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Abstract

Harmonic Oscillator Based E↵ective Theory,
Connecting LQCD to Nuclear Structure

by

Kenneth S. McElvain

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Wick Haxton, Chair

This work focuses on construction of a bridge from QCD (quantum chromodynamics),
the theory of quarks, gluons, and their interactions, to nuclear structure, an obvious but
unattained objective ever since the introduction of QCD in 1973. The bridge footing on
one side of the chasm is QCD in the non-perturbative regime, only now beginning to yield
to massively parallel computation in a Monte-Carlo space-time lattice formulation of QCD
called LQCD (lattice quantum chromodynamics) that is our only tool for such problems.
The resulting trickle of information about the nucleon interaction comes in the form of a
fuzzy spectrum for two nucleons in a periodic box. It can be expected that the spectrum
will sharpen and even eventually include a spectrum for three nucleons in a box with the
introduction of larger and faster supercomputers as well as more clever algorithms. Fun-
damentally though, limits on what can be accomplished in LQCD are set by the famous
fermion sign problem. Results in LQCD are produced as a small residual of the sum of large
positive and negative contributions from the Monte-Carlo trials and accuracy only improves
slowly with the number of expensive trials.

The bridge footing on the other side of the chasm is the configuration interaction shell
model, which is commonly used for nuclear structure calculations from a microscopic Hamil-
tonian expressed in the colorless degrees of freedom of QCD we call nucleons. As currently
executed, this method is a model, the two- and possibly three-body interaction in use lacking
a rigorous connection to QCD or direct accounting for contributions from scattering outside
the model space. Nucleons, like quarks, are fermions and a fermion sign like problem exists
in these calculations as well. The configuration interaction shell model is formulated in an
antisymmetrized harmonic oscillator basis that grows with the number of permutations of
identical nucleons in the model space. However, fantastically e�cient parallel sparse matrix
techniques for finding low lying eigenstates exist, allowing quite large problems to be solved.

One footing of the bridge is solid and the other is nearing completion. Construction of
the bridge itself then faces three major problems addressed in this dissertation, construction
of the e↵ective nuclear interaction from observables, finite volume e↵ects associated with the
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periodic volume in which LQCD results are calculated, and the construction of the A-body
e↵ective Hamiltonian from the two body e↵ective interaction.

An e↵ective theory is a organized and complete parameterized approximation limited
to and preserving the known symmetries of an underlying theory (QCD in this case), con-
strained to some regime (energies below the mass of the pion in this case), and expressed
in degrees of freedom suitable for solving the problem at hand (nucleons in a harmonic os-
cillator basis below an energy cuto↵ for the nuclear structure problem). An e↵ective theory
has a formal relationship to the underlying theory that a model does not. Unlike a model, a
small number of observables may be used to fix the lowest order expansion parameters of the
e↵ective theory approximation with the expectation that the approximation remains valid
in other situations for which observables are not available.

The first portion of this work focuses on the construction of a harmonic oscillator based
e↵ective theory (HOBET) from observables in a spherical harmonic oscillator basis. It
builds on the prior work of Haxton, Song, and Luu in demonstrating the construction of
an convergent e↵ective theory from a known potential, establishing the form of the required
e↵ective theory expansion. The new work required the extension of HOBET to a theory no
longer limited to bound states and with continuity in energy, enabling uniform treatment of
bound and continuum states. Here the expansion parameters are instead derived from phase
shift observables at continuum energies. A key insight developed during this work was the
way in which the e↵ective theory constructed at an energy is connected to the boundary
constraints of the wave function. Using known techniques, Lüscher’s method and the HAL
QCD potential method, to transform the LQCD spectrum in periodic box to infinite volume
phase shifts produces a successful mechanism for fitting the e↵ective interaction without
knowledge of the details of the potential.

The techniques for converting LQCD results to phase shifts have issues such as uncon-
trolled systematics related to the volume size and range of the interaction as well as suspect
perturbative expansions. These issues motivated an investigation into the possibility of di-
rectly constructing the e↵ective theory in a periodic volume. This new construction relies
heavily on the previous insight about the connection of the e↵ective theory to the wave
function boundary constraints. A key result is that the kernel of the e↵ective theory, which
captures scattering through the excluded degrees of freedom, is in fact independent of the
boundary conditions. It can be fit in the periodic volume context and then transplanted into
an infinite volume spherical formulation of the e↵ective theory by a straightforward basis
transformation. Finite volume e↵ects are automatically handled in the process. Of imme-
diate interest to the LQCD community is that accurate phase shifts can be easily extracted
from the e↵ective theory, avoiding systematic and finite volume errors in existing methods.

With a two body e↵ective interaction in hand the last step to a usable bridge is the
construction of an A-body interaction in terms of the two body one. The exact form this
construction is not settled yet, but one promising structure with leading contributions that
can be calculated is explored.

The assembly of these three pieces completes the bridge, producing a way to perform
nuclear structure calculations that is formally connected to the underlying theory of QCD.



i

To my wife Alisa Ya↵a and our children Brian and Jodi.



ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 What is an E↵ective Theory? . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Alternate E↵ective Theory Strategies . . . . . . . . . . . . . . . . . . . . . . 8

2 The Bloch-Horowitz Equation 11
2.1 Reformulation of the Bloch-Horowitz Equation . . . . . . . . . . . . . . . . . 14

3 Realistic Nuclear Potentials 17

4 The Configuration Interaction Shell Model 19

5 Constructing the Spherical Heff 23
5.1 Green’s Function for E/(E �QT ) . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Kinetic Energy Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 VIR Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 Constructing V� with a Contact Operator Expansion . . . . . . . . . . . . . 29

5.4.1 Contact Gradient Expansion . . . . . . . . . . . . . . . . . . . . . . . 29
5.4.2 General Contact Operator Expansion . . . . . . . . . . . . . . . . . . 30
5.4.3 Lowering Operator Expansion for Non-Edge States . . . . . . . . . . 31
5.4.4 Matrix Elements of the Delta Function . . . . . . . . . . . . . . . . . 34
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Chapter 1

Introduction

The focus of this dissertation is to build an e↵ective theory connection between nucleon scat-
tering observables and nuclear structure for light nuclei. Once source of nucleon scattering
observables is experimental data, another exciting one is the emerging ability of LQCD (Lat-
tice Quantum Chromo Dynamics) computations to perform nucleon scattering simulations
on the computer [1]. As LQCD nucleon scattering calculations become more mature and are
done with pion masses near the physical values it should be possible to compute the spectra
of light nuclei, say up to 16O, in an A-body e↵ective theory that is directly connected to
QCD using the techniques found here.

Ever since the development in 1973 of QCD, the theory of quarks and gluons that pro-
duces nucleons and their interactions, there has been a desire to directly derive nuclear
structure from QCD [2]. QED (Quantum Electro Dynamics) is QCD’s simpler cousin and
is characterized by a U(1) gauge group and importantly a coupling parameter ↵ ⇡ 1/137
at low energy scales and higher values at higher energy scales. A perturbative expansion,
expressed in Feynman diagrams of QED interactions and organized by the number of times
photons interact with charged particles, converges rapidly as ↵n suppresses diagrams with n
photons coupling to charged particles at emission and absorption. QCD on the other hand
has a more complex SU(3) color gauge structure and a coupling parameter ↵s that runs
to larger values at the lower energy scales associated with nucleons and nuclear structure.
The more complex non-abelian gauge structure results in gluon-gluon interactions that are
missing with the photon. One e↵ect of the large coupling parameter and gluon-gluon inter-
actions is that at modest energies all particles are colorless combinations of valence quarks.
The e↵ective theory of QCD at these scales includes the colorless nucleons and mesons with
the nucleon interaction as a residual e↵ect of QCD. The large value of ↵s sabotages the use of
a perturbative expansion as contributions from higher order diagrams do not reduce quickly
enough for convergence, long delaying the direct use of QCD in producing an interaction.

Advances in LQCD with clever algorithms and compounding improvements in the per-
formance of supercomputers have now reached the point that the two-body QCD nuclear

1
An attempt has been made to be consistent with respect to conventions and the usage of symbols. The

choices made are documented in Appendix E.
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Quark Fields
on nodes

Gluon Fields
on Links

x

y

t

Euclidian
time

Plaquettes

Figure 1.1: The representation of lattice fields in LQCD: quarks fields are placed on the nodes
of lattice and gluon fields on the links. Space and time are periodic and time is Euclidian.
The z direction has been suppressed due to the limitations of paper.

problem is nonperturbatively solvable. A good introduction to the topic by Creutz is found
in [3]. The procedure is to make space and Euclidian time discrete with quark fields described
on the points of a space-time lattice and gluon fields on the links between the lattice points
where the gluon fields describe the color space transform between adjacent lattice points as
is shown in Figure (1.1). The QCD action, normally expressed as an integral over space and
time, becomes a sum over the lattice points for quark contributions and over plaquettes,
small loops along the links in the lattice, for the gluon contribution.

Euclidian time is essential for the Monte-Carlo sampling used to evaluate the path in-
tegral. With Euclidian time comes the problem of separating the contributions from the
ground and excited states. In quantum mechanics if the state of a system is a equal super-
position of eigenstates |ai and |bi with energies Ea and Eb, then under time evolution the
two eigenstates pick up an oscillating phase with the fastest oscillation associated with the
largest energy.

| i = 1p
2

|ai e�iE
a

t +
1p
2

|bi e�iE
b

t (1.0.1)

Both states persist with constant amplitude. Now suppose that the substitution t ! �i⌧ ,
also known as a Wick rotation to Euclidian time, is made.

| i = 1p
2

|ai e�E
a

⌧ +
1p
2

|bi e�E
b

⌧ (1.0.2)
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Now as time passes, the amplitudes of both states decline, but the highest energy state
declines faster, eventually leaving the lowest energy state to dominate the wave function. In
LQCD the same principle applies, enabling one to tease out the lowest energy contributions
to a measurement such as a propagator for a pair of nucleons.

The lattice is made finite and periodic so that the size of the computation is suitable for a
super-computer. Samples of the vacuum state, called configurations, are generated following
a probability density implied by the QCD Lagrangian and statistical measurements of the
e↵ective mass of a two nucleon propagator can be made by measuring the decay rate with
Euclidian time on those samples via Monte-Carlo integration. Unfortunately, the propagator
for two nucleons written in terms of quark fields also contains the physics describing 6 pions.
The two nucleon state being measured decays rapidly as exp(�2mN⌧) while the six pion
state decays as exp(�6m⇡⌧) yielding an exponentially increasing introduction of noise with
time from pion states that is only eliminated by a delicate cancelation in the sum over
configurations. The statistical quality of results only improves slowly with the square root
of the number of expensive to compute configurations, yielding an overall signal to noise
ratio ⇠ pN exp (�(2mN � 3m⇡)⌧). This is an example of the famous fermion sign problem,
producing a small result from cancelations in a large sum of large positive and negative
contributions. The problem worsens rapidly with the introduction of additional nucleons,
making it unlikely that calculations with more than a few nucleons can be done. Despite
these obstacles, credible LQCD calculations can now be performed on super-computers –
though often, to improve the convergence, unphysically large pion masses must be introduced
through fictitious quark masses.

As is usual in such problems part of the progress is simply faster/bigger computers, but
even more important are physics motivated strategies to make the measurements with less
statistical noise and to get more data per sample, yielding orders of magnitude improvements.
For example, if the nucleon operators used in propagators have less contamination with
excited states, then the state corresponding to nucleon propagation will emerge sooner before
noise from pion contributions becomes large, yielding a dramatic reduction in the number
of measurements required [4]. Even with such an improvement there is a strong motivation
to connect LQCD calculations to e↵ective theory for nuclear structure calculations.

Long before the development of QCD, nuclear physics was described in terms of interact-
ing protons and neutrons, bound by potentials that were initially derived phenomenologically,
later determined from careful analyses of NN phase shifts, and in recent years further con-
strained by chiral EFTs that take into account the special role of the pion in mediating
long-distance interactions. In retrospect, the existence of a rather precise treatment of QCD
at low energy in terms of composite fermions – bound states of the quarks – and potentials
that make no reference to gluons, is remarkable.

This starting point for nuclear physics was initially executed in simple models – e.g.,
collective models of Bohr and Mottelson and of Goldhaber and Teller, noninteracting shell
models that built on the notion of nuclear mean fields, later embellished by Goeppert-
Mayer with spin-orbit corrections that altered shell closures [5]. Often the connection to the
underlying NN potential was vague. Over the years such models became more elaborate and
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more closely coupled to the underlying NN interaction. Perhaps the best modern example is
the configuration-interaction shell model, employing very large bases of Slater determinants
that are allowed to interact through a potential that is rooted in measured NN interactions.
Typically that potential is softened – beginning with the G-matrix that sums an infinite
set of ladder diagrams, taking into account the very strong repulsion that operates between
nucleons at short range. It is also often modified in ad hoc ways, such as adjusting S-wave
interaction strengths to better match data. Calculations also show that three-body forces
are needed, if the goal is to predict binding energies to better than 10%. An intuitive
understanding of potentials has also been gained: how they are connect to pion and vector-
meson exchange via modern chiral EFT approaches.

With the exception of light nuclei where e↵ectively exact calculations can be done in
very large nucleon Hilbert spaces, the model spaces used are e↵ective – limited to momenta
that prevent one from constructing in detail the consequences of strong repulsion on the
NN correlation function at long distances. Although it is often forgotten by practitioners,
such treatments do not then produce true wave functions, but rather some low-momentum
projection of that wave function. Because large parts of the Hilbert space have been omitted,
it will fail in this task (and in the associated task of finding eigenvalues) unless the interaction
used is modified from the bare one, to take into account the parts of the Hilbert space that
have been excluded. The process of adjusting the interaction as the size of the Hilbert
space is reduced is called renormalization. This renormalization in principle can be done
from the starting point of the true (or “bare”) interaction – though an exact solution of the
renormalization problem is equivalent to solving the original problem in the full Hilbert space.
Alternatively, the e↵ective interaction can be done empirically, by introducing corrections
to the bare interaction that are fit to observables. While the term is frequently misused,
the latter approach is an e↵ective theory if the parameters introduced and new interactions
added are part of a systematic scheme, based on some power counting that organizes the
needed corrections in some kind of hierarchy. The development of an ET for the Slater
determinant basis most commonly used in nuclear physics, the harmonic oscillator, is a
guiding motivation of this dissertation.

In particular, one can envision reformulating the shell model as such an e↵ective theory:
the model can be employed in a way that preserves important symmetries, like translational
and rotational invariance. Historically, the transition from the naive shell model to an
e↵ective theory occurred in steps, and is arguably still incomplete. Initially there were
important conceptual hurdles: how can a low-momentum basis, which seems like a mean
field, be compatible with a potential with a GeV hard core? But the concept of the healing
distance, described in reference [6], seemed to reconcile these two pictures. A nucleus may
be roughly modeled as a Fermi gas with all states up to the Fermi surface occupied. The
healing distance can be understood as a consequence of nucleons scattering in that Fermi
gas instead of freely. Free nucleons scatter with a phase shift, meaning that the free wave
function is perturbed out to infinite distance. The perturbed state is a mix of other states
of the same energy. In a Fermi gas other states of the same energy are are already occupied
and the scattering result must quickly settle back into the same set of states, “healing” the
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wave function and limiting the size of the wound in the wave function. Qualitatively then,
one can appreciate that a renormalized interaction can reproduce long-range behaviors and
wave function features, even though the short range part of the interaction continues to
exist only in its indirect contributions to interactions of low energy states. In the harmonic
oscillator based e↵ective theory described here the produced wave functions are precisely the
projections of the true wave function to the soft restricted Slater determinant basis of the
e↵ective theory.

More microscopic calculations begin with a bare interaction that one hopes to renormalize
into a soft e↵ective interaction in a modest sized discrete basis for the shell model. Unfortu-
nately, the bare interaction combines a very short range hard core at GeV scales, a medium
range attractive component attributable to pion exchange between nucleons and long range
scattering by the kinetic energy operator. The disparate length scales embedded in the bare
interaction are a strong hint of renormalization problems. Despite this, great e↵orts were
made to diagrammatically construct the e↵ective interaction as a perturbative sum, explor-
ing many di↵erent ways to organize the sum of terms with the hope that cancellations within
each group would lead to a convergent sum. In the early 1970’s the diagrammatic e↵ective
interaction methods were analyzed more deeply and found to fail to converge independent of
organization of the sum. In 1970 Barrett and Kirson [7] calculated the e↵ective interaction
for two valance nucleons above a 16O core up to selected N4LO terms, discovering that there
was no grouping of terms that yielded convergence. The concluding line of their abstract “...
and that the success of first- plus second-order perturbation theory in fitting experimental
spectra for these nuclei is unexplained” reveals the state of the art at that time. In 1972
and 1973 Shucan and Weidenmüller wrote two papers [8][9] showing that the convergence
failure is related to the overlap of the spectrum of the bare interaction in the excluded space
with the spectrum of the e↵ective interaction. This overlap is a consequence of the lack of a
separation of scales between the excluded and included degrees of freedom.

More recently progress has been made with a combination of novel techniques such as SRG
(similarity renormalization group), introduced as a general technique by Glazek and Wilson
in [10] and applied to the nuclear interaction by Bogner et al. in [11] to soften the interaction
in a momentum basis with a cuto↵. Softening of the interaction combined with the advance
of computing power enabling the use of much larger e↵ective Hilbert spaces has produced
an improved match of calculation and experiment [12] . SRG finds a parameterized unitary
transform that both preserves the kinetic energy contribution and reduces the strength of o↵
diagonal elements of the potential, reducing the coupling of low and high momentum states.
Eigenvalues in the Born series expansion of the T matrix are seen to reduce in magnitude
indicating perturbative improvement, but inducing 3 and higher body contributions. A
lucky coincidence is that the initial evolution of the SRG unitary transform induces 3-body
terms that partially cancel with known 3-body potentials, improving the spectral match to
experiment of calculations based on the evolved two body interaction. The initial evolution
comes with reduced coupling of low and high momentum states and a slowly improving
prediction of the binding energy of the triton, followed by rapid deterioration as the higher
body contributions grow strongly. In contrast, in the HOBET approach we discuss, the
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e↵ective interaction will be extended to the shell-model scale where many-body calculations
are performed.

Regardless of the source of the potential, the standard next step is to take matrix elements
in a large harmonic oscillator basis. For the two body deuteron one can then directly solve
for the ground state, finding that the basis must be quite large, over ⇤ = 100, to accurately
reproduce the experimental binding energy. For potentials produced with a such momentum
cuto↵ this raises a question about the overlap of the harmonic oscillator states, each of which
covers a distribution of momentum states, with the excluded momentum region. Pushing on,
the next step is to integrate out all but low lying states in the harmonic oscillator basis and
resulting in two cuto↵s in two di↵erent bases, one at some high momentum and a second
at the energy of the highest included harmonic oscillator states. The argument is that
the momentum cuto↵ is well above the eventual harmonic oscillator cuto↵ even accounting
for the momentum spread of each state, so how could it matter? The problem with this
argument is that the incorrect information in the high excitation harmonic oscillator states
flowed down into the interaction specified in the small state space. Even more important,
the mismatch between the momentum basis and harmonic oscillator basis will result in
violation of important symmetries such as translation invariance. Preservation of translation
invariance in a truncated harmonic oscillator basis depends on a clean energy cuto↵ of the
basis.

