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An Application of Fractal Box Dimension to the Recognition of Mesoscale Cloud
Patterns in Infrared Satellite Images
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Department of Atmospheric Sciences, Institute of Astronomy and Geophysics, University of São Paulo, Sao Paulo, Brazil

(Manuscript received 14 April 1997, in final form 14 November 1997)

ABSTRACT

Mesoscale cloud patterns are analyzed through the application of fractal box dimensions. Verification of fractal
properties in satellite infrared images is carried out by computing box dimensions with two different methods
and by computing the fraction of cloudy pixels for two sets of images: 174 are considered the ‘‘control series,’’
and 178 (for verification) are considered the ‘‘test series.’’ The main instabilities in the behavior of such
dimensions are investigated from the simulation of circles filling space in several spatial distributions. It is
shown that the box dimensions are sensitive to the increase of the area covered and to the spatial organization—
that is, the number of cells, the spatial clustering, and the isotropy of the distribution of pixels. From a principal
components analysis, the authors find six main patterns in the cloudiness for the control series. The three main
patterns related to enhanced convection are the massive noncircular spread cloudiness, the highly isotropic
distribution of cloud in several cells, and the most circular pattern associated with mesoscale convective com-
plexes. The six patterns are separated into a cluster analysis, and the properties of each cluster are averaged
and verified for the test series. This method is a simple and skillful procedure to recognize mesoscale cloud
patterns in satellite infrared images.

1. Introduction

The cloud amount, its distribution, intensity, and or-
ganization over an area depends on the dynamic and
thermodynamic factors interacting on several scales.
Model results and observations have shown the impor-
tance of such interactions for the complexity of cloud
patterns. On the other hand, cloudiness features, in-
cluding cloud amount, top height, anvil extension, and
intensity of convective and mesoscale updrafts and
downdrafts, can act upon the evolution of meteorolog-
ical variables and on the dynamic patterns themselves
(Betts 1976; Ogura and Cho 1973; Albrecht et al. 1986;
Frank and Cohen 1985; Johnson 1976).

One dramatic example of the importance of cloud
organization upon its evolution can be found during the
mesoscale convective system (MCS) genesis. The merg-
ing of anvils in the first stage of an MCS leads to the
formation of elevated stratiform precipitation, an up-
ward shift in the mean vertical motion (Gamache and
Houze 1982; Dudhia and Moncrieff 1987), and an as-
sociated upward shift of the level of maximum heating
(Esbensen and Wang 1984; Silva-Dias et al. 1984), fa-
voring its upscale growth to mesoscale proportion (An-
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thes and Keyser 1979; Hack and Schubert 1986), which
is characteristic of the development of a mature, mid-
latitude mesoscale convective complex (MCC).

The objective of this paper is to propose a new method
of analysis of cloud geometry distribution obtained from
satellite infrared (IR) images that is able to recognize
mesoscale patterns. Weather forecasters and climatol-
ogists have classified different mesoscale systems from
satellite IR images in a subjective way. We discuss an
automatic discriminating method applied to just one
channel (the infrared) to detect different organizations
of clouds over a limited area.

The fractal geometry (Mandelbrot 1977, 1982) pro-
vides a model to investigate cloud complex shapes and
complex cloud distribution over an area. One general
characterization of fractals is that they are the end result
of physical processes that modify shape through global,
local, and internal action. Therefore, the fractal dimen-
sion of a surface corresponds quite closely to our in-
tuitive notion of roughness and can be used to resolve
the problems of texture segmentation and classification
(Peleg et al. 1984; Pentland 1984).

Scaling properties in clouds have been found from
satellite images, indicating self-similarities in several
scales (Lovejoy 1982; Machado et al. 1992). However,
the studies of Cahalan and Joseph (1989) and Sengupta
et al. (1990), using enhanced data resolution with the
Landsat multispectral scanner, have shown different
power laws (fractal dimensions), depending on the na-
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ture of clouds. Lovejoy et al. (1987) and Gabriel et al.
(1988), using an analysis technique called ‘‘functional
box counting,’’ have shown that both radar rain and
satellite cloud fields are multifractal over various ranges
in scale. Schertzer and Lovejoy (1987), Lovejoy and
Schertzer (1990), Olsson et al. (1993), Tessier et al.
(1993), Cahalan et al. (1994), and Marshak et al. (1997)
present some examples of multifractal properties applied
to observed rain and cloud fields. The fractal structure
of clouds with a simple atmospheric model is examined
in Yano et al. (1996), who show that the fractality of
simulated, large-scale cloud systems depends on cu-
mulus parameterization. Yano et al. thus show the ne-
cessity of quantifying the relationship between fractal
properties and mesoscale cloud system dynamics.

In this paper, clouds viewed by satellite IR images
are considered in a mesoscale context. Multiple dimen-
sions are found, and the relationship between the fractal
box dimension and the patterns of satellite cloud images
is investigated. Within the analyzed spatial scale we will
show that the distribution of clouds is scaling.

To interpret the multiple dimensions of cloud distri-
bution, we focus our analysis on two main aspects. First,
we analyze the box dimensions of actual IR satellite
images of clouds in a limited area. Second, we compute
box dimensions for the simulated distributions of ‘‘well-
behaved’’ structures, such as circles. The simulated
structures give us a basis for the discussion of the fractal
behavior of the cloud distribution over the area. The
main aspect highlighted by the fractal box dimension is
its ability to identify different structures according to
their level of aggregation, the circular patterns, and the
isotropy of their pixel distribution. As discussed in Pent-
land (1984), the fractal box dimension is related to the
complexity of the objects over an area, but the concept
of roughness of a homogeneous surface (i.e., a single
cloud) attributed to fractal dimensions can be broadened
for the distribution of a set of fractal structures (several
clouds).

This paper is organized as follows. Section 2 de-
scribes two procedures to compute box dimensions. Sec-
tion 3 discusses the differences in the behavior of those
dimensions and the possibility of using the dimensions
to identify cloud patterns in two series of satellite IR
images that show some of the main mesoscale systems
in the continental area during different periods of the
summer. Section 4 proposes a method to identify pat-
terns in satellite images by using box dimension and
multivariate statistical methods such as principal com-
ponents and clustering analysis. We show that by com-
bining both methods a large variety of geometrical pat-
terns of mesoscale systems are identifiable, among them
the different evolutionary stages of MCCs.

