigger will always be positive. � can be thought of as a
tuning function, which can practically raise interevent times (but not the MIET) at the expense of
less “braking" within the safe set and convergence outside of the safe set. One choice is � = �, in
which case interevent times are lowered for more braking and faster convergence. We additionally
note that this trigger law can be used in conjunction with (6.10) to jointly achieve event-triggered
stabilization and safety.
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Proof. To see the set  is rendered safe, observe that:

ℎ̇ = )ℎ
)x
(x)f (x,k(x + e)) ≥ −�(ℎ(x)) + d − �(‖e‖2)

≥ −�(ℎ(x)) + d − (�(ℎ(x)) − �(ℎ(x)) + �d),

= −�(ℎ(x)) + (1 − �)d ≥ −�(ℎ(x)),

implying the barrier condition (6.12) is satisfied and  is safe.
To see the interevent time is lower bounded, observe that

‖e(t)‖2 =
‖

‖

‖

e(0) + ∫

t

ti

(−f (x(�), e(�)))d�‖‖
‖2

=‖‖
‖∫

t

ti

(−f (x(�), e(�)))d�‖‖
‖2

≤∫

t

ti

Fd�.

This inequality together with the trigger law (6.23) yields:

ti+1 ≥min
{

t ≥ ti | L�‖e(t)‖2 = �d
}

,

≥min
{

t ≥ ti | L�F (t − ti) = �d
}

= �d
L�F

+ ti,

ensuring the desired result. This in conjunction with the barrier function condition implies  is
asymptotically stable.

In the case that an ISSf-BF ℎ does not satisfy the strong barrier property, an auxiliary ISSf-
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Figure 6.2: Simulation results demonstrating safety achieved with an event-triggered controller.
(Left) State trajectories for both triggers remain within the safe set for the length of the simulation.
(Center) The value of the ISSf-BF ℎ remains above zero for the length of the simulation, corre-
sponding to the system remaining safe. (Right) The interevent times of the two trigger laws. The
interevent times of the trigger law (6.21) decreases towards 0 as predicted by Lemma 6.3.1 while
the trigger law (6.23) satisfies the theoretical bound.

BF, ℎb, satisfying the strong ISSf barrier property can be synthesized via ℎ at the expense of guar-
anteeing only a larger set is kept safe:

Theorem 6.4.3 (Strong ISSf Barrier Property in Supersets). Let ℎ be an ISSf-BF for (6.6) on a set
 ⊂ ℝn defined as in (6.11a)-(6.11c), with corresponding functions � ∈ ∞,e and � ∈ ∞. Then

the function ℎb defined as ℎb(x) = ℎ(x) + b, with b ∈ ℝ, b > 0, is an ISSf-BF satisfying the strong

ISSf barrier property on the set b defined as:

b ≜ {x ∈ ℝn
| ℎb(x) ≥ 0} (6.25)

Proof. Observe that:

)ℎb
)x
(x)f (x,k(x + e)) = )ℎ

)x
(x)f (x,k(x + e))

≥ −�(ℎ(x)) − �(‖e‖2) ≥ −�(ℎb(x) − b) + �(−b)

− �(−b) − �(‖e‖2) = −�b(ℎb(x)) + db − �(‖e‖2),
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where �b ∈ ∞,e is defined as �b(r) = �(r − b) − �(−b) and db = −�(−b) > 0.

Thus an ISSf-BF can be used with the trigger law (6.23) by enlarging the safe set an arbi-
trarily small amount:

Corollary 6.4.4 (Superset Trigger Law). If ℎ is an ISSf-BF for (6.6) on the set  satisfying Assump-

tions (2-4) of Theorem 6.4.2, then ℎb is an ISSf-BF for (6.6) on the set b satisfying Assumptions

(1-4) of Theorem 6.4.2 such that the corresponding trigger law renders b safe and asymptotically

stable with a MIET.

This is effectively an instance of Input-to-State Safety, in which case the original safe set 
defined via ℎ becomes an ISSf safe set. We note that the larger the set is made (via a larger choice
of b), the larger the MIET will be. This effectively highlights a trade-off that arises in the context of
safety but not in stabilization: allowing motion near the boundary of a safe set requires additional
relaxations to achieve the additional desirable property of the MIET.

To verify the ability of this trigger to keep the system safe and have a MIET, we simulated
the system (6.19) using both the trigger law (6.21) and the trigger law (6.23). The results of these
simulations can be seen in Figure 6.2. We see that although both systems are kept safe, the trigger
law not using the strong ISSf barrier property has interevent times that approach 0.
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Chapter 7

Opportunistic Human for Objective

Prioritization

This chapter proposes opportunistic state-triggered strategies for solving convexmultiobjec-
tive optimization problems that involve human-robot interaction. The robot is aware of the multiple
objective functions defining the problem, but requires human input to find the most desirable Pareto
solution. In order to avoid overloading the human with queries, we view her as a limited resource
to the robot, and design event-triggered controllers that opportunistically prescribe the informa-
tion exchanges among them. We consider various models of human performance, starting with
an ideal one where queries are responded instantaneously, and later considering constraints on the
response time and the interaction frequency. For each model, we formally establish the asymptotic
convergence to the desired optimizer and rule out the existence of Zeno behavior.
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7.1 Interactive Multiobjective Optimization

Consider a human-robot system that seeks to find the minimizer to a vector-valued, contin-
uously differentiable function, function f ∶ ℝn → ℝm, i.e. minx∈ℝn f (x). Each of the components
of f represents a goal the robot is trying to achieve, and x represents the decision variable. A
point xpo ∈ ℝn is a solution to the minimization problem if there does not exist x ∈ ℝn with
fi(x) ≤ fi(xpo) for all i ∈ [m] with at least one inequality being strict. These solutions, called
Pareto points, capture the fact that improving the minimization of one component of f cannot be
done without increasing the value of another. In principle, there exist multiple Pareto points corre-
sponding to the different trade-offs in optimizing the components of f .

Many multiobjective optimization problems find applications in practical scenarios involv-
ing control formulations, cf. [PD18]. Usually, the decision variable corresponds to the control
input. For example, [PSOB+17] considers an MPC formulation in autonomous driving where the
control u can affect both the arrival time and energy consumption. When doing motion planning,
the robot must consider the different conflicting factors involved, see [SG17].

7.1.1 Interactive Approach

In general, finding the whole set of Pareto points is computationally expensive. Further-
more, additional considerations might make some Pareto points more desirable than others. One
way to address this is via the interactive approach, where a human is involved in determining the
desirable outcome. This has the added benefits of reduction in computational resource usage, im-
proved desirability of the obtained solution, and adaptability to different scenarios.

Consider the following human-robot model. The robot has first-order fully actuated dynam-
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ics and is assumed to have knowledge of the component objective functions in f . A human operator
assists the robot in selecting the most appropriate Pareto point. As is commonly done in trade-off
approaches to multiobjective optimization problems, we assume the human has a scalar-valued,
continuously differentiable function v ∶ ℝm → ℝ that ranks the different outcomes, i.e., v(f (x))
represents the ‘value’ that the human gives to the outcome f (x) achieved at x ∈ ℝn. This function
can then be used to establish a preference among all Pareto points. However, the function v is im-
plicit, meaning that the human does not know it in closed form, but can respond to queries about
it. Specifically, we model the human as being able to express preferences about an outcome being
better than another one, and we abstract this with gradient information of v: if the robot queries
the human about its current value f (x), the human can provide the value ∇v(f (x)), indicating the
direction of change in which outcomes are more highly valued.

The optimization problem consists of maximizing v◦f . For convenience, we instead for-
mulate it as a minimization problem by considering the cost function c = −v. The problem to solve
is then minx∈ℝn(c◦f )(x). We assume the composition function c◦f is strictly convex, and that the
problem has a unique minimizer x∗, which we can find via the gradient descent algorithm

ẋ = −∇(c◦f )(x)⊤ = −(∇c(f (x))Jf (x))⊤,

which globally asymptotically converges to x∗. This can be shown by considering the value of c◦f ,
which strictly decreases over time along the trajectory. Note, however, that the implementation of
the gradient dynamics by the robot is problematic. The robot knows the objective function f and
can therefore compute its Jacobian, Jf . However,∇c◦f can only be provided by the human because
only she knows the cost function. Therefore, executing the dynamics would require the human to
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continuously relay preference information to the robot, which is not feasible. The discretization
of the dynamics with a constant stepsize would make its implementation plausible, albeit it still
requires constant, periodic human involvement. Given that the stepsize needs to be sufficiently
small to guarantee convergence for arbitrary initial conditions, this may still impose an unnecessary
burden on the human. The basic premise of the paper to tackle this is to endow the robot with
criteria that allow it to determine, in an opportunistic fashion, when to query the human to avoid
her unnecessary involvement.