To those used to applying e↵ective theory in other domains the two step process from
QCD or observables to a UV potential to an e↵ective interaction is strange. The usual
process directly connects observables to the parameters of the e↵ective theory expansion.
In a momentum basis one can follow Weinberg’s prescription, writing down a complete set
of operators consistent with the symmetries of the UV theory. The operators are organized
according to the size of their contribution as controlled by a hopefully small expansion
parameter [13]. The parameters are then fit to reproduce observables. There is no reason to
create dubious UV detail in a potential, if in the end all that detail is integrated out in the
final e↵ective interaction.

One advantage Weinberg had is that the kinetic energy operator is diagonal in a mo-
mentum basis, so it won’t connect the included P states to the excluded Q states across the
momentum cuto↵. The extension to a harmonic oscillator basis is not obvious because the
kinetic energy operator T changes to a tri-diagonal form, strongly connecting states of the
highest nodal number in P to Q. In connection with the hard core of realistic interactions
this leads to the poisoning of the e↵ective theory described by Shucan and Weidenmüller.
The HOBET (Harmonic Oscillator Based E↵ective Theory) program began with an attempt
to understand this problem. Song [14] and then Luu [15] studied the problem by tediously
integrating out Q with a known potential in simple 2 and 3 body cases with the goal of
understanding the mechanism that prevented convergence. Their antidote was to find a
decomposition of the e↵ective interaction in which troublesome parts involving repeated
scattering by T through Q can be analytically summed, leaving a remainder for which a
short range expansion is suitable. It is remarkable and not at all foreordained that such a
decomposition was found. The work here builds on this foundation.
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The success of shell model calculations in reproducing spectra with 2 body interactions
strongly suggests rapid convergence in n-body interactions with n = 3 or possibly 4 being
su�cient for most calculations. The hope is that a rigorous A-body e↵ective Hamiltonian
can be constructed from the 2 and 3 body e↵ective interactions which shows the same rapid
convergence in the number of interacting nucleons. A key element enhancing convergence in
the HOBET approach is that the contributions of the kinetic energy operator are summed to
all orders restricting the convergence requirement to strong interactions occurring at short
distances. In contrast, all other nuclear e↵ective interactions approaches of which we are
aware require the stronger condition that the entire e↵ective interaction has a converging
few-body expansion. Coupled with the demonstration that the 2-body interaction is analytic
in E, meaning that the interaction is continuous in E and valid for both continuum and bound
states, the A-body e↵ective Hamiltonian can be fit to observables and continued to bound
states at negative energy yielding a rigorous e↵ective theory for nuclei. The definition of
rigor here includes knowing in advance the form of the e↵ective Hamiltonian that preserves
the symmetries of the underlying theory. There is also no need for an intermediate high
momentum potential in Q that must be renormalized to determine LECs, a process that
defeated people in the 1970’s.

1.1 What is an E↵ective Theory?

As this dissertation is about a harmonic oscillator based e↵ective theory, it seems appropriate
to more precisely define what is meant by an e↵ective theory. A nice pedagogical introduction
can be found in lectures on the topic by Daniel Phillips [16]. Sometimes the phrase e↵ective
theory has been applied to hybrids influenced by e↵ective theory thinking but lacking some
of the attributes and are more properly called models. Models have their own important
role in physics, but are not the topic here.

An e↵ective theory is defined with respect to a regime of interest, normally chosen to be
suitable for solving some class of problems. The regime is usually specified as a bounded
part of the Hilbert space for the underlying and unknown full theory. For example, it may
be defined as momentum states under a cuto↵ or as is done here as an energy cuto↵ in a
harmonic oscillator basis. Degrees of freedom associated with particles only accessible at high
energy may be integrated out and replaced with composites as happens when constructing
an e↵ective theory of QCD in terms of nucleons and pions.

The e↵ective theory is a systematic parameterized expansion or approximation that is
consistent with the underlying symmetries of the underlying theory and otherwise complete.
Systematic means that the form of the expansion is known and that the pieces of the expan-
sion can be organized by the size of their contributions so that controlled approximations
can be made by truncating the expansion. A common phrase used to describe this is power
counting because the terms of the specific expansion are controlled and grouped by pow-
ers of an expansion parameter. In principle, arbitrarily good accuracy can be attained by
evaluating the expansion to su�cient order.
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With a known underlying theory the the parameters associated with the pieces of the
expansion can in principle be determined if one’s computational ability is strong enough.
This process is referred to as integrating out the degrees of freedom beyond the e↵ective
theory regime. If the calculation is too hard, or the full underlying theory is not known, then
the expansion parameters may be fit to reproduce observables, yielding the same e↵ective
theory.

This last statement very importantly applies to the problem of constructing an e↵ective
theory for QCD. We have no way to directly compute the expansion parameters of an e↵ective
theory directly from QCD, but with LQCD the values of observables can be computed and
used to fit the e↵ective theory.

Because of the systematic expansion, once the expansion parameters have been fixed to
reproduce observables, one can expect to correctly predict observables that weren’t used in
the fitting process but are in the regime the e↵ective theory is designed for. This is a strength
of e↵ective theories relative to models.

1.2 Alternate E↵ective Theory Strategies

There are several alternative e↵ective theory strategies for nucleon many body approaches:
the Lee-Suzuki approach, Chiral EFT, and. lattice EFT. The key di↵erence to look for is how
they define the portion of the Hilbert space and the basis that it is expressed in, determining
what types of the problems the e↵ective theory is suitable for.

An e↵ective theory approach that leads to an energy independent Hermitian form in
a harmonic oscillator basis is that of Lee and Suzuki [17]. It can be used to take a hard
interaction – such as the phenomenological Av
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fitted to NN scattering and characterized
by hard cores in excess of a GeV – and explicitly renormalize it. The Lee-Suzuki e↵ective
interaction is structurally compared to the Bloch-Horowitz e↵ective interaction by Jennings
[18]. The essential di↵erence in construction is that instead of the eigenstates of the e↵ective
Hamiltonian being taken from all states which overlap P , the model space, one also divides
the original eigenstates into two parts |ki and excluded part |k0i with a requirement that P |ki
forms a complete and independent basis for P . The key step is to produce an orthonormal
basis for P |ki. The result is that each basis member corresponds to a linear combination of
elements from |ki in the full Hilbert space. A similar equation to the Bloch-Horowitz equation
can be used to compute the e↵ect of scattering through |k0i. A good attribute is that the
e↵ective theory result is directly expressed in a harmonic oscillator basis, the basis of choice
for nuclear structure calculations. As mentioned earlier, the result is energy independent
and Hermitian, which means that the eigenstates in the model space will be orthogonal,
which can’t be the case with the restriction of the full wave function - consequentially the
interpretation of the eigenstates is unclear as is their use in evaluating observables. An
additional downside of this approach is that the resulting e↵ective Hamiltonian is restricted
to the original eigenstate set |ki, so the constructed Heff can’t be used to make predictions
outside of the subspace spanned by |ki.
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Chiral EFT is a way to construct a nuclear potential with a more direct connection
to QCD. Quarks and gluons lose their independent existence and are always hidden in
“colorless” bound states such as nucleons, pions, and heavier mesons which become the
relevant degrees of freedom of the theory. A review can be found in [19]. The e↵ective
theory is formulated in a cut o↵ momentum basis with degrees of freedom consisting of the
colorless bound states of quarks: pions, and nucleons. In this theory the e↵ective Lagrangian
consists of all terms consistent with the symmetries of the underlying theory of QCD. The
terms carry LECs (low energy constants) that must be fit to observables and are organized
according to an expansion parameter (Q/⇤�) where Q represents the pion mass/momentum
and ⇤� is a cuto↵ momentum roughly associated with the next meson mass above the pion.
Potentials derived via perturbation theory through N3LO have been constructed and their
LECs fit to observables with great success.

To this point all the elements of an e↵ective theory have been met. The usual next step
is to take matrix elements of the potential in a large harmonic oscillator basis. The change of
basis immediately creates a problem because harmonic oscillator states can be represented as
a sum over a momentum basis and high n states will have substantial overlap with momen-
tum states above the cuto↵, resulting in missing contributions to large n matrix elements.
Integrating out these high n states to reduce the dimension of the e↵ective Hamiltonian will
then propagate these missing contributions. Even worse, the mismatch in basis will violate
translation invariance, breaking the clean separation of relative and center of mass modes in
the harmonic oscillator basis.

The essential point is that for a consistent e↵ective theory, the basis in which the cuto↵
is taken should be the one the theory is constructed in. A two step process with a basis
change in the middle does not cleanly separate the included P space from the excluded Q
space.

The closest in spirit to HOBET is an EFT formulated on a Lattice [20]. The lattice is
a periodic space time lattice with nucleon fields on the lattice cites. Di↵erential operators
are implemented as di↵erence operators over neighboring sites in much the same way as
LQCD. The e↵ective theory can be formulated as a pionless theory valid up to momentum
scales on the order of m⇡ or even a formulation of Chiral e↵ective field theory valid to higher
momenta. Unlike the path taking a Chiral e↵ective theory into a harmonic oscillator basis
described above, the e↵ective theory is constructed directly in the calculation basis, avoiding
the previous basis incompatibility. Rotational symmetry is a challenge to maintain because
the lattice structure and the volume both break it, though improved operators involving
more neighbor points can mitigate part of the problem. This impacts the factorization of
the Hilbert space into angular momentum channels, impacting calculation costs for systems
of more nucleons. Continuum extrapolation of results will also be required. The basis should
be very suitable for nuclear matter calculations and study of bound states of small number
of nucleons.

This work relies on the Bloch-Horowitz equation [21], to be reviewed in Chapter 2, which
constructs an e↵ective Hamiltonian in a restricted space defined by projection operator
P . All eigenstates where P | ii 6= 0 are eigenstates of the e↵ective Hamiltonian. This is
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attractive because after Heff is determined by fitting a perturbative expansion to data in one
energy range, one can expect that Heff can be applied to other states outside that range.
A common objection to the Bloch-Horowitz equation is that it is energy dependent. For
purposes herein, this will be seen to be a virtue, providing a key part of dealing with the
mixed scales of the kinetic energy operator and the short range nuclear potential.
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Chapter 2

The Bloch-Horowitz Equation

The Bloch-Horowitz equation is central to this thesis, so a substantial review is appropriate.
In many contexts one would like to reduce the physics of a system to a subset of states

relevant to the quantities being calculated. The full basis could be a continuous basis like a
momentum or position basis, or a discrete basis such as a set of harmonic oscillator states.
The complete set of states form a Hilbert space in which the Hamiltonian can be expressed.
Reducing the physics to low energy or momentum states states means partitioning the Hilbert
space into an included set of states which are defined with a projection operator P , and an
excluded set of states with projection operator Q with P +Q = 1. P and Q will be used as
projection operators and as the names of the corresponding sets of states. The important
question is, how close can one get to writing a Hamiltonian that operates on the restricted
basis P with the same eigenvalues. Such a Hamiltonian is called an e↵ective Hamiltonian.

The development begins with the time independent Schrödinger equation, which describes
the stationary states of the system.

H | ii = Ei | ii (2.0.1)

P +Q = 1 may be inserted freely.

(P +Q)H (P +Q) | ii = Ei (P +Q) | ii (2.0.2)

The projection operators split this equation into two.

PH (P +Q) | ii = EiP | ii
QH (P +Q) | ii = EiQ | ii

(2.0.3)

The first equation is close to the desired form, but still has a reference to Q | ii. The second
equation can be used to eliminate it.

(Ei �QH)Q | ii = QHP | ii
Q | ii = 1

Ei �QH
QHP | ii

(2.0.4)
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Substituting into the first equation of Eq.(2.0.3) yields the Bloch-Horowitz equation for an
e↵ective Hamiltonian

P

✓

H +H
1

Ei �QH
QH

◆

P | ii = EiP | ii

Heff (Ei) = P

✓

H +H
1

Ei �QH
QH

◆

P

(2.0.5)

One way to think about this equation is in terms of an expansion of 1/ (E �QH) =
(1/E)

�

1 +QH/E + (QH/E)2 + · · · �. In this form the terms represent longer and longer
sequences of scattering by H through the Q space before returning to the included P space.

There are a number of important observations about this equation. First, the eigenstates
of Heff are the projections of the eigenstates of the full theory described by H, except for
a special case where a state has 0 overlap with P. Second, the eigenvalues are the same
eigenvalues. This may come as a surprise because P may consist of a finite number of basis
states where the full theory has a continuum of eigenstates. How can such an Heff (E)
reproduce all the eigenvalues of the full theory? The answer is in the energy dependence.
The matrix elements in the finite basis change with energy.

A third important observation is that the eigenstates of Heff (E) are not orthogonal.
This is a consequence of projecting the orthogonal eigenstates of H into P . A set of 3
orthonormal 3D vectors projected onto a table top will not remain orthogonal and the same
happens to | ii. In addition, the projected vectors will not be of unit length or normalized.
In fact, it is possible to get 0 length, and the same can happen with Heff (E) eigenstates.

A fourth observation is that Heff (E) depends on the energy, the same energy that
appears as the eigenvalue on the right. The Bloch-Horowitz equation must be solved self
consistently. For bound states a strategy of iterative resubstitution (also known as fixed-point
iteration) starting with an initial guess works well. Every energy in the continuum must be
an eigenvalue, so iteration is not required and as will be later exploited, self-consistency of
continuum states places constraints on the e↵ective theory expansion.

Once the eigenstates of Heff (E) have been found an obvious use is to compute matrix
elements of operators. The spectrum will match the spectrum of H, but the states themselves
are projections and the normalization is unknown. Formally one can reconstruct the full wave
function from the projection, as long as it is not 0, in the following way.

(Ei � (P +Q)H) i = 0

(Ei �QH) i = PH i = EiP i

 i =
Ei

Ei �QH
P i

For bound states this operation is well defined because the Green’s function for E/(E�QH)
must go to 0 at infinity, but for continuum states the operator E/(E�QH) needs a boundary
condition. The boundary condition is given by the phase shift, or in coupled channel cases
the S-matrix.
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If one knows the complete H, then it is at least formally possible to evaluate Heff . In
practice it is common to express part of Eq.(2.0.5) as an expansion respecting the underlying
symmetries of H. Then coe�cients in the expansion are fit to reproduce experimental data.
Returning to the case of continuum states, every positive energy is an eigenvalue andHeff (E)
should have an eigenvalue matching E. Any failure to obtain a match must therefore come
from errors in the expansion constants. Fitting the expansion constants to minimize such
errors is a good way to determine their values.

Other useful formulations of the Bloch-Horowitz equation can be obtained via the oper-
ator equation

1

A� B
=

1

A
+

1

A
B

1

A� B
=

1

A
+

1

A� B
B

1

A
(2.0.6)

These formula may be easily verified.

1

A
+

1

A� B
B

1

A
=

1

A
+

1

A� B
(B � A)

1

A
+

1

A� B
A
1

A
=

1

A� B
(2.0.7)

As an example use of the operator equation, a shorter form of the Bloch-Horowitz equa-
tion can be transformed into the standard form Eq.(2.0.5).

H
Ei

Ei �QH
= HEi

✓

1

Ei
+

1

Ei
QH

1

Ei �QH

◆

= H +H
1

Ei �QH
QH (2.0.8)

Continuing to expand the resolvent results in the following expansion.

Heff (Ei) = P

✓

H +H

✓

1

Ei
+

1

Ei
QH

1

Ei �QH

◆

QH

◆

P

= P

✓

H +
1

Ei
HQH +

1

E2

i

HQHQH + . . .

◆

P

(2.0.9)

This defines a nice perturbation expansion for Heff with the small requirement that H
is well behaved. The definition of well behaved comes down to the eigenvalues of HQ/Ei. If
any eigenvalue has a magnitude larger than or equal to 1, then the series will not converge.
In nuclear physics H = T + V does not meet this small requirement. Part of the reason is a
mixing of energy scales. A realistic nuclear potential such as Argonne v

18

, shown in Figure
(3.1), has a hard core with energy in the GeV range. Despite this, the deuteron is bound
by ⇡ �2.22 MeV, implying that the wave function is spread out over a large range, well
outside of the range of the potential. In a harmonic oscillator basis long range corresponds
to a high nodal quantum number. The connection to these states is not primarily through
the potential, it is instead through the kinetic energy operator T . This is why the IR part
of H is associated with T and the UV with the potential V . T is a hopping operator in a
harmonic oscillator basis, see Eq.(A.4.1), which also has the e↵ect of coupling the highest
state in in each angular momentum channel of P to the lowest state in Q with the same
angular momentum. Strong coupling between included states and excluded states poses a
challenge for e↵ective theories that will have to be dealt with.
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2.1 Reformulation of the Bloch-Horowitz Equation

Haxton, Song, and Luu studied the convergence of a perturbative expansion of the Bloch-
Horowitz propagator in a harmonic oscillator basis [22].

1

E �QH
=

1

E �Hho
+

1

E �Hho
Q(V � Vho)

1

E �Hho
+ · · · (2.1.1)

In the included space defined by ⇤1 > 70 they found that matrix elements h↵ |Heff | �i with
↵ and � well away from the boundary converged rapidly. On the other hand matrix elements
with either ↵ or � in the last included shell converged poorly, requiring ⇠ 1000 orders of
perturbation theory to converge. The poor convergence was traced to the strong coupling
across the boundary of P by the QT part of QH in the propagator and between adjacent
states in Q. Powers of QT/E in the expansion of the propagator for weakly bound systems
with small E then connect the edge of P to a cascade of harmonic oscillator states higher in
Q with longer and longer range and therefore corresponding to IR physics.

The hard core of the nuclear potential had it’s own convergence problems and a modified
contact gradient expansion was found that was able to represent it accurately. The combina-
tion of simultaneous IR and UV contributions in H is responsible for convergence problems.
These observations motivated the search for a reorganization of the Bloch-Horowitz equa-
tion that separated the short range physics in V from the long range e↵ect of T , enabling an
analytic calculation to all orders of the contribution of the well understood T operator and
leaving short range physics to an e↵ective theory expansion.

The organization that Haxton and Luu found did not completely separate T and V , but
trapped the remaining combined contribution between copies of the QV operator, resulting
in a short range operator, the fourth in brackets below, that is well modeled by an e↵ective
theory expansion.

Heff (E) = P
E

E � TQ



T � T
Q

E
T + V + V

1

E �QH
QV

�

E

E �QT
P (2.1.2)

The e↵ective theory expansion of the fourth term will be in terms of a set of operators
multiplied by associated LECs (low energy constants). If one can argue that the fourth term
has little energy dependence, then the LECs will also be nearly energy independent. Energy
independence in the LECs will be very useful in fitting the expansion to observables which
are taken at a substantial spread in energy. The argument begins with an expansion of the
term with the operator equation Eq.(2.0.6).

V
1

E �QH
QV = �V

✓

1

QH
+

1

E �QH

E

QH

◆

QV (2.1.3)

The first term is energy independent. The second term will be small if
⌦

(QH)�1 QV
↵

>>
hEi. A way see this is to work in terms of the spectrum of H, which consists of continuum
states and possibly some bound states. Working from the right in the above equation, V is



CHAPTER 2. THE BLOCH-HOROWITZ EQUATION 15

short range, connecting low and high momentum states and will produce a wide distribution
in an expansion over the spectrum of H, but Q will eliminate the parts of wave functions
about the length scale b of the harmonic oscillator, strongly suppressing overlap with bound
states of H and the lower energy continuum spectrum of H having significant overlap with
P . The result is that the remaining part of the spectrum to be acted on by H will be in
the higher energy part of the spectrum where H will produce large eigenvalues, dominating
E in the region of interest which includes bound states and moderate continuum energies.
This argument suggests that increasing the overlap of P with eigenstates of H in the energy
range of interest will decrease energy dependence. The overlap can be increased trivially
by making P larger and more interestingly by tuning the harmonic oscillator length scale
so that a larger fraction of bound state wave functions and lower energy members of the
continuum can be represented in P . There is a Goldilocks b for the problem that minimizes
energy dependence.