2. The fractal box-dimension definition

The scaling dimension of the square is based on rep-
resenting the square as an almost-disjoint union of small

unit squares. The Hausdorff dimension of an object is
based on covering the object by small disks or balls for
a minimum cover. The box dimension of a subset X of
the plane is defined similarly by counting the number
of cells of a grid with constant Ds that intersect X, N(Ds).
Then X has a dimension D if N(Ds) satisfies the power
law

N(Ds) ø c(1/Ds)D (1)
asymptotically in the sense that

Dlim N(Ds)Ds 5 c. (2)
Ds→0

The box dimension D can be computed from (2) as
D 5 lim [2logN(Ds)/logDs]. (3)

Ds→0

The fractal dimension as defined by Eq. (3) is usually
identified with the Hausdorff–Besicovitch dimension
and is known as the capacity dimension DO (see, e.g.,
Tsonis 1992). Nevertheless, there is a fine distinction
between the Hausdorff–Besicovitch dimension and the
capacity dimension: while the former is obtained by
covering the set minimally with hypercubes that may
be different in size, the latter is obtained with the same
process except that the hypercubes are the same size
(Essex and Nerenberg 1990).

In this work, we present two methods to compute the
box dimension. In the first, each image is considered a
set S(Tc) 5 {x, y | T(x, y) $ Tc}, where Tc is a threshold
in counts. The image is covered by square boxes that
vary their scale from 2 to 24 pixels. This upper limit is
defined as the break point relative to the length of the
side of each image (98 pixels) in order to obtain just
one value of D from Eq. (3). The box dimension ob-
tained from this method will be referred to as Db. This
method is similar to that Lovejoy et al. (1987) apply to
radar reflectivity for the dimension they call D2(T),
where T is a threshold.

A satellite IR image can be considered a surface of
varying height as the gray level (or temperature) changes
in space. In this sense, a box dimension can be obtained
by considering cubes of height h, which is defined as
the difference between the maximum and the minimum
count level in some scale Ds for a given area S:

n (Ds)S
N(Ds) 5 , (4)

2Ds
where N(Ds) is the number of cubes of side Ds and

Ds 1 DzO(h /Ds)O Ds
n (Ds) 5 5

n n

(C 2 C )max min1 1 INTO
Ds

5
n

(C 2 C )max minINTO[ ]Ds
5 1 1 . (5)

n
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TABLE 1. Studied area coordinates.

Local
Upper

latitude
Lower
latitude

Upper
longitude

Lower
longitude

Paraguay
Southeastern Brazil
Amazon Basin
Northern Brazil
Bolivia*

222.318
214.038
23.498
20.198

216.168

232.418
223.158
211.738
28.138

225.258

249.278
246.588
257.238
241.668
257.848

260.078
256.658
265.818
251.868
267.198

* Included in the test series (see text).

Here Cmax and Cmin are the maximum and minimum
value of counts, respectively, and n is the number of
boxes in the scale Ds. Since different units are used in
the z direction [z 5 C(x, y), where C is the count value,
equivalent to temperature], the box-counting dimension
computed from Eqs. (4) and (5) is equivalent to the
‘‘graph’’ dimension (Mandelbrot 1977) and is referred
to in this paper as Dg. Its value ranges between 2 (the
topological dimension of the plane) and 3 (the topolog-
ical dimension of the cube). It should be emphasized
that the proposed method of computing Dg includes all
boxes inside the studied area, not just those that include
‘‘clouds’’ or simulated circles.

3. Application of the box dimension to satellite IR
images

Lovejoy (1982), Wielicki and Welch (1986), Gabriel
et al. (1988), Lovejoy and Schertzer (1990), Tessier et
al. (1993), Cahalan and Joseph (1989), Machado et al.
(1992), and Mapes and Houze (1993) are some exam-
ples of studies that have applied scaling properties to
satellite images of clouds. In this section we will show
how the scaling properties of mesoscale cloud fields
inferred by box dimension can be applied to the rec-
ognition of fractal mesoscale patterns in satellite IR im-
ages.

We will show that the fractal box dimensions are
sensitive to different distributions of cloudy pixels over
an area. Mesoscale convective systems appear in dif-
ferent spatial organizations, according to the dynamic
and thermodynamic behavior of meteorological vari-
ables such as wind field, temperature, humidity, con-
vective available potential energy, and so on. We will
attempt to identify the cloud distribution organization
from a few parameters extracted only from satellite IR
images, among them the box dimensions.

a. The satellite dataset

To carry out this study, some areas were chosen in
the South American tropical and subtropical zones. The
IR images were obtained from the Meteosat-3 satellite
in two different periods during the summer of 1994 with
a 1-h time step. The images correspond to two periods
of consecutive days 20–21 and 24–25 January and were
found to be enough to sample several MCSs in the Trop-
ics.

During summer, several convective systems, such as
MCCs, squall lines, and isolated convective cells, de-
velop in tropical continental areas. We investigate such
MCSs from satellite IR images, sampled over four
regions, corresponding to 98 3 98 satellite pixels,
whose coordinates are given in Table 1. These regions
were named based on the region covered by most pixels
in each area. The samples cover the Amazon Basin and
the regions of north-northeast, south, and southeast Bra-
zil, southern Bolivia, northern Argentina, Paraguay.

For each of those areas, a time series of images was
available for the two periods. To develop the best meth-
od to recognize mesoscale patterns we chose as the
‘‘control series’’ the sample series of 24 and 25 January
1994. These images were chosen with the purpose of
sampling the most common patterns of cloudiness in
summer over the continental tropical and subtropical
area. One of the most important mesoscale systems
found in this sample was an MCC at the latitude of
Paraguay and northern Argentina.

The time series of 20 and 21 January was used as a
‘‘test series’’ to verify the results obtained with the con-
trol series in independent satellite images. It includes
the samples over Bolivia (Table 1). These images were
obtained in the same areas as the control series but with
no previous knowledge of the characteristics of the de-
veloping MCSs. The control series contains 174 images,
while the test series contains 178. Each sequence fo-
cuses on the evolution of a given cloud scene.

The algorithm used to compute the box dimension—
and therefore all of the variables used to analyze the
satellite data—is based on count value, not temperature.
This choice was made in order to generalize the method
to other possible fractal, noncloud structures observed
in images. The equivalence between temperature and
count value for the Meteosat satellite can change slightly
from day to day. This is one reason to limit the time
series of satellite data to only two consecutive days.

For all of these time series the following variables
were computed: dimensions Db and Dg, and the per-
centage of area covered by values greater than count
185 considered as cloud scenes, or simply the cloud
fraction for the satellite resolution pixel (hereafter re-
ferred to as Ac). Note that the original count value (Cv)
of Meteosat was transformed to 255 Cv.

