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Abstract 

Brain morphology has been shown to be highly heritable, yet only a small portion of the heritability is 

explained by the genetic variants discovered so far. Here we exploit the distributed nature of genetic 

effects across the brain and apply the Multivariate Omnibus Statistical Test (MOSTest) to genome-wide 

association studies (GWAS) of vertex-wise structural magnetic resonance imaging (MRI) cortical measures 

from N=35,657 participants in the UK Biobank. We identified 695 loci for cortical surface area and 539 for 

cortical thickness, in total 780 unique genetic loci associated with cortical morphology. This reflects an 

approximate 10-fold increase compared to the commonly applied univariate GWAS methods. Power 

analysis indicates that applying MOSTest to vertex-wise structural MRI data triples the effective sample 

size compared to conventional univariate GWAS approaches. Functional follow up including gene-based 

analyses implicate 10% of all protein-coding genes and point towards pathways involved in neurogenesis 

and cell differentiation. 
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Introduction 

Variability in brain morphology is highly heritable, with twin studies estimating heritability for global 

measures at 89% for total surface area and 81% for mean cortical thickness1 and regional measures 

(adjusting for whole brain measures) at up to 46% for cortical area and 57% for thickness2. GWAS is a 

powerful tool for identifying genetic variants that shape the human cortex, but the full breadth of 

reported heritability estimates has yet to be uncovered. The most recent large-scale GWAS of brain MRI 

data (N=51,665) from the ENIGMA consortium identified 187 and 50 loci associated with global and 

regional cortical surface area and thickness, respectively3. The relatively low yield despite high 

heritabilities of brain morphology is likely due to high polygenicity and small effect size (discoverability) 

per locus4. 

Both imaging genetics4 and gene expression studies5 suggest that genetic effects are distributed across 

cortical regions, such that variants influencing one cortical region are also likely to affect other cortical 

regions. Multivariate statistical methods are naturally tailored to model distributed and pleiotropic 

genetic effects. We recently developed a Multivariate Omnibus Statistical Test (MOSTest)6 that aggregates 

effects across spatially distributed phenotypes, such as cortical thickness, boosting our ability to detect 

variant-phenotype associations. We showed that applying MOSTest to cortical morphology region of 

interest (ROI) measures in the UK Biobank substantially increased loci discovery6 compared to the 

commonly applied approach used by the ENIGMA consortium3, here referred to as the min-P approach. 

For each genetic variant tested for association with multiple phenotypes, min-P considers only the most 

significant p-value and corrects it for the effective number of phenotypes analyzed, thus failing to exploit 

shared genetic architecture across brain regions. In contrast, MOSTest relies on the distributed nature of 

genetic influences across brain regions and allows detection of genetic variants with weak effects in 

multiple brain regions. We have shown that the discoverability of GWAS variants underlying regional 
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cortical area and thickness depends on the specific parcellation of cortical regions used, and that 

parcellations based on genetic correlations from twin studies perform better than genetically un-informed 

schemes4. Here we show that the combined genetic yield (number of loci discovered) for cortical area and 

thickness can be boosted when using MOSTest (yielding a 3.8-fold increase relative to min-P), and boosted 

further when moving from a region-based approach to a more fine-grained vertex-wise approach 

(additional 1.8-fold increase). Uncovering the detailed genetic architecture of cortical area and thickness 

will provide insight into the underlying neurobiology of the human brain, and give a better understanding 

of brain-related human traits, such as cognition7, as well as neurological8 and psychiatric diseases9. 

Results 

Genetic loci discovery 

Using MOSTest6, we performed a multivariate GWAS of cortical morphology, such that the significance of 

each locus was estimated after aggregating its effects across all vertices (1284 data points each for 

thickness and area). This was conducted separately for cortical surface area and thickness in 35,657 

individuals from UK Biobank. Cortical morphology estimates were residualized for modality-specific global 

brain measures prior to analysis in order to estimate regional cortical effects relative to global brain 

measures. Measurements from left and right hemispheres were included separately (not averaged). We 

identified 695 and 539 loci, respectively, equating to 780 unique loci associated with cortical morphology. 

Prior to performing the MOSTest analysis, individual cortical area and thickness measures were 

residualized for age, sex, scanner site, proxy of surface reconstruction quality, the first twenty genetic 

principal components, and a participant-specific global measure (either total area or average thickness). 