Returning to Eq.(2.1.2) a derivation can be found in [15]. A shorter derivation will be
included here with some explanation because the techniques will be useful later in the A-
body extension of HOBET. Liberal use of the operator equation Eq.(2.0.6) will be used in
the derivation which begins with the shorter form of the Bloch-Horowitz equation Eq.(2.0.8).

H
E

E �QH
= (T + V )



E

E �QT
+

E

E �QT
QV

1

E �QH

�

=

⇢

T
E

E�QT

�

1

+

⇢

V
E

E�QT

�

2

+

⇢

V
1

E�QH
QV

E

E�QT

�

3

+

⇢

T
E

E�QT
QV

1

E�QH

�

4

The pieces have been grouped and labeled so they can be individually worked on. Note that
in portion 3 above that the order of the operators are reversed as allowed by Eq.(2.0.6).

{}
1

=
1

E � TQ
(E � TQ)T

E

E �QT
=

E

E � TQ



T � T
Q

E
T

�

E

E �QT

{}
4

= T
1

E �QT
QV

E

E �QT
+ T

1

E �QT
QV

1

E �QH
QV

E

E �QT

=

✓

E

E � TQ
� 1

◆

V
E

E �QT
+

✓

E

E � TQ
� 1

◆

V
1

E �QH
QV

E

E �QT

In recombining the pieces portions 2 and 3 will cancel with the negative parts of portion 4,
yielding the desired form, also shown diagrammatically in Figure (2.1).

H
1

E �QH
=

E

E � TQ



T � T
Q

E
T + V + V

1

E �QH
QV

�

E

E �QT
(2.1.4)

Note that this equivalence did not depend on the P-space projectors that are part of
Eq.(2.1.2), so the alternate expansion is actually more general.

An intuitive explanation of the roles of the components of this expression will be useful.
First, Green’s functions for the resolvents on either end will reconstruct a long range wave
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Figure 2.1: HOBET’s e↵ective interaction, appropriate for a harmonic oscillator basis where
translational invariance requires P to be cut o↵ in total quanta. This is in contrast to chiral
EFT interactions which employ a momentum cuto↵. The colors blue, green, red indicate
far-IR, near-IR, and UV corrections.

function with the same exponential decay as is expected for negative energy states or oscil-
latory behavior as a scattering state for positive energy states. Specifically, in a harmonic
oscillator basis it will be seen that the Green’s functions are the identity except for states
at the edge of the P space, states for which the kinetic energy operator T couples to states
in Q. When the first two terms in brackets are evaluated in the context of the Green’s func-
tions they will account for all the repeated scattering by purely by T through the Q space.
This result is extremely important for weakly bound states of short range potentials where
the wave function is extended far beyond the potential. The kinetic energy operator T is a
hopping operator in the harmonic oscillator basis and plays a major role in coupling lower
energy states to high energy states that have long range. The last two terms in brackets
are the potential and a term that involves repeated scattering by H through Q, but capped
on each end by the presumed short range V. This short range operator contains the result
of integrating out repeated scattering by H that begins and ends with scattering by V to
connect to the P space. In HOBET, this short range operator is the focus of the e↵ective
theory expansion as the T pieces can be evaluated to all orders. The Haxton-Luu form of the
Bloch-Horowitz equation achieves a separation of scales that was not obvious in the original
form.
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Chapter 3

Realistic Nuclear Potentials

Modern realistic nuclear potentials accurately reproduce observables such as phase shifts,
the deuteron bound states and magnetic moment with amazing accuracy.

In experiments one can send beams of neutrons or protons, which have better data, at
specific energies into hydrogen and observe the angular distributions of outgoing particles.
Initial polarizations of the nucleon spins can be controlled by strong magnetic fields coupled
to the magnetic moments of the nucleons. From those spin polarizations and angular dis-
tributions one can compute a set of scattering parameters at each energy, relative angular
momentum and relative spin state. The usual parameters are known as phase shifts and
mixing angles, or they may be encoded into an S-matrix, which relates the amplitudes of
incoming states to outgoing states. A large database of phase shift and mixing angle results
for both experiments and various realistic potentials is available at NN-Online [23].

Realistic nuclear potentials were constructed by making educated guesses as to the forms
of the contributions based on meson exchange models. The terms were parameterized and
then fit to reproduce the phase shift and mixing angles. Failures to reproduce phase shifts at
higher energies were observed and new terms were added. For example, a coupling between
angular momentum and spin was added to reproduce proton-proton phase shifts at higher
energies [24].

An example realistic nuclear potential used in this dissertation is the Argonne v
18

poten-
tial [25], with channels relevant to the deuteron shown in Figure (3.1). Of note is the very
large potential values at r < 0.25 fm, reaching ⇡ 2 GeV. This “hard core” is a feature of
other realistic potentials as well. The wave function of the deuteron is concentrated around
the shallow wells near 1 fm and the long range potential contributions decay as a one pion
exchange potential.
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Figure 3.1: The three parts of the Argonne v
18

potential coupling the 3S
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and 3D
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channels.
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Chapter 4

The Configuration Interaction Shell
Model

As was seen in the introduction, LQCD su↵ers from the fermion sign problem, preventing
it’s application to any substantial number of nucleons. The configuration interaction shell
model for A nucleons partially avoids the issues associated with the fermion sign problem by
working in an explicitly anti-symmetric basis, but su↵ers from what is essentially the same
computational complexity due to the growth of the basis with A. However, computational
techniques for finding low lying eigenstates of very large sparse matrices are incredibly e�-
cient, allowing many nucleon systems to be solved. In a practical sense this is the answer
that is needed. If one replaces the usual Hamiltonian model with an e↵ective theory matched
to LQCD calculations, then nuclear structure can be faithfully computed from QCD. The
properties of the configuration interaction method therefore informs the parameters of the
e↵ective theory, and motivates the review here.

Suppose one wants to compute the nuclear spectra of a light element like 6Li. In the
configuration interaction shell model one first picks a single particle basis. This basis is much
like the familiar set of states of an electron about a proton. The states are parameterized
by angular momentum quantum numbers J and jz. There is also a radial wave function
parameterized by a nodal quantum number n. The basis of choice in these calculations is
the harmonic oscillator basis for several reasons. First, the basis is complete as will be seen
later when a free wave of angular momentum ` is represented as a sum over the harmonic
oscillator basis. Second, the basis is appropriate for representing confined wave functions
such as bound states with a modest number of terms. Third, the basis is easy to calculate
with. Fourth, and probably not last, the harmonic oscillator basis is the only such basis in
which translation invariance in a truncated basis can be maintained, which is required to
avoid contaminating the spectrum with oscillations of the center of mass.

Neutrons and protons are fermions, so overall anti-symmetry of the wave function must
be maintained. Take an example consisting of two neutrons and two single particle states �a

and �b. A properly anti-symmetrized wave function of two spin up neutrons in those states
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will have the form

 (~r
1

,~r
2

) =
⇣

1/
p
2
⌘

(�a(~r1)�b(~r2)� �a(~r2)�b(~r1)) (4.0.1)

For three particles, there would be 6 terms, for n particles n! terms. The general expres-
sion for A particles is the Slater determinant, abbreviated as SD.
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(4.0.2)

Slater determinants can be compactly represented in second quantization as an ordered set
of fermion creation operators acting on the vacuum. Other orders produce the same SD up
to a phase of �1 for odd permutations.

â†
1

â†
5

â†
7

|0i (4.0.3)

The above expression describes a 3 particle SD. The number of such SDs is a function of
the number of single particle states and the number of particles. In a typical 6Li calculation
there are 112 single particle states, yielding

�

112

3

�

= 227920 SDs for the protons and the same
amount for the neutrons. The selected single particle states range up to n = 1, L = 5 and
n = 3, L = 0 with a cuto↵ energy over the ground state of 5 (~!/2). Most of these SDs will
have energies well above the cuto↵ for single particle states. This will turn out to cause a
problem with translation invariance.

Naively, the total number of states in the calculation basis would the be product of the
number of proton and neutron SDs, but various ways of reducing the basis are possible.
First, the system has rotational invariance and it is therefore possible to fix Jz = 0 for
analysis. Each SD has a well defined Jz of it’s own and the sum of the proton SD Jz and
the neutron SD Jz must be 0, greatly reducing the basis size. One can also introduce an
energy cuto↵ on the basis, limiting the number of quanta of excitation energy. Limiting the
excitation quanta to 4 in this case yields 2392 SDs for each species and a total basis size of
17040, which is much more reasonable for calculation.

The described basis is called an M-scheme basis in which the basis members do not have
good total angular momentum but Jz is well defined. An alternate basis formulation called
J-scheme has basis members that are linear combination of M-scheme basis elements which
do have well defined J . The J-scheme basis will normally have a smaller dimension than an
M-scheme basis, but the evaluation of the Hamiltonian is more complex. In practice, sim-
plicity has led to higher performance in highly parallel implementations. For the remaining
discussion on the topic, the basis will be assumed to be M-scheme.

Once the Hamiltonian is expressed in the basis above the problem is to find the low lying
eigenvalues and states of the system. A good introduction to the required techniques may be
found in Whitehead et al. [26] and in a description of a more modern and complex program
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called BIGSTICK described by Johnson et al. in [27]. With enhancements to BIGSTICK
described in [28] it is capable of solving for the low lying states in systems with larger than
109 states. Despite this, the rapid explosion in the number of states with the energy cuto↵
means that the energy cuto↵ must be modest even for light nuclei like 12C.

The downside of limiting the excitation quanta is that now the Hilbert space has been
divided into an excluded space and an included space, but no attempt has been made to
capture the e↵ect of the Hamiltonian scattering from the included space to the excluded
space and back as would be done in an e↵ective theory. The induced error can be large. An
initial e↵ort towards modifying the shell model into an e↵ective theory was made by Haxton
and Song in [29]. Section 12.1 shows how to use a 2-body e↵ective interaction in an A-body
e↵ective theory shell model calculation.

The only real way to keep the A-body basis size in a range possible to compute with is
to begin with an accurate two or three body e↵ective interaction in a small basis. E↵ective
theory A-body calculations provide a strong motivation for directly constructing the e↵ective
interaction in a harmonic oscillator basis instead of the more usual two step process of
constructing a momentum cuto↵ based e↵ective theory followed by taking harmonic oscillator
matrix elements. In the second step a large number of states must be retained because the
two bases do not have a consistent separation of P and Q.

The A body system has translation invariance. A way to separate the center of mass
motion in our calculations is needed or it will contaminate the spectrum. The key is that
one can transform from an independent particle basis to a relative basis based on Jacobi
coordinates. To accomplish this requires Moshinsky brackets

hna, `a, nb, `b : ⇤|nrel, `rel, Ncm, `cm : ⇤i (4.0.4)

which couple independent to relative and center of mass oscillator states where both sides
are coupled to total angular momentum ⇤. The brackets are defined by Moshinsky in [30]
and summarized Appendix A.7. Energy conservation tells us that 2na + `a + 2nb + `b =
2nrel+`rel+2Ncm+`cm, which in turn tells us that the unitary transform from a product single
particle states to a product of relative states will not mix energies. Parity and total angular
momentum are also conserved. Moshinsky brackets can be repeatedly applied with Jacobi
coordinates to transform an A-body system to A�1 oscillators in relative coordinates and one
center of mass oscillator. If one applies a strict energy cuto↵ to the A-body states formed
from single particle states and then transforms to relative coordinate harmonic oscillator
states, the same total energy cuto↵ will be preserved.

After the transform one of the resulting harmonic oscillators will be written in terms of a
CM (center of mass) coordinate. Now imagine that the spectrum of the resulting system is
determined. SomeA-body states will be in the CM ground state, some will be in a CM excited
state. A system with translation invariance should depend only on relative coordinates, so
the contamination of the spectrum by CM excited states should be eliminated. If !CM

is increased then the energy step to the first excited state can be made arbitrarily large,
moving the contamination out of the energy range of interest. This technique is known as
the Gloeckner-Lawson projection method [31].
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The important conclusion is that consistent with separability of the center of mass that
the A-body model space may be cut o↵ in total energy quanta, and restricted in total angular
momentum and parity. Other than the lattice basis, which recovers translation invariance in
the continuum limit, the harmonic oscillator basis is the only finite basis with this property.
Any other omission of states will lead to mixing of the center of mass states with the relative
states and the resulting contamination of the spectrum. To calculate accurately in a portion
of the complete Hilbert space requires an e↵ective theory treatment and provides a strong
motivation for this dissertation.
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Chapter 5

Constructing the Spherical Heff

The process of constructingHeff consists of constructing the various pieces of the reorganized
Bloch-Horowitz equation from Eq.(2.1.2). The initial step is to make the substitution

V + V
1

E �QH
QV ! VIR + V�. (5.0.1)

This substitution makes the transition from directly deriving the e↵ective theory from a UV
potential to specifying an e↵ective theory expansion, V�, that will be fit to observables.

VIR should be thought of as a guess at a potential that is accurate at mid and especially
long range. The e↵ective theory encoded in V� will be an expansion around that guess. The
coming discussion of power counting in Section 5.5 will establish a more formal connection
between LEC order and range. One can also represent VIR in the expansion form that will
be used for V�. The important LECs in that representation of VIR are the ones beyond the
order to which the e↵ective theory will be fit. Errors in VIR captured in in lower order LECS
will be automatically corrected when fitting V� to observables. Errors captured in higher
order LECS beyond the fitting order will persist.

Short range parts of VIR are an artifact to be corrected by the real short range physics.
It is therefore appropriate to subtract the contributions made to the LECs by VIR up to the
order of the fit of V�, leaving only contributions beyond that order. The subtraction will
have no e↵ect on the matrix elements of the e↵ective theory, it simply removes the need to
have compensating contributions to the matrix elements of V�. Procedurally, the step can be
factored out and performed at the end of the process with the only result being a shift in the
LEC values and the exposure of a more natural progression of their values. The procedure
for performing the subtraction is detailed in Section 5.6.

For the nuclear interaction a one pion exchange potential will be our guess of choice.
V�, the remainder, is short range if V is short range, and is certainly true for the nuclear
interaction. The e↵ective theory expansion will focus on V� exclusively as everything else is
directly calculable. The restated Heff is

Heff (E) = PGTQ



T � T
Q

E
T + VIR + V�

�

GQTP. (5.0.2)
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Energy dependence in Heff appears in the Green’s function GQT , its conjugate GTQ and
in the matrix elements of T . This is no surprise as the kinetic energy operator dominates the
long range part of the interaction. V� will have only residual energy dependence as described
in the argument following Eq.(2.1.2). The operators used in the e↵ective theory expansion
are sensitive to the momentum of the wave function and these operators can absorb much
of the residual energy dependence instead of having energy dependence in the LECs (Low
Energy Constants) of the expansion. Being able to treat the LECs as truly constant across
the energy range of observables greatly simplifies the fit to observables taken at a range of
energies.

The following sections proceed through the pieces of Heff : the Green’s functions, kinetic
energy matrix elements, VIR matrix elements, and finally the e↵ective theory expansion of
V�.

5.1 Green’s Function for E/(E �QT )

In this section our objective is to understand the application of GQT to basis states. The
operator T , the kinetic energy operator, is a hopping operator, connecting states with the
same angular momentum, but di↵ering by 1 in nodal quantum number, see Appendix A.4.
Edge states are defined to be states in P that T connects to Q. If GQT is expanded in a
series, it is immediately seen that it is the identity when acting on states in P that are not
edge states.

GQT |ii = E

E �QT
|ii = 1

1�QT/E
|ii =

✓

1 +
1

E
QT +

1

E2

QTQT + . . .

◆

|ii (5.1.1)

For such states T only generates overlap with P which is then immediately removed by the
adjacent Q operator. Further, GQT |ei, where e designates an edge state, overlaps states in
Q with the same angular momentum as the original state |ei. There is no generated overlap
with other states in P . GQTP can therefore be regarded as an invertible basis transform. The
edge states therefore have two representations, the first a P space state |ei and the second
an infinite superposition of states in Q plus the original state |ei. Both |ei and GQT |ei are
representations of the same state and will be referred to as edge states. The representation
should be obvious from context.

The first step in implementing GQTP = E/ (E �QT )P is to disentangle Q and T . This
was solved in Luu’s thesis [32], yielding GQTP = GT {P GT P}�1 P where the part in braces
is a P space matrix. The inverse matrix will have numerous uses in constructing the e↵ective
Hamiltonian, so it is given a special name.

bij =

⌧

i

�

�

�

�

E

E � T

�

�

�

�

j

��1

, i, j 2 P (5.1.2)

For the somewhat messy details of constructing b analytically see Appendix B.5. The matrix
b is block-diagonal in `,m and tri-diagonal in each block because T is a hopping operator in
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nodal number as is shown in Eq.(A.4.1). The symbol b may be referred to in the form b`n0,n

or b`,mn0,n, making the block structure explicit and indexing with the nodal quantum number.
The matrix b is used to decompose GQT .

E

E �QT
|ii = E

E � T
bij |ji (5.1.3)

For e�ciency it is advantageous to first apply E/(E � T ) to all states |ji and save them,
then GQT |ii may be formed by a simple sum over index j with the constant matrix b.

A next task is to form a Green’s function for the resolvent GQT . A key ingredient for this
is the determination of boundary conditions. The boundary conditions for GQH are already
known.

(P +Q)H i = Ei i ) (Ei �QH) i = EiP i )  i =
Ei

Ei �QH
P i (5.1.4)

This tells us that a Green’s function for GQH with suitable boundary constraint must re-
construct the original wave function. It also reproduces the phase shift and the position of
zeros in the wave function. GQH can be expanded using GQT .

E

E �QH
=

E

E �QT �QV
=

E

E �QT

✓

1 +QV
E

E �QH

◆

(5.1.5)

In order to reproduce the zeros outside the range of the harmonic oscillator basis, a Green’s
function for GQT must also reproduce those zeros. In other words, it must also match
the phase shift as a boundary condition. This is not a surprise because (E �QH) !
(E �QT ) outside the range of the potential. Care must be taken when applying this intuitive
reasoning to the Green’s functions for E/ (E �QH) and E/ (E �QT ) because they are
integral transforms sensitive to the interaction between V and the state they are applied to
near the origin. The long range form of the resulting wave function is as expected, but the
amplitude typically di↵ers by 10 or 20% from the full wave function.

Consider a continuum state at positive energy E. It is expected that the long range wave
function will have the form � cot �` (E) j` (kr) + ⌘` (kr). This specifies the location of zeros
of hr |GQT | ii. Examining Eq.(5.1.3) shows that matching zeros must come from the Green’s
function for E/ (E � T ). An analytic form for hr |E/ (E � T )| ji with a specified phase shift
is derived in appendix B.4.

Conceptually, the role of an edge state GQT |ei, where e is a state that is scattered to
Q by T , is to restore the long range behavior of the wave function. Then the operators in
Heff are evaluated in that context. Lepage [33] specifies incorporating the correct long-range
behavior as the first of three requirements for construction of an e↵ective theory. The other
two are a UV cuto↵ and local correction terms which correspond to the e↵ective theory
expansion here.

