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RESEARCH Open Access

The association of early-life exposure to
ambient PM2.5 and later-childhood
height-for-age in India: an observational
study
Dean Spears1,2*, Sagnik Dey3,4, Sourangsu Chowdhury3, Noah Scovronick5, Sangita Vyas1 and Joshua Apte6

Abstract

Background: Children in India are exposed to high levels of ambient fine particulate matter (PM2.5). However,
population-level evidence of associations with adverse health outcomes from within the country is limited.
The aim of our study is to estimate the association of early-life exposure to ambient PM2.5 with child health
outcomes (height-for-age) in India.

Methods: We linked nationally-representative anthropometric data from India’s 2015–2016 Demographic and Health
Survey (n = 218,152 children under five across 640 districts of India) with satellite-based PM2.5 exposure (concentration)
data. We then applied fixed effects regression to assess the association between early-life ambient PM2.5 and
subsequent height-for-age, analyzing whether deviations in air pollution from the seasonal average for a particular
place are associated with deviations in child height from the average for that season in that place, controlling for
trends over time, temperature, and birth, mother, and household characteristics. We also explored the timing of
exposure and potential non-linearities in the concentration-response relationship.

Results: Children in the sample were exposed to an average of 55 μ g/m3 of PM2.5 in their birth month. After
controlling for potential confounders, a 100 μg/m3 increase in PM2.5 in the month of birth was associated with a 0.05
[0.01–0.09] standard deviation reduction in child height. For an average 5 year old girl, this represents a height deficit
of 0.24 [0.05–0.43] cm. We also found that exposure to PM2.5 in the last trimester in utero and in the first few months
of life are significantly (p < 0.05) associated with child height deficits. We did not observe a decreasing marginal risk at
high levels of exposure.

Conclusions: India experiences some of the worst air pollution in the world. To our knowledge, this is the first study to
estimate the association of early-life exposure to ambient PM2.5 on child height-for-age at the range of ambient
pollution exposures observed in India. Because average exposure to ambient PM2.5 is high in India, where child
height-for-age is a critical challenge in human development, our results highlight ambient air pollution as a public
health policy priority.
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Background
India experiences some of the worst particulate air pollu-
tion in the world, with mean PM2.5 concentrations consis-
tenly above World Health Organization guidelines [1–3].
Due to these high exposures, the Disease Burden of India
study recently estimated that 12.9 (11.4–14.4) million dis-
ability adjusted life years (DALY) and 149.8 (132.3–167.6)
thousand deaths annually were attributable to PM2.5 in
children under 5 years of age [4]. The child mortality bur-
den due to household PM2.5 exposure in India is also
large, estimated at 50 (30–60) thousand deaths per year.
These estimates, however, rely on concentration-response
functions that were developed from epidemiological stud-
ies carried out primarily in high-income countries. More-
over, the empidemiological studies used for constructing
these estimates do not consider impacts on a number of
child health outcomes that have been linked to PM2.5 ex-
posure, including sudden infant death syndrome [5], low
birth weight [6, 7], intrauterine growth retardation [8] and
reduced size [9].
Unlike many developed countries, India does not have a

vital registration system, making it difficult to study mor-
tality, a commonly used outcome variable in the air pollu-
tion literature. Another widely-studied marker of early-life
health insults is the average height of children. Children in
India are unusually short compared to international stan-
dards [10]. Many causes of this child height deficit have
been proposed in the demographic, epidemiological, and
econometric literatures, including poor sanitation and ma-
ternal nutrition [11, 12]. Exposure to PM2.5 from house-
hold solid fuel use for cooking and heating has also been
associated with child growth in India [13, 14], but to our
knowledge, no study from India has explored the link be-
tween ambient air pollution and child growth. One study
from Bangladesh [8] observed that the risk of child stunt-
ing and wasting was positively associated with higher
levels of in utero exposure.
In this study, we examine the association of in utero and

early-age ambient PM2.5 exposure on child height-for-age
in India. We do so in a representative sample of Indian
children – a population exposed to a large range of ambi-
ent PM2.5 – using data from the 2015–2016 Demographic
and Health Survey (DHS), matched to air pollution data,
as measured by satellite remote sensing. The association
between child height-for-age and early-life exposure to air
pollution is estimated using an approach that accounts for
fixed differences across villages, secular trends over time,
and district-specific seasonal patterns. We also investigate
the shape of the concentration-response function.

