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PROPAGATING AND EVANESCENT EDGE DIFFRACTED WAVES 
FOR A SEMI-INFINITE PERIODIC DIPOLE ARRAY 

F. CAPOLINO', M. ALBANI', S. MACIl, L. B. FELSEN' 

'Dept. of Informalion Engincenng, Unlntversify of Siena, Via Roma 56, 53100, SlCn6, Italy. 
aDept. of Aerospace and Mechanical Engincenng and Dcpl. of Elecfncal and Computer 

Engincenng, Bosfon Uniuersify, 110 Cummrngfon Sfrccf, Bosfon, MA 02215, USA. 

1. INTRODUCTION 
The electromagnetic modeling of large finite array antennas may be carried out 
by using a Floquet Wave (FW) representation of the infinite array Green's 
function. To account for array edge effects, this representation needs to be 
modified as described in 11; in particular, the Green's function of a finite array 
is collectively tepresente d as the radiation from a superposition of continuous 
truncated FW distributions over the array aperture. Since the FW series 
exhibits excellent convergence properties when the observation point is located 
away from the array surface, this representation is found to be more efficient 
than the direct summation of the spatial contributions from each element of the 
array, especially wh& each FW aperture distribution is treated asymptotically. 
Furthermore, the collective approach provides basic physical insight into the 
relevant scattering mechanisms for this class of problems. By invokin the 
locality of high-frequency phenomena as formalized in the Geometrical T%eory 
of Diffraction (GTD), an actual rectangular array may be treated by accounting 
for local canonical edge and corner effects 121. 

In order to understand and quantify the high-fre uency wave processes 
associated with FW edge diffraction, this paper deals wit% the canonical Green's 
function of a semi-infinite phased array of dipoles in free space. The diffracted 
field contributions due to each incident FW field are cast in a dyadic form that 
highlights the behavior of TE and TM waves. Special attention is given to 
evanescent diffracted fields, which are associated with high order FWs. 

2. FORMULATION 
The geometry of a phased array of dipoles oriented along the direction J,=J,, 
?+J,,t is shown in Fig. 1, with definition of both Cartesian and cylindrical 
coordinates; here and in the following a caret denotes a unit vector and an 
overbar a general vector. Referring to Fig. 1, d ,  and d, are the interelement 
periods in the z and z directions, respectively. The dipoles are linearly 
phased, with y= and v1 deno- 
ting the element-to-element 
phase shift along the z and z 
coordinates, respectively. With 
a suppressed time dependence 
exp ju t ) ,  the dipole currents 

(1) j = j, , - 1 3 4 ,  

can 6' e represented as 

nm 

is the 
position -of (n;m)-th dipole. 
TM. and TE. fields are cal- 
cul&ed via (he magnetic and Fig. l. .Geometry of the array 
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electric Hertz potentials II' i and n" i ,  respectively [3]. By summing the 
potentials due to all sources in their spectral representation, I t  is 
straightforward to obtain the r-component of the electric and magnetic fields 
at P ea 

- 
Here, b=q,i t , j=1,2) with D1l=P, D , Z = F ,  D,,=1, D,,=O, and 
k = k, i  + k,y + ' 2 .  

The branch of k =dm is chosen to render 3 m ( y k  CO on the top 
Riemann sheet of t f e  complex k,-plane, for real k,. $he transverse 
component E and E can be determined by differentiating the E, and H, 
fields. From f2) we tote that while dipoles oriented along r generate only 
TM, waves, dipoles oriented along z generate both TE, and TM, waves. 
Interchangin the se uence of the semi-infinite n-sum and s ctral integration 
operations, %e resulting n-series can be calculated in c E e d  form. Next, 
applying the Poisson summation formula to the bilaterally infinite m-series 
and the (kSl  k,) spectral integration operations, we obtain 

in which k = d m ,  whereas k = r , t Z r q / d ,  and the real poles located 
at k , , , = 7 , ~ 2 ~  d ,  ( w k h  are avof%ed by clockwise indentation of the 
integration pat[( are the FW propagation constants in the I and I directions, 
respectively. 

In order to evaluate each integral in (3), the contour is deformed into the 
steepest descent path (SDP) through its relevant saddle point. The poles 
captured in this deformation give rise to residue contributions. Thus, the 
integral in ( 5 )  is reduced to 

3. HIGH-FREQUENCY SOLUTION 

The expression in (5) (with U a)=1 for a>O or U(a)=O for a<O) arises from 
residues, whyreas (6) arises \ram the high frequency uniform asymptotic 
evJu=t:on, via the Van der Wwrdea method (31, of the SDP integral. In (6) 

179 



and (6), ~pq=k,,,i+k,,,$+kzq~ is the wavevector of the pq-th FW, and 

k , = e  and k v p q = d v i  (7) 

with the branches of the square roots defined so that Sm(k )<0 for 
I k,, I >k, and Sm(yk,,,)<O when k ~ , + k ~ , > k * .  Furthermore, Q dllotes the 

number of poles extracted and F represents the standard Fresnel-type 
transition function of the Uniform Theory of Diffraction (UTD) with 
argument 6pq* =*sin[(+fdpp)/2]. The two contributions defined in (5) 
and (6) are discussed next. 