7.1.2 Problem Statement

Motivated by Section 7.1.1, we consider the following gradient dynamics, which discretizes
the human component but maintains the continuous evolution of the robot component,

ẋ = −(∇c(f (xk))Jf (x))⊤, tk ≤ t < tk+1, (7.1)

where xk is shorthand notation to represent x(tk). Under this dynamics, the human operator only
needs to assess the robot performance at the time instants {tk}∞k=0. Our goal in this paper is to
design triggers that the robot can evaluate on its own to determine this sequence of times efficiently,
while still guaranteeing the asymptotic convergence to the desired solution and the feasibility of
the resulting implementation (i.e., interevent times are uniformly lower bounded and hence the
implementation is free of Zeno behavior). What makes the trigger design and analysis different
from other event-triggered control formulations is that the resource to be aware of here is the human.
In particular, the fact that the preference function c is unknown to the robot (even the human does
not explicitly know it, as discussed above) and the various human behaviors (e.g., unable to comply
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with multiple rapidly succeeding requests for information) detailed later in Sections 7.2 and 7.3
rule out the use of standard results in event-triggered control.

In this paper, we consider different models for human behavior, starting with an ideal model
where the human can respond instantaneously. We then move to consider models with timing
constraints, such as when the human needs time to rest between queries, may take time to respond
to a query, or a combination thereof. For each model, we propose a trigger design that satisfies the
above criteria.

Remark 7.1.1. (Strict Convexity of the Composition Function). Note that, if all the component
functions of f are strictly convex and the cost function c is both strictly increasing in each com-
ponent (which is reasonable, given that the human seeks to minimize each individual component)
and strictly convex, then c◦f is also strictly convex. ∙

7.2 Event-Triggered Design: Ideal Human

Here we synthesize a triggering condition for the robot that allows it to efficiently query
the human about her preferences on the optimization of the vector-valued objective function. We
assume that the human performance is ideal, meaning that the human can respond to queries im-
mediately, i.e., there is no delay in obtaining the value of ∇c◦f .

Our trigger design is based on analyzing the evolution of the cost function evaluated on the
objectives towards its optimal value. We consider

V (x) = c(f (x)) − c(f (x∗)). (7.2)
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Note that V is radially unbounded and has compact sublevel sets due to our assumptions on strict
convexity and existence of a unique minimizer. For convenience, we use the shorthand notation
w = ∇c◦f ∶ ℝn → ℝ, and, for k ∈ {0} ∪ ℕ and t ≥ tk, we let Δxk = x(t) − xk denote the error
between the state at time t and the state when the gradient was last updated at time tk. The next
result identifies a gradient update triggering condition that ensures V decreases on a neighborhood
of the optimizer.

Proposition 7.2.1. (Trigger for Ideal Human). Consider the event-triggered human-robot sys-

tem (7.1) and let xk ≠ x∗ be the state when the gradient information was last updated. Let  ⊆ ℝn

be a neighborhood of the optimizer such that xk ∈  and let Lc be the Lipschitz constant of ∇c◦f

over  . For � ∈ (0, 1], let tk+1 be determined by

tk+1 = min
{

t ≥ tk | ‖Δxk‖ =
�‖∇c(f (xk))Jf (x)‖

Lc‖Jf (x)‖

}

. (7.3)

If k = {x ∈ ℝn
| V (x) ≤ V (xk)} ⊆  , then for all t ∈ [tk, tk+1), we have

d
dt
V (x(t)) < − 1 − �

(1 + �)2
‖∇c(f (x(t)))Jf (x(t))‖2. (7.4)

Proof. First we note that V is positive definite because x∗ is unique. Let Δwk = w(x) − w(xk).
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Then the time derivative of V at t ∈ [tk, tk+1) is

d
dt
V (x(t)) = (w(x)Jf (x))ẋ = −(w(x)Jf (x))(w(xk)Jf (x))⊤

= −((w(xk) + Δwk)Jf (x))(w(xk)Jf (x))⊤

≤ −‖w(xk)Jf (x)‖2 + ‖Δwk‖‖Jf (x)‖‖w(xk)Jf (x)‖

≤ −‖w(xk)Jf (x)‖2 + Lc‖Δxk‖‖Jf (x)‖‖w(xk)Jf (x)‖.

The last inequality relies on the assumption that w is Lipschitz on k with constant Lc so that
‖Δwk‖ ≤ Lc‖Δxk‖. Since ‖Δxk‖ = 0 at time tk, and given the definition (7.3) of tk+1, we have
‖Δxk‖ < �

(

‖∇c(f (xk))Jf (x)‖
Lc‖Jf (x)‖

)

on the interval [tk, tk+1). We can then deduce that

d
dt
V (x(t)) < −(1 − �)‖w(xk)Jf (x(t))‖2. (7.5)

This shows that d
dt
V (x(t)) is negative, and hence the set k is invariant under (7.1). Next, we find

a relationship between ‖w(x)Jf (x)‖ and ‖w(xk)Jf (x)‖ as follows,

‖w(x)Jf (x)‖ ≤ ‖w(xk)Jf (x)‖ + ‖ΔwkJf (x)‖

≤ ‖w(xk)Jf (x)‖ + Lc‖Δxk‖‖Jf (x)‖

< (1 + �)‖w(xk)Jf (x)‖, (7.6)

where we have again used the bound on ‖Δxk‖ from the design to bound the last inequality. The
result now follows by substituting (7.6) into (7.5).

Note that the hypothesis that k ⊆  is easily satisfied given that V is radially unbounded.
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Proposition 7.2.1 provides a trigger design (7.3) under which the function V is strictly monoton-
ically decreasing. One important feature of the trigger design is that the design only relies on
∇c(f (x)) at x = xk, which is available to the robot. This ensures that the monitoring of this con-
dition can be evaluated during each iteration independently by the robot, i.e., the human is only
queried at discrete instants of time. Nevertheless, we cannot yet conclude that the optimizer is
asymptotically stable. The reason for this is that we first need to discard Zeno behavior, i.e., the
possibility of (7.3) inducing an infinite number of trigger updates in a finite amount of time. To
do so, it is useful to characterize how the system state discretization error, ‖Δxk‖, evolves during
interexecution periods, i.e., between consecutive updates, independently of how triggering times
are determined.

Lemma 7.2.2. (State Deviation Bound). Consider the event-triggered human-robot system (7.1)
and let xk be the state when the gradient information was last updated. For any triggering time tk+1

such that x(t) ∈ k for all t ∈ [tk, tk+1), the system state discretization error satisfies

‖Δxk‖ ≤ �k(t − tk)‖ẋ‖ (7.7)

during the interexecution period [tk, tk+1), where �k(t) = 1
Mk
(eMkt − 1) with Mk =

maxx∈k ‖∇
2(w(xk)f (x))‖.

Proof. We first note that the case where xk = x∗ is trivial. Then for xk ≠ x∗, we must have that
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ẋ ≠ 0 at time tk and we can examine the dynamics of ‖Δxk‖∕‖ẋ‖.

d
dt

‖Δxk‖
‖ẋ‖

= d
dt
(Δx⊤kΔx)

1∕2

(ẋ⊤ẋ)1∕2
(7.8)

=
(Δx⊤kΔxk)

−1∕2Δx⊤k ̇Δxk(ẋ⊤ẋ)1∕2

ẋ⊤ẋ
−
(ẋ⊤ẋ)−1∕2ẋ⊤ẍ(Δx⊤kΔxk)

1∕2

ẋ⊤ẋ

=
Δx⊤k ̇Δxk
‖Δxk‖‖ẋ‖

−
ẋ⊤ẍ‖Δxk‖

‖ẋ‖3

≤
‖Δxk‖‖ ̇Δxk‖
‖Δxk‖‖ẋ‖

+
‖ẋ‖‖ẍ‖‖Δxk‖

‖ẋ‖3

= 1 +
‖Δxk‖
‖ẋ‖

‖ẍ‖
‖ẋ‖

,

where in the last step we have used the fact that ̇Δxk = ẋ. Now, we define the function Vk(x) =
w(xk)f (x), and write

ẍ = d
dt
(−w(xk)Jf (x))⊤ = −

d
dt
(∇Vk(x))⊤ = −∇2Vk(x)ẋ.