Data and methods
India’s 2015–2016 demographic and health survey
Data on child height and potential confounders are
taken from India’s most recent DHS survey (note that in

India the DHS is also known as the National Family
Health Survey). These data were collected from a
nationally-representative sample of women of reproduct-
ive age. The survey visited all 640 Indian districts that
existed at the time of the 2011 Census, and was designed
to be representative at the district level. These data were
collected between January 2015 and November 2016.
In our analysis, the outcome (dependent) variable is a

child’s height-for-age z-score, scaled according to the
World Health Organization 2006 reference population
mean and standard deviation by sex and age-in-months
[15]. In the DHS, height is measured for children less
than 5 years old at the time of the survey. The sex and
month of birth (e.g. August 2011) is also recorded for
each child with measured height.

Air pollution data by district-month
Each child was assigned the average ambient PM2.5 ex-
posure in his or her district of residence during the
month in which he or she was born. This matching as-
sumes that the district where children live at the time of
the survey is the same as the district where children
lived when they were born.
Because India lacks ground-based PM2.5 measure-

ments at a spatial resolution sufficient for our study de-
sign, we used satellite-derived PM2.5. Specifically, we use
the Multiangle Imaging SpecroRadiometer (MISR) re-
trieved daily aerosol optical depth (AOD) V22 product
at 17.6 km × 17.6 km spatial resolution to estimate PM2.5

with the help of a spatially and temporally varying con-
version factor (ƞ). ƞ is derived from GEOS-Chem chem-
ical transport model simulations and depends on aerosol
vertical distribution, emissions, and meteorological fac-
tors like temperature, relative humidity, and precipita-
tion. Details about the conversion factor ƞ are discussed
elsewhere [2, 16, 17]. The MISR AOD product was pre-
viously and extensively evaluated for the Indian subcon-
tinent [18]. The satellite-retrieved PM2.5 was bias-
corrected using coincident ground-based quality con-
trolled measurements following our earlier study and
has ~ 10% uncertainty [2, 19]. The district-level statistics
are extracted using the shape files of the district bound-
aries in ArcGIS. We generated a monthly PM2.5 expos-
ure database for 15 years (2001–2015), although because
height is only measured in the DHS for children under
five, no child in our sample was born before 2010.

Temperature data by district-month
Considering the large spatio-temporal heterogeneity in
temperature across India [20], we control for temperature
in the month and district of birth. Monthly temperature
data at the 0.125° × 0.125° (approximately, a 12 km× 12
km grid) resolution was obtained from the European
Centre for Medium Range Weather Forecast (ECMWF)
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ERA-INTERIM dataset. Mean district-level temperature
was estimated using a spatially weighted average of the
0.125° × 0.125° grid cells in the district.

Main statistical approach
The central empirical strategy of this paper is fixed effects
regression, with child height-for-age as the outcome
(dependent) variable, and early-life district-month exposure
to ambient PM2.5 as the independent variable (exposure) of
interest. Fixed effects regression has been identified as a
useful tool in epidemiological analyses to control for unob-
served characteristics that are common across observations
within groups, time periods, or individuals [21], and has
been successfully applied in prior epidemiological studies of
air pollution-health relationships [8]. In our analysis, we in-
clude fixed effects for birth place, seasonal patterns in the
district, and year. We therefore study whether deviations in
seasonal average PM2.5 in a particular place (village or
urban block) are associated with deviations in child height
from the average for that same season in that same place.
As a result, our study asks the question: is exposure to
PM2.5 in the month of birth that is higher than the seasonal
average associated with heights that are shorter than aver-
age for that place and season of birth?
In India, and other countries where environmental

