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Complex absorbing potentials within EOM-CC family of

methods: Theory, implementation, and benchmarks

Dmitry Zueva, Thomas-C. Jagaua, Ksenia B. Bravayab, Evgeny Epifanovskya,c,d,

Yihan Shaod, Eric Sundstromc, Martin Head-Gordonc, and Anna I. Krylova

a Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482

b Department of Chemistry, Boston University, Boston, Massachusetts 02215-2521

c Department of Chemistry, University of California, Berkeley, California 94720

d Q-Chem Inc., 6601 Owens Drive, Suite 105 Pleasanton, California 94588

A production-level implementation of equation-of-motion coupled-cluster singles

and doubles (EOM-CCSD) for electron attachment and excitation energies aug-

mented by a complex absorbing potential (CAP) is presented. The new method

allows to treat metastable states within the EOM-CC formalism in a similar man-

ner as bound states. The numeric performance of the method and the sensitivity

of resonance positions and lifetimes towards the CAP parameters and the choice of

one-electron basis set are investigated. We develop a protocol for studying molecular

shape resonances based on the use of standard basis sets and a universal criterion for

choosing the CAP parameters. Our results for a variety of π∗ shape resonances of

small to medium-sized molecules demonstrate that CAP-augmented EOM-CCSD is

competitive relative to other theoretical approaches for the treatment of resonances

and is often able to reproduce experimental results.

I. INTRODUCTION

Metastable electronic states are important in diverse areas of science and technology

ranging from high-energy applications (plasmas, attosecond and X-ray spectroscopies) to

electron-molecule collisions (interstellar chemistry, radiolysis, DNA damage by slow elec-

trons). These states (called resonances) can be accessed when molecules are excited above

their ionization threshold, via electron attachment to closed-shell species, or by core ioniza-

tion.

A concise and pedagogical introduction to the topic as well as references to earlier reviews
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can be found in Ref. [1]. From the quantum mechanical point of view, resonance states

belong to the continuum part of the spectrum and, therefore, their wave functions are not

L2-integrable. Yet, their wave functions bear certain resemblance to the bound states within

the interaction region (i.e., close to the nuclei). Using boundary conditions for the outgoing

wave (Siegert or Gamow formalism, see Ref. [1]), one arrives at the following form of the

resonance wave function:

Ψ(x, t) = e−iEtϕR(x) = e−Γt/2e−iERtϕR(x) (1)

where the phase-isolated part ϕR(x) resembles a bound-state wave function in the interaction

region and ER and Γ (real and imaginary parts of the complex energy E = ER − iΓ/2)

determine resonance position and width. The latter is inversely proportional to the resonance

lifetime. Thus, the resonances appear as solutions of the Schrödinger equation with complex

energy [1–4]. One can arrive at the same concept of complex energy via a completely

different formalism (Feshbach approach) based on a separation of the Hamiltonian into

coupled bound and continuum parts; in this approach, the resonance is described as a

bound state coupled with the continuum, and the complex energy emerges from solving a

non-Hermitian eigenproblem with an effective Hamiltonian [5].

One can avoid the inconveniences of working with continuum functions or fiddling with

boundary conditions by reformulating the problem using complex variables [2–4]. The most

rigorous approach is the complex-scaling formalism [2, 6] in which all coordinates are scaled

by a complex number e−iθ; however, practical applications of this method are limited by

its extreme sensitivity to the one-electron basis set [7–11] as well as conceptual difficulties

regarding the separation of nuclear and electronic motions of the scaled Hamiltonian [12–15].

These problems are avoided in an alternative approach in which the original (non-scaled)

Hamiltonian is augmented by a complex potential −iηŴ devised to absorb the diverging

tail of the resonance wave function [16–18]. In the complete basis set limit, these complex

absorbing potential (CAP) methods yield exact resonance positions and widths in the limit

of zero CAP strength η [19]. It can be shown that CAP methods are related to exterior

complex scaling methods [20, 21].

The use of CAPs in practical calculations is complicated by possible reflections leading

to false resonances, sensitivity of the results to the form of the CAP W , and a strong basis
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set dependence [19, 22]. Furthermore, one has to determine an optimal value for η, which

is usually achieved by calculating trajectories E(η) and requiring |η dE/dη| = min.

In terms more familiar to electronic structure practitioners, reflections can be described

as perturbations of the resonance wave functions and, consequently, energies caused by a

finite-strength CAP. Finite basis sets give rise to additional reflections. Several reflection-free

CAPs have been proposed[19, 23]; such CAPs are either energy-dependent or non-local.

In our previous paper [24], we introduced a simple density-matrix based correction to

the energy that removes the perturbation due to the CAP. The correction was derived

based on energy decomposition analysis and response theory. Our starting point was

the observation that the energy’s dependence on η becomes roughly linear beyond some

critical value of η. By analyzing the response equations, we also proposed an alternative

criterion for finding an optimal value for η. Physically, our approach is grounded in the

behavior of the resonance wave function and, ultimately, the one-particle density matrix.

It was shown [24] that when the CAP is sufficiently strong, both real and imaginary

parts of the density become near-stationary indicating that the resonance is stabilized.

Then the perturbation to the resonance position by the CAP can be eliminated by

subtracting the term η Tr[γW ] from the energy. The optimal η is found by considering the

de-perturbed resonance energies; moreover, we argued that ηopt is not the same for real

and imaginary parts[24]. Preliminary benchmarks illustrated that this approach results in

a computationally more robust scheme in which the dependence on the onset of the CAP

is significantly reduced compared to the straightforward application of a CAP along with

the original energy-based criterion for finding the optimal η, as was done in most CAP

applications[25–27]. We note that Moiseyev et al. also observed a linear energy dependence

on η beyond some critical value of η and proposed the use of Padé approximants to extrap-

olate the energy of the stabilized resonance to zero η limit[28, 29]. If the energy depends

strictly linearly on η, their approach should give results identical to our first-order correction.

One of the difficulties of understanding the capabilities and limitations of different ap-

proaches is that a method that has shown excellent performance for a small model problem

may fail when applied to a realistic system. In the context of electronic structure, the results

of calculations of resonances will also be affected by the quality of standard approximations

such as the incompleteness of one- and many-electron basis sets[30]. Thus, it is important to
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test different methods for meta-stable states within robust and accurate ab initio approaches.

For bound states, the coupled-cluster (CC) and equation-of-motion (EOM) hierarchies of

methods [31–35] provide a reliable and predictive set of theoretical model chemistries [36].

These methods can be systematically improved to approach the exact solution, are size-

extensive (or size-intensive for excitation energies), describe dynamical and non-dynamical

correlation in one computational step, and do not involve system-dependent parameteriza-

tion. The CC hierarchy of methods works best for wave functions dominated by a single

Slater determinant, however, the EOM-CC approach extends this single-reference formalism

to tackle various open-shell and multi-configurational cases[33, 37].

In EOM-CC the target-state wave function is described by an excitation operator R̂

acting on the reference-state CC wave function:

|Ψ⟩ = R̂eT̂ |0⟩ (2)

with |0⟩ as the reference Slater determinant –usually satisfying the Hartree-Fock (HF)

equations– and T̂ as the coupled-cluster operator. Different choices of R̂ provide access

to different target states, e.g., in EOM-EE-CC R̂ is electron and spin-conserving thus en-

abling the description of various excited states. Open-shell electron-attached states (such

as temporary anions) can be described by EOM-EA-CC in which the reference state is

again a well-behaved closed shell state and the operator R̂ changes the number of electrons.

Likewise, ionized states can be described by EOM-IP-CC with the operator R̂ removing an

electron. Thus, EOM-CC is a natural choice for extending the excited-state methodology

to resonances via complex scaling and CAP approaches.

Recently, we presented an implementation of complex-scaled EOM-CCSD methods and

illustrated their performance by considering several atomic systems (He, H−, Be). Here we

present an implementation of CAPs within the EOM-CCSD family of methods. Our main

focus is on the EOM-EA-CC variant; however, our implementation also includes EOM-EE-

CC. While limited implementations of CAPs within EOM-CC have been reported before

(e.g., Refs. [25, 26]), this work presents the first formally complete and production-level

implementation of the method.

The main focus of the paper is on investigating the numeric performance of the method

and the sensitivity of the results towards the CAP parameters and the choice of basis set.
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Our goal is to develop a black-box type approach that could be calibrated and then applied

to the calculation of resonances without any prior knowledge of the system, as advocated by

John Pople [36]. In particular, we want to avoid the system-dependent optimization of basis

sets and the CAP’s shape and onset. Thus, rather than aiming at results converged with

respect to all computational parameters individually for each system, we wish to establish

a uniform protocol that can be applied to any system and can be characterized by error

bars estimated from prior calibration studies, as routinely performed in electronic structure

calculations[30].

We note that the validation of the accuracy of computed resonance lifetimes in molecular

systems is difficult[38]. A complete theoretical description should involve coupled electronic

and nuclear dynamics; this is beyond the scope of the present paper, where we only compute

the lifetime of the resonance state at a fixed molecular geometry. This is appropriate for

resonances whose lifetimes are shorter than nuclear motions, or when nuclear motions do

not strongly affect the computed Γ values (Condon-like approximation). Thus, our focus

is on the comparison with other theoretical studies and the robustness of the results with

respect to the one-electron basis set as well as variations of the CAP parameters.

In this context, we add that the sensitivity of the results towards the one-electron basis set

is of a fundamentally different origin in CAP calculations as compared to complex scaling.

In the latter case, the basis should be sufficiently flexible to describe the resonance wave

function at different values of the scaling angle, whereas in the former case, one simply needs

to supply a basis set of sufficient spatial extent to represent a given CAP and a stabilized

resonance wave function. This implies that the diffuseness of the basis must be coordinated

with the CAP onset, e.g., in a compact basis, the CAP onset should be smaller, otherwise,

the calculation will be blind to the CAP. Thus, although the basis-set dependence is a

nuisance, its simpler nature in CAP calculations suggests that a solution can be found.