We then find that ‖ẍ‖ ≤ ‖∇2Vk(x)‖‖ẋ‖ ≤Mk‖ẋ‖. We use this bound in (7.8) to obtain

d
dt

‖Δxk‖
‖ẋ‖

≤ 1 +Mk
‖Δxk‖
‖ẋ‖

. (7.9)

Now, because �k(t− tk) satisfies the differential equation �̇k = 1+Mk�k with the initial condition
�k(0) = 0, we have that �k(t − tk) ≥ ‖Δxk‖

‖ẋ‖
by the Comparison Lemma, cf. [Kha02, Lemma 3.4].

Finally, we show that the bound (7.7) is valid for all time [tk, tk+1) by ruling out the possibility that
‖ẋ‖ = 0 along the trajectory. This can be proven by contradiction. Let tstop > tk denote the first
instance when ‖ẋ(tstop)‖ = 0. The resulting bound (7.7) is then valid for the duration [tk, tstop). In
this duration, we note �k(t − tk) is upper bounded by a positive value �k(tstop − tk) because it is

164



strictly increasing. Therefore, as ‖ẋ(t)‖ → ‖ẋ(tstop)‖ = 0, we have ‖Δxk‖ → 0. This implies
‖Δxk‖ = 0 at t = tstop, i.e., x(tstop) = xk. This contradicts the fact ẋ ≠ 0 at x = xk, concluding the
proof.

With the bound on how the state discretization error evolves given in Lemma 7.2.2, we next
establish a lower bound on the interexecution time.

Proposition 7.2.3. (Lower Bound on Interexecution Time). For the event-triggered human-robot

system (7.1) with updates determined according to (7.3) and initial condition x0, if S0 ⊆  , then

the interexecution time is lower bounded as

tk+1 − tk ≥ � i� ∶=
1
M0

ln
(

1 +
M0�
LcJmax

)

(7.10)

for all k ∈ {0} ∪ ℕ with Jmax = maxx∈0 ‖Jf (x)‖.

Proof. We aim to show that there is a finite lower bound to the time it takes before the condition
defining the next update time in (7.3) is met. For convenience, notice that this condition can be
equivalently rewritten as

‖Δxk‖
‖ẋ‖

= �
Lc‖Jf (x)‖

. (7.11)

Then, by continuity, it takes longer to evolve from ‖Δxk‖
‖ẋ‖

= 0 to ‖Δxk‖
‖ẋ‖

= �
LcJmax

than it takes to reach
condition (7.11).

Now using the result (7.4), because S0 ⊆  we can deduce through induction that that
Sk+1 ⊂ Sk ∈  for all k ∈ {0} ∪ ℕ. From this, we note here as well that Mk ≤ M0 for all
k ∈ {0} ∪ ℕ. By the Comparison Lemma, we can show that �k(t − k) ≤ �0(t − tk). Together
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with (7.7), we have ‖Δxk‖
‖ẋ‖

≤ �0(t− tk), so it takes an even shorter time for �0(t− tk) to reach �
LcJmax

,
which is precisely � i� .

The lower bound on the interexecution time in Proposition 7.2.3 rules out the possibility of
Zeno behavior. Combining this result with Proposition 7.2.1, we deduce asymptotic convergence
towards the desired optimizer.

Corollary 7.2.4. (Asymptotic Stability – Ideal Human Design). For the event-triggered human-

robot system (7.1) with updates determined according to (7.3), the optimizer x∗ is asymptotically
stable, with 0 = {x0 ∈ ℝn

| 0 ⊆ } contained in its region of attraction. Moreover, if c◦f is

strongly convex with constant � > 0 on  , then given an initial condition x0 ∈ 0,

V (x(t)) ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V (xk)e
−2� ∫ ttk

1−�0(s−tk)

(1+�0(s−tk))2
ds

, t ∈ [tk, tk + � i�]

V (x(tk + � i�))e
− 2�(1−�)
(1+�)2

(t−tk−� i� ) , t ∈ [tk + � i�, tk+1)

(7.12)

for all k ∈ {0} ∪ℕ, where �0(t) = LcJmax�0(t). As a consequence, the certificate satisfies for all t,

V (x(t)) ≤ V (x0)e
− 2�(1−�)
(1+�)2

t, (7.13)

and the optimizer is exponentially stable for � ∈ (0, 1).

Proof. Asymptotic stability follows directly from Propositions 7.2.1 and 7.2.3. Next, similar to the
derivation of (7.4) in Proposition 7.2.1, we can use Lemma 7.2.2 to bound the time derivative of
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the Lyapunov function as

d
dt
V (x(t)) ≤ −

1 − �0(t − tk)
(

1 + �0(t − tk)
)2
‖∇c(f (x(t)))Jf (x(t))‖2

for the interval [tk, tk+1). Now, if c◦f is strongly convex, using (2.3) to bound the inequality above
and also (7.4), we find that for t ∈ [tk, tk+1),

d
dt
V (x(t)) ≤ −2�

1 − min{�, �0(t − tk)}
(

1 + min{�, �0(t − tk)}
)2
V (x(t)).

To find what the min function evaluates to, we use the fact that for t ∈ [tk, tk + � i�), if t− tk ≤ � i� =

1
M0
ln
(

1 + M0�
LcJmax

)

, then �0(t − tk) ≤ �. As a result, we separate the intervals into two accordingly
to use the better bound. Using the Comparison Lemma, we get the bound (7.12). Finally, (7.13)
follows by using (7.4) as the bound on the Lyapunov function’s time derivative along the trajectory.
Next, we note that from the strong convexity of function V , there existsM ≥ � > 0 such that for
all x ∈ 0, �2‖x − x∗‖2 ≤ V (x) ≤ M

2
‖x − x∗‖2. As a result, we deduce from (7.13),

‖x(t) − x∗‖ ≤
√

M
m
‖x0 − x∗‖e

− �(1−�)
(1+�)2

t, (7.14)

and exponential stability is proven.

Corollary 7.2.4 shows that one can discretize the human component of the continuous-time
gradient descent of the robot motion in an opportunistic fashion while guaranteeing convergence to
the desired outcome. Our results show that, under the trigger design (7.3), the robot can determine
when to query an ideal human operator for gradient information: Proposition 7.2.1 states that the
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design choice of � ∈ (0, 1) affects the magnitude of the time derivative of V , cf. (7.4), and therefore,
the speed of convergence to the optimizer. At the same time, Proposition 7.2.3 suggests that � affects
the amount of trigger updates, cf. (7.10), and therefore the amount of human workload. The choice
of � can therefore be adjusted depending on the model of human performance, an issue that we
address in the following section.

Remark 7.2.5. (Generalizations of Corollary 7.2.4). Corollary 7.2.4 can be generalized in a num-
ber of ways. One can, for instance, state a global version of it provided that c◦f is globally Lipschitz
by taking  = ℝn. This would come at the cost of having a larger constant Lc , which in turn af-
fects the interexecution time, making it shorter, and hence increasing the human workload. Also,
if the composite function c◦f is not convex, the convergence arguments employed to establish
Corollary 7.2.4 are still valid on a sufficiently small neighborhood of a local minimizer. ∙

7.3 Event-Triggered Design: Constraints on Human Perfor-

mance

In this section, we extend our trigger design and analysis to deal with practical constraints
on human performance. Specifically, we consider the following models on the amount of workload
that the human can take:

(i) “Need to rest” model: the human needs some time after providing gradient information before
she can respond to the next query;

(ii) “Need to think” model: the human cannot respond to queries instantaneously and instead
requires some time to provide gradient information;
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(iii) “Need to think then rest” model: this is a human with both “need to rest” and “need to think”
constraints.

Our treatment takes advantage of the possibility of tuning the design parameter � to handle these
constraints.

7.3.1 “Need To Rest” Human

We consider the scenario where the human cannot respond in quick succession to multiple
queries, i.e., after providing an answer to the robot, some time must elapse before the human can
respond to another query. We assume that an upper bound Trest ≥ 0 on the time the human needs
for resting is known. Our first approach to this problem tunes the design parameter � so that the
interexecution time is longer than the resting time Trest .

Note that, besides �, the parameters Lc, M0, and Jmax also affect the bound (7.10) on the
interexecution time. As defined, the parameters M0 and Jmax depend on the initial condition x0.
When dealing with the constraints on human performance, it becomes relevant to explicitly cal-
culate the bound on the interexecution time for our design, and hence we would like them to hold
independently of the initial condition x0 ∈ 0. We assume that the set of initial conditions 0 sat-
isfies ̄ = {x ∈ ℝn

| V (x) ≤ maxx0∈0 V (x0)} ⊆  (in words, the largest possible initial sublevel
set of V is contained in ). With the assumption, we can instead consider the parameters

M̂ = m ⋅max
x∈

‖w(x)‖ ⋅ max
x∈ ,i∈[m]

‖∇2fi(x)‖,

Ĵ = max
x∈

‖Jf (x)‖.
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Note that M̂ ≥ M0 and Ĵ ≥ Jmax for all initial conditions x0 ∈ 0. With this in place, we define
the interexecution time lower bound �� ∶= 1

M̂
ln(1 + �M̂

Lc Ĵ
), which applies to all trajectories starting

in the region of attraction 0.
The following result shows that our trigger design of Section 7.2 can accommodate suffi-

ciently small resting times.

