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Abstract 

 

A central mystery in high temperature superconductivity is the origin of the so-

called “strange metal,” i.e., the anomalous conductor from which 

superconductivity emerges at low temperature. Measuring the dynamic charge 

response of the copper-oxides, ( , )qχ ω′′ , would directly reveal the collective 

properties of the strange metal, but it has never been possible to measure this 

quantity with meV resolution. Here, we present the first measurement of ( , )qχ ω′′  

for a cuprate, optimally doped Bi2Sr2CaCu2O8+x (Tc = 91 K), using momentum-

resolved inelastic electron scattering. In the medium energy range 0.1-2 eV 

relevant to the strange metal, the spectra are dominated by a featureless, 

temperature- and momentum-independent continuum persisting to the eV energy 

scale. This continuum displays a simple power law form, exhibiting q2 behavior at 

low energy and q2/ω2 behavior at high energy. Measurements of an overdoped 

crystal (Tc = 50 K) showed the emergence of a gap-like feature at low temperature, 

indicating deviation from power law form outside the strange metal regime. Our 

study suggests the strange metal exhibits a new type of charge dynamics in which 

excitations are local to such a degree that space and time axes are decoupled.  

 

Significance  
 
The strange metal is a poorly understood state of matter found in a variety of quantum 

materials, notably both Cu- and Fe-based high temperature superconductors. Strange 

metals exhibit a non-saturating, T-linear electrical resistivity, seemingly indicating the 

absence of electron quasiparticles. Using inelastic electron scattering, we report the first 

momentum-resolved measurement of the dynamic charge susceptibility of a strange 

metal, optimally doped Bi2.1Sr1.9CaCu2O8+x. We find that it does not exhibit 

propagating collective modes, such as the plasmon excitation of normal metals, but 

instead exhibits a featureless continuum lacking either temperature- or momentum-

dependence. Our study suggests the defining characteristic of the strange metal is a 

singular type of charge dynamics of a new kind for which there is no generally accepted 

theory.  
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The nonsuperconducting normal state of the high temperature superconductors, usually 

referred to as the “strange metal,” has many properties that cannot be explained by the 

conventional Landau-Fermi liquid theory of metals (1,2). These include a resistivity 

that is linear in temperature and exceeds the Mott-Ioffe-Regel limit (2,3,4,5), an in-

plane conductivity exhibiting an anomalous power law dependence on frequency (6,7), 

a magnetoresistance that violates Kohler’s rule (8), a quasiparticle damping, ( )ω′′Σ , 

that is linear in ω  (9,10), and a nuclear relaxation rate that violates the Korringa law 

(11). These properties, many of which are also observed in Fe- and Ru- based strange 

metals (2,12,13,14), imply that metallic quasiparticles are either absent or exist only 

marginally (15). 

 The main spectroscopic signature of the strange metal is a featureless 

continuum observed to the highest measurable energy in Raman scattering experiments 

(16,17). Its origin is still unknown, exemplifying the need for a new experimental probe 

of the collective excitations of strange metals, particularly one that could determine 

how this continuum evolves at finite momentum, q. Generically, the most direct 

measure of the collective excitations of any material is its dynamic charge 

susceptibility, ( , )qχ ω , which reveals bosonic modes such as the plasmon excitations 

in ordinary metals (18). Unfortunately, it has never been possible to measure this 

quantity for the cuprates, at least for 0q ≠  at the meV scale relevant to these materials 

(19). 

