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Abstract

SIRT3 is a key NAD*-dependent protein deacetylase in the mitochondria of mammalian
cells, functioning to prevent cell aging and transformation via regulation of mitochondrial
metabolic homeostasis. However, SIRT3 is also found to express in some human tumors;
its role in these SIRT3-expressing tumor cells needs to be elucidated. This study demon-
strated that the expression of SIRT3 was elevated in a group of gastric cancer cells com-
pared to normal gastric epithelial cells. Although SIRT3 expression levels were increased in
the gastric tumor tissues compared to the adjacent non-tumor tissues, SIRT3 positive can-
cer cells were more frequently detected in the intestinal type gastric cancers than the diffuse
type gastric cancers, indicating that SIRT3 is linked with subtypes of gastric cancer. Overex-
pression of SIRT3 promoted cell proliferation and enhanced ATP generation, glucose
uptake, glycogen formation, MnSOD activity and lactate production, which were inhibited by
SIRT3 knockdown, indicating that SIRT3 plays a role in reprogramming the bioenergetics in
gastric tumor cells. Further analysis revealed that SIRT3 interacted with and deacetylated
the lactate dehydrogenase A (LDHA), a key protein in regulating anaerobic glycolysis,
enhancing LDHA activity. In consistence, a cluster of glycolysis-associated genes was
upregulated in the SIRT3-overexpressing gastric tumor cells. Thus, in addition to the well-
documented SIRT3-mediated mitochondrial homeostasis in normal cells, SIRT3 may
enhance glycolysis and cell proliferation in SIRT3-expressing cancer cells.

Introduction

Sirtuins, a family of NAD"-dependent histone deacetylases (HDACs) in mammalian cells, are
implicated in a wide range of physical processes including cell survival, apoptosis, metabolism,
stress responses, aging and longevity [1,2]. Among seven sirtuin members (SIRT1-7), SIRT3 is
the best characterized mitochondrial sirtuin, functioning to regulate mitochondrial proteins
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involved in oxidative phosphorylation, fatty acid oxidation, the urea cycle, and the antioxidant
response [2-9]. Several studies have highlighted the role of SIRT3 in metabolism and homeo-
stasis in normal cells and revealed new targets and substrates for SIRT3-dependent deacetyla-
tion [10]. Kim et al reported that SIRT3 is a key mitochondria protein, and lack of the SIRT3
expression is linked to increased mitochondrial DNA damage and aging, as well as increased
potential to Ras-induced cell transformation and SIRT3-mediated MnSOD activation contrib-
uting to the mitochondrial homeostasis [11,12]. In support, human embryonic kidney 293 cells
(HEK293) cells exhibit an enhanced SIRT3 expression under oxidative stress, leading to deace-
tylation and activation of MnSOD [13]. SIRT3 is believed to function as a tumor suppressor
gene and plays a key role in enhancing cell homeostasis against aging and carcinogenesis.

However, some tumor cells show the expression of SIRT3 and the potential role of SIRT3 in
these tumor cells, especially its potential relation to the aggressive phenotype, has been contro-
versial [14]. SIRT3 expression is lower or undetectable in an array of human cancers, including
breast cancer, glioblastoma, colon cancer, and osteosarcoma, prostate and ovarian cancers
[11,15,16]. SIRT3 induces growth arrest and apoptosis by selective silencing of Bcl-2 in
HCT116 cells through modulating JNK2 signaling pathway [17]. Also, SIRT3 is reported to
contribute to increased sensitivity of human leukemia cells to chemotherapy possibly through
the induction of mitochondria-mediated apoptosis [18]. On the other hand, SIRT3 expression
is also found be increased in oral cancer, node-positive breast cancer, esophageal cancer, and
thyroid carcinomas; and the increased SIRT3 is associated with higher malignant phenotype
and downregulation of SIRT3 enhances tumor sensitivity to anti-cancer treatment [19-23].
These results alert a different role of SIRT3 in specific tumors that needs to be elucidated.