risks are widespread, the average height-for-age z-score
declines in the first 2 years of life, reflecting the accumu-
lating impact of early-life health insults on a child’s
growth [22]. Because age is predictably correlated with
height-for-age, each regression also controls for 119 age-
in-months-by-sex indicators, one for each age in months
from zero to 59, for girls and boys separately, and ex-
cluding one to avoid perfect multicollinearity. This type
of adjustment is standard in the literature on child
height [10, 11].
Our main models take the following form:

hipdmy ¼ βxdmy þ μ1tdmy þ μ2t
2
dmy

þ ρ momhipdmy þ αpd þ γdm þ δy
þ X ipdmyθþ εipdmy ð1Þ

where i indexes individual children, p places (survey pri-
mary sampling units – PSUs – such as urban blocks or
rural villages), d districts, m calendar month of birth
(such as February), and y calendar year of birth (such as
2012). The dependent variable, h, is child i’s height-for-
age z-score. The independent variable of interest, xdmy, is
PM2.5 in district d in month m of year y, corresponding to
child i’s birth month. Similarly, tdmy is temperature in that
same district-month. We include temperature as a quad-
ratic in order to allow for nonlinearities in its association
with child height. momhipdmy is the height of the mother’s
child, in centimeters, a proxy for the health and socioeco-
nomic status of the mother. Fixed effects are αpd, 27,266

local places (PSUs); γdm, 7679 categories of district-month
(such as for Februarys in Sitapur district, or Aprils in Kan-
pur district); and δy, 6 calendar years, to capture any secu-
lar time trend. Child-level covariates Xipdmy include age-
by-sex fixed effects and other covariates that have been as-
sociated with child height. These include birth characteris-
tics (mother’s age at birth [23], birth order [24], whether
the delivery occurred in a hospital or health facility [25],
and whether it was a multiple birth [23]), mother charac-
teristics (whether she smokes [23], the total number of
children born to her by the time of the survey [24], and
her relationship to the household head [26]), and
household-level covariates (caste [12], religion [27], solid
fuel use [13], open defecation [11], and drinking water
source [8]).

This statistical strategy was designed to address several
potential sources of confounding. The strategy allows us
to add fixed effects and covariates in stages to verify that

the main effect estimate, β̂ , is robust to respecification.
In particular, we first estimate the model without PSU
fixed effects. PSU fixed effects would account for any
fixed geographic differences in factors known to affect
child height, such as the presence and quality of markets
[28], local open defecation [29], or the religious compos-
ition of the neighborhood [30]. We then add birth,
mother, and household characteristics, as described
above, which are intended to control for other known
determinants of child height. While birth-level covariates
reflect characteristics at the time of birth, mother and
household level characteristics are observed at the time
of the survey. Many of these characteristics, such as
mother’s height, caste, and religion, are not likely to have
changed over time. However, other characteristics, such
as mother smoking, mother’s relationship to the house-
hold head, and water source may have changed. The use
of solid fuels for cooking and open defecation has been
changing relatively slowly in India over time [12, 31],
and so these variables are likely to be highly correlated
with household behaviors at the time of the child’s birth,
even though they are only observed at the time of the
survey. Our a priori preferred specification, however, in-
cludes birth characteristics only because these variables
reflect the environment at the time of birth, and not at
the time of the survey. All subsequent analyses build off
of this preferred specification.