 Here we report the first meV-resolved, 0q ≠  measurement of the low-energy 

dynamic charge response of a strange metal, the optimally-doped cuprate 

Bi2.1Sr1.9CaCu2O8+x (BSCCO), using high-resolution, momentum-resolved electron 

energy-loss spectroscopy (M-EELS) (19,20,21). We focus here on the medium energy 

region, 0.1-2 eV, most relevant to the strange metal physics. Note that this energy scale 

is large compared to the temperature or the superconducting gap, comparable to the 

superexchange, J, and small compared to the bandwidth or the Hubbard U, so reflects 

the properties of the metallic phase out of which superconductivity forms. M-EELS 

measurements were performed on cleaved crystals of optimally doped (Tc = 91 K) and 

overdoped (Tc = 50 K) BSCCO (Fig. 1B) using 50 eV electrons in reflection geometry 

(Fig. 1A) with the energy resolution set to 4 meV. In this article the momentum,

| ( , ) |x yq q q= , will be expressed in tetragonal reciprocal lattice units (r.l.u.) with lattice 

parameter 3.81a =  Å.  
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 M-EELS measures the surface density-density correlation function, ( , )S q ω ,                                                                                                                                                                  

which is related to the imaginary part of the dynamic charge response, ( , )qχ ω′′ , by 

the fluctuation-dissipation theorem (19,21). ( , )qχ ω′′  was determined from the 

M-EELS data by antisymmetrizing the spectra, which eliminates the Bose factor, and 

scaling the overall magnitude according to the f-sum rule (19). The latter (Eq. 6) 

normalizes out minor intensity drifts in the experiment and determines ( , )qχ ω′′  in 

absolute units (see Methods). 

 Fig. 2A shows ( , )qχ ω′′  for optimally-doped BSCCO at T = 295 K for selected 

momenta along the (1, 1)  direction, perpendicular to the structural supermodulation 

(22). The large signal at energies below 0.1 eV is from phonon excitations reported 

previously (19). At low-momenta ( 0.15q < r.l.u.), the spectra exhibit a plasmon mode 

at ~ 1pω  eV, which was previously reported in many studies (SI Appendix, Fig. S1). 

Its broad linewidth indicates that this plasmon is overdamped. 

As the momentum is increased to beyond 0.15q > r.l.u., the plasmon fades into 

a featureless, energy-independent continuum resembling that of early Raman studies 

(16,17). This continuum is extremely strong, comprising > 99% of the total spectral 

weight in the f-sum rule, and is constant up to an energy scale of 1 eV, suggesting it is 

electronic in origin. The continuum was found to be essentially isotropic in the ( , )a b  

plane (SI Appendix, Fig. S2) and temperature-independent between room temperature 

and T = 20 K (Fig. 3A). At energies above 1 eV the susceptibility decays like a power 

law, 2~ 1/χ ω′′ . 

 The momentum dependence of ( , )qχ ω′′  is highly anomalous (Fig. 2A). While 

its magnitude grows like q2, which is required to be consistent with the f-sum rule 

(18,19), the shape of the spectrum is momentum-independent from q = 0.15 r.l.u. up to 

the highest momentum studied, q = 0.5 r.l.u. This behavior is highly unlike that of a 

Fermi liquid whose propagating quasiparticles lead to a strongly momentum-dependent 

susceptibility, as illustrated in Fig. 1C-D. 

 The broad plasmon linewidth at small momentum is evidence that the 

continuum is present even for q < 0.15 r.l.u., which would lead to decay of the plasmon 

via Landau damping (18). To evaluate this possibility, we determined the polarizability 

of the system, ( , )q ωΠ , which is related to the susceptibility by (18) 
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 ( , )( , )
( ) ( , )
qq

V q q
ωχ ω

ε ω∞

Π
=

− Π
 , (1) 

 

where ( )V q  is the Coulomb interaction and ε∞  is the background dielectric constant, 

equal to 4.5 in this case (23). The denominator of Eq. 1, ( , ) ( ) ( , )q V q qε ω ε ω∞= − Π , 

may be thought of as the dielectric function of the system. The difference between the 

polarizability and the susceptibility is that the former excludes the long-ranged part of 

the Coulomb interaction, revealing the particle-hole excitation spectrum without 

interference from plasmon effects.   