Count 185 was chosen to represent the cloudy areas
since the corresponding temperature in the studied days
is about 240 K—that is, 239.9 K (day 24), 240.0 K (day
25), 240.3K (day 20), and 240.4 (day 21)—and therefore
corresponds to cloud scenes. These differences in the
temperature threshold can be neglected for our purposes.

b. Box dimensions and fractal cloud patterns

1) THE CONTROL SERIES OF DAYS 24 AND 25

It is well known that in satellite IR images both the
pattern and the cloud fraction inside an area change.
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FIG. 1. (a) Dimensions Db and against Ac for the control series.D9b
(b) The same as (a) but for the dimensions Dg and . Squares rep-D9g
resent the data from the Paraguay area.

TABLE 2. Coefficients of polynomial fit between Db and Dg vs Ac.

Series
Dimen-

sion

Poly-
nomial
degree

Resid-
uals
ex-

plained
(%) Coefficient

Control series Db 0
1
2

0
83
87

1.07514
0.025528

20.000226772
Control series Dg 0

1
0

66
2.06278
0.00544504

Test series Db 0
1
2

0
56
62

1.06169
0.02887

20.00323322
Test series Dg 0

1
2

6
63
68

2.0632
0.0010686

20.00017617

Two questions arise: Does the box dimension change
when the fraction of objects or pixels is increased (de-
creased), split off (compacted), or spread out (consti-
tuting a well-defined circle) over an area? Is there any
particular behavior of the box dimension related to such
patterns? In this section we will discuss how box di-
mensions can distinguish fractal patterns of clouds and
how they depend on the cloud fraction in the images.

Figures 1a and 1b show the plot of Db and Dg against
Ac, respectively. There is a tendency of increasing the
value of box dimension as Ac increases. Figure 1a shows
a 28 polynomial curve as the best fit between Db and
Ac. The value of the coefficients and the percentage of
variance explained by the polynomial fit are listed in

Table 2. In Fig. 1, Db is plotted by subtracting the poly-
nomial fit.

Figure 1b shows a linear tendency between Dg and
Ac. A polynomial fit with degree greater than 1 (not
shown) explains only 1% more of the variance, indi-
cating that the straight line can be considered the best
fit for this pair of variables. The coefficients of the
straight line fitted to the data may be seen in Table 2.
The fluctuation values of Db and Dg computed after
extracting the line fit will be referred to as and .D9 D9b g

To understand the behavior of fractal box dimensions,
idealized pictures were built to represent different spa-
tial distributions of pixels over the area. These pictures
were constructed using circles as the basic objects. Al-
though the box-counting technique can be applied to
images constituted of circles [a power law can be found
according to Eq. (2)], the circle is not self-similar: that
is, it cannot be written as an almost-disjoint union of
smaller circles. Nevertheless, the circle, a ‘‘well-be-
haved’’ object, was chosen for two main reasons: 1) the
resemblance of circular structures with natural convec-
tive clusters in several scales and 2) the understanding
of how the box dimension changes, which is due ex-
clusively to the distribution of cloudy pixels over the
studied area.

We should emphasize that all experiments performed
with circles, and therefore the fluctuations of box di-
mensions, have validity only for the same area and the
same resolution of the satellite IR images. The ‘‘circles’’
are obtained by an integer approximation of the equation
r 5 (x2 1 y2)1/2, where r is the radius of the circle and
x and y are the coordinates with respect to the center
of the circle. The integer approximation implies a non-
smoothed aspect, as shown in Fig. 2. Furthermore, we
have limited range of scales allowed in the case of real
and simulated images: the limit of Ds → 0 in Eq. (3)
is a theoretical limit since satellite images impose this
limit due to their resolution.

Figure 2 shows circles of increasing radius, keeping
constant the area in which they are embedded. The ex-
ternal circle radius ranges from 10 to 50 pixels, with a
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FIG. 2. Circles with external radius increasing from 10 to 50 pixels
with a step of 5 pixels. Beneath each picture are the values of the
external radii Rex, Ac, Db, and Dg and the standard deviation error.

FIG. 3. Diagram of 3 for the control series. Solid linesD9 D9g b

indicate one standard deviation of the mean value. Numbers indicate
the categories (see text). Squares represent the data from the Paraguay
area.

step of 5 pixels between images. The side of the square
area is equal to 98 pixels. The values of Db and Dg

computed according to Eq. (3) and their standard de-
viation are shown in the same picture.

Note that Db tends to increase as the fraction of pixels,
or radius of the circles, increases. Dimension Db ranges
from about 1.54 to 1.92, while the percentage of covered
pixels ranges from 7% to 78%, indicating that Db tends
to the Euclidean dimension of the circle as the circle
fills the image. The standard deviation of Db decreases,
and the linear correlation coefficient increases as the
area is filled by the circle.

It must be noted that the box dimension Db, according
to the definition, does not depend on the internal gray
level since the box-counting technique counts only those
boxes of side Ds that contain at least one pixel with a
value greater than the chosen threshold.

The increasing values of Dg as the circle radius is
increased are also seen in Fig. 2. The standard deviation
error of Dg increases, and the linear correlation coef-
ficient decreases from 0.9999 to 0.9987 as the area is
filled for the circle. This means that it begins to deviate
from the straight line on a log–log plot, indicating that

the proposed methodology of computing Dg is able to
detect a slight tendency of breaking the self-similarity
or scaling properties as the picture is filled with a circle.
Dimension Dg ranges from 2.02 to 2.16 in this simu-
lation—that is, an increase of about 7%—while the in-
crease in Db is about 25%. It seems therefore that Db

is more sensitive to the increase of Ac and tends to the
Euclidean topological dimension faster than Dg. This is
a direct result of the greater increase of N(Ds) for smaller
scales Ds, compared to the larger ones, as the circle fills
the studied area [see Eq. (3)].

This property of box dimensions seems to be related
to the results pointed out by Lovejoy et al. (1987). They
found a systematic decrease in the box dimensions as
the threshold T of radar reflectivity increases. As T in-
creases, the fraction of radar pixels greater than or equal
to T decreases, which leads to a resulting decrease of
the box dimensions. A similar result was found by Ga-
briel et al. (1988) for IR and VIS radiance.