All of our main model specifications control for district-
month fixed effects, a tool which has been used in the lit-
erature to control for seasonal trends [32]. This strategy
allows each district to have any distinct seasonal pattern,
and identifies effects off of deviations from each district’s
seasonal patterns. Controlling for seasonal trends is im-
portant because pollution in India is highly seasonal [33],
and later life outcomes such as educational attainment are
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also known to be predicted by seasonal patterns [34].
Since child height is also correlated with these outcomes
[35], season is likely to be a confounder. A month fixed ef-
fect by itself would control for seasonality that is common
across all of India. However, since pollution patterns are
highly localized, we include district-month fixed effects,
which allow seasonal patterns to be different in each dis-
trict, and therefore we control for local seasonality. We
also include a sensitivity check with finer (PSU-month)
controls for seasonality.
Finally, we conduct a falsification test, in which we con-

trol for ambient PM2.5 in the same district-month, but 2
years before the month of birth; if our identification strat-
egy is credible, this control should not predict height nor
change our estimate. Standard errors are clustered by 640
districts, to permit arbitrary correlation of error terms
over space and time within districts [36].
DHS data include sampling weights, to be used to

generate estimates that are representative of the
population of Indian children under five. Although we
use weights for our summary statistics in Table 1,
sampling weights are not appropriate for estimating
associations [37], so we do not use them in any of
our statistical models. In Additional file 1: Table S1,
we also calculate summary statistics without sampling
weights, which are very similar to the statistics pre-
sented in Table 1.

Age of exposure
Our primary goal in this study is to investigate the effect
on child height of exposure to ambient PM2.5 in the
month of birth. The most vulnerable period of exposure
is an active area of research [38, 39], but we chose ex-
posure in the month of birth a priori because it repre-
sents an important period for early-life development
[40]. Nevertheless, in additional analyses we also con-
sider exposure at other ages by averaging over three-
month periods, from − 8 to − 6months before birth (ap-
proximately the first trimester of pregnancy) to 10 to 12
months after birth (approximately the last quarter of the
first year of life). Average PM2.5 in each age of exposure
is used as the independent variable in a separate
regression:

hipdmy ¼ β
xþ0
dmy þ xþ1

dmy þ xþ2
dmy

3

 !
þ μ1tdmy

þ μ2t
2
dmy þ ρ momhipdmy þ αpd þ γdm

þ δy þ X ipdmyθþ εipdmy ð2Þ

where indices and fixed effects are as in regression eq.
(1), but the covariates X include only the age-in-
months-by-sex indicators and birth characteristics, as
these variables reflect attributes at the time of birth, and
not at the time of the survey. Therefore, this model

Table 1 Summary statistics describing sample of children with measured height from India’s 2015–16 DHS, reported for the full
sample and by PM2.5 quintiles in the month and district of birth

full
sample

PM2.5 quintile

1 2 3 4 5

PM2.5 in birth month, μ g/m3 54.9 15.3 30.1 45.7 65.2 118.2

height-for-age z-score −1.50 −1.35 −1.45 −1.52 − 1.59 −1.60

temperature (Celsius) 16.5 17.5 17.0 17.2 16.9 13.7

age in months 30.7 31.9 31.2 30.7 30.4 29.1

girls 0.48 0.49 0.48 0.48 0.47 0.48

mother’s age at birth 24.3 24.2 24.1 24.2 24.4 24.5

birth order 2.18 1.97 2.09 2.18 2.30 2.38

institutional delivery 0.79 0.86 0.83 0.80 0.75 0.72

mother’s height (cm) 151.7 152.2 151.9 151.6 151.4 151.2

# of children born to mother 2.46 2.23 2.37 2.46 2.59 2.67

mother smokes 0.06 0.07 0.06 0.06 0.06 0.05

rural 0.72 0.67 0.71 0.72 0.74 0.76

uses solid fuels for cooking 0.63 0.53 0.60 0.63 0.68 0.72

defecates in open 0.47 0.40 0.47 0.49 0.51 0.49

born at residence 0.91 0.86 0.90 0.91 0.92 0.94

n (children under 60 months) 218,152 52,947 43,942 40,831 40,551 39,881

Note: Each number, other than sample sizes in the bottom row, is a sample mean. Girl, institutional delivery, mother smokes, rural, uses solid fuels for cooking,
defecates in open, and born at residence are each indicators (1 or 0) for that property of the child, mother or household. Sample means and quintiles are
computed with DHS sampling weights (which is why n is not constant across quintiles)
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builds off of the preferred specification discussed in the
previous section.

