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Abstract

The Majda-Rosales-Schonbek (MRS) system, obtained through an asymptotic expansion of the non-

isentropic compressible Euler equations in one space dimension, describes resonant interactions of

small amplitude, spatially periodic sound waves with a small amplitude entropy wave. In particular,

we are interested in when a small-amplitude smooth solution develops singularities. Previous work

has shown that for small initial data or order ✏, the solution will remain smooth for time O( log ✏
✏
).

However, numerical simulations suggest the lifespan of small initial data can be extended to O( 1
✏2
).

In this paper, we will explore multiple approaches that are often used to prove extended lifespans

of quadratically quasilinear PDEs, which usually corresponds to an O(1
✏
) lifespan of small smooth

solutions.

An asymptotic expansion of the MRS system produces a Degenerate Quasilinear Schrodinger (DQS)

equation, which formally describes the behavior of small solutions of the MRS system on order

O( 1
✏2
) timescale. The degeneracy of the equation makes it very di�cult to obtain well-posedness

results. In fact, previous work by Jeong and Oh has shown the DQS equation is ill-posed in Hs

for su�ciently large s. However, we will show that the equation is well-posed in a highly restricted

function space of compactly supported solutions with su�cient endpoint decay.

Numerical simulations of the DQS equation appear to confirm that it does provide a good asymp-

totic description of the behavior of the MRS solutions on timescale O( 1
✏2
). In addition, we study

the possible existence of compactly supported solutions through numerical simulations. The nu-

merical results of a front spreading solution seem to suggest that, in the absence of dissipation, a

compactly supported initial pulse forms oscillations that spread to ±1 once a singularity occurs,

and therefore, does not stay compact for later time.
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CHAPTER 1

Introduction

1.1. Gas Dynamics

The compressible Euler equations are one of the most widely known systems of nonlinear PDEs

describing gas dynamics. The Euler equations were first published in 1757 (see [6] for history of

the Euler equations). However, considerable gaps in knowledge still exist in many aspects of the

equations. In particular, we are interested in the behavior of spatially periodic solutions. The

compressible Euler equations in one space dimension are given by

⇢t + (⇢u)x = 0

(⇢u)t + (⇢u2 + p)x = 0

Et + (u(E + p))x = 0.

(1.1)

Assume we are working with a polytropic ideal gas, for which

e = (� � 1)�1 p

⇢
where � is the ratio of specific heats,

and energy E is given by

E = ⇢(e+
1

2
u2).

From thermodynamic relations (see [53]), we can get the entropy relation

p = ⇢�eS/cv ,

where S is the entropy, cv is the speed of sound, and  is a constant.

Then, we can write the system in ⇢, u, p

(1.2)

2

6664

⇢

u

p

3

7775

t

+

2

6664

u ⇢ 0

0 u 1
⇢

0 �p u

3

7775

2

6664

⇢

u

p

3

7775

x

= 0.
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If the flow is isentropic, which means the entropy is a constant, the last equation of (1.1) can be

dropped and the first two equations become a closed system [53]. The isentropic Euler equations

are

⇢t + (⇢u)x = 0

(⇢u)t + (⇢u2 + p)x = 0.
(1.3)

The non-isentropic Euler equations (1.1) and the isentropic Euler equations (1.3) are two of the

most important systems of hyperbolic conservation laws

(1.4) ut + f(u)x = 0

where u = u(x, t) 2 Rn and x 2 Rm.

There has been much work on shock formation of hyperbolic systems. It is established that we can-

not obtain global existence of smooth solutions for hyperbolic systems with genuine non-linearity.

Lax first proved the result for 2 ⇥ 2 strictly hyperbolic systems ( [31]). It was then extended to

n⇥n hyperbolic systems by John in [11], and improved by Liu in [34] to allow linearly degenerate

characteristic fields. Here, genuinely non-linear and linearly degenerate characteristic fields are

defined in the sense of [31] and [34] respectively,

r�i(u)ri(u) 6= 0 (genuinely non-linear)

r�i(u)ri(u) ⌘ 0 (linearly degenerate)

where �i is the i-th eigenvalue of rf in (1.4), and ri is the corresponding eigenvector. Nevertheless,

the non-isentropic Euler equations do not satisfy the genuinely nonlinear requirement and we can

not apply the aforementioned theory.

The behavior of smooth solutions of the non-isentropic Euler equations is a long standing problem.

Recent work [51] by Temple and Young proved global existence of spatially periodic solutions.

Recent works [3], [43], and [37] proved that there exist smooth solutions to the non-isentropic

Euler equations which form a stable shock by constructing steep initial data that imitates a shock

(see [37] for proof in 1D, and [3], [43] in multi-D). The general theory of shock formation in

non-isentropic Euler is still to be understood.
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Glimm first proved global existence of weak solutions with small total variation in n⇥n hyperbolic

systems, both genuinely non-linear and linearly degenerate (see [7] [18]). This is one of the most

fundamental results on hyperbolic systems. Unfortunately, the problem of existence theory on

data with large variation, for example, spatially periodic solutions, for 3 ⇥ 3 non-isentropic Euler

equations is still open.

The famous work by James Glimm and Peter Lax proved the global existence of weak solutions of

2⇥ 2 hyperbolic systems of conservation laws, provided that the initial data has su�ciently small

sup-norm (see [19] [32]). Here, admissable weak solutions are taken to be those with shocks that

satisfy the Rankine–Hugoniot jump condition. In addition, the Glimm-Lax theory shows if the

initial data is spatially periodic, then the solution decays like 1
t
. However, the theory provided by

Glimm and Lax only applies to 2 ⇥ 2 hyperbolic systems, such as the isentropic Euler equations

(1.3), and does not extend to the 3⇥ 3 non-isentropic Euler equations (1.1).

We follow the approach in [35] and use the method of multiple scales to study the propagation of

small amplitude high frequency solutions of non-isentropic Euler equations.

1.2. The Majda-Rosales-Schonbek System for Entropy-Sound Wave Interaction

The non-isentropic Euler equations (1.2) have three eigenvalues

�1 = u+ c, �2 = u, �3 = u� c,

where c =
q

�p

⇢
is the speed of sound. The corresponding eigenvectors ri are given by

r1 =

2

66664

⇢
q

�p

⇢

�p

3

77775
, r2 =

2

6664

1

0

0

3

7775
, r3 =

2

66664

⇢

�

q
�p

⇢

�p

3

77775
.

Here, �1,�3 correspond to two sound waves traveling in opposite directions with velocities ±c

relative to the fluid velocity u. And �2 corresponds to an entropy wave that propagates with the

fluid velocity.

Majda, Rosales, and Schonbek ( [35]) studied the resonant interaction of small amplitude, spatially

periodic sound waves with a small amplitude entropy wave. In particular, the system describes the

reflection of sound waves o↵ of a background entropy wave. We look at the perturbation around a

3



constant background state u0 =
h
⇢0 0 p0

iT
. Consider the set of phases '1,'2,'3

'1 = x� c0t, '2 = 2x, '3 = x+ c0t,

where c0 =
q

�p0
⇢0

. We then consider the perturbation u = u0+✏(u1+u2+u3) where ui = ai(t,
'i
✏
)ri.

The perturbation does not depend on x explicitly. The calculation then shows a2 is independent

of t, therefore, the expansion has the form

u =

2

6664

⇢0

0

p0

3

7775
+ ✏

8
>>>><

>>>>:

a1(t,
x� c0t

✏
)

2

66664

⇢0
q

�p0
⇢0

�p0

3

77775
+ a2(

2x

✏
)

2

6664

1

0

0

3

7775
+ a3(t,

x+ c0t

✏
)

2

66664

⇢0

�

q
�p0
⇢0

�p0

3

77775

9
>>>>=

>>>>;

.

Define ✓ = �j

✏
and aj(t, ✓) = aj(t,

�j

✏
). In other words, aj(t, ✓) is evaluated at di↵erent ✓ value for

di↵erent j. Then u can also be written as

u =

2

6664

⇢0

0

p0

3

7775
+ ✏

8
>>>><

>>>>:

a1(t, ✓)

2

66664

⇢0
q

�p0
⇢0

�p0

3

77775
+ a2(✓)

2

6664

1

0

0

3

7775
+ a3(t, ✓)

2

66664

⇢0

�

q
�p0
⇢0

�p0

3

77775

9
>>>>=

>>>>;

The asymptotic expansion then provides equations for the sound waves. After normalization and

a change of notation (u = a1, v = a3, x = ✓), we get the following system

ut+(
1

2
u2)x +

Z 1

0
K(x� y)v(y, t)dy = 0

vt+(
1

2
v2)x �

Z 1

0
K(y � x)u(y, t)dy = 0

where K(x) =
@a2
@x

.

(1.5)

See [35] for details of the expansion.

Majda, Rosales, and Schonbek examined the case where u(t, x), v(t, x) are 1-periodic with zero

mean with respect to x, and a2 is a spatially periodic function

a2 = x�
1

2
0 < x < 1.

4



Then K(x) = 1 �
P1

n=�1 �(x � n) and (1.5) reduces to the following system, which we will call

the Majda-Rosales-Schonbek (MRS) system.

ut + (
1

2
u2)x = v

vt + (
1

2
v2)x = �u.

(1.6)

This particular choice of K gives us a system of PDEs, instead of integro-di↵erential equations like

equation (1.5) with general K. In addition, the MRS equations are non-dispersive, as we will show

in section 3.6. The non-dispersive nature gives rise to some complicated dynamics, which we will

demonstrate in section 3.1.

Note that the asymptotic derivation above is on the formal level. It has been proved by Schochet

in [41] that weak solutions of the non-isentropic compressible Euler equations (1.1) with O(✏) initial

data tend to the solution of the asymptotic MRS equations as ✏ ! 0. Therefore, the MRS system

indeed describes the asymptotic behavior of resonant interactions between high frequency, small

amplitude, spatially periodic sound waves in the non-isentropic Euler equations.

1.3. Motivation for Extended Lifespan

Suppose we let k = 0 in (1.5), then (1.5) becomes the decoupled inviscid Burgers equations

ut + (
1

2
u2)x = 0

vt + (
1

2
v2)x = 0.

We know for non-zero periodic smooth initial data, solutions form shocks in time 1
✏|M | , where M is

the minimum of the space derivative of the initial data [53]. Therefore, the initial value problem

with |M |  ✏ has smooth solutions on t 2 [0, 1
✏
]. However, when K 6= 0, the interaction between

u and v could delay the formation of shocks. For example, the author of [38] constructed global

smooth solutions to the equations (1.5) with

K = �4⇡ sin 4⇡x

that never develop shocks.

5



We expect the coupling in (1.6) to delay or prevent breaking. We can see this e↵ect by looking at

the linearized equations

ut = v, vt = �u.

For short time (t), the solutions should behave almost linearly. Consider the following solution

u = sin(t)f(x), v = cos(t)f(x)

where f(x) is some arbitrary function of x.

During the cycle t 2 [0, 2⇡), we can see that the non-linear terms uux, vvx – responsible for the

shock formation – have opposite signs during the first half half of the period (t 2 [0,⇡)) and the

second half (t 2 [⇡, 2⇡)). The oscillation in u, v produces half compression e↵ect and half expansion

e↵ect in each cycle. The nonlinear e↵ect that enables shocks to form is o↵setting itself during each

cycle and could therefore lead to a longer lifespan of smooth solutions.

1.4. The DQS Equation

Standard asymptotic expansion of the MRS equations gives us a Degenerate Quasilinear Schrodinger

(DQS) equation. The derivation is on a formal level, but it provides more insight into the behavior

of O(✏) solutions of the MRS system on O( 1
✏2
) timescale. The DQS equation is given by

(1.7) iAt + (|A|
2Ax)x = 0

where the A corresponds to the MRS variables u, v on the leading order by the following relation

A = �i

r
3

2
(u+ iv).

For simplicity, we will rename the function A as u. The DQS equation then becomes

(1.8) iut + (|u|2ux)x = 0.

The time variable t in (1.8) is evaluated on the O( 1
✏2
). In other words, the behavior of the DQS

equation at t = T corresponds to the behavior of the MRS equations at time t = T

✏2
. Here, we only

state the equation; the full derivation will be delayed until 5.1.

6



The equation (1.8) is an example of degenerate dispersive equations: the dispersive e↵ect weakens as

u ! 0. Similar degenerate dispersive e↵ect can be found in other equations or physics phenomenon,

such as shallow water waves with the Camassa-Holm equation (see [4], [21]) and magma dynamics

(see [47]).

There have been many works on well-posedness of non-degenerate quasilinear dispersive equations

(e.g. [5], [26]). Kenig, Ponce and Vega’s work in ( [5]) is fundamental in this area; it provides general

local well-posedness theory for a large class of non-degenerate quasilinear Schrodinger equations.

The authors of [36] proved the short-time well-posedness for a class of quasilinear Schrodinger

equations with large initial data. Unfortunately, these techniques break down when the equation

is degenerate, and the equation may become ill-posed.

In particular, we can observe the di�culties that arise from the degeneracy by applying a weighted

energy method to the DQS equation. The method follows from Takeuchi’s work in [49] (also

see [33]). The goal is to avoid the loss of derivatives in the standard Hs energy estimate. As we

will show in section 5.7, the growth of the weighted energy cannot be conrtolled by itself due to

the degeneracy.

[29] has proved that the DQS equation (1.8) is ill-posed in Hs with s > 9
2 . The ill-posedness of

degenerate dispersive equations is not an isolated phenomenon. For example, [1] proved the H2

ill-posedness of the degenerate quasilinear KdV equation

ut = 2uuxxx + 6uxuxx + 2uux.

The next hope is naturally local well-posedness in analytic functions, but standard methods such

as the Cauchy-Kovalevskaya method and the Nash-Moser method also appear to fail due to the

degeneracy. However, we can follow the work in [20] and prove that the DQS equation is well-posed

in a highly restricted function space of compactly supported solutions that decay su�ciently fast

at the endpoints.

1.5. Outline

In chapter 2, we study the Burgers-Hilbert equation, which resembles the MRS system in many

ways. We will discuss the similarities between the Burgers-Hilbert equation and the MRS system,

and present various methods previous works have employed to prove the small solution lifespan. We

7



will then show the di�culties we encountered when applying these methods to the MRS system in

chapter 3. In 4, we present some numerical simulations that support the O( 1
✏2
) lifespan hypothesis

and also note the behavior of some interesting initial data. In chapter 5, we first show the derivation

of the asymptotic DQS equation and study some of its basic properties. We then discuss its ill-

posedness in Hs spaces, and prove a well-posedness result in a subspace following the method

in [20]. In chapter 6, we present a hypothesis on compactly supported solutions which our numerical

simulations suggest.

8
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CHAPTER 2

The Burgers-Hilbert Equation

The MRS system shares some similarities with the following quasi-linear equation, called the

Burgers-Hilbert equation

ut + ✏(
1

2
u2)x = H[u](2.1)

where H[u] is the Hilbert transform of u, given on R by

H[u](t, x) =
1

⇡
p.v.

Z 1

�1

u(t, y)

x� y
dy.(2.2)

Apply Hilbert Transform to (2.1) and let h := H[u], we obtain the following system

ut + ✏(
1

2
u2)x = h(2.3)

ht + ✏H[(
1

2
u2)x] = �u.(2.4)

We can see that the system has the same linear terms as the MRS system (3.1). The dispersion

relation of the Burgers-Hilbert equation, though di↵erent from that of the MRS equations, exhibits

similar complicated behavior. In particular, both the Burgers-Hilbert equation and the MRS equa-

tions have 4-wave resonances, but not 3-wave resonances. A more detailed discussion on this topic

will be delayed until section 3.1.

The work in [22], [23], and [40] proved the O( 1
✏2
) lifespan of smooth solutions of the Burgers-Hilbert

equation. We quote the following theorem from [22]

Theorem 2.0.1. Suppose that u0 2 H2(R). There are constants k > 0 and ✏0 > 0, depending only

on ||u0||H2, such that for every ✏ with |✏| < ✏0 there exists a solution

u 2 C(I✏;H2(R)) \ C1(I✏;H1(R))

of (2.1) defined on the time interval I✏ =
⇥�k

✏2
, k

✏2

⇤
.

10



[22] proves the above theorem using a method called Normal Form Flow (NFF), while [23] uses

a modified energy method to reach the same result. Both methods are motivated by the standard

Normal Form Transformation (NFT). As we will show in 2.3, direct application of NFT does not

work on Burgers-Hilbert equation, therefore, the authors devised these workarounds to solve the

di�culties. The same problem can be observed when applying the NFT method to the MRS

system. Therefore, we will study the aforementioned methods and attempt to apply them to the

MRS system.

Outline of Chapter 2: We first give an overview on the standard NFT method and explain how,

when combined with energy estimates, it’s used to to prove the O( 1
✏2
) lifespan. In section 2.3, we

show that the naive NFT method on the Burgers-Hilbert equation causes loss of derivatives, and

does not prove the extended lifespan we want. In sections 2.4 and 2.6, we show the two methods

mentioned above: the modified energy method, and the NFF method. In section 2.5, we show that

the time-resonance method (see [12]) can be used to prove the O( 1
✏2
) lifespan of the Burgers-Hilbert

equation as well.

2.1. Proving Local Existence with Method of Energy Estimates

The method of energy estimates is one of the most widely used methods in proving local existence

of solutions. We first give a brief discussion on the standard energy estimate arguments. In the

next section, we will show how the NFT method can be employed to extend this lifespan.

Since both the MRS system and the Burgers-Hilbert equation are quasi-linear hyperbolic PDEs,

we will show the application of the energy estimate arguments on this particular class of equations.