Hamburger et al. (1996), studying fractal properties
of randomly placed n-dimensional spheres (n 5 1, 2,
3), have shown that fractal dimensions (the box-count-
ing and Minkowski-sausage techniques were applied)
are not universal and depend on density. Using analyt-
ical and numerical calculations, they have also shown
that in the regime of a low-volume fraction occupied
by the spheres apparent fractal behavior is observed for
a range of scales between physically relevant cutoffs.
Hamburger et al.’s results can explain why the circles
considered in our experiments have fractal dimensions
if we take into account the range of scales Ds used for
the solution of Eq. (1). Nevertheless, even being con-
sidered ‘‘false fractals,’’ our simulated pictures have be-
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FIG. 4. Some examples of satellite IR images belonging to cate-
gories 1 [(a) and (b)], 3 [(c) and (d)], 4 [(e) and (f )], and 5 [(g) and
(h)] for the control series: (a) southeast Brazil, day 25, 2200 UTC;
(b) Amazon Basin, day 24, 2000 UTC; (c) Paraguay, day 25, 0100
UTC; (d) Paraguay, day 25, 0400 UTC; (e) southeast Brazil, day 24,
1100 UTC; (f ) northern Brazil, day 25, 1500 UTC; (g) southeast
Brazil, day 25, 1500 UTC; and (h) northern Brazil, day 24, 1000
UTC.

havior that is similar to true fractals (clouds) for the
range of scales considered.

If the changes in fractal box dimensions are related
to how the cloudy pixels are distributed over the area,
the values of and for the satellite images obtainedD9 D9b g

by subtracting the dependence on Ac from the box di-
mensions (Fig. 1) could indicate different structures or
fractal patterns in the cloudiness. Figure 3 shows a plot
of against , assuming this proposition. We observeD9 D9b g

the ‘‘cross’’ aspect of the plot, suggesting that the ex-
tremes of the cross are possibly related to different frac-
tal patterns. The Paraguay time series, which represents
the MCC life cycle, is indicated with a different symbol.

To investigate these properties of the box dimension,
we separate the images belonging to each sector of the
cross in the range of values of and , establishedD9 D9b g

as follows:

R category 1 2s , D9 # s and D9 . s ,b b b g g

R category 2 2s , D9 # s and 2s , D9 # s ,b b b g g g

R category 3 2s , D9 # s and D9 . 2s ,b b b g g

R category 4 D9 . s and 2s , D9 # s ,b b g g g

and
R category 5 D9 # 2s and 2s , D9 # s ,b b g g g

where sb 5 0.086 and sg 5 0.056 are the sample stan-
dard deviations for and , respectively.D9 D9b g

Figure 4 contains eight images with values of orD9b
greater than one standard deviation from the mean.D9g

Panels (a) and (b) show two typical images of category
1, (c) and (d) show two typical images of category 3,
(e) and (f ) category 4, and (g) and (h) category 5. As
expected, images in each category have similar patterns:
the category 1 images show a cloud pattern in which
the cloudy pixels are spread out almost homogeneously
over the area in several cells; that is, no circular, centered
convective organization is found. In category 3, which
has remarkably lower values of , the images showD9g
highly organized convection in well-defined circular
structures, most of which belong to an MCC event (Figs.
4c–d). Other circular structures in this category, such
as a storm in the Amazon Basin, do not correspond to
an MCC event. Because we have extracted the tendency
on Ac, we can find some broad range of Ac in all of
the categories.

Using Machado et al.’s (1992) method to detect con-
nected areas of cold cloudiness, we obtained the eccen-
tricity e (minor axes/major axes) of the largest cloud.
This is shown in Fig. 4 (category 3: Fig. 4c, e 5 0.78;
Fig. 4d, e 5 0.87). The eccentricity of the largest con-
tiguous cloud cell for category 1 is equal to 0.52 (Fig.
4a) and 0.58 (Fig. 4b). Nevertheless, for the smaller
cells in all categories the method detects high eccen-
tricity. The number of contiguous cells occupying a frac-
tion of the area Ac . 0.3% (an arbitrary threshold of
Ac) is equal to 10 and 15 in the examples shown in
Fig. 4a and Fig. 4b, respectively, and to 3 and 1 in the
examples shown in Fig. 4c and Fig. 4d, respectively.

The general properties of such categories will be dis-
cussed based on the simulations of the circles.

Since box dimensions increase as the fraction of cov-
ered pixels is increased, it is interesting to understand
what happens to Db and Dg if the object is divided but
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FIG. 5. Increasing number of circles keeping constant the same equivalent area of a single circle
with r 5 30 pixels. The values of Db and Dg and the respective standard deviation error are
presented beneath each picture. The last two pictures show the same nine circles with different
configurations in the space: the picture on the left shows circles distributed isotropically, and the
one on the right shows the circles grouped in the left corner of the area.

the percentage of covered pixels is kept constant and
the number of circles is changed. Figure 5 illustrates
how this simulation was performed. The first panel in
the upper left-hand corner shows a circle with an ex-
ternal radius equal to 30 pixels. The other panels in Fig.
5 were constructed by splitting the fraction of pixels of
the first panel into n parts (n 5 2–9). To obtain a close
approximation to the fraction of covered pixels in the
first panel, some of the other panels in Fig. 5 contain
circles that do not all have the same radius. This is due
to the integer approximation associated with the number
of pixels in each radius. The results for Db and Dg are
shown in Fig. 5

Dimension Db tends to decrease as the total fraction
of covered pixels is divided into smaller circles. This
behavior is opposite that observed when the fraction of
pixels of a single object is increased over the area. On
the other hand, Dg increases as the number of circles
increases—the opposite behavior when compared with
Db. The behavior of Dg as the number of circles is
increased is explained by the fact that for smaller scales
(smaller Ds) N(Ds) is increased because the number of

boxes with a nonzero difference of counts increases [see
Eq. (4)]. On the other hand, Db increases as the non-
empty pixels are concentrated in a single circle because
the number of empty squares for larger Ds increases,
indicating lower values of N(Ds) for these scales. This
results in an increasing slope of the fitted straight line
between log[N(Ds)] and log(Ds).

Another useful property of box dimension is illustrated
in the last two frames of Fig. 5: Db and Dg increase as
the space is filled anisotropically. This behavior can be
explained considering that for larger Ds, N(Ds) is small-
er when the structures are anisotropically distributed
over the area, implying an increase in both Db and Dg.

The images typical of category 4 (Figs. 4e,f) show
some centralized structure, with no evident circular
shape, shifted from the center of the area. The eccen-
tricity of the largest cell in the two examples is equal
to 0.54 and 0.63 (Figs. 4e and 4f, respectively). The
images typical of category 5, at the other extreme,
though apparently not so different from the category 4
images, seem to have no preferential portions of the
area occupied by clouds (Figs. 4g,h). Compared to cat-
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FIG. 6. The same as Fig. 4 but for category 2: (a) Paraguay, day
25, 1400 UTC; (b) southeast Brazil, day 24, 0800 UTC; (c) northern
Brazil, day 24, 2300 UTC; (d) and Paraguay, day 24, 2300 UTC.

FIG. 7. The same as Fig. 3 but for the test series. Categories 6 and
7 are included in this case.

egory 1, these images with sparsely distributed clouds
do not include, markedly, more cloudy pixels; that is,
the cloud cells in category 5 are smaller and/or more
sparse than those in category 1.