Proposition 7.3.1. (Trigger for “Need to Rest” Human). Consider the event-triggered human-

robot system (7.1) with updates determined according to (7.3) and initial condition x0 ∈ 0. If

Trest < �1 ∶=
1
M̂
ln(1 + M̂

Lc Ĵ
), let � ∈ (0, 1] be such that

� ≥
LcĴ

M̂
(eM̂Trest − 1). (7.15)

Then, tk+1 ≥ tk + Trest for all k ∈ {0} ∪ ℕ. ■

The proof of this result follows from Proposition 7.2.3 since the choice of � satisfying (7.15)
makes Trest ≤ �� . If the resting time Trest does not satisfy the bound identified in Proposition 7.3.1,
then we cannot guarantee that the Lyapunov function is monotonically decreasing while the human
is resting and cannot answer robot queries.

To accommodate longer resting times, we explore next the possibility of allowing the Lya-
punov function to increase at times during the evolution, as long as it decreases when evaluated
at consecutive human’s queries (note that this corresponds to a standard discrete Lyapunov func-
tion). By doing so, we develop a new trigger design that combines both event- and time-triggered
ideas. Before getting into the technical exposition, we outline here the basic rationale behind this
approach, cf. Figure 7.1. First, we examine the dynamics to determine a time after which the Lya-
punov function V can potentially start increasing. We refer to this time as critical. We make the
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Figure 7.1: Evolution of Lyapunov function with grace period. The diagram shows an example of
the evolution of the Lyapunov function using our strategy to extend the resting time.

robot wait after the critical time for a pre-specified amount of time, referred to as grace period (later
formally introduced in Proposition 7.3.5). This period is determined in a way that ensures that the
Lyapunov function remains below its value at tk by the end of it. After the grace period, allow
the system to continue without querying the gradient information only if the Lyapunov function is
decreasing.

Our first result characterizes for how long without updating the human’s input and by how
much we can guarantee the monotonic decrease of the Lyapunov function.

Lemma 7.3.2. (Trigger for Critical Time). Consider the event-triggered human-robot system (7.1)
and let c◦f be strongly convex with parameter �. Define the critical time,

tcr,k = min
{

t ≥ tk | ‖Δxk‖ =
‖∇c(f (xk))Jf (x)‖

Lc‖Jf (x)‖

}

. (7.16a)
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If the robot does not receive any update on the gradient information from the human during (tk, tcr,k],

then tcr,k ≥ tk + �1 , and

V (x(tcr,k)) ≤ 
0V (xk) (7.16b)

with the constant 
0 = e
−2� ∫

�1
0

1−�(s)
(1+�(s))2

ds < 1 and �(t) = Lc Ĵ
M̂
(eM̂t − 1).

Proof. Notice that the definition (7.16a) corresponds to (7.3) with � = 1. Therefore, from (7.10),
we deduce that tcr,k − tk ≥ � i1 ≥ �1 . If the robot does not receive any update on the gradient
information from the human during (tk, tcr,k], then, using (7.12), we deduce that

V (x(t)) ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

V (xk)e
−2� ∫ ttk

1−�(s−tk)

(1+�(s−tk))2
ds if t ∈ [tk, tk + �1 ],

V (x(tk + �1 )) if t ∈ [tk + �1 , tcr,k),

which implies (7.16b).

The expression (7.16b) estimates how much the Lyapunov function has decreased before
we can no longer guarantee that it will not increase. Next, we turn our attention to bound how
much the Lyapunov may increase after the critical time if the robot does not get updated gradient
information from the human. To find such a bound, we make the following additional assumption.

Assumption 7.3.3. (Strong Convexity of the Composition Function). The composition function
c◦f is strongly convex with parameter � as a consequence of

(i) each objective function fi ∈ {fi}i∈[m] being strongly convex; and

(ii) the cost function c being strictly convex and increasing with respect to each component. ∙
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Under Assumption 7.3.3, the function Vk(x) = w(xk)f (x) is strongly convex because every
component ofw is always positive. Therefore, there exist a strongly convex parameter �k > 0 such
that �kI ⪯ ∇2Vk(x). Define also

�̂ = min
x∈

‖w(x)‖ ⋅ min
x∈ ,i∈[m]

‖∇2fi(x)‖,

and note that, by definition, �̂ ≤ �k for all k. Our next result characterizes how fast the Lyapunov
function increases after the critical time, and how long it will take for the function to exceed the
amount it previously decreased.

Lemma 7.3.4. (Lyapunov Function Bound After Critical Time). Consider the event-triggered

human-robot system (7.1) with Assumption 7.3.3. If tk+1 is such that x(t) ∈ Sk, for all t ∈ [tk, tk+1),
and tk+1 ≥ tcr,k, then

V (x(t)) ≤ V (x(tcr,k)) + V (x(tk))�(t) (7.17a)

for t ∈ [tcr,k, tk+1], where � is the strictly increasing function

�(t) = 2M̂2

�̂ ∫

t

tcr,k

(�(s − tcr,k + �1 ) − 1)e
−2�̂(s−tk)ds. (7.17b)

with �(t) = Lc Ĵ
M̂
(eM̂t − 1).

Proof. We begin by finding a bound on the state deviation after the critical time. The assumption
on tk+1 is the same as that of Lemma 7.2.2, so we can deduce (7.9). Because M̂ ≥Mk, we can find

d
dt

‖Δxk‖
‖ẋ‖

≤ 1 + M̂
‖Δxk‖
‖ẋ‖
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for t ∈ [tk, tk+1). From (7.16a), we note that ‖Δxk‖
‖ẋ‖

≤ 1
Lc Ĵ

at time tcr,k. Using the Comparison
Lemma with dynamics �̇ = 1 + M̂� and initial condition �(tcr,k) = 1

Lc Ĵ
, we have

‖Δxk‖
‖ẋ‖

≤ 1
M̂

(

(

1 + M̂
LcĴ

)

eM̂(t−tcr,k) − 1

)

≤ 1
M̂
(eM̂(t−tcr,k+�1 ) − 1)

for t ∈ [tcr,k, tk+1). We use this bound in the time derivative of the Lyapunov function along the
trajectory as follows,

d
dt
V (x(t)) ≤ −‖w(xk)Jf (x)‖2 + ‖ΔwkJf (x)‖‖w(xk)Jf (x)‖

≤ −‖w(xk)Jf (x)‖2 + Lc‖Δxk‖‖Jf (x)‖‖w(xk)Jf (x)‖

≤ −‖w(xk)Jf (x)‖2 + LcĴ
‖Δxk‖
‖ẋ‖

‖w(xk)Jf (x)‖2

≤ (−1 + �(t − tcr,k + �1 ))‖w(xk)Jf (x)‖
2. (7.18)

for t ∈ [tcr,k, tk+1). By definition, �(t) is strictly increasing and �(�̄) = 1, therefore �(t − tcr,k +
�1 ) − 1 > 0 for t > tcr,k. Therefore, we proceed by finding the upper bound to ‖w(xk)Jf (x(t))‖2

using (2.3) as follows

‖w(xk)Jf (x(t))‖2 ≤ 2M̂Vk(x(t))
(a)
≤ 2M̂e−2�̂(t−tk)Vk(xk)

≤ M̂
�̂
e−2�̂(t−tk)‖w(xk)Jf (xk)‖2

≤ 2M̂2

�̂
e−2�̂(t−tk)V (xk),
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where (a) follows from d
dt
Vk(x(t)) = −‖w(xk)Jf (x(t))‖2 ≤ −2�̂Vk(x(t)). Substituting in (7.18), we

obtain

d
dt
V (x(t)) ≤(�(t − tcr,k + �1 ) − 1)

(2M̂2

�̂
e−2�̂(t−tk)V (xk)

)

,

and the result follows via the Comparison Lemma.

The combination of Lemmas 7.3.2 and 7.3.4 bounds the evolution of the Lyapunov function
before and after the critical time. With these results, we can use guarantee an overall decrease
between two interexecution times despite some increase in the Lyapunov function after the critical
time. Using this idea, we propose a novel event-triggered design.