Measurements from left and right hemispheres were not merged. For comparison, we repeated this 

procedure aggregating over 68 ROIs from the Desikan-Killiany parcellation. This resulted in the discovery 

of 370 loci for cortical surface area and 181 loci for cortical thickness, such that the vertex-wise MOSTest 
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analysis provided a 1.9-fold and 3.0-fold increase in yield over the region-based MOSTest analysis, 

respectively. Applying the min-P approach to Desikan-Killiany ROIs resulted in further reduction in the 

number of loci discovered (88 for cortical surface area; 44 for cortical thickness). This represents a 4.2-

fold and 4.1-fold decrease compared to the MOSTest ROI-based analysis, and a 7.9-fold and 12.3-fold 

decrease compared to vertex-wise MOSTest analysis, respectively. Manhattan plots are presented in Fig. 

1, with corresponding QQ plots in Supplementary Fig. 1. Numbers of loci discovered with different 

approaches are shown in Supplementary Table 1. Specific loci discovered in each analysis are listed in 

Supplementary Tables 2 - 7. 

 
Fig. 1: Manhattan plots for cortical surface area and cortical thickness. (A) Area, MOSTest, vertex-wise: 
N=695 loci. (B) Area, MOSTest, ROI: N=370 loci. (C) Area, min-P, ROI: N=88 loci. (D) Thickness, MOSTest, 
VW: N=539 loci. (E) Thickness, MOSTest, ROI: N=181 loci. (F) Thickness, min-P, ROI: N=44 loci. Black dotted 
horizontal lines show genome-wide significance threshold (P=5E-8). Loci; independent genome-wide 
significant (P<5E-8). Y-axes are truncated at -log10(P)=17.2 to highlight the region around genome-wide 
significance threshold. ROI = region of interest. 

To compare the vertex-wise MOSTest results with the most recent ENIGMA GWAS3, we also applied the 

ENIGMA-based definition of genetic locus. This resulted in 1598 and 1054 unique loci for cortical area and 

thickness respectively, and a total of 1735 unique loci for cortical morphology identified in the vertex-wise 

MOSTest analysis (Supplementary Tables 8 - 9). 
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Power analysis 

To estimate the proportion of additive genetic variance explained by genome-wide significant SNPs 

identified by either MOSTest or min-P as a function of sample size, we used the MiXeR tool10 (Fig. 2). The 

horizontal shift of the curve indicates that the effective sample size of MOSTest is around threefold that 

of min-P. We estimate that with the current UK Biobank sample (N=35,657), 11.6% and 7.0% of the 

additive genetic variance in cortical surface area and thickness, respectively, can be explained by genome-

wide significant loci from the vertex-wise MOSTest analysis. (Fig. 2). In contrast, the min-P approach 

identifies 1.3% and 0.2% of the explained additive genetic variance for area and thickness, respectively 

(Fig. 2). The power-analysis indicates that 32.2% and 24.0% of the additive genetic variance in cortical 

surface area and thickness, respectively, will be discovered in the full UK Biobank sample of N=100,000 

using the MOSTest vertex-wise approach (Fig. 2). Further, the proportion of explained variance with the 

min-P approach in the full UK Biobank sample is estimated to be lower than the yield of MOSTest in the 

present sample size (Fig. 2). 

 
Fig. 2: Estimated percent of additive genetic variance explained by genome-wide significant SNPs as a 
function of sample size. Percentages of genetic variance explained by identified SNPs (p<5E-8) from 
multivariate GWAS (MOSTest VW) of area (A) and thickness (B) with current sample size (N=35,657, 
vertical dotted line) are shown in parentheses, with MOSTest ROI and min-P ROI for comparison. VW = 
vertex-wise. ROI = region of interest. 
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Gene-level analysis 

Through gene-level analyses of the vertex-wise MOSTest GWAS using MAGMA11, we found that 1647 and 

1412 genes, out of a total of 19036 protein-coding genes, were significantly associated with area and 

thickness, respectively (Supplementary Table 10). We also performed competitive gene-set analyses 

restricted to the Gene Ontology biological processes category (containing 7343 pathways). This resulted 

in 204 and 184 significant (p<0.05/7343) gene sets associated with area and thickness, respectively. The 

most significantly associated pathways were related to neuronal development and cell differentiation, 

with the top 10 shown in Fig. 3. 

 
Fig. 3: Gene-set analyses with MAGMA. Results from the gene-set analysis based on multivariate GWAS 
on area (A) and thickness (B). Ten most significant Gene Ontology sets (N=7343) in the MOSTest VW 
analysis are listed on the y-axis, in comparison with MOSTest ROI and min-P ROI. Corresponding 
uncorrected -log10(p-values) are shown on the x-axis. P-values were obtained using MAGMA analysis as 
implemented in FUMA. Vertical dotted line shows Bonferroni correction threshold (p=0.05/7343). VW = 
vertex-wise. ROI = region of interest. 