In Fig. 3 the images at the center of the cross, in the
most densely filled category 2, show a more complex
structure compared with the images shown in the other
categories (Fig. 6). The shapes found in category 2 range
from large structures, probably some of them repre-
senting the decaying MCC, to complex structures,
whose edges indicate complex fractal structures rather
than the well-behaved geometric patterns found in other
groups.

These results illustrate four features of fractal box-
dimension analysis:

1) Circular patterns in the range of scales analyzed from
these images (see Table 1) are the most readily iden-
tifiable patterns that can be obtained from the fractal
box-dimension properties since single, perfect cir-
cles have the box dimension approaching the top-D9g
ological dimension DT 5 2, as shown from simulated
images. This explains the circular structures pre-
vailing in category 3, in which the lowermost values
of appear.D9g

2) As a consequence of feature 1, the spread distribution
of cloud cells with no circular organization is well
distinguished by this method. This agrees with what
was discussed with simulated circles in Fig. 5, in
which it is demonstrated that Dg increases as the
cloudy pixels are spread throughout the area with
fixed cloud fraction.

3) Anisotropic distribution of cloudy pixels over the
area tends to have larger values of Db, which ex-
plains the right side of the cross in Fig. 3.

4) The variance of Db is well explained (about 87%)
by Ac according to the second degree polynomial fit
for the cloud scenes (see Table 2). Since we removed
the tendency on Ac, only about 13% of variance
remained is not explained by the polynomial fit. Fig-
ure 2 shows that Db is in fact more sensitive to Ac
than Dg.

2) THE TEST SERIES OF DAYS 20 AND 21

The same variables, Db, Dg, and Ac, were computed
for the test series to investigate the fractal properties of
other independent series. Similar to the control series,
the test series showed increasing values of box dimen-
sion with the increase of Ac. The polynomial fit is shown
for each dataset, and the corresponding values of the
coefficients are presented in Table 2.

The polynomial coefficients fitted for each curve are
different from those of the control series, as well as the
percentage of residuals explained by each fit (Table 2).
We found that a 28 polynomial fit between Dg and Ac
is more adequate than the linear one. These modifica-
tions led to differentiated averages and standard devi-
ations for and , as indicated in Fig. 7. It must beD9 D9b g

noted that the lowermost branch of values is lessD9g
evident in this case, while the lowermost branch of

is more extensive. Moreover, another category ofD9b
large values of and is found isolated in the upper-D9 D9g b

right corner of Fig. 7, and a new category of small values
in the lower-left corner.

We verify that the test series shows the overall be-
havior found for the control series. Figure 8 shows one
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FIG. 8. The same as Fig. 4 but for the categories in Fig. 7. Panels
(e) and (f ) represent categories 6 and 7, respectively: (a) northern
Brazil, day 20, 2000 UTC; (b) Paraguay, day 21, 2300 UTC; (c)
Bolivia, day 20, 1200 UTC; (d) southeast Brazil, day 20, 1600 UTC;
(e) Amazon Basin, day 21, 0100 UTC; and (f ) Amazon Basin, day
20, 1300 UTC.

typical image for categories 1, 3, 4, and 5, illustrating
such similarities. Note that categories 6 and 7 have been
added in this case (see Fig. 7). The lowermost values
of are related to circular (or semicircular), compactD9g
structures (Fig. 9b) and that the uppermost values of

and are related to structures occupying almostD9 D9b g

half of the area in a highly anisotropic fashion. It is
clear that the clouds appeared compacted in the lower-
left corner of the area (Fig. 8e). The simulations shown
in Fig. 5 illustrate this behavior: as the nine circles are
compacted into the left corner of the area, both Db and
Dg are increased. Therefore, the results found here are
consistent with those discussed in the preceding anal-
ysis, indicating that anisotropic distribution has higher

and .D9 D9b g

It is clear that for meteorological purposes it would
be more useful to identify and separate those images
that correspond to enhanced convection instead of iden-

tifying only similar fractal patterns regardless of how
much total cloud flux of mass, heat, moisture, and so
forth they represent. Therefore, the fraction of cloudy
pixels in the area should be included in order to cluster
fractal patterns of interest to meteorological studies.

4. Fractal patterns and convective activity

The results from the previous section suggest that the
information of cloud fraction in the area should be in-
cluded for the definition of fractal patterns in order to
elucidate the differences among the convective inten-
sities as well as their patterns. This information is in-
cluded in both the fractal dimensions Db and Dg and in
a more straightforward property, the fraction of cloudy
pixels (Ac). Another variable that may be included to
investigate the intensity of the convection is the low-
ermost temperature (equivalent to the higher count,
hereafter referred to as ‘‘Cmax’’), as well as the fraction
of area occupied for these higher tops (hereafter referred
to as ‘‘Pmax’’). Several authors (see, for example, Adler
and Fenn 1979; Scofield 1987) have shown the impor-
tance of these parameters in the determination of con-
vective activity and the likelihood of precipitation on
the ground. In this section, we will discuss two statistical
methods to classify similar patterns in the cloudiness
based on such variables and in the fractal box dimen-
sions: the principal components (PC) analysis and the
cluster analysis.

a. The PC analysis

Each image of the four time series defined in the
control series can be thought of as an individual ob-
servation that defines some patterns that could be related
to others in the same time series and even in other time
series. Our major premise is that such patterns can be
defined by the variables , , Ac, Cmax, and Pmax. ToD9 D9b b

perform the PC analysis correctly, the values of Cmax

and Pmax were multiplied by defining a single variable,
hereafter referred to as ‘‘Pxcm.’’ This was done because
the highest value of count does not vary substantially
from image to image, but if the fraction of the coldest
pixels is included, the differences between the images
are emphasized.

Therefore, the control series is represented by the
matrix

x x · · · x11 12 1p

x x · · · x21 22 2px 5 ,
A A A A* *

x x · · · xn1 n2 np

where xij is one of the variables described above. The
number of variables p is equal to 4 ( , , Ac, Pxcm),D9 D9b g

and the number of observations n is equal to 174 images.
A correlation matrix is generated from the matrix x,
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FIG. 9. Average value for each cluster obtained from PC analysis for the control series: (a) Db,
(b) Dg, (c) , (d) , (e) Ac, and (f ) Pxcm.D9 D9b g

which yields p eigenvalues l j. Each eigenvalue is re-
lated to a corresponding eigenvector with p elements.
They represent the new base, and each component ex-
plains a variance according to the related eigenvalue.
The resulting weights of the four PCs found and the
variance explained by each one are shown in Table 3.
The weights in each component can be thought of as
representing the relative weight and variation of the
variables that describe the pattern of each principal com-
ponent. Table 3 also illustrates the eigenvalues lj with
the corresponding shift dl, according to North et al.
(1982). It indicates that n 5 174 samples resolve l1,
l2, l3, and l4.