Shape of the concentration-response function
The shape of the concentration-response function has
been a focus of the air pollution literature, in light of its
importance for policy responses [41]. Although the prior
literature has suggested the possibility of diminishing
marginal risks at higher levels of exposure, there is little
well-identified evidence on exposure to PM2.5 at levels
as high as in India during the period studied, or for child
height as the outcome [42, 43]. Therefore, we perform
three analyses in which we allow the shape of the
concentration-response function to differ from the linear
form in eq. (1):

hipdmy ¼ βf xdmy
� �þ μ1tdmy þ μ2t

2
dmy

þ ρ momhipdmy þ αpd þ γdm þ δy
þ X ipdmyθþ εipdmy ð3Þ

First, we substitute in the natural log of PM2.5 in one
specification, and a linear spline at the median of PM2.5

in another. Then we allow polynomial shapes of the
concentration-response curve, of degree 1 through 5. Fi-
nally, we implement a Box-Cox power transformation of
the form f(x) = xλ, for coefficients λ in steps of 0.1 from
0.1 to 2.0. We implement each power transformation in
a separate model, and plot the resulting log-likelihoods.
If likelihood is maximized near λ = 1, then this proced-
ure would suggest that a linear concentration-response
function best fits the data. As in the age of exposure
analysis, the covariates X include only the age-in-
months-by-sex indicators and birth characteristics, as
these variables represent attributes at the time of birth,
and not at the time of the survey.

Informed consent
Because we study publicly-available, anonymized data on
child height, our study is classified as “not human sub-
jects research” and informed consent is not required.
All analyses in the paper were computed with Stata

12.1.

Results
Summary and descriptive statistics
Height was measured for 225,002 children under five in
the DHS. We were able to match air pollution data to
children born from February 2010 to December 2015,
who are 97% of those with measured height, resulting in
a final sample of 218,152 children (Fig. 1). Summary sta-
tistics as sample means for these children are presented
in Table 1, reported for the full sample, as well as by
quintiles of ambient PM2.5 exposure. Across the whole
sample, children were exposed to an average of 55 μ g/
m3 in their month of birth, although with substantial
variation. 92% of children were born while the mother
was living in her current residence. The results also
highlight that children who are exposed to higher ambi-
ent PM2.5 tend to be disadvantaged in other ways: they
come from larger families, have shorter mothers, live in
households that are more likely to defecate in the open,
and use solid fuels for cooking.
Location [44, 45], time of year [33], and mother’s

height, as seen in Table 1, are correlated with air pollu-
tion concentrations. Therefore, Fig. 2 plots crude associ-
ations between pollution and height, stratified by rural/
urban, season, and mother’s height. Each panel in Fig. 2
presents locally-weighted kernel regressions of the rela-
tionship between ambient PM2.5 in the district-month of
birth and height-for-age z-score residuals (after control-
ling only for age-by-sex, see methods for more discus-
sion). We do not control for any other covariates in this

Fig. 1 Study sample with excluded or missing observations. Note: In Table 2, some samples are smaller than 193,040 because the regression
models ignore categories within which there is no variation in the independent variable
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A B C

Fig. 2 Crude associations between child height and exposure to PM2.5 in the month of birth. Note: Panel a stratifies by urban/rural, Panel b by
season of birth, and Panel c by mother’s height. Curves are kernel-weighted local regressions. The vertical axis in all panels is the residual of child
height-for-age, after controlling for age-in-months by sex indicators. In Panel B, observations of PM2.5 that are greater than the 95th percentile for
each season are left out because a sufficient number of observations are not available to construct means for pollution levels that are very high
for the season