Cancer cells are metabolically active and consume more cellular fuel than normal cells.
However cancer cells relay on mainly on the ATP synthesis by aerobic glycolysis, a feature
known as Warburg effect [24]. Such an aerobic glycolysis is believed to protect cancer cells
form oxidative stress since mitochondrial respiration is the main source of intracellular ROS
[25]. The lactate dehydrogenase A (LDHA) is an enzyme controlling interconversion between
pyruvate and L-lactate reversibly at the final step of the anaerobic glycolysis [26]. Inhibition of
LDHA diminishes the tumorigenic potential with increased mitochondrial oxygen consump-
tion and decreased mitochondrial membrane potential [26] and overall cellular ATP produc-
tion and glycolysis [27].

In this study, we investigated the potential role of SIRT3 in gastric cancer cells that express
SIRT3. Expression of SIRT3 was linked with the aggressive growth, which was mediated via
SIRT3-deacetylated and activated LDHA, enhancing glycolysis and expression of a group of
glycolysis-associated genes. Thus SIRT3-LDHA-mediated glycolysis metabolism may be a
potential therapeutic target to treat cancer cells that express SIRT3.

Materials and Methods
Cell lines and culture

Human gastric cancer cell lines MGC-803, HGC-27, SGC-7901 [28] and AGS [29] and immor-
talized human gastric epithelial cell line GES-1 [30] were maintained in RPMI-1640 medium
(Invitrogen) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin, and
cultured at 37°C under an atmosphere of 5% CO2.

Immunoprecipitation and western blot

Subconfluent cells were lysed and the lysates were incubated with protein A/G agarose beads
plus the recommended amount of antibodies against either SIRT3 (Cell Signaling Technology)
or LDHA (Santa Cruze) at 4°C overnight. Samples were centrifuged and separated by SDS
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polyacrylamide gel electrophoresis and electroblotted onto nitrocellulose membranes. After
blocking with 5% non-fat milk in TBST, membranes were incubated with primary antibody at
4°C overnight followed by incubation with secondary antibody for 1 hour at RT. Proteins of
interest were visualized by ECL detection kit (Thermo Fisher).

Immunohistochemistry assay

Pathological slides of gastric cancer with adjacent normal tissues were analyzed by immunohis-
tochemistry assay were performed following the manufacturer’s instructions. The Polymer
Detection kit for the immunohistochemistry analysis was purchased from Zhongshan Golden
Bridge Biotechnology. Briefly, paraftin sections were dewaxed and re-hydrated in ethanol
(100%, 90% and 75%). The sections were incubated with 3% H,O, at RT for 10 minutes and
then blocked with non-immune goat serum at RT for 15 minutes. The sections were then incu-
bated with primary antibody to SIRT3 (Cell Signaling Technology) for 2 hours at RT followed
by anti-rabbit secondary antibody incubation for 15 minutes at RT. The sections were then
incubated with DAB detection reagent for 2 minutes each, counterstained with hematoxylin
and dehydraded in ethanol (90% and 100%). The sections were mounted and the staining was
analyzed under the microscopy.

Plasmid construction and cell transfection

SIRT3 whole length cDNA was synthesized using RT-PCR with total RNA extracted from
GES-1 cells as template (primers: 5 CCGCGGTACCATGGCGTTGTGGGGTTG 3’ and 5’
CCGCTCTAGACTATTTGTCTGGTCCATCAAGC 3’ ). The cDNA was then cloned into
pcDNA3.1+ expression vector (Invitrogen). The pGPH1/GFP/Neo-SIRT3-shRNA plasmid tar-
geting human SIRT3 (5’ CTTGCTGCATGTGGTTGAT 3’ ) and the control shRNA plasmid
were obtained from GenePharma. To generate stable transfectants, AGS and SGC-7901 cells
were transfected using Lipofectamine 2000 reagent (Invitrogen) and the stable transfectants
were selected by 400ug/ml G418 (Gibco).

Cell proliferation and clonogenicity assay

For proliferation assay, cells were plated in a 6-well plate at 2 x 10* cells/well. Cell proliferation
was calculated on days 2, 4, 6, and 8 after plating. For clonogenicity assay, cells were plated in a
6-well plate with varied cell numbers and cultured for 14 days and colonies were then stained
with crystal violet, and the number of colonies (> 50 cells/colony) was counted following the
established methods [31].

