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ABSTRACT: It  has  been  previous  demonstrated
that nanovessels can be  highly competent catalysts
providing  large  rate  accelerations  and  unique
selectivity to the organic transformations which they
mediate. However, for supramolecular assemblies to
be  considered  a  standard  reagent  in  organic
synthesis they must first demonstrate the ability to
catalyze  increasingly  complex  transformations.
Herein  we report  a  three  component  Aza-Darzens
reaction  that  generates  N-phenylaziridines,
catalyzed by a  supramolecular  host,  that  provides
the stereoisomer opposite to the one generated in
bulk  solution  (trans vs.  cis).  This  transformation
constitutes  a  rare  catalytic  three  component
coupling  within  a  supramolecular  assembly,
providing  a  supramolecular  solution  to  a
synthetically challenging transformation.

Control of reactions at the macroscopic level can
be achieved through the manipulation of  standard
parameters  such  as  temperature,  solvent,  and
exclusion of deleterious components such as oxygen
or  water.  Alternatively,  container  molecules  and
supramolecular assemblies (“nanovessels”) provide
the opportunity for microscopic control of reactions
beyond the bounds of the flask.  This possibility has
inspired  the  preparation  of  a  variety  of  self-
assembled  nanovessels,1–8 that  provide  disparate
selectivity  from  bulk  reactions,  often  in  a
stoichiometric sense, but increasingly catalytically.9–

16 The  reactivity  of  such  container  molecules  has
been  attributed  to  the  unique  environment  within
their cores, which are often compared to the active
sites of enzymes.17–19 Within this internal space, the
supramolecular  host  provides  a  reaction
environment, distinct from that of bulk solvent, that
enables  recognition  and  energetic  stabilization  of
molecules and transition states.

The  Raymond  tetrahedron  (1)  has  been
investigated as a catalyst  for a number of organic
and  organometallic  transformations,  due  to  the
unique microenvironment generated by its internal

cavity. This host contains a hydrophobic binding site
while  its  overall  dodecanionic  charge  enables
solubility  in  polar  solvents,  such  as  water.20 The
hydrophobic interior allows recognition and binding
of  lipophilic  substrates  in  water,  and  the  overall
anionic  charge  permits  strong  binding  of  cationic
species.21,22 In  addition,  nitrogenous  and
phosphorous bases experience a pKa shift of up to
4-5  units,  due  to  stabilization  of  their  protonated
form within  the host.23 Also  solvent  exclusion  and
charge stabilization by the cavity of  1  enables the
encapsulation  and  stabilization  of  hydrolytically
unstable iminium ions within the host, despite water
as solvent.24

The properties imposed by the cavity of  1 on its
guests  have  led  to  the discovery  of  a   variety  of
catalytic transformation that occur within its binding
site.25-28 For example, we have previously shown that
host  1 catalyzes  the  Aza-Prins  reaction  via
stabilization of an in situ generated iminium ion, that
cyclizes upon encapsulation.   This reaction, and the
prevalence  of  iminium  intermediates  in
multicomponent  reactions  and  in  supramolecular
catalysis,29-30 inspired us to investigate whether the
iminium-stabilizing  property  of  1 could  enable
multicomponent  reactions  involving  that  species
within  the  nanovessel  cavity.    While
multicomponent  reaction  present  inherent
challenges,  catalysis  of  these  transformations  by
supramolecular  assemblies raises  the  unique
question  of  whether  multiple  guests  can  be
accommodated in their constrained environment; if
so, will the reactivity and selectivity differ from the
coupling  in  bulk  solvent.    More  specifically,  we
wondered whether the Aza-Darzens synthesis of  N-
substituted aziridines from imines, which is typically
Bronsted  or  Lewis  acidic  catalyzed,31-35would  be
amenable to supramolecular catalysis.   Herein, we
report  the  development  of  a  diastereoselective
three-component  Aza-Darzens  reaction  of  anilines,
aldehydes,  and  α-diazo  esters  catalyzed  by
supramolecular  assembly  1.   Three  component
coupling of this type have been seldom promoted by
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supramolecular  hosts,36–38 and  are  an  exceedingly
rare within a self-assembled container molecule.