Proposition 7.3.5. (Trigger for “Need to Rest”Human usingGrace Period). Consider the human-

robot system (7.1) with Assumption 7.3.3. For 
 ∈ [
0, 1), let the grace period �gr be the solution
to


 − 
0 =
2M̂2

�̂ ∫

�gr+�1

�1

(�(s) − 1)e−2�̂sds.

For Trest ∈ [�1 , �gr + �

1 ], let the updates {tk+1}k∈{0}∪ℕ be determined according to

tk+1 = min
{

t ≥ tcr,k + �gr | ‖Δxk‖ ≥
‖∇c(f (xk))Jf (x)‖

Lc‖Jf (x)‖

}

. (7.19)

Then, for each k ∈ {0}∪ℕ, V (x(tk+1)) ≤ 
V (x(tk)), and tk+1− tk ≥ Trest . As a result, the optimizer
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is asymptotically stable, with 0 contained in its region of attraction, and

V (x(tk)) ≤ 
kV (x0). (7.20)

Proof. Note that due to the trigger design (7.19), tk+1 ≥ tcr,k, and therefore, both Lemma 7.3.2 and
Lemma 7.3.4 hold. We use the following bounds

�(tcr,k + �gr) =
2M̂2

�̂ ∫

tcr,k+�gr

tcr,k

(�(s − tcr,k + �1 ) − 1)e
−2�̂(s−tk)ds

= 2M̂2

�̂ ∫

�gr+�1

�1

(�(s) − 1)e−2�̂(s−tk+tcr,k−�

1 )ds

≤ 2M̂2

�̂ ∫

�gr+�1

�1

(�(s) − 1)e−2�̂sds

= 
 − 
0

where the inequality holds because �(s)−1 ≥ 0 for s ≥ �1 , and tk− tcr,k+ �̄ ≤ 0 from Lemma 7.3.2.
Substituting the inequality above and (7.16b) to evaluate (7.17a), we obtain

V (x(tcr,k + �gr − �1 )) ≤ 
0V (xk) + (
 − 
0)V (xk) = 
V (xk).

Now, for t ∈ [tcr,k + �gr − �1 , tk+1), we can find that ‖Δxk‖ < �
(

‖∇c(f (xk))Jf (x)‖
Lc‖Jf (x)‖

)

. As such, (7.5)
holds and Lyapunov function decreases during the duration. In other words, V (x(tk+1)) ≤ 
V (xk),
and (7.20) follows. Finally, because tcr,k − �1 ≥ tk, we note that tk+1 ≥ tk + �gr + �1 by design,
so tk+1 − tk ≥ Trest as claimed. Since the design is Zeno-free, the optimizer is asymptotically
stable.
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Note that the grace period �gr can be determined offline given the various problem param-
eters and the design parameter 
 . Proposition 7.3.5 offers a strategy for accommodating longer
resting times than the ones obtained in Proposition 7.3.1. Let us recapture here the ideas behind
the trigger design (7.19) that allows to accomplish this. After each human update, we use the trig-
ger (7.16a) to determine tcr,k, where we know the decrease in V given by (7.16b). We then let the
system proceed without any human update for �gr . In this period, the definition of �gr in Proposi-
tion 7.3.5 guarantees that V can increase but cannot exceed 
V (xk), which is a direct result from
Lemma 7.3.4. Finally, we let the system continue with trigger (7.19), which will prescribe an up-
date once V stops decreasing (this might be immediate). As a consequence, our design ensures that
the Lyapunov function decreases between two consecutive execution times.

The design parameter 
 directly corresponds to the convergence rate guarantee, cf. (7.20).
Note that the convergence rate is given with respect to the number of iterations rather than time,
which are not equivalent when the interexecution time is not fixed. In any case, much like how the
accommodation of longer resting times increases the value � in Proposition 7.3.1, here it requires
a larger value of 
 , which slows down the convergence rate.

7.3.2 “Need to Think” Human

In this section, we deal with the case when the human does not respond instantaneously to
queries from the robot and instead, once asked, takes some time “to think” and provide information.
Formally, for each k ∈ {0}∪ℕ, when the robot asks the human at time tk+1 for the evaluation of the
gradient ∇c at f (xk+1), the human takes some timeDk+1 ≥ 0 to relay the information ∇c◦f (xk+1).
This means that, up until tk+1 +Dk+1, the robot still uses the “old” information ∇c◦f (xk) provided
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in the previous communication with the human. The dynamics is then given by

ẋ = −(∇c(f (xk))Jf (x))⊤, (7.21)

for t ∈ [tk+Dk, tk+1+Dk+1]. Human thinking time spans are not necessarily equal across different
time instants, but we assume them to be uniformly upper bounded by a known constant Tthk > 0,
representing the maximum time it takes the human to relay her gradient information. Regarding
the initialization of the dynamics, we assume that the optimization starts when the human gives his
initial gradient information, and therefore, D0 = 0.

Given the model above, there are two new complications that arise in designing the event-
triggered law. First, it is clear that the robot should not wait until it absolutely needs the new gradient
information available to request it from the human, as it did in the ideal human case considered in
Section 7.2. In other words, if we were to define the time at which the trajectory satisfies the
condition for (7.3) as

tnec,k = min
{

t ≥ tk | ‖Δxk‖ =
�‖∇c(f (xk))Jf (x(t))‖

Lc‖Jf (x(t))‖

}

,

then we would like tk+1 + Dk+1 to occur before tnec,k to ensure condition (7.4), like we did in the
ideal human case. However, this is not simple as subtracting Tthk from tnec,k because we do not
know exactly what tnec,k is since it is determined by an event. The robot should anticipate the human
delay in responding and ask in advance, ideallyDk+1 before the need for updated information arises.
Another complication in designing a trigger is that the trigger may occur too often. We assume that
when queried, the human operator is busy during the time interval [tk+1, tk+1+Dk+1], and therefore
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cannot accept another query during this time.
In summary, we want our new design to prescribe tk+1 satisfying the following:

∙ tk+1 occurs before tnec,k −Dk+1;

∙ tk+2 happens after tk+1 +Dk+1 when prescribed iteratively.

To achieve these objectives, we use a similar trigger design as in the ideal human case with a new
design parameter �′. Our strategy is based on tuning this parameter so that tk+1 neither occurs too
late nor too early. This is done by estimating how long after tk+1 it takes for tnec,k to occur, and how
long it takes for tk+2 to occur after tk+1. The following result makes this statement precise.

Proposition 7.3.6. (Trigger for “Need to Think” Human). Consider the event-triggered human-

robot system (7.21). With � ∈ (0, 1), let D∗
thk be the unique solution to

(1 + �
1 − �

)2
= eM̂(�� −D

∗
thk) − 1

eM̂D∗thk − 1
,

and assume D∗
thk > Tthk . Let �

′ ∈ (0, 1) be such that

LcĴ

M̂

(1 + �
1 − �

)2
(eM̂Tthk − 1) < �′ ≤

LcĴ

M̂
(eM̂(�� −Tthk ) − 1). (7.22)

For k ∈ {0} ∪ ℕ, let tk+1 be determined by

tk+1=min
{

t ≥ tk | ‖Δxk‖ =
�′‖∇c(f (xk))Jf (x)‖

LcĴ

}

. (7.23)

Then, for each k ∈ {0} ∪ ℕ, we have ‖Δxk‖ <
�‖∇c(f (xk))Jf (x)‖

Lc‖Jf (x)‖
for t ∈ [tk, tk+1 + Dk+1), tk+2 >

tk+1 + Dk+1, and as a consequence, the performance guarantee (7.4) on the Lyapunov function
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holds for all t ∈ [tk +Dk, tk+1 +Dk+1).

Proof. We start by guaranteeing the existence of �′. For this, we simply show that the upper bound
in (7.22) is greater than or equal to the lower bound, or equivalently,

(1 + �
1 − �

)2
< eM̂(� i�−Tthk ) − 1

eM̂Tthk − 1

The right hand side is strictly decreasing with respect to Tthk. Given the definition of D∗
thk, we

deduce that all Tthk < D∗
thk satisfy the inequality. Note also that �′ ≤ �.

Next, with a slight abuse of notation, we use ẋ[k] = (∇c(f (xk))Jf (x))⊤. We resort to Ta-
ble 7.1 to help specify desired values of ‖Δx‖ in effect at different time intervals.

Table 7.1: Desired state deviation at different time intervals.