Consider a quasi-linear hyperbolic system

a0(t, x, u)
@u

@t
+

mX

j=1

aj(t, x, u)
@u

@xj
= f(t, x, u)

u(0, x) = u0(x)

0  t  T, x 2 Rm, u(t, x) 2 Rn.

(2.5)

There are many well-established results on the local existence of quasi-linear hyperbolic systems

(see [30] [50]). In general, we can expect local existence of the initial value problem (2.5) with

u0 2 Hs, provided that the coe�cients aj are su�ciently smooth and s is large enough.

11



The key idea of the argument is to obtain an estimate, called the energy estimate, that controls

the time evolution of the energy, most commonly taken to be the Sobolev norm of the solution

(see [27]). In the simplest case, we hope to prove

(2.6)
d

dt
||u||Hs  C(||u||Hs)n

where the constant C is independent of u and n > 1. By Gronwall’s inequality, if u(t, ·) exists, then

(2.7) ||u(t, ·)||Hs < 1 when 0 < t < T

where T = 1
C
||u0||

1�n

Hs .

Combining (2.7), local existence theory of (2.5), and using an open and closed argument, we can

prove the initial value problem (2.5) has a solution u 2 C [0, T ;Hs(R)].

Note that although Hs norm is a common choice for energy, sometimes it does not produce a good

estimate like (2.6). One possible fix is to construct a di↵erent energy E(u) that’s more suitable for

the specific equation. The modified energy method in 2.4 is one example of this approach.

2.2. Normal Form Transformation

A normal form transformation is typically used to improve the energy estimate and obtain a longer

lifespan for small solutions by eliminating lower order nonlinear terms.

This method was first developed in the theory of Ordinary Di↵erential Equations (see [2]). Jalal

Shatah (see [42]) then introduced it to PDE and used it to prove long time existence of a nonlinear

Klein-Gordon equation

(@2
t �4+ 1)u+ f(u, @u, @2u) = 0

u(0) = u0 @tu(0) = u1

(2.8)

where f is a smooth function of degree 2. Both the Burgers-Hilbert equation and the MRS system

are quasi-linear hyperbolic PDEs with symmetric quadratic non-linearity. Therefore, we will work

with the following more general form

ut = L(u) +Q(u, u), u(t, x) = u0

where L(u) is linear and Q(u, u) is a symmetric bilinear operator.
(2.9)

12



The goal is to prove for some ✏ ⌧ 1, if the initial data is small enough

||u0||Hs  ✏

then there exists solution u 2 C
�
0, ↵

✏2

�
of the equation (2.9), where ↵ is a constant.

To make things easier, we first re-scale the equation u by a factor of 1
✏
and get the following

equivalent problem

ut = L(u) + ✏Q(u, u).(2.10)

In this form, the question becomes showing the solution exists up to time T ⇤ = ↵

✏2
for initial data

||u0||Hs  1. In other words, the initial value problem (2.9) with ||u0||Hs  ✏ is equivalent to the

rescaled problem (2.10) with ||u0||Hs  1.

Since the nonlinear term in (2.10) is quadratic (with coe�cient ✏), standard energy estimate on the

equation, if closed, will give us an order O(✏) inequality

@

@t
||u||Hs . ✏f(||u||H2)

for some function f . Therefore, we only get existence on time scale O(1
✏
) at best.

The objective of the NFT method is to use the linear term to cancel out the quadratic term and

obtain a cubic non-linearity which is of order O(✏2). We apply the following transformation, called

the normal form transformation, on the variable u

(2.11) v = u+
✏

2
A(u, u)

where A is also a symmetric bilinear operator. We then get an equation on the transformed variable

v

vt = L(v)�
✏

2
L(A(u, u)) + ✏A(u, L(u)) + ✏Q(u, u) + ✏2A(u, ✏Q(u, u)).

To remove the quadratic term in the equation, the operator Amust satisfy the homological equation

(2.12)
1

2
L(A(u, u))�A(u, Lu) = Q(u, u).

13



This gives a cubically nonlinear equation

vt = L(v) + ✏2A(u,Q(u, u)).

If the energy of v is equivalent to the energy of u, i.e. ||v||Hs ⇠ ||u||Hs , then we can try to obtain

an energy estimate on v. The energy estimate, if successfully closed, may then lead to existence of

solutions on time scale O( 1
✏2
).

2.3. NFT on Burgers-Hilbert

We start by applying the standard NFT method on the Burgers-Hilbert equation. Using the

homological equation (2.12), we can obtain the NFT variable of the equation

(2.13) v = u+
1

2
✏|@x|(h

2).

Here, h = H[u] and |@x| = H@x. Taking the Hilbert transform of the equation and letting g = H[v],

we get

(2.14) g = h� ✏hhx.

The transformed equation is given by

vt = H[v]� ✏2|@x| [hH[uux]] .

However, direct energy estimate on v gives

(2.15)
d

dt
||@k

xv||
2
L2 . ✏2||ux||

2
L1 ||u||2

Hk+1

and it doesn’t close due to the loss of derivative.

2.4. Modified Energy method

The Normal Form Transform (2.14) gives rise to a modified energy method [23]. As we mentioned

above, the energy estimate (2.15) doesn’t close. However, a direct energy estimate on u does close.

The disparity is caused by the fact that Hk norms of u, v are not comparable.

14



From (2.13), we can calculate directly

||@k

xv||
2
L2 = ||@k

xu||
2
L2 + 2✏ < @k

xu, @
k

xH[HuHux] > +✏2||@k

xH[HuHux]||
2
L2 .

We can see the third term ✏2||@k
xH[HuHux]||L2 is the term that causes the loss of derivatives in the

energy estimate. However, this term does not a↵ect the fact that the energy estimate is cubically

non-linear. In other words, if we drop the last term and only keep the first two terms, defining a

modified energy

(2.16) Ek(u) =
1

2
||@k

xu||L2 + ✏ < @k

xu, @
k

xH[HuHux] >,

the energy estimate d

dt
Ek(u) is still of order O(✏2), and we should be able to close the energy

estimate now that the problematic term is gone.

Lemma 2 in [23] shows that the energy defined as (2.16) is comparable to the standard Hk energy

for ✏ ⌧ 1. The authors then proved this modified energy indeed closes the estimate.

2.5. Time Resonance

In this section, we show that we can use a di↵erent approach – the time resonance method – to

obtain the same modified energy as we discussed in 2.4. This method was developed by Germain,

Masmoudi, and Shatah (see [15], [16], [17]), and an overview can be found at [12]. We will show

that this method gives us the modified energy (2.16).

The Hilbert Transform (2.2) is a multiplier operator with the multiplier being �i sgn ⇠, i.e.

F(H[u])(⇠) = �i sgn ⇠F(u)(⇠)

where the Fourier transform is defined by

F(u)(⇠) = û(⇠) =
1

2⇡

Z 1

�1
u(x)e�i⇠x d⇠.

Since it’s much easier to handle the symbol of Hilbert Transform than Hilbert Transform itself, we

will work in the frequency domain. Taking the Fourier Transform of the Burgers-Hilbert equation

(2.1), we get

(2.17) ût + ✏û ⇤cux = �i sgn ⇠û.

15



We first find solutions to the linearized Initial Value Problem

ut = H[u]

u(0, x) = u0(x).

Again, taking the Fourier Transform, we get

ût = �i sgn(⇠)û

ût(0, ⇠) = û0(⇠).

The solution is then given by

û(t, ⇠) = e�i sgn(⇠)tû0(⇠).

Define v : R2
! R by

(2.18) û(t, ⇠) = e�i sgn(⇠)tv̂(t, ⇠).

Then equation (2.17) becomes

e�i sgn(⇠)tv̂t � i sgn(⇠)e�i sgn(⇠)tv̂ + ✏(e�i sgn(⇠)tv̂) ⇤ (i⇠e�i sgn(⇠)tv̂) = �i sgn(⇠)e�i sgn(⇠)tv̂

v̂t(t, ⇠) = �✏ei sgn(⇠)t
Z 1

�1
i⌧e�i(sgn(⇠�⌧)+sgn(⌧))tv̂(t, ⇠ � ⌧)v̂(t, ⌧) d⌧.

(2.19)

We can rewrite the solution v as:

v̂(t, ⇠) = v̂0(⇠)� ✏

Z
t

0
ei sgn(⇠)s

Z 1

�1
i⌧e�i(sgn(⇠�⌧)+sgn(⌧))sv̂(s, ⇠ � ⌧)v̂(s, ⌧) d⌧ ds.

Using integration by parts, we get

v̂(t, ⇠) = v̂0(⇠)� ✏

Z
t

0

Z 1

�1

1

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)

d

ds
(ei(sgn(⇠)�sgn(⇠�⌧)�sgn(⌧))s)⌧ v̂(s, ⇠ � ⌧)v̂(s, ⌧) d⌧ ds

= v̂0(⇠)� ✏

Z 1

�1

⌧

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)
ei(sgn(⇠)�sgn(⇠�⌧)�sgn(⌧))tv̂(t, ⇠ � ⌧)v̂(t, ⌧) d⌧

+ ✏

Z 1

�1

⌧

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)
v̂0(⇠ � ⌧)v̂0(⌧) d⌧

+ ✏

Z
t

0

Z 1

�1

⌧ei(sgn(⇠)�sgn(⇠�⌧)�sgn(⌧))s

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)
(v̂t(s, ⇠ � ⌧)v̂(s, ⌧) + v̂(s, ⇠ � ⌧)v̂t(s, ⌧)) d⌧ ds.

(2.20)
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Combining (2.19) and (2.20), we get

v̂(t, ⇠) = v̂0(⇠)� ✏

Z 1

�1

⌧

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)
ei(sgn(⇠)�sgn(⇠�⌧)�sgn(⌧))tv̂(t, ⇠ � ⌧)v̂(t, ⌧) d⌧

+ ✏

Z 1

�1

⌧

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)
v̂0(⇠ � ⌧)v̂0(⌧) d⌧

� ✏2
Z

t

0

Z 1

�1

Z 1

�1

i⌧⌘ei(sgn(⇠)�sgn(⌧)�sgn(⇠�⌧�⌘)�sgn(⌘))s

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)
v̂(s, ⇠ � ⌧ � ⌘)v̂(s, ⌘)v̂(s, ⌧) d⌘ d⌧ ds

� ✏2
Z

t

0

Z 1

�1

Z 1

�1

i⌧⌘ei(sgn(⇠)�sgn(⇠�⌧)�sgn(⌧�⌘)�sgn(⌘))s

sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)
v̂(s, ⌧ � ⌘)v̂(s, ⌘)v̂(s, ⇠ � ⌧) d⌘ d⌧ ds.

(2.21)

We can simply equation (2.21) by defining the following variables

↵ = sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧)

� = sgn(⇠)� sgn(⌧)� sgn(⇠ � ⌧ � ⌘)� sgn(⌘)

� = sgn(⇠)� sgn(⇠ � ⌧)� sgn(⌧ � ⌘)� sgn(⌘).

Then (2.21) becomes

v̂(t, ⇠) = v̂0(⇠)� ✏

Z 1

�1

⌧

↵
ei↵tv̂(t, ⇠ � ⌧)v̂(t, ⌧) d⌧ + ✏

Z 1

�1

⌧

↵
v̂0(⇠ � ⌧)v̂0(⌧) d⌧

� ✏2
Z

t

0

Z 1

�1

Z 1

�1

i⌧⌘

↵
ei�sv̂(s, ⇠ � ⌧ � ⌘)v̂(s, ⌘)v̂(s, ⌧) d⌘ d⌧ ds

� ✏2
Z

t

0

Z 1

�1

Z 1

�1

i⌧⌘

↵
ei�sv̂(s, ⌧ � ⌘)v̂(s, ⌘)v̂(s, ⇠ � ⌧) d⌘ d⌧ ds.

Di↵erentiating with respect to t gives

d

dt
(v̂ + ✏B) = �✏2 (I1 + I2)

B =

Z 1

�1

⌧

↵
ei↵tv̂(t, ⇠ � ⌧)v̂(t, ⌧) d⌧

I1 =

Z 1

�1

Z 1

�1

i⌧⌘

↵
ei�sv̂(s, ⇠ � ⌧ � ⌘)v̂(s, ⌘)v̂(s, ⌧) d⌘ d⌧

I2 =

Z 1

�1

Z 1

�1

i⌧⌘

↵
ei�sv̂(s, ⌧ � ⌘)v̂(s, ⌘)v̂(s, ⇠ � ⌧) d⌘ d⌧.

(2.22)
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Since taking k derivatives is equivalent to multiplying by (i⇠)k in the Fourier space, we multiply

the previous equation by ⇠2kv̂⇤ and integrate with respect to ⇠.

Z 1

�1
⇠2kv̂⇤(t, ⇠)v̂t(t, ⇠) d⇠ + ✏

Z 1

�1
⇠2kv̂⇤(t, ⇠)Bt d⇠ = �✏2

Z 1

�1
⇠2kv̂⇤(I1 + I2) d⇠.(2.23)

To construct an energy, we have to move the time derivative in the second term of (2.23) to the

outside. Applying the product rule and using (2.19) gives us

Z 1

�1
⇠2kv̂⇤(t, ⇠)Bt d⇠ =

d

dt

Z 1

�1
⇠2kv̂⇤(t, ⇠)B d⇠ �

Z 1

�1
⇠2kv̂t

⇤(t, ⇠)B d⇠

=
d

dt

Z 1

�1
⇠2kv̂⇤(t, ⇠)B d⇠ � ✏

Z 1

�1

Z 1

�1
i⇠2k⌧e�i↵tv̂⇤(t, ⇠ � ⌧)v̂⇤(t, ⌧)B d⌧ d⇠.

(2.24)

Combining (2.23) and (2.24), we get

Z 1

�1
⇠2kv̂⇤(t, ⇠)v̂t(t, ⇠) d⇠ + ✏

d

dt

Z 1

�1
⇠2kv̂⇤(t, ⇠)B d⇠ = �✏2

Z 1

�1
⇠2kv̂⇤(I1 + I2) d⇠ +G

�
,

where G = �
R1
�1

R1
�1 i⇠2k⌧e�i↵tv̂⇤(t, ⇠ � ⌧)v̂⇤(t, ⌧)B d⌧ . Adding the complex conjugate and mul-

tiplying by 1
2 , we get

d

dt

⇢
1

2

Z 1

�1
⇠2k|v̂|2 d⇠ + ✏<

Z 1

�1
⇠2kv̂⇤(t, ⇠)B d⇠

��
= �

✏2

2

Z 1

�1
⇠2kv̂⇤(I1 + I2) d⇠ +G

�
.(2.25)

We then define the energy to be

Ek =
1

2

Z 1

�1
⇠2k|v̂|2 d⇠ + ✏<

Z 1

�1
⇠2kv̂⇤(t, ⇠)B d⇠

�
.(2.26)

Obviously, this energy satisfies the requirement d
dtEk = O(✏2), which is necessary to prove O( 1

✏2
)

lifespan of small smooth solutions. It remains to check this definition is the same as the modified

energy (2.16).

Using (2.26), (2.22), and (2.18), we get

Ek =
d

dt

⇢
1

2

Z 1

�1
⇠2k|v̂|2 d⇠ + ✏<

Z 1

�1

Z 1

�1
⇠2k

⌧

↵
ei↵tv̂(t, ⇠ � ⌧)v̂(t, ⌧)v̂⇤(t, ⇠) d⌧ d⇠

��

=
d

dt

⇢
1

2

Z 1

�1
⇠2k|û|2 d⇠ + ✏<

Z 1

�1

Z 1

�1
⇠2k

⌧

↵
û(t, ⇠ � ⌧)û(t, ⌧)û⇤(t, ⇠) d⌧ d⇠

��
.

(2.27)
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Using the fact ↵ = sgn(⇠) � sgn(⇠ � ⌧) � sgn(⌧) = �↵ = sgn(⇠) sgn(⇠ � ⌧) sgn(⌧), it can be easily

verified that (2.27) is equivalent to the modified energy (2.16), and (2.25) gives closed energy

estimates as before.

2.6. Normal Form Flow

In [22], the authors propose to replace the NFT (2.14) by a continuous flow, which we call the

Normal Form Flow (NFF).

In the naive NFT scheme (2.14), we are transforming the variable h into g. We can construct a

transformation flow G(x, t; ✏0) explicitly. The function G takes the value h at ✏0 = 0, and flows it

to the value g at ✏0 = ✏.

G⌧ = �hhx(2.28)

G(x, t; 0) = h, G(x, t; ✏) = g.

Since h = G(x, t; 0), the Normal Form Transformation (2.28) is essentially a first order approxima-

tion of the following continuous flow, which we call the Normal Form Flow

G✏0 = �GGx

G(t, x; 0) = h(t, x).
(2.29)

Here, G is a continuous flow with initial data h and we consider the flow G at ✏0 = ✏.

Equation (2.29) can be solved explicitly using characteristics:

(2.30) G(t, ⇠; ✏) = h(t, x), x = ⇠ � ✏G(t, x; ✏).

The map h(t, x) ! G(t, x; ✏) is bounded and invertible. The inverse map is also bounded. Therefore,

it su�ces to show that G(t, x; ✏) has cubic energy estimate.

From (2.30), we get the following equalities by the chain rule

ht =
Gt

1� ✏G⇠

, hx =
G⇠

1� ✏G⇠

, hxx =
G⇠⇠

(1� ✏G⇠)3
.(2.31)

Using the Cotlar’s identity, we can rewrite equation (2.4) as

(2.32) ht + ✏{H[hhx]�H[hx]h�H[h]hx} = H[h].
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Combine (2.4) and (2.31), we get the following equation for G

gt = p. v.
1

⇡

Z 1

�1

g̃ + ✏(g � 2g̃)g̃g̃
⇠̃
� ✏2(g � g̃)g⇠ g̃⇠̃

⇠ � ⇠̃ � ✏(g � g̃)
d⇠̃

where g = G(t, ⇠; ✏) and g̃ = G(t, ⇠̃; ✏).