Scheme  1:  General  reactivity  for  three-
component Aza-Darzens reaction within the
Raymond Tetrahedron
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Given  our  previous  results  employing  iminium
intermediates in reactions catalyzed by  1,  we first
sought  to  identify  a  nucleophile  that  would  be
compatible  with  the host  and  the  reaction
conditions,  and  which  could  be  employed  in  a
multicomponent reaction.    These efforts identified
ethyl-diazoacetate (EDA) as a nucleophile that met
these  requirements  and  showed  a   propensity  to
bind  to  host  1.  Next,  we  examined  the  amine
component  required  for  formation  of  the
electrophilic iminium component with formaldehyde,
in the presence of  1 and EDA.  While basic amines
(BnNH2 and  IPrNH2)  and  amides  (AcNH2)  did  not
afford any desired azirdine,  we found that aniline
and aqueous formaldehyde (37 wt. %) coupled with
EDA  to  form  to  N-phenylaziridine  2a in  an  aza-
Darzens reaction, promoted by catalytic amounts of
host  1, (Scheme 2a).  Building on this initial result,
we sought  to find optimal  reaction  conditions  and
explore  the  scope  of  this  reaction.  While  poor
solubility  of  the  reaction  components  precluded
reactivity  in  water,  and  pure  methanol  gave  poor
reactivity due to the lack of a hydrophobic driving
force for  the encapsulation  of  reagents  within  the
host,  using  a  50%  (v/v)  methanol/pH  8  water
mixture,   N-phenylaziridine  (2a)  was  isolated  in
good yield and at low catalyst loading (82%, Scheme
2b). Substitution on the aniline ring was tolerated for
both electron-withdrawing and -donating groups at
both  the  para  (2b,c)  and  meta  positions  (2d,e),
providing  the  corresponding  N-phenylaziridines  in
moderate yield. As a control experiment, the cavity
of  1 was  blocked  with  an  equivalent  of
tetraethylammonium  chloride,  a  strongly  binding
guest,  which  lowered  the  yield  of  the  reaction  to
10% after  24  hours.  This  result  demonstrates  the
necessity  of  the  host  cavity  for  the  reaction  to
proceed efficiently (Scheme 2c).

Scheme  2:  (a)  Initial  screening  for
multicomponent  Aza-Darzens  reaction,  (b)
scope  of  monosubstituted  aziridines
(reported as isolated yields) and (c) blocked
host control (reported as NMR yield).
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These initial results encouraged us to explore the
generation  of  more  complex  products  where
diastereomeric  selectivity  could  be  investigated.
Acetaldehyde  was  first  selected  as  a  coupling
partner,  which  could  undergo  the  reaction  with
aniline  and  EDA  to  provide  disubstituted  N-
phenylaziridines  where  the  formation  of  both  cis-
and trans-aziridines would be possible (Scheme 3a).
The  presence  of  5  mol%  1 with  aniline,
acetaldehyde,  and  EDA  gave  the  N-phenyl  trans-
aziridine  (3)  as  the  major  diastereomer  (20:1,  1H
NMR)  in  68%  yield.  This  selectivity  for  the  trans
diastereomer was maintained for propanal (4)  and
butanal (5); however, yields and selectivity for the
trans product  diminished  when  pentanal  (6)  was
employed.  Lack  of  reactivity  with  pentanal  was
attributed  to  the  increased  size  of  this  substrate
preventing  co-encapsulation  within  1 and
subsequent reactivity. The high selectivity (20:1) for
the  trans-aziridine  in  this  Aza-Darzens  reaction
catalyzed by 1 was surprising as literature examples
for this reaction typically provide the cis-aziridine as
the major isomer when α-diazo esters are employed
as nucleophiles.31 

In contrast, when the reaction was performed with
Et4N+-blocked  1, only minor background conversion
(ca  7%)  to  the  aziridine  product  was  observed
(Scheme 3b).  Further  investigation  of  the  product
revealed  that  the  cis-aziridine  was  formed  in  the
uncatalyzed  process  as  opposed  to  the  trans-
aziridine  generated  when the host  cavity  was  not
blocked.  This  reversal  in  selectivity  between  the
host-catalyzed  and  background  reactions
demonstrates that the confined interior of the host
not only accelerates the reaction but also overrides
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the inherent diastereoselectivity of the uncatalyzed
process.

Scheme  3:  (a)  Effect  of  n-aldehyde
substituent  on  reactivity  and  (b)  blocked
host control (reported as NMR yields)
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Several  substitutions  on  the  aniline  ring  were
tolerated  at  the  meta  and  para  positions,  all  of
which were selective for the disubstituted N-phenyl
trans-aziridine (Scheme 4). Both electron-rich and -
deficient rings were reactive and there was no major
effect  on selectivity.  As previously  observed  when
pentanal  was  used  as  a  coupling  partner,  size
exclusion also appears to play a role in the aniline
component.   For  example,  the  formation  of  3-
methylaniline-derived  trans-aziridine  occurred  in
53%  yield  in  24:1  trans selectivity  (4b),  while
minimal  reactivity  was  observed  in  the  host-
catalyzed reaction of 3,5-dimethylaniline (4f).