The greatest absolute weights (those values corre-
sponding to at least 70% of the major weight found)

are boldface in Table 3 in order to identify the variables
that have the greatest contribution in each PC. This
procedure indicates that the first PC has its variance
explained mainly by the relative high weight on Ac and
Pxcm. The positive sign of those variables indicates that
they increase (or decrease) in the same ‘‘direction’’ in
the first component. The second PC, on the other hand,
has its greatest weight on and , with the oppositeD9 D9b g

sign.
The third PC has the main contribution in variables
and , with the same sign, indicating that the twoD9 D9b g

variables fluctuate in the same direction on these or-
thogonal axes. The fourth PC, which explains only about
3.0% of the total variance, has been considered mean-
ingless for our purposes.
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TABLE 3. The weights of variables on the eigenvectors of principal components and the percent of variance explained for each
component.

PC no.

Weights of variables on principal components (PCs)

Ac Pxcm D9b D9g

Percent
variance

Cumulative
percent

Eigenvalue
l 6 dl

1
2
3
4

0.7050
20.0927
20.0038

0.7060

0.7067
20.0390

0.0199
20.7071

20.0495
20.7030

0.7093
20.0137

0.0336
0.7093
0.7046
0.0375

47.03
29.09
20.88

3.00

47.03
76.12
97.00

100.00

1.881 6 0.202
1.164 6 0.124
0.835 6 0.090
0.120 6 0.013

TABLE 4. Seeds used as centroids of clustering analysis.

Cluster

Expansion coefficients

PC1 PC2 PC3

1 (PC1 . 0)
2 (PC2 . 0)
3 (PC3 . 0)
4 (PC1 , 0)
5 (PC2 , 0)
6 (PC3 , 0)

3.4114
0.0416

20.4836
21.6832

0.5766
21.2786

0.1168
1.8044

20.4294
20.4832
22.4582

0.4442

0.6297
0.5517
1.0383

20.1160
20.5789
21.6983

Therefore, we can conclude that the first three PCs
can define six main patterns, if we assume that the im-
ages can have a high magnitude on some of these PCs,
with a positive or negative value. We can define two
opposite patterns with high relative magnitude on the
first PC, two opposite patterns with high relative mag-
nitude on the second PC, and so forth. Thus, the veri-
fication of the PC analysis should be carried out through
the analysis of the subset of images of the control series
corresponding to the six main patterns found. This was
performed through an automated clustering analysis.

b. The clustering model

1) THE CONSTRUCTION OF CLUSTERS FROM PC
ANALYSIS

The clustering method provides the most adequate
process of grouping similar data in a subset (see, e.g.,
Kaufman and Rousseuw 1990). Based on Euclidean dis-
tances, with standardized data, the clustering method is
able to find, from an objective procedure, the similar
patterns represented by the eigenvectors obtained from
the PC analysis. The following steps were performed
from the results of the control series.

1) From the matrix of expansion coefficients of the PC
analysis, we chose the six main ‘‘seeds’’ through the
relative value of each of the first three PCs, shown
in Table 4. Only the first three PCs were considered
because they represent almost 97% of the accumu-
lated explained variance.

2) From those seeds, a clustering analysis was applied
to the whole set of images for the control series in
order to find the best correlated images according to
their patterns, as represented by the PCs.

3) The subsets of the images obtained from the clus-

tering analysis were investigated according to the
average properties of the variables included in the
PC analysis and according to the patterns they rep-
resent.

Figure 9 illustrates the average values for each vari-
able included in the PC analysis, according to the clus-
ters defined before. Clusters 1 and 5 presented the great-
est values of Ac, Pxcm, and Db. Note that Dg has its
greatest value in cluster 1, decreasing toward cluster 6,
with a peak in cluster 5. This behavior is similar to
those found for Ac and Pxcm, though the peak in cluster
5 exceeded the one in cluster 3. Dimension showedD9b
a marked maximum in cluster 3 and its lowest value in
cluster 6. On the other hand, showed a peak in clusterD9g
2 and its lowest value in cluster 5. In general, opposite
behaviors of the variables are expected between clusters
1 and 4, 2 and 5, and 3 and 6 since these pairs of clusters
were obtained through asymmetric properties described
by the PC analysis.

Figure 10 displays the results of clustering analysis
for the control series showing some typical images be-
longing to each cluster. The layout of the images in Fig.
10 was chosen to emphasize the differences between
the clusters seeded with opposite signs of PC. The prop-
erties of such images can be summarized as follows.

R Cluster 1: The patterns of this cluster resemble those
of the most enhanced convection, spreading out for
the studied area (Figs. 10a,b). Some decaying but mas-
sive MCC images were found in this group. The shape
defined by count 185 shows noncircular patterns. The
high gray levels indicate the intensity of convection
in the area.

R Cluster 2: The pattern of the images in this cluster
was defined mainly by the high values of . ThisD9g
cluster grouped mainly category 1 images. The neg-
ative weight of on PC2 (the second eigenvector)D9b
seems to reinforce the property discussed before in
which the partition of Ac in many isotropically dis-
tributed cells showed relatively high values of andD9g
low values of (Figs. 10e,f).D9b

R Cluster 3: (Compared to the images in clusters 1 and
2). The images in this cluster show fewer cloud pixels,
and the pixels tend to group together (Figs. 10i,j).
These images present an anisotropic distribution, re-
vealing the behavior discussed before, in which such
distribution of cloudy pixels in the area is described
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FIG. 10. Some examples of images belonging to each cluster defined
from PC analysis for the control series: cluster 1 [(a) and (b)], cluster
4 [(c) and (d)], cluster 2 [(e) and (f )], cluster 5 [(g) and (h)], cluster
3 [(i) and (j)], and cluster 6 [(k) and (l)]: (a) Paraguay, day 24, 1700
UTC; (b) Paraguay, day 25, 1400 UTC; (c) southeast Brazil, day 25,
0700 UTC; (d) amazon Basin, day 25, 1200 UTC; (e) southeast Brazil,
day 25, 2000 UTC; (f ) Amazon Basin, day 24, 1900 UTC; (g) Par-
aguay, day 24, 2400 UTC; (h) Paraguay, day 25, 0500 UTC. (i)
Southeast Brazil, day 24, 0900 UTC; (j) northern Brazil, day 25, 1800
UTC; (k) southeast Brazil, day 24, 1600 UTC; and (l) northern Brazil,
day 24, 0800 UTC.

for high values of and , which is in agreementD9 D9b g

with the observed weight of and in PC3 (seeD9 D9b g

Table 3).
R Cluster 4: This cluster represents the images with

properties that are asymmetric to cluster 1 (see Table
4). It grouped preferably those images that had low
fraction of clouds, were sparsely distributed, or had
no clear organization over the area (Figs. 10c,d). It is
a result of the lower weight on Ac and Pxcm (Table
3).