Determining ( , )q ωΠ  from Eq. 1 is complicated by the fact that the functional 

form of the Coulomb interaction, ( )V q , is not precisely known. In a homogeneous, 

three-dimensional system, 2 2( ) 4 /V q e qπ= , however M-EELS is a surface probe, and 

other functional forms are possible near a surface, in layered materials like BSCCO, or 

in the presence of strong screening (24,25). 

For this reason, we modeled the particle-hole continuum using the empirical 

expression (26),  

 

 
2

0 2

( )( , ) ( ) tanh c qq q ωω
ω

 
′′Π = −Π  

 
 . (2) 

 
This function mimics the experimental data at q > 0.15 r.l.u., where Π  and χ are 

expected to be equal, interpolating between a constant at low energy and 21 / ω  

behavior at high energy. The quantity ( )c qω  defines the crossover energy between the 

two regimes and 0 ( )qΠ  sets the overall magnitude (26). We fit the data for ω > 0.1 eV, 

i.e., above the phonon features, by Kramers-Kronig transforming Eq. 2 and using 

( )c qω , 0 ( )qΠ , and ( )V q  as adjustable parameters. An excellent fit is obtained at all 

momenta, even those for 0.15q <  r.l.u. in which the plasmon peak is present (Fig. 2A-

D). The resulting fit values for ( )V q  (Fig. 2D) have the form of a 2D Coulomb 

interaction, ( ) exp( ) /V q qz q∝ − , where q is the in-plane momentum and ~ 10z Å, 

which is consistent with M-EELS being a surface probe. That Eq. 2 fits the data at all 

momenta suggests that the continuum is present with the functional form of Eq. 2 
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everywhere in momentum space—not only for q > 0.15 r.l.u. but also in the plasmon 

regime at low momentum.  

 Having established a plausible form for ( )V q  (Fig. 2D), we compute an 

empirical polarizability by multiplying the experimentally measured "( , )qχ ω  by the 

fitted function 
2( , ) /qε ω ε∞ . Note that the polarizability obtained in this manner is 

identical to the susceptibility for all 0.15q >  r.l.u. Two distinct regimes are observed. 

The first is illustrated in Fig. 2E which shows the scaled value 0( , ) / ( )q qω′′Π Π  against 

the scaled energy / ( )c qω ω  for each experimentally measured momentum value. All 

the spectra collapse to a single curve, indicating that, at energies below ( )c qω , the 

polarizability 2( , )q qω′′Π ∝ . The second is illustrated in Fig. 2F which shows the 

unscaled value ( , )q ω′′Π  against the scaled energy / Fv qω , where 2.8Fv =  eV/r.l.u. is 

the nodal Fermi velocity (27). All the curves collapse again, this time demonstrating 

that, at energies higher than ( )c qω , the polarizability 2 2( , ) /q qω ω′′Π ∝ . 

 Stated more succinctly, the polarizability ( , )q ω′′Π  has a simple power-law 

form, exhibiting an energy-independent, 2q  form at low energy and 2 2/q ω  form at 

high energy. The transition between the two regions is defined by the crossover energy, 

( )c qω . Note that a classic Drude response would decay like 31/ ω  at high energy (6), 

which is required for a convergent sum rule integral, so the observed response is 

unconventional to the highest energy measured. Moreover, the absence of any 

dispersing features in the data leads to the surprising conclusion that the collective 

excitations are completely local, i.e., density fluctuations in space are decoupled from 

those in time.  

 The observed power laws might be interpreted as evidence for a quantum 

critical point (QCP) near optimal doping claimed by many authors (1). To evaluate this 

possibility, we repeated our experiment on overdoped (OD) BSCCO with Tc = 50 K, 

which is widely believed to exhibit a crossover to a more Fermi liquid-like phase at low 

temperature (1,5,15). One would expect to observe deviation from simple power law 

behavior at low temperature. Fig. 3 shows the temperature dependence of the M-EELS 

spectra from OD BSCCO compared to that of the optimally doped (OP) material. At 

T = 295 K, the spectra are similar, indicating that the power law region persists over a 

finite range of doping at high temperature. As the temperature is lowered, however, a 
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gap-like feature appears in the OD spectra below 0.5 eV, indicating the emergence of 

an energy scale not present at optimal doping. This behavior is, at first glance, 

consistent with the emergence of a more Fermi liquid like phase at low temperature, 

and the presence of a fan-shaped quantum critical region centered on optimal doping 

(1,26,28,29).  