Table 2 Association of district-level PM2.5 (per 100 μg/m3) in month of birth with child height-for-age z-score

(1) (2) (3) (4) (5) (6) (7) (8)

PM2.5 ÷ 100 −0.0546** −0.0500* − 0.0491* −0.0486* − 0.0428+ −0.0525* −0.0216

(0.0201) (0.0218) (0.0220) (0.0220) (0.0222) (0.0231) (0.0574)

PM2.5 ÷ 100 −0.0149

24months earlier (0.0226)

ln(PM2.5) −0.0175+

(0.0104)

PM2.5 ÷ 100 −0.0370

above median spline (0.0694)

n (children under 60 months) 218,152 192,771 192,303 192,302 182,079 192,303 192,303 192,303

age in months × sex FEs yes yes yes yes yes yes yes yes

district-month FEs yes yes yes yes yes yes yes yes

year of birth FEs yes yes yes yes yes yes yes yes

PSU FEs yes yes yes yes yes yes yes

mother’s height (cm) yes yes yes yes yes yes yes

temperature & temperature2 yes yes yes yes yes yes yes

birth characteristics yes yes yes yes yes yes

mother characteristics yes yes

household characteristics yes

Note: All columns present ordinary least squares fixed effects regressions with the child’s height-for-age z-score as the dependent variable. FE fixed effect, PSU
primary sampling unit (urban block or rural village). Standard errors clustered by 640 districts in parentheses. + p < 0.10; * p < 0.05; ** p < 0.01. In column 8, the
spline variable is zero below the median PM2.5 and is identical to PM2.5 above the median. Sample sizes vary because some fixed effects categories lack within-
category variation in the independent variable (resulting in that category being dropped), and because not all children’s mothers’ heights were measured. Birth
characteristics include mother’s age at birth, birth order, whether the delivery occurred in a hospital or health facility, and whether it was a multiple birth. Mother
characteristics include whether she smokes, the total number of children born to her by the time of the survey, and her relationship to the household head.
Household-level characteristics include caste, religion, solid fuel use, open defecation, and drinking water source
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figure. Panel A reveals a negative (downward) gradient –
which is approximately linear - between ambient PM2.5

exposure and child height for both rural and urban chil-
dren. Although the range of PM2.5 exposure is similar in
both rural and urban areas, the former are shorter, on
average, because they are more exposed to other factors
associated with growth faltering [12, 29]. Panel B dem-
onstrates that ambient PM2.5 reaches the highest levels
in winter (November through January), and that a simi-
lar downward gradient is present in all seasons. Panel C
suggests that the association is not driven by mother’s
height, since the downward gradient exists for each
quintile of mother’s height.

Exposure in the month-of-birth
Table 2 presents our main results: fixed effects regres-
sion results following Eq. 1. For ease of interpretation,
results are presented for a 100 μ g/m3 increase in PM2.5.
Column 1 shows coefficients from a regression that in-
cludes age-by-sex fixed effects, district-month fixed ef-
fects, and year of birth fixed effects. Column 2 adds PSU
fixed effects, temperature, and mother’s height. Columns
3, 4, and 5 progressively add birth, mother, and house-
hold characteristics, respectively. Across the alternative
specifications in columns 1 through 5, a 100 μ g/m3 in-
crease in ambient PM2.5 exposure is associated with an
approximately 0.05 standard deviation decrease in child
height-for-age z-score. Because columns 4 and 5 include
covariates that are measured at the time of the survey,
and do not necessarily reflect the environment at the
time of birth, Column 3 represents our a priori preferred
specification. Column 6, reports the falsification test: as
expected, ambient PM2.5 exposure 2 years before the

child is born does not predict height and does not
change the coefficient of interest. Columns 7 and 8 are
tests of the linearity assumption and are discussed fur-
ther below.