R Cluster 5: With characteristics opposite those of clus-
ter 2, this cluster identifies the MCC cycle over the

Paraguay area very well (Figs. 10g,h). This cluster
grouped images whose cloud patterns showed a shape
that is quite circular occupying a large area. This is
in agreement with the observation of decreasing val-
ues of and increasing values of in an environ-D9 D9g b

ment of relatively high values of the variables related
to the cloud fraction (see Fig. 9). The circular shape
of the MCC life cycle as well as other images from
the Amazon Basin that also have circular shapes (not
shown) were captured completely in this cluster. Some
of these images could not be identified based only on
the analysis of the standard deviation of and ,D9 D9b g

as discussed in section 3. Some of the images were
found belonging to category 2 (Fig. 3), which rep-
resents the values below one standard deviation or
closer to the mean values. Only with the aid of the
variables that include information on cloud quantity
and shape (Ac, Pxcm, Db9, and Dg9) could one find
this important subset in the images of the control se-
ries. Therefore, this cluster represents the highly or-
ganized, intensive convection that is clearly opposite
the more sparse distribution of cloudiness found in
cluster 2 (Fig. 10).

R Cluster 6: This cluster has properties asymmetric to
cluster 3 (Table 4). Therefore, it represents both im-
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FIG. 11. Frequency distribution of a for clusters 2 and 5. Numbers
at horizontal axes indicate the interval maximum.

ages that have fewer clouds (low values of PC1) and
those that have clouds that are not grouped (low values
of PC3). This cluster, of course, shares some prop-
erties with cluster 4, but this was considered important
because it is able to select the less expressive subset
of convective activity in the area from the others.

Examining clusters 2 and 5, again, we defined a pa-
rameter:

Act(. 0.3%) 2 Acl(max cell)
a 5 ,

Acl(max cell)

where Act(.0.3%) is the total fraction of clouds with
an area greater than 0.3%, and Acl(max cell) is the area
fraction of the largest cloud in the image. The choice
of 0.3% was arbitrary. Figure 11 shows the frequency
distribution of a for clusters 2 and 5. The frequency
distribution indicates how much remains of the total Act
after removing Acl(max cell) and how much this residue
represents the Acl(max cell). For instance, if we find
only a single cell with Acl . 0.3% in the image, Act

is equal to Acl (max cell), and therefore, the ratio equals
zero. Cluster 5 has a distribution concentrated in the
values lower than 0.8 with a sharp peak around 0.2 and
almost 13% of the data with zero value of a, which
means just one cell. On the other hand, the broadening
in the frequency distribution for cluster 2 (large right
tail) indicates that the total Act is composed of several
cells with Acl . 0.3%. It is worth noting that some
images in cluster 2 present large, noncircular, contigu-
ous cells with complex noncircular shapes.

Figure 12 shows the distribution of the number of
contiguous cells with Acl . 0.3% for clusters 1, 2, and
5, illustrating how the total Act is distributed in indi-
vidual, contiguous cells over the area. Figures 11 and
12 emphasize the differences in mesoscale cloud pat-
terns shown before and how the box dimensions can
summarize properties, such as the number of cells, the
total cloud area, and the cloud patterns distribution and
shape.

These results suggest the following:

R Clusters 1 and 5 represent the most intense phenom-
enon regarding the convective activity over the area,
which can be differentiated from their shape.

R Cluster 2 could be considered the middle of an ide-
alized scale of convective intensity. It is between the
highly intensive homogeneous distribution of cloudy
pixels in cluster 1 and the random and sparse distri-
bution in cluster 6.

R Cluster 3, whose images show some kind of grouped
structures, can be considered the middle of the same
idealized convective intensity scale but between the
highly circular and massive shapes in cluster 5 and,
perhaps, the small amount of cloudiness in cluster 4.
It should be noted, however, that large-scale and me-
soscale meteorological fields related to these clusters
should be considerably different, and therefore, could
define differentiated patterns as well.

2) THE GENERALIZATION OF THE CLUSTERING

MODEL

Since the control series samples the most common
patterns of cloudiness in the summer over the tropical
and subtropical continental areas, we may expect that
there is a high probability of finding images that belong
to the clusters defined above for other samples obtained
close to, or in, the same areas.

Based on such observations, a generalized clustering
model was defined by seeding the clusters with the av-
erage value of the variables in each cluster previously
obtained (Table 5). In this way, the clustering analysis
is simplified into a single step.

3) RESULTS OF THE GENERALIZED CLUSTERING

MODEL FOR THE TEST SERIES

The result of the generalized clustering model for the
test series was obtained assuming the same six seeds as
defined in Table 5 and seen in Fig. 13.
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FIG. 12. Frequency distribution of the number of cells with Acl .
0.3% for clusters 1, 2, and 5 related to enhanced convection.

TABLE 5. Seeds of the generalized clustering model.

Cluster Db Dg Ac Pxmc D9b D9g

1
2
3
4
5
6

1.753
1.461
1.456
1.274
1.674
1.039

2.331
2.253
2.143
2.098
2.166
2.059

44.375
22.506
13.620

8.193
32.927

4.194

72.071
28.872
11.808

8.269
43.395

4.776

20.003
20.057

0.093
0.010
0.016

20.138

0.027
0.067
0.006

20.009
20.076
20.027

It can be verified from the typical images in each
cluster that the same patterns found in the control series
also appear in the test series. 1) Cluster 1 includes im-
ages that represent the enhanced convection that covers
a larger fraction of the area. Cluster 2 includes images
with cloud cells that are distributed sparsely and uni-
formly over the entire area. Cluster 3 includes images
with high values of and , as discussed before. ItD9 D9b g

represents images with anisotropic distribution of

cloudy pixels over the area. Clusters 4 and 6 represent,
again, images with fewer clouds in the area, while clus-
ter 5 groups images with an almost circular, massive
shape. The cluster 5 images represent part of the cycle
of an MCC that developed in the boundaries of the
studied area. As this MCC appears with some internal
(relative to the count 185) globular structures, but with
a high quantity of cloudy pixels, its images became
representative of cluster 1 (not shown). This can be
understood if we take into account that some significant
change in is found when new ‘‘cells’’ are includedD9g
inside the most external circle, as shown in Fig. 14.
These new cells are noncentered if the center is taken
as the symmetric axis of the most external circle. In this
case, N(Ds) increases for the smaller Ds as the number
of circles increases in the area. As the structures appear
symmetrically distributed over the area, the errors in