 The data do not, however, exhibit the generic properties of a quantum critical 

point (29). For one, the ~ 0.5 eV gap-like feature is more than an order of magnitude 

larger than the temperature scale on which it emerges, ~ 20Bk T  meV. 

Furthermore, the M-EELS spectra are momentum-independent even in OD samples in 

which the gap-like feature is observed. Fig. 4 shows the momentum dependence of the 

OD data at T = 115 K (SI Appendix, Fig. S4 shows the data at 295 K). The spectra 

show very little q-dependence, just as in the OP case. We fit the data using Eqs. 1 and 

2, though only for 0.5ω >  eV (Fig. 4A), and obtain the fit parameters shown in Fig. 

4B-D. Despite the clear appearance of an energy scale, the spectra still collapse 

(Fig. 4E), with ( , )q ω′′Π  again exhibiting q2 dependence below the crossover energy, 

( )c qω  (Fig. 4B). Above the crossover energy (Fig. 4C), 2 2( , ) ~ /q qω ω′′Π  as in the 

OP case. We conclude that the momentum-independence of the susceptibility and the 

absence of an observable energy scale at optimal doping are unrelated effects with 

different physical origin.  

 We close by speculating about the underlying cause of the density fluctuations 

we observe. Our results bear a striking similarity to the so-called Marginal Fermi Liquid 

(MFL) hypothesis, which asserts that the strange metal is a consequence of a featureless 

continuum of fluctuations that pervades all time and length scales (30). This continuum 

is conjectured to arise from quantum fluctuations of some hidden order parameter that 

exhibits “local criticality,” meaning that the spatial correlation length ~ logx tξ ξ , 

where tξ  is the temporal correlation length—a situation sometimes described as having 

a dynamical critical exponent z = ∞  (31). Our experiment affirms two aspects of the 

MFL hypothesis. The first is that a featureless continuum exists, and contains enough 

spectral weight to saturate the f sum rule. The second is that, on energy scales less than 

~cω 1 eV or 10,000 K, the polarizability factors into independent functions of 

momentum and energy, ( , ) ( ) ( )q f q gω ω′′Π = , which in MFL is the defining 

characteristic of local criticality, i.e., decoupling of space and time axes (31). We 
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emphasize, however, that our experiment detects only charge fluctuations and provides 

no evidence either for or against the existence of loop currents. Furthermore, it would 

be important in future work to extend these measurements to lower energies, i.e. 

Bk Tω ≤ , to test the postulated / Tω  prediction of the MFL polarizability. 

 Another possibility is that the response functions of the strange metal are 

dominated by disorder. BSCCO is known to be electronically inhomogeneous (32), and 

also exhibits an incommensurate supermodulation due to structural misfit between the 

CuO2 and BiO layers (33). Disorder breaks translational symmetry and can explicitly 

broaden features in a momentum-resolved measurement such as M-EELS. 

Furthermore, random disorder has been shown, in simple spin models, to give rise to 

singular, frequency-independent correlation functions of the sort we observe here 

(34,35). Further studies of the response of strongly correlated systems to disorder are 

needed to clarify this issue.  

 Recently, theoretical approaches have been developed to address the strange 

metal problem from a completely new perspective. The anti-de Sitter/conformal field 

theory (AdS/CFT) correspondence, which relates a gravity theory in a curved spacetime 

to a strongly interacting quantum field theory on its boundary ( 36), is one such 

approach that has already been used to reproduce some properties of the strange metal 

holographically (37). Rapid developments in this area may shed new light on this 

problem. 