Originally CAP methods were introduced to study shape resonances. Since the decay

of Feshbach resonances is a two-electron process (and the CAP is a one-electron operator),

one may expect difficulties in describing Feshbach resonances within the CAP formalism.

Moiseyev et al. [39–41] showed that additional steps need to be taken for the construction

of reflection-free CAPs in order to reliably calculate Feshbach-type resonances. The present

paper focuses solely on understanding CAPs in the context of molecular shape resonances.

The article is structured as follows: Sections II and III present the formalism of CAP-
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augmented EOM-CC calculations and our implementation. In Section IV, we put forward

a protocol to determine resonance positions and lifetimes and investigate its robustness

towards the choice of the one-electron basis set and the CAP’s onset. In Section V, we

subsequently apply our new scheme to a variety of molecular resonance states and compare

the results to those obtained from experiment as well as using other theoretical approaches.

Section VI provides concluding remarks.

II. THEORY

The basic idea of the CAP method [16–19] is the addition of an artificial complex potential

to the original Hamiltonian:

H(η) = H − iηW (3)

where W aims to absorbs an outgoing electron and η controls its strength. As in complex

scaling [2–4, 11, 42], the addition of the CAP results in a non-Hermitian complex symmetric

operator H(η) [16] converting resonances into square integrable (L2) wave functions. In our

calculations we choose as CAP a quadratic potential with an unaffected region of cuboid

(i.e., box) shape:

W =Wx +Wy +Wz (4)

Wα = 0 if |rα| < r0α (5)

= (rα − r0α)
2 if |rα| > r0α

with rα denoting the three Cartesian coordinates (α = x, y, z). Thus, the CAP is controlled

by 4 parameters: 3 parameters for the onset in each direction (r0x, r
0
y, r

0
z) and the strength

η. In principle, the CAP strength is unbound (η ∈ [0,∞)), but should be chosen such that

the effect is large enough to absorb the wave function over a certain range, but not too large

to prevent excessive perturbation of the wave function and the resonance energy [19].

In the complete one-electron basis set, the exact position of the resonance in the complex

plane can be obtained as limη→0E(η) [16]. That is, an infinitesimally weak CAP, which

is represented exactly (and, therefore, goes to infinity at large r), is sufficient to stabilize

the resonance without perturbing it. Working with finite Gaussian basis sets requires one

to perform series of calculations for different η in order to find an optimal value of the



7

strength parameter ηopt along the η-trajectory and the corresponding value of the resonance

energy E(ηopt). A commonly used criterion for determining the optimal value of the strength

parameter η is finding the minimum of the logarithmic velocity [16, 19]:

v(η) = |η∂E(η)
∂η

| (6)

Unfortunately, the position and width of the resonance computed using this criterion are

very sensitive to the CAP onset [17, 24, 27] and thus does not provide a black-box approach.

In our recent paper[24], the first-order deperturbative correction to the raw zeroth-order

resonance energies ER and EI was introduced as:

UR(η) = ER(η)− ηTr[γI(η)W ] (7)

U I(η) = EI(η) + ηTr[γR(η)W ] (8)

with γ(η) as the one-particle density matrix. The correction is based on perturbation theory;

it removes the explicit dependence on the CAP from the computed resonance energies. As

was illustrated in Ref. [24], the corrected energies, UR(η) and U I(η), exhibit nearly constant

behavior for large η (that is, past the stabilization point, when the resonance wave function

does not change much anymore); furthermore, the corrected trajectories computed using

different CAP onsets become much more similar in the asymptotic region as opposed to the

uncorrected trajectories, ER(η) and EI(η).

By looking separately at the real and imaginary parts of the deperturbed energy (UR

and U I) as a function of η, we showed that the energy becomes near stationary at certain

values of optimal strength (ηRopt and η
I
opt) giving the position and lifetime of the resonance.

Our results showed that this recipe leads to values for the resonance position and lifetime

that are less sensitive to the CAP onset and thus more robust than the zeroth-order values

ER and EI [24].

In our method the CAP is introduced at the HF level of theory, where we obtain a

set of complex molecular orbitals (MOs) as the solution for a given strength η. Hence, a

complex Koopmans’ theorem holds for the virtual orbitals, i.e., they can be interpreted as

zeroth-order approximation of the resonance state.
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As the next step we solve the CCSD equations for the reference state [31, 32, 43–45] using

H(η):

(Φµ|e−TH(η)eT |Φ0) = (Φµ|H̄(η)|Φ0) = 0 (9)

with Φµ denoting the excited determinants. The resulting amplitudes tη are also complex.

To compute electronically excited and electron-attached resonance states we use EOM-

EE-CCSD and EOM-EA-CCSD [33, 46–50] methods that provide accurate and predictive

descriptions for such target states. The wave function of the resonance state is found by

solving a non-Hermitian eigenvalue problem for the right eigenvectors:

(Φµ|(H̄(η)− Eη
cc)R

η|Φ0) = Rη
µΩ

η (10)

which yields a set of complex amplitudes Rη, and complex excitation energies Ωη. The latter

are the raw, η-dependent resonance energies (which are equal to the difference between the

total energy of the excited/attached EOM-CCSD state and the reference CCSD energy for

a given η).

We note that for moderate CAP strengths and CAP onsets comparable with the spatial

extent of the electron density of the reference state, the perturbation to the reference CCSD

energy is small (10−5 a.u.) in contrast to complex-scaled calculations [11]. To compute the

first-order correction to the raw resonance energies, the one-electron density matrix needs to

be calculated. We employ an unrelaxed one-electron EOM-CCSD density matrix containing

no amplitude- or orbital-response terms [51]:

γpq(η) =
1

2
(0|Lηe−T η{p+q + q+p} eT η

Rη|0) (11)

where Lη and Rη are the left and right EOM-CCSD eigenvectors, respectively.

Because of the non-Hermitian nature of H̄ left eigenvectors have to be computed and

biorthogonalized against the right eigenvectors in order to compute the density matrix:

(Φ0|Lη(H̄(η)− Eη
cc)|Φµ) = ΩηLη

µ , (12)

(Li|Rj) = δij , (13)

where i and j denote different electronic states. Once the density matrix is computed, the
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energy of the resonance state is corrected according to Eqs. (7) and (8).

The equations for CAP-CCSD and CAP-EOM-EE/EA-CCSD are identical to the original

CCSD and EOM-EE/EA-CCSD equations except that all the input quantities such as the

Fock matrix, the two-electron integrals, the MO matrix C, the T and R/L amplitudes are

now complex and η-dependent. There is no need to add the CAP explicitly to the CCSD or

EOM-CCSD equations since it is already included at the HF level.

In our paper on complex-scaled EOM-CC [11], we considered several variants of imple-

mentation, including the one in which the HF and CCSD equations for the reference state

were solved for the unscaled Hamiltonian and the scaling was introduced only at the EOM-

CC level. This required significant reformulation of the EOM-CC equations. By analogy,

one may also consider an implementation of CAP-EOM-CC in which the CAP is introduced

only at the EOM-CC level; this will be the subject of future work.

Due to the CAP, the Hamiltonian becomes non-Hermitian and complex symmetric, which

necessitates using a different metric, the so-called complex symmetric scalar product (c-

product) [16, 42, 52, 53], such that the variational principle is maintained:

(ψi|ψj) =

∫
ψiψjdr (14)

The difference to the regular scalar product is that the bra-vector is not complex conjugated.

Mathematically, the c-product is a pseudoscalar product which does not induce a valid

metric norm [42, 52]. However one can still define the c-norm (f |f) which is, contrary

to the regular norm, complex in general and might become zero for a non-zero function f

(“self-orthogonality”):

(f |f) =< fre|fre > − < fim|fim > +2i < fre|fim >= |a|eiϕ ∈ C (15)

where < | > is a regular scalar product which is equivalent to the c-product for real functions.

Thus, the normalization of all vectors (for example left and right EOM-CC eigenvectors) is

done by multiplying by a complex number [42]:

f̂ = |a|−
1
2 e−iϕ/2f (16)

resulting in f̂ being a normalized vector. As mentioned above, use of the c-norm may lead
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to “self-orthonormality” ((f |f) = 0 for f ̸= 0⃗), but this has not been observed in practice.

Orthogonality is defined for the c-product in the same manner as for scalar product as

(f |g) = 0 (c-orthogonality).

III. IMPLEMENTATION

The suite of CAP-EOM-CC methods has been implemented in the Q-Chem electronic

structure package [54, 55] and has been released in version 4.2. For all complex CCSD

and EOM-EE/EA-CCSD equations the libtensor library [56] for high-performance tensor

operations has been used.

The calculations begin by solving the CAP-augmented restricted HF equations (CAP-

RHF). CAP-RHF has been implemented as an extension to regular RHF using the object-

oriented SCF library SCFman [57] in Q-Chem that employs the Armadillo linear algebra

library [58] for matrix computations. We add that an adaptation of our implementation for

CAP-UHF will be straightforward. The CAP is introduced as an additional term in the

regular Fock matrix:

F η
µν = F 0

µν − iηWµν (17)

The molecular orbitals must satisfy the following orthonormalization condition in the c-

product metric:

(Cη)TSCη = I (18)

where S is the overlap matrix in the atomic orbital (AO) basis and (Cη)T is transposed

but not conjugated. Since the augmented Fock matrix F η is non-Hermitian, the orbitals

obtained using standard linear algebra routines for the diagonalization of general matrices

are not normalized. In order to satisfy the orthogonality condition [Eq. (18)], the MOs are

orthogonalized by using a modified Gram-Schmidt procedure with projections calculated

using the c-product.