For comparison, we also performed the same analyses on the ROI-based MOSTest and min-P GWAS 

summary statistics, resulting in 198 area and 66 thickness gene sets for ROI-based MOSTest and 60 area 

and 4 thickness gene sets for min-P. As shown in Supplementary Figs. 2 and 3, the vertex-wise MOSTest 
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approach led to much greater significance for nearly all pathways identified. Interestingly, the most 

significant pathways identified by vertex-wise MOSTest are tightly connected with critical neurobiological 

processes implicated in brain development while top findings in the min-P analysis are less specific. The 

distributed effects of identified variants across different brain regions are also illustrated by brain maps, 

highlighting the mixture of effects across the cortex (Supplementary Fig. 4). 

Discussion 

We identified 695 loci for cortical surface area and 539 for cortical thickness, in total 780 unique genetic 

loci associated with cortical morphology. This reflects an approximate 10-fold increase compared to the 

commonly applied univariate GWAS methods. Our study highlights the greatly improved yield obtained 

with the multivariate method compared to conventional univariate GWAS approach, which stems from 

the multivariate nature of brain morphology phenotypes, representing continuous maps per individual. 

The present results support the hypothesis that the genetic determinants of variability in brain 

morphology are extensively shared across multiple regions6. Our findings further underscore the complex 

molecular mechanisms shaping the human brain, which we show are largely related to 

neurodevelopmental processes. 

Twin studies have suggested the largely independent nature of cortical surface area and thickness1. The 

genetic correlation between them estimated using linkage disequilibrium score regression (LDSR) is rg=-

0.32 (p=6.5E-12)3. Here we identify the specific loci involved and show that these cortical phenotypes 

share a large proportion of genomic loci. Out of a total of 695 loci for cortical area and 539 loci for cortical 

thickness, 454 loci (58.2% of the total number of unique loci) were overlapping. These findings illustrate 

how measures of genetic correlation fail to fully capture the extent to which the genetic influences of two 

phenotypes are interrelated. LDSR and twin analyses depend on the consistency of effect directions across 

phenotypes. In contrast, the analysis performed here consider non-null loci as overlapping if they are both 
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significant and in linkage disequilibrium, regardless of effect directions. Overlapping genetic architecture 

across brain regions despite the absence of strong genetic correlations are therefore plausible due to 

common molecular toolkits involved in neurodevelopment across brain regions12. This is in line with Allen 

Brain Atlas maps of the adult human brain13, showing regions with high similarity in gene expression 

between cortical structures consistent with the notion that the basic architecture across the entire cortex 

is similar or “canonical”14. This may also explain the shared genetic architecture observed for many brain-

related traits and disorders15-17. Accounting for the distributed signal across the cortex in a multivariate 

framework allowed us to boost power for discovery compared to traditional univariate approaches, such 

as min-P.  

Our gene-level analyses indicated that, with the current sample size, 10% of all protein-coding genes were 

significantly associated with brain morphology (either cortical area or thickness). Gene-set analyses for 

both area and thickness confirmed involvement of pathways recently reported by ENIGMA3, but with 

greater statistical significance. We additionally found strong evidence for the involvement of several 

genetic pathways regulating neuronal development and differentiation that were not identified by the 

min-P approach, implicating key biological processes regulating human surface area expansion and 

increases in thickness. This also corroborates the strong statistical signals and suggests that we are 

capturing true biological mechanisms that were missed by previous methodologies. These novel findings 

of neurobiological underpinnings associated with brain morphology provide a framework for follow-up 

experimental studies to identify the complex polygenic mechanisms involved in human brain 

development18. Further, the findings implicating neuronal development and cell differentiation can 

facilitate experimental studies to gain better insight into the pathobiological mechanisms of brain-related 

diseases including psychiatric disorders19, where we need to understand the role of polygenic 

mechanisms20. 
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Compared to the current largest brain morphology GWAS (N=50K)3, analyzing parcellation-free, vertex-

wise data with MOSTest increased the yield of significant loci 8.5-fold for cortical surface area and 21.1-

fold for cortical thickness, despite the lower sample size in our study (N=35K). Of note, while being 

generally consistent, our protocol differs in a few aspects from the previous GWAS3, where global 

measures were included in the principal analysis and data for cortical regions were averaged across right 

and left hemispheres. Using the Desikan-Killiany parcellation approximately 2.0 times more variants were 

identified for cortical surface area than for cortical thickness both with the min-P and the MOSTest 

(Supplementary Table 1). In contrast, there were 1.3 times more loci for area compared to thickness when 

using the MOSTest for parcellation-free vertex-wise data. (Supplementary Table 1). The observed 

difference in loci yield may be due to differing degrees of mismatch between parcellation schemes and 

actual architecture of the phenotypes. This seems to be particularly relevant for thickness, where variant 

effects obtained from an ROI parcellation scheme may be underestimated compared to the vertex-wise 

approach. This result may explain why parcellation schemes better reflecting the genetic architecture of 

the cortex improve detectability in imaging genetics studies4. 