Measurement of glucose, lactate and glycogen

The phenol red free medium was used to culture cells in 6-well plate for 24 hours and the levels
of glucose uptake and lactate generation were measured using the Glucose Assay Kit and Lactic
Acid Kit (Jiancheng Bioengineering Institute). The relative values were normalized to the cell
number of each well. Cellular glycogen levels were detected using the Glycogen Assay Kit (Bio-
vision). Briefly, 1x10° cells were homogenized in 200uL water on ice, and the homogenates
were boiled for 5 minutes to inactivate enzymes and centrifuged at 13,000 rpm for 5 minutes at
4°C to remove insoluble material. The glycogen production was measured with the OD value
at 570 nm.
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Measurement of ATP production

Cellular ATP and ROS levels were measured as described previously [32]. Cells cultured in a
6-well plate after various treatments, were lysed and cellular ATP levels were measured with
ATP Bioluminescence Assay Kit (Sigma). For measuring glycolysis-mediated ATP production,
cells were treated with 2 uM rotenone for 24 hours before measurements.

Measurement of ROS generation

Cellular ROS generation was assayed with 5-(and 6-) carboxy-2’,7’-dichlorodihydrofluorescein
diacetate (DCFDA) method using microplate spectrometer (Thermo Fisher) at 488 nm/530
nm wavelength.

MnSOD activity

Cells cultured in a 6-well plate were lysed and MnSOD activity was determined by WST-8
methods using the MnSOD assay kit (Beyotime) following the manufacturer’s instructions.

Tumorigenicity assays in nude mice

SGC7901 cells (7.5 x 10°) with SIRT3 overexpression or knockdown were suspended in 0.1 ml
PBS and inoculated into either flank of 5-week-old male BALB/c athymic nude mice, and at
the 28" day after inoculation when the maximal tumor volume (~1500 mm?®) reached in the
control group, the experiments were terminated and all of tumors from each group were
excised and weighed. The experimental procedure involving animal tests was conducted in
accordance with the institutional guidelines; the Institutional Animal Care and Use Committee
(IACUC) at Xian Jiao Tong University specifically approved this study (Protocol # 120181).

Lactate dehydrogenase assay

The lactate dehydrogenase activity was determined following the established protocol by mea-
suring the reduction rate in the absorbance at wavelength of 340 nm resulting from the oxida-
tion of NADH [27]. Briefly, cells were cultured in 10 cm dishes and homogenized in PBS on
ice. The homogenates were added into buffer containing 6.6 mM NADH, 30 mM sodium pyru-
vate and 0.2 M Tris-HCI, pH 7.3 and mixed. Incubate the mixture for 5 minutes to achieve
temperature equilibration and then record the decrease rate of absorbance at 340 nm.

SIRT3 in vitro deacetylation assay

Human SIRT3 recombinant enzyme (BPS) was incubated with L-Lactic Dehydrogenase from
bovine heart (Sigma) in reaction buffer (50 mM NaCl, 4 mM MgCl,, 10 mM NAD", 50 mM
DTT, 50 mM Tris, pH 8.0) with/without SIRT3 inhibitor nicotinamide (NAM, 10 mM) at 37°C
for 1.5 hours, and then the reactions were used for LDHA activity assay described as above.

Real-time PCR

Total RNA was isolated using TRIZOL Reagent (Invitrogen) followed by treatment with phe-
nol/chloroform and precipitation with 2-propanol. Total RNA pellet was then washed with
75% ethanol and resuspended in water. RNA was subjected to reverse transcription with Pri-
meScript RT-PCR Kit (Takara) and quantitative real-time PCR analysis of genes of interest
was conducted using SYBR PremixExTaq II kit (Takara) following the manufacturer’s instruc-
tions. Data were normalized to the level of y-tubulin.
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Immunofluorescence

AGS cells seeded on the coverslip in a 6-well plate were fixed in 4% paraformaldehyde for 10
minutes and blocked in 1% BSA for 1 hour at RT. Incubate cells with primary antibodies
against SIRT3 and LDHA at 4°C overnight, followed by incubation with fluorescence-conju-
gated secondary antibody for 1 hour at RT. Counterstaining was carried out with DAPI using
immunofluorescence kit (Beyotime). Cells were mounted and imaged by laser scanning confo-
cal microscope.

Statistical analysis

Data are presented as mean + SE from at least three independent experiments. Statistical analy-
sis was performed with unpaired two-tailed Student’s t test unless otherwise noted. P < 0.05
was considered significant.