Interval (tk +Dk, tk+1) tk+1 (tk+1, tk+1 +Dk+1)

‖Δxk‖ < �′‖ẋ[k]‖
Lc Ĵ

�′‖ẋ[k]‖
Lc Ĵ

< �‖ẋ[k]‖
Lc‖Jf (x)‖

‖Δxk+1‖ Undefined 0 < �′‖ẋ[k+1]‖
Lc Ĵ

The first part of the proof focuses on the evolution of ‖Δxk‖. As shown in the last column
of Table 7.1, the trigger (7.23) requesting the gradient at time tk+1 should not violate ‖Δxk‖ <

�
(

‖ẋ[k]‖
Lc‖Jf (x)‖

)

up until the gradient implementation at tk+1 +Dk+1. To do so, we would like Dk+1 to
be shorter than the time it takes for ‖Δxk‖

‖ẋ[k]‖
to evolve, from �′

Lc Ĵ
to �

Lc Ĵ
(Notice that �

Lc Ĵ
< �

Lc‖Jf (x)‖
,

∀x ∈ 0). This leads to applying the Comparison Lemma with the function � satisfying �̇ =

1 + M̂� with �(tk+1) = �′

Lc Ĵ
, and asking for

Dk+1 ≤
1
M̂
ln(1 + M̂ �

LcĴ
) − 1

M̂
ln(1 + M̂ �′

LcĴ
).
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To ensure this condition, we can select �′ so that the right hand side is an upper bound on Tthk,
which leads to the upper bound on �′ in (7.22).

The second part of the proof examines the possibility of the state error ‖Δxk+1‖ to beginwith
a larger value than the trigger value at the time tk+1 +Dk+1 of implementation of the new gradient.
This is possible because Δxk+1 evolves with ẋ[k] until tk+1 +Dk+1. For this, let Tallow = tk+2 − tk+1
be the time it takes ‖Δxk+1‖ to evolve from 0 to �′‖ẋ[k+1]‖

Lc Ĵ
with the dynamics ẋ = ẋ[k]. We will show

that enforcing the lower bound on �′ in (7.22) ensures Dk+1 ≤ Tallow. We reason by contradiction.
Assume Dk+1 > Tallow and let us examine the dynamics of ‖Δxk+1‖

‖ẋ[k]‖
. Following a similar derivation

as in the proof of Lemma 7.2.2, we arrive at

d
dt

‖Δxk+1‖
‖ẋ[k]‖

≤ ‖ẋ[k+1]‖
‖ẋ[k]‖

+ M̂
‖Δxk+1‖
‖ẋ[k]‖

. (7.24)

We next proceed to bound ‖ẋ[k+1]‖
‖ẋ[k]‖

. Note that, from (7.6), we have ‖w(x)Jf (x)‖ ≤ (1 + �)‖ẋ[k]‖ for
t ∈ [tk, tk+1 +Dk+1]. Additionally, from w(xk)Jf (x) = (w(x) − Δwk)Jf (x),

‖w(xk+1)Jf (x)‖ ≤ ‖w(x)Jf (x)‖ + ‖Δwk+1‖‖Jf (x)‖

≤ ‖w(x)Jf (x)‖ + Lc‖Δxk+1‖‖Jf (x)‖

≤ ‖w(x)Jf (x)‖ + �′‖w(xk+1)Jf (x)‖

≤ ‖w(x)Jf (x)‖ + �‖w(xk+1)Jf (x)‖,

during t ∈ [tk+1, tk+1 + Tallow]. Using this in conjunction with (7.6) and the fact that Tallow < Dk+1,
we have

(1 − �)‖ẋ[k+1]‖ ≤ ‖w(x)Jf (x)‖ ≤ (1 + �)‖ẋ[k]‖,
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valid for t ∈ [tk+1, tk+1 + Tallow], and hence ‖ẋ[k+1]‖
‖ẋ[k]‖

≤ 1+�
1−�

. Substituting this ratio in (7.24), we get

d
dt

‖Δxk+1‖
‖ẋ[k]‖

≤ 1 + �
1 − �

+ M̂
‖Δxk+1‖
‖ẋ[k]‖

.

Now, we solve for  ̇ = 1+�
1−�

+ M̂ with initial condition  (tk+1) = 0, and use the Comparison
Lemma to ensure

 (tk+1 + Tallow) =
(1 + �)
M̂(1 − �)

(eM̂Tallow − 1) ≥
‖Δxk+1‖
‖ẋ[k]‖

.

Recall this inequality is true for all t ∈ [tk+1, tk+1 + Tallow] where we can use once again the rela-
tionship ‖ẋ[k+1]‖ ≥ 1−�

1+�
‖ẋ[k]‖. Therefore, at t = tk+1 + Tallow,

�′

LcĴ
=

‖Δxk+1‖
‖ẋ[k+1]‖

≤ 1
M̂

(1 + �
1 − �

)2
(eM̂Tallow − 1) (7.25)

Using now the lower bound in (7.22), we deduce Tthk < Tallow, which is a contradiction because
Tthk > Dk+1. Therefore, Dk+1 ≤ Tallow. Since tk+2 = tk+1 + Tallow, we have tk+2 > tk+1 + Dk+1.
Finally, since at all times t ∈ [tk+Dk, tk+1+Dk+1), we have bounded ‖Δxk‖ ≤ �

(

‖∇(c(f (xk)))Jf (x)‖
Lc‖Jf (x)‖

)

,
the Lyapunov function rate (7.4) is ensured.

Proposition 7.3.6 requires the thinking time Tthk to be smaller thanD∗
thk. Consistent with the

treatment of delays in the event-triggered control literature [DBH17,LWL12,HDI06,WRGL15], it
does not come as a surprise that the thinking time must be sufficiently small for a trigger design to
exist; otherwise, the system will receive no human updates for too long and start behaving unsat-
isfactorily. D∗

thk can then be interpreted as the maximum allowable thinking time for the human.
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Although we interpret the delays as caused by the human’s thinking time, other sources of delay
could be equally accommodated by Proposition 7.3.6.

Similarly to the ideal human case of Section 7.2, to ensure convergence, we need to show
that the trigger (7.23) will not exhibit Zeno behavior. The following result provides a uniform lower
bound on the interexecution time.

Proposition 7.3.7. (Interexecution Time with Update Delay). For the event-triggered human-

robot system (7.21) with updates determined according to (7.23), and under the same hypotheses

as Proposition 7.3.6, the interexecution time is lower bounded as tk+1 − tk ≥ � thk�′ where

� thk�′ ∶=
1
M̂
ln

( 1 + M̂ �′

LcJmax

1 +
(

1+�
1−�

)2
(eM̂Tthk − 1)

)

+ Tthk . (7.26)

Proof. By construction, during [tk +Dk, tk+1], the dynamics is given by ẋ[k]. Similarly to how we
obtained inequality (7.25) in the proof of Proposition 7.3.6, we have

‖Δxk‖
‖ẋ[k]‖

≤ 1
M̂

(1 + �
1 − �

)2
(eM̂Dk − 1),

at time tk +Dk. Setting �(tk +Dk) equal to the right hand side of the above inequality as the initial
condition, we solve the dynamics �̇ = 1 + M̂�,

1
M̂
ln

(

1 + M̂�(t)
1 + M̂�(tk +Dk)

)

= t − (tk +Dk),

for t ≥ tk +Dk. Using the Comparison Lemma, we know ‖Δxk‖
‖ẋ[k]‖

≤ �(t), so it takes longer time for
‖Δxk‖
‖ẋ[k]‖

to evolve to �′

Lc Ĵ
(precisely tk+1 − tk −Dk) than it takes �(tk +Dk) to increase to �(t) = �′

Lc Ĵ
.
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As such, we find that

tk+1 − tk ≥
1
M̂
ln

( 1 + M̂ �′

LcJmax

1 +
(

1+�
1−�

)2
(eM̂Dk − 1)

)

+Dk.

The result now follows by observing that the right hand side is decreasing in Dk.

The combination of Propositions 7.3.6 and 7.3.7 ensures that the event-triggered human-
robot system (7.21) with updates determined according to (7.23) enjoys the same convergence
guarantee as stated in Corollary 7.2.4.

Corollary 7.3.8. (Asymptotic Stability – “Need to Think” Human Design). For the event-

triggered human-robot system (7.21) with updates determined according to (7.23), the optimizer

x∗ is asymptotically stable, with 0 = {x0 ∈ ℝn
| 0 ⊆ } contained in its region of attrac-

tion. Moreover, if c◦f is strongly convex with constant � > 0 on  , then given an initial condition

x0 ∈ 0, (7.12) holds for all k ∈ {0} ∪ ℕ. As a consequence, the optimizer is exponentially stable

with the bound (7.13) for � ∈ (0, 1).