Age of exposure
Figure 3 presents the association of PM2.5 and child
growth given different time periods of exposure (see Eq.
2 above for modeling details). Of the seven time periods
explored, two show significant (p < 0.05) adverse effects
on child growth – the last trimester in utero and the
period just after birth. No other periods of exposure are
significantly associated with child height. These results
are consistent with evidence in the literature that shocks
in utero and early-life are critical for child development
outcomes [40, 46].

Shape of concentration-response function
The three tests for non-linear concentration-response func-
tions each failed to reject that a linear shape best fits the
data. Moreover, each approach suggests that, if anything, ef-
fects may be steeper at higher concentration levels. Specif-
ically, column 7 of Table 2 shows that a natural log
functional form – consistent with a concentration-response
function exhibiting diminishing marginal costs – fits the
data less well than the linear form. Column 8 includes a lin-
ear spline that allows a different slope above the median
level of ambient PM2.5; although the two PM2.5 terms are
jointly statistically significant at the 10% level (F= 2.72; p =
0.067), neither is individually significantly different from
zero. Although this model does not fit the data better than
a simple linear form, the negative sign on the coefficient
suggests the possibility of a steeper concentration-response

Fig. 3 Effects of PM2.5 exposure at various ages. Note: Dots denote point estimates and lines denote 95% confidence intervals. Each result shown
is from a separate fixed effects regression of child height-for-age on the average exposure to PM2.5 in the months, relative to birth, specified
along the horizontal axis

Spears et al. Environmental Health           (2019) 18:62 Page 7 of 10



function at higher levels of exposure. Additional file 1: Fig-
ure S1 demonstrates that none of the polynomial forms we
tested (quadratic through quantic) improve on a linear
functional form, while Additional file 1: Figure S2 – the
Box-Cox transformation – indicates that a model with
slightly increasing marginal effects may best fit the data.
In Additional file 1: Table S2, we present results from

statistical analyses similar to columns 6 through 8 of the
the main Table 2, the difference is that models presented
in the supplementary table include all coverates, includ-
ing birth, mother, and household characteristics, rather
than birth characteristics only. The inclusion of these
additional control variables does not change the inter-
pretation of these analyses. We also show that the model
is robust to replacing district-month fixed effects with
PSU-month fixed effects, a finer measure of seasonality.

Discussion
We report the first evidence of an association between
ambient PM2.5 exposure and child height in India by
using the country’s most recent DHS, which measures
children under 5 years old in a nationally representative
sample of reproductive age women. We find that an in-
crease in PM2.5 of 100 μ g/m3 in the month of birth is
associated with a decrease of 0.05 height-for-age stand-
ard deviations; for an average 5 year old girl, this would
equate to a height deficit of 0.24 cm. Consistent with evi-
dence in the literature that shocks in utero and early-life
are critical for child development outcomes [40, 46], we
find evidence that exposure to PM2.5 during the last few
months in utero and the first few months of life are as-
sociated with height deficits.
The average child in our data is exposed to a PM2.5

concentration of 55 μ g/m3 in her month of birth. Using
the estimates from our analysis, this means that the
average child is about 0.027 height-for-age standard de-
viations shorter than she would be if exposed to very
low levels of air pollution at birth. For an average 5 year
old girl, this represents a height deficit of 0.13 cm. Al-
though this effect is small relative to other environmen-
tal factors affecting child health, such as open defecation
[11], it influences all of the almost 30 million births per
year that occur in India.
Moreover, the difference between the children in our

sample most exposed to PM2.5 (at the 95th percentile) and
the children least exposed (at the 5th percentile) is 116 μ
g/m3. Therefore, based on our findings, the most exposed
children in India are about 0.06 height-for-age standard
deviations shorter than they counterfactually would be if
they were exposed only at the lowest levels in our sample.
This projected difference — 0.06 height-for-age standard
deviations — is of the same order of magnitude as other
height differences that have received sustained attention
in the literature on the demography of child height: it is

