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Genome analysis
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Abstract

Summary: The software pipeline SHOGUN profiles known taxonomic and gene abundances of short-read shotgun
metagenomics sequencing data. The pipeline is scalable, modular and flexible. Data analysis and transformation
steps can be run individually or together in an automated workflow. Users can easily create new reference data-
bases and can select one of three DNA alignment tools, ranging from ultra-fast low-RAM k-mer-based database
search to fully exhaustive gapped DNA alignment, to best fit their analysis needs and computational resources. The
pipeline includes an implementation of a published method for taxonomy assignment disambiguation with empiric-
al Bayesian redistribution. The software is installable via the conda resource management framework, has plugins
for the QIIME2 and QIITA packages and produces both taxonomy and gene abundance profile tables with a single
command, thus promoting convenient and reproducible metagenomics research.

Availability and implementation: https://github.com/knights-lab/SHOGUN.

Contact: dknights@umn.edu

1 Introduction

Next-generation sequencing technology has led to a massive influx
in the amount of metagenomic data, creating the potential to dis-
cover the causal roles microbes play in the many complex ecosys-
tems they influence (Buermans and den Dunnen, 2014). The
quantification of taxonomic and gene abundance profiles from
metagenomic data are often carried out using custom, in-house
workflows leading to redundant implementations of software and
the inability to reproduce results across labs and studies (da Veiga
Leprevost et al., 2017). To tackle these challenges, we propose the
SHOGUN pipeline that assembles current-best practices in the field
into a single, easy to use, and flexible framework to carry out known
taxonomic and gene abundance profiling of metagenomic whole-
genome shotgun (WGS) data (Hillmann and Knights, 2017).

2 Shogun pipeline

SHOGUN is a command-line tool that can be installed via
the Anaconda (Anaconda Software Distribution, 2017) resource man-
agement framework with a single command, is open source and freely

available via the GNU Affero General Public License and is well-

documented and easy to use. SHOGUN is also available as a plugin
for the QIIME2 (Bolyen et al., 2018) and QIITA (Gonzalez et al.,
2018) packages. SHOGUN includes contaminate read filtering, rela-
tive abundance profiling and coverage with a full description of the
methods in Figure 1. The command line interface was designed using

a modular subcommand framework, so that a user can run the whole
pipeline at once or each step individually. The codebase is unit-tested

and every version of the pipeline receives a unique version tag that can
rolled-back to for complete analysis reproducibility.

3 Taxonomic abundance profiling

The profiling algorithm of known taxonomies within SHOGUN is
broken up into three primary steps: sequence alignment, taxonomic

assignment and rank-specific relative abundance estimation.

3.1 Sequence alignment
SHOGUN implements application wrappers for three distinct

alignment algorithms: Bowtie2 (Langmead and Salzberg, 2012), a
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Burrows–Wheeler alignment algorithm, BURST (Al-Ghalith and

Knights, 2017), an optimal, exhaustive Needleman–Wunsch
alignment algorithm and UTree (Al-Ghalith and Hillmann, 2017), a
k-mer-based alignment algorithm.

3.2 Taxonomic assignment
Due to shared regions of the genome across microbes, a query se-
quence often aligns to multiple reference genomes equally well. When

a query sequence matches multiple genomes, SHOGUN uses a confi-
dence weighted last-common ancestor algorithm to assign a single
taxonomic match to each sequence. The confidence for a taxonomic

clade is calculated by the matches within that clade divided by the sum
of all sequence matches. The most specific taxonomic clade above a

confidence threshold is selected as the single match. This read-

disambiguation scheme, known in SHOGUN as taxonomy mode,

results in a rank-flexible taxonomy assignment, where taxonomic
abundance profiles contain a mixture of taxonomic levels; i.e. some
queries are classified at the kingdom level, some at the phylum level

and others at the species level. If all annotations are at the same level,
such as the species level and the taxonomic profile is known as being
rank-specific. The BURST aligner can be run in the SHOGUN tax-

onomy mode, or can optionally perform its own read-disambiguation
scheme that returns rank-specific relative profiling known as capitalist

(Al-Ghalith and Knights, 2017).

3.3 Rank-specific relative abundance estimation
SHOGUN implements empirical Bayesian redistribution of reads

in a similar fashion to the Bracken algorithm, where higher levels

Fig. 1. (A) Schematic overview of the computational pipeline SHOGUN. For every step in the SHOGUN pipeline, the user must supply the pre-formatted SHOGUN database

folder. To run every step shown here in a single command, the user can select the pipeline subcommand. Otherwise, the analysis modules can be run independently.