Taking the continuum example on an edge S-channel state one can visually compare
in Figure (5.1) the harmonic oscillator wave function hr| ei to the transformed state wave
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Figure 5.1: Transform of the 5th and highest S-channel state in P with the dimensionless
E = +1/2. The transformed state has been scaled to initially match the amplitude of the
original wave function.

function hr |GQT | ei. Initially the edge state follows the form of the harmonic oscillator state
and as r passes the range of the state the result is a standard S-channel free stationary wave
with the chosen phase shift.

The experiment is repeated for a negative energy state in Figure (5.2). The result is
similar near the origin, but outside the range of the potential the edge state falls o↵ expo-
nentially as opposed to the Gaussian fall o↵ of the harmonic oscillator state. In both bound
and continuum cases the edge state recovers the long range form of the full wave function,
which is essential to complete summation of the kinetic energy matrix elements.

<r|5,S>
<r|GQT|5,S>

0 2 4 6 8 10

-0.5

0.0

0.5

1.0

1.5

r

u(
r)

Figure 5.2: Transform of the 5th and highest S-channel state in P with E = �1/2. The
transformed state has been scaled to initially match the amplitude of the original wave
function. The expected exponential decay of a bound state is recovered from the HO state
Gaussian fall o↵.

An important property is that GQT |ii = |ii unless state i is scattered into Q by T . Given
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that T is a hopping operator in a harmonic oscillator basis, see Eq.(A.4.1), connecting states
with the same angular momentum quantum numbers and di↵ering by 1 in nodal quantum
number, GQT is the identity for most states. This both speeds up computations and serves
as a useful test of correctness for bij and hr |GT | ji implementations.

5.2 Kinetic Energy Matrix Elements

In this section the matrix elements

hn0, ` |Teff |n, `i =
⌧

n0, `

�

�

�

�

E

E � TQ

✓

T � T
Q

E
T

◆

E

E �QT

�

�

�

�

n, `

�

(5.2.1)

are evaluated. An intermediate result is useful.

E

E � TQ

✓

T � T
Q

E
T

◆

=
1

E

E

E � TQ
(E � TQ)T = T (5.2.2)

With this result the matrix elements take on a simpler form.

hn0, ` |Teff |n, `i =
⌧

n0, `

�

�

�

�

T
E

E �QT

�

�

�

�

n, `

�

(5.2.3)

For non-edge states where E/(E � QT ) is the identity, one may use equation Eq.(A.4.1)
to compute matrix elements directly. The direct calculation is useful for testing the result
derived here. In a second test which applies to edge states a simple numeric integral can be
used to take matrix elements using the analytic form of hr |GQT |n, `,mi. Here the matrix
elements are computed in terms of already known elements.

⌧

n0`0m0
�

�

�

�

T
E

E �QT

�

�

�

�

n`m

�

= �`0,`�m0,m

⌧

n0, `0
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�

T
E

E �QT
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�

�

�

n0, `0
�

= �`0,`�m0,m

⌧

n0, `0
�

�

�

�

T
E

E � T

�

�

�
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n00, `0
�

b`
0

n00,n

= �`0,`�m0,mE

⌧

n0, `0
�

�

�

�

✓

1� 1 +
T

E

◆

1

1� T/E

�

�

�

�

n00, `0
�

b`
0

n00,n

= �`0,`�m0,mE

⌧

n0, `0
�

�

�

�

E

E � T
� 1

�

�

�

�

n00, `0
�

b`
0

n00,n

= �`0,`�m0,mE
⇣

�n0,n � b`
0

n0,n

⌘

(5.2.4)

This is a beautiful and simple result for Teff .
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5.3 VIR Matrix Elements

The candidate of choice for VIR is a OPEP (One Pion Exchange Potential), which is easily
seen to be accurate at long range Figure (5.3). This can also be expected to be true for
LQCD results with heavier pions as the pion remains the lightest exchange meson. For
immediate purposes a single value will be used for the mass of the ⇡+/� and ⇡0. A more
complete treatment with independent masses can be found in [25]. Using ⇢ as the radial

Av18
Vπ
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Figure 5.3: Comparision of Argonne v
18

v.s. an OPEP in the 1S
0

channel. Note the diver-
gence to negative infinity of the OPEP.

separation the OPEP can be expressed as

v⇡ (r) =
f 2

⇡NN

4⇡

m⇡
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
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S
12
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· ⇢̂�
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· ⇢̂� �
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· �
2

(5.3.1)

The usual delta function part of v⇡ is dropped as its function is replicated in the lowest order
term of V� and the constants are absorbed into a parameter f̃ 2

⇡ , which is more commonly
written as

f̃ 2

⇡ ⇡
m2

⇡

12⇡

✓

gAp
2f⇡

◆

2

(5.3.2)

Energy is expressed in a dimensionless form as a multiple of ~! and ↵ =
p
2m⇡b/~.

V⇡ (r) = f̃ 2

⇡

m⇡

~! ⌧1 · ⌧
2

e�↵r

↵r

✓

1 +
3

↵r
+

3

↵2r2

◆

S
12

+ �
1

· �
2

�

(5.3.3)
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Matrix elements of S
12

can be computed following related calculations by Mihaila [34].

h(S 0`0) J 0m0 |S
12

| (S`) Jmi = �J 0,J�m0,m�S0,S�S,1�`0,`±2,0 2
p
30(�1)`0+j+1

(2`+ 1)
p
2`0 + 1 h`020| `00i

⇢

J S `0

2 ` S

�⇢

`0 `0 0
` ` 2

�

(5.3.4)

And the last piece is the scalar product of spins.

hS |�
1

· �
2

|Si = 4S � 3 (5.3.5)

The OPEP is accurate at longer range with ⇢ > 4 fm, which is generally outside the
range of the non-edge matrix elements for reasonable length scales of the harmonic oscillator
basis. One can think of VIR as contributing an infinite set of LECs about which one expects
that V� will be a convergent expansion. In the upcoming section on HOBET power counting
Section 5.5 a connection between LECs and Talmi integrals is established that shows that
higher order LECs are associated with longer range moments of the potential. The short
range divergence of V⇡ will be automatically regulated by the included harmonic oscillator
basis and corrected by V�.

The value of f̃ 2

⇡ can be encoded as an extra “LEC” that will contribute linearly to
Heff matrix elements just as the real LECs do. The fitting process, described in the next
chapter, configures the LECs to produce energy self-consistency of the e↵ective Hamiltonian
constructed at a set of energies. Fitting of f̃ 2

⇡ will be most accurate at modest energies in
a higher angular momentum channel such as F where the angular momentum barrier hides
the short range part of the potential, leaving only the OPEP to influence scattering.

5.4 Constructing V� with a Contact Operator
Expansion

In a momentum basis a contact gradient expansion is often used for an expansion around
0 momentum. In earlier HOBET work a modified contact gradient expansion was used to
expand about the ⇡ 1/b momentum scale of the lowest harmonic oscillator state. This
expansion is briefly reviewed to motivate the approach used here.

5.4.1 Contact Gradient Expansion

In Haxton and Luu’s earlier work on HOBET the expansion used for V� was a variant of
a contact gradient expansion in powers of the Laplacian. LO and NLO operators in the
S-channel had the form

LO : exp
�

+r2/2
�

�(r) exp
�

+r2/2
�

NLO : exp
�

+r2/2
� �r2�(r) + �(r)

�!r2 exp
�

+r2/2
�
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The added exponential factors, which are not used in momentum basis expansions, have the
e↵ect of canceling the Gaussian part of the harmonic oscillator basis functions on the left
and right. The arrow over the Laplacian symbol in the middle of the sequence indicates the
direction that it should be applied. The Laplacian is then applied to the polynomial part
of the basis function, resulting in a decrease in the order of the polynomial. At the origin,
e�r2/2 ! 1 so the net result for the NLO operator is that that the maximum nodal number
in the wave function being acted on is reduced, yielding a superposition of lower states in
the same angular momentum channel.

A consequence of the lowering behavior is that a matrix element like h1S |V�| 1Si is af-
fected solely by the LO operator because high order operators will annihilate the states. With
a potential V in hand one can directly calculate the matrix elements of V (1/ (E �QH))QV
using a large harmonic oscillator basis for intermediate values and a matrix inversion of
1/ (E �QH). The resulting matrix elements can then be compared to the V� matrix ex-
pansion. The comparison immediately determines the LEC for the LO operator. Having
determined it, the value can be substituted in the expressions for higher matrix elements.
The result is that the next higher order matrix elements will now depend on a single LEC
and their values can in turn be determined. This process can be repeated to determine all the
LEC values. Because the lower order LECs are determined independently from the higher
order ones and fixed, the procedure for determining the LEC values is a scheme independent
one. The procedure used in this dissertation to fit to observables is also executed order by
order, but lower order LECs are adjusted when higher order fits are done. A limitation in
the scheme independent method is that the fixing procedure breaks down when the LECs
at the order being determined appear only in edge state matrix elements. For ⇤ = 8 the
limit was N3LO, and with that limit results for the bound state of the deuteron were within
0.01% of the exact results determined from Av

18

.

5.4.2 General Contact Operator Expansion

In the previous section the gradient operators were modified by exponential factors. There
is in fact quite a bit of flexibility in the definition of the operator. This freedom should
be explored before choosing an expansion. In this section the dimensionality of r will not
be explicitly stated, so integrals and delta functions may represent multi-dimensional cases.
Wave functions and operators will be real. The first step is to write an expansion of a wave
function in terms of abstract operators O(n)

r and complementary functions fn(r).

u(r) =
X

n

[�(r0)On
r0u(r

0)] fn(r) (5.4.1)

A specific example of this construction has O(n)
r = @nr and fn(r) = rn/n!, which is also known

as a Taylor’s series expansion.
The eventual ET expansion will be

V� =
X

n,m

LECn,m
 �
O (m)�(r)

�!
O (n). (5.4.2)



CHAPTER 5. CONSTRUCTING THE SPHERICAL Heff 31

The arrows over the operators indicate the direction in which they are to be applied. Sym-
metries and hermiticity will create constraints between LECs. It is expected that the matrix
elements of the ET expansion will match matrix element by matrix element with the matrix
elements of

Vrenorm = V � VIR + V
1

E �QH
QV (5.4.3)

An important detail is that even if V starts out as a local potential, the renormalization step
will introduce non local contributions. In the case of a nuclear potential the finite size of the
nucleons means that the interaction is fundamentally non-local anyway.

The matrix elements of Vrenorm against a set of basis functions are

hua |Vrenorm| ubi =
X

i,j

h

�(r)
�

O(i)ua

� �

O(j)ub

�

✓

Z

dr0dr00fi(r
00)fj(r

0)Vrenorm(r
00, r0)

◆

i

(5.4.4)

The integral in parenthesis can therefore be identified with the corresponding LECij. If
LECS are being fit without V in hand, then it won’t be necessary to perform the integral or
even explicitly know the form of fi(r), but the completeness of the wave function expansion
Eq.(5.4.1) and the formal existence of the correspondence between the LEC and an integral
tells us that the expansion works.

For HOBET the next step is to choose the set of operators.

5.4.3 Lowering Operator Expansion for Non-Edge States

Since the working basis is a harmonic oscillator basis, a natural set of operators are the nodal
and angular momentum lowering operators. â is used as the nodal lowering operator and ĉ
as the lowering operator for `. Details of these operators may be found in Appendix A.

The order of an operator is simply the number of nodal lowering operators acting to
either side plus half the sum of the orbital angular momentum of the states being coupled.
A standard naming convention is followed, using the prefixes aLO, aNLO, aNNLO, aN3LO,
and continuing with digits to indicate the order of the operator. If the operator has more
than one option for the splitting of the lowering operators to the left and right, then twice
the counts is included as digits in the name. The factor of two exists to maintain naming
compatibility with prior work where the count represented the number of derivatives applied
by the operator. a20NLO indicates that â is applied to the left in one term and to the right in
a second term to maintain hermiticity. Last, the angular momentum channel is included in
the LEC name.

a20,SNLO

�

â†�(r) + �(r)â
�

(5.4.5)

In the operator descriptions below the use of the delta function is replaced with it’s matrix
elements di,j, which are calculated in Section 5.4.4.
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A useful fact is that the nuclear interaction conserves total angular momentum and
parity. The nodal lowering operators naturally conserve angular momentum and parity so
no additional constraints for single channel operators are required. Within a single channel
with angular momentum ` the operator set included in V� is

v̂�,Sq0,q0,`,` = LECq0,q0,`,`

X

i,j

di,j
⇣

ĉ†`â† q0 |i, 0i hj, 0| âq0 ĉ`
⌘

v̂�,Sq0,q<q0,`,` = LECq0,q `,`

X

i,j

di,j
⇣

ĉ†`â†q
0 |i, 0i hj, 0| âq ĉ` + ĉ`â†q |j, 0i hi, 0| âq0 ĉ`

⌘ (5.4.6)

The nodal lowering operators can be turned around to act as raising operators on the
delta function expansion, generating constants Kq0,i,q,j, with K = 0 for i, j < 1, from the
application of Eq.(A.3.12).

Kq0,i,q,j = (�2)q0+q

s

� (q0 + i)� (q0 + i+ 1/2)� (q + j)� (q + j + 5/2)

� (i)� (i+ 1/2)� (j)� (j + 5/2)
(5.4.7)

Examining the form of di,j in Eq.(5.4.20) shows that K can be combined nicely with it.

di,jKq0,i,q,i =
(�2)q0+q � (q0 + i)� (q + j)

� (i)� (j)
dq0+i,q+j (5.4.8)

These operators are to be evaluated between states with the same `. The generated constants
are absorbed into d`,`n0,n. A non-zero result occurs only for n0 = q0 + i and n = q + j.

D

n0, `
�

�

�

v̂�,Sq0,q,`,`

�

�

�

n, `
E

= LECq0,q,`,` d
`,`
n0,n

(�2)q0+q � (n0)� (n)

� (n0 � q0)� (n� q)
(5.4.9)

The nuclear interaction also includes a tensor interaction, coupling states of total spin
S = 1 with ` di↵ering by 2. Total angular momentum is conserved, but the distribution of
angular momentum between the nucleon spins and orbital angular momentum can vary. The
natural form of such an operator is the scalar product of the rank 2 spin tensor [�

1

⌦ �
2

](2)

with a rank two tensor operator coupling states that di↵er by 2 in orbital angular momentum.
The latter tensor operator is described as a combination of lowering operators and the
expansion of the delta function. This operator is combined under the same LEC with its
conjugate to maintain Hermiticity.

v̂�,Tq0,q,`,`+2

= LECq0,q,`,`+2

X

i,j

di,j
h

ĉ†`â†q
0 |i, 0i ⌦ hj, 0| âq ĉ`+2

i

(2)

� [�
1

⌦ �
2

](2) + h.c. (5.4.10)

This operator is evaluated between states with S = 1 and J = `+ 1.
D

n0, (`, S) , `+1, 0
�

�

�

v̂�,Tq0,q,`,`+2

�

�

�

n, (`+2, S) , `+1, 0
E

(5.4.11)
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Combining the matrix elements of the matrix function with the action of the nodal
operators as in Eq.(5.4.8), the operator takes the form

LECq0,q,`,`+2

X

i,j

(�2)q0+q�(q0+i)�(q+j)

�(i)�(j)
dq0+i,q+j

⇥

ĉ†` |q0+i, 0i ⌦ hq+j, 0| ĉ`+2

⇤

(2) � [�
1

⌦ �
2

](2)

(5.4.12)
For matrix elements be non-zero it is required that i = n0 � q0 > 0 and j = n� q > 0.
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(5.4.13)

The tensor product
⇥

ĉ†` |n0, 0i ⌦ hn, 0| ĉ`+2

⇤

(2) � [�
1

⌦ �
2

](2) can be reduced using Edmonds
(7.1.6). To begin, the reduced matrix elements of the two rank 2 tensors are needed. The
reduced matrix element of the spin tensor is a simple constant.
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Next the reduced matrix element for the operator connecting ` to `+2 is required. An easy
to evaluate matrix element is chosen and the explicit tensor product expanded, generating a
single non-zero contribution. The evaluation is done by applying the action of ĉ, Eq.(A.3.12),
to the ` = 0 states in the delta function expansion.

dn0,n

D

n0, `, 0
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�
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(5.4.15)

Combining this result with a Clebsch-Gordan coe�cient results in the second reduced matrix
element.
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(5.4.16)

Edmonds (7.1.6) is applied to to Eq.(5.4.10).
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(5.4.17)
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Substituting into Eq.(5.4.13) produces the desired tensor and scalar matrix elements of V�.
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(5.4.18)

5.4.4 Matrix Elements of the Delta Function

The matrix elements of a 3D delta function in a spherical harmonic oscillator basis are needed
to implement the e↵ective theory expansion. Only the ` = 0 wave functions are non-zero at
the origin.

di,j =

Z

d3r hi, 0|~ri �(3) (~r) h~r|j, 0i =
Z

d⌦dr r2 hi, 0|ri � (r)
4⇡r2

h~r|j, 0i

Simplifying

di,j =

Z

d⌦dr Hi,0 (r)Y00

� (r)

4⇡
Hj,0 (r)Y00

=
2

⇡2

s

� (i+ 1/2)� (j + 1/2)

� (i)� (j)
(5.4.19)

For the picky, a definition of the 1D delta function is used such that

1
Z

0

�(r) = 1

This is sometimes defined as 1/2 when the delta function spike is at the boundary of the
integral.

For convenience in expressing matrix elements of the e↵ective theory expansion the raising
to `0 and ` is included in ket and bra of the operator using Eq.(A.3.12).

d`
0`
i,j =

2(`
0
+`+2)/2

⇡2

s

`0! `!

(2`0 + 1)!! (2`+ 1)!!

s

� (i+ `0 + 1/2)� (j + `+ 1/2)

� (i)� (j)
(5.4.20)

These matrix elements will be included in an overall factor that is constant for the angular
momentum states coupled by the operator.
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5.4.5 Evaluation of ĉ`Hn,`(r) at r = 0

A final part of the evaluation of e↵ective theory operators is symbolically lowering left and
right states to ` = 0 and taking the value at r = 0 as part of a delta function. This is an
easy operation for non-edge states, but computationally expensive for edge states which have
analytic forms but many terms. The edge state wave function is an infinite superposition
of radial states hr|n, `,mi, so one can study the action of the lowering operator from that
perspective. The analytic form is also challenging to evaluate at 0 because the expression
contains terms diverging to both positive and negative infinity, canceling to leave a small
remainder.

The solution to this problem has two parts. The first is to show that for a state of good
total angular momentum ` that

ĉ`Hn,`(r)|r=0

= K(`)@`rHn,`(r)
�

�

r=0

, (5.4.21)

for a function K(`) that does not depend on n. This is important because it means that this
rule can be applied to superpositions of harmonic oscillator states.

The derivation of this result uses the fact the expansion of Hn,` (r) contains a Gaussian

factor, r`, and a Laguerre polynomial L`+1/2
n�1

(r2). When the di↵erential operator is applied
in ĉ, (@r + (`+ 1)/r + r), to Hn,` (r), only the first two terms can reduce the power of r
by one. The last term increases the power of r, meaning that it will make no contribution
when evaluated at r = 0. One can also ignore the action of the derivative on the Gaussian
because that will also increase the power of r. This leaves only r`L`+1/2

n�1

(r2). Using the rule
of throwing away terms that can’t lead to non-zero contributions results in
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This shows that the only di↵erence, with respect to the eventual evaluation at r = 0, between
the application of @r (the first row) and ĉ (the sum of both rows) is an ` dependent constant.
K (`) can be easily determined as the ratio

K (`) =
ĉ`H

1,`(r)

@`rH1,`(r)

�

�

�

�

r=0

=

r

(2`+ 1)!!