 In summary, we present the first q-resolved measurement of the dynamic charge 

susceptibility of a strange metal at the meV scale. We have uncovered a new type of 

charge dynamics in which the fluctuations are local to such a degree that space and 

time axes are effectively decoupled. Explaining this observation may require a new 

kind of theory of interacting matter. 
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Methods 
 

Sample growth and characterization. Optimally-doped single crystals of 

Bi2.1Sr1.9Ca1.0Cu2.0O8+x with Tc = 91 K were grown by the floating-zone method (38). 

Overdoping was achieved by annealing in a hot, isostatic press with gas pressure 6.8 

kbar at temperature 500 °C for 100h. The gas mixture was 20% O - 80% Ar with oxygen 

partial pressures up to 1.35 kbar. The Tc values were determined using SQUID 

magnetometry.  

 

M-EELS measurements.  

M-EELS measurements were performed using an Ibach-type HR-EELS spectrometer 

( 39 ) that was motorized and mated to a custom, multi-axis sample goniometer. 

Centering of the rotation axes was done using remote cameras and reference scatterers, 

as described previously (19). Experiments were done in a magnetically-shielded UHV 

chamber at 5×10-11 torr vacuum and residual field of 3 mG using a 50 eV beam energy 

at 170 pA current and overall resolutions of 4 meV in energy and 0.02 Å-1 in 

momentum. The BSCCO surfaces were prepared by cleaving along a (001) surface 

normal in a UHV prep chamber. Measurements were performed on three different 
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optimally-doped and four overdoped crystals and tested on several cleaves of the same 

sample. Each figure of this manuscript reports data collected on a single, independent 

cleave. The crystals were oriented by locating elastic scattering from the (1,0) and (0,0) 

(specular) Bragg reflections and building an orientation matrix relating goniometer 

angles to momentum space (19). In this article, Miller indices ( ,K)H  indicate an in-

plane momentum transfer 2 ( , ) /q H K aπ=  , where a = 3.81 Å is the tetragonal lattice 

parameter. All measurements were carried out at a fixed out-of-plane momentum 

transfer of 20L = , defined in terms of a c-axis lattice parameter 30.8 Å-1. Wide-energy 

scans were binned into 30 meV groups to improve statistics.  

 

Determining the susceptibility from M-EELS data. The M-EELS cross section is 

given by (19,21)  

 
2

2
0 ( ) ( , )M q S qσ σ ω

ω
∂

= ⋅
∂Ω∂

 , (3) 

where 0 0 ( ) /i iI E Eσ ω= −  (Ei being the incident electron energy) is a weakly energy-

dependent prefactor and ( , )S q ω  is the dynamic structure factor of the surface. The 

Coulomb matrix element is given by  

 
2

2 2

4( )
( )z z

i s

eM q
q k k

π
=

+ +
 , (4) 

where q is the in-plane component of the momentum transfer, and z
ik  and z

sk  are the 

out-of-plane momenta of the incident and scattered electrons, respectively. As 

described previously (19), we obtained the density response, ( , )qχ ω′′ , using the 

following procedure. First, 2 ( )M q  and 𝜎𝜎0 were divided from the experimental data, 

which yields ( , )S q ω  to within a multiplicative constant. We then removed the Bose 

factor by antisymmetrizing, 

 [ ]( , ) ( , ) ( , )q S q S qχ ω π ω ω′′ = − − −  . (5) 

The overall scale was determined by applying the f-sum rule (19),  

 

*

2
*

0

( , ) ( )
2eff
qq d N
m

ω

ω χ ω ω π ω′′ = −⌠

⌡

 , (6) 
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where m is the bare electron mass and 41.81 10effN −= × Å-3 is the effective carrier 

density derived from the optical loss function integral to ω* = 2.0 eV (23). In addition 

to providing an overall scale, the sum rule normalizes out systematic drifts in the beam 

intensity, changing beam footprint on the sample, etc.  