(a) Filter–The input quality-controlled reads are aligned against the contamination database using BURST to filter out all reads that match human associated genome con-

tent. (b) Align–The contamination-free reads are aligned against the reference genome database. The user has the option to select one or all of the three alignment tools

BURST, Bowtie2, or UTree. (c) Assign-taxonomy–Given the data artifacts from a SHOGUN alignment tool, output a Biological Observation Matrix (BIOM) format profile

with the rows being rank-flexible taxonomies, the columns are samples and the entries are counts for each given taxonomy per sample. The alignment tool BURST has two run

modes, taxonomy and capitalist. If the capitalist mode is enabled, a rank-specific BIOM file is output instead. (d) Coverage–The output from BURST can be utilized to

analyze the genome coverage of each taxonomy across all samples in the alignment file. This can useful for reducing the number of false positive alignments by removing

taxonomies below a minimum coverage score. (e) Redistribute–The rank-flexible profile is summarized into a rank-specific profile. (f) Normalize–Each sample in the pro-

file is normalized to the median depth of all the samples for count-based analysis tools that use BIOM tables. (B) RAM memory usage in gigabytes of each of the aligners using

the Kraken timing dataset. The horizontal red line depicts the size of the Rep82 database. (C) The scaling and efficiency in reads per minute of each of the aligners across many

threads per process. Tools were selected based on an open-source codebase, ability to make a custom reference database and an output file containing mappings per sequence.

The fastest tools are the alignment-free methods Kraken and UTree. Each of the tools scale efficiently across many threads per process. (D) The F1-score for each aligners’ per

read taxonomic profiles on the simulated stool, oral and skin communities. For the alignment methods, two different thresholds at 95% and 98% for alignment identification

were tested to account for recall bias in highly-divergent reads
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of the taxonomic tree are redistributed to lower levels according
to each genome’s uniqueness, number of hits in a profile and
length (Lu et al., 2017). SHOGUN implements the Bayesian redis-
tribution using BURST taxonomy profiling instead of the Kraken
profiling.

4 Gene abundance profiling

Gene abundance profiles are obtained in a similar manner to taxo-
nomic profiles and only returns genes labeled within the reference
database. The three steps for gene abundance profiling are sequence
alignment to an annotated nucleotide gene database, gene assign-
ment and relative abundance estimation. When a query sequence
matches multiple reference genes, we are unable to leverage taxo-
nomical associations between genes for disambiguation and there-
fore are only able to leverage the capitalist reference gene
disambiguation scheme.

5 Materials and methods

To validate the performance of the pipeline, we selected representa-
tive genomes from bacteria, archea and viruses from the publicly
available RefSeq nucleotide database version number 82 (Rep82)
(Tatusova et al., 2014). We identified genes using UniProt (Bateman
et al., 2017) annotations obtained by running Prokka (Seemann,
2014) on all the bacterial genomes and mapping them to Kyoto
Encyclopedia of Genes and Genomes (Kanehisa et al., 2012) annota-
tions. To test each internal alignment engine’s accuracy of relative
abundance estimation of metagenomic communities, we created a
simulated community with known species level taxonomy. The data
were simulated according to abundances obtained from Human
Microbiome Project using the top 100 most abundant species from
each general body habitat according to the original study’s results
(Turnbaugh et al., 2007). Reads were simulated from a strain of
those species according to the average proportion of that taxonomy
in their respective group using the tool dwgsim (Homer, 2017) with
default settings. The two tools outside of the SHOGUN framework
utilized were Kraken and Centrifuge (Kim et al., 2016); for a more
complete benchmark of accuracy please compare the relative accura-
cies to the Lindgreen et al. (2016) evaluation. The alignment meth-
ods were evaluated using F1-scores (the average of precision and
recall) of the known species assignment versus the identified species.
Each of the taxonomic assignment methods was also evaluated for
speed and memory usage using the query sequences from the Kraken
timing dataset and the Rep82 reference database. The results of
profiling are summarized in Figure 1B–D, demonstrating compar-
able performance of alignment-based methods over a range of run-
time efficiencies.

The following benchmarked tools were installed from the
Anaconda channel ‘knights-lab’ using versions SHOGUN¼1.0.5,
Utree¼2.0 rf and BURST¼0.99.7f. The rest of the tools were
installed from the Anaconda channel ‘bioconda’ with versions
Bowtie2=¼2.3.4.1–0, Kraken¼1.1–1, Centrifuge¼1.0.3–2 and
dwgsim¼1.1.11-5.
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