The Fock matrix F η
µν and the two-electron integrals (µν|λσ) are transformed into the MO

basis by applying the complex orbital transformation matrix, Cη
µp; thus, these quantities

become complex in the MO basis. The calculations proceed by solving the CCSD amplitude

equations using a DIIS procedure [59] adapted for complex algebra with c-product. Once the

complex t-amplitudes are converged, we find the excited-state energies and right eigenvectors
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by using Davidson’s procedure [60] generalized for non-Hermitian complex matrices. Note

that the original H̄ matrix is also non-Hermitian but real, thus, one only needs to modify

the procedure to make it work with complex quantities and the c-product. We observe that

for large values of η the convergence of Davidson’s procedure is sometimes problematic,

likely due to more pronounced non-Hermiticity. However, we were always able to converge a

reasonable number of roots (2-10) by tweaking the parameters of Davidson’s procedure such

as subspace size, residual inclusion threshold, etc. Since the one-electron density matrix

is needed for the calculation of the first-order correction to the energies, we also solve for

the left eigenvectors using Davidson’s procedure, as well as for left and right eigenvectors

together to ensure their c-biorthogonality [Eq. (13)].

The CAP is evaluated in the AO basis through numerical quadrature using a Becke-type

grid [61] of (99, 590) points (99 radial points and 590 angular points per radial point).

Currently, we have implemented a shifted quadratic potential (r − r0)
2 for a rectangular

cuboid [Eqs. (4) and (5)], but our implementation allows for an easy extension of the shape

of the unaffected region as well as the type of potential, e.g., higher order monomials (r−r0)4,

(r− r0)
6, etc. Our implementation also includes the optional addition of a real potential to

the CAP, as was advocated in Ref. [41].

Relative to the conventional CCSD and EOM-CCSD methods, the addition of the CAP

does not change the scaling of the computational cost [O(N6) for CCSD and EOM-EE-

CCSD, O(N5) for EOM-EA-CCSD] or the memory requirements [O(N4)]. However, because

we need to work with complex numbers, the computational cost increases roughly by a factor

of 4 and the storage requirements increase by a factor of 2. Furthermore, computation of the

first-order energy correction requires the left eigenvectors, which increases the computation

time relative to EOM-CCSD energy calculations. Another possible issue arises when the

resonance state is lying high in energy, so that the Davidson procedure will need to find all

lower roots and it might require a lot of iterations to converge. To solve this issue, we have

implemented iterative solvers for interior eigenstates for conventional EOM-CCSD methods.

Implementation of the interior eigenvalue solvers for CAP-EOM-CC methods is a subject

of future work. Finally, the necessity to compute η-trajectories requires to run calculations

for different values of η, but these calculations can be performed independently and can

therefore be run in parallel.
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IV. BENCHMARK CALCULATIONS

The necessity to find optimal values for the strength and the onset of the CAP as well

as a pronounced basis set dependence of the results have prevented routine applications of

CAP-based methods so far. Hence, investigating the numeric performance of CAP-EOM-

CCSD, in particular with respect to the two aforementioned issues, is crucial for it to become

a useful tool for studying resonances.

As for the one-electron basis set, it has been established that the straightforward appli-

cation of standard basis sets yields poor results. Additional diffuse functions need to be

incorporated for two reasons: (i) to obtain a sufficiently good basis-set representation of

the CAP and (ii) to describe the outgoing electron correctly [16, 19, 62]. Owing to these

requirements, CAP-based computations were often carried out using non-standard basis sets

[26, 27, 62–67]. While such approaches are able to provide results that agree with experi-

ment for some resonance states, a treatment based on standard basis sets not involving any

optimization procedure would be superior as it is of black-box type, has predictive power,

and is also computationally less demanding. Since the shape of the resonance wave function

is similar to a bound-state wave function in the interaction region, it should be possible to

lessen the basis-set dependence to the degree observed in regular EOM-CCSD calculations.

Concerning the choice of the CAP onset, one has to realize that the artificial nature

of the CAP implies that it is impossible to deduce from basic physical laws a universally

applicable procedure for finding optimal parameters for the CAP strength, onset, and shape.

While this is unsatisfying from a formal point of view, a pragmatic approach is to mitigate

the dependence of the physically meaningful results on the artificial parameters as much as

possible. Along these lines, we introduced a first-order correction [24] that was shown to

desensitize resonance positions and widths to the choice of onset parameters by removing the

perturbation due to the CAP. However, as this dependence cannot be removed completely,

one has to develop a protocol for the unique and system-independent choice of the CAP

onset to make CAP-EOM-CCSD applicable in a routine manner.
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A. Computational Details

In the following we examine the π∗ shape resonances of CO− and C2H
−
4 using different

basis sets and CAP onsets. Both states arise from adding an electron to the lowest unoc-

cupied valence MO (LUMO) of the respective neutral molecule. Bond lengths and angles

were chosen as R(CO) = 2.1316 a.u. for carbon monoxide and R(CC) = 2.5303 a.u., R(CH)

= 2.0522 a.u., and ∠(CCH) = 121.2◦ for ethylene. All electrons were active in the correla-

tion treatment. The CAP strength η was varied with a step size between 0.0001 a.u. and

0.001 a.u. Optimal values for η were determined according to the criterion from Eq. (6) as

well as using the procedure outlined in Ref. [24]. The respective results are referred to as

zeroth-order and first-order in all tables and in the discussion below.

The basis sets used in our calculations were derived from the aug-cc-pVXZ (X = D, T,

Q, 5) series [68] through augmentation by additional even-tempered basis functions. In all

cases, the exponents for the first additional basis functions were obtained as one half of the

exponent of the most diffuse basis function with the same angular momentum in the parent

aug-cc-pVXZ basis set. The exponents for the remaining additional basis functions were

calculated as one half of the exponent of the preceding function.

We explored two different series of basis sets, namely one where we augmented the basis

sets for all atoms except for hydrogen (denoted as (A) below) and one where we placed only

one set of diffuse functions with averaged exponents in the center of the molecule (denoted

as (C) below). Since the second approach is computationally less demanding, it is especially

preferable when targeting larger systems. To ensure that this strategy does not give rise to

artifacts, we computed EOM-EE-CCSD excitation energies for a number of bound excited

states of CO and C2H4 using the aug-cc-pVTZ+3s3p3d(C) and aug-cc-pVTZ+3s3p3d(A)

bases. The results are reported in Table I together with the corresponding values for ⟨R2⟩,

which are helpful in distinguishing valence states from Rydberg states. As apparent from

Table I excitation energies based on the two basis sets differ by not more than 0.04 eV for

the very diffuse 4 1A1 state of CO and by just 0.001 eV for all other states considered. This

shows that placing the additional diffuse functions in the center does not lead to inferior

results for the bound excited states and thus suggests the application of this scheme to

resonances. We note that a similar scheme has been employed before in the context of

stabilization techniques [69, 70].



14

As for the choice of the CAP onset, we employed the square roots of the expectation values

⟨α2⟩ (α = x, y, z) for the ground states calculated at the CCSD level of theory as a starting

point and considered the impact of small variations. The values used are r0x = r0y = 2.76

a.u. and r0z = 4.97 a.u. for CO and r0x = 7.10 a.u., r0y = 4.65 a.u., and r0z = 3.40 a.u. for

C2H4. The orientation of the molecules was chosen as follows: For CO the z-axis formed the

molecular axis, whereas the C2H4 molecule was placed in the xy-plane with the CC bond

oriented along the x-axis.

B. The Impact of the CAP Onset

Table II compiles resonance positions ER and lifetimes Γ for the 2Π resonance of CO−

and the 2B2g resonance of C2H
−
4 obtained using the aug-cc-pVTZ+3s3p3d(C) basis and

different values for the CAP onset. We started with the aforementioned values for r0α based

on the spatial extent of the ground-state wave function and then varied r0x, r
0
y, and r0z

independently. In addition to ER and Γ, we report optimal CAP strengths as well as values

for the norm of the CAP in the AO representation. As expected, the representation of the

CAP becomes more complete for smaller values of r0α. In addition, the results for ||W ||, the

Frobenius norm of the CAP matrix, show that the onset parameters are not all of the same

importance: Consistent with the π∗ character of the resonance states, r0z makes the largest

impact for C2H
−
4 and r0x = r0y for CO−. This trend is also reflected in all values for ηopt, ER,

and Γ: Varying the pivotal onset parameter by ±0.5 a.u. shifts zeroth-order values for ER

by up to 0.028 eV and zeroth-order values for Γ by up to 0.048 eV, while the impact of the

remaining onset parameters is roughly one order of magnitude smaller. We will thus focus

on the onset parameter with the most pronounced influence in the remaining discussion.

Table II shows that both zeroth-order and first-order resonance positions and widths

become smaller when increasing r0α, but we emphasize that these fluctuations are mitigated,

especially for the width when considering first-order results: Here, ER and Γ are both shifted

by at most 0.025 eV upon variation of r0α. Also, it is apparent from Table II that smaller

values for the CAP onset lead to smaller ηopt and that the first-order correction always

entails larger values for ηopt. However, the relevance of the latter trends is debatable as the

CAP strength η is not a physically meaningful quantity. One can argue along the same lines

regarding the quantity η · dE/dη that needs to be minimized to find the optimal value for
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η when using the conventional criterion from Eq. (6). As can be seen from Table II, trends

in η · dE/dη are weakly pronounced and not uniform.

C. The Role of Diffuse Basis Functions

To analyze the convergence of resonance positions and widths with respect to the addition

of diffuse basis functions, we studied the π∗ resonances of CO− and C2H
−
4 using different

augmentations. All results are summarized in Table III. The crucial role of the angular

momentum of the additional basis functions becomes clear at the first glance: In the case of

CO−, a jump of almost 0.5 eV is observed for the zeroth-order resonance position when going

from aug-cc-pVTZ+3s(C) to aug-cc-pVTZ+3s3p(C), while an additional augmentation by

three sets of d-functions leads to a change of 0.06 eV. Three sets of f-functions on top of aug-

cc-pVTZ+3s3p3d(C) shift ER by just 0.007 eV. For the resonance width, d-functions play a

more important role: Going from the 3s(C) to the 3s3p(C) augmentation changes Γ by 0.08

eV and the next step to 3s3p3d(C) changes Γ by 0.10 eV, but the value for 3s3p3d3f(C)

differs from that for the preceding augmentation by just 0.004 eV.