The boost in statistical power using the multivariate vertex-wise approach is equivalent to a more than 

three-fold increase in effective sample size for both area and thickness (Fig. 2). Our analysis suggests that 

the substantial gain in power provided by MOSTest is projected to explain approximately 32.2% and 24.0% 

of the additive genetic variance for cortical surface area and thickness, respectively, upon completion of 

UK Biobank’s target neuroimaging sample (N=100,000)21 (Fig. 2). It is possible that multivariate 

approaches will also boost discovery of genetic associations with other human phenotypes that exhibit 

shared signal between traits. 

To conclude, we have identified 780 unique loci associated with human brain morphology, highlighting its 

polygenic nature and providing the foundation for functional follow-up experiments. While this study is 

focused solely on UK Biobank, the generalizability and flexibility of this approach allows its incorporation 
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into large-scale meta-analyses like ENIGMA22, offering unique opportunities for major advances in our 

understanding of the genetic determinants of brain morphology. 

Materials and Methods 

Sample 

Genotypes, MRI scans, demographic and clinical data were obtained from the UK Biobank under accession 

number 27412. For this study, we selected white British individuals (as derived from both self-declared 

ethnicity and principal component analysis23) who had undergone the neuroimaging protocol. The 

resulting sample contained 35,657 individuals with a mean age of 64.4 years (standard deviation 7.5 

years), 51.7% female. 

Data processing 

T1-weighted structural MRI scans were processed with the FreeSurfer v5.3 standard “recon-all” 

processing pipeline24 to generate 1284 non-smoothed vertex-wise measures (ico3 downsampling with the 

medial wall removed) and 68 ROI measures (based on the Desikan-Killiany parcellation) summarizing 

cortical surface area and thickness. All measures were pre-residualized for age, sex, scanner site, a proxy 

of surface reconstruction quality (FreeSurfer’s Euler number25), the first twenty genetic principal 

components, and a global measure specific to each set of variables: total cortical surface area and mean 

cortical thickness for the regional area and thickness measurements correspondingly. Subsequently, a 

rank-based inverse normal transformation was applied to the residualized measures. We used UK Biobank 

v3 imputed genotype data23, carrying out standard quality-checks as described previously6, and setting a 

minor allele frequency threshold of 0.5%, leaving 9 million variants. Variants were tested for association 

with cortical surface area and cortical thickness at each vertex and each ROI separately using the standard 
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univariate GWAS procedure. Resulting univariate p-values and effect sizes were further combined in the 

MOSTest and min-P analyses to identify area- and thickness-associated loci. 

MOSTest analysis 

Consider 𝑁 variants and 𝑀 (pre-residualized) phenotypes. Let 𝑧𝑖𝑗  be a z-score from the univariate 

association test between ith variant and jth (residualized) phenotype and 𝑧𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝑀) be the vector 

of z-scores of the ith variant across 𝑀 phenotypes. Let 𝑍 = {𝑧𝑖𝑗} be the matrix of z-scores with variants in 

rows and phenotypes in columns. For each variant consider a random permutation of its genotypes and 

let 𝑍̃ = {𝑧̃𝑖𝑗} be the matrix of z-scores from the univariate association testing between variants with 

permuted genotypes and phenotypes. A random permutation of genotypes is done once for each variant 

and the resulting permuted genotype is tested for association with all phenotypes, therefore preserving 

correlation structure between phenotypes. 