Results
SIRT3 expression in gastric cancer cells

SIRT?3 is well-defined in regulating mitochondrial homeostasis in anti-aging and anti-transfor-
mation. Recently, different results are reported regarding to SIRT3-mediated cell inhibition
and proliferation, leading to the controversy of its roles in cancers [19,20]. To determine the
potential role of SIRT3 in gastric cancer, expression of SIRT3 was detected in 4 gastric cancer
cell lines AGS, SGC-7901, MGC-803, HGC-27 and a group of gastric cancer tumor tissues. We
found that SIRT3 protein levels were elevated in all 4 gastric cancer cell lines compared to the
immortalized gastric epithelial GES-1 cells (AGS, 1.9-fold; SGC-7901, 1.5-fold; MGC-803,
2.0-fold; and HGC-27, 1.8-fold compared to GES-1 cells) (Fig 1A). In accordance, the mRNA
levels of SIRT3 in these cell lines were also increased (AGS, 2.6-fold; SGC-7901, 1.7-fold;
MGC-803, 2.5-fold; HGC-27, 2.2-fold) compared to GES-1 cells (Fig 1B).

Immunohistochemistry analysis in tumor and adjacent non-tumor normal tissues from a
group of gastric cancer patients demonstrated that SIRT3-positive cells were more frequently
detectable in tumor tissues than that in normal tissues. The results showed that 55.1% of tumor
tissues (7% of normal tissues) exhibited high level (strong positive), 41.4% of tumor tissues
(28% of normal tissues) exhibited medium high level (weak positive), while 3.5% of tumor tis-
sues and 64% of normal tissues was negative in SIRT3 expression (Fig 1C and 1D, S1A Fig).
Interestingly, SIRT3 expression in intestinal type of tumor tissues (15 cases; 93.3% strong posi-
tive and 6.6% weak positive) was significantly higher than that in diffuse type of tumor tissues
(14 cases; 14.3% strong positive, 78.6% weak positive and 7.1% negative) (Fig 1C and 1E, S1B
Fig). These results suggest that SIRT3 expression is increased in some tumors compared with
related normal tissues and SIRT3 expression may be vary in individual tumors, which need to
be further investigated.

SIRT3 levels are linked with cell proliferation

Then we established SIRT3 overexpression and knockdown cell lines using AGS and SGC-
7901 cells. The expression of SIRT3 in stable transfectants was confirmed by western blot.
Overexpression of SIRT3 increased cell growth, while SIRT3 knockdown inhibited cell growth
of both gastric cancer cell lines (Fig 2A). Further, overexpression of SIRT3 triggered more col-
ony formation than control transfected cells that was in contrast with only fewer colonies
formed in the SIRT3 knockdown cells (Fig 2B).

To further determine the role of SIRT3 in tumor formation ability, we injected SIRT3 over-
expression and knockdown SGC-7901 cells into flanks of nude mice and tumor growth was
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Fig 1. Enhanced SIRT3 expression in human gastric cancer cell lines and tumor tissues. A, SIRT3 protein levels were determined by western blot in 4
gastric cancer cell lines and an immortalized normal gastric epithelium cell line GES-1 (upper panel). SIRT3 protein expression tested in three separate
western blots was estimated by measuring the band intensity using Image-Pro Plus software and normalized with B-actin (lower panel). B, SIRT3 mRNA
levels were detected by gRT-PCR in 4 gastric cancer cell lines. Data were normalized to immortalized normal gastric epithelium cells. In (A, B), data are
presented as mean + S.E. (n=3; *, p <0.05; **, p <0.01). C, SIRT3 expression in human gastric tumor tissues (n = 29) and adjacent non-tumor tissues

(n = 14) was detected by immunohistochemistry staining. SIRT3 expression levels were estimated by density scanning using Image-Pro Plus software and
graded as negative, weak positive and strong positive. Scale bar, 50 pm. D, SIRT3 expression in tumor and adjacent non-tumor tissues was presented as
percentage of patient specimens. E, SIRT3 expression in intestinal (n = 18) and diffuse (n = 11) types of gastric tumor tissues was presented as percentage

of patient specimens.