`! 2`
(5.4.23)

The optional second part of the problem is to skip symbolic di↵erentiation and the
di�cult evaluation at r = 0. Instead one can numerically compute the desired derivative
from k evenly spaced samples starting away from 0. Taking k > ` samples with a step size
s of the complicated function f(r) = hr |ân| edgei the `th derivative can be determined as

f = (f(s), f(2s), . . . , f(ks))

Mij =
ij�1

(j � 1)!
, i, j = 1 . . . k

d = M�1f

@`rf(r)
�

�

r=0

⇡ d`+1

s�`

(5.4.24)
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These steps solve a set of linear equations formed by sampling a Taylor’s series about r = 0 of
degree k� 1 at k points to produce the derivatives. It is a good idea to make k substantially
larger than ` because the function will have higher order contributions. This procedure is
fast and accurate.

5.4.6 Evaluation of Edge States Lowered to ` = 0 at the Origin

Part of computing V� matrix elements for edge states will be lowering their ` content to 0
and evaluating the wave function at the origin. Edge state wave functions will be indicated
by

ẽ`(r) = hr |GQT | e, `, 0i =
X

j2P
`

b`e,jGTHj,`(r) (5.4.25)

The desired result is
⌦

0
�

�ĉ`GQT

�

� e, `, 0
↵

= ĉ`ẽ`(r)
�

�

r=0

(5.4.26)

In the equation below the summation is over all j 2 P , but only states j with angular
momentum ` = `i will have non zero entries in b`ij, so ` is used throughout.

ĉ`ẽ` (r) = ĉ`
⌧

r

�

�

�

�

E

E �QT

�

�

�

�

n`0

�

= ĉ`
X

j2P

b`ij

1
Z

0

dr0r02GT (r, r0)Hn
j

` (r)

The Green’s function Eq.(B.3.3) has two parts corresponding to r < r0 and r > r0. Only the
first part is needed as r will remain infinitesimally close to 0.

ĉ`ẽ` (r)
�

�

r=0

= k3

�

ĉ` j` (kr)
�

�

�

r=0

X

j2P

b`ij

1
Z

0

dr0r02 (� cot �`j` (kr
0) + ⌘` (kr

0))Hn
j

` (r
0)

The fact that all contributions have the same ` enables factoring j`(kr) out of the sum where
ĉ acts directly on it. Eq.(5.4.21) can be used to replace the lowering operator with a simple
derivative.

�

ĉ` j` (kr)
�

�

�

r=0

= K(`) lim
r!0

@`rj`(kr)

= K(`)k` lim
u!0

@`uj`(u)

= K(`)k``! lim
u!0

u�`j`(u)

=
K(`)`!

(2`+ 1)!!
k` (5.4.27)
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In the last step Abramowitz and Stegun [35] equation 10.1.4 was used to evaluate the limit.
The other part of the result is had by expanding Hn`(r) with Eq.(A.3.2) and integrating the
pieces.

1
Z

0

dr0r02 (� cot �`j` (kr
0) + ⌘` (kr

0))Hn
j

` (r
0) =

s

2�(n)

�(n+ `+ 1/2)
�(n+ `+ 1/2)

⇥
n
j

�1

X

p=0

(�1)p
(n� p� 1)! �(p+ `+ 3/2) p!

1
Z

0

dr0 (� cot �`j` (kr
0) + ⌘` (kr

0)) e�r02/2r02p+`+2

The two definite integrals are standard results.

1
Z

0

drr2j` (kr) e
�r2/2rm =

k`
p
⇡� ((`+m+ 3)/2)p
2`�m+1� (`+ 3/2)

1

F
1

✓

`+m+ 3

2
, `+

3

2
, �k2

2

◆

1
Z

0

drr2⌘` (kr) e
�r2/2rm =

p
2`+m⇡� ((�`+m+ 2) /2)

(�k)`+1� (1/2� `) 1

F
1

✓�`+m+ 2

2
,�`+ 1

2
,�k2

2

◆

Letting X(`,m, k) be the first integral and Y (`,m, k) be the second, the complete result can
be stated as follows.

ĉ`ẽ` (r)
�

�

r=0

=
K (`) `!

(2`+ 1)!!
k`+3

X

j2P

b`ij

q

2�(nj)�(nj + `+ 1/2) (5.4.28)

⇥
n
j

�1

X

p=0

(�1)p
(nj�p�1)! �(p+`+3/2) p!

(� cot �` X (`, 2p+ `, k)+Y (`, 2p+ `, k))

This expression also gives the result for a derivative repeated ` times, for which one should
omit the factor K(`).

5.4.7 Lowering Operator Expansion for Edge States

In Eq.(5.4.18) one can see that the scalar matrix elements of v�,Sq0,q,`,` come from the delta
function and the action of the nodal and angular momentum lowering operators. The tensor
matrix elements are almost the same, gaining a simple ` dependent constant 2

p
5/
p
2`+ 3.

This gives us the recipe to evaluate matrix elements of edge states, GQT |e, `i, where |e+ 1, `i
is in Q. The technique described here can be applied to non edge states and the results can
be compared to Eq.(5.4.18) as an important check of the implementation.
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The e↵ect of â on the edge states can be directly calculated. To start, the edge state
expansion and a useful associated function Sm,n(r) are defined.

ẽ(r) = hr |GQT | e, `i =
X

j2P
`

be,j
E

E � T
Hj,`(r)

S
0,0(r) = (E � T ) ẽ(r) = E

X

j2P
`

be,jHj,`(r)

Sm,n(r) = ĉmânS
0

= E
X

j2P
`

be,j ĉ
mânHj,`(r)

(5.4.29)

Looking ahead, the di↵erential operator form of â from Eq.(A.5.3) can also be written in a
useful form for acting on ẽ in terms of the kinetic energy operator.

â = (1/2)(@2r + (2/r)@r � `(`+ 1)/r2) +
3

2
+

1

2
r2 + r@r

â = (E � T ) +
3

2
� E +

1

2
r2 + r@r

Some commutators will also be useful in the derivation.
⇥

T, r2
⇤

= �2r@r � 3

[T, rn] = �nrn�1@r � (n(n+ 1)/2)rn�2

[T, r@r] = 2T

Applying the second form of lowering operator to the edge state causes (E�T ) to demote
ẽ(r) to S

0,0(r) and results in

âẽ(r) =

✓

3

2
� E +

1

2
r2 + r@r

◆

ẽ(r) + S
0,0(r) (5.4.30)

For ` = 0 terms with remaining powers of r will vanish at the origin. The ` > 0 cases still
need the application of b` to lower the angular momentum to 0 before evaluation. The ` = 0
case evaluated at r = 0 as is needed for the V� matrix elements yields a simple expression.

âẽ(r)|r=0

=

✓

3

2
� E

◆

ẽ(0) + S
0,0(0) (5.4.31)

The next step is to generalize the procedure. Further application of â will act directly on
S
0,k, sending it to S

0,k+1

. This suggests that the result of applying â m times can be written
as a sum of coe�cient operators times S

0,i(r) and ẽ(r). In the base case of the expression

below m = 0, �(0) = 1 and there are no ↵(0)

k .

âmẽ (r) = �(m)ẽ (r) +
m�1

X

k=0

↵(m)

k S
0,k (r) (5.4.32)
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Applying â generates the next result.

âm+1ẽ (r) = â

"

�(m)ẽ (r) +
m�1

X

k=0

↵(m)

k S
0,k (r)

#

=

✓

⇥

â, �(m)

⇤

+ �(m)

✓
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2
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1

2
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◆◆

ẽ (r) + �(m)S
0,0 (r)

+
m�1

X

k=0

⇣h

â,↵(m)

k

i

S
0,k (r) + ↵(m)

k S
0,k+1

(r)
⌘

(5.4.33)

The expression above can now be reorganized to put it back in the original form, yielding a
recursive procedure for constructing the next result.

↵(m)

�1

= �(m) � �, ↵(m)

m = 0

↵(m+1)

k =
h

â,↵(m)

k
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k�1
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⇥

â, �(m)

⇤

+ �(m)

✓

3

2
� E +
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2
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◆◆

+ �(E � T )

âm+1ẽ (r) = �(m+1)ẽ (r) +
m
X

k=0

↵(m+1)

k S
0,k (r)

The newly introduced � factor is used to transfer a term of the form ��(E � T ) generated

by the commutator
⇥

â, �(m)

⇤

from �(m+1) to the ↵(m+1)

0

via ↵(m)

�1

. The above expressions give

the rules for producing �(m) and ↵(m)

k from the m�1 expressions. Applying them to produce
the pieces of �(2) yields the following.

⇥
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⇤

= �
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1

2
r2 + r@r
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= �2T +
3
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+ r@r
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= r2@2r +
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✓
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4
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� E

◆

r2 +
1

4
r4
◆ (5.4.34)

To form �(2) the T is removed by setting � = �2, which also makes a compensating contri-
bution to ↵(1)

�1

and subtracts 2E from �(m+1).

�(2) = r2@2r +
�

r3 + 5r � 2rE
�

@r +

✓

E2 � 5E +
15

4
+

✓

5

2
� E

◆

r2 +
1

4
r4
◆

(5.4.35)

The ↵(2) coe�cients are needed too.

↵(2)

0

= [â, 1] + �(1) � � =

✓

7

2
� E +

1

2
r2 + r@r

◆

↵(2)

1

= 1
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The result for ` = 0 is

â2ẽ(r)
�

�

r=0
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✓

E2 � 5E +
15

4

◆

ẽ(0) +

✓

7

2
� E
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S
0,0(r) + S

0,1(r) (5.4.36)

The calculation of â3ẽ(r)|r=0

raises a new issue. It is possible to have terms like @2r or
r�1@r that are not protected by a power of r. Since the evaluation is near 0 one can treat the
multiplication of a function that goes to 0 at r = 0 by r�1 as a derivative operation. This
means that r�1@r ! @2r and r�2 ! (1/2)@2r , which can in turn be converted to a T operator.
Skipping some of the details, a preliminary �(3) is calculated with � = �4 (1 + E).
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7
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In the expression for ↵(3)

0

the operator T appears on the right hand side. T can be expressed
in terms of â as T = �â+ 3/2 + r2/2 + r@r. The resulting â can then be applied to S

0,0(r),
promoting it to S

0,1(r).
In the expression for �(3) expression there are terms that can be converted to references

to T very near r = 0. They are first collected into a single term with coe�cient A.

8@2r + 4
��`2 � `+ 1

�

r�1@r ! �4
�

`2 + `� 3
�

@2r = A@2r (5.4.37)

Then the coe�cient of @2r is converted to a coe�cient for T very near r = 0.

A@2r = B(�1/2)
✓

@2r + 2@2r � ` (`+ 1)
1

2
@2r

◆

= BT

B =
4A

`2 + `� 6
= �16`

2 + `� 3

`2 + `� 6
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To compensate for the additional BT term in �(3), � is adjusted to include B.

�(3) = �4(1 + E) + B = �4(1 + E)� 16
`2 + `� 3

`2 + `� 6
(5.4.38)

These change flows through to �(3), ↵(3)
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For ` = 0 the result is

â3ẽ(r)
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◆
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For ` > 0 the resulting expressions for âmẽ(r) have a list of terms with a simple form.

c rn@mr f(r)

The symbol c is a constant, and f(r) is either ẽ(r) or S
0,k(r). To finish the contribution to

a matrix element the angular momentum also needs to be lowered to 0. If ` < n, the power
of r in the term, then the result will have a remaining power of r and will yield 0. Assuming
instead that ` >= n, the lowering of ` can be determined using results from Section 5.4.5 as
follows.

ĉ` (c rn@mr f(r))
�
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r=0

= c K(`)@`rr
n@mr f(r)
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= c K(`)
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@`+m�n
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�

�
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The final application of the derivative to f(r) may be done numerically as described in
Section 5.4.5 which is simple and accurate but will require extended precision for ẽ(r) if the
extrapolation points are taken very close to 0. An alternative analytic solution for lowering
ẽ(r) to ` = 0 and evaluating at 0 is given in Section 5.4.6. As usual, the numeric technique
is simple to implement and provides a crosscheck for the analytic solution. For S

0,i(r) is it
straightforward to apply ĉm to the defining sum over harmonic oscillator basis functions to
produce Sm,i(r).

5.4.8 Edge State V� Summary

V� matrix elements are formed from operator pairs ĉ`ân acting to the left and right that can
be independently evaluated at the origin. The tables below give results for the action of one
of the operators, left or right, acting on a state with angular momentum ` and evaluated at
0. All such states, including edge states, have a minimum power of r` in their wave function,
so the operators must have ĉ` in them or evaluating the result at r = 0 will yield 0. To
simplify the notation in the table, W` will represent ĉ`ẽ(r)

�

�

r=0

for an edge state with angular
momentum ` and can be evaluated using Eq.(5.4.28). The definition of Sm,n(r) may be found
in Eq.(5.4.29). The following formulas, which are su�cient up to N3LO. These formula are
also correct for non edge states, which is useful in testing correctness.

Results for S(` = 0) are

n Result
0 W

0

1 (�E + 3/2)W
0

+ S
0,0(0)

2 (E2 � 5E + 15/4)W
0

+ (�E + 7/2)S
0,0(0) + S

0,1(0)
3 (�E3 + (21/2)E2 � (105/4)E + 105/8)W

0

+ (E2 � 9E + 57/4)S
0,0(0)

+ (�E + 11/2)S
0,1(0) + S

0,2(0)

Results for P(` = 1) are

n Result
0 W

1

1 (�E + 5/2)W
1

+ S
1,0 (0)

2 (E2 � 7E + 35/4)W
1

+ (�E + 9/2)S
1,0 (0) + S

1,1 (0)

Results for D(` = 2) are

n Result
0 W

2

1 (�E + 7/2)W
2

+ S
2,0 (0)

2 (E2 � 9E + 63/4)W
2

+ (�E + 11/2)S
2,0 (0) + S

2,1 (0)
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Results for F(` = 3) are

n Result
0 W

3

1 (�E + 9/2)W
3

+ S
3,0 (0)

2 (E2 � 11E + 123/4)W
3

+ (�E + 13/2)S
3,0 (0) + S

3,1 (0)

Results for G(` = 4) are

n Result
0 W

4

1 (�E + 11/2)W
4

+ S
4,0 (0)

2 (E2 � 13E + 239/4)W
4

+ (�E + 15/2)S
4,0 (0) + S

4,1 (0)

5.5 Power Counting in HOBET

HOBET’s intended use is to fit the LECs to observables without knowledge of short-range
physics. Without an explicit representation of the short-range physics there is no explicit
power counting, e.g., a series expansion in a small scaling parameter like a ratio of pion mass
to a cuto↵ mass.

In testing of HOBET, the order by order values of observables and wave functions can
be compared to known results to gain confidence in HOBET’s convergence, but it is good
to give some theoretical justification for the convergence. With a explicit model for Vrenorm,
defined in Eq.(5.4.3), the LECs can be explicitly calculated.

Vrenorm(⇢) = Vcoree
�(⇢/R

0

)

2

= Vcoree
�2(b/R

0

)

2r2 (5.5.1)

This potential represents a hard core that might be omitted from a VIR(r) function. It is
expected that the range of of the short range part of V that is omitted from from VIR(r) is
substantially less than the harmonic oscillator length scale b. It is also a local correction,
which simplifies the analysis below, but doesn’t change the conclusion.

Because of a relationship between the gradient operator and the harmonic oscillator
lowering operator the LECs can be determined from Talmi integrals of the potential. The
Talmi integral of V (r) is a moment of V (r) and is defined in Moshinsky section 1.2 [36] as

Ip ⌘ 2

�(p+ 3/2)

1
Z

0

drr2 V (r)e�r2r2p (5.5.2)

The generalization to non local potentials involves separation of the power 2p into a left
and right power and integration over two sets of spatial coordinates. Applying this simpler
definition to Vrenorm(r) yields the following.

Ip = Vcore

✓

1 +
2b2

R2

0

◆�p�3/2

(5.5.3)
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The connection between Talmi integrals and matrix elements in a harmonic oscillator basis
is apparent when one expands the Laguerre polynomial of the radial function.

hn,`(r) = e�r2/2r`
2(n�1)

X

k=0

an,`,kr
2k, an,`,k =

(�1)kp2�(n)�(n+ `+ 1/2)

(n� k � 1)!�(k + `+ 3/2)k!
(5.5.4)

Harmonic oscillator matrix elements may be expanded in terms of Talmi integrals.

hn0`m |V (r)|n`mi =
`+n0

+n�2

X

p=`

B(n0, `, n, `, p)Ip

B(n0, `0, n, `, p) =
1

2
�
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p+
3

2

◆

X

k+k0=p�(`0+`)/2

an0,`0,k0an,`,k

The above relationship between harmonic oscillator matrix elements and Talmi integrals can
be easily inverted because each increase in n0 or n introduces just one new Talmi integral.

I`+0

=
1

B(1, `, 1, `, `)
h1, `,m |V (r)| 1, `,mi

I`+1

=
1

B(2, `, 1, `, `+ 1)
(h2, `,m |V (r)| 1, `,mi � B(2, `, 1, `, `)I`)

I`+j =
1

B(j + 1, `, 1, `, `+ j)

 

hj + 1, `,m |V (r)| 1, `,mi �
j�1

X

m=0

B(j + 1, `, 1, `, `+m)I`+m

!

Focusing on ` = 0, on the left side Eq.(5.5.3) can be inserted for Ip and on the right the
scalar V� expansion from Eq.(5.4.18) can be inserted, establishing the relationship between
Talmi integrals and LECs. After some simplification one obtains the following expressions
for the LECs.
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The LECs of the expansion are controlled by the power-law dependence on (1 + 2b2/R
0

) > 1
as well as factorial and geometric factors.

The decline in LEC values reflects the declining importance of higher order Talmi integrals
which progressively weigh longer distances as can be seen in Figure (5.4). Equally important
is that higher order Talmi basis functions become insensitive to short range parts of V (r).
For a realisitic potential the hard core is mostly inside of 0.5 fm, and with b = 1.7 fm the
corresponding value of r is 0.2, so only the lower p value Talmi integrals shown in the figure
are directly sensitive to the hard core. The other part of Vrenorm(r) is V (1/(E � QH))QV ,
which will smear out beyond the hard core but remains limited by the range of V which is
presumed to be a short range nuclear potential, so the principle still applies. Higher order
LECs correspond to higher order Talmi integrals that in turn are suppressed by the short
range potential. Even if the length scale of the harmonic oscillator is made small enough
that (1 + 2b2/R

0

) ⇡ 1, the LECs will still converge because of the factorial and geometric
factor in the denominator, but convergence will be delayed.
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0.0
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0.6

0.8

r

Figure 5.4: Talmi basis functions e�r2r2p+2 with p ranging from 0 to 4 and scaled with 1/p!
for viewing. The peak of each curve is located at

p
p+ 1.

5.6 Removing Correctable Parts of VIR

Short range parts of VIR do not represent real physics because unknown short range physics
corrects it. It make sense then to remove from VIR contributions that can be corrected by
LECs introduced in non-edge states. As seen in the previous section LECs are associated
with Talmi integrals and that association can be exploited to calculate them. However, given
that harmonic oscillator matrix elements of VIR must be taken for other purposes, it is easier
to directly equate the matrix elements in P� with the expansion Eq.(5.4.18). The lowest
order LECs in each channel are immediately determined. Substituting the determined LECs
into the remaining equations determines the next order and so on.