about half as large as the well-studied India-Africa height
gap [11], and is about one-tenth of the height gap between
children of literate versus illiterate mothers. Since child
growth is highly correlated with early-life mortality [47],
the associations we observed in this study are suggestive
of an association between PM2.5 exposure and early-life
survival. In the data we use for this analysis, a district
where children are 0.06 height-for-age standard deviations
shorter would be expected, on average, to have an infant
mortality that is larger by 5 infant deaths per 1000 live
births: a large difference that is approximately equal to
Canada’s overall infant mortality rate.
Although child height has traditionally been inter-

preted as a measure of “malnutrition,” it is increasingly
recognized to reflect the totality of early-life health in-
sults, including both net available nutrition and losses
due to diseases. Our study does not allow us to observe
disease directly; however, mechanisms in the literature
are consistent with the association that we document.
For example, exposure to particulate matter is associated
with lower birth weight [6, 7], which is in turn linked to
stature in childhood [48]. Similarly, exposure to ambient
air pollution is associated with the incidence of pneumo-
nia [49, 50]. Respiratory infections, like pneumonia,
sometimes occur with fevers which can suppress the ap-
petite, and reduce nutrient intake [51]. Moreover, infec-
tion and inflammation are metabolically demanding and
may reallocate resources at the expense of growth [52].
This study has several limitations. One is the possibil-

ity of residual confounding. For example, we were not
able to control for potential co-pollutants such as ozone
or NO2, for which data is not available. In addition,
some variables included in our models were measured at
the time of the survey rather than at the time of the
child’s birth, such as open defecation and household
solid fuel use. However, we have no reason to believe
that these practices would have changed for a large pro-
portion of households. Similarly, we assumed that sur-
veyed mothers delivered their children in the same
district in which they were surveyed. This assumption
seems sound considering that 92% of children were re-
corded as being born while the mother was living in her
current residence, and because migration across districts
is relatively rare. Finally, we rely on district-level mea-
sures of exposure derived from satellite data, thus raising
the possibility of measurement error. However, assuming
this error is random, the consequence would be attenu-
ation towards the null, meaning that the true size of the
effect of PM2.5 on child height may be larger than we
observe here. In light of these limitations, we encourage
additional research on this topic. If possible, this would
include other study designs (cohort studies, natural ex-
periments etc.) and, when available, finer-resolution esti-
mates of exposure.
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Conclusions
To our knowledge, this is the first study to directly esti-
mate the impact of early-life exposure to ambient PM2.5

on child height-for-age at the range of exposures found in
India. Because average exposure to ambient PM2.5 is high
in India, where child height-for-age is a critical challenge
in human development, our results highlight ambient air
pollution as public health policy priority. Ambient PM2.5

exposure is likely to increase in India in the near future [1,
53]. Therefore, the health burden that we quantify here
could potentially increase unless appropriate policy action
is taken to reduce air pollution throughout India. In par-
ticular, although policy conversations often focus on Delhi
(and, to a lesser extent, other big cities), we find effects
throughout India, and on both rural and urban children,
suggesting that the policy challenges are broader than is
commonly understood. Because child height has lasting
consequences for human capital [10, 40], this is a problem
with potential ramifications throughout the Indian society
and economy.

Additional file

Additional file 1: Table S1. Summary statistics describing sample of
children with measured height from India’s 2015–16 DHS, computed
without sampling weights. Table S2. Association of district-level PM2.5

(per 100 μg/m3) in month of birth with child height-for-age z-score with
all covariates. Figure S1. Projected effects of PM2.5 on child height-for-
age z-score, at increasing non-linearity. Each curve is the projected effect
from a separate fixed effects regression where PM2.5 in the month of
birth is specified as a polynomial of degree 1 through 5. p-values report
joint F tests that all PM2.5 terms are zero. Figure S2. Box-Cox transform-
ation of PM2.5 in month of birth: Each point plots the log likelihood of a
separate fixed effects regression of PM2.5 transformed according to the
coefficient on the horizontal axis. (DOCX 83 kb)
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