doi:10.1371/journal.pone.0129834.g001
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Fig 2. SIRT3 promotes aggressive characteristics of gastric cancer cells. A, cell growth of AGS and
SGC-7901 cells with SIRT3 overexpression or knockdown was calculated on days 2, 4, 6 and 8 after cell
plating. SIRT3 expression in stable transfectants was confirmed by western blot. B, clonogenicity of AGS and
SGC-7901 cells with SIRT3 overexpression or knockdown was measured and presented as the fraction of
control transfectants (NC or Scr). C, Overexpression of SIRT3 promoted tumor burden in vivo. SGC-7901
cells with SIRT3 overexpression (left panel) or knockdown (right panel) were subcutaneously injected into
right flank of the nude mice with the relative control cells (NC or Scr) into the left flank. Xenograft tumors were
excised and weighed at the 28" day after cell inoculation. Images of right panel showed xenograft tumors in
vivo at the end of the experiment. Images of up right corner showed the dissected tumors from each group.
The ranges and means of tumor weights of each group were presented in right panel as mean + S.E. (n=5;
* p<0.05; ** p<0.01). SIRT3, SIRT3 overexpression; shSIRT3, SIRT3 knockdown; NC (negative control;
empty pcDNAS3.1) and Scr (scramble shRNA; pGPH1/GFP/Neo-shRNA) serve as controls for
pcDNAS.1-SIRT3 and pGPH1/GFP/Neo-shSIRT3 respectively.

doi:10.1371/journal.pone.0129834.g002

allowed for 28 days after cell inoculation (S2 Fig). The average weight of the tumors derived
from SIRT3 overexpressing cells was 0.7079g, significantly bigger than the average tumor
weight of control (NC), p = 0.015, (Fig 2C, left panel). In contrast, the average weight of tumors
derived from SIRT3 knockdown cells was 0.0588g, significantly smaller than that from scram-
ble shRNA control cells (Scr) (0.2033g; p = 0.009) (Fig 2C, right panel). The average volume of
tumors derived from SIRT3 overexpressing cells was increased than that from control cells
(NC) (Fig 2C, left panel up right corner). On the contrary, the average volume of tumors
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growing from SIRT3 knockdown cells was dramatically small compared to that from control
cells (Scr) (Fig 2C, right panel up right corner).

Enhanced glycolysis in SIRT3 expressing gastric cancer cells

We were then wondering how cellular bioenergetics could be altered in SIRT3-overexpressing
gastric cancer cells. SIRT3 overexpression dramatically increased glucose uptake (1.4-fold in
AGS and 1.9-fold in SGC-7901), while SIRT3 knockdown decreased glucose uptake (around
40% in both AGS and SGC-7901) (Fig 3A and 3B). Consistent with the pattern of glucose
usage, SIRT3 overexpressing cells had increased levels of lactate secretion (1.2-fold in AGS and
1.3-fold in SGC-7901), whereas SIRT3 knockdown cells had decreased levels of lactate secre-
tion (55% in AGS and 45% in SGC-7901) (Fig 3C and 3D). We also found that glycogen forma-
tion was significantly increased by SIRT3 overexpression (1.5-fold in AGS and 1.3-fold in
SGC-7901), a feature of quick growth of tumor cell [33], while reduced by SIRT3 knockdown
(40% in AGS and 70% in SGC-7901) (Fig 3E and 3F).

SIRT3 has been proven involved in the deacetylation of global metabolism enzymes and
maintenance of basal ATP levels in cells both in normal condition and in diseases [1,2]. Total
cellular ATP and glycolysis ATP generation were detected in AGS and SGC-7901 cells with
either SIRT3 overexpression or SIRT3 knockdown. The total cellular ATP levels were increased
in SIRT3 overexpressing cells (around 1.3-fold in both cell lines), but decreased in SIRT3
knockdown cells (around 75% in both cell lines) compared to NC or Scr control cells (Fig 4A
and 4B). Then we treated cells with rotenone to inhibit oxidative phosphorylation, and tested
ATP generation from glycolysis. As is shown in Fig 4C and 4D, SIRT3 overexpression led to an
increase in glycolysis ATP production (1.4-fold in AGS and 1.6-fold in SGC-7901), while
SIRT3 knockdown led to a significant decrease in glycolysis ATP production (20% in AGS and
40% in SGC-7901) compared to NC or Scr control.