7.3.3 “Need to Think Then Rest” Human

Here, we combine the “need to rest” and “need to think” models into a single one: not only
does the human take some time in responding to a robot’s query, but she also has to rest before she
can reply to the robot again. Formally, this means that the robot follows the dynamics (7.21) with
the additional constraint that tk+1 ≥ tk +Dk + Trest for all k ∈ {0} ∪ ℕ. Our next result addresses
this problem.

Proposition 7.3.9. (Trigger for “Need to Think ThenRest”Human). Consider the event-triggered
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human-robot system (7.21). Given � ∈ (0, 1) and Trest , let D∗
tnk−rst be the unique solution to

(1 + �
1 − �

)2
= eM̂(�� −D

∗
tnk−rst−Trest ) − 1

eM̂D∗tnk−rst − 1
, (7.27)

and assume D∗
tnk−rst > Tthk . For k ∈ {0} ∪ ℕ, let tk+1 be determined according to (7.23), where

�′ ∈ (0, 1) is such that

LcĴ

M̂

((1 + �
1 − �

)2
(eM̂Tthk − 1)eM̂Trest + (eM̂Trest − 1)

)

< �′ ≤
LcĴ

M̂
(eM̂(�� −Tthk ) − 1).

Then, for each k ∈ {0} ∪ ℕ, we have ‖Δxk‖ <
�‖∇c(f (xk))Jf (x)‖

Lc‖Jf (x)‖
for t ∈ [tk, tk+1 + Dk+1), tk+2 >

tk+1+Dk+1+Trest , and as a consequence, the bound (7.4) on the evolution of the Lyapunov function
holds for all time, t ∈ [tk +Dk, tk+1 +Dk+1).

Proof. First, note that the newly introduced rest time constraint has no effect on how the upper
bound is derived in (7.22), so it remains the same here. On the other hand, the lower bound to
�′ is affected by the rest time constraint. Specifically, we must now guarantee that the value of
‖Δxk+1‖ must not exceed the trigger condition �′‖ẋ[k+1]‖

LcJmax
, but at the time tk+1 +Dk+1 + Trest (instead

of the earlier tk+1 +Dk+1). We break the time of interest into two intervals, [tk+1, tk+1 +Dk+1] and
[tk+1 +Dk+1, tk+1 +Dk+1 + Trest] because in these two intervals, the dynamics are different due to
the human’s update.

First, we focus on the latter of the two time intervals. From (7.8),

d
dt

‖Δxk+1‖
ẋ[k+1]

≤ 1 + M̂
‖Δxk+1‖
ẋ[k+1]

.

185



As such, we know that if

‖Δxk+1‖
ẋ[k+1]

≤ 1
M̂

(

(1 + M̂ �′

LcJmax
)e−M̂Trest − 1

)

,

at time tk+1 + Dk+1, then ‖Δxk+1‖
ẋ[k+1]

≤ �′

LcJmax
at time tk+1 + Dk+1 + Trest by using the Comparison

Lemma. Next, we deal with the interval [tk+1, tk+1 + Dk+1] to show that the lower bound given in
the statement ensures the above inequality at time tk+1 +Dk+1. This can be done by following the
same contradiction proof procedure as presented for Proposition 7.3.6.

Proposition 7.3.9 gives a method to deal with both human resting and thinking time. Once
again, these constraints must be sufficiently small. We can interpretD∗

thk−rst as the maximum allow-
able thinking time for the human, given the amount of time he needs to rest. As Zeno behavior is
absent due to the interexecution time being lower bounded by the resting time, an analogous state-
ment to Corollary 7.3.8 follows. The given model is the richest in term of dealing with constraints
on human performance, and we can recover earlier models by setting resting or thinking time to
zero.

Remark 7.3.10. (Units of Time). The two types of constraints on human performance considered
here both have parameters dealing with time. The resting time Trest and the thinking time D most
likely will be quantified with units of time that are meaningful in the real world (e.g., seconds
and hours). On the other hand, the gradient descent has its own unit of time that is encoded in
the dynamics. To use our results, it is important to reconcile the difference in units. One way
to do this is by noting that the gradient descent is calculated by the robot. In practice, the robot
will probably implement the continuous gradient dynamics through a discretization with a constant
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stepsize. Given how long the robot takes to compute each step in the gradient descent, we have a
convenient unit conversion between the two time units. We note here that the conversion depends
on the robot’s computing power and the selected stepsize. ∙

7.4 Simulations

We consider a human-robot interaction scenario where a human aids the robot in determin-
ing a safe trajectory through an environment populated with threats of different levels. The robot
is tasked to travel from the origin at (0, 0) to (1, 0) on the xy-plane. The robot has scanned a few
potential threats in the area with positions among

(xobs, yobs) = {(0.8, 0.1), (0.3,−0.2), (0.2, 0.04), (0.68, 0.3), (0.5, 0.12)}.

Ideally, the robot would like to stay away from these locations while, at the same time, would like
to traverse the shortest path possible to its goal. To describe its reference trajectory, the robot uses
a sum of sinusoidal functions as,

y =
10
∑

i=1
ai sin(i�x), x ∈ [0, 1],
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where a ∈ ℝ10 are the amplitudes to be optimized. The objective functions for avoiding obstacles
and for measuring path length are given by

fobs,j(a) = − max
x∈[0,1]

{

(yobs,j − y)2 + (xobs,j − x)2
}

,

flen(a) = ∫

1

0

√

√

√

√1 − (
10
∑

i=1
i�ai cos(i�x))2 dx,

for j ∈ [5] and a ∈ ℝ10. In order to find the amplitudes that best describe the most desired reference
trajectory, a human works with the robot in the multiobjective optimization problem with objective
functions fobs,1,… , fobs,5, flen by evaluating risks of the likely threats and providing the robot with
gradient information. In practice, the human preference function is not known, and the gradient
information can only be estimated, perhaps through asking the human to rate the importance of
each objective functions at a given point. For the purpose of the simulation, we use the following
function to represent the human preferences,

c(f ) =
f 2len
10

+
5
∑

j=1

qj
f 2obs,j

,

where q = [0.2, 0.5, 0.03, 0.1, 0.3]. The weights captured in q represent how the human assesses
the threats. The third potential threat, for example, is an order of magnitude lower than the others.
This can represent, for instance, how the human knows that the third object is a friendly entity and
does not pose much risk besides a potential crash. We assume the human provides the exact value
of the gradient information and focus on how we can apply the results in this paper to accommodate
the constraints in human performance, as discussed in Section 7.3.

We run our simulations in MATLAB on a desktop with a 3.5GHz Intel Core i5-6600K
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Figure 7.2: Optimized trajectories. The diagram shows the trajectories of the optimized amplitudes
after 10000 robot iterations with the initial condition of a straight path, a = 0. Shown in the dotted
lines are the trajectories at 5000 robot iterations for each respective model. The proposed triggers
for updating human gradient information shows convergence towards the desired (continuous case)
trajectory in all the cases.

quad-core CPU and 16GB of RAM. For comparison, we generate a reference optimized trajectory
having the robot use gradient information at all times. We refer to this as the “continuous” case. To
simulate the continuous dynamics, we use an Euler discretization with a stepsize of 1 × 10−5. Note
that the timescales of the robot, over which the dynamics runs, and of the human are not necessarily
the same, cf. Remark 7.3.10. In fact, in our platform, each iteration of this discretization takes the
robot roughly one second to compute. Therefore, continuous queries by the robot would mean that
the human needs to respond every second. From an operational point of view, this amount of time
can be too little for the human to work with. Instead, the results of this paper allow the robot to
efficiently query the human in an opportunistic fashion to continue its operation and also allow the
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human to gain more time to work between consecutive queries.
Even though the resulting optimization problem is not convex, we employ our event-

triggered law (7.3) with � = 0.5 to find a local optimizer via human-robot interactive gradient
descent (cf. Remark 7.2.5). Under the ideal human model of Section 7.2, the trajectory from the
resulting optimized amplitudes after 10000 iterations is plotted in Figure 7.2. Using (7.10), the
lower bound to the interexecution time is 5.2 × 10−4, i.e., 52 robot iterations. As a result, the hu-
man does not need to respond at every iteration to ensure convergence to the desired trajectory. In
addition, Figure 7.3 shows the number of iterations elapsed before the human responds, which is
lower bounded by the aforementioned value. Note that the optimal trajectory ends up closer to the
obstacle on the left, compared to others. This is expected because the object corresponds to the
threat location with weight q3, which has lower potential risk than the others.