Let 𝑅̃ be the correlation matrix of 𝑍̃, and 𝑅̃ = 𝑈𝑆𝑉𝑇 is its singular valued decomposition (𝑈 and 𝑉 – 

orthogonal matrixes, 𝑆– diagonal matrix with singular values of 𝑅̃ on the diagonal). Consider the 

regularized version of the correlation matrix 𝑅̃𝑟 = 𝑈𝑆𝑟𝑉𝑇, where 𝑆𝑟 is obtained from 𝑆 by keeping 𝑟 

largest singular values and replacing the remaining with 𝑟th largest. The MOSTest statistics for ith variant 

(scalar) is then estimated as 𝑥𝑖 = 𝑧𝑖𝑅̃𝑟−1𝑧𝑖𝑇, where regularization parameter 𝑟 is selected separately for 

cortical area and thickness to maximize the yield of genome-wide significant loci. In this study we observed 

the largest yield for cortical surface area with 𝑟=10; the optimal choice for cortical thickness was 𝑟=20 

(Supplementary Fig. 5). The distribution of the test statistics under null (𝐶𝐷𝐹𝑛𝑢𝑙𝑙𝑚𝑜𝑠𝑡) is approximated from 

the observed distribution of the test statistics with permuted genotypes, using the empirical distribution 

in the 99.99 percentile and Gamma distribution in the upper tail, where shape and scale parameters of 

Gamma distribution are fitted to the observed data. The p-value of the MOSTest test statistic for the ith 

variant is then obtained as 𝑝𝑀𝑂𝑆𝑇 = 𝐶𝐷𝐹𝑛𝑢𝑙𝑙𝑚𝑜𝑠𝑡(𝑥𝑖). 
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min-P analysis 

Similar to the MOSTest analysis, consider 𝑁 variants and 𝑀 preresidualized phenotypes. Let 𝑧𝑖𝑗  be a z-

score from the univariate association test between ith variant and jth (residualized) phenotype and 𝑧𝑖 =

(𝑧𝑖1, … , 𝑧𝑖𝑀) be the vector of z-scores of the ith variant across 𝑀 phenotypes. The min-P statistics for the 

ith variant is then estimated as 𝑦𝑖 = 2Φ(− max
𝑗=1…𝑀

(|𝑧𝑖𝑗|)), where Φ is a cumulative distribution function 

of the standard normal distribution. The distribution of the min-P test statistics under null (𝐶𝐷𝐹𝑛𝑢𝑙𝑙𝑚𝑖𝑛−𝑃) is 

approximated from the observed distribution of the test statistics with permuted genotypes, using the 

empirical distribution in the 99.99th percentile and Beta distribution in the upper tail, where shape 

parameters of Beta distribution (𝛼 and 𝛽) are fitted to the observed data. The p-value of the min-P test 

statistic for the ith variant is then obtained as 𝑝𝑚𝑖𝑛−𝑃 = 𝐶𝐷𝐹𝑛𝑢𝑙𝑙𝑚𝑖𝑛−𝑃(𝑦𝑖). 

Locus definition 

Genetic loci were defined based on association summary statistics produced with MOSTest and min-P 

following the protocol implemented in FUMA26 with default parameters. The protocol can be summarized 

as the following: 

1. Independent significant genetic variants are identified as variants with p-value<5E-8 and linkage 

disequilibrium (LD) r2<0.6 with each other. 

2. A subset of these independent significant variants with LD r2<0.1 are then selected as lead variants. 

3. For each independent significant variant all candidate variants are identified as variants with LD r2≥0.6 

with the independent significant variant. 

4. For a given lead variant the borders of the genomic locus are defined as min/max positional 

coordinates over all corresponding candidate variants. 

5. Loci are then merged if they are separated by less than 250kb. 
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Alternatively, to facilitate comparison with the current largest brain morphology GWAS3, we also counted 

genetic loci applying locus definition similar to that used by ENIGMA. Briefly, the association summary 

statistics produced with either MOSTest or min-P were clumped with PLINK27 using p-value threshold of 

5E-8 (--clump-p1) and linkage disequilibrium cutoffs of 1 Mb (--clump-kb) and r2 < 0.2 (--clump-r2). 

Obtained clumps of variants were considered as independent genome-wide significant genetic loci. 

MiXeR analysis 

MOSTest and min-P p-values were analyzed with the MiXeR tool10 to estimate the proportion of additive 

genetic variance explained by genome-wide significant SNPs as a function of sample size. Right censoring 

(MiXeR option: --z1max 5.45) was applied to mitigate extreme effects which may lead to biased estimates. 

Gene-level analysis 

We carried out MAGMA-based gene analyses using default settings, which entail the application of a SNP-

wide mean model to GWAS summary statistics, with the use of the 1000 Genomes Phase 3 EUR reference 

panel. Gene-set analyses were done in a similar manner, restricting the sets under investigation to those 

that are part of the Gene Ontology biological processes subset (N=7343), as listed in the Molecular 

Signatures Database (MsigdB) v7.0. 

Data availability 

The data incorporated in this work were gathered from the public UK Biobank resource. 

Code availability 

MOSTest code is publicly available at https://github.com/precimed/mostest (GPLv3 license). 
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