SIRT3 regulates the homeostasis of ROS in gastric cancer cells

A body of evidence supports that increased ROS level is a critical characteristic in cancer cells,
which make cancer cells more sensitive to additional ROS stress [34]. Here we found that over-
expression of SIRT3 decreased ROS levels to 70% and 80% in AGS and SGC-7901 cells,
whereas inhibition of SIRT3 expression increased ROS levels (1.4-fold in AGS cells and
1.6-fold in SGC-7901 cells) respectively (Fig 5A and 5B). In agreement with the literature
showing SIRT3 deacetylates and activates MnSOD (11, 12), in gastric cancer cells, MnSOD
activity was enhanced by SIRT3 overexpression (1.4-fold in AGS cells and 1.2-fold in SGC-
7901 cells), but reduced by SIRT3 knockdown (50% in AGS cells and 65% in SGC-7901 cells)
(Fig 5C and 5D), suggesting that SIRT3 may protect cells from oxidative stress-induced dam-
age by rebalancing intracellular ROS through enhancing MnSOD activity in gastric cancer
cells.

SIRT3 deacetylates and activates LDHA

LDHA plays a key role in tumor initiation, maintenance and progression. Inhibition of LDHA
activity blocks tumorigenicity and tumor progression [26,27] and LDHA activity can be regu-
lated by acetylation/deacetylation modification [35]. We were wondering whether SIRT3 is
involved in the regulation of LDHA activity. We found that, in gastric cancer cells, LDHA
activity was significantly increased in SIRT3 overexpressing cells, whereas decreased in SIRT3
knockdown cells compared to NC or Scr control cells separately without detectable change in
LDHA protein level in the stable transfectants (Fig 6A). Immunostaining results showed that
LDHA and SIRT3 were co-localized in the cytoplasm (Fig 6B), and co-IP analysis with either
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Fig 3. Overexpression of SIRT3 enhances glycolysis in gastric cancer cells. Glucose uptake, lactate production and glycogen formation were measured
in AGS (A, C, E) and SGC-7901 (B, D, F) cells with SIRT3 overexpression or knockdown. All data are presented as mean + S.E. (n = 3; *, p <0.05; **,
p <0.01).

doi:10.1371/journal.pone.0129834.g003

LDHA or SIRT3 antibody revealed that SIRT3 is able to interact with LDHA (Fig 6C). In addi-
tion, the level of LDHA acetylation was decreased in SIRT3 overexpressing cells, but increased
in SIRT3 knockdown cells (Fig 6D). Further, in vitro LDHA activity assay conducted using
commercial human recombinant SIRT3 and bovine heart L-Lactic Dehydrogenase indicated
that LDHA activity was increased with the presence of SIRT?3 in the reaction, which was
reversed by the addition of SIRT3 inhibitor, nicotinamide (Fig 6E). To identify potential SIRT3
deacetylation site(s) on LDHA, we searched database and found that K5, K14, K57, K81, K118,
K126, K222 and K318 are potential acetylation sites of LDHA, and previous study reported
that K5 acetylation/deacetylation was implicated in the regulation of LDHA activity [35]. Then
we did LDHA activity assay using lysine 5 and lysine 318 acetylation mimic (K5Q/K318Q) or
deacetylation mimic (K5R/K318R) mutant LDHA, and found that neither K5 nor K318 was
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Fig 4. SIRT3 expression is associated with cellular bioenergetics. A and B, total cellular ATP levels were
tested in AGS (A) and SGC-7901 (B) cells with SIRT3 overexpression or knockdown. C and D, AGS (C) and
SGC-7901 (D) cells with SIRT3 overexpression or knockdown were treated with rotenone (2 uM, 24 hours) to
inhibit the oxidative phosphorylation and then cytoplasm ATP levels were measured. Data were normalized
by control (NC or Scr) cells and presented as mean + S.E. (n=3; *, p < 0.05; **, p <0.01).

doi:10.1371/journal.pone.0129834.9004

required for SIRT3-mediated LDHA activation (S3 Fig). Further identification of SIRT3-me-
diated LDHA deacetylation is in need.