For C2H
−
4 , the changes are in general of similar magnitude as for CO−, but the big jump is

observed when adding d-functions for both ER and Γ. We add that similar trends are found

for the first-order ER and Γ of both resonance states. Also, we note that the use of basis

sets with an augmentation including just s-functions (for CO−) or just s and p-functions (for

C2H
−
4 ) entails much larger ηopt values and sizable differences between zeroth-order and first-

order values. Finally, the importance of the angular momentum of the diffuse basis functions

is also reflected in the E(η) trajectories for C2H
−
4 displayed in Figure 1. Their shape is

altered considerably when d-functions are added, but is very insensitive towards the addition

of p-functions or f-functions. These findings about the role of angular momentum can be

easily related to the spatial symmetry of the resonance states and thus justify to choose an

augmentation scheme based on symmetry considerations prior to the actual computations.

In addition, we note that the values of ||W || show that adding basis functions with angular

momentum higher than ℓ = 2 does not significantly improve the basis-set representation of

the CAP.

We also investigated the effect of adding more than three additional diffuse s, p, and

d-functions. The corresponding results in Table III show that, while values for ||W || become
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considerably larger indicating a more complete basis-set representation of W , the impact on

resonance positions and widths does not exceed 0.035 eV except for one case: For C2H
−
4 , the

zeroth-order ER and Γ calculated using the augmentation schemes 3s3p3d(C) and 6s6p6d(C)

differ by more than 0.1 eV. However, this discrepancy disappears when the first-order correc-

tion is applied. These results suggest that an accurate basis-set representation of the CAP

near the interaction region is crucial for obtaining correct resonance positions and widths,

whereas regions further away do not need to be covered by the basis set. Furthermore, since

an increased dependence of ER and Γ on the CAP onset is found in some cases, we conclude

that it is neither necessary nor advisable to employ more than three additional sets of diffuse

basis functions with the required angular momentum.

Table III also reports the results from a number of calculations with the aug-cc-

pVTZ+3s3p(A) and aug-cc-pVTZ+3s3p3d(A) bases. Contrary to what we observed for

bound states (cf. Table I), the differences between values for ER and Γ obtained with the

two augmentation schemes “C” and “A” are not negligible. Zeroth-order values differ by

up to 0.23 eV and first-order values still by up to 0.15 eV. In one case, namely C2H
−
4 /aug-

cc-pVTZ+3s3p, discrepancies of 0.4 eV are found, but this is probably related to the poor

performance of the 3s3p augmentation scheme for C2H
−
4 discussed earlier. However, we

consider results obtained with the scheme “C” superior for several reasons: From the tra-

jectories shown in Figure 2, one can see that the first-order quantities UR and U I enter the

region of near-stationarity for smaller η, i.e., the resonance wave function shows faster con-

vergence with respect to η, which is reflected in smaller ηopt values obtained in calculations

using the augmentation scheme “C”. Also, an increased dependence on the CAP onset is

found in some cases when using scheme “A”.

D. The Role of the Valence Basis Set

Besides the impact of additional diffuse functions, variations in the valence basis set also

influence the results for ER and Γ. This is illustrated by Table IV, which reports values for

resonance positions and widths of the 2Π resonance of CO− and the 2B2g resonance of C2H
−
4

computed using the aug-cc-pVXZ (X = D, T, Q, 5) bases, each one augmented according

to the 3s3p3d(C) scheme. Concerning the resonance position, one can see that for both

zeroth-order and first-order values the basis-set dependence is more pronounced than for
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excitation energies corresponding to bound states of the neutral molecules. The position

of the resonance state in CO− still changes by 0.06 eV when going from aug-cc-pVQZ to

aug-cc-pV5Z, whereas the largest shift observed for a bound state is less than 0.03 eV. We

also note that the positions of the resonance states become smaller with increasing basis-set

size, while the opposite is true for the excitation energies of the bound Rydberg states.

Concerning the resonance width, trends are less clear. For CO−, both zeroth-order and

first-order values show a non-monotonic behavior with respect to the basis-set size and no

convergence is observed. The magnitude of the variations in Γ is however comparable to

those in ER. For C2H
−
4 in contrast, the dependence of Γ on the basis-set size is much less

pronounced and convergence seems to be reached. We also see that the dependence of both

ER and Γ on the CAP onset is somewhat mitigated when increasing the size of the valence

basis set: For the aug-cc-pVDZ basis set, a decrease of r0x and r0y by 0.5 a.u. increases ER

and Γ of the 2Π resonance of CO− by 0.032 eV and 0.073 eV, respectively, whereas the same

decrease leads to changes of just 0.025 eV and 0.026 eV when using the aug-cc-pVQZ basis.

This should be contrasted with the contrary impact of additional diffuse functions discussed

before. Table IV also shows that the values for ηopt decrease for larger basis sets, which is

in line with that ηopt should be zero in the complete basis set limit [16].

To gain further insight into the dependence of ER and Γ on the size of the valence basis

set we performed an energy decomposition analysis for the 2Π resonance of CO− and the

2B2g resonance of C2H
−
4 based on the following partition of the electronic Hamiltonian:

H = EHF +
∑
pq

Fpq{p†q}︸ ︷︷ ︸
one-electron part

+
1

4

∑
pqrs

⟨pq||rs⟩ {p†q†sr}︸ ︷︷ ︸
two-electron part

(19)

where the CAP is considered as a part of Fpq and ⟨pq||rs⟩ stands for the two-electron integrals

in MO basis. The expectation value of the one-electron part is then interpreted as one-

electron energy, whereas the expectation value of the remainder represents the contribution

from the EOM-EA-CCSD two-particle density matrix. The results are compiled in Table

V. For the real part of the energy, this illustrates that the one-electron part converges

significantly faster to the complete basis-set limit than the two-electron part, which suggests

that the overall slow convergence of the total energy is mainly driven by an incomplete

treatment of electron correlation. In contrast, for the imaginary part of the energy, the
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one-electron and two-electron parts seem to diverge in opposite directions with increasing

basis-set size. This holds true for both molecules, but whereas the trends roughly cancel

out for C2H
−
4 , this is not the case for CO− leading to a seemingly different behavior for the

overall resonance width of the two systems.

One might be tempted to relate the basis set dependence of Γ to an insufficient descrip-

tion of the interaction of the resonance state with the continuum, but we point out that the

addition of further diffuse functions has only little impact on ER and Γ (cf. Section IVC),

which suggests the opposite. In total, we feel that the behavior of Γ requires further investi-

gation in order to develop a scheme for the extrapolation to the complete basis set limit, but

such an extension is beyond the scope of the present article. We point out, however, that

the variations in Γ observed for CO− do not exceed 0.15 eV so that reliable computations

are still possible based on our current approach.

V. APPLICATIONS

In this section, we will report resonance positions and widths for a number of shape

resonances of small to medium-sized molecules and compare the results from our CAP-

EOM-EA-CCSD scheme to those obtained using other theoretical approaches or through

experiment. Systems included in this study are N−
2 , CO

−, C2H
−
2 , C2H

−
4 , CH2O

−, CO−
2 , and

C4H
−
6 . All these resonance states except for the last one are derived by electron attachment

to the π∗ lowest unoccupied molecular orbital of the corresponding neutral molecules. C4H
−
6

(1,3-butadiene) is a special case as its π system extends over more than a single double

bond, which results in two low-lying resonance states.

We add that only the real part of the resonance wave function has a well defined single-

attachment character, while the imaginary part has a considerably different form. Most

often, it exhibits multireference character and is dominated by several single attachments to

very diffuse orbitals. Also, its dependence on the CAP strength is more pronounced than

that of the real part. A detailed investigation of this phenomenon is beyond the scope of

this article.

In all calculations, we employed the scheme developed in Section IV, i.e., we chose the

CAP onset based on the spatial extent of the ground-state wave function and used the

aug-cc-pVXZ+3s3p3d(C) bases. Computational details are compiled in Table VI.
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A. 2Πg Resonance in N−
2

The scattering of slow electrons by the N2 molecule has been studied experimentally sev-

eral times [71–78] so that the 2Πg resonance of N
−
2 is rather well characterized. Consequently,

this resonance has served as a testing ground for numerous theoretical approaches includ-

ing stabilization techniques [69, 70, 79, 80], methods based on complex scaling [10, 81, 82],

CAP-based schemes [16, 26, 27, 62–66] as well as further approaches [83–85]. Among other

aspects, the impact of electron correlation on the resonance position and width [62] as well

as their basis-set dependence [26, 62, 64] have been investigated in detail for this system.

In addition, the resonance wave function has been studied over a wide range of different

bond lengths and adiabatic excitation energies have been determined [10, 80, 86, 87]. The

potential interplay of the 2Πg ground state of N−
2 with other resonance states has been also

investigated [10, 88].

CAP-EOM-EA-CCSD results obtained for the resonance position and width are compiled

in Table VII together with several values available from the literature. The optimal CAP

strengths found in our calculations are 0.0015 (0.0037) a.u. for the zeroth-order result and

0.0119 (0.0025) a.u. and 0.0148 (0.0071) a.u. for the real and imaginary part of the first-

order result obtained with the aug-cc-pVTZ+3s3p3d(C) (aug-cc-pVQZ+3s3p3d(C)) basis

set. We refrained from including experimental results in Table VII except for the fixed-

nuclei estimate by Berman et al. (ER = 2.32 eV, Γ = 0.41 eV) [89], which has been often

considered as the reference value in previous theoretical studies. We add that this value was

not obtained directly from the experiment, but through a fit to the experimental data using

Feshbach’s projection operator formalism.