Next, we consider a scenario where the human may take time to provide gradient informa-
tion and may need some time to rest between consecutive queries, as described under the “need to
think then rest” model of Section 7.3.3. With the notation of that section, we select Tthk = 5×10−5,
which corresponds to 5 robot iterations – i.e., the robot has to wait for up to 5 iterations in the exe-
cution of its gradient dynamics before receiving a response from the human to its query. In order to
determine the allowable resting times in this scenario, we use (7.27) from Proposition 7.3.9 to plot
in Figure 7.4 the design space of pairs (�, Trest) for which the above thinking timeD is feasible. To
obtain the same guaranteed convergence rate as in the ideal human case, we select � = 0.5 and then,
based on Figure 7.4, we pick Trest = 1×10−4 to be in the interior of the feasible option. Note that this
selection corresponds to 10 iterations of the robot. In practice, the algorithm might still converge
with much longer resting times because of the various bounds involved in obtaining our guarantee.
In fact, in our simulations, cf. Figure 7.3, we observe that the human actually has the minimum
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Figure 7.3: Interexecution times. The diagram shows the time elapsed between each request from
the robot to the human to update the gradient value. The interevent times are uniformly lower
bounded in both cases, as guaranteed by our analysis. The robot runs its dynamics with stepsize 1×
10−5, which means that the human only has to respond after at least 65 iterations.

resting time of 6.5 × 10−4, which corresponds to 65 iterations. According to Proposition 7.3.9, we
select �′ = 0.42 to satisfy the hypotheses and implement the event-triggered law (7.23). The result
shows that the resting and thinking time constraints are respected and, as expected, the interevent
times are reduced to accommodate the delay, cf. Figure 7.3. Figure 7.5 shows the evolution of the
Lyapunov function, where one can see that the same level of performance as in the ideal human
case is attained.
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Chapter 8

Conclusions

Balancing multiple control objectives in a multi-robot systems is the overarching theme
of this dissertation. While special emphasis has been put on stability and safety, we have also
discussed concepts like connectivity maintenance and smoothness of the feedback controllers as the
control goals for the design for multi-robot systems. We have also looked at the resource-efficient
methods of implementation of the controller using event-triggered control. We have developed an
event-triggered control framework for stability in distributed systems, safety, and interactive multi-
objective optimization.

8.1 Summary

Chapter 3 considers the problem of maintaining network connectivity in multi-robot sys-
tems while satisfying nominal requirements that encode desired control objectives. Our solution
employs the algebraic connectivity of the interconnection topology as a nonsmooth control barrier
function to produce additional constraints for the optimization-based synthesis of the controller
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that guarantee it is continuous and maintains network connectivity. The technical approach fully
embraces the nonsmooth nature of the algebraic connectivity and other spectral functions of the
Laplacian matrix corresponding to the interconnection graph. This has led us to define two differ-
ent continuous set-valued constraint maps, one that reasons with the merged lower bound of all the
eigenvalues’ rate of change at once and another, less conservative, that instead reasons over merged
lower bounds of an increasing number of eigenvalues’ rate of change. We have illustrated the ef-
fectiveness of our approach in both simulation and experiment in a resource gathering multi-robot
scenario.

While Chapter 3 uncovers issues when CBFs is nonsmooth, Chapter 4 looks at the problems
when CBFs are smooth. Particularly, we have pointed out that existing controller design method-
ologies do not retain smoothness properties and have formulated a feedback controller for smooth
safe stabilization. Given a CLF and a CBF, the formula considers the associated admissible con-
trol set, and calculates the weighted centroids with normal distribution weights of different sets.
By combining the centroids in a smooth way, the given feedback controller retains the smoothness
property of the CLF-CBF pair. Also, by manipulating the “standard deviation,” the controller can
be found continuous at the origin when the small control property holds.

Chapter 5 turns attention towards the implementation of stabilizing controllers. We have de-
veloped a novel framework for event-triggered control design that meets a prescribed performance
regarding convergence. The proposed approach allows for greater flexibility in prescribing update
times by allowing the certificate to gradually deviate from strictly decreasing in proportion to the
performance residual. We have shown analytically how, for exponential performance specifica-
tions, the resulting trigger design exhibits an improved MIET with respect to the derivative-based
approach. We have taken advantage of the flexibility of the proposed approach to design intrisically
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Zeno-free triggers for network systems that rely on distributed computation and communication and
are applicable for a general class of systems.

Following an event-triggered control framework for stabilizing controllers Chapter 5, we
provide another framework for safeguarding controllers in Chapter 6. We have presented a novel
approach for achieving the safety of a system with a resource efficient event-triggered control law
using Input-to-State Safe Barrier Functions. Similarities and differences between achieving stabil-
ity and safety in an event-triggered context were highlighted through an example, with a particular
focus on how the behavior guaranteed with ISSf-BFs can lead to interevent times that are not lower
bounded. This insight is used to propose a trigger law that renders the system input-to-state safe
and guarantees a MIET for the system.

Chapter 7 takes a step back and explores how a system can strike balance between many
objectives. Motivated the vision of human-robot symbiotic relationship, we have developed event-
triggered strategies for human-robot interactive multiobjective optimization. Our design seeks to
minimize human workload by having the robot require her involvement in an opportunistic fashion
when it is necessary to ensure the asymptotic correctness of the robot dynamics. We have shown
how different human performance limitations can be accommodated, such as the human requiring
some time between consecutive queries, requiring some time before producing a response, and a
combination thereof. For each model, we show that the corresponding event-triggered strategy is
provably correct and Zeno-free, with uniformly lower bounded inter-event times.
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8.2 Future Work

The contributions of this dissertation set the stage for many research possibilities, and our
future work will reflect that. In this section, we outline our short-term goals and the long-term
direction for our research focus building on the results provided in this dissertation.

8.2.1 Extensions

Inexpensive distributed computation of eigenvalue problems. Motivated by the connec-
tivity maintenance problem, we wish to explore ways to compute eigenvalues and eigenvectors in
a distributed fashion. This, in itself, should already be possible because we can use distributed
optimization methods to solve for an eigenvalue, and use it to solve the linear equation for its eigen-
vector, also in a distributed way. In fact, existing works in the literature [YFG+10,ASD+14] have
already explored the distributed computation of algebraic connectivity. However, we intend to ex-
tend those work to the computation of all eigenvalues, and we will characterize errors by use our
understanding of how eigenvalues and eigenvectors change to do a perturbation analysis. From
that point, we aim to use event-triggered control to reduce computational loads by using the size of
perturbation as a triggering mechanism.

Smoothness and event-triggered control implementation: In this dissertation, we have
explored the design of a smooth controller, but our implementation method does not take advantage
of the smoothness. Our future research will investigate the benefits from smoothness in a controller.
Because the current event-triggered control framework is agnostic of the smoothness properties, we
want to develop a framework that capture them in some way. For instance, we may design a trigger
mechanism that, in addition to monitoring performance criteria, limits how much the control signal
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can change at each trigger, and use smoothness to bound its minimum-interevent time.
Performance-based event-triggered control co-design: The performance-barrier-based

trigger framework we have developed opens up a whole new set of possibilities. We are particu-
larly interested in its application to the event-triggered control co-design problem. Controllers are
not usually designed with a consideration of an event-triggered implementation. Common con-
trol design methodology, such as optimal control, may lose its effectiveness when event-triggered
implementation is applied after the design process. Co-designing a feedback controller together
with a trigger condition aims to solve this issue. Nevertheless, guaranteeing a desirable property
for the controller is often very difficult because the controller is aperiodically updated. We believe
that the performance guarantee provided by the performance-barrier-based trigger framework can
be exploited in a variety of scenarios to facilitate the analysis when co-designing controllers that
opportunistically update.

8.2.2 The Big Picture

In the big picture, we are motivated by the multiobjective aspect in control systems. We
believe that the control objectives are performance-driven, meaning that the objectives are not ab-
solute. Instead, each control objective has an acceptable level of performance, e.g., convergence
speed in asymptotic stability and safety level by a certificate, with some diminishing return. At the
same time, we believe humans have intuitions and desires in these performance criteria but cannot
express them, at least not mathematically. In the long term, we want to explore how performance
criteria can dictate control, what parameters are important for each objective, what kind of infor-
mation can be obtained from humans, and how we should interface the human. These questions
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also have a connection to research fields that we have not explored in this dissertation, i.e., data-
driven control and machine learning. Our approaches in the dissertation has made the assumption,
as a starting point, the knowledge of the system dynamics and the availability of the certificates.
Because each human is different, the control systems need to be flexible in dealing with differ-
ent humans. We believe that research towards combining the results in this dissertation with the
data-driven control or machine learning will be exciting. When these challenges are explored and
addressed, we imagine networks of truly smart control system serving humans, executing multiple
tasks in the way that maximize its utility by observing and directly interacting with humans. This
vision guides our future research.
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