SIRT3 upregulates genes involved in cellular metabolism

To characterize the molecular signature of SIRT3-LDHA mediated bioenergetics in gastric can-
cer cells, we measured the expression of genes associated with glucose transportation and gly-
colysis. Data in Fig 7A and 7B showed that overexpression of SIRT3 in AGS or SGC-7901
induced the expression of HK2 (1.47-fold in AGS cells, 1.3-fold in SGC-7901 cells), MCT4
(2.3-fold in AGS cells, 1.34-fold in SGC-7901 cells) and Glut1 (1.55-fold in AGS cells, 1.38-fold
in SGC-7901 cells) at mRNA level tested by real-time PCR. On the contrary, SIRT3 knockdown
decreased the expression of gene HK2 to 76%, MCT4 to 73% and Glut1 to 62% in AGS cells,
while HK2 to 80%, MCT4 to 62% and Glutl to 74% in SGC-7901 cells. In addition, when
SIRT3 was overexpressed, MCT1 mRNA level was increased in AGS cells by 1.6-fold but not in
SGC-7901 cells, and when SIRT3 was knockdown, MCT1 was decreased to 59% in AGS and
65% in SGC-7901 cells, respectively.

Discussion

This study provides the evidence indicating that SIRT3 expressed in some cancer cells, such as

gastric cancer cells, may be linked with the enhanced aggressiveness by SIRT3-mediated bioen-
ergetics via deacetylation and activation of LADH. Although accumulating evidences indicates
that SIRT3 plays a key role in protection of normal cells against aging and malignant
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as relative activity normalized by control (NC or Scr). All data are presented as mean + S.E. (n = 3; *,

p <0.05; **, p<0.01).
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transformation, its function in already transformed cells such as tumor cells that express SIRT3
needs to be investigated [19]. Lack of SIRT3 in MEFs leads to genomic instability and a high
frequency of cell transformation mediated by Ras with an increased rate of tumor formation
and aging, suggesting that SIRT3 is necessary in prevention of cellular aging and carcinogenesis
[11,15]. In addition, lack of or lower expression of SIRT3 is detected in several human cancers
and SIRT3 level is associated with the sensitivity of cancer cells to chemo- and radiotherapy
[11,15,16]. However, SIRT3 is also shown be overexpressed in human cancers and associated
with therapy resistance [19,21,36]. These results suggest that SIRT3 may target different pro-
teins between normal and cancer cells, and that SIRT3 expression can be varied in different
types of cancer, such as the current results indicating that the intestinal type of gastric cancer
expresses a higher level of SIRT3 than the diffuse type of gastric cancer.

It has been generally accepted that tumor cells consume more cellular energy to support the
fast growth and proliferation than the normal cells using glycolysis as the main source of ATP
generation instead of oxidative phosphorylation [24]. In current study, we demonstrated that,
in gastric cancer cells, SIRT3 interacts with and deacetylates LDHA, causing increased LDHA
activity; and SIRT3 overexpression leads to increased cellular ATP production and MnSOD
activity paralleled with reduced cellular ROS level, indicating an increased oxidative scavenger
ability of SIRT3 possibly via deacetylation-mediated MnSOD enzyme activation. Increasing
evidence shows that SIRT3 is required for the maintenance of cellular and mitochondria
homeostasis through regulating mitochondria metabolism and cellular redox balance system,
protecting cells against oxidative stress via regulating ROS generation, a critical mechanism in
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doi:10.1371/journal.pone.0129834.9006

aging, cancer and heart diseases [1,2,37]. SIRT3 can deacetylate a group of mitochondria tar-
gets implicated in the regulation of both glycolysis and cellular oxidative stress. Recently,
SIRT3 is found be able to deacetylate and increase pyruvate dehydrogenase activity in cancer
cells, which can increase both mitochondrial bioenergetics and glycolysis [38]. In agreement,
the current study indicates that SIRT3 can deacetylate and activate LDHA that can be used for
both mitochondrial respiration and glycolysis. On the other hand, SIRT3 can deacetylate and
subsequently activate other mitochondria substrates, such as MnSOD [11,12], Foxo3 [39] and
IDH2 [9] to scavenge ROS produced by oxidative phosphorylation, protecting cells from the
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oxidative damage [40]. Also consistent with these findings, in this study, we found that overex-
pression of SIRT3 increases MnSOD activity, which could be one reason of reduced cellular
ROS level under enhanced cellular metabolism condition.