Table VII illustrates that a confusing plethora of values for the resonance position and

width of the 2Πg state of N−
2 have been reported. One can see that our results obtained

from CAP-EOM-EA-CCSD overestimate ER relative to the value from Ref. [89], while Γ

is underestimated. For our highest-level calculation (first-order CAP-EOM-EA-CCSD/aug-

cc-pVQZ+3s3p3d(C)) the deviation is about 0.15 eV for ER and 0.13 eV for Γ. For ER

such a deviation is generally considered acceptable for EOM-EA-CCSD when dealing with

bound states. An assessment of the deviation in Γ is more difficult as a comparison to bound

states cannot be made. The differences between our highest-level value and our remaining

results show however that the basis-set size and the correction for the CAP potential both
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make a sizable impact on ER and Γ, but whereas these effects work in the same direction for

the resonance position, the change in Γ is more involved. As for the first-order correction,

the results obtained within the static-exchange approximation [16] exhibit trends similar to

those observed in the present study.

Table VII also shows that most approaches gave rise to too high values for the reso-

nance position, whereas the reference value for the resonance width from Ref. [89] was often

surprisingly well reproduced. The impact of electron correlation is illustrated by the compar-

ison of high-level correlated methods to lower levels of theory. The position of the resonance

state is consistently calculated to be above 3 eV with HF, DFT, and CIS based methods,

regardless of whether stabilization techniques, complex scaling, or CAPs are employed, while

the use of correlated methods leads to a significantly better agreement with the reference

value. The only notable exception is the complex-scaled MRCI result (1.38 eV) from Ref.

[10], which is almost 1 eV below the reference value. Interestingly, CAP-augmented MRCI

calculations [63] with a rather similar basis set yielded a quite different resonance position

(2.97 eV).

Compared to its effect on the resonance position, the role of electron correlation for the

width Γ is less clear. For example, the complex-scaled HF and CAP-HF calculations from

Refs. [81] and [27] agree with the reference value within 0.03 eV and 0.015 eV, respectively,

while some correlated calculations led to deviations of more than 0.2 eV [63]. In fact, it was

stated explicitly [62] that several values reported in the literature might have benefitted from

error cancellation. We note that most authors reported values for Γ that were higher than

the reference value with some low-level approaches overestimating the width by a factor of

more than two, whereas our calculations underestimated Γ.

Regarding the basis-set dependence, a comparison between different schemes is hampered

by the fact that a variety of different basis sets has been used in previous studies. Bearing

in mind our findings from Sec. IVD, it seems however justified to conclude for CAP-based

methods that basis-set effects may account at least partly for the differences between values

for Γ reported by different authors. In addition, the results from Ref. [80] suggest that,

as compared to our CAP-augmented EOM-EA-CCSD scheme, the stabilization method

combined with EOM-EA-CCSD leads to a somewhat faster convergence with respect to

basis-set size. However, also the highest-level (aug-cc-pV5Z+3p) results obtained with the

latter method (ER = 2.49 eV, Γ = 0.496 eV) still show a sizable deviation from the reference
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values.

B. 2Π Resonance in CO−

While we have employed the 2Π resonance of CO− as a test system in Section IV, we

will consider it in this section with a different focus, i.e., we will compare our results to

those obtained using other methods. In contrast to N−
2 , which has been studied frequently,

comparatively few results have been reported for the isoelectronic CO− [24, 26, 70, 82, 90–93].

Table VIII compiles the values available from the literature together with some representative

values from Section IV.

Regarding the resonance position, Table VIII shows that most theoretical values are

higher than the experimental value (1.50 eV) [78, 94] as in the case of N−
2 . Also, similarly to

N−
2 , the resonance position is clearly overestimated in the static exchange approximation, in

which electron correlation is neglected. Furthermore, CAP-EOM-EA-CCSD results obtained

using different bases vary by up to 0.75 eV, which demonstrates the sizable impact of the

basis set. We note, however, that our results obtained using the aug-cc-pVXZ+3s3p3d(C)

bases approach the experimental value with growing basis-set size and that the first-order

correction improves the resonance position with respect to experiment. Our highest-level re-

sult (1.762 eV, first order, aug-cc-pV5Z+3s3p3d(C) basis set) deviates from the experimental

value by less than 0.3 eV.

The available values for the resonance width of CO− differ by more than an order of

magnitude as again illustrated by Table VIII. The largest value reported (1.65 eV) was

obtained in the static exchange approximation, while the narrowest width (0.08 eV) was

computed from the Σ2 decouplings of the electron propagator, a pattern that is again similar

to N−
2 . The CAP-EOM-EA-CCSD results for the resonance width from the present work and

Refs. [26] and [24] vary by up to 0.68 eV, which illustrates once more the great influence

of the basis set. As for the resonance position, the first-order correction improves the

resonance width considerably with our highest-level result (0.604 eV, first-order, aug-cc-

pV5Z+3s3p3d(C)) differing by 0.204 eV from the experimental value. However, we finally

note that the experimental values for the resonance position and width of CO− from Ref.

[94] are not strictly comparable to the fixed-nuclei extrapolation for N−
2 from Ref. [89],

which further complicates a rigorous assessment of the accuracy of theoretical approaches.
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C. 2Πg Resonance in C2H
−
2

C2H
−
2 is a relatively well studied system and a number of theoretical [26, 80, 82, 95–97] as

well as experimental [98–103] values for the resonance position and width are available from

the literature. Those values as well as the results we obtained using our new CAP-EOM-

EA-CCSD approach are compiled in Table IX. The optimal CAP strengths corresponding

to our results are 0.0036 a.u. for the zeroth-order value and 0.0071 a.u. and 0.0058 a.u. for

the real and imaginary part of the first-order value.

Table IX shows that our results for the resonance position are in qualitative agreement

with those obtained from most experiments as well as from other theoretical approaches.

Only when using the trapped electron method [98, 99, 103] considerably lower (∼0.7 eV)

resonance positions were found. Our zeroth-order CAP-EOM-EA-CCSD result (2.655 eV)

agrees within 0.05 eV with the experimental values from Refs. [99], [100], and [102]. We

note that the first-order correction lowers the CAP-EOM-EA-CCSD result for ER by about

0.2 eV bringing it closer to the experimental value from Ref. [101], but basis-set effects may

have an impact of similar magnitude.

Theoretical values for the resonance width vary between 0.19 eV and 1.11 eV and only

two rough estimates of 0.8 eV [99] and >1.0 eV [100] are available from experiment. Our

calculations qualitatively confirm these two estimates with the zeroth-order result (0.979

eV) being closer to one value and the first-order result (0.831 eV) being closer to the other

value. As mentioned for the resonance position, basis-set effects may have a sizable impact

so that an ultimate decision between the two experimental values cannot be made.

D. 2B2g Resonance in C2H
−
4

Similar to CO−, the 2B2g resonance in C2H
−
4 has been chosen as a benchmark system in

Section IV and here we will compare it with previously reported values. The 2B2g resonance

in C2H
−
4 has been studied quite extensively by both experimental [104–106] and theoreti-

cal methods [66, 67, 80, 107–110]. Experimental measurements by electron scattering and

electron impact techniques [104–106] located the position of the 2B2g resonance around 1.8

eV with a width of Γ = 0.7 eV. Theoretically this resonance has been studied by a wide

variety of methods including complex scaling [107, 109], CAP-based approaches [66, 67],
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stabilization [80] as well as other techniques [108, 110]. The reported theoretical values vary

from 1.77 to 2.62 eV for the position of the resonance and from 0.11 to 1.32 eV for the

width, i.e., by more than an order of the magnitude in the latter case. All values along with

the results from our method are summarized in Table X.

Similar to the trends observed for the previously discussed systems, the largest values

for both position and lifetime are found by DFT in combination with the stabilization

technique [80], whereas the shortest lifetimes are obtained when using electron propagator

methods [110]. The resonance position obtained by CAP-EOM-EA-CCSD lies reasonably

close (within 0.3 eV) to the experimental value (1.8 eV) for all basis sets used. Similar to

results from EOM-CCSD calculations using stabilization techniques [80], the value of the

resonance position is overestimated by CAP-EOM-EA-CCSD, but we observe a positive

trend when enlarging the valence part of the basis set from triple zeta to quadruple zeta.

Our best estimate for the position of the resonance (first-order CAP-EOM-EA-CCSD/aug-

cc-pVQZ+3s3p3d(C)) is 1.903 eV, which differs from the experimental value by only 0.1 eV

and is thus not worse than what is usually found in EOM-EA-CCSD calculations for bound

states.

The resonance width calculated with CAP-EOM-EA-CCSD is underestimated in compar-

ison to experiment by roughly a factor of two. However, similar to the position, enlargement

of the valence basis set brings the theoretical value of the width closer to the experimental

one. But in contrast to the position, the first-order correction worsens the value for the

width as compared to experiment so that the best estimate from our calculations (0.373 eV,

first-order CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C)) still deviates by more than 0.3

eV. We add that we observed a similar underestimation of the resonance width in Section

VA for N−
2 .

E. 2B1 Resonance in CH2O
−

Formaldehyde is of particular interest for our study since it is the smallest molecule

containing the highly-polar carbonyl group, which means that an accurate description of

polarization and correlation effects is especially important. Zeroth-order and first-order es-

timates of the position and the lifetime of the 2B1 resonance state of CH2O
− along with

previous experimental and theoretical data are compiled in Table XI. The optimal CAP
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strength for the zeroth-order CAP-EOM-EA-CCSD values is 0.01 a.u. and for the cor-

responding first-order values 0.024 a.u. and 0.021 a.u. for the real and imaginary part,

respectively.