A related issue is that VIR may diverge at r = 0. The Harmonic oscillator basis is a
basis for L2(R) which does not include functions diverging as fast or faster than r�1/2. A
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strongly divergent VIR such as occurs with a one pion exchange potential in a tensor channel
is therefore not representable in the basis, so a representation in terms of an infinite set of
LECs is only a partial representation. VUV must contain a matching counter contribution
that cancels the divergence because V = VUV + VIR lacks such a divergence, so nothing is
actually lost. The lack of representation of strong divergence can be regarded as an automatic
subtraction of the non-physical divergent behavior of VIR.

5.7 Green’s Functions in the Coupled Channel Case

In 5.1 the boundary conditions were set by the phase shift of the asymptotic wave function.
The concept needs generalization for for coupled channels. The observable used to construct
asymptotic boundary conditions is the S-matrix. For most channels of the nuclear interaction
the S-matrix is diagonal and one can simply use the phase shift �` in the channel to implement
the asymptotic boundary condition for the Green’s function for E/(E � T ) by setting the
coe�cient for the homogeneous term to � cot �`. However, the nuclear interaction also
includes a tensor interaction which couples triplet states di↵ering in ` by 2. The result is a
set of 2 ⇥ 2 subblocks of S (E) that mix these pairs of channels. One cannot simply read
o↵ a phase shift from S (E) to implement the asymptotic constraint. In what follows one
such sub-block will be selected and referred to as the S-matrix. The coupled channesl will
be referred to as S and D channels, meaning 3S

1

and 3D
1

and it should be understood that
the following discussion applies to all such pairs of coupled channels.

A common parameterization of S (E) is the “nuclear-bar” parameterization and many
tables specifying experimental parameter values at a range of energies are available. As can
be seen below the S-matrix is a complex symmetric matrix.

S =

 

e2i
¯�
0 cos 2⌃̄ ei(

¯�
0

+

¯�
2

)i sin 2⌃̄

ei(
¯�
0

+

¯�
2

)i sin 2⌃̄ e2i
¯�
2 cos 2⌃̄

!

(5.7.1)

The problem here is to extract the asymptotic boundary conditions from the S-matrix. The
desired asymptotic boundary condition is a consistent pair of phase shifts to apply to S and
D channels. The key requirement for our implementation on the asymptotic wave function
is that it be real. Suppose the input state is described as a pair of coe�cients Cin,S and
Cin,D for S and D channel input states. Then Cout = SCin. To obtain a real total wave
function it is required that |Cout,S| = |Cin,S| and |Cout,D| = |Cin,D|. An easy way to obtain
such input states is to diagonalize the above S-matrix, putting it in a form known as the
Blatt-Biedenharn or eigen phase parameterization [37]. Note that this is the same S matrix,
only the parameterization has changed. The columns of O below are simply the normalized
eigenvectors of S, which must be orthogonal and real, parameterized by angle ⌃.

S=O�1

✓

e2i�0 0
0 e2i�2

◆

O, with O=

✓

cos⌃ � sin⌃
sin⌃ cos⌃

◆

(5.7.2)
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The rows of O then specify two orthogonal input states that the S matrix maps to output
states with coe�cients of the same magnitude in each channel. The multi channel state
corresponding to the first row picks up a phase shift of �

0

for both channels and the state
corresponding to the second row picks up a phase shift of �

2

. If the potential couples 4
channels, then one would obtain 4 input states and 4 phase shifts. Each such state generates
an independent boundary condition for the involved channels. In each case the sum of the
incoming wave function and resulting outgoing wave function can be made real with an
appropriate phase factor and any asymptotic solution can be written as a superposition of
the base states. In the two channel case the asymptotic basis can be written as follows.

|xi = cos(⌃) |Si � sin(⌃) |Di
|yi = sin(⌃) |Si+ cos(⌃) |Di

If |xi is used as the asymptotic boundary condition, then both S and D components will
have �

0

as the phase shift. Likewise, if |yi is used, then both S and D components will have
�
2

as the phase shift.
For concreteness, with an Argonne v

18

based S-matrix at 5 MeV the parameters are
�
0

= �1.35087, �
2

= �0.011847, and ⌃ = �0.0205005. Because ⌃ is quite small, cos⌃ is
near 1 and sin⌃ is quite small. Consequentially, |xi is mostly S-channel and |yi is mostly
D-channel.

It is important to note that the phase shifts are used in building the Green’s function,
but the relative amplitudes of the S and D channel wave functions specified by the S-matrix
are ignored in the process. The relative amplitude is controlled by the mixing angle, which
is an essential part of the S-matrix.

Another way of looking at this is that since |xi is mostly S-channel the eigenvalues of
Heff built with |xi as a boundary condition will be sensitive to the S to S matrix elements
of V�. Likewise, Heff built with |yi as a boundary condition will be sensitive to the D to
D matrix elements of V�. What is needed to make the fit sensitive to the S to D matrix
elements is a boundary state with both S and D content.

Due to mixing a real coe�cient linear combination of |xi and |yi will result in complex
wave functions. Instead, a complex weight is required for an appropriate linear combination
of |S�i and |D�i states where the minus sign indicate that the states are the incoming parts
only.

| �(↵)i = cos(↵)ei�
�

�S�↵� sin(↵)
�

�D�↵ (5.7.3)

When ↵ = ⌃ the state is the incoming part of |xi and therefore it is expected that � = 0.
Likewise, when ↵ = ⌃ � ⇡/2, the state is the incoming part of |yi and it is also expected
that � = 0. for values of ↵ in between these two values � will be non-zero. Applying the S
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matrix to | �(↵)i , the outgoing state is

�

� + (↵)
↵

=

"

�

e2i�0 � e2i�2
�

sin (↵) sin (⌃) cos (⌃)

+ei� cos (↵)
�

e2i�0cos2 (⌃) + e2i�2sin2 (⌃)
�

#

�

�S+

↵

+

"

e2i�2 cos (⌃)
�� sin (↵) cos (⌃) + ei� cos (↵) sin (⌃)

�

�e2i�0 sin (⌃) �sin (↵) sin (⌃) + ei� cos (↵) cos (⌃)
�

#

�

�D+

↵

(5.7.4)

For a real wave function the magnitude of the incoming wave and outgoing wave for each
channel must match. Focusing on the S-channel and letting �

02

= �
0

� �
2

this requirement
yields a messy equation.

cos2 (↵) =
1

4
cos2 (↵) (cos (4⌃) + 3)

+
1

4
sin2 (2⌃) (1 + cos (2↵) (2 cos (2�

02

)� 1))

+ sin (2⌃) sin (�
02

) sin (2↵)
�

cos2 (⌃) sin (� + �
02

) + sin2 (⌃) sin (� � �
02

)
�

(5.7.5)

If this equation is satisfied, then by unitarity of the S-matrix, the incoming and outgoing
D-channel magnitudes will also match. This equation is a constraint between ↵ and �. ↵
controls the S and D amplitudes, so �, the relative incoming shift between |S�i and |D�i
will be expressed in terms of ↵. A first step is to partially isolate �.

X =
cos2 (↵) (1� cos (4⌃))� sin2 (2⌃) (1 + cos (2↵) (2 cos (2�

02

)� 1))

4 sin (2⌃) sin (�
02

) sin (2↵) sin2 (⌃)

Y = cot2 (⌃)

X = (Y sin (� + �
02

) + sin (� � �
02

))

(5.7.6)

Solving the last equation above for � yields

� = ±cos�1

 

X sin (2�
02

) ± |Y + cos (2�
02

)|pY 2 + 2Y cos (2�
02

)�X2 + 1

Y 2 + 2Y cos (2�
02

) + 1

!

��
02

(5.7.7)

The ± symbols are independent, giving 4 solutions. At a given energy, with ↵ = ⌃, one
of the 4 solutions corresponding to the two sign choices will yield � = 0. That solution is
used with other values of ↵ to maintain continuity. With ↵ and � in hand, the phase shifts
needed for Green’s functions can be computed from Eq.(5.7.4).

�
0

(↵) =
�

arg(
⌦

S+

�

� +(↵)
↵

/ cos(↵))� �� /2
�
2

(↵) =
�

arg(
⌦

D+

�

� +(↵)
↵

/(� sin(↵)))
�

/2

The division by cos(↵) and � sin(↵) handle the sign of the initial state components.
One advantage of working with these states is that at low energy �

2

(E) can become very
close to 0. When that happens cot(�

2

) becomes extremely large making numerics di�cult.
↵ can be controlled to limit the value of cot(�

2

). Another important advantage is that using
these states essentially reduces the problem of constructing and eventually fitting coupled
channel e↵ective Hamiltonians to the procedure used for the single channel case.
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5.8 Divergences in b`n0n
An interesting issue is that at some combinations of P space, dimensionless Ed, and cot�`,
the matrix elements of hn0, ` |E/(E � T )|n, `i are not invertible. In this section the cause
and specific conditions under which this occurs are determined.

The matrix b`n0n diverges when a row of matrix elements of E/(E � T ) goes to 0 as Ed is
approached.

hn0, ` |E/(E � T )| e, `i ! 0 (5.8.1)

e, ` is an edge state and n0, ` is a state in P . The divergence happens because the condition
indicates that a row of the matrix is 0 and therefore the inverse does not exist. The conditions
for the divergence condition can be explicitly derived. The action of E/(E � T ) on an edge
state can be expanded over harmonic oscillator basis components with the same angular
momentum.

E

E � T
|e, `i =

X

n

an |n, `i (5.8.2)

Applying (E � T ) to both sides yields an expansion using Eq.(A.4.1).

E |e, `i =
X

n

an(E � T ) |n, `i
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2

X

n
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(n� 1) (n+ `� 1/2) |n� 1, `i

#

The expansion can be reorganized as a simple sum over the basis.

E |e, `i = 1

2

X

n

"

an (2E � 2n� `+ 1/2)

�an�1

p

(n� 1) (n+ `� 1/2)� an+1

p

n (n+ `+ 1/2)

#

|n, `i

This equation is actually an infinite set of independent equations, one per basis element. The
constraint expressed by Eq.(5.8.1) is that expansion Eq.(5.8.2) can’t overlap P, immediately
giving the values of the first few an.

an = 0, n  e (5.8.3)

There is a special case for n = e giving ae+1

.

E = �1

2
ae+1

p

e (e+ `+ 1/2) ) ae+1

= � 2E
p

e (e+ `+ 1/2)
(5.8.4)

For higher n a recurrence relation is obtained.

an+1

=
⇣

(2E � 2n� `+ 1/2) an �
p

(n� 1) (n+ `� 1/2) an�1

⌘

/
p

n (n+ `+ 1/2)

(5.8.5)
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Outside the range of the P space, the an do in fact encode the expansion of a free wave
radial function of angular momentum ` and a specific value of cot�`. The solution depends
on E through the base value ae+1

and the recurrence relation. It should be clear that at a
given E there is exactly one solution with its associated cot�` satisfying Eq.(5.8.1).

To make the solution concrete the case of an S-channel only P space with ⇤ = 10 is
analyzed. Setting the dimensionless E to 1 and expanding for 300 states yields Figure (5.5).
The solid line with fine wiggles is the expansion of Eq.(5.8.2) and has no overlap with P .
The wiggles are a consequence of the cuto↵ of the harmonic oscillator basis. The dashed line
is a matching ` = 0 phase shifted free wave with its amplitude set to match the expansion.
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Figure 5.5: The dashed line is a phase shifted free wave with E = 1 and cot � = �2.29 that
matches the harmonic oscillator expansion corresponding to a divergence of bij.

Using the expansion, the divergent phase shift at any energy can be computed. For the
specific case of an S-channel P space with ⇤ = 10 the relationship is shown in Figure (5.6).
The figure includes a line indicating cot �

0

for an example potential to be used later. The
crossings will be important points for fitting to phase shifts and energy consistency.
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Figure 5.6: The solid blue lines indicate the cot �
0

values as a function of dimensionless E
at which bn0n will diverge. The dashed golden line shows the cot�

0

for a potential to be used
later. The points where the lines cross are the divergence points for that potential and this
P space.
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Chapter 6

Fitting LECs

The fitting process begins with a set of sample pairs of energy eigenvalue and boundary
condition. Each such sample can be used to construct a corresponding e↵ective Hamiltonian
with matrix elements expressed as a constant plus a linear combination of LECs. A cuto↵
for the operator order is chosen, resulting in a bounded set of LECs that must be fit to
reproduce the sample eigenvalues as closely as possible. Because the energy dependence of
the LECs is expected to be weak and the operators are themselves sensitive to energy the
LECs will be assumed to be constant for the fitting process.

In the prior work by Haxton [38] the LECs were determined from a known potential. In
the case of a known potential one can exploit the correspondence

⌧

P

�

�

�

�

E

E � TQ
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E

E � TQ
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�

�
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E

E � TQ
V

1

E �QH
QV

E

E � TQ

�

�

�

�

P

�

(6.0.1)

Using the fact that E/(E�QH) acting on non edge states is the identity and letting P� be
a projection operator to non edge states in P , the V� expansion Eq.(5.4.18) can be related
to the large basis results.

⌦

P� |V�|P�↵ =

⌧

P�
�

�

�

�

V
1

E �QH
QV

�

�

�

�

P�
�

(6.0.2)

The expression on the right can be computed directly with intermediate results in a large
HO basis, capturing almost all of the e↵ect of scattering through Q. Each matrix element
of V� is a linear combination of LECs, giving a set of independent linear equations which
may be solved for the LEC values. The solution can be simplified even further by starting
with matrix elements defined in terms of a single LEC. This allows order LO LECs to be
immediately determined. Then the contribution of these LECs are subtracted from matrices
on both sides, producing a new set of matrix elements defined in terms of a single NLO
LEC and so on. Because the LECs of each order can be determined without consideration
of higher order LECs, this is a scheme independent fitting process.

In this work, the UV potential is not known. VIR may be defined, but this is insu�cient
to use the prior technique. Instead, the process is to minimize the energy consistency error
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for the e↵ective Hamiltonians. The exact e↵ective Hamiltonian, acting on a projection of an
eigenstate is self consistent.

Heff (Ei)P | ii = Ei | ii (6.0.3)

Self consistency says that an e↵ective Hamiltonian built at energy Ei in the spectrum of H
will have Ei as an eigenvalue. When the operator expansion is cut o↵ at finite order there is
a mismatch.

Heff (Ei)P | ii = "i | ii (6.0.4)

"i is near, but usually not equal to Ei. Erri = Ei�" is called the self consistency error. The
goal is to pick a set of LECs that minimizes the self consistency error across all the e↵ective
Hamiltonians. An overall cost function for minimization has the form

X

i

W (i) C(Erri, Ei) (6.0.5)

C(Erri, Ei) reflects the cost to be associated with the error. One very simple choice for C
that doesn’t use Ei is

C(Erri, Ei) = |Erri| (6.0.6)

A more sophisticated choice will be examined later. An issue is that the importance of LECs
above the order of the current fit is not known. Their unknown values mean that the energy
Ei is not quite the right target. If more weight could be given to samples where the excluded
LECs have the least e↵ect, and where "i is more sensitive to the LEC(s) being fit, then the
target would more faithfully represent the desired fit. This bias can be taken into account
in W (i).

W (i) reflects the importance of sample i to the LECs being fit. Once source of importance
comes from the distribution of sample energies. Each sample can be assigned an energy or
momentum range and then the density of states can be integrated across that range to
produce a weight.

6.1 Normalization of Continuum States of a Compact
Potential

Part of assigning discrete weights to energy and phase shift pairs is deciding how much of
the spectrum is represented by each pair. Proper normalization and the formulation of a
resolution of identity can inform the construction of the weights.

Box normalization is used in a large spherical box of radius R. Wave functions are
normed to one in this volume, implying the amplitude of the asymptotic wave function. V
is compact and therefore its e↵ect on the asymptotic wave function is simply to determine
the phase shift. The wave function outside the potential can be written as

R (r)Y`m (r̂) = A` h~r| k, l,mi = A` [k (sin �` ⌘` (kr)� cos �`j` (kr))]Y`m (r̂)

! A`
1

r
sin (kr + �` � `⇡/2)Y`m (r̂)

(6.1.1)
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where a convenient factor of k has been included that will simplify future equations. As the
Y`m is already properly normalized it is also convenient to work with u (r) = rR (r) because
the resulting asymptotic radial wave function is a simple constant amplitude sine wave. A
reference normalization of continuum wave functions is chosen as follows.

u (r) = r hr| k, `,mi = kr (sin �` ⌘` (kr)� cos �`j` (kr)) (6.1.2)

The phase shift and behavior of the wave function near the origin can be ignored if R is
large, swamping edge e↵ects. Then

1 = A2

`

R
Z

0

dr sin2 (kr) = A2

`

R

2
) A` =

p

2/R

From this point the development takes place in a specific |`,mi channel and |ki represents
the radial state in that channel. For a resolution of the identity the sum is over all normalized
states including both bound and continuum states. The allowed momenta k in the box form
a discrete set defined by kR + � (k) = n⇡.

1 =
X

i2bound

|ii hi| +
X

n2continuum

A2

` |ni hn|

The sum over n is now turned into an integral over k.
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◆
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With this conversion the final form of the resolution of identity is

1 =
X

i2bound

|ii hi| +
✓

2

⇡

◆

1
Z

0

dk |ki hk| (6.1.3)

An important use of this equation is to provide weights for individual samples pairs of energy
and phase shift. Continuum samples will be assigned ownership of a range of momentum
values and the totaling of the objective function should be thought of as a sum across the
momentum basis as specified in Eq.(6.1.3).

6.2 Fitting with Uncertainty

Experimental data and Monte-Carlo data from LQCD comes with uncertainty. We focus
on energy uncertainty because it is easier to handle in fitting. For small changes in phase
shift, the energy will shift linearly, so one can replace phase shift uncertainty with energy
uncertainty.
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Another source of uncertainty when fitting at a given order is the e↵ect of LECs beyond
that order. The e↵ect can be estimated by assuming naturalness, meaning that the next
order LECS are only a fraction of of the size of the current order. This natural size can be
combined with the derivative of "i with respect to the LECs. The variations are added in
quadrature to estimate the combined e↵ect of the next order LECs. Applying this strategy
to aLO automatically finds a low energy range where "i is not a↵ected much by higher order
LECs.

Regardless of the source of uncertainty, for each sample, (Ei, Boundary Condition), Ei

is replaced with a mean value and variance, (Ēi, �2

i , Boundary Condition). This suggests
that the fitting cost function should correspond to maximizing the probability of the set of
"i values. The goal is to maximize

Y

i2states

"

1p
2�2⇡

exp

 

�("i � Ei)
2

2�2

i

!#W (i)

(6.2.1)

W (i) is interpreted as a probability which indicates the number of times sample i is included
in Eq.(6.2.1). Instead of maximizing this product the negative of it’s log can be minimized
instead, throwing away constants that don’t a↵ect the position of the minimum.

C (LECs) =
X

i2samples

W (i)
("i � Ei)

2

�2

i

(6.2.2)

Monte-Carlo results from LQCD will have correlations in the energy eigenvalues measure-
ments taken from the same configuration. The data can be organized into rows which give
observations for all the eigenvalues across all the lattice volumes. All measurements from the
same configuration will be in the same sample and will be correlated, but eigenvalues from
di↵erent volumes will not be correlated. A correlation matrix between the di↵erent energy
eigenvalue measurements can be constructed as

Ci,j =
1

N � 1

X

r2rows

�vol
i

,vol
j

("r,i � µi) ("r,j � µj) (6.2.3)

The delta function enforces the lack of correlation between measurements in di↵erent vol-
umes. The diagonal elements of the correlation matrix are the variance values from Eq.(6.2.2).
We could diagonalize Ci,j and apply the same transform to the vectors "i and Ei, alowing
the use of Eq.(6.2.2). However, it is simpler and equivalent to use the inverse of Ci,j.