The authors of [22] then proceed to show the flow has good energy estimates.

2.7. Reduced NFT

[8] provides an alternative approach, which we will call the reduced NFT method. The method

was originally implemented using para-di↵erential operators. Here, we outline the main idea of

this method using a transformation type argument instead of para-di↵erential operators. In the

naive NFT method above, we used the transformation to remove the entire quadratic term in the

MRS equations. However, the quadratic term can be written as the sum of a 1st-order skew self-

adjoint term and a 0th-order self-adjoint term. The skew self-adjoint term is harmless in the energy

estimate, therefore we consider a reduced NFT method that only cancels out the self-adjoint part

of the quadratic term.

First, define w = @s
xu. Taking s derivatives of equation (2.1), we get

wt + ✏@s

x(uux) = H[w].

We can rewrite the equation as

wt + ✏(uwx + (s+ 1)uxw + l.o.t.) = H[w],(2.33)

where l.o.t. =
P

s�1
j=2

�
s+1
j

�
@j
xu@

s+1�j
x u. The key idea of the reduced NFT method is to split the

highest-order quadratic terms uwx + (s+ 1)uxw into two parts, as below

wt + ✏(
1

2
(u@x + @xu) + (s+

1

2
)ux)w + ✏(l.o.t.) = H[w],

where u@x + @xu is an operator, defined as (u@x + @xu)w = uwx + (uw)x. Note that the operator

u@x+@xu is a 1st-order skew-symmetric operator, which vanishes in the energy estimates. Therefore,
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the only problematic term is (s + 1
2)uxw, and we will choose a normal form transformation to

eliminate it.

Define w = v + ✏ṽ, we get

vt + ✏ṽt +
✏

2
(u@x + @xu)(v + ✏ṽ) + ✏(s+

1

2
)uxv + ✏(l.o.t.) + ✏2(s+

1

2
)uxṽ = H[v] + ✏H[ṽ].

We choose ṽ = (s+ 1
2)H[ux]v, then

vt + ✏(s+
1

2
)H[ux]vt � ✏2(s+

1

2
)H[(

u2

2
)xx]v +

✏

2
(u@x + @xu)(v + ✏ṽ) + ✏2(s+

1

2
)uxṽ + ✏(l.o.t.) = H[v + ✏ṽ].

Define the operators M [v] = v + ✏(s + 1
2)H[ux]v and Du = u@x + @xu, then the equation can be

written as

(2.34) Mvt = �
✏

2
DuMv � ✏(l.o.t.) + ✏2f +HMv,

where f = (s+ 1
2)H[(u

2

2 )xx]v � (s+ 1
2)uxṽ.

To obtain energy estimates on the transformation variable v, we first apply the inverse operator

M�1 to (2.34)

vt = �
✏

2
Duv �

✏

2
M�1[Du,M ]v � ✏M�1(l.o.t.) + ✏2M�1f +Mv +M�1[H,M ]v,

where [Du,M ]v = DuMv �MDuv, and [H,M ]v = H[M [v]]�M [H[v]]. L2 energy estimates on v

is then given by

✓
1

2
kvk2

L2

◆

t

=

Z h
�
✏

2
M�1[Du,M ]v � ✏M�1(l.o.t.) + ✏2M�1f +M�1[H,M ]v

i
v dx.(2.35)

Direct calculation of the commutators gives us

[Du,M ]v = 2✏(s+
1

2
)uH[uxx]v

[H,M ]v = ✏(s+
1

2
) (H[H[ux]v]�H[ux]H[v]) .

Both ✏

2M
�1[Du,M ]v and ✏2M�1f are of order ✏2, and consequently produce good energy estimates.

By sobolev inequalities, we get

Z h
�
✏

2
M�1[Du,M ]v + ✏2M�1f

i
v dx . kvk4

L2 ,
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where the inequality depends on s.

Private communications with Delort ( [8]) suggest that we can use an additional normal form

transformation to eliminate the order ✏ term �✏M�1(l.o.t.)+M�1[H,M ]v, thus closing the energy

estimate (2.35).

The main purpose of this procedure is to devise a transformation that eliminates only the 0th-

order symmetric term in (2.33). By doing so, we then introduced an additional O(✏2) term

✏

2M
�1[Du,M ]v. Therefore, one crucial factor in the success of this method is that [Du,M ]v does

not lose derivatives. Otherwise, the energy estimate (2.35) cannot be closed. However, this is not

the case in the MRS equations, as we will show in section 3.7. This is a key di↵erence between the

Burgers-Hilbert equation and the MRS equations.
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CHAPTER 3

The Majda-Rosales-Schonbek System

3.1. Background

Since we are studying the lifespan of small solutions of the MRS equations, the notation will be

simpler if we factor out the small parameter. Rescaling both u and v by ✏, the MRS equations

become

ut + ✏(
1

2
u2)x = v

vt + ✏(
1

2
v2)x = �u.

(3.1)

The initial value problem (1.6) with initial data kuk
Hs + kvk

Hs  ✏ is equivalent to the rescaled

problem (3.1) with kuk
Hs + kvk

Hs  1. We will work with the form (3.1) throughout this paper.

Similarly, the general intro-di↵erential equations (1.5) can be rescaled as

ut+✏(
1

2
u2)x +

Z 1

0
K(x� y)v(y, t)dy = 0

vt+✏(
1

2
v2)x �

Z 1

0
K(y � x)u(y, t)dy = 0.

(3.2)

We first examine the dispersion relation of the general MRS equations (3.2). Linearizing (3.2) gives

us

ut = �

Z 1

0
K(x� y)v(y, t)dy

vt =

Z 1

0
K(y � x)u(y, t)dy.

(3.3)

Let u, v be plane waves with the expressions u = ae�i!t+ikx and v = be�i!t+ikx. Taking Fourier

transform of (3.3), we get

�i!

2

4û

v̂

3

5 =

2

4 0 �2⇡K̂(k)

2⇡K̂⇤(k) 0

3

5

2

4û

v̂

3

5 ,
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where K̂⇤ is the complex conjugate of K̂ andK is assumed to be real. We then obtain the dispersion

relation

!2 = 4⇡2
|K̂(k)|2.(3.4)

We now turn to the MRS equations (3.1). Similarly, we first linearize the MRS equations (3.1)

2

4u

v

3

5

t

=

2

4 0 1

�1 0

3

5

2

4u

v

3

5 .(3.5)

The dispersion relation is then given by

!2 = 1.(3.6)

We can also obtain the dispersion relation by using (3.4) and K(x) = �(x) and K̂(k) = 1
2⇡ .

Since the frequency is independent of the wave number, the MRS system is a non-dispersive equa-

tion. The dispersion relation also implies that the problem generates 4-wave resonances, and not

3-wave resonances.

For general dispersive waves whose linearized solutions take the form

u(x, t) =
X

k

A(k)ei(kx�!(k)t),

the problem has 3-wave resonances if it admits three pairs {ki,!(k1)}, with ki 6= 0 for i = 1, 2, 3

satisfying the relationship

k1 ± k2 ± k3 = 0, !(k1)± !(k2)± !(k3) = 0.

For the MRS system, the above equations do not have any solutions since the dispersion relation

(3.6) gives us ! = ±1.

However, if we consider four pairs {ki,!(k1)}, with ki 6= 0 for i = 1, 2, 3, 4, we get the following

4-wave resonance relationship

k1 ± k2 ± k3 ± k4 = 0, !(k1)± !(k2)± !(k3)± !(k4) = 0.(3.7)

24



The equation (3.8) admits a very large set of solutions. For any wave numbers that satisfy k1 +

k2 � k3 � k4 = 0, we can choose !(k1) = !(k2) = !(k3) = !(k4) = 1 and they satisfy the relation

k1 + k2 � k3 � k4 = 0, !(k1) + !(k2)� !(k3)� !(k4) = 0.(3.8)

Therefore, the MRS system has a large number of 4-wave resonant interactions and these interac-

tions cause some complicated behavior.

Similar 4-wave resonances can be observed in the Burgers-Hilbert equation. The dispersion relation

of the Burgers-Hilbert equation (2.1) is given by

(3.9) ! = sgn(k).

For any choice of four positive wave numbers

k1 + k2 � k3 � k4 = 0, k1, k2, k3, k4 2 (0,1)

the frequencies are given by !1 = !2 = !3 = !4 = 1 and satisfy the same 3-wave resonance relation

(3.8). Therefore, the dispersion relation of the Burgers-Hilbert equation gives rise to a very large

number of 4-wave resonant interactions, just like the MRS system.

One interesting fact is that when written into a system of two equations, the Burgers-Hilbert

equation (2.3) (2.4) have the same linear terms as the MRS system (3.1), but the dispersion relations

(3.6) (3.9) are di↵erent. The reason is that the variables u, v in the MRS system are independent,

while the variables u, h in the Burgers-Hilbert system are not (h is defined as h = H[u]). In

particular, the dispersion relation of the Burgers-Hilbert equation is ”half” of that of the MRS

system. This observation corresponds to splitting the linear equation (3.5)

(@t �H)(@t +H)u = 0.

A plane wave that satisfies (3.5) must have

! = sgn(k) or ! = � sgn(k).
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3.2. Smooth Solution Lifespan

Standard energy estimate on the MRS equation (3.1) gives existence of smooth solutions up to time

O(1
✏
). Define energy as

R
|@k

xu|
2 + |@k

xv|
2dx, then it’s easy to see that the linear terms cancel out

and the energy estimate is exactly the same as that of the Burger’s equation

d

dt

Z
|@k

xu|
2 + |@k

xv|
2dx . ✏(||ux||L1 + ||vx||L1)

Z
|@k

xu|
2 + |@k

xv|
2dx.

It follows by a standard argument that the solution exists up to time O(1
✏
).

Wagonmaker then improved this result and extended the lifespan of smooth solutions to O( ln(✏)
✏

)

in [52].

Standard energy estimates give us O(1
✏
) lifespan because the nonlinear term is quadratic. However,

we may be able to use the linear term to control the quadratic term and ultimately get cubic

non-linearity.

3.3. Naive NFT

To obtain the naive NFT, we first write the MRS equations in the vector form

ut = L(u) + ✏Q(u,u)

u =

2

4u

v

3

5 , L(u) =

2

4 0 1

�1 0

3

5u, Q(u,u) =

2

4(�
u
2

2 )x

�(v
2

2 )x

3

5 .

Solving the homological equation (2.12) with the above vector valued operators, we get

U = u+
1

3
✏@x(u

2
� uv +

1

2
v2)

V = v �
1

3
✏@x(

1

2
u2 � uv + v2).

(3.10)

Direct calculation gives the following equations on U, V

Ut = V +
✏2

3
@x(�2u2ux + uvux + uvvx � v2vx)

Vt = �U +
✏2

3
@x(u

2ux � uvux � uvvx + 2v2vx).
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Direct energy estimates results in the same loss of derivatives as occurs for the Burgers-Hilbert

equation

d

dt

Z
|@k

xU |
2 + |@k

xV |
2dx . ✏2(||u||Hk+1 + ||v||Hk+1)2(||u||L1 + ||v||L1),

where the inequality depends on k.

3.4. Modified Energy

Since direct energy estimate on the NFT variables U, V loses derivatives, we attempt to replicate

the modified energy method here. Straight forward calculation gives us the standard energy

||@k

xU ||
2
L2 + ||@k

xV ||
2
L2 =||@k

xu||
2
L2 + ||@k

xv||
2
L2 +

2

3
✏ < @k

xu, @
k+1
x (u2 � uv +

1

2
v2) > �

2

3
✏ < @k

xv, @
k+1
x (

1

2
u2 � uv + v2) >

+
1

9
✏2||@k+1

x (u2 � uv +
1

2
v2)||2

L2 +
1

9
✏2||@k+1

x (
1

2
u2 � uv + v2)||2

L2 .

As explained in 2.4, the O(✏2) term does not a↵ect the cubically non-linear energy estimate. Drop-

ping the O(✏2) term gives us the modified energy

(3.11)

Ek := ||@k

xu||
2
L2 + ||@k

xv||
2
L2 +

2

3
✏ < @k

xu, @
k+1
x (u2 � uv+

1

2
v2) > �

2

3
✏ < @k

xv, @
k+1
x (

1

2
u2 � uv+ v2) > .

Taking the time derivative of the energy Ek, we get

dEk

dt
=
2✏2

3

Z h
@k

xu@
k+1
x (�2u2ux + uvux + uvvx � v2vx)� @k

xv@
k+1
x (�u2ux + uvux + uvvx � 2v2vx)

�@k

x(uux)@
k+1
x (u2 � uv +

1

2
v2) + @k

x(vvx)@
k+1
x (

1

2
u2 � uv + v2)

�
dx.

(3.12)

Straight forward calculation gives us

dEk

dt
=
(k � 1)✏2

3

Z
(u2 � v2)x(@

k+1
x u@k

xv � @k

xu@
k+1
x v) + (l.o.t.) dx,

where l.o.t. contains only derivatives of order less than or equal to k and gives good energy estimates.

Unlike the Burgers-Hilbert equation, the modified energy estimate su↵ers from loss of derivatives

as well, i.e. we need order-(k + 1) derivatives of u, v to control dEk
dt

.
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3.5. Time Resonance

We show that the modified energy (3.11) can be derived from the time resonance method as well.

To simplify the algebra, we write the system (3.1) in complex form for F = u+ iv

Ft + ✏
1

8
(1� i)

h
F 2 + 2i|F |

2 + F
2
i

x

= �iF.

To eliminate the linear term, we define F (t, x) = e�itG(t, x), then

Gt + ✏
1

8
(1� i)

h
e�itG2 + 2i|G|

2 + e3itG
2
i

x

= 0.(3.13)

Integrating (3.13), we get

G = G0 � ✏
1

8
(1� i)@x

Z
t

0
e�isG2 + 2ieis|G|

2 + e3isG
2
ds,

where G0(x) = G(0, x). Integration by parts gives

G = G0 + J � ✏
1

8
(1� i)@x


ie�itG2 + 2eit|G|

2
�

i

3
e3isG

2
�
+ ✏

1

8
(1� i)@x


iG2

0 + 2|G0|
2
�

i

3
G0

2
�

J = ✏
1

8
(1� i)@x

Z
t

0
ie�is(G2)t + 2eis(|G|

2)t �
i

3
e3is(G

2
)t ds.

(3.14)

Using (3.13), we can calculate

J =
i

16
✏2@x

Z
t

0

⇥
ie�isG+ eisG

⇤
@x

h
e�isG2 + 2ieis|G|

2 + e3isG
2
i
ds

�
1

16
✏2@x

Z
t

0


eisG�

i

3
e3isG

�
@x

h
eisG

2
� 2ie�is

|G|
2 + e�3isG2

i
ds.

After some simplification, we can get

J =
i

4
✏2@x

Z
t

0


ie�2isG2Gx +

4i

3
e2is|G|

2Gx +
2

3
|G2

|Gx +
i

4
G

2
Gx +

2

3
G

2
Gx

�
ds.(3.15)

Combining (3.14) and (3.15), then di↵erentiating with respect to t, we get

d

dt
(G+ ✏B) =

i

4
✏2@x


ie�2itG2Gx +

4i

3
e2it|G|

2Gx +
2

3
|G2

|Gx +
i

4
G

2
Gx +

2

3
G

2
Gx

�

B =
1

8
(1� i)@x


ie�itG2 + 2eit|G|

2
�

i

3
e3itG

2
�
.

(3.16)

28



Applying @k
x to (3.16), we get

d

dt
(@k

xG� ✏@k

xB) =
i

4
✏2@k+1

x


ie�2itG2Gx +

4i

3
e2it|G|

2Gx +
2

3
|G2

|Gx +
i

4
G

2
Gx +

2

3
G

2
Gx

�
.

(3.17)

We then multiply (3.17) by @k
xG and integrate over x

Z 1

�1

d

dt
(@k

xG� ✏@k

xB)@k

xG dx = ✏2I1

I1 =
i

4
@x

Z
t

0


ie�2isG2Gx +

4i

3
e2is|G|

2Gx +
2

3
|G2

|Gx +
i

4
G

2
Gx +

2

3
G

2
Gx

�
ds.

(3.18)

From product rule, we get

✏
d

dt
@k

xB@k

xG = ✏
d

dt

⇣
@k

xB@k

xG
⌘
� ✏@k

xB@k

xGt

= ✏
d

dt

⇣
@k

xB@k

xG
⌘
+ ✏2

1

8
(1 + i)@k

xB@k+1
x

h
eitG

2
� 2i|G|

2 + e�3itG2
i
.

(3.19)

Combine (3.18), and (3.19), then add the complex conjugate, we get

d

dt

���@k

xG
���
L2

� 2✏

Z 1

�1
<

⇣
@k

xB@k

xG
⌘�

d = ✏2(I1 + I2) + c.c.

I2 =

Z 1

�1

1

8
(1� i)@k

xB@k+1
x

h
eitG

2�2i|G|2+e
�3it

G
2
i
dx.

We then define the energy to be

Ek =
���@k

xG
���
L2

� 2✏

Z 1

�1
<

⇣
@k

xB@k

xG
⌘
.

It is straight forward to check the definition is equivalent to the modified energy (3.11), and therefore

su↵ers from the same loss of derivatives as in (3.12).