Experiments by electron transmission spectroscopy [111, 112] and vibrational excita-

tion [113] report values of 0.86-0.87 eV for the resonance position. For the resonance width,

no experimental value is available from the literature, but only an estimate based on elec-

tron collision experiments near 1 eV [113], which shows the lifetime to be of the same order

of magnitude as the period of the ν2 vibrational mode (0.216 eV for neutral formaldehyde

[114]). This vibrational excitation (ν2) corresponds to the CO stretch mode, which is mainly

excited after autodetachment of the electron from the 2B1 resonance state [113]. We deduce

that the width of the resonance should be of the order of 0.1 eV as it is the case for the π∗

resonances of the molecules discussed before.

Previously reported theoretical values vary from 0.682 eV to 3.0 eV for the position

and from 0.1 to 0.794 eV for the width of the resonance [25, 115–120]. Similar to the

molecules considered above, the static exchange approximation overestimates the position

of the resonance by roughly a factor of three [115, 116]. This can be explained by the high

polarity of the carbonyl group and the reorganization effects when the molecule undergoes

electron attachment, which results in strong correlation between the incident electron and

the electrons of the neutral formaldehyde and shows the need for an accurate treatment of

electron correlation.

We also note that the smallest width (0.1-0.12 eV) is reported for electron propagator

methods [117], a pattern similar to N−
2 , CO− and C2H

−
4 . Our method yields resonance

positions of 1.352 eV and 1.314 eV in zeroth order and first order, respectively, which is

significantly higher than the experimental value, but close to the values obtained with the

R-matrix method [118, 119]. The widths obtained with CAP-EOM-EA-CCSD are 0.376 and

0.277 eV in zeroth order and first order, which agrees best with the results from SAC-CI

calculations [25]. However, the lack of experimental data prevents a more rigorous assessment

of the values for the width obtained with our method.
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F. 2Πu Resonance in CO−
2

The scattering of slow electrons by the CO2 molecule is well characterized experimentally

[121–127]. Besides higher-lying resonance states, the existence of a 2Πu metastable state

in the range of 3.8-4 eV was established. Theoretically, this system has been studied most

often with a special emphasis on the changes when going from the linear to a bent structure,

where the 2Πu state splits into a 2A1 and a 2B2 component [128–131]. The role of a virtual

state near 2 eV [132] and the interplay with other resonance states [131] have also been

investigated. Somewhat surprisingly, the position and width of the 2Πu resonance of the

linear molecule have not yet been studied using high-level quantum-chemical methods but

only within the static exchange approximation [133–136].

Table XII reports the results from the CAP-EOM-EA-CCSD calculations for the 2Πu

resonance of linear CO−
2 along with theoretical and experimental values available from the

literature. Optimal CAP strengths corresponding to our values are 0.0074 a.u. in zeroth

order and 0.0295 a.u. (real part) and 0.0810 a.u. (imaginary part) in first order. One

can see that CAP-EOM-EA-CCSD qualitatively reproduces the experimental values for

the resonance position and also agrees within 0.2 eV with results from static exchange

calculations. This is especially noteworthy as we observed in the preceding sections that the

static-exchange approximation tends to overestimate the resonance position significantly. We

also note that the impact of the first-order correction on the resonance position is relatively

small (0.02 eV) as compared to the systems discussed above. With respect to the resonance

width, Table XII shows that CAP-EOMEA-CCSD yields considerably smaller values than

calculations in the static-exchange approximation, which can be related to the superior

description of electron correlation in the former case. Also, the impact of the first-order

correction on the width is sizable (0.08 eV). We finally point out that our first-order result

for the resonance width (0.198 eV) agrees very well with the experimental value (0.20 eV)

available from the literature [122].

G. 2Au and 2Bg Resonances in C4H
−
6

1,3-Butadiene is different from all species discussed before in that its π system extends

over more than a single double bond. Two low-lying π∗ resonances of 2Au and 2Bg symmetry
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result from this electronic structure, both of which have been characterized experimentally

[104, 137]. However, while experimental values for the resonance position (0.62 eV and

2.82 eV) are available, no values for the width of either state have been reported in the

literature. It was only concluded that the lower lying 2Au state should be longer lived as

its spectrum exhibits vibrational structure. As for previous theoretical treatments of these

resonances, only one study on the 2Au state employing conventional DFT/B3LYP, which

found a surprisingly good agreement with experiment for the resonance position (0.76 eV),

is available from the literature [138], but the resonance widths have apparently never been

studied theoretically.

In Table XIII, we report CAP-EOM-EA-CCSD results for the resonance positions and

widths of both π∗ resonances of 1,3-butadiene. For technical reasons, we employed the aug-

cc-pVDZ+3s3p3d(C) basis instead of the aug-cc-pVTZ+3s3p3d(C) basis for this molecule,

but in order to test again the validity of the “C” as compared to the “A” scheme, results

obtained with the larger aug-cc-pVDZ+3s3p3d(A) basis are also included in Table XIII.

Optimal CAP strengths corresponding to the results for the 2Au state in Table XIII are

0.0074 a.u, 0.0115 a.u., and 0.0210 a.u. for the zeroth-order and first-order CAP-EOM-EA-

CCSD calculations with the “C” basis-set and 0.0135 a.u., 0.0175 a.u., and 0.0310 a.u. for

the respective calculations with the “A” basis set. For the 2Bg state, optimal CAP strengths

of 0.0098 a.u., 0.0270 a.u., and 0.0190 a.u. were obtained with the “C” basis set and of 0.0165

a.u., 0.0170 a.u., and 0.0350 a.u. with the “A” basis set.

Table XIII illustrates that aug-cc-pVDZ+3s3p3d(C) and aug-cc-pVDZ+3s3p3d(A) yield

very similar results for the resonance position. CAP-EOM-EA-CCSD overestimates the

position of the 2Au resonance by about 0.7 eV regardless of the basis set used and also

independent of whether the first-order correction is applied. For the 2Bg state an overall

better agreement with experiment is found (0.2-0.3 eV), but the first-order correction makes

a sizable impact and moves the CAP-EOM-EA-CCSD values away from the experimental

value. Note that based on the findings from Section IV, one should expect a significant

change of all results when increasing the valence basis set.

Concerning the resonance width, our results support the experiment’s hypothesis that

the 2Au state is considerably longer lived than the 2Bg state. We also note that first-order

results for the resonance width are smaller by 0.05 eV for the 2Au state and by 0.2-0.3 eV

for the 2Bg state. Also, the change from the “C” to the “A” basis set makes an impact of
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similar magnitude but in opposite direction. A final judgment of the accuracy of the results,

however, cannot be made due to the lack of other theoretical or experimental estimates for

the resonance width.

VI. CONCLUSIONS

A complete and robust implementation of CAPs within EOM-EE-CCSD and EOM-EA-

CCSD methods has been presented together with a protocol for studying molecular shape

resonances without system-dependent optimization of basis set and CAP parameters.

In our approach, we have chosen the onset of the CAP as the expectation value of the

spatial extent of the reference-state wave function, which ensures that the ground state is

minimally perturbed by the CAP (∼ 10−5 a.u.). We showed that resonance positions and

lifetimes obtained from energies, which are corrected for the CAP perturbation in first order

[16, 24], are less sensitive (∼ 0.03 eV) towards variation of the CAP onset than uncorrected

zeroth-order energies. To determine the optimal CAP strength, we used the criterion from

Ref. [24] for the separate stabilization of the real and imaginary part of the first-order

corrected energy instead of the most widely used criterion |η dE/dη| = min based on the

zeroth-order energy.

Based on benchmark studies for the π∗ resonances of CO− and C2H
−
4 , we illustrated

that standard valence basis sets (for example, aug-cc-pVTZ) augmented by a set of diffuse

functions in the center of the molecule are suitable for the study of resonance states with

CAP-EOM-EA-CCSD. We showed that the use of only few diffuse functions of each angular

momentum is sufficient for an accurate description of the diffuse part of the resonance

wave function. The further addition of diffuse functions has little impact on resonance

positions and lifetimes. We also note that the inclusion of diffuse functions with angular

momentum up to ℓ = 2 (d-functions) is essential for π∗ resonances, thus suggesting that a

set [3s3p3d] of diffuse functions should be sufficient for most applications. The convergence

of resonance positions and especially lifetimes with respect to the valence basis set is less

clear, which indicates that electron correlation is of higher importance for resonances than

for bound states. Although the theoretical understanding of the lifetime’s dependence on the

valence basis set remains an open problem, we emphasize that we did not observe variations

of more than 0.15 eV in the lifetime. Regarding the resonance position, we showed that
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the performance of CAP-EOM-EA-CCSD is overall similar to that of EOM-EA-CCSD for

bound electron-attached states. In total, our results for a variety of π∗ shape resonances

demonstrate that CAP-EOM-EA-CCSD is competitive relative to other approaches for the

theoretical treatment of resonances and often able to reproduce experimental results for

resonance positions and lifetimes. The importance of electron correlation is again illustrated

comparing with the results from mean-field approaches, which often disagree qualitatively

with experiment.