 

RPA Calculations. The charge susceptibility, ( , )qχ ω′′ , and polarizability, ( , )q ω′′Π , 

reported in Fig. 1 are calculated within the random phase approximation (18) (RPA). 

The bare polarization bubble is determined by use of the Lindhard formula using a 

realistic tight-binding parametrization of the BSCCO band structure (40). The charge 

susceptibility is then determined through Eq. 1 using the Coulomb interaction for a 

layered electron gas, ( )V q , for 2D layers separated by a constant c = 15.4 Å (41).  
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Figures 
 
 

 
 

 
Fig. 1 - Probing anomalous density fluctuations in the normal state of cuprates. 

(A) Scattering geometry of the M-EELS experiment. ik  and fk  represent momenta of 

the incident and scattered electron, respectively, and q is the in-plane momentum 

transfer. (B) Schematic temperature-doping phase diagram of BSCCO showing the 

points investigated in this work, with filled symbols indicating where a complete q-

dependence was carried out. Here, AFI = Antiferromagnetic Insulator, 

PG = Pseudogap, SC = Superconductivity, FL = Fermi liquid, SM = Strange Metal, 

TN = Néel temperature, T* = Pseudogap temperature, Tc = Superconducting critical 

temperature. (C) Charge susceptibility, ( , )qχ ω′′ , of a layered electron gas calculated 

in the random phase approximation (RPA) using the Fermi surface parameterization of 

Ref. 40. (D) Associated charge polarizability ( , )q ω′′Π .  
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Fig. 2 – Continuum collapse in optimally-doped BSCCO. (A) Dynamic charge 

susceptibility, ( , )qχ ω′′ , for a selection of momenta along the (1, 1)  direction at 295 K 

(red symbols). The spectra were divided by q2 and offset for clarity, the base line for 

each curve indicated by the solid line next to its momentum label.  Error bars represent 

statistical, Poisson error. Grey lines are fits to the data using Eqs. 1 and 2 (see text). 

(B)-(D) Parameters used for the fits at every momentum measured (red symbols). 0Π  

represents the overall magnitude of the continuum, cω  is the crossover energy, and 

V(q) is the Coulomb propagator near the surface. The dashed line in panel (B) 

represents a q2 fit. The dashed line in panel (D) represents a fit using 

( ) exp[ ] /V q qz q∝ −  with (8.1 1.5)Åz = ± . Errors in q are given by the experimental 

momentum resolution. Parameter errors represent systematic uncertainty derived from 

a variation of  ±0.5 in the exponent of the ratio ( )c qω ω  in Eq. 2. (E) Scaled collapse 

of the polarizability, ( , )q ω′′Π , for all measured momenta (see text). The grey line is 

the fit function reported in Eq. 2. (F) Plot of the polarizability against the rescaled 

energy / Fv qω , showing 2 2/q ω  behavior above the cutoff. The gray dashed line 

corresponds to 2 2/q ω′′Π ∝ . 
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Fig. 3 – Appearance of an emergent energy scale in overdoped BSCCO. 

Temperature dependent χ″(q,ω) at q = 0.24 r.l.u. along (1, 1) for (A) optimally-doped 

(OP) BSCCO and for (B) overdoped (OD) BSCCO. The OD data show the emergence 

of a ~ 0.5 eV energy scale as the temperature is lowered through the crossover region 

(Fig. 1A) (15).  
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Fig. 4 – Continuum collapse in overdoped BSCCO. (A) Dynamic charge 

susceptibility, ( , )qχ ω′′ , of overdoped BSCCO (Tc = 50 K) for selected momenta along 

the (1, 1) direction at 115 K (red symbols). The spectra were divided by q2 and offset 

for clarity. The spectra were divided by q2 and offset for clarity, the base line for each 

curve indicated by the solid line next to its momentum label. Error bars represent 

statistical, Poisson error. Grey lines represent fits to the ω > 0.5 eV region of the 

spectrum using Eqs. 1 and 2. (B)-(D) Parameters used for the fits at every momentum 

measured (red symbols). 0Π  represents the overall magnitude of the continuum, cω  is 

the crossover energy, and V(q) is the Coulomb propagator near the surface. The dashed 

line in panel (B) represent a q2 fit. The dashed line in panel (D) represents a fit using 