9.1. FWn contr ibut io~ 
Except for the Heaviside unit step function Lr that bounds their domain of 
existence at the shadow boundary planes qi = #g , the residue contributions 
( 5 )  represent the FWs of the doubly infinite array of dipoles. In particular, it 
can be seen that #B=92e(dw) - tan-'(sinh(%n(+ )) for Ik 1 < k while 
qisB=r 2 for Ik I > k, ?here # - co~-~(k,,/k,,,) spec!& the dir&iTn of the 
dfmuthal comGnent of the Fwwavevector. . Poles with k z , t k ~  < k2 are 
associated with propagatin Floquet waves (PFWs but all t i e  otters with 

that propagate in the zpp direction with the speed of fight. For them the 
shadow boundary an le coincides with the angle of propagation in the 
azimuthal plane (ds$f=# ). The EFWs are inhomogeneous plane waves that 
propagate slowly (v?r.t, %e speed of light) in the direction k i+k i and 
decay exponentially in the i$ direction away from the arraTpldE. The 
transition between the homogeneous and evanescent FWs is defined by the 
cut-off condition k =O. Owing to the EFWs exponential decay along I y I, 
the convergence of%e first series in (4) is very rapid when the observation 
point is located sufficiently far away from the array surface. 

9.g. Ewnwcent and propagating difiacted wawa 
The uniform saddle point evaluation of 3) provides diffracted FW field 

discontinuous when its com lex argument crosses the sitive imaginary axis, 
which occurs exactly at tEe shadow boundary a n g f  defined earlier. The 
diffracted field contributions smoothly compensate for the discontinuity of 
the FWs at the shadow boundary. Each pq-th FW diffracts at a point Q on 
the array edge according to a generalized Fermat principle that ma; be 
expressed as 

where Z denotes the pindependent location of Q Therefore, the diffracted 
field co&ribution has been tagged with only a Zngle summation index,g. 
Diffracted rays produced by FWs with different axial component k arise 
from diatinct diffraction points Q, ( ~ n s  tor each 7). Fer lLzg!<Lr -11 d:fP-led 
rays emanatin from these points lie on a diffraction cone with aperture semi- 
angle /3 = cos'(k /k) which becomes more acute with decreasing FW phase 
ve1ocit;along z. #he: Ik 14, the diffraction cone collapses onto the z-axis; 
for Ik I>k, there is no Yeal point Q on the edge satisfyin ( 8 ) ,  and 6, 
beco$& complex, as do the diffracted'rays. The resulting digacted field is 
evanescent along the p direction, with exponential decay term exp(-lk J p ) .  
This yields rapid conver ence for diffracted ray series in (4), sufficient6 far 
from the edge. The di&acted FWs which contribute substantially to the 
scattered field are generated by all PFWs, and those EFWs for which Ik,,l<k. 

evanescent Floquet wave9 PEFWs). The PFWs are h omo eneous plane waves 

contributions emanating from the edge of t h e array. The function F in (6) is 

-)V-f,lr (F-z.?) .i = Epq. 5 ( 8 )  
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4. ILLUSTRATIVE EXAMPLE 
Numerical calculations have been carried out to test the accuracy and 
effectiveness of the asymptotic solution (3), as well as to highlight the effects 
of the cut-off transition. A reference aolution for a strip array along z is 
constructed via element-by-element summation of individual source 
contributions over a square array with m 5 M=2000 and n 5 N=100. The m- 
dimension permits neglectin the truncation effects along z. The dipoles are 
tilted 45. with respect to z. 1, Fig. 2, with A being the wavelength, the near 
field scan is at a radial distance p=2.2A from the z-axis in the 2-0 (i.e. m=O) 
plane; dr=0.5A, d,=l.lA, 7='- --0.945A-' and 7,'=0.5X-'. The i and 4 electric 
ield components are shown along the scan. The solid curve is obtained by the 

high-frequency solution (4), including diffracted fields from both edges. These 
curves coincide with the reference solutions (circles). Additionally, dashed 
curves are presented, that are obtained by neglecting the diffracted field 
contributions. The eometrical configuration is such that Et:, are 
propagating, while is evanescent hut close to its cut-off condition. The 
three corresponding dikracted fields E!,, Et, and E: all propa ate away from 
the edge. Higher order FW and their pertinent diffracted fie12 are neglected 
due to their strong exponential decay along and p, respectively. It is evident 
that the diffracted field contributions strongly affect the accuracy of the 
prediction, especially that relevant to the close-to-cut-off EFW. It is worth 
noting that even in this critical re ime, the field predicted by 4 is in 
excellent agreement with respect to t%e reference solution, and tbe didracted 
field (6) well compensates for the discontinuity of the EFW. 
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Fig. 2. Heci r ic  field ai  p 2 . 2  /ram ihe edge of 8000 X 100 mway of 45' iilled dipolu. 
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