While the current paper shows the potential of CAP-EOM-CCSD approaches, it is

also clear that the application to larger systems is hampered by the need to calculate η-

trajectories, i.e., to recalculate the energy for different values of the CAP strength, which

increases the computational cost considerably as compared to conventional EOM-CCSD cal-

culations. To make our current implementation of CAP-EOM-CCSD faster and to increase

its black-box character, a number of improvements will be pursued in future work. As the

wave function changes smoothly with the CAP strength, one can expect that the use of

the wave function parameters from the previous step as guess will accelerate the calculation

of η-trajectories significantly provided that sufficiently small step sizes are used. A further

automatization will be possible by the implementation of analytic derivatives dE/dη as this

will enable the determination of optimal CAP strengths without that the user has to specify

a step size and a range, where the search is performed. Put together, these developments

will allow for the application of CAP-EOM-CCSD to resonance states of larger molecules

as, for example, biochromophores[139, 140], where standard EOM-CCSD is routinely used

for the characterization of bound states.
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VIII. TABLES

TABLE I: EOM-EE-CCSD excitation energies and expectation values ⟨R2⟩ for several excited

states of CO and C2H4 computed using the aug-cc-pVTZ basis set with additional diffuse basis

functions placed at the all heavy atoms (A) or at the center of the molecule (C).

aug-cc-pVTZ aug-cc-pVTZ
+ 3s3p3d(A) + 3s3p3d(C)

Molecule State ⟨R2⟩/a.u.a E/eV E/eV
CO 2 1A1 77.8 10.961 10.961

4 1A1 153.7 12.559 12.597
1 1B2 41.4 8.625 8.626

C2H4 2 1Ag 152.0 8.445 8.446
1 1B1g 116.7 9.791 9.791
1 1B1u 118.7 7.392 7.392

aThe corresponding values for the ground states are 40.0 a.u. for CO and 83.3 a.u. for C2H4.
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TABLE II: Dependence of resonance positions ER and widths Γ of the 2Π resonance of CO− and

the 2B2g resonance of C2H
−
4 on the onset of the CAP. Values for ηopt, (η·dE/dη)η=ηopt , and ∥W∥ are

also reported. All values computed at the CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) level

of theory.

Relative CAP onseta Zeroth-order values First-order values
∆r0x/∆r

0
y/∆r

0
z/a.u. ER/eV Γ/eV ηopt/a.u. η

dE
dη
/a.u. ER/eV

b Γ/eVb ηRopt/a.u. η
I
opt/a.u. ∥W∥/a.u.c

CO−, 2Π resonance
0.0/0.0/0.0 2.088 0.650 0.0028 0.0017 1.981 0.585 0.0054 0.0048 241.9
0.5/0.5/0.0 2.061 0.612 0.0036 0.0021 1.956 0.573 0.0066 0.0060 214.0
-0.5/-0.5/0.0 2.113 0.691 0.0022 0.0011 1.999 0.591 0.0044 0.0040 274.2
0.0/0.0/0.5 2.087 0.644 0.0030 0.0017 1.981 0.582 0.0056 0.0050 235.4
0.0/0.0/-0.5 2.091 0.654 0.0028 0.0015 1.980 0.591 0.0052 0.0046 249.6

C2H
−
4 ,

2B2g resonance
0.0/0.0/0.0 2.091 0.430 0.0046 0.0023 2.032 0.328 0.0060 0.0085 272.0
0.5/0.0/0.0 2.089 0.434 0.0045 0.0023 2.032 0.330 0.0054 0.0089 266.7
-0.5/0.0/0.0 2.093 0.427 0.0046 0.0019 2.031 0.328 0.0054 0.0083 278.3
0.0/0.5/0.0 2.095 0.429 0.0050 0.0022 2.033 0.330 0.0057 0.0087 260.5
0.0/-0.5/0.0 2.093 0.431 0.0046 0.0019 2.032 0.326 0.0054 0.0083 285.4
0.0/0.0/0.5 2.088 0.388 0.0071 0.0020 2.023 0.301 0.0070 0.0109 255.3
0.0/0.0/-0.5 2.106 0.478 0.0037 0.0025 2.039 0.353 0.0042 0.0068 291.2

aA value of 0.0 refers to r0α =
√
⟨α2⟩, α = x, y, z. 0.5/0.5/0.0 means for example that r0x =

√
⟨x2⟩ + 0.5,

r0y =
√
⟨y2⟩+ 0.5, r0z =

√
⟨z2⟩.

bIdentical to UR and −1/2U I from Eqs. (7) and (8).
cComputed as Frobenius norm.
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TABLE IV: Resonance positions ER and widths Γ as well as values for ηopt for the
2Π resonance of

CO− and the 2B2g resonance of C2H
−
4 computed by CAP-EOM-EA-CCSD using different valence

basis sets. For comparison purposes, EOM-EE-CCSD excitation energies for several bound states

of CO and C2H4 are reported as well.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z
+3s3p3d(C) +3s3p3d(C) +3s3p3d(C) + 3s3p3d(C)

2Π resonance of CO−

ER (0th order)/eV 2.303 2.088 1.987 1.926
Γ (0th order)/eV 0.727 0.650 0.696 0.804
ηopt/a.u. 0.0046 0.0028 0.0020 0.0015
ER (1st order)/eVa 2.182 1.981 1.851 1.762
Γ (1st order)/eVa 0.667 0.585 0.673 0.604
ηRopt/a.u. 0.0175 0.0054 0.0062 0.0034
ηIopt/a.u. 0.0100 0.0048 0.0046 0.0028

Bound states of CO
E (2 1A1)/eV 10.777 10.961 11.021 11.046
E (4 1A1)/eV 12.446 12.597 12.642 12.663
E (1 1B2)/eV 8.703 8.626 8.612 8.608

2B2g resonance of C2H
−
4

ER (0th order)/eV 2.191 2.091 1.988 —
Γ (0th order)/eV 0.436 0.430 0.447 —
ηopt/a.u. 0.0032 0.0046 0.0025 —
ER (1st order)/eVa 2.230 2.032 1.903 —
Γ (1st order)/eVa 0.302 0.328 0.373 —
ηRopt/a.u. 0.0210 0.0060 0.0054 —
ηIopt/a.u. 0.0248 0.0085 0.0043 —

Bound states of C2H4

E (2 1Ag)/eV 8.315 8.446 8.493 —
E (1 1B1g)/eV 9.681 9.791 9.830 —
E (1 1B1u)/eV 7.279 7.392 7.436 —

aIdentical to UR and −1/2U I from Eqs. (7) and (8).
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TABLE V: Energy decomposition analysis for the real and imaginary parts of the energiesa of the
2Π resonance of CO− and the 2B2g resonance of C2H

−
4 computed by CAP-EOM-EA-CCSD using

different valence basis sets. All values in atomic units.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z
+3s3p3d(C) +3s3p3d(C) +3s3p3d(C) + 3s3p3d(C)

2Π resonance of CO−

Total energy (real) -112.9835 -113.0979 -113.1573 -113.1805
One-electron part (real)b -112.5652 -112.5920 -112.6078 -112.6167
Two-electron part (real) -0.4183 -0.5059 -0.5495 -0.5638
Total energy (imaginary) -0.0136 -0.0121 -0.0129 -0.0148

One-electron part (imaginary) -0.0479 -0.0485 -0.0559 -0.0725
Two-electron part (imaginary) 0.0343 0.0364 0.0430 0.0577

2B2g resonance of C2H
−
4

Total energy (real) -78.2836 -78.3881 -78.4333 —
One-electron part (real)b -77.8614 -77.8781 -77.8935 —
Two-electron part (real) -0.4223 -0.5100 -0.5399 —
Total energy (imaginary) -0.0080 -0.0080 -0.0082 —

One-electron part (imaginary) -0.0289 -0.0318 -0.0389 —
Two-electron part (imaginary) 0.0209 0.0238 0.0307 —

aEvaluated at the respective ηopt, see values in Table IV.
bIncluding nuclear repulsion energy.
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TABLE VII: Resonance positions ER and widths Γ for the 2Πg resonance state of N−
2 obtained

using different methods.

Method ER/eV Γ/eV
Stieltjes imaging technique/special basis seta 2.23 0.40
Schwinger variational method/ADC(3)/(11s8p3d)/[5s7p3d]b 2.534 0.536
Complex scaling/HF-SCF/Dunning’s (9s5p)/[5s3p]+2d+(5p2d)/[3p2d]+4p6dc 3.19 0.44
Complex scaling/MR-CI/Dunning’s (9s5p)/[5s3p]+1d+10pd 1.38 0.414
Complex scaling/Σ3 decouplings of the e−-propagator/[4s9p]e 2.11 0.18
Stabilization/MR-CI/ Dunning’s (9s5p)/[5s3p]+3p2d+4s1p1d(C)f 2.62 0.45
Stabilization/MR-CI/6-31+G∗+3pg 2.34 0.51
Stabilization/MP-PT2/ANO(14s9p4d3f)/[4s3p2d1f]+2s2p7d4g(C)h 2.36 0.42
Stabilization/CIS/aug-cc-pVTZ+3pi 3.77 1.14
Stabilization/TDDFT(HFE PBE)/aug-cc-pVTZ+3pi 3.078 0.54
Stabilization/EOM-EA-CCSD/aug-cc-pVTZ+3pi 2.58 0.570
Stabilization/EOM-EA-CCSD/aug-cc-pVQZ+3pi 2.49 0.502
Stabilization/EOM-EA-CCSD/aug-cc-pV5Z+3pi 2.49 0.496
CAP/static exchange/[5s10p13d] (0th order)j 3.888 1.363
CAP/static exchange/[5s10p13d] (1st order)j 3.776 1.199
CAP-HF-SCF/(11s7p2d)/[5s4p2d]k 3.28 0.395
CAP-DFT(LSD/XC)/(11s7p2d)/[5s4p2d]k 3.39 0.506
CAP-MRCI/Dunning’s (9s5p)/[5s3p]+(12p)/[9p]+2dl 2.97 0.65
TCAP-MRCI/Dunning’s (11s6p)/[5s3p]+7p3d2fm 2.42 0.45
CAP-Σ(ADC(2))/TZP+9p2d2fn 2.58 0.55
CAP-FSMRCC/TZ(7p2d)o 2.52 0.39
CAP-CIP/TZ(7p2d)p 2.28 0.482
CAP-EOM-EA-CCSD/(11s8p3d)/[5s7p3d]+3pq 2.07 0.42
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order)r 2.487 0.417
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)r 2.571 0.255
CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C) (0th order)r 2.508 0.364
CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C) (1st order)r 2.478 0.286
Estimate via Feshbach projection formalism based on experimental datas 2.32 0.41

aSee Ref. [83].
bSee Ref. [84].
cSee Ref. [81].
dSee Ref. [10].
eSee Ref. [82].
fSee Ref. [69].
gSee Ref. [79].
hSee Ref. [70].
iSee Ref. [80].
jSee Ref. [16].
kSee Ref. [27].
lSee Ref. [63].

mSee Ref. [62].
nSee Ref. [64].
oSee Ref. [65].
pSee Ref. [66].
qSee Ref. [26].
rThis work.
sSee Ref. [89].
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TABLE VIII: Resonance positions ER and widths Γ for the 2Π resonance state of CO− obtained

using different methods.