( ) exp[ ] /V q qz q∝ −  with (13.23 0.60)Åz = ± . Errors in q are given by the 

experimental momentum resolution. Parameter errors are the systematic uncertainty 

derived from a variation of ±0.5 in the exponent of the ratio ( )c qω ω  in Eq. 2. (E) 

Scaled collapse of the polarizability, ( , )q ω′′Π , for all measured momenta (see text). 

The grey line from Fig. 2E is reproduced here for visual comparison to the gap-like 
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feature. (F) Plot of the polarizability against the rescaled energy / Fv qω , showing 

2 2/q ω  behavior above the cutoff. The gray dashed line corresponds to 2 2/q ω′′Π ∝ . 
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Fig. S1 – Comparison with previous transmission and reflection EELS data. 

Experimental loss function of BSCCO at 295 K along the (1,0) direction for q=0.05 

r.l.u. (red) compared to a rescaled transmission EELS measurement for q=0.08 r.l.u. 

reproduced from Ref. 1 (blue) and to a rescaled reflection EELS spectrum at q=0.06 

r.l.u. (grey) reproduced from Ref. 2. 
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Fig. S2 – Momentum space anisotropy of the χ”(q,ω) at optimal doping. (A) Sketch 

of the 2D projected BSCCO Brillouin zone sector with the nodal direction orthogonal 

to the superlattice modulation.  The red arrow indicates the (1, 1�) direction, while the 

grey arrow is oriented along the antinodal (1,0) direction. (B) Imaginary susceptibility 

χ”(q,ω) of optimally-doped BSCCO for selected momenta along the (1, 1�)  (red) and 

(1,0) (grey) directions at 295 K (left) and 23 K (right). The spectra are normalized as 

described in the Methods, divided by q2 and offset for clarity. Data are binned to 30 

meV. Error bars represent statistical, Poisson error. 

 

Fig. S3 – High-resolution scans of optimally-doped BSCCO phonons. Normalized 

EELS intensity at q=0 for T = 295 K (red) and 20 K (blue). These data were acquired 

with 7 eV incident electron energy and 2 meV resolution. The dashed grey line is a 

low-energy extrapolation of the continuum discussed in the main text. 



 

 

Fig. S4 – Continuum collapse in overdoped BSCCO at 295 K. (A) Dynamic charge 

susceptibility, ( , )qχ ω′′ , of overdoped BSCCO (Tc = 50 K) for selected momenta along 

the (1, 1) direction at 295 K (red symbols). The spectra were divided by q2 and offset 

for clarity. The base line for each curve is indicated by the solid line next to its 

momentum label. Error bars represent statistical, Poisson error. Grey lines represent fits 

to the data using Eqs. 1 and 2 of the main text. (B)-(D) Parameters used for the fits at 

every momentum measured (red symbols). 0Π  represents the overall magnitude of the 

continuum, cω  is the crossover energy, and V(q) is the Coulomb propagator near the 

surface. The dashed line in panel (B) represents a q2 fit. The dashed line in panel (D) 

represents a fit using ( ) exp[ ] /V q qz q∝ −  with (28.2 1.2)z Å= ± . Errors in q are given 

by the experimental momentum resolution. Parameter errors represent systematic 



uncertainty derived from a variation of  ±0.5 in the exponent of the ratio ( )c qω ω  in 

Eq. 2. (E) Scaled collapse of the polarizability, ( , )q ω′′Π , for all measured momenta 

(see text). The grey line is the fit function reported in Eq. 2. (F) Plot of the polarizability 

against the rescaled energy / Fv qω , showing 2 2/q ω  behavior above the cutoff. The 

gray dashed line corresponds to 2 2/q ω′′Π ∝ . 
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