3.6. Normal Form Flow

Following the same procedure in section 2.6, we replace naive NFT (3.10) with continuous flows

U(t, x; ⌧) and V (t, x; ⌧)

U⌧ �
1

3
✏@x(U

2
� UV +

1

2
V 2) = 0

V⌧ +
1

3
✏@x(

1

2
U2

� UV + V 2) = 0

U(t, x; 0) = u(t, x), V (t, x; 0) = v(t, x).

(3.20)
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Notice that the naive NFT equations (3.10) is a first-order forward Euler approximation to the

continuous flows (3.20).

The system can be put into the matrix form

2

4U

V

3

5

⌧

+
1

3
✏

2

4�2U + V U � V

U � V �U + 2V

3

5

2

4Ux

Vx

3

5 = 0.

This is a symmetric hyperbolic system and the matrix has eigenvalues

�1 =
1

2
(�3U + 3V +

p
5U2 � 6UV + 5V 2)

�2 =
1

2
(�3U + 3V �

p
5U2 � 6UV + 5V 2)

with eigenvectors

r1 =

2

4 U � V

1
2

⇣
U + V +

p
5U2 � 6UV + 5V 2

⌘

3

5 , r2 =

2

4 U � V

1
2

⇣
U + V �

p
5U2 � 6UV + 5V 2

⌘

3

5 .

However, unlike the Burgers-Hilbert equation, where one can get an explicit expression of the

normal form flow, it appears that an explicit expression for the normal variables cannot be easily

obtained.

3.7. Reduced NFT

In this section, we present the loss of derivatives in the commutator when we apply the reduced NFT

method to the MRS equations, marking a crucial di↵erence from the Burgers-Hilbert equation (2.1).

Following the same procedure in section 2.7, we first define a = @s
xu, b = @s

xv. Taking s derivatives

on (3.1) gives us

at + ✏(
1

2
(u@x + @xu) + (s+

1

2
)ux)a+ ✏(l.o.t.) = b

bt + ✏(
1

2
(v@x + @xv) + (s+

1

2
)vx)b+ ✏(l.o.t.) = �a,

(3.21)

where the @xu is interpreted as an operator defined by [@xu] a = (ua)x.

We then look for a transformation that eliminates the harmful terms s+ 1
2uxa and s+ 1

2vxb. Recall

that when applying the reduced NFT method to the Burgers-Hilbert equation (section 2.7), it pro-

duces another harmful term which is the commutator of the transformation and the linear term on
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the right hand side, which we then eliminated with a second normal form transformation. However,

when working with the MRS system, it turns out we can combine these two transformations and

use only one transformation instead.

We first write the equation in the matrix form. Define the vector r =

2

4a

b

3

5, and operators Du =

u@x + @xu,DV = v@x + @xv, then equation (3.21) can be written as

pt = ✏Lp+ ✏Kp+ ✏(l.o.t.)� Jp = 0,(3.22)

where the operators L, K, J are given by L =

2

4
1
2Du 0

0 1
2Dv

3

5, K =

2

4(s+
1
2)ux 0

0 (s+ 1
2)vx

3

5 and

J =

2

4 0 1

�1 0

3

5.

Define the transformation p = Mr, then we have

(Mr)t = ✏LMr+ ✏KMr+ ✏(l.o.t.)� JMr = 0.(3.23)

Assume M is a multiplier operator, i.e. M can be represented by some 2⇥ 2 matrix, then we have

Mrt +Mtr+ ✏MLr+ ✏[L,M ]r+ ✏KMr�MJr� [J,M ]r+ ✏(l.o.t.) = 0.(3.24)

We choose an operator M such that (Mt + ✏KM � [J,M ]) r = O(✏2). Direct calculations give us

the solution

M =

2

41 + ✏
�
�

2
3(1 +

1
2)ux +

1
3(1 +

1
2)vx

�
✏
�
1
3(1 +

1
2)ux �

1
3(1 +

1
2)vx

�

✏
�
1
3(1 +

1
2)ux �

1
3(1 +

1
2)vx

�
1 + ✏

�
�

1
3(1 +

1
2)ux +

2
3(1 +

1
2)vx

�

3

5 .

Then we have

Mt + ✏KM � [J,M ] =✏2(s�
1

2
)

2

4
2
3(uux)x �

1
3(vvx)x �

1
3(uux)x +

1
3(vvx)x

�
1
3(uux)x +

1
3(vvx)x

1
3(uux)x �

2
3(vvx)x

3

5

+ ✏2(s�
1

2
)2

2

4
�
�

2
3u

2
x +

1
3uxvx

�
1
3u

2
x �

1
3uxvx

1
3uxvx �

1
3v

2
x �

1
3uxvx +

2
3v

2
x

3

5 .

(3.25)
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Writing F = Mt + ✏KM � [J,M ], then the equation (3.24) becomes

Mrt + ✏MLr+ ✏[L,M ]r�MJr+ ✏(l.o.t.) + Fr = 0.(3.26)

Applying the inverse operator M�1 to equation (3.26), we get

rt + ✏Lr+ ✏M�1[L,M ]r� Jr+ ✏(l.o.t.) + ✏2M�1Fv = 0.

From (3.26), we see that M�1Fv is of order O(✏2) does not contain any derivatives of r. Therefore,

it produces good energy estimates. Similar to the Burgers-Hilbert equation, we expect that the

term ✏(l.o.t.) can be taken care of by another normal form transformation since it contains only

lower order derivatives. We now look at ✏M�1[L,M ]r. Using the properties

Du[fg] = Du[f ]g +Du[g]f � uxfg

Dv[fg] = Dv[f ]g +Dv[g]f � vxfg,

we can obtain

✏[L,M ] =✏2
1

3
(s�

1

2
)

2

4 (ux � vx)Du�v[b0]

�(ux � vx)Du�v[a0]

3

5

+ ✏2

2

4Du[2ux � vx]a0 � ux(2ux � vx)a0 +Du[ux � vx]b0 � uv(ux � vx)b0

Dv[ux � vx]a0 � ux(ux � vx)a0 +Dv[ux � 2vx]b0 � vx(ux � 2vx)b0

3

5 ,

(3.27)

where r =

2

4a0

b0

3

5

We can see that the first term in (3.27) loses derivatives, while the second term is good. As a

result, the energy estimate cannot be closed. The fact that the commutator [L,M ] loses derivatives

suggests an important di↵erence between the Burgers-Hilbert equation (2.1) and the MRS system

(3.1). Although they both have the Burgers non-linearity and a skew-symmetric linear term, but

we lose the commutativity of the transformation operator M and the skew-symmetric operator L

(i.e. the commutator [L,M ] loses derivatives) when going from an 1⇥1 equation to a 2⇥2 system.
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CHAPTER 4

Numerical Results for the MRS System

4.1. Numerical Scheme

We consider the initial value problem for MRS

ut + ✏(
1

2
u2)x = v

vt + ✏(
1

2
v2)x = �u

u(x, 0) = u0(x)

v(x, 0) = v0(x).

We use a Weighted Essentially Non-Oscillatory (WENO) method (see [45], [46]) on a grid of size

N = 2k to calculate the spatial derivatives. Our algorithm implements a 5th-order WENO flux

described in [45] and uses the method of lines. An earlier work [44] by the same author provides

more background information on the WENO scheme. The time derivatives are calculated using the

MATLAB Runge-Kutta solver ”ODE45”. The MATLAB code was provided by Prof. John Hunter

( [25]).

4.2. Shock

We first study the case where u0 contains a single shock and v0 is uniformly 0.

u0 =

8
><

>:

✏ x  ⇡

�✏ x � ⇡

v0 = 0,

where we choose ✏ = 0.03

The numerical result suggests a periodic exchange between shock and rarefaction. The visualiza-

tions below shows this exchange within one time period. The initial profile at t = 0 is shown in ??.

33



As t increases, the shock in u forces a rarefaction wave to form in v, which will in turn causes the

shock to shrink. The shock in u will eventually turn into a rarefaction due to the expansion e↵ect

forced by the rarefaction in v. Once the rarefaction wave forms in u, it produces a shocking e↵ect

on v. The rarefaction in v will then turn into a shock and forces a shock to form in u. As a result,

the solutions u and v will alternate between shocks and rarefactions in a periodic manner. This

alternating behavior is visualized in figure 4.1 and 4.2, which are two snapshots of the solution at

t = ⇡

4 and t = 5⇡
4 . See here (URL at (1)) for a movie of the solutions.

u plot v plot

Figure 4.1. t = ⇡

4

u plot v plot

Figure 4.2. t = 5⇡
4

An interesting phenomenon is the presence of spikes both at the top and bottom of the shock and

the middle of the shock. We believe the top and bottom spikes are numerical because they can be

significantly reduced by adding a dissipation.
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We tried an alternate WENO method suggested by [39]. The alternate method adds a 4th order

correction term that acts as viscosity. Therefore, the method is 5th order accurate, but includes

more dissipation than the standard WENO scheme. The code is provided in B Figure 4.3 shows

a comparison between the standard WENO scheme and the alternate WENO scheme at t = ⇡

100 .

We see that the solution obtained using the standard WENO scheme developes spikes at the top

and bottom of the shock almost immediately, whereas the alternate WENO solution remains flat

outside the shock and the absolute value does not exceed ✏ = 0.03.

u plot - standard WENO scheme u plot - alternate WENO scheme

Figure 4.3. t = ⇡

100

However, the spikes at the middle of the shock does not seem to disappear with the addition of

dissipation. We believe this is a real property of the solutions. Figure 4.4 shows a zoomed-in plot

of the spike at the middle of the v solution at t = 3.4086. Same middle spikes can be observed in

u solutions as well. We are using a grid of 215 evenly spaced points on [0, 2⇡). A crude estimate

shows that the spike in figure 4.4 spans across approximately 260 spatial points. Therefore, we

believe this is a real property of the solutions, and not caused by the numerical scheme. We are

currently running more experiments to study this phenomenon and will update if we make any

progress.
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Figure 4.4
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4.3. Shock with Zero Boundary Value

We have made some interesting observations with the following piece-wise initial data. The initial

data u0 contains a shock at x = ⇡, but has value 0 at the end points,

u0 =

8
>>>>><

>>>>>:

0 x 2
⇥
0, ⇡2

⇤S �
3
2⇡, 2⇡

⇤

x�
⇡

2 x 2
�
⇡

2 ,⇡
⇤

3
2⇡ � x x 2

�
⇡, 3⇡2

⇤

v0 = 0.

Figure 4.5 plots the solutions u, v at t = 32⇡, and see here (URL at (2)) for a movie of the numerical

simulation. The solutions develop oscillations at the shock x = ⇡. The oscillations gradually spread

toward the corners, but never passing the corners. The numerical result seems to suggest that the

oscillations die down as they approach the corners, but the reason behind this behavior is unclear.

u plot v plot

Figure 4.5. t = 32⇡

4.4. Lifespan

Here, we provide some numerical evidence to the O(✏2) lifespan hypothesis. Consider the initial

profile

u0 = ✏ cos(x)esinx +
✏

10
sin(10x)

v0 = ✏(esin(x�
⇡
4 ) � e

1p
2 ).

(4.1)
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u0, v0 both pass through 0 at x = ⇡

2 , which is where the singularity will form. We add the fast

oscillation ✏

10 sin(10x) to speed up the singularity formation. Without the fast oscillation, the

singularity takes much longer to form, making our numerical result less accurate.

The L2 norm of the solution starts to decay when the singularity forms. Therefore,we use the

time derivative of the L2 norm to detect the formation of the singularity. For example, 4.6 shows

the entropy derivative with ✏ = 0.03. The entropy derivative becomes negative at approximately

t = 108.322, suggesting the formation of a singularity.

Figure 4.6

Figure 4.7 is a log-log plot of the singularity formation time T versus ✏. The red curve shows the

actual singularity formation time T versus ✏, while the blue curve is the approximation obtained

by polynomial fitting. The best exponential approximation of the singularity formation time T as

a function of ✏ is T = 0.298✏�1.708. This result is fairly close to our O( 1
✏2
) lifespan hypothesis.
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Figure 4.7

Similar outcomes can be observed with other initial data. For example, if we replace the perturba-

tion in the initial data (4.1) by ✏

10 cos (10x), i.e.

u0 = ✏ cos(x)esinx +
✏

10
cos(10x)

v0 = ✏(esin(x�
⇡
4 ) � e

1p
2 ),

the log-log plot of the actual and approximate singularity formation time versus ✏ is shown in

figure 4.8. The exponential approximation of the singularity formation time T as a function of ✏ is

T = 0.118✏�1.913, which again seems to follow the O( 1
✏2
) lifespan hypothesis.
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Figure 4.8

We have tested with a variety of di↵erent initial data, and all of the results appear to have O( 1
✏2
)

lifespan. We have not found any initial data that violates this hypothesis.
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CHAPTER 5

The Degenerate Quasi-linear Schrodinger Equation

Outline: Section 5.1 shows the derivation of the DQS equation through an asymptotic expansion

of the MRS system. We then show the equation’s Hamiltonian structure and the conservation

laws that arise from the equation in section 5.2. In section 5.5, we apply the modulation theory

to obtain a system of modulation equations. Before discussing the ill-posedness in Hs, we first

demonstrate the di�culties introduced by the degeneracy in this problem. Section 5.6 shows the

loss of derivatives in the standard energy method. In 5.7, we show a weighted energy method which

overcomes the loss of derivatives, but fails due to the degeneracy. In section 5.8, we present a result

in [29] by Jeong and Oh that shows the DQS equation is ill-posedness in Hs spaces. In section 5.9,

we follow the method used in [20] to prove the equation is well-posed in a more restrictive function

space.

5.1. Derivation

We first discuss the derivation of the following degenerate quasi-linear Schrödinger equation (1.8).

This equation is obtained through an asymptotic expansion of the MRS system (3.1). Suppose u

and v depends explicitly on ⌧ = ✏2t (i.e. u = u(t, x, ⌧), v = v(t, x, ⌧)). Then, expand u(t, x, ⌧) =

u1(x, t, ⌧) + ✏u2(x, t, ⌧) + ... and v = v(x, t, ⌧) = v1(x, t, ⌧) + ✏v2(x, t, ⌧) + ... and match terms with

the same order, we get a system of equations.

At the leading order (order O(✏)), we get the equations

u = u(x, t, ⌧) = ✏u1(x, t, ⌧) + ✏2u2(x, t, ⌧) + ...

v = v(x, t, ⌧) = ✏v1(x, t, ⌧) + ✏2v2(x, t, ⌧) + ....

We can solve u1 and v1 explicitly:

u1 =iA(x, ⌧)e�it
� iA(x, ⌧)eit

v1 =A(x, ⌧)e�it +A(x, ⌧)eit,
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where A is an arbitrary function.

At order O(✏2), we get the equations

u2t + u1u1x = v2

v2t + v1v1x = �u2.

The solution to the order ✏2 equation is given by

u2 =
1 + 2i

3
AAxe

�2it +
1� 2i

3
AAxe

2it
� |A|

2
x

v2 =
1� 2i

3
AAxe

�2it +
1 + 2i

3
AAxe

2it + |A|
2
x,

where we use the notation |A|
2
x = @x(|A|

2). At order ✏3, we get the equations

u1⌧ + u3t + (u1u2)x = v3

v1⌧ + v3t + (v1v2)x = �u3.

Plugging in u1, u2, v1, v2, we get

u3t � v3 =� iA⌧e
�it + iA⌧e

it
�

(
�2 + i

3
A2Axe

�3it +
2 + i

3
AAAxe

it
� iA|A|2xe

�it +
2� i

3
AAAxe

�it +
�2� i

3
A

2
Axe

3it + iA|A|
2
xe

it)x

v3t + u3 =�A⌧e
�it

�A⌧e
it
�

(
1� 2i

3
A2Axe

�3it +
1 + 2i

3
AAAxe

it +A|A|
2
xe

�it +
1� 2i

3
AAAxe

�it +
1 + 2i

3
A

2
Axe

3it +A|A|
2
xe

it)x.

We can see that u1, v1 consist only of modes ±1, and u2, v2 consist only of modes ±2. However, at

order ✏3, we get resonant terms with modes ±1. Let

u3 = u(0)3 + u(1)3 + c.c., v3 = v(0)3 + v(1)3 + c.c.

u(0)3 = U(x, ⌧)e�it, u(1)3 = F (x, ⌧)e�3it

v(0)3 = V (x, ⌧)e�it, v(1)3 = G(x, ⌧)e�3it,

where c.c. stands for complex conjugate.
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Then u(0)3 , v(0)3 are the resonant components of u3, v3. Collect terms with mode �1, we get

u3t � v3 = �e�it(iA⌧ � (iA|A|
2
x �

2� i

3
|A|

2Ax)x)

v3t + u3 = �e�it(A⌧ + (A|A|2x +
1� 2i

3
|A|

2Ax)x).

Multiply the second equation by i, plus the first equation, we get the solvability condition

iA⌧ +
2

3
(|A|2Ax)x = 0.

Letting

(5.1) u =

r
3

2
A

and renaming ⌧ as t gives us (1.8)

Since the DQS equation is derived from the MRS equation and the MRS equation is derived from gas

dynamics, we expect that one can derive the DQS equation from gas laws directly. This approach

is detailed in [48] and [24].

5.2. Basic Properties

5.2.1. Hamiltonian Structure. The DQS equation is Hamiltonian with the Hamiltonian

structure

ut + @x


�H

�u⇤

�
= 0

H(u, u⇤) =
1

4

Z
i|u|2(uu⇤x � u⇤ux)dx

(5.2)

with the non-canonical Hamiltonian operator @x.