Method ER/eV Γ/eV
Boomerang modela 1.52 0.80
Close coupling methodb 1.75 0.28
T-matrix/static exchange/(9s5p1d)/[4s3p1d]c 3.4 1.65
Complex scaling/Σ2 decouplings of the e− propagator (real SCF)/4s5pd 1.71 0.08
Complex scaling/Σ3 decouplings of the e− propagator/4s5pe 1.65 0.14
Stabilization/MP-PT2/ANO(14s9p4d3f)/[4s3p2d1f]+2s4p7d5f(C)f 2.02 0.35
CAP-EOM-EA-CCSD/4s5p(C)+4s5p1d(O)g 1.32 0.12
CAP-EOM-EA-CCSD/maug-cc-pV(D+d)Z+3pg 1.42 0.44
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p(A) (1st order)h 1.954 0.433
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order)i 2.088 0.650
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)i 1.981 0.585
CAP-EOM-EA-CCSD/aug-cc-pV5Z+3s3p3d(C) (0th order)i 1.926 0.804
CAP-EOM-EA-CCSD/aug-cc-pV5Z+3s3p3d(C) (1st order)i 1.762 0.604
Experimentj 1.50 0.40

aSee Ref. [90].
bSee Ref. [91].
cSee Ref. [92].
dSee Ref. [93].
eSee Ref. [82].
fSee Ref. [70].
gSee Ref. [26].
hSee Ref. [24].
iThis work.
jSee Ref. [94].
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TABLE IX: Resonance positions ER and widths Γ for the 2Πg resonance state of C2H
−
2 obtained

using different methods.

Method ER/eV Γ/eV
Theory
Multiple scattering Xαa 2.6 1.0
Feshbach projection/MR-CI/Dunning’s (9s5p)/[5s3p]+1p1d+3pb 2.96 1.11
Complex scaling/Σ3 decouplings of the e−-propagator/5s9p1d, 3s3p(H)c 2.50 0.21
Stabilization method/EOM-EA-CCSD/aug-cc-pVTZ+3pd 2.77 1.50
Stabilization method/TDDFT(HFE PBE)/aug-cc-pVTZ+3pd 2.4 0.6
CAP-EOM-EA-CCSD/Dunning’s (9s5p)/[5s3p]+4p1d(C), 2s1p(H)e 1.79 0.80
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order)f 2.655 0.979
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)f 2.450 0.831
Experiment
Trapped electrong 1.80/1.85 —
Vibrational excitationh 2.6 >1.0
Electron impacti 2.5 —
Dissociative attachment/electron transmissionj 2.6 —
Electron transmissionk 2.6 ∼0.8

aSee Ref. [95].
bSee Ref. [96].
cSee Ref. [82].
dSee Ref. [80].
eSee Ref. [26].
fThis work.
gSee Refs. [98] and [103].
hSee Ref. [100].
iSee Ref. [101].
jSee Ref. [102].
kSee Ref. [99].
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TABLE X: Resonance positions ER and widths Γ for the 2B2g resonance state of C2H
−
4 obtained

using different methods.

Method ER/eV Γ/eV
Theory
Complex scaling/second order rotated propagator/5s7pa 1.94 0.110
Complex scaling/second order rotated propagator/5s8pa 2.49 0.234
Complex scaling/second order rotated propagator/5s9pa 1.88 0.442
Complex Kohn methodb 1.83 0.460
Complex scaling/bi-variational SCF/5s7p c 1.93 0.2
Complex scaling/ Second order biorthogonal e− propagator/5s7pd 1.86 0.18
Complex scaling/ Diagonal 2ph-TDA biorthogonal e− propagator/5s7pd 1.89 0.18
Stabilization method/EOM-CCSD/aug-cc-pVTZ+3pe 2.06 0.64
Stabilization method/EOM-MP2/aug-cc-pVTZ+3pe 1.91 0.60
Stabilization method/ADC(2)/aug-cc-pVTZ+3pe 1.78 0.49
Stabilization method/Koopmans theorem (HFE BLYP)/aug-cc-pVTZ+3pe 2.58 1.32
Stabilization method/Koopmans theorem (HFE BPE)/aug-cc-pVTZ+3pe 2.62 1.08
Stabilization method/TDDFT (HFE BPE)/aug-cc-pVTZ+3pe 2.49 0.31

CAP-CIP-V
(1,0)
c (η2)/5s9pf 1.778 0.9076

CAP-FSMRCC-V
(1,0)
c (η2)/aug-cc-pVDZg 1.802 0.3662

CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order) h 2.091 0.430
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order) h 2.032 0.328
CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C) (0th order) h 1.988 0.447
CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C) (1st order) h 1.903 0.373
Experiment
Electron scatteringi 1.78 —
Electron impactj 1.8 0.7
Elastic scatteringk 1.8 0.7

aSee Ref. [107].
bSee Ref. [108].
cSee Ref. [109].
dSee Ref. [110].
eSee Ref. [80].
fSee Ref. [66].
gSee Ref. [67].
hThis work.
iSee Ref. [104], vertical electron affinity used.
jSee Ref. [105].
kSee Ref. [106].
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TABLE XI: Resonance positions ER and widths Γ for the 2B1 resonance state of CH2O
− obtained

using different methods.

Method ER/eV Γ/eV
Theory
Complex Kohn methoda 1.0 0.5
Static exchangea 3.0 —
Complex scaling/zeroth-order e− propagator/4s6p1d(C)/2s1p(H)b 1.0 0.1
Complex scaling/quasiparticle second-order e− propagator/4s6p1d(C)/2s1p(H)b 0.99 0.1
Complex scaling/diagonal 2ph-TDA e− propagator/4s6p1d(C)/2s1p(H)b 0.89 0.12
R-matrix method/augmented DZPc 1.32 0.546
R-matrix method/DZPd 1.46 0.794
Finite-element-discrete-model methode 0.682 0.429
CAP-SAC-CI /cc-pVDZ+[2s5p2d/2s2p] f 1.219 0.488
CAP-SAC-CI /cc-pVTZ+[2s5p2d/2s2p] f 1.119 0.462
CAP-SAC-CI /cc-pVQZ+[2s5p2d/2s2p] f 1.094 0.418
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order)g 1.352 0.376
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)g 1.314 0.277
Experiment
Electron transmission spectroscopyh 0.86 —
Vibrational excitationi 0.87 —

aSee Ref. [115, 116].
bSee Ref. [117].
cSee Ref. [118].
dSee Ref. [119].
eSee Ref. [120].
fSee Ref. [25].
gThis work.
hSee Ref. [111, 112].
iSee Ref. [113].
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TABLE XII: Resonance positions ER and widths Γ for the 2Πu resonance state of CO−
2 obtained

using different methods.

Method ER/eV Γ/eV
Theory
Scattering/static exchange+polarization/DZP basis seta 3.8 0.5
Schwinger variational method/static exchange/[5p4d/5p4d1f]b 5.39 0.64
Schwinger variational method/static exchange+polarization/[5s3p]+4s3p3dc 3.78 0.23
Close coupling/static exchange+polarization/DZP+add. diffuse functionsd 3.88 0.34
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order)e 4.020 0.119
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)e 3.997 0.198
Experiment
Electron scatteringf 3.8 –
Electron transmission spectroscopyg 3.14h 0.20 ± 0.07
Electron impacti 3.8 –
Impact of slow electronsj 3.6 –
Electron transmission spectroscopyk 3.58 –
High resolution attachment spectrometryl 4.4 –

aSee Ref. [133].
bSee Ref. [134].
cSee Ref. [135].
dSee Ref. [136].
eThis work.
fSee Ref. [121].
gSee Refs. [122, 126].
hThe energy of the lowest observed vibrational level is given.
iSee Ref. [123].
jSee Ref. [124].
kSee Ref. [125].
lSee Ref. [127].
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TABLE XIII: Resonance positions ER and widths Γ for the 2Au and 2Bg resonance states of C4H
−
6

(1,3-butadiene anion) obtained using different methods.

Method ER/eV Γ/eV
2Au state

Theory
DFT/B3-LYP/6-311+G(2df,p)a 0.76 –
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (0th order)b 1.336 0.110
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (1st order)b 1.327 0.059
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (0th order)b 1.348 0.145
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (1st order)b 1.332 0.103
Experimentc 0.62 –

2Bg state
Theory
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (0th order)b 2.683 0.720
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (1st order)b 2.538 0.509
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (0th order)b 2.647 0.919
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (1st order)b 2.544 0.630
Experimentc 2.82 –

aSee Ref. [138].
bThis work.
cSee Ref. [104].
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IX. FIGURES
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FIG. 1: Real (right) and imaginary (left) parts of E and U as a function of the CAP strength

parameter η for the 2Πg resonance of C2H4. All values computed by CAP-EOM-EA-CCSD/aug-

cc-pVTZ with different additional diffuse functions. • refers to zeroth-order values, × to first-order

values.
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FIG. 2: Real (right) and imaginary (left) parts of E and U as a function of the CAP strength

parameter η for the 2Πg resonance of C2H4. All values computed by CAP-EOM-EA-CCSD/aug-

cc-pVTZ+3s3p3d(C) and aug-cc-pVTZ+3s3p3d(A), respectively. • refers to zeroth-order values,

× to first-order values.
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