LDHA, as a family member of lactate dehydrogenase (LDH), is found existed in glycolytic
cells and localized in mitochondria in addition to the cytosol [41], and mainly catalyzing the
inter-conversion of pyruvate and lactate [42]. LDHA is shown to play a key role in aerobic gly-
colysis and tumorigenicity in malignant cells [26,27]. In cancer cells, LDHA rapidly consumes
pyruvate produced by glycolytic pathway, leading to increased aerobic lactate production [26].
Inhibition of LDHA induces ROS production, decreases cellular ATP levels and inhibits glycol-
ysis, therefore inhibits cell growth and triggers cell death in cancer [27]. Consisting with these
reports, we found that SIRT3 can interact and activate LDHA. In the SIRT3 overexpressing
cells, LDHA acetylation was decreased with an increased LDHA enzyme activity. Although
exact mechanism causing SIRT3-mediated LDHA regulation needs to be further investigated,
these results demonstrate that LDHA controlled glycolysis pathway that accelerates tumor bio-
energetics can be affected by SIRT3 expression levels.

Our current study also revealed that the expression of a group of genes, such as MCT1,
MCT4, HK2 and Glutl, known as key regulators of energy metabolism in cancer are also
increased in SIRT3-overexpressing gastric cancer cells, demonstrating a potential role of SIRT3
in enhancing glycolysis in tumor cells. HK2 catalyzes phosphorylation of glucose to glucose-
6-phosphate at the initial step of glycolysis [43]. Glucose transporter (GLUT) controls the
transport of glucose across the plasma membrane, functioning as the first rate-limiting step for
glucose metabolism [44]. MCT1 and MCT4, members of monocarboxylates (such as lactate
and pyruvate) transporter family, are also involved in the growth of glycolysis-dependent
tumors [45]. Together, these results suggest a potential interplay between SIRT3 and a group of
glycolysis-associated genes in signaling tumor aggressive growth, which needs to be further
investigated.

In conclusion, although SIRT3 is well characterized in mitochondrial homeostasis against
cell aging and transformation, expression of SIRT3 in tumor cells is linked with enhanced pro-
liferation and aggressive growth of gastric cancer cells. SIRT3 interacts and activates LDHA,
leading to increased glycolysis and ATP production, which together with increased mitochon-
drial antioxidant MnSOD activity and decreased intracellular ROS level (a hypothetic model is
proposed in Fig 7C). Thus, the growth-stimulating function of SIRT3 demonstrates a potential
target to treat tumors with SIRT3 expression.

Supporting Information

S1 Fig. Representative pathological slides for determining the SIRT3 expression in human
gastric cancer specimens. A, paraffin-embedded human gastric cancer and paired adjacent
pathologically normal tissue specimens were subjected to immunohistochemistry staining with
SIRT3 antibody (brown) followed by nuclei counterstain with hematoxylin (blue; each tumor
was shown with adjacent normal tissues in one row by 20x and 40x). B, representative images
of SIRT3 expression in the intestinal and diffuse types of gastric cancer. Scale bar, 50 um.

(TTF)

$2 Fig. Overexpression of SIRT3 promoted tumor burden in vivo. SGC-7901 cells with
SIRT3 overexpression (A) or knockdown (B) were subcutaneously injected into right flank of
the nude mice with the relative control cells (NC or Scr) into the left flank. Xenograft tumors
were excised and weighed at the 28th day after cell inoculation. Images of right panel showed
xenograft tumors in vivo at the end of the experiment. Images showed tumor growth in mice.
(TTF)
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S3 Fig. K5 and K318 of LDHA are not specific deacetylation sites of SIRT3. LDHA enzy-
matic activity was measured using commercial recombinant human SIRT3 enzyme and immu-
noprecipitated LDHA from AGS cells transfected with K5Q/R (A) or K318Q/R (B) mutant
LDHA with/without SIRT3 inhibitor nicotinamide and presented as relative enzyme activity
normalized by wild type LDHA without SIRT3 inhibitor. Data are presented as mean + S.E.
(n=5;"p <0.05*,p<0.01).

(TIF)

S1 Table. Primer sequence for real-time PCR.
(XLSX)
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