5.2.2. Variational Approach. The DES equation (1.8) can also be formulated as the varia-

tional equation �S

��⇤ [�,�⇤] = 0, where u = �x and

S[�,�⇤] =

Z
1

2
(�t�

⇤
x + �⇤

t�x) +
i

4
�x�

⇤
x(�x�

⇤
xx + �⇤

x�xx) dx dt.

5.2.3. Conservation Laws. The DQS equation has the following associated conservation

laws:
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(1) The DQS equation (1.8) itself is in conservation form. Therefore, the first conservation

law is the DQS equation (1.8) itself.

(2) The conservation of momentum ⇢(u, u⇤) =
R
uu⇤ dx, associated with its spatial translation

invariance:

@t
⇥
|u|2

⇤
+ @x

⇥
i|u|2(uu⇤x � u⇤ux)

⇤
x
= 0.(5.3)

(3) The conservation of energy H, associated with its temporal translation invariance:

@t
⇥
i|u|2(uu⇤x � u⇤ux)

⇤
+ @x{6|u|

4
|ux|

2 + |u|2
⇥
(|u|2)x

⇤2
�

1

3
(|u|6)xx} = 0.(5.4)

(4) The conservation of action, associated with its phase invariance:

@t [i(�
⇤u� �u⇤)] + @x

⇥
|u|2(�⇤ux + �u⇤x) +m⇤�+m�⇤

� |u|4
⇤
= 0.(5.5)

where m = m(t) is given by

i�t + |�x|
2�xx = m(t).

5.3. Special Exact Solutions of the DQS Equation

We present the construction of a few exact solutions to the DQS equation. Evans and Hunter [10]

have constructed other exact solutions as well.

5.3.1. Cube Root Solution. The cube root function

u(t, x) = Cx1/3

where C 2 R is a constant, is a solution to the DQS equation (1.8). However, we can not obtain

a weak solution by extending by zero. The following function is not a weak solution to the DQS

equation (1.8).

u(t, x) =

8
><

>:

Cx1/3 x > 0

0 x  0
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5.3.2. Linear Solution. The DQS equation has the linear solution

u(t, x) = xe2it.

It’s easy to check we can obtain a weak solution by extending by zero, i.e. the function

u(t, x) =

8
><

>:

xe2it x > 0

0 x  0

is a weak solution to the DQS equation.

5.3.3. Traveling Wave Solutions. We study the traveling wave solutions in the form of

u(x, t) = AU(kx� !t, s)

where ! = |A|
2k2 and A 2 C, s 2 R are both constants. Here, s is derived as a constant of

integration. This class of solutions is discussed in [10].

Writing ✓ = kx� !t, we then get an ODE for U(✓; s)

(i+ s)U = |U |
2U✓.

We make a change of variable, defining ⇠ by d⇠

d✓
= 1

|U |2 , we get the equation

U⇠ � iU = is.

The solution to this ODE is given by

(5.6) U = cei⇠ � s,

where c is given by c2 + s2 = 1. It follows that ✓ = ⇠ � 2cs sin ⇠ with s 2 [0, 1]. Figure 5.1 shows

the plots of the traveling wave solutions with s1 = 0.8, s2 =
1p
2
, s3 = 0.3, and s4 = 0.1.
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Figure 5.1. Traveling Wave Solutions

Observe that the solution does not have any singularity (u = 0) if s 6= 1p
2
. When s = 1p

2
, the

solution has singularities at ✓ = 0. The second plot shows a side view of the solutions. We can see

the maximum real value of the solutions approaches 1 as s ! 0.

5.3.4. Generalized Traveling Wave. We look at an equation for generalized traveling wave

solutions u(x, t) = v(✓)ei↵t with ✓ = x� t. Using (1.8), we get

iv0 � (|v|2v0)0 + ↵v = 0.

Multiplying the equation by |v|2, we get

i|v|2v0 � |v|2(|v|2v0)0 + ↵|v|2v = 0.

Choose new coordinate ⇠ such that d

d⇠
= |v|2 d

d✓
, then

(5.7) iv0 � v00 + ↵|v|2v = 0.

Notice that (5.7) gives the traveling wave solution u(x � t) = v(✓), where ✓ = x � t to the NLS

equation

iut + uxx � ↵|u|2u = 0.

Therefore, each generalized traveling wave solution of the DQS equation corresponds to a traveling

wave solution of the NLS equation.
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Here, we show how to obtain one class of traveling wave solutions for the NLS equation. Define

v(✓) = �(✓)e
i
2 ✓ where � is real, then

�00 +
1

4
�� ↵�3 = 0.

Multiply the equation by �0 and integrate, we get the energy equation

1

2
(�0)2 +

Z
(
1

4
� ↵�2)�d� = E0.

Let V (�) =
R
(14 � ↵�2)�d� = 1

8�
2
�

↵

4�
4, then the solution is given by

✓ � ✓0 =

Z
d�p

2(E0 � V (�))
.

The roots of E0 � V (�) are all real when 0  ↵E0 
1
64 . Denote them by �1,�2,�3,�4, where

�1 > �2 > �3 > �4.

• When 0 < ↵E0 <
1
64 :

Using Jacobi Elliptic functions and the Möbius transformation, we get

� = �1 +
(�2 � �4)�1 � (�1 � �4)�2 sn2[

q
↵(�1��3)(�2��4)

8 (✓ � ✓0),
(�1��4)(�2��3)
(�1��3)(�2��4)

]

(�2 � �4)� (�1 � �4) sn2[
q

↵(�1��3)(�2��4)
8 (✓ � ✓0),

(�1��4)(�2��3)
(�1��3)(�2��4)

]
.

Then the solution to the DQS equation is u = �(x� t)ei(
x�t
2 +↵t).

• When ↵E0 =
1
64 :

We get �0 =
p

↵

2�
2
�

q
1

32↵ when �2
�

1
4↵ .

Define � =
q

1
4↵ �̃, we get �̃0 =

q
1
8(�̃

2
� 1).

Then �̃ = �tanh( ✓p
8
), when |�̃| < 1. Translating back to �, we get � = �

q
1
4↵ tanh(

✓p
8
).

Then the solution to the DQS equation is u = �

q
1
4↵ tanh(

x�tp
8
)ei(

x�t
2 +↵t).

5.4. Solutions with Cube Root Singularity

In this section, we will study solutions with cube root singularities. We start with a more general

class of solutions

u(x, t) = AU(✓; s),

48



where k = ✓x and ! = ✓t are not necessarily constants. In the case that they are constants, then it

reduces to the traveling wave solution (5.6). A cube root singularity means U(✓⇤; s) = 0 for some

✓⇤, and U ⇠ (✓ � ✓⇤)
1
3 as ✓ ! ✓⇤.

Suppose u has a cube root singularity, we can expand u by

(5.8) u =
1X

j=1

Aj✓
j
3 ,

where Aj are functions of x and t. Applying the expansion (5.8) in the DQS equation (1.8) and

equating the coe�cients, we obtain the following two leading order equations.

On order O(✓�
2
3 ), we get

(5.9) �
i

3
wA1 +

k2

3
(|A1|

2A2 +
1

3
A2

1A2) = 0.

On order O(✓�
1
3 ), we get

(5.10) �
2i

3
!A2 +

2k2

3
(
4

3
|A1|

2A3 +
1

3
A2

1A3 + |A2|
2A1 +

2

3
A2

2A1) = 0.

From (5.9), we get

(5.11)
w

k2
= �i(A1A2 +

1

3
A1A2),

then (5.10) can be simplified to

4

3
|A1|

2A3 +
1

3
A2

1A3 +
2

3
|A2|

2A1 �
1

3
A2

2A1 = 0.

Note that the traveling wave solution (5.6) has a singularity at ⇠ = 0 if s = 1p
2
. We can use (5.11)

to calculate the speed of this singularity. Suppose s = 1p
2
, then as ⇠ ! 0, we have

✓ =
1

6
⇠3 +O(⇠5).

Then,

(5.12) U =
1
p
2
(cos ⇠ + i sin ⇠ � 1) =

1
p
2
(6

1
3 i✓

1
3 �

6
2
3

2
✓

2
3 � i✓) +O(✓4/3).
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Therefore, we have A1 = 61/3ip
2

and A2 = �
62/3

2
p
2
, and equation (5.11) gives us the speed of the

traveling wave
!

k
= k.

5.5. Modulation System

We use the method of multiple scales to derive the modulation system. We assume the solution u

depends on slow variables x, t and a fast phase variable ✓.

u = u(✓, X, T ; ✏)

✓ =
�(X,T )

✏
, X = ✏x, T = ✏t.

Since ✓ is the phase variable, we require u to be 2⇡-periodic in ✓. We then expand

u = u0(✓, X, T ) + ✏u1(✓, X, T ) +O(✏2)

and match coe�cients of the same order. On the leading order, we get the equation

�i!u0✓ + k2(|u0|
2u0✓)✓ = 0,

where ! = ��T and k = �X . The solution is given by

u0(✓, X, T ) = A(X,T )U(✓; s), ! = |A|
2k2,(5.13)

where !, k, A, s are functions of (X,T ), and U is the traveling wave solution (5.6).

The order O(✏) equation is given by

�i!u1✓ + iu0T + k2
⇥
|u0|

2u1✓ + (u⇤0u1 + u0u
⇤
1)u

⇤
0✓

⇤
✓
+ k(|u0|

2u0✓)X + (k|u0|
2u0X)✓ = 0.(5.14)

We can rewrite equation (5.14) into the following form

!Lu1 + f(u0) = 0

Lu1 = k2
⇥
|u0|

2u1✓ + (u⇤0u1 + u0u
⇤
1)u

⇤
0✓

⇤
✓

f(u0) = iu0T + k(|u0|
2u0✓)X + (k|u0|

2u0X)✓.
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The solvability conditions in order to obtain 2⇡-periodic solutions for u1 are

1

2⇡

I
f(u0)d✓ = 0(5.15)

1

2⇡i

I
[u⇤0f(u0)� u0f

⇤(u0)] d✓ = 0.(5.16)

where
H

denotes the integral over a 2⇡-period.

Define hUi := 1
2⇡

H
Ud✓ and ⇢ = |u0|2. Apply the solution (5.13) for u0 to the first solvability

condition (5.15) gives

i [A hUi]
T
+
⇥
k⇢A

⌦
|U |

2U✓

↵⇤
X

= 0.

From the solution (5.6) for U , we can easily calculate

hUi = �s(1 + c2),

where c is given by c2 + s2 = 1. Then, we get the equation

⇥
s(1 + c2)A

⇤
t
+ (⇢kc2sA)x = 0.

Similarly, after some simplification, the second solvability condition (5.16) gives

⇥
⇢(1 + 2c2s2)

⇤
t
+

⇥
2⇢2kc2(1 + s2)

⇤
x
= 0.

Combining the equation kt + !x = 0 and the above two equations, we get the equations

kt + (⇢k2)x = 0(5.17)

⇥
s(1 + c2)A

⇤
t
+ (⇢kc2sA)x = 0(5.18)

⇥
⇢(1 + 2c2s2)

⇤
t
+

⇥
2⇢2kc2(1 + s2)

⇤
x
= 0.(5.19)

The equations correspond to the average of the conservation laws in 5.2.3. Equation (5.18) cor-

responds to the conservation of mean, which is the DQS equation (1.8) itself. Equation (5.19)

corresponds to the conservation of momentum (5.3). If we take u = AU in the equations (1.8),

(5.3), and average them out over a 2⇡-period, we get (5.18), (5.19). Writing it into a system for
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(⇢, k, s) requires further simplifications. Let A =
p
⇢ei⌘, we get two real equations from (5.18).

⇥p
⇢s(1 + c2)

⇤
t
+
h
⇢

3
2kc2s

i
= 0(5.20)

s(1 + c2)⌘t + ⇢kc2s⌘x = 0.(5.21)

Equation (5.21) can be decoupled from the remaining equations since we can solve for (⇢, k, s) first

and determine ⌘ afterwards.

Collecting (5.17), (5.19), and (5.20), we get the modulation equations on the variables ⇢, k, s

kt + (⇢k2)x = 0

⇥
⇢(1 + 2c2s2)

⇤
t
+
⇥
2⇢2kc2(1 + s2)

⇤
x
= 0

⇥p
⇢s(1 + c2)

⇤
t
+
h
⇢

3
2kc2s

i
= 0.

Equivalently, it can be written as the following non-conservative form

2

6664

1 0 0

0 1 + 2s2 � 2s4 4s⇢(1� 2s2)

0 s(2� s2) 2⇢(2� 3s2)

3

7775

2

6664

k

⇢

s

3

7775

t

+

2

6664

2⇢k k2 0

2⇢2c2(1 + s2) 4⇢kc2(1 + s2) 2⇢2k(1� s4)

2⇢2s(1� s2) 3⇢ks(1� s2) 2⇢2k(1� 3s2)

3

7775

2

6664

k

⇢

s

3

7775

x

= 0.

(5.22)

The eigenvalues of (5.22) is given by

� = ⇢kµ(s),

where µ(s) satisfies

(4� 6s2 + 4s6)µ3
� (26� 50s2 + 20s4 + 12s6)µ2 + (36� 80s2 + 40s4 + 12s6)µ� (12� 36s2 + 20s4 + 4s6) = 0.

(5.23)

All three roots of (5.23) are real, and Figure 5.2 plots the roots as functions of s.
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Figure 5.2

In section 6.5, we study a special case of the modulation system with s = 0 uniformly.

5.6. Energy Estimates

We first compute the standard energy estimate in Hs with s � 3,

@t k@
s

xuk
2
L2 = I1 + I2 where

I1 = �i

Z
@s+1
x u

⇥
@s

x(|u|
2)ux + s(|u|2)x@

s

xu
⇤
� @s+1

x u
⇥
@s

x(|u|
2)ux + s(|u|2)x@

s

xu
⇤
dx

I2 = i
s�1X

j=2

0

@s

j

1

A
Z

@s

xu
⇥
@j+1
x |u|2@s�j+1

x u+ @j

x|u|
2@s�j+2

x u
⇤
� @s

xu
⇥
@j+1
x |u|2@s�j+1

x u+ @j

x|u|
2@s�j+2

x u
⇤
dx.

By Holder’s inequality and Sobolev inequality, we can bound the second integral I2 by I2 . kUk
4
Hs .

However, the first integral I1 can only be controlled by kUk
Hs+1 .For example, if s = 3, then we

have

I1 = 2=

✓Z
uxxxx

⇥
(|u|2)xxxux + 3(|u|2)xuxxx

⇤
dx

◆
,
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where =(·) means the imaginary part. It’s clear I1 cannot be controlled by the Hs norm. Hence,

the energy estimate does not close due to the loss of derivatives in I1.

5.7. Weighted Energy Estimates

One way to resolve the loss of derivatives in the standard energy estimate is to replace the Hs

energy with a weighted energy. Writing ⇢ = |u|2 and di↵erentiating (1.8) s times, we get

(@s

xu)t = i@s+1
x (⇢ux).

We simplify the notation by writing v = @s
xu

vt = i


⇢vxx + (s+

3

2
)⇢xvx +

1

2
(uux � uux)vx + uuxvx

+
s(s+ 1)

2
⇢xxv + (s+ 1)(uxux + uxxu)v + (s+ 1)(u2x + uuxx)v

�
+ f

f =
s�1X

j=3

0

@s+ 1

j

1

A @j

x⇢@
s+2�j

x u+
s�1X

j=2

0

@s+ 1

j

1

A @j

xu@
s+1�j

x uux + (s+ 1)
s�1X

j=1

0

@s

j

1

A @j

xu@
s�j

x uuxx.

The goal is to use a weighted energy Es = ||e��(u)v||L2 to replace the standard energy ||v||L2 as

shown in 5.6 and hopefully get good energy estimates. We chose to write the weight e��(u) in this

particular form so that it’s easier to find the appropriate weight to use, as we will show below.

Define w by v = e�w, then the energy can be written as Es = kwk
L2 . Direct calculation yields

wt = i


@x(⇢wx) + (2⇢�x + (s+

1

2
)⇢x)wx +

1

2
(uux � uux)wx + uuxwx

�

+ i


s(s+ 1)

2
⇢xx + (s+ 1)(uxux + uxxu) + (⇢�2

x + ⇢�xx + (s+
3

2
)⇢x�x +

1

2
(uux � uux)�x)

�
w

+ i
⇥
(s+ 1)(u2x + uuxx) + uux�x

⇤
w + fe��.
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For simplicity, we rewrite this as

wt = N1 +N2 +N3 + fe��

N1 = i


@x(⇢wx) + (2⇢�x + (s+

1

2
)⇢x)wx +

1

2
(uux � uux)wx + uuxwx

�

N2 = i


s(s+ 1)

2
⇢xx + (s+ 1)(uxux + uxxu) + (⇢�2

x + ⇢�xx + (s+
3

2
)⇢x�x +

1

2
(uux � uux)�x)

�
w

N3 = i
⇥
(s+ 1)(u2x + uuxx) + uux�x

⇤
w.

To get the time derivative of the energy, we multiply wt by w, add the complex conjugate and

integrate over time. Let’s look at the terms one by one and determine which one could break the

energy estimate. N2 and N3 are obviously good terms since they do not involve space derivatives

of w and the coe�cients are lower order derivatives of u. The term fe�� consists of only lower

order derivatives of u, therefore it does not cause any loss of derivatives. In N1, both i@x(⇢@x)

and i

2(uux�uux)@x are skew-symmetric and will vanish in the energy estimate. The term iuuxwx,

when multiplied with w, can be written as i

2uux@x(w
2) and we can move the derivative onto the

lower order coe�cient uux using integration by parts. Therefore, the only term that causes loss of

derivatives is i(2⇢�x + (s+ 1
2)⇢x)wx and we pick the weight by making it zero, i.e. we choose � so

that 2⇢�x + (s+ 1
2)⇢x = 0. The solution is then given by

� = �(
s

2
+

1

4
) ln ⇢, w = e��v = |u|s+

1
2 v.