C (LECs) =
X

i2samples

W (i) ("i � Ei)C
�1

i,j ("j � Ej) (6.2.4)

6.3 Minimizing the Fit Function

Each e↵ective Hamiltonian is a matrix over the P space with matrix elements that are linear
combinations of LECs. Associated with each e↵ective Hamiltonian is an target eigenvalue Ei
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and our goal is to configure the LECs so that the matrices have eigenvalues closely matching
the associated Ei. In addition there are weights for each matrix from statistical and other
sources. This problem falls into the general class of problems known as IEP or inverse
eigenvalue problems. A survey of IEP problems and techniques by Chu and Golub can be
found in [39]. Given the extensive literature on the problem it is clear that the techniques
described here can be improved.

In the fit cost function there is an innocent symbol "i which is the nearest eigenvalue
to Ei of Heff (Ei). In the current implementation the nearest eigenvalue is found by simply
finding all eigenvalues and then selecting the nearest. This is appropriate for the initial LO fit
because the di↵erence (Ei � "i) may not be that small. At higher order however, we expect
the di↵erence to shrink. In this case a di↵erent algorithm, the inverse iteration method [40],
should be used to find the nearest eigenvalue. It is also possible to take advantage of the
knowledge of an approximate eigenvector associated with Ei from previous iterations of the
fitter. Let b

0

be the previous fitter iteration eigenvector for sample i. Then

bk+1

=
(Heff (Ei)� Ei)

�1 bk
�

�(Heff (Ei)� Ei)
�1 bk

�

�

(6.3.1)

The inverse matrix only needs to be computed once, with the expectation that taking the
inverse is significantly cheaper than finding the eigenvalues. Convergence is determined
by comparing the component ratios of bk+1

and bk. When the ratio stabilizes across all
components, it is ("i � Ei), the di↵erence between the nearest eigenvalue and the target
eigenvalue Ei.

Even with the above optimization of the evaluation of the cost function, it will be an
expensive operation. Further, at higher orders the number of LECs will grow substantially;
at N3LO in a coupled channel problem there are 13 LECs to be adjusted. Initial experiments
with a simple gradient following algorithm were discouraging as only very short steps could be
taken before the improvement direction changed. Instead, many random points are generated
about the current best point according to an adaptive distribution function and the cost
function is evaluated at those points to select a new best point. The distribution function is
parameterized with a range for each LEC which is adjusted up or down based on the change
in that LEC from the previous iteration. An advantage of the random point method is that
it is trivially parallelized and spread across a large number of processors. A typical number
of points at N3LO is 500k, increasing with order.

After each iteration there is a new best point and the derivatives of the cost function with
respect to the LECs change. The estimated variance due to higher order LECs is updated
to adapt to the change.

It was also found that adding a quadratic solve step to the iterations speeds up the solu-
tion. The local cost function is modeled as a quadratic equation in terms of a displacement
di from the current point with the Hessian, A, and the gradient, B evaluated numerically.

f = Ai,jdidj +Bidi + C (6.3.2)
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The minimum for f is found by setting all derivatives with respect to di to 0.

di = �1

2
A�1

i,j Bj (6.3.3)

Points are generated in the vicinity of the line from the current best point to the quadratic
minimum and the best cost point found is selected.

An additional important consideration is that the cost function has points where the cost
spikes, often quite close to the minimum. If the fitting process simply moved downhill, then
iterations would move the current best point farther from the minimum. An advantage of
the random point method is that the distribution can be tuned to generate some points at
a substantial distance from the starting point, allowing the fitting process to jump past the
discontinuities. In practice, the fitting proceeds order by order with the best LEC values at
one order taken as the initial point for the next order. This process improves the odds of
starting on the right side of discontinuities at the next order.

If one picks a single Heff and plots the nearest eigenvalue to the target energy with
respect to aLO, then the graph will look have the form seen in Figure (6.1).
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Figure 6.1: A specific Heff for energy 0.5 is evaluated for a range of aLO values and the
squared di↵erence between the eigenvalue and 0.5 is plotted. The sharp point just to the
left of aLO = 0 is the result of jumping from one eigenvalue that is moving away to one that
is moving nearer. A simple algorithm that starts at or to the right of 0 will drift right to
larger and larger aLO values, missing the minimum near aLO = �8.
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Chapter 7

Tests of Heff from Scattering Data

The first test is is a demonstration that the energy dependence of the LECs of one order can
be absorbed in the action of the next order of operators, which as harmonic oscillator lowering
operators are naturally energy dependent. Next is a demonstration of the construction of
Heff from phase shifts in a realistic S-channel only case. Last is a more realistic case based
on coupled channel S-matrix data from a realistic potential.

The general procedure in these tests is to pick a potential V from which one can derive
both scattering data and wave functions at continuum energies and possible bound states.
The direct solutions of H = E are useful as checks of the e↵ective theory, which funda-
mentally should depend only on the scattering data.

The e↵ective theory is constructed from the scattering data with a few choices of VIR.
One choice is simply VIR = 0, another might be a match of the potential at long range
and a third the actual potential. This allows us to see the e↵ect of the accuracy of VIR on
convergence.

7.1 A Test of LEC Energy Independence

One of the goals in HOBET is to able to fit the e↵ective theory to continuum data and then
to use the LECs produced in the fit to predict bound states. If the LECs vary with energy,
then one wouldn’t know their values in the vicinity of the bound states. So the question is,
can one produce a good fit with constant LECs.

To explore this question the numerical experiment begins with phase shifts derived from
a realistic S-wave potential, a square well plus a square hard core, from which exact phase
shifts were calculated at 10 energies from 1 to 10 MeV. A P space defined by b = 1.7 fm
and ⇤ = 8 was selected for the test. A best fit aLO was found separately for each energy,
resulting in a slow drift of the LEC. The result can be seen in the upper sequence of blue dots
of Figure (7.1), slowly rising with energy. Subsequently a second fit was done using only the
two sample energies 10 MeV and 1 MeV. This time the fit was done at NLO and determined
aNLO in addition to aLO. Finally, holding the new value of aNLO fixed the first measurements
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Fit aLO at Ei with aNLO=0
Fit aLO at Ei with aNLO=-0.403
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Figure 7.1: Energy dependence of aLO at LO (upper dots) fit separately at each energy and
residual energy dependence of aLO at NLO (lower dots) fit separately at each energy after
aNLO is fixed by fitting both aLO and aNLO at 1 MeV and 10 MeV. On this range aNLO

absorbs the energy dependence.

are repeated, finding the best fit aLO at each of the 10 energy values. This time the lower
sequence of dots was obtained, running along in a nearly flat sequence. The conclusion is
that the residual energy dependence of aLO in an LO fit has now been absorbed into into
the action of the NLO operator, itself with a constant LEC. Of course, if the range of the fit
were increased, then energy dependence in the lower sequence of dots would manifest and
the cure would be to fix NNLO LECs, again yielding a constant set of LECs over the fitting
range.

7.2 An S-Channel Only Interaction

This demonstration is based on a potential with both a hard core and a relatively shallow
well. The hard core presents the usual mixed scale problem of a weakly bound state and a
potential reaching GeV energies without introducing the additional complication of coupled
channels. To begin the length scale for the harmonic oscillator basis is set to b = 2.0fm,
which will be seen to be to large enough to delay but not stop convergence.
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Ecore = 2181.24 MeV, Rcore = 0.25 fm

Ewell = 65.4823 MeV, Rwell = 1.70 fm

VS (r) = Ecoree
�(⇢/R

core

)

4 � Ewelle
(⇢/R

well

)

4
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Figure 7.2: S-channel potential.

The potential shown in Figure (7.2) is tuned to reproduce a deuteron binding energy of
�2.2245 MeV.

The remaining parameter defining the P space is the number of quanta, which is set
to ⇤ = 10. As a first step in understanding the e↵ective theory the LECs are determined
by taking matrix elements of H in a large harmonic oscillator basis with ⇤ = 800, with a
resulting lowest resulting eigenstate having an energy of �2.22446 MeV. This tells us that
the large basis captures almost all of scattering through Q from the P space for the ground
state. The resulting large basis matrix elements of T and V can then be used to compute
V (1/ (E �QH))QV . The matrix elements in P�, the P space minus the edge, must directly
match those of V �

� .

hiS |V�| jSi =

0

B

B

B

B

@

-0.649726 -0.764885 -0.820725 -0.849773 -0.863267
-0.764885 -0.905108 -0.975789 -1.014714 -1.034921
-0.820725 -0.975789 -1.056586 -1.103164 -1.129314
-0.849773 -1.014715 -1.103164 -1.156115 -1.187654
-0.863267 -1.034921 -1.129314 -1.187654 -1.224066

1

C

C

C

C

A

(7.2.1)

This correspondence allows a direct determination of the LECs, shown in Table (7.1), starting
with aLO from the relationship h1S |V�| 1Si = ⇡�3/2 aLO.

LEC Value
aLO -3.61789
aNLO -7.01617E-2
a22NNLO -5.67915E-3
a40NNLO -3.28989E-5
a42N3LO -1.68371E-4
a60N3LO 3.29957E-5

Table 7.1: LECs determined directly from VS at E = �2.2245 MeV.
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Based on the LECs determined at the bound state energy, the energy consistency of
e↵ective Hamiltonians at continuum energies can be explored. Energy consistency is shown
for an N3LO set of LECs in Figure (7.3). There are a few features of note. The energy
consistency is generally good at around 0.05%, but not as good as the prediction of the
bound state. One can also see that the energy consistency stops improving at NNLO. This
is a real e↵ect caused by the direct calculation of LECs at a specific energy directly from a
known potential. LECs calculated in this way run with energy.

Another feature shown in Figure (7.3) are the points at which the energy consistency
diverges. In Section 5.8 this issue is studied, identifying the cause of the divergence and the
specific energies at which it occurs. In Figure (5.6) the phase shifts are from the potential
used here. If the indicated crossing point energies in the figure are multiplied by ~! the
divergence points of Figure (7.3) are reproduced. The divergences are an artifact associated
with the choice of harmonic oscillator length scale b. At certain energies a row of b�1

ie =
hi |E/ (E � T )| ei goes to 0 where e indicates a state on the edge of P. bee then diverges,
causing the kinetic energy part of Heff to diverge. At infinite order, this divergence will be
canceled by V�, but as one realistically works at finite order there will be a narrow region
around these special energies where the eigenvalue of Heff will not be self consistent. In a
single channel P space with N basis states this failure of 1/(E�T )P to overlap the P space
state will occur N � 1 times. With each increase in the order of the fit, the width in energy
of the divergence is narrowed, but it is not removed. With an increase in the order of the
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Figure 7.3: Continuum energy consistency at NLO to N3LO based on LECs directly calcu-
lated from VS.

LECs to NNLO the energy consistency error reduces, but beyond that the improvement is
small. This is caused by the running of the LECs with energy. The running can be examined
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by performing the large basis calculation at continuum energies. At the selected energy E
Heff will have an eigenvalue " = E, but at other continuum energies the general shape of
the curve between the divergence points will remain the same.

The running of LECs can also be seen by calculating LEC values directly from the
UV potential at a sequence of continuum energies. Figure (7.4) shows aLO as calculated
every 0.5 MeV between 1 and 40 MeV. The strategy for dealing with this residual energy
dependence is to take advantage of the inherent energy sensitivity of the e↵ective theory
operators to find a constant set of LECs that give a much tighter energy consistency across
a broad range of energies. For this fitting experiment phase shifts were generated at 80

0 10 20 30 40
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-2

0
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O

Figure 7.4: Running of aLO with energy. The leftmost dot is the aLO calculation at the
bound state energy.

energies from 1 to 80 MeV. The minimization cost function used can be found in Eq.(6.2.1).
The variance used in the cost function was estimated by assuming naturalness of the LECs
and calculating the derivative of "i with respect to higher order LECs. With the estimated
variance there is no need to manually select an energy range for fitting. Figure (7.5) shows
the relative weights generated for the LO fit. Of note is that the variance becomes large
near the previously described divergence points, automatically suppressing their influence in
the fitting. In addition, a constraint was added requiring that �Ei+1

��Ei <= 0 between
divergence points. This addition was motivated by the shape of the energy consistency curve
shown in Figure (7.3). The additional constraint had a very minor e↵ect on the overall cost
but improved the low and high energy results. With this cost function the fitter produced
fits at several orders and the energy consistency is shown in Figure (7.6). As can be clearly
seen in Figure (7.6) the resulting value of �E/E converges rapidly across the entire range,
showing that a single set of LECs of su�cient order produces a very accurate energy fit
across the entire range, with the exception of the divergence points. With higher order, the
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Figure 7.5: The log
10

of the variance generated for LECs beyond NLO. The low points in the
curve generate the highest weight in the fitting process at points where higher order LECs
have less influence on the Heff (E) eigenvalue.
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Figure 7.6: �E over the fitting range at orders from NLO to N4LO. Energy consistency
improves significantly with each order.

region around the divergence points with substantial error become quite narrow. It should
be emphasized that these divergence points are simply artifacts of the choice of harmonic
oscillator length scale and have no dependence on the potential. When using the resulting
e↵ective theory to compute observables that are expected to evolve smoothly with energy a
good strategy is to compute the observables at nearby points and interpolate. If there is an
understanding of how the observable evolves with energy, e.g., one would expect phase shifts
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ET E=5MeV
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Figure 7.7: The projection of the numerical solution of the Schrödinger equation is compared
with the with the b = 2.0fm, ⇤ = 10 N4LO e↵ective theory wave function at three continuum
energies. The Heff solutions closely follow the projections of the full wave functions.

to evolve according to the e↵ective range expansion, then that knowledge can be used for
a more accurate interpolation. In it’s eventual use in A-body calculations, the divergence
points and regions can be pre-calculated and a simple linear interpolation is expected to
su�ce.

The e↵ective Hamiltonian is represented as a matrix over the basis states. The matrix
has N eigenvectors, one (or more) of which matches the continuum energy at which it was
built. Continuity tells us that as the energy is smoothly varied that the eigenvector will
also smoothly evolve unless there is an eigenvalue crossing or the energy crosses one of the
divergence points. In all the examples that were tried the crossing of a divergence point
comes with a jump from eigenvector i to eigenvector i+1. In the full e↵ective Hamiltonian,
the left limit of eigenvalue i and the right limit of eigenvalue i+1 will match, producing the
eigenvalue crossing. At finite order, the lack of the higher order terms yields the observed
jump.

An important property of the Bloch-Horowitz equation is that the eigenstates are the
projections of the full wave functions. The fit can be tested by comparing the projections of
a numerical solution at a set of energies with the eigenstates of the e↵ective theory. Results
are shown for a set of continuum energies in Figure (7.7) and for the bound state in Figure
(7.8). The bound state energy and wave function should be regarded as a prediction because
the LEC fit was restricted to the continuum energy phase shifts. For the bound state with
harmonic oscillator length scale b = 2.0 fm the wave functions visually converges with order.
A general observation is that the binding energy converges first and then the wave functions
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Figure 7.8: The projection of the numerical S-channel solution at E = �2.2245MeV is
compared with with b = 2.0fm, ⇤ = 10 Heff wave functions at orders NNLO through N4LO.
As the order is increased the fidelity of the Heff wave function improves.

follow. This means that once the eigenvalues have converged that the remaining changes are
unitary in nature. The e↵ect of dropping the hard core from VIR is examined in Figure (7.9).
The change in VIR has very little e↵ect on convergence as V� at N4LO is able to absorb most
of the change in VIR. This is an important point as a pion exchange model for VIR will be
used later when fitting to LQCD nucleon scattering eigenstates.

On the other hand, changes in b, the length scale for the harmonic oscillator basis, have
a substantial e↵ect on convergence as can be seen in Figure (7.10). Energy convergence is
already good at NLO. While the eventual results do not depend on the choice of b, choosing
an appropriate b for a problem can accelerate convergence.
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Figure 7.9: The projection of the numerical solution at E = �2.2245MeV is again compared
with b = 2.0fm, ⇤ = 10 Heff wave functions at orders NNLO through N4LO, but with VIR =
�Ewell exp (⇢4/R4

well), which is the long range part of V. The wave function convergence is
essentially unchanged. Almost all of the matrix elements of the hard core have been absorbed
into V� via the fit to phase shifts.
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Figure 7.10: A change to b = 1.5 fm for the harmonic oscillator length scale dramatically
improves the convergence of the wave function over the b = 2.0 fm choice made earlier.
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7.3 A P-Channel Example with VIR =Long Range
Part of v18

Single channels above S are the easiest to fit accurately as the angular momentum barrier
reduces the contribution of the hard core. For this demonstration the Argonne v

18

is used
outside of 3 fm and an 8th degree polynomial is used to extrapolate in to the origin, throwing
away the short range detail in the potential. Phase shifts were generated from the full
potential at 40 sample energies from 1 to 40 MeV. The e↵ective Hamiltonians were built
with ⇤ = 8, giving four harmonic oscillator basis states, and length scale b = 1.7 fm.
Fitting of the LECs was done at NLO through N4LO with the variance estimate based on
sensitivity to higher order LECs. There is no LO fit because the lowest operator in the
channel is a1P1

NLO ĉ†�(r)ĉ. Each angular momentum lowering operator contributes one to the
order.

In Figure (7.11) the resulting energy consistency is shown for uncorrected e↵ective Hamil-
tonians (all LECs set to 0), and NLO through N3LO. Even the uncorrected e↵ective Hamil-
tonian results in only a 1% error, telling us that the corrections from V� are small. The
introduction of each order of operators with their LECs results in a substantial decrease in
energy consistency error. The divergence points of bn0n occur at 9.077 and 28.80 MeV, both
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Figure 7.11: Energy consistency for Z(no correction), NLO, NNLO, N3LO for energy samples
from 1 to 40 MeV. The vertical dotted lines indicate the energies at which bi,j diverges.

near sample points. The locations of these divergence points depends only on the phase
shifts, ⇤ and harmonic oscillator length scale and can be calculated independently of the
choice of VIR. The sample point at 9 MeV is to the left of the divergence point resulting in
the e↵ective Hamiltonian energy for that state being low while the sample point at 29 MeV
is to the right of the divergence point resulting in e↵ective Hamiltonian energy for that state



CHAPTER 7. TESTS OF Heff FROM SCATTERING DATA 68

● ● ● ● ● ● ●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● N3LO
■ N4LO

10 20 30 40

-0.00004

-0.00002

0.00000

0.00002

0.00004

0.00006

0.00008

E MeV

ΔE
/E

Figure 7.12: Energy consistency at N3LO and N4LO for energy samples from 1 to 40 MeV.

being high. At low order the weight for these points is automatically suppressed due to the
variance calculation while at high order the fitting process focuses on reducing the errors.
Figure (7.12) zooms in on the higher order N3LO and N4LO fits, showing that the errors
near the divergence points continues to reduce.

A further test of the e↵ective Hamiltonians is that the wave functions are the projections
of the full theory wave functions. Reference wave functions were computed directly from the
v
18

potential and compared to ET wave functions for three energies in Figure (7.13).
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Figure 7.13: Projections and NNLO ET wave functions at 1, 9, and 29 MeV .
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The e↵ective theory wave functions are a close visual match to the projections, confirming
their Bloch-Horowitz behavior. Energies 9 and 29 MeV were specifically chosen because they
were near the divergence points, which should be the most di�cult to match.