determination become smaller.D9g
It is important to comment that the clustering analysis
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FIG. 13. Same as Fig. 10 but for the generalized cluster model for
the test series: (a) southeast Brazil, day 20, 2200 UTC; (b) southeast
Brazil, day 21, 2300 UTC; (c) Paraguay, day 21, 0300 UTC; (d)
southeast Brazil, day 21, 1400 UTC; (e) northern Brazil day 21, 1900
UTC; (f ) northern Brazil day 20, 1700 UTC; (g) Paraguay, day 21,
2200 UTC; (h) Paraguay, day 21, 2300 UTC. (i) Paraguay, day 21,
1200 UTC; (j) Amazon Basin, day 21, 0400 UTC; (k) Amazon Basin,
day 20, 1100 UTC; and (l) Amazon Basin, day 20, 1600 UTC.

for the control series from the seeds described in Table
5, according to our expectations, resulted in clusters
quite similar to those obtained from the PC analysis (not
shown due to redundancy).

4) THE LIFE CYCLE OF CLOUDINESS

Figure 15 summarizes the time evolution of the clas-
sification into the six clusters for each time series studied
for the control and test series. The differences between
the control and series over the Paraguay area can be
seen in this figure. During days 24 and 25, the MCC

life cycle is described by the predominance (;64% of
the images) of cluster 5 (the most circular and massive
shape) and cluster 1 (massive, noncircular, enhanced
convection). The time series in days 20 and 21 for the
same area showed the predominance (;32%) of
grouped anisotropic cloudiness (cluster 3). However, at
the end of the studied period, the MCC signature was
found in this region. The lack of data from 1100 to 1700
UTC in this area was due to the absence of clouds de-
fined for count 185.

Note that in the afternoon and early evening the con-
vection in the tropical area is dominated by clusters 1
and 2, indicating the link between the diurnal cycle of
the convection over the tropical areas (Silva-Dias et al.
1987) and the observed patterns of clouds. For the MCC
life cycle on days 24 and 25 note that most circular
patterns prevail late at night and in the early morning,
in agreement with the observations of Velasco and Fritsh
(1987).

5. Summary and conclusions

The analysis of the properties of box dimensions ob-
tained from satellite cloud images from two different
periods in several areas during the South American sum-
mer and elucidated from the simulated circles can be
summarized as follows.
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FIG. 14. Effect of increasing the number of internal circles with
noncentered axes.

1) Dimensions Db and Dg tend to increase as the fraction
of objects increases over a fixed area.

2) Dimension Db tends to increase, while Dg tends to
decrease, as the cloudy pixels are grouped with fixed
cloud fraction in the area.

3) Dimension Dg is very sensitive to the way the cloudy
pixels are distributed. For some cloudy pixels oc-
cupying a single circular area, Dg assumes smaller
values than if the cloudy pixels were distributed into
several cells.

4) Anisotropic distribution of cloudy pixels over the
area yields higher values of Db and Dg. No conclu-
sive behavior of Dg is found if new gray levels are
added to a single cell.

5) Dimensions Db and Dg depend on anisotropy due to
the objects’ distribution over the area. Some tests
with other Euclidean shapes, such as ellipses (not
included), showed that box dimensions can distin-
guish between circles and ellipses with equivalent
area only if the ellipses have an eccentricity (minor
axes/major axes) of less than 0.2. In this case the
ratio Dbcircle/Dbellipse is definitively greater than
1.1. Otherwise, the ratio fluctuates around 1 6 0.05.

Six main fractal cloud patterns became evident from
a PC analysis since the first three components explained
almost 97% of the variance of the patterns in the control
series. These patterns were found from the positive and
negative high weight on the first, second, and third PC.

The two main sets of images related to enhanced con-

vection have been classified into the well-organized cir-
cular structures of the MCCs (cluster 5) and the most
widespread noncircular convection (cluster 1), based on
the high negative weight on the second PC and the high
positive weight on the first PC, respectively. The iden-
tification of the MCC life cycle from the clustering mod-
el was a result of the differentiation between the ge-
ometry of the massive circular structures, with fractal
dimension tending to the topological dimension DT 5
2, and the massive, widespread structures related to
higher values of Ac and fractal dimensions Dg and Db,
indicating increasing complexity of the shape. The frac-
tion of cloudiness distributed in a larger number of cells
and/or the presence of cells with complex edges in-
creases the values of fractal dimensions and can be con-
sidered the ‘‘opposite’’ geometry of the well-organized
circular structures of the MCCs (cluster 2).

Less expressive convective activity was also classi-
fied (clusters 3, 4, and 6) and is necessary to ensure the
separation between moderate and light convective ac-
tivity. One of the patterns represents the anisotropy of
cloud distribution over the area (cluster 3).

The generalization of the clustering model was per-
formed throughout the investigation of the existence of
the same six clusters in the test series. Similar patterns
were found in the test series, validating the results found
for the control series. Nevertheless, the new clusters
revealed a differentiated proportion of images compared
to the control series, indicating that the proposed clus-
tering model can be generalized to any time series of
images for the studied areas. The life cycle of convec-
tion can be captured from the clustering analysis. It
shows that massive circular shapes require dynamically
organized structures not common for most time series
analyzed. Furthermore, the clustering analysis captured
the diurnal cycle of convection and of cloud patterns.

From this analysis we demonstrated that the fractal
box dimension can be a powerful tool in analysis of
satellite images since it can discriminate a large range
of fractal patterns in mesoscale convective systems. The
signature of massive circular patterns in the behavior of
the fractal box dimension can improve the diagnostics
of such systems in an automatic way, without any other
source of information. This may permit an improvement
in climatological analysis over a wide range of time-
and space scales since this analysis can be applied to
large areas to monitor tropical thunderstorms and hur-
ricanes.

Radiation versus cloud parameterizations have an im-
plication on the surface energy budget and consequently
on the life cycle of modeled precipitation systems (Betts
and Ridgway 1988). Therefore, the patterns defined by
Db and Dg and the other parameters used to describe
convective activity in the cluster method may also be a
useful way to address the problem of subgrid-scale dis-
tribution of cloudiness in numerical models.
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FIG. 15. Time sequence of clusters for each studied area: (a) control series for Paraguay and northern Brazil, (b) control series for south-
eastern Brazil and the Amazon Basin, (c) same as (a) but for the test series, and (d) same as (b) but for the test series.
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