We then compute the energy estimate

@t kwk
2
L2 =

Z
N1w +N1w dx+

Z
N2w +N2w dx+

Z
N3w +N3w dx+

Z �
fw + fw

�
|u|s+

1
2 dx.

Using Sobolev inequality kuxkL1 . kUk
H1 and integration by parts, we can bound the first integral

by

Z
N1w +N1w dx = �i

Z
1

2
(uux � uux)x|w|

2 dx�
i

2

Z
(uux)xw

2 dx+
i

2

Z
(uux)xw

2 dx

. kUk
2
H3 kwk

2
L2 .

(5.24)
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Direct application of the Sobolev inequality can bound the remaining three integrals

Z
N2w +N2w dx+

Z
N3w +N3w dx+

Z �
fw + fw

�
|u|s+

1
2 dx . kUk

2
H3 kwk

2
L2 .(5.25)

Combining (5.24) and (5.25), and choosing s � 3, we get

@t kwk
2
L2 . kUk

2
H3 kwk

2
L2 . kvk2

L2 kwk
2
L2 ,

where the second inequality follows from Sobolev inequality.

The weighted energy method does resolve the loss of derivatives as we expected. However, ||v||L2

cannot be controlled by the weighted energy kWk
L2 due to the degeneracy of the equation. If the

initial data is non-degenerate, then ||v||L2 is comparable to kWk
L2 , closing the energy estimate,

and the local well-posedness then follows from a standard Gronwall argument. But when the initial

data is degenerate, the comparability between ||v||L2 and kWk
L2 breaks down and we cannot obtain

a good energy estimate.

5.8. Ill-posedness in Hs

Jeong and Oh ( [29], [28]) showed that the DQS equation is ill-posedness in Hs for s > 9
2 . In

particular, they prove the following theorem

Theorem 5.8.1. For any s > 9
2 , there exists an initial data u0 2 H2

\ C1(R) for which there is

no corresponding solution to (1.8) in L1([0, �];Hs(R)) with any � > 0.

The authors considered a perturbation around the solution f(t, x) = xe2it. They then performed

a modified energy estimate on this perturbation and showed that this modified energy does not

decay to 0. They finally showed this modified energy can be used to find a lower bound that blows

up arbitrarily fast for the L2 energy. The goal of the modified energy is to obtain a self-adjoint

operator that consists of higher-order terms so that it cancels out in the energy estimate. [49] also

gives an example of this method.

The key idea of the proof is that the support of the perturbation will shrink, and it will blow up

around x = 0. We can construct perturbations that blow arbitraily fast.
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5.9. Well-posedness Result

[20] proves a well-posedness result in a more restricted space for a similar Quasi-linear Schrodinger

equation

(5.26) iut + u(uux)x = µ|u2|u,

where µ 2 {�1, 0, 1}.

Although equation (5.9) is similar to our DQS equation (1.8) in many ways, the Hamiltonian

structure is very di↵erent. The hamiltonian of equation (5.9) is given by

ut + i


�H

�u⇤

�
= 0

H(u, u⇤) =
1

2

Z
�(u⇤)2(uux)x + µ|u|4dx.

Note that the Hamiltonian form of the DQS equation (5.2) has the non-canonical operator @x,

whereas equation (5.9) can be written in the Hamiltonian form with the canonical operator i.

Since non-linear term in equation is very similar to the non-linear term in the DQS equation, we

expect to obtain well-posedness in the same function space. In this chapter, we show that the same

method used in [20] can be applied to our DQS equation to prove well-posedness on the set of

initial data U0 that is smooth, non-zero on an interval I := (�x0, x0), supported on I = [�x0, x0],

and has su�cient decay at the endpoints to ensure

(5.27)
1

|u0|
/2 L1((�x0, 0)) [ L1((0, x0)).

5.9.1. Main result.

Theorem 5.9.1. Let x0 > 0 and I = (�x0, x0). Then there exists a set S ⇢ L2 of functions that

are non-zero and smooth on I, supported on I and satisfy (5.27) so that for any u0 2 S there

exists a time T > 0 and a unique u 2 C([0, T ];L2) that satisfies (1.8) in the sense of distributions.

Further, for all t 2 [0, T ] the solution map u0 ! u(t) is Lipschitz continuous with respect to the

L2-topology.

Outline of Proof: The proof mainly consists of three parts. We first apply a change of variables

to get a system of new equations. We then prove we can obtain solutions of this system with
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good energy estimates. The final piece of the proof is to show that the solutions we constructed

have su�cient regularity so that we can invert the change of variables and obtain a solution to the

original equation (1.8).

The change of variables is the same as that used in [20] and is discussed in section 5.9.2. The

equations are di↵erent from those in [20], but we can obtain the same well-possedness result. In

5.9.7, we show that we can adapt the proof in [20] to our equation and the calculations all work

out. This last part of the proof depends only on the change of variables applied and the regularity

of the new variables, and not on the equations of the new variables. Since we are using the same

change of variables as in [20] and the new variables satisfy the same regularity conditions, this part

of the proof will be exactly the same as Section 6 of [20] and we omit it here.

5.9.2. Change of Variables. We introduce the independent variable

(5.28) y(t, x) =

Z
x

0

1

|u(t, ⇣)|d⇣
+ c(t).

Using the change of variable we define

U(t, y(t, x)) = u(t, x)

W (t, y(t, x)) = w(t, x) =
u(t, x)ux(t, x)

|u(t, x)|
.

The variable W is related to U by the identity

W =
UUy

|U |2
.

We denote the real and imaginary part of W as

↵ = Re(W ) and � = Im(W ).

Use ↵ and � to fix our gauge by taking c(t) to solve the equation

8
><

>:

ct(t) = �(t, c(t)) + 3
R
c(t)
0 ↵(t, ⇣)�(t, ⇣)⇣

c(0) = 0

,
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and defining function b(t, y) by

b(t, y) = 3

Z
y

0
↵(t, ⇣)�(t, ⇣)d⇣.

The equation (1.8) can be written as

i(Ut + b(t, y)Uy) + Uyy + (↵(t, y)� i�(t, y))Uy = 0.(5.29)

As we mentioned, we also need to control W , which satisfies

(5.30) i(Wt + bWy) = �3i↵�W �WWy � 3WWy �Wyy.

5.9.3. Function Spaces. [20] defines the following function spaces:

In the case of linear endpoint decay, Example 2.1 in [20] suggests that we should not expect W to

decay as |y| ! 1. This motivates the definition of the space Zs with norm

kfk
Zs := kfk

L1 + kfyk
H

s� 1
2
.

Given a function m : R ! C we define the Fourier multiplier

m(Dy)f(x) :=
1

p
2⇡

Z
m(⇠)f̂(⇠)eix⇠d⇠.

Given ⌧ > 0 and a Banach space X of tempered distributions on R with norm || · ||X , we define the

subspace AX⌧ of X to consist of f 2 X with finite norm

kfk
AX⌧

:=
��(e⌧Dyf, e�⌧Dyf)

��
X
,

where we make the convention that if g = (g1, g2, . . . , gn) then

kgk
X

=
nX

j=1

kgjkX .

5.9.4. Preliminary Inequalities. The proof requires the following results from [20]. We

state the inequalities here and the proof can be found in [20]:

• Symmetric product bounds. If s � 0, then

(5.31) kfgykAHs
⌧
. kfk

AL1
⌧
kgykAHs

⌧
+ kfykAHs

⌧
kgk

AL1
⌧
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(5.32) kfgk
AZs

⌧
. kfk

AL1
⌧
kgk

AZs
⌧
+ kfk

AZs
⌧
kgk

AL1
⌧

• Asymmetric product bounds. If 0 < s  1
2 , then

(5.33) kfgyk
AH

s� 1
2

⌧

. kfk
AZ0

⌧
kgyk

AH
s� 1

2
⌧

5.9.5. Existence for U,W . In order to prove existence of solutions to the DQS equation

(1.8), we need to first prove existence of a solution to the equation (5.29). Here, we will treat the

equations (5.29) and (5.30) as a system, where the initial data is not necessarily related.

Theorem 5.9.2. Let 0 < s  1
2 and 0 < ⌧0  1. Then given any

U0 2 AHs

⌧0
, W0 2 AZs

⌧0
,

there exists some T > 0, a non-increasing, continuously di↵erentiable function ⌧ : [0, T ] ! (0,1)

so that ⌧(0) = ⌧0, and a solution U 2 Cw([0, T ];AHs
⌧ ),W 2 Cw([0, T ];AZs

⌧ ) of the system (5.29)

(5.30) with initial data U(0) = U0,W (0) = W0. Further, we have the estimates

kUk
L
1
T AHs

⌧
. kU0kAHs

⌧0
(5.34)

kWk
L
1
T AZs

⌧
. kW0kAZs

⌧0
.(5.35)

5.9.6. Regularized System. We take � 2 C1
c to be an even function, identically 1 on [�1, 1]

and supported in (�2, 2). We define the Littlewood-Paley projection P0 = �(Dy) and for j � 1 we

define Pj = �(2�jDy)� �(21�jDy). We then consider the following regularized system

(5.36a)

(5.36b)

8
<

:

iUt = Pj [�iBUj,y + Uj,yy +WjUj,y]

iWt = Pj

⇥
�iBWj,y +Wj,yy +WjWj,y � 3WjWj,y � 3i↵j�jWj

⇤
.

Lemma 5.9.2.1. Given 0 < s 
1
2 , 0  ⌧0  1 and (U0,W0) 2 AHs

⌧0
⇥ AZs

⌧0
, there exists a time

T0 > 0 and a solution (U,W ) 2 C1([0, T0];AHs
⌧0

⇥ AZs
⌧0
) of (5.36) with initial data (U,W )(0) =

(U0,W0).

Proof. We first bound the velocity B by

kBk
L1 . 2j k↵jkL1 k�jkL1 . 2j kWk

2
L1 .
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We then apply Bernstein’s inequality and Sobolev inequality to bound

kRHS((5.36a))k
AHs

⌧0
. e⌧02

j
2sj k(RHS(5.36a))k

L2

. e⌧02
j
2sj

⇥
kBk

L1 kUj,ykL2 + kUj,yykL2 + kWjkL1 kUj,ykL2

⇤

. kUk
L2 e⌧02

j
2sj

h
22j kWk

2
L1 + 22j + 2j kWk

L1

i

.⌧0,j (1 + k(U,W )k
AHs

⌧0
⇥AZs

⌧0
)2 k(U,W )k

AHs
⌧0

⇥AZs
⌧0

kRHS((5.36b))k
AL1

⌧0
. e⌧02

j ���iBWj,y +Wj,yy +WjWj,y � 3WjWj,y � 3i↵j�jWj

��
L1

. e⌧02
j
h
22j kWk

3
1 + 22j kWk1 + 2j kWk

2
1 + kWk

3
1

i

.⌧0,j (1 + k(U,W )k
AHs

⌧0
⇥AZs

⌧0
)2 k(U,W )k

AHs
⌧0

⇥AZs
⌧0

||@yRHS((5.36b))||
H

s� 1
2
. e⌧02

j
h
22j kWk

2
L1 kWykL2 + 22j kWykL2 + 2j kWk

L1 kWykL2 + kWk
2
L1 kWykL2

i

.⌧0,j (1 + k(U,W )k
AHs

⌧0
⇥AZs

⌧0
)2 k(U,W )k

AHs
⌧0

⇥AZs
⌧0
.

Using the above bounds, we see that RHS((5.36a)) and RHS((5.36b)) are Lipschitz continuous as

maps from AHs
⌧0
⇥AZs

⌧0
to itself. The existence of the solution (U,W ) 2 C1([0, T0];AHs

⌧0
⇥AZs

⌧0
)

then follows from the Picard-Lindelöf Theorem. ⇤

5.9.7. Proof of Theorem 5.9.2.

Proof. We make the bootstrap assumption that for some 0 < T  T⇤ we have

(5.37) sup
t2[0,T ]

kUk
AHs

⌧
+
p

M⌧0 kUk
L
2
TAH

1
2
⌧

+ sup
t2[0,T ]

kWk
AZs

⌧
+

p
M⌧0 kWykL2

TAL2
⌧


p
M

K
.

Remember that B(t, y; j) = �3sech(2�jy)
R
y

0 ↵j(t, ⇣)�j(t, ⇣)d⇣. We need to first obtain a bound

for By. Since the definition of B is the same as that in [20], we will quote the result directly without

providing the calculations and readers can refer to [20] for proof of the following inequality

(5.38) kBykAZ0
⌧
. kWk

AL1
⌧
kWk

AZ0
⌧
. M

K2
.
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Using lemma 4.1 in [20], we obtain the following bound for U

sup
t2[0,T ]

kUk
AHs

⌧
+
p
M⌧0 kUk

L
2
TAH

s+1
2

⌧

. kU0kAHs
⌧0

+
1

p
M⌧0

kWjUj,yk
L
2
TAH

s� 1
2

⌧

.(5.39)

(5.40)

Using (5.33) and the bootstrap assumption (5.37), we can then get

1
p
M⌧0

kWjUj,yk
L
2
TAH

s� 1
2

⌧

. 1
p
M⌧0

����kWk
AZ0

⌧
||Uy||

AH
s� 1

2
⌧

����
L
2
T

. 1
p
M⌧0

kWk
L
1
T AZ0

⌧
kUk

L
2
TAH

s+1
2

⌧

. 1
p
M⌧0

kWk
L
1
T AZs

⌧
kUk

L
2
TAH

s+1
2

⌧

. 1

K
p
⌧0

kUk
L
2
TAH

s+1
2

⌧

.

(5.41)

Combining (5.39) and (5.41) and choosing K to be su�ciently large, we get

sup
t2[0,T ]

kUk
AHs

⌧
+
p
M⌧0 kUk

L
2
TAH

s+1
2

⌧

.K kU0kAHs
⌧0

uniformly in M � 1. Finally, provided M is su�ciently large, we have

sup
t2[0,T ]

kUk
AHs

⌧
+
p
M⌧0 kUk

L
2
TAH

s+1
2

⌧



p
M

20K
,

which closes the first part of the bootstrap.

Next, we consider bounds for Wy. Di↵erentiate (5.36b) by y, we get

iWty + iPjBWj,yy =PjWj,yyy

+ Pj

⇥
WjWj,y � 3WjWj,y

⇤
y

+ iPj [�ByWj,y � 3↵j,y�jWj � 3↵j�j,yWj � 3↵j�jWj,y] .
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Applying the estimate (5.31), we may bound

||(WjWj,y � 3WjWj,y)y||L2
TAH

s�1
⌧

.
��WjWj,y � 3WjWj,y

��
L
2
TAHs

⌧

.
���kWk

AL1
⌧
kWykAHs

⌧

���
L
2
T

. kWk
L
1
T AL1

⌧
kWykL2

TAHs
⌧

.
p
M

K
kWykL2

TAHs
⌧
.

Using the fact that T . 1
M
, with (5.32), (5.33), and the bootstrap assumption (5.37), we can bound

||↵j,y�jWj + ↵j�j,yWj + ↵j�jWj,y||
L
1
TAH

s� 1
2

⌧

.
����||↵�||AZ0

⌧
kWyk

AH
s� 1

2
⌧

����
L
1
T

. || kWk
AL1

⌧
kWk

AZ0
⌧
kWyk

AH
s� 1

2
⌧

||
L
1
T

. 1

K2
kWyk

L
1
T AH

s� 1
2

⌧

,

and using T . 1
M

again, with the estimates (5.38) and (5.33), we also have

kByWj,yk
L
1
TAH

s� 1
2

⌧

. T kBykL1
T AZ0

⌧
kWyk

L
1
T AH

s� 1
2

⌧

. 1

K2
kWykL1

T
.

Applying proposition 4.1 we then obtain

sup
t2[0,T ]

kWyk
AH

s� 1
2

⌧

+
p
M⌧0 kWykL2

TAHs
⌧
.

��W0y

��
AH

s� 1
2

⌧0

+
1

k2
kWyk

L
1
T AH

s� 1
2

⌧

+
1

p
⌧0K

kWykL2
TAHs

⌧
.

Provided that K � 1 is su�ciently large, we get

(5.42) sup
t2[0,T ]

kWyk
AH

s� 1
2

⌧

+
p
M⌧0 kWykL2

TAHs
⌧
.

��W0y

��
AH

s� 1
2

⌧0

uniformly in M � 1. Provided M is su�ciently large, we can ensure that

(5.43) sup
t2[0,T ]

kWyk
AH

s� 1
2

⌧

+
p
M⌧0 kWykL2

TAL2
⌧
.

p
M

40K
,

which closes the second part of the bootstrap.
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For the final part of the bootstrap, we need to bound the following quantity

sup
t2[0,T ]

kWk
AL1

⌧
 sup

t2[0,T ]
kP>0Wk

AL1
⌧
+ sup

t2[0,T ]
kP0Wk

AL1
⌧
.

The first term can be bounded by Bernstein’s inequality and (5.42)

sup
t2[0,T ]

kP>0Wk
AL1

⌧
. sup

t2[0,T ]

1X

j=1

kPjWk
AL1

⌧

. sup
t2[0,T ]

kWyk
AH

s� 1
2

⌧

.
��W0y

��
AH

s� 1
2

⌧0

.