 
Scheme  4:  Effect  of  aryl  substitution  on
disubstituted  aziridine  synthesis  (reported
as NMR yields)
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The experiments with 3,5 dimethylaniline (Scheme
4,  4f) and pentanal (Scheme 3b,  6) are consistent
with the hypothesis that the iminium must be small
enough  to  fit  within  the  host  for  the  reaction  to
proceed efficiently.  Therefore, the size limitation of
the  third  component,  the  α-diazo  ester,  was
examined  using  a  larger  t-butyl  ester  as  the
nucleophilic component of the Aza-Darzens reaction.
(Scheme 5a).   This larger  α-diazo ester  gave only
11% yield of the disubstituted N-phenylaziridine (7);
moreover,  in  the  presence  of  a  stoichiometric
amount of tetraethylammonium as an inhibitor, 7%
yield  of  the  aziridine  was  obtained  (Scheme  5b).
Taken together, these observations suggest that for
the  reaction  to  proceed  efficiently,  and  with  high
selectivity  for  the  trans-aziridine,  all  three
components  of  this  transformation  must  fit  within
the cavity of the supramolecular host. 

Scheme 5: (a) Effect of bulky ester on Aza-
Darzens  reaction  and  (b)  blocked  host
control (reported as NMR yields)
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To  further  explore  the  synthetic  applications  of
this  transformation,  the formation of  trisubstituted
aziridines  from  substituted  α-diazo  esters  was
investigated. The reaction of  α-ethyl substituted  α-
diazo ester, acetaldehyde, and aniline, catalyzed by
1  gave the trisubstituted  N-phenylaziridine in 70%
yield,  with  excellent  selectivity  for  the  trans-
diastereomer as determined by 1D NOE correlation
(Scheme 6, 8b).  Further substitution of the α-diazo
ester was tolerated to some degree; however, yields
diminished when the longer  α-propyl substituted  α-
diazo ester was employed (8e), again demonstrating
the  impact  of  the  nucleophile’s  size  on  this
transformation.

Scheme 6: Trisubstituted aziridine synthesis
(reported as NMR yields 
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In order to gain insight into the mechanism of the
three-component coupling,  a series of  in situ NMR
experiments  were conducted.   First,  we examined
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the  binding  of  the  separate  components  with  the
supramolecular host  1.  Thus, a mixture of aniline,
aldehyde and 1 showed only an equilibrium between
the  aniline/aldehyde  and  the  corresponding
hemiaminal,  without  observable  signals  for  imine
either  in  solution or within the cavity of  the host.
While it might be anticipated that encapsulation of a
cationic protonated imine/aniline might be favorable
in  the  dodecanionic  host,  the  low  basicity  of  the
aniline  and  the  unfavorable  equilibrium  for  imine
formation in water are apparently not overcome by
this association.  In contrast, a mixture of  1 and α-
diazo ester resulted in noticeable broadening of the
signals associated with the α-diazo ester, consistent
with a rapid and reversible, on the NMR time scale,
binding of this guest.   Second, kinetic analysis was
performed  to  examine  the  kinetic  profile  of  the
components  (see  supporting  information).     The
reaction showed first order kinetics in aldehyde and
saturation  kinetics  in  α-diazo  ester.  Saturation
kinetics  in  α-diazo  ester  is  consistent  with  a
preequilibrium  host-guest  complex,  while  the  first
order  kinetics  in  aldehyde  suggests  that
preequilibrium for iminium ion encapsulation is not
relevant to the functioning catalytic processes.  On
the basis of these experiments, we propose that the
Aza-Darzens  reaction  catalyzed  by  1 proceeds  via
initial encapsulation of the  α-diazo ester within the
cavity  of  1  (Scheme  7).  This  initial  binding
equilibrium  is  followed  by  rate  determining
encapsulation of an equivalent of  in situ generated
iminium ion, driven by the anionic charge of  1, to
provide intermediate III.  Inside the assembly the α-
diazo ester  undergoes  nucleophilic  addition  to the
iminium ion, followed by intramolecular nucleophilic
displacement of an equivalent of nitrogen, to yield
the protonated aziridine V. It is then proposed that
the aziridine leaves the host, and is deprotonated in
the bulk pH 8 solution, regenerating the catalyst. 

Scheme  7:  Proposed  mechanism  for  Aza-
Darzen  reaction  within  the  Raymond
tetrahedron
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In  conclusion,  a  rare  example  of  a  three-
component reaction within a supramolecular host is

reported.  This  Aza-Darzens  reaction  within  1
displays  divergent  reactivity  from the  uncatalyzed
background reaction, giving the trans isomer of the
disubstituted N-phenylaziridine.  The  reaction
proceeds  with  low  yield  when  the  host  cavity  is
blocked, and larger substrates proceed with minimal
conversion,  providing  evidence  that  the  cavity  of
this  supramolecular  assembly  is  essential  for  the
multicomponent  reaction  observed.  We  envision
that this reaction could inspire the development of
more  complex  reactions  with  supramolecular
assemblies  to  enable  the  unique  secondary
environment of these hosts to dictate selectivity as
well  as  take  advantage  of  chemistry  in  aqueous
media.
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