Using Berstein’s inequality, the estimate (5.42), and the fact T . 1
M
, we can bound

kP0Wj,yykL1
TAL1

⌧
. T kWyk

L
1
T AH

s� 1
2

⌧

. 1

M

��W0y

��
AH

s� 1
2

⌧0

��P0(WjWj,y � 3WjWj,y)
��
L
1
TAL1

⌧
. 1

M
kWk

2
AL1

⌧
. 1

K
p
M

kWk
L
1
T AL1

⌧

kP0(↵j�jWj)kL1
TAL1

⌧
. T kWk

3
L
1
T AL1

⌧
. 1

K2
kWk

L
1
T AL1

⌧
.

Applying all these bounds, and proposition 4.4 in [20], we obtain

sup
t2[0,T ]

kWk
AL1

⌧
. C(K)

��W0y

��
AH

s� 1
2

⌧0

+ sup
t2[0,T ]

kP0Wk
AL1

⌧

. C(K)
��W0y

��
AH

s� 1
2

⌧0

+ kW0kAL1
⌧0

+
��P0(Wj,yy +WjWj,y � 3WjWj,y � 3i↵j�jWj)

��
L
1
TAL1

⌧

. C(K)
��W0y

��
AH

s� 1
2

⌧0

+ kW0kAL1
⌧0

+ (
1

K
p
M

+
1

K2
) kWk

L
1
T AL1

⌧

uniformly in j, where C(K) is a constant depending on K, s, ⌧0. Provided K is su�ciently large

(depending on s, ⌧0) we obtain

sup
t2[0,T ]

kWk
AL1

⌧
.

p
M

40K
,

which closes the bootstrap.

We’ve shown that if the solutions of (5.36a) and (5.36b) satisfies (5.37), then it must satisfy (5.37)

with the RHS((5.37)) replaced by
p
M

10K . Applying Lemma 5.9.2.1, out solution may then be extended

to time T = T ⇤ and satisfies (5.37).
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We can then obtain solutions of (5.36a) and (5.36b) tat satisfy the estimates (5.34) and (5.35)

uniformly in j. Passing to a subsequence j ! 1, we may extract a weak limit U 2 Cw([0, T ];AH2
⌧ )

and W 2 Cw([0, T ];AH2
⌧ ) satisfying the equations (5.29) (5.30) and estimates (5.34) (5.35). ⇤
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CHAPTER 6

Numerical Results for the DQS Equation

6.1. Motivation for Front Propagating Solutions of the DQS Equation

We ask if the DQS equation can have compactly supported solutions. One motivation comes from

the fact that the porous medium equation

ut = (uux)x

has solutions with a spreading front. For the porous medium equation, if we start with a pulse at

zero (i.e. initial condition is a �-function), then dimensional analysis shows us the solution is

u(x, t) = t
1
3F (

x

t1/3
),

where F can be shown to have compact support. Therefore, we get a propagating solution with

compact support.

The existence of compacton solutions is a feature of many degenerate dispersive equations. In [14],

the authors showed that there are compacton solutions to the degenerate nonlinear Schrodinger

equation

�i@tu+ u@x(u@xu) + |u|p�2u = 0

with p > 2. Another example of degenerate dispersive equations with compacton solutions is the

following degenerate quasilinear Korteweg-de Vries (KdV) equation studied in [13],

ut + (u(uux)x + µu3)x = 0.

Here, we ask if we can also find a compactly supported solution for the DQS equation. Since we

rely on numerical simulations, we cannot use a �-function. Instead, we require the initial data to

be compactly supported with a pulse at the center. In particular, we look at the following initial
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data:

u0(x) =

8
><

>:

C[(⇡2 )
2
� (⇡ � x)2]2 |x� ⇡|  ⇡

2

0 otherwise.

(6.1)

A plot of the solution at t = 0.15 is shown in figure 6.1, and a movie of the solution is provided

here (URL at (5)).

t = 0 t = 0.15

Figure 6.1

6.2. Previous Numerical experiment

This front solution was considered in [48] by Evan Smothers. He used a spectral scheme with

artificial viscosity to compute the solution. However, the spectral scheme requires an implicit ODE

solver, making it very costly under high resolutions since the system is not sparse. Therefore, we

use a finite-di↵erence scheme instead, which allows us to work with a sparse system. The time

consumption and memory requirement are lower compared to the spectral method.

6.3. Numerical Method

We use a finite-di↵erence scheme to solve the equation numerically. Take ⇢ = |u|2, then we obtain

a system of two equations:

⇢t = i(⇢(uxu� uxu))x(6.2)

ut = i(⇢ux)x.(6.3)
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We solve the two equations in alternation. In each iteration, we use (6.2) to update ⇢ first; then

use (6.3) to update u.

In equation (6.2), note that i(uxu�uxu) is real. Therefore equation (6.2) is similar to an advection

equation. An explicit method is stable for this problem as long as we keep the CFL number small.

Here, we use the Lax-Friedrichs method. One major advantage of the Lax-Friedrichs method over

other methods is that it preserves positivity of ⇢. For equation (6.3), we use the Backward Euler

method since i⇢ is purely imaginary and hence a Backward Euler method is unconditionally stable.

Therefore, our algorithm is 1-st order accurate in both space and time.

For the finite di↵erence method, we use a grid size of N = 2k. And to keep the CFL number small,

we set M = 2N , where M is the number of time steps.

Let xkn be the k-th point on the grid at the n-th time step, and let x
k+ 1

2
n = 1

2(x
k
n + xk+1

n ).

Let ukn = u(xkn) and ⇢
k+ 1

2
n = ⇢(x

k+ 1
2

n ). Here, u and ⇢ are evaluated on a staggered grid. u is

evaluated on points xkn and ⇢ is evaluated on points x
k+ 1

2
n only.

For clarity, let’s also define J = i(uxu � uxu). Then (6.2) becomes ⇢t = (⇢J)x. To calculate the

x�derivative, J must be evaluated on the same grid points as ⇢. Therefore, we approximate u
k+ 1

2
n

by u
k+ 1

2
n = 1

2(u
k
n + uk+1

n ). Let J
k+ 1

2
n = J(u

k+ 1
2

n ), the numerical scheme has the form

⇢
k+ 1

2
n+1 =

1

2
(⇢

k+ 3
2

n + ⇢
k� 1

2
n ) +

4t

24x
(⇢

k+ 3
2

n J
k+ 3

2
n � ⇢

k� 1
2

n J
k� 1

2
n )(6.4)

uk
n+1 � ukn
4t

=
i

4x2
[⇢

k+ 1
2

n+1 (u
k+1
n+1 � ukn+1)� ⇢

k� 1
2

n+1 (u
k

n+1 � uk�1
n+1)].(6.5)

The numerical scheme we used is 1-st order accurate in space and time. The code is provided in

appendix A. We have attempted methods with better accuracy, such as the Crank-Nicolson method

and the 2nd-order Backward Di↵erentiation Formula (BDF2) for the Schrodinger equation, both of

which are 2-nd order accurate in time. However, according to our simulations, these methods create

oscillations, and our e↵ort to find a stable but more accurate methods has been unsuccessful so far.

Below, we show the comparison between the fully implicit scheme, the Crank-Nicolson scheme, and

the BDF2 scheme.

The details of the numerical viscosity of the fully implicit scheme will be explained in section 6.4.

For now, we will just say the fully implicit scheme has a viscous e↵ect that inhibits the formation

of oscillations. The BDF2 scheme has built-in viscosity as well, but it is weaker compared to that
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of the implicit scheme. The comparison between the solutions of the fully implicit scheme and the

BDF2 scheme at t = ⇡

2 is shown in figure 6.3. Both schemes are run with the grid size of 214, and

the initial data is set to be that of the traveling wave solution (5.6) with s = c = 1p
2
. See here

(URL at (4)) for a movie of the traveling wave solution using the fully implicit scheme.

Figure 6.2. Initial Data

We can see the implicit scheme solution behaves exactly like the traveling wave solution with the

correct speed, while the BDF2 scheme generates oscillations due to its weaker viscous e↵ect.
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Fully Implicit Scheme at t =
⇡/2

BDF2 Scheme at t = ⇡/2

Figure 6.3

Figure 6.4 shows the solution obtained with the Crank-Nicolson scheme at t = ⇡

8 . Since the Crank-

Nicolson scheme has no built-in viscosity, it develops stronger oscillations much quicker.

Figure 6.4. Crank-Nicolson Scheme at t = ⇡/8

6.4. Front Expansion

We ran the algorithm at various resolutions (from 211 spatial points to 217 points) with the initial

condition mentioned above. One interesting phenomenon is that the higher the resolution, the

further the front propagates in unit time. Figure 6.5 shows the final location of the front at t = 0.15

versus resolution. The relation between the final front location and log(resolution) becomes almost

linear with resolution higher than 214.

70



Figure 6.5. No artificial viscosity

Our hypothesis is that the sharp front shown in figure 6.1 is a result of the numerical viscosity in

our algorithm. The exact solution may not have a propagating front. We speculate that when the

front first forms in our numerical simulation, the exact solution immediately forms oscillations that

spreads to ±1.

To get a modified equation for the numerical viscosity of the scheme, we Taylor expand the left

hand side of equation (6.5) in t and obtain

(6.6) ut(x
k

n) +
4t

2
utt(x

⇤) =
i

4x2
[⇢

k+ 1
2

n+1 (u
k+1
n+1 � ukn+1)� ⇢

k� 1
2

n+1 (u
k

n+1 � uk�1
n+1)].

Using equation (1.8), we know that the leading order term in utt is �⇢uxxxx. utt can be written as

utt = �⇢uxxxx � f(ux, uxx, uxxx).

Therefore, equation (6.6) becomes

(6.7)

ut(x
k

n) =
i

4x2
[⇢

k+ 1
2

n+1 (u
k+1
n+1�ukn+1)�⇢

k� 1
2

n+1 (u
k

n+1�uk�1
n+1)]+

4t

2
(⇢(x⇤)uxxxx(x

⇤)+f(ux, uxx, uxxx)(x
⇤)).
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Here, the ⇢uxxxx term is the viscosity produced by our numerical scheme. And since it has strength

proportional to 4t, it is compatible with our observation that the front propagates further under

higher resolution (which leads to small 4t).

Of course, Taylor expanding on the right hand side will also produce an error, but since the entire

right hand side gets multiplied by i, it is not a viscous term.

To test the hypothesis, we add artificial viscosity to equation (6.3) and get

(6.8) ut = i(⇢ux)x + ✏uxx.

The fixed dissipation ✏uxx on the right hand side of the equation should dominate the numerical

viscosity as 4t ! 0. Hence, we should be able to get a converging front propagation speed. Figure

6.6 shows the front location of the viscous equation (6.8) with di↵erent values of ✏ ranging from

0.001 to 0.003. The plot shows that as ✏ increases, not only does the front travel less, but the

plot of the front location versus resolution also seems to converge. This confirms our hypothesis

that when the artificial viscosity is su�ciently large, it will dominate the numerical viscosity which

depends on 4t, and there will no longer be a visible di↵erence between the front locations under

di↵erent resolutions. Due to the high time consumption of the high resolution runs, I have not

completed the run at resolutions higher than 215. But the runs from 211 points to 215 points do

suggest a converging propagation speed for viscous fronts.

72



Figure 6.6. Artificial viscosity

6.4.1. Group Velocity Near the Front. We further study the connection between group

velocity and the front location. We write u = rei�, where r is the amplitude, and � is the phase.

The dispersion relation of the DQS equation is given by

! = ⇢k2,

where k = �x is the wave number and ! = ��t is the frequency. We can then calculate the group

velocity
@w

@k
= 2⇢k.

We wish to study whether or not the front is propagating at the speed predicted by the dispersion

relation. Therefore, we compute the group velocity and the front propagation speed, and check

how well they match.

Calculating the propagation speed of the front is very straight forward. We simply find the last

non-zero point from the right, and that is the location of the front. Subtracting the locations of

the front in two consecutive time steps, and dividing by dt gives us the front traveling speed.
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We can calculate the wave number by the following formula

k =
1

2i⇢
(uux � uux).

Then, the group velocity is given by

w = �i(uux � uux).

Below we show the comparison of the front propagation speed and the group velocity at two

di↵erent resolutions: 215 spatial points and 217 points. We first choose the grid size of 215 points.

Plot 1 in figure 6.7 shows the front propagation speed as a function of time. At t = 0.15, the front

propagation speed is approximately 16.36, while the group velocity at the front is 15.895.

Figure 6.8 shows the comparison with the grid size of 217 points. At t = 0.15, the front propagation

speed is 19.31, and the group velocity at the front is 19.02.

The data shows that the group velocity does match up with the actual propagation speed of the

front. In addition, as we increase the resolution, we see larger wave number and group velocity at

the front, which is compatible with our hypothesis that when the front first forms in the numerical

simulation, the exact solution immediately forms oscillations that spreads to ±1.

The front of the solution is dominated by waves with high wave numbers traveling at their cor-

responding group velocity. Since our algorithm samples u at finitely many points, higher wave-

numbered waves are omitted in the sampling. As we increase the resolution, we preserve more

higher wave-numbered waves during the sampling and that causes the front to travel faster.

Front Propagation Speed Group Velocity

Figure 6.7
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Front Propagation Speed Group Velocity

Figure 6.8

6.5. Dispersive Shocks

As we can see in figure 6.1, the wave develops rapid oscillation with decreasing amplitude before

the front. And the oscillation happens on a fast time scale, while the change in amplitude happens

on a slow tims scale. This suggests that the wave can be described by dispersive shocks.

Let r denote the amplitude, ' denote the phase, k = 'x denote the wave number and ! = �'t

denote the frequency. Let ✏ be the scale of the period of the oscillations, then the phase can be

written as '

✏
. This suggests we can look at solutions in the form

u = ✏
1
2A(x, t)ei

'(x,t)
✏ .

We then expand the equation by setting u = u1 + ✏u2 + ✏2u3 + ....

At order ✏�
1
2 , we get the equation

! = |u1|
2k2.

Combined with the fact !x = �kt, we get the first conservation law

(6.9) kt = �(|u1|
2k2)x.

At order ✏
1
2 , we get the equation

u1t = i!u2 � (k|u1|
2u1)x � ik2(2|u1|

2u2 + u21u2).
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Multiply both sides by u1 and add the complex conjugate, we get

(6.10)

|u1|
2
t = i!(u2u1 � u2u1)� ik2(2|u1|

2u2 + u21u2 � 2|u1|
2u2 � u1

2u2)� (k|u1|
2u1)xu1 � (k|u1|

2u1)xu1.

Notice that the left hand side of (6.10) is real. Therefore, we must have <RHS(6.10) = 0. Since the

first two terms of the right hand side of (6.10) are purely imaginary and the sum of the remaining

two terms are real, we have

(6.11) |u1|
2
t = �(k|u1|

2u1)xu1 � (k|u1|
2u1)xu1 = �2(k|u1|

4)x.

Let ⇢ = |u1|2, we can write the system of conservation laws (6.9) and (6.11) as

kt + (⇢k2)x = 0

⇢t + 2(k⇢2)x = 0.

The system can also be written as the following non-conservative form

(6.12)

2

4k

⇢

3

5

t

= �

2

42k⇢ k2

2⇢2 4k⇢

3

5

2

4k

⇢

3

5

x

.

Observe that the system is a special case of the 3x3 modulation system (5.22). Let s = 0, then

(5.22) reduces to the dispersive shock system .

The system has eigenvalues (3±
p
3)k⇢, which are both real. Hence it is a hyperbolic system.

Since dispersive shocks correspond to rarefaction waves in the modulation variables (⇢, k) (see [9]),

we look for the self-centered rarefaction wave ⇢(t, x) = ⇢(x
t
), k(t, x) = k(x

t
).

Let ⇠ = x

t
, then we have

(6.13) ⇠

2

4k

⇢

3

5

⇠

�

2

42k⇢ k2

2⇢2 4k⇢

3

5

2

4k

⇢

3

5

⇠

= 0.

Therefore, ⇠ is an eigenvalue and

2

4k

⇢

3

5

⇠

is the corresponding eigenvector. The matrix has two

eigenvectors: v1 =

2

4 k

(1 +
p
3)⇢

3

5 and v2 =

2

4 k

(1�
p
3)⇢

3

5. We pick

2

4k

⇢

3

5

⇠

=

2

4 k

(1�
p
3)⇢

3

5 since this
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is the one that corresponds to a rarefaction with ⇢ ! 0 and k ! 1 . We want ⇢ to be decreasing

as approaching the front. Solving the system, we get

k = c1e
⇠

⇢ = c2e
(1�

p
3)⇠.

(6.14)

Then, ⇢ ⇠ k1�
p
3 as ⇠ ! 1. This describes the dispersive shock section behind the front.

Numerical experiments show that the dispersive shock theory is a good description of the solution.

We take a segment before the front as shown in figure 6.9. Here, we are using a spatial grid of

216 points. Polynomial fitting of the wave number and the amplitude on that segment gives the

following relation:

(6.15) ⇢ ⇠ k�0.7314.

Figure (6.10) plots the exact values of ⇢ and the approximation as functions of k. We can see the

approximation (6.15) is very close to the theoretical prediction (6.14).

Figure 6.9
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Figure 6.10

6.6. Comparison with the MRS numerical solution

We compare the numerical solutions of the DQS equation and the MRS system to study how well

the DQS equation describes the behavior of the MRS system on O(✏2) time scale. We choose an

initial data for the MRS system

u0 = ✏a(x)

v0 = ✏b(x),

the corresponding initial value for the DQS equation is then given by

A0 =
1
p
6
a(x) +

i
p
6
b(x).
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In the example shown in Figure 6.11, we use the initial data

a(x) = cos(x)esinx +
1

10
sin(10x)

b(x) = esin(x�
⇡
4 ) � e

1p
2

✏ = 0.03.

See here (URL at (3)) for a full movie of the solution. The first plot in figure 6.11 shows that the

DQS equation develops a singularity approximately at t = 0.096. We expect the singularity to form

in the MRS system at T = T

✏2
= 95.11. The singularity formation time of the MRS system, as shown

in the second plot, is approximately 97.02. Similarly, we can predict the singularity formation time

of the MRS system with di↵erent values of ✏. Table 6.1 shows the comparison of the predicted

singularity formation time and the actual formation time with ✏ chosen to be between 0.02 and

0.09. The DQS equation appears to provide a good prediction when ✏  0.05. The error becomes

more substantial with larger ✏ values.

DQS MRS

Figure 6.11. Entropy Derivative

We now examine how well the front solution (6.1) of the DQS equation describes the MRS system.

Using the relation (??) we get the corresponding initial data for the MRS system

u0(x) =

8
><

>:

✏[(⇡2 )
2
� (⇡ � x)2]2 |x� ⇡|  ⇡

2

0 otherwise

,

v0(x) = 0.
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Table 6.1. Singularity Formation

✏ Predicted Singularity Formation Time Actual Singularity Formation Time
0.02 240 234.049
0.03 106.667 108.322
0.04 60 63.335
0.05 38.4 38.956
0.06 26.667 31.919
0.07 19.592 25.526
0.08 15 19.733
0.09 11.852 19.046

Note that here we neglected the scaling (5.1), but it does not a↵ect the result.

We use the standard WENO scheme to solve the initial value problem for di↵erent ✏ and compare

the resulting solutions to the front solution of the DQS equation in section 6.4.

Since we chose the final time t = 0.15 to evaluate the location of the front for the DQS solutions,

the final time T for the MRS numerical scheme should be chosen to be

T =
0.15

✏2
.

For simplicity, we will prescribe values to T instead, and choose ✏ to satisfy

✏ =

r
0.15

T
.

Figure 6.12 plots the front location of u + iv under di↵erent values of ✏. Here, we choose T to be

200⇡, 400⇡, 800⇡, 1200⇡, 1600⇡, and the corresponding ✏ values are 0.015451, 0.01093, 0.007725, 0.006308, 0.005463.

We can see that the front indeed propagates further as ✏ decreases, which is compatible with our

hypothesis that the front solution of the DQS equation propagates with infinite speed once it de-

velops a shock. It suggests that the front solution of the DQS equation o↵ers a good qualitative

description of the behavior of the MRS system on the timescale O( 1
✏2
) as ✏ ! 0.
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Figure 6.12
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CHAPTER 7

Conclusion

The general MRS equations (1.5) describes the asymptotic behavior of resonant interactions be-

tween high frequency, small amplitude, spatially periodic sound waves in the non-isentropic Eu-

ler equations. In this paper, we studied the MRS system (3.1), obtained by choosing K(x) =

1�
P1

n=�1 �(x� n) in (1.5). This particular choice was proposed by Majda, Rosales, and Schon-

bek.

Previous work has proven the O( log ✏
✏
) lifespan of the MRS system. However, the oscillating nature

of the solutions of the linear solutions suggests we may be able to obtain an O( 1
✏2
) lifespan. In an

attempt to prove this result, we first explored the di↵erent approaches used to proveO( 1
✏2
) lifespan of

small solutions of other quadratically quasilinear PDEs, in particular, the Burgers-Hilbert equation.

We attempted to apply these methods to the MRS system, but none of them seems to be trans-

ferable. The modified energy method failed due to loss of derivatives, and the Normal Form Flow

method does not give us an explicit expression of the flow variables. However, the reduced NFT

method reveals a key di↵erence between the Burgers-Hilbert equation and the MRS system, which

does provide more insights on the di�culties when going from scalar Burgers-Hilbert equation to

the 2 ⇥ 2 MRS system. In the Burgers-Hilbert equation, both the transformation and the prob-

lematic symmetric quadratic term are scalar operators, and the commutator provides good energy

estimates. However, in the MRS system, the transformation and the symmetric quadratic term are

2⇥ 2 instead. The commutator of the two operators loses derivatives.

An asymptotic expansion of the MRS system gives us the DQS equation (1.8), which describes the

behavior of small solutions of the MRS system on a formal level. Preious work by In-Jee Jeong and

Sung-Jin Oh proved that the DQS equation is ill-posed in Sobolev spaces Hs with su�ciently large

s. We followed the method proposed by Benjamin Harrop-Gri�ths and Jeremy L. Marzuola to

prove its well-posedness in a restrictive subspace of compactly supported solutions with su�cient

endpoint decay.
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The numerical simulations in Chapter 6 suggests that the DQS equation provides a good prediction

of the MRS system. The predicted singularity formation time of small solutions using the DQS

solution is close to the actual singularity formation time. In addition, we used the numerical

method to study the possibility of compactly supported solutions. Based on our numerical results,

we hypothesize that compactly supported solutions cannot remain compact once a singularity

forms. Instead, it develops oscillations that immediately spread to ±1. The numerical results of

the MRS system with corresponding initial data in section 6.6 also seem to support this hypothesis.

Furthermore, in section 6.5 we showed that the dispersive shock theory o↵ers a good description

of the section of the solution behind the front. The relation between the wave number and the

amplitude is very close to that predicted by the dispersive shock theory.
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APPENDIX A

DQS Numerical Scheme Code

Code for DQS numerical simulations:

function res = LF_implicit(uniform_visc, nmode, N, finalT)

% uniform_visc: sets the strngth of the uniform vicscosity added to the

% u equation, set to 0 if artificial viscosity is not needed

% nmode: chooses initial data in file "ic.m"

% N: spatial resolution (number of spatial grid points). Ex: N = 2^15

% finalT: the algorithm terminates at t = finalT. Ex: finalT = 0.15

% Solve for u_t = i(|u|^2 u_x)_x

% Let rho = |u|^2

% Set up spacial resolution

a = 0;

b = 2*pi;

dx = (b-a)/N;

x = dx .* (0:(N-1)) + a;

% Set up time resolution

stepNum = 2*N + 1;

dt = finalT / (stepNum-1);

% Set initial conditions

epsilon = 0.5; % only used to set the amplitude of a few initial data

u = ic(x, nmode, N, epsilon);

rho = ic(x + (dx/2), nmode, N, epsilon);

rho = abs(rho).^2;
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% Set the save frequency, i.e. how many frame we will save

frameNum = 2^9+1;

frameRate = (stepNum-1) / (frameNum-1);

% Set the periodic flag

isPeriodic = "periodic";

% Build the sparsity pattern vectors

% They will be passed into function eq2 to indicate the nonzeros

% entries in the implicit method

if isPeriodic == "periodic"

sparsityPattern_row = floor((0:(3*N)-1) / 3) + 1;

sparsityPattern_column = (sparsityPattern_row - 1) + rem(0:(3*N)-1, 3);

sparsityPattern_column(1) = N;

sparsityPattern_column(3*N) = 1;

else

sparsityPattern_row = [1, floor((3:(3*N-3)-1) / 3) + 1, N];

sparsityPattern_column = sparsityPattern_row + [0, rem(3:(3*N-3)-1, 3)-1, 0];

end

u_allsteps = zeros(frameNum, N); % stores u at each time step

rho_allsteps = zeros(frameNum, N); % stores rho at each time step

cfl_allsteps = zeros(1, frameNum); % stores the max CFL number at each time step

u_allsteps(1, :) = u;

rho_allsteps(1, :) = rho;

cfl_allsteps(1) = cfl(u, N, dt, dx);

tic

for counter = 2:stepNum

% Use u to update rho explicitly

rho = eq1_LaxFriedrichs_staggered_periodic(rho, u, dt, dx, N, isPeriodic);
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% Update u implicitly

u = eq2_implicit_staggered(rho, u, dt, dx, N, uniform_visc, sparsityPattern_row,

sparsityPattern_column, isPeriodic);

if rem(counter-1, frameRate) == 0

rho_allsteps((counter-1)/frameRate+1, :) = rho;

u_allsteps((counter-1)/frameRate+1, :) = u;

cfl_allsteps((counter-1)/frameRate+1) = cfl(u, N, dt, dx);

end

end

elapsedT = toc

% Save the result

fileName = "LaxFriedrichs_implicit_stagger.mat";

save(fileName, ’nmode’, ’finalT’, ’stepNum’, ’frameRate’,’frameNum’, ’a’, ’b’, ’N’,

’u_allsteps’, ’rho_allsteps’, ’cfl_allsteps’, ’elapsedT’, ’-v7.3’);

end

% The Lax_Friedrichs method is an explicit method that takes

% rho_n^j = 1/2 * (rho_n^(j+1) + rho_n^(j-1))

% It updates rho on the half grid

% It uses the values of f at 4 points: f(j-1), f(j), f(j+1), f(j+2)

function res = eq1_LaxFriedrichs_staggered_periodic(rho, u, dt, dx, N, isPeriodic)

up1 = circshift(u, -1);

if isPeriodic ~= "periodic"

up1(N) = u(N);

end

J = -1/dx .* imag(up1-u) .* conj(up1+u);
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rhop1 = circshift(rho, -1);

rhom1 = circshift(rho, 1);

Jp1 = circshift(J, -1);

Jm1 = circshift(J, 1);

if isPeriodic ~= "periodic"

rhop1(N) = rho(N);

rhom1(1) = rho(1);

Jp1(N) = J(N);

Jm1(1) = J(1);

end

rho_new = 1/2 * (rhom1+rhop1) + dt/2/dx * (rhop1.*Jp1 - rhom1.*Jm1);

res = rho_new;

end

% The implicit method preserves the structure and evaluates rho on the half

% grid

function res = eq2_implicit_staggered(rho, u, dt, dx, N, uniform_visc,

sparsityPattern_row, sparsityPattern_column, isPeriodic)

rhom1 = circshift(rho, 1);

if isPeriodic ~= "periodic"

rhom1(1) = rho(1);

end

c = 1i * dt / (dx^2);

v = zeros(1, 3*N);

for j = 1:N

v(3*(j-1)+1) = -c * rhom1(j) - uniform_visc * c;

v(3*(j-1)+2) = 1 + c * (rhom1(j) + rho(j)) + 2 * uniform_visc * c;

v(3*(j-1)+3) = -c * rho(j) - uniform_visc * c;

end

g = u;
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A = sparse(sparsityPattern_row, sparsityPattern_column, v, N, N);

res = (A\(g.’)).’;

end
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APPENDIX B

Alternate WENO Scheme Code

Code for Alternate WENO scheme:

function u_t = alternate_WENO_burgers_5th(u,k,lx,dx, periodic)

eps = 1e-6;

gamma1 = 0.1;

gamma2 = 0.6;

gamma3 = 0.3;

a = max(abs(fl_prime(u)));

ujp1 = circshift(u,[0,-1]); % u(j+1)

ujp2 = circshift(ujp1,[0,-1]); % u(j+2)

ujp3 = circshift(ujp2,[0,-1]); % u(j+3)

ujm1 = circshift(u,[0,1]); % u(j-1)

ujm2 = circshift(ujm1,[0,1]); % u(j-2)

% Nonperiodic solution: we have to set the endpoints explicitly

if periodic == "no"

ujp1(size(u, 2)) = ujp1(size(u, 2)-1);

ujp2(size(u, 2)) = ujp1(size(u, 2)-2);

ujp2(size(u, 2)-1) = ujp1(size(u, 2)-2);

ujp3(size(u, 2)) = ujp1(size(u, 2)-3);

ujp3(size(u, 2)-1) = ujp1(size(u, 2)-3);

ujp3(size(u, 2)-2) = ujp1(size(u, 2)-3);

ujm1(1) = ujm1(2);
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ujm2(1) = ujm2(3);

ujm2(2) = ujm2(3);

end

u_app_m1 = ujm2/3 - 7*ujm1/6 + 11*u/6;

u_app_m2 = -ujm1/6 + 5*u/6 + ujp1/3;

u_app_m3 = u/3 + 5*ujp1/6 - ujp2/6;

u_app_p1 = ujp3/3 - 7*ujp2/6 + 11*ujp1/6;

u_app_p2 = -ujp2/6 + 5*ujp1/6 + u/3;

u_app_p3 = ujp1/3 + 5*u/6 - ujm1/6;

bm1 = (13/12)*(ujm2 - 2*ujm1 + u).^2 ...

+ (0.25)*(ujm2 - 4*ujm1 + 3*u).^2;

bm2 = (13/12)*(ujm1 - 2*u + ujp1).^2 ...

+ (0.25)*(ujm1 - ujp1).^2;

bm3 = (13/12)*(u - 2*ujp1 + ujp2).^2 ...

+ (0.25)*(3*u - 4*ujp1 + ujp2).^2;

bp1 = (13/12)*(ujp3 - 2*ujp2 + ujp1).^2 ...

+ (0.25)*(ujp3 - 4*ujp2 + 3*ujp1).^2;

bp2 = (13/12)*(ujp2 - 2*ujp1 + u).^2 ...

+ (0.25)*(ujp2 - u).^2;

bp3 = (13/12)*(ujp1 - 2*u + ujm1).^2 ...

+ (0.25)*(3*ujp1 - 4*u + ujm1).^2;

twp1 = gamma1./(eps+bp1).^2;

twp2 = gamma2./(eps+bp2).^2;

twp3 = gamma3./(eps+bp3).^2;

stwp = twp1+twp2+twp3;

wp1 = twp1./stwp;

wp2 = twp2./stwp;
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wp3 = twp3./stwp;

twm1 = gamma1./(eps+bm1).^2;

twm2 = gamma2./(eps+bm2).^2;

twm3 = gamma3./(eps+bm3).^2;

stwm = twm1+twm2+twm3;

wm1 = twm1./stwm;

wm2 = twm2./stwm;

wm3 = twm3./stwm;

ulp_right = wp1.*u_app_p1 + wp2.*u_app_p2 + wp3.*u_app_p3;

ulm_right = wm1.*u_app_m1 + wm2.*u_app_m2 + wm3.*u_app_m3;

f_right_low = 1/2 * ((fl(ulp_right)+fl(ulm_right)) - a/2*(ulp_right-ulm_right));

fp_right_high_2 = -5/24.*fp(ujm2,a) + 4/3.*fp(ujm1,a) - 7/4.*fp(u,a) + 1/3.*fp(ujp1,a)

+ 7/24.*fp(ujp2,a);

fm_right_high_2 = 7/24.*fm(ujm1,a) + 1/3.*fm(u,a) - 7/4.*fm(ujp1,a) + 4/3.*fm(ujp2,a)

- 5/24.*fm(ujp3,a);

f_right_high_2 = 1/24 .* (fp_right_high_2 + fm_right_high_2);

fp_right_high_4 = fp(ujm2,a) - 4.*fp(ujm1,a) + 6.*fp(u,a) - 4.*fp(ujp1,a) + fp(ujp2,a);

fm_right_high_4 = fm(ujm1,a) - 4.*fm(u,a) + 6.*fm(ujp1,a) - 4.*fm(ujp2,a) + fm(ujp3,a);

f_right_high_4 = 7/5760 .* (fp_right_high_4 + fm_right_high_4);

f_right = f_right_low + f_right_high_2 + f_right_high_4;

f_left = circshift(f_right,[0,1]);

u_t = -(f_right - f_left)/dx;

end
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APPENDIX C

Movie Links

(1) https://github.com/allen0chen/thesis/blob/main/mrs_stationaryShock.mp4

(2) https://github.com/allen0chen/thesis/blob/main/mrs_continuousShock.mp4

(3) https://github.com/allen0chen/thesis/blob/main/DQS_MRSic.mp4

(4) https://github.com/allen0chen/thesis/blob/main/DQS_travelingWave.mp4

(5) https://github.com/allen0chen/thesis/blob/main/DQS_front.mp4

92

https://github.com/allen0chen/thesis/blob/main/mrs_stationaryShock.mp4
https://github.com/allen0chen/thesis/blob/main/mrs_continuousShock.mp4
https://github.com/allen0chen/thesis/blob/main/DQS_MRSic.mp4
https://github.com/allen0chen/thesis/blob/main/DQS_travelingWave.mp4
https://github.com/allen0chen/thesis/blob/main/DQS_front.mp4


Bibliography

[1] D. M. Ambrose, G. Simpson, J. Wright, and D. G. Yang, Ill-posedness of degenerate dispersive equations,

Nonlinearity, 25 (2012), pp. 1965–2072.

[2] V. Arnold, Geometric methods in the theory of ordinary di↵erential equations, Springer-Verlag, (1983).

[3] T. Buckmaster, S. Shkoller, and V. Vicol, Shock formation and vorticity creation for 3d euler, Commu-

nications on Pure and Applied Mathematics, 76 (2022), pp. 1965–2072.

[4] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Physics Review, 71

(1993).

[5] K. Carlos E., P. Gustavo, and V. Luis, The cauchy problem for quasi-linear schrödinger equations, Nonlin-

earity, 158 (2004), pp. 343–388.

[6] D. Christodoulou, The euler equations of compressible fluid flow, American Mathematical Society, 4 (2007),

pp. 581–602.

[7] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer Nature, 2010.

[8] J. M. Delort, Private communications.

[9] G. A. El and M. A. Hoefer, Dispersive shock waves and modulation theory, Physica D 333, (2016).

[10] L. C. Evans, Partial Di↵erential Equations, American Mathematical Society, 1998.

[11] J. Fritz, Formation of singularities in one-dimensional nonlinear wave propagation, Communications on Pure

and Applied Mathematics, XXVII (1974), pp. 377–405.

[12] P. Germain, Space-time resonances, Journées équations aux dérivées partielles, 8 (2010).
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