P-channel and higher single channels converge easily, yielding both energy and wave form
matches. This can be partially attributed to the angular momentum barrier, hiding the hard
core at modest scattering energies.

7.4 A Di�cult Coupled Channel Interaction, the
Deuteron in the S and D-channel

The most challenging coupled channel to fit is the S and D-channel of the Deuteron. The
D-channel projection of the wave function in particular is very sensitive to the details of the
interaction. Those details are subject to the residual energy dependence of the LECs which
has been ignored in fitting so far. This remaining energy dependence is small as seen in
Section 7.1.

An initial example will set VIR = Av
18

and use phase shifts derived from the potential.
Fits over di↵erent continuum energy ranges will be seen to produce very similar results.
E↵ective theory wave functions will be compared to projections of numerical solutions. A
second example will set VIR to the long range part of Av

18

, essentially the one pion exchange
part of Av

18

. The same phase shifts will be used as before. A heuristic workaround for the
residual energy dependence in the SD-channel is also examined.

The S-matrix, S(E), in all these examples are derived from Av
18

. The “variable phase”
method as described by Calogero [41] was used to generate the S-matrix. The essential idea
is to parameterize the disclosure of the matrix potential U(r) with R specifying the range of
a cuto↵, U(r, R) = ⇥(R�r)U(r). One then writes a di↵erential equation for S as a function
of R. Integrating out from R = 0, where the initial condition for S(R = 0) is the identity, to
beyond the range of the potential yields the usual S-matrix. In the equation below uin and
uout are diagonal matrices of unperturbed incoming and outgoing spherical waves in each
channel.

S 0(R) =
1

2ik

⇥

S(R)u(out)(R)� u(in)(R)
⇤

U(R)
⇥

u(in)(R)� u(out)(R)S(R)
⇤

(7.4.1)

u(in)
m,n(r) = �m,nkr(�i)h(2)

`
n

(kr), u(out)
m,n (r) = �m,nkrih

(1)

`
n

(kr)

u(r) = u(in)(r)� u(out)(r)S

The resulting S-matrix at each sample energy is parameterized as in Eq.(5.7.2).
Because this is a coupled channel situation, three pairs of S and D phase shifts were

generated based on a choice of ↵ in Eq.(5.7.3). When ↵ = ⌃, the resulting asymptotic wave
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function is mostly S-channel. In a second choice, ↵ is chosen to make the asymptotic wave
function mostly D-channel, but to limit cot �D to about 20 to avoid numerical di�culty when
the inner and outer solutions used in the Green’s function construction are too much alike.
A third mixed choice was included by taking 3/8 of the di↵erence in ↵ between the first two
choices. Labels of S, D, and X are used for the three choices of phase shift pairs reflecting the
predominant content of the asymptotic wave function. These specific choices are not very
important. What is important is that the three choices emphasize di↵erent matrix elements
in Heff , making the fitting cost function sensitive to their values.

Divergences in bi,j(E) depend on the harmonic oscillator length scale, P, and on the phase
shifts. Length scale b = 1.7 fm and ⇤ = 8 result in divergence points in the three asymptotic
states as follows.

S : 5.35, 8.56, 25.88, 28.55 MeV

D : 8.71, 12.91, 28.49 MeV

X : 8.60, 12.19, 28.52 MeV

These divergence points were found by evaluating b�1

i,j every 0.1 MeV and then interpolating
the crossing of 0 by rows associated with edge states. The location of these points are useful
to know because sample energies too close to them require high order corrections to fit.
Changes to ↵ can be used in some cases to create a separation from an energy, S-matrix
sample, but this doesn’t always work. An example can be found in the list above where
all three asymptotic choices have divergences near 8.6 MeV. Samples can be dropped, or
alternatively the length scale b or ⇤ can be adjusted to move the points.

In these examples, the phase shifts or S-matrix values, are available at all energies, so
the sample energies can be chosen to avoid direct hits on the divergence points. In a small
improvement, samples were positioned at roughly equal spacing on both sides of divergence
points. The specific energies used with each asymptotic state are given in Table (7.2). Again,
the specific energies selected are not too important except near divergence points when fitting
at low order. Each sample is assigned a portion of the energy spectrum and gets a weight
from the corresponding momentum range according to summation over the resolution of the
identity found in Eq.(6.1.3); therefore the introduction of extra samples will not substantially
change the fit cost function.
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Table 7.2: Sample energies for asymptotic states.

S D X
0.2 0.2 0.2
0.4 0.486 0.5
0.7 0.686 0.8
1.0 1.0 0.858
1.5 1.5 1.058
2.0 2.0 1.5
4.0 4.0 2.0

5.246 8.611 4.0
5.446 8.811 8.502
8.458 10.0 8.702
8.658 12.814 10.0
11.0 13.014 12.087
15.0 15.0 12.287
20.0 20.0 15.0

25.776 25.0 20.0
25.976 28.386 25.0
30.0 28.586 28.422

28.622

7.4.1 VIR = Av
18

The most accurate prediction of the bound state will come from the lowest energy continuum
data. In this case the range from 0.2 to 10.0 has su�cient data to constrain LECs up
to N3LO. Energy convergence of the N3LO fit can be seen in Figure (7.14) for all three
asymptotic states. Energies at which b�1

ij diverges are indicated with vertical lines. This fit
estimated the variance from the N4LO LEC sensitivity. The fit also continues to produce
good energy consistency well above the fit range.

The known bound state energy for this potential is �2.224574 MeV. The ET bound
state is easily found by making an initial guess such as �1 MeV and solving for a self
consistent energy iteratively, resulting in a bound state energy of �2.22466 MeV. The result
for a large basis, ⇤ = 500, calculation with the same harmonic oscillator length scale finds
�2.22452 MeV and the result immediately produces the reference wave function components
to test the e↵ective theory against. The reference values are compared to NLO, NNLO, and
N3LO wave functions in Figure (7.15). The S-channel portion of the wave function matches
quite closely, but the D-channel portion at N3LO is significantly o↵.

Individual components for no correction through N3LO are given in Table (7.3). While
the energy converged accurately at N3LO, the wave function components are o↵ by a notice-
able amount. Of note is the comparison between D-channel wave function components at
LO and the projection of the full wave function. The single LEC aSLO makes the bulk of the
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Figure 7.14: N3LO energy convergence from a 0.2 MeV to 10.0 MeV fit. Vertical lines
indicate divergence points for bij with dotted corresponding to S, dashed to D, and dot-
dashed to X.

corrections to S to S matrix elements, resulting in a S-channel wave function that is close to
the projection. The low lying matrix elements of V are the only connection between S and
D states and result in correcting the D wave function to nearly match the projected one.
This observation will be used in a heuristic for correcting for the residual energy dependence
of the LECs. The overlap between the N3LO wave function and the normalized projection,
h N3LO| P i = 0.995, is a good measure of the wave function match, with most of the error
concentrated in the D-channel part of the wave function.

Table 7.3: Convergence of Bound State Components. SP and DP indicate state probabilities.

Order SP DP 1S 2S 3S 4S 5S 1D 2D 3D 4D
Z 0.991 0.009 0.589 -0.512 0.417 -0.370 0.265 0.085 0.016 0.040 0.014
LO 0.955 0.045 0.927 -0.047 0.273 -0.018 0.136 0.151 0.085 0.097 0.073
NLO 0.986 0.014 0.951 -0.087 0.249 -0.072 0.089 0.104 0.038 0.040 0.013
NNLO 0.980 0.020 0.947 -0.087 0.252 -0.080 0.078 0.128 0.045 0.040 -0.002
N3LO 0.979 0.021 0.945 -0.084 0.257 -0.075 0.079 0.130 0.048 0.041 -0.004
Proj 0.961 0.039 0.934 -0.105 0.249 -0.074 0.101 0.145 0.077 0.088 0.0634
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Figure 7.15: N3LO wave functions from a 0.2 MeV to 10.0 MeV fit compared to the projec-
tion of the full wave function.

To examine the e↵ect of the fitting range the limits are now changed to 1.0 to 30.0 MeV.
The energy convergence over the fitting range is shown in Figure (7.16). Energy convergence
over the higher part of the energy range improves significantly, but at the expense of the
fit below the low end of the range. The choice of fitting range has an e↵ect a little like
squeezing a balloon. With the new set of LECs the predicted binding energy shifts slightly
to �2.2249 MeV. The wave function components shown in Table (7.4) also have small
changes compatible with a small residual energy dependence of the LECs.

Table 7.4: Bound state components based on fitting range from 1 to 30 MeV. SP and DP
indicate state probabilites.

Order SP DP 1S 2S 3S 4S 5S 1D 2D 3D 4D
N3LO 0.980 0.019 0.946 -0.083 0.258 -0.075 0.077 0.127 0.044 0.037 -0.007
Proj 0.961 0.039 0.934 -0.105 0.249 -0.074 0.101 0.145 0.077 0.088 0.063
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Figure 7.16: N3LO energy convergence from a 1.0 MeV to 30.0 MeV fit.

7.4.2 VIR = Long Range Part of Av
18

The long range part of Av
18

is essentially a one pion exchange potential, but with the coupling
constant varying about 5% across SS, DD, and SD coupling. The point of this section is to
show that the e↵ective theory is independent of the short range parts of the potential and
that the real dependence is on the observables. In this case the observables are S-matrix
values at the sample energies. VIR = Av

18

for r > 3 fm and a simple 8th order polynomial
is used to extend it inwards to r = 0 with a goal of keeping the first few derivatives smooth.
VIR is shown graphically in Figure (7.17). As can be seen, the short range hard core is
eliminated.

The fit uses the same sample points as before. A fit at NNLO yields a small energy
consistency error, �E/E, over the fitting range of 0 to 10.0 MeV which can be seen in
Figure (7.18). Above that range the energy fit remains good with notable deviations at the
already described divergence points of bij that can be seen near 12 and 13 MeV. They have
the usual pattern of a low energy eigenvalue to the left and a high eigenvalue to the right of
the divergence point.

The predicted bound state energy at NNLO is �2.22456 MeV, showing that the short
range part of the potential is not important. As before, the D-channel wave function at
NNLO shows a noticeable error. Also as before, the D-channel wave function at LO can be
seen to have an accurate match to the reference wave function, indicating that this behavior
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Figure 7.17: The long range potential is an interpolation from outside 3 fm, throwing away
all the short range content of Av

18

including the hard core.

is insensitive to the choice of VIR. The dotted line indicating the LO Heff D-channel wave
function is barely visible over the projected wave function.
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Figure 7.18: NNLO energy convergence from a 0.2 MeV to 10.0 MeV fit with VIR = long
range part of Av
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Figure 7.19: LO through NNLO wave functions compared to the known wave function
components.
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7.4.3 A Heuristic for Residual LEC Energy Dependence

At LO there is a single LEC in the S-S sector, which means that a single energy sample is
su�cient to fit at LO. The energy of the bound state is also easily determined, so the LO
fit can be performed at the bound state energy. When the fit is performed with VIR = the
long range part of Av

18

, then the D-channel components of the bound state, shown in Table
(7.5), are very close to the projected D-channel components. SP and DP stand for the S and
D state probability. Wave functions can be seen in Figure (7.19) where the LO D-channel
wave function is barely visible against the reference D-channel wave function.

Table 7.5: LO components fit at just the bound state energy.

Order SP DP 1S 2S 3S 4S 5S 1D 2D 3D 4D
LO 0.963 0.037 0.928 -0.065 0.278 -0.031 0.137 0.141 0.076 0.087 0.063
Proj 0.961 0.039 0.934 -0.105 0.249 -0.074 0.101 0.145 0.077 0.088 0.063

On the other hand the S-channel components at LO have some substantial di↵erences.
Now suppose that the match to the LO D-channel components is included in the fit cost
function by simply adding in the square of the di↵erence in components along with a co-
e�cient that can be raised until a good match is found. What happens to the S-channel
components? The fit is performed over a smaller energy range using data as close to the
bound state eigenvalue as possible, including the bound state itself as well. The resulting
wave function components are:

Table 7.6: NNLO components from fit across the �2.2245 to 4.0 MeV range. D-channel
components are included in the fit cost function.

Order SP DP 1S 2S 3S 4S 5S 1D 2D 3D 4D
NNLO 0.963 0.037 0.938 -0.092 0.248 -0.082 0.076 0.156 0.074 0.077 0.039
Proj 0.961 0.039 0.934 -0.105 0.249 -0.074 0.101 0.145 0.077 0.088 0.063

At NNLO the new fit, shown in Figure (7.20), is greatly improved. To recapitulate, this
fit has been obtained from continuum phase shifts and the reasonable assumption that the
more delicate D-channel components are actually a function of the long range parts of the
potential coupled with the angular momentum barrier and the largest S-channel components,
which respond immediately to the LO correction.

The same process will work at continuum energies enabling LEC values to be evolved
with energy to preserve the delicate balance between S and D-channel wave functions at low
energy.
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Figure 7.20: A comparison the Heff wave functions at LO and then at NNLO including the
D-channel cost function.
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Chapter 8

Connecting LQCD to HOBET

In the previous chapters a successful path from experimental phase shifts and bound states
to an e↵ective theory was constructed and demonstrated. The natural or obvious path to
connect LQCD calculations to HOBET is to follow the same route and extract phase shifts
from those calculations. This is much better than the historical route taken for experimental
data where thousands of phase shift measurements were used to fit realistic potentials fol-
lowed by failed attempts to renormalize those potentials into appropriate sized model spaces
for shell model calculations. The renormalization step is bypassed by directly configuring
the e↵ective theory in a small model space to a modest set of phase shifts that are feasibly
calculated in LQCD.

Connecting the HOBET interaction to an A-body e↵ective interaction for the configu-
ration interaction shell model will in practice bypass the fermion sign problem and make
nuclear structure calculations from QCD practical.

There are two methods in use for extracting phase shifts that are reviewed here: Lüscher’s
method and the HAL QCD potential method. The separate limitations of these methods
motivate an alternate and more direct approach discussed and implemented in the following
chapters.

8.1 Lüscher’s Method

In quantum mechanics or QFT an often used trick is to work in a periodic volume. If the
results can be parameterized in terms of the length of a side of the volume then results
can be calculated first and the infinite volume limit taken later. Another trick used in
combination with a periodic volume is to make space-time discrete. This allows conversion
of the Hamiltonian or Lagrangian of the problem into a discrete form. Lattice QCD or
LQCD uses this approach to compute observables from QCD in a regime where perturbative
expansions fail. The grid sizes used for these calculations are coarse. 643 ⇥ 96 space-time
sites would be a large lattice as of 2017. The coarseness of the grid can be compensated for
with improved numerical implementation of operators, recovering accuracy and rotational
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invariance. For the rest of this discussion such lattice e↵ects will be ignored and instead the
focus will be on the periodic volume e↵ects. The goal is to be able to extract infinite volume
observables from periodic volume observables.

Lüscher [42] showed that QFT and quantum mechanics have the same finite volume
behavior. This is a key result in Lüscher’s formalism for interpreting LQCD results and
HOBET will rely on it also in later chapters. A second part of Lüscher’s method is in
relating two body energy eigenstates in a finite volume to infinite volume phase shifts.

A short review of Lüscher’s method will be presented as it is the current preferred method
of connecting finite volume LQCD calculations to infinite volume scattering. The essence
of the method is to express the free wave function outside the range of the potential, but
inside the period volume in two ways, as an expansion over spherical harmonics, and as an
expansion over a constrained periodic momentum basis. The latter expansion is then shown
to determine the phase shifts in the spherical form.

In infinite volume the wave function outside of the range of the potential is separable
and may be written as a sum over products of radial functions and Y`m’s.

 (~r) =
X

`m

 `m (r)Y`m (r̂) =
X

`m

a`m (cot �` j` (kr) + ⌘` (kr))Y`m (r̂) (8.1.1)

There is a such a solution for each continuum(positive) energy value. There are also an
infinite set of negative energy solutions with cot �` imaginary, but only cases with cot �` = i
are normalizable. The rest diverge exponentially in infinite volume.

The strategy here is to write a Green’s function for the Helmholtz operator (r2 + k2) in
two ways: a spherical form with a regular part that must be configured to meet the periodic
boundary conditions, and in a periodic momentum basis where the boundary conditions
are met automatically. The parameters of the regular part of the spherical form are then
determined by matching with the periodic form.

8.1.1 A Spherical Green’s Function

A Green’s function for the Helmholtz operator can be written as a linear combination of the
divergent solution ⌘

0

(r) and a regular solution indicated by the hat accent.
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(8.1.2)

Ĝ is chosen to meet boundary conditions.

Ĝ
�

r; k2

�

=
X

`m

g`mY`,m (r̂) j` (kr)

A complete basis of solutions should include the other divergent solutions at the origin.
Derivative operations commute with the Helmholtz operator and can be used to generate
additional solutions. A complete set of derivative operators for the purpose can be formed
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using harmonic polynomials which are defined by Y`m(~r) = r`Y`m(r̂). Derivative operators
can be formed by substituting r for ~r. The key identity is the application of Y`m(r) to a
spherical Bessel function, with f below being either j or ⌘.

Y`m(r)f0(kr) = (�k)`Y`m(r̂)f`(kr) (8.1.3)

The application to Eq.(8.1.2) results in a Green’s function with a divergence of the form
⌘`(r)Y`m(r̂). The strategy in the next section will be to develop precisely the same Green’s
functions in a periodic basis, forcing the choice of boundary condition and then to extract
the Mlm,l0m0 below from the periodic form.

G`m

�

~r; k2

�

= Y`m (r)G �

~r; k2

�

(8.1.4)

= �(�k)`+1
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Mlm,l0m0Y`0m0 (r̂) j`0 (kr)

#

where

g`m = �(�k)`+1

4⇡
M

00,`m (8.1.5)

Before moving on to the periodic form, can the g`m coe�cients be determined from G (~r; k2)?
The most straightforward way is to integrate G (~r; k2) against the spherical harmonic Y`m(r̂),
extracting g`mj`(kr) and then to take the limit as r ! 0 after multiplying by r` to cancel
the order of the 0 in j`(kr).
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The necessary limit for the spherical Bessel function can be found in [35]. The 1/(4⇡r)
subtraction is to cancel the divergent part of G so that only the regular part contributes.
Once the g`m are determined, Eq.(8.1.4) can be used to determine the rest of the M using
an expansion of the spherical tensor gradient operator’s action found in [43].

Y`m (r)Yjs (r̂) jj (kr) =
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8.1.2 The Periodic Green’s Function

Now suppose periodic constraints are imposed with a box su�ciently large that the range
of the potential does not reach the edge of the box. Instead of a continuous spectrum of
solutions a discrete spectrum is found instead. With a positive energy solution k is real
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and the wave function may be continued to infinite volume and remain a solution in the
usual scattering sense. The periodic volume acts as a filter, selecting specific energies and
amplitudes for the partial waves. For negative energy states k will be pure imaginary with
cot �` 6= i.

If one continued a negative energy wave function with imaginary cot � to infinite volume
it would exponentially diverge, meaning that it could not be normalized in the usual sense
of scattered waves. Despite this, such states carry valuable information that will be used to
constrain HOBET in later chapters.

It should also be noted that if Eq.(8.1.1) is extended to the origin that each term diverges
as �1/r` courtesy of the ⌘`(kr) term. This observation will guide the choice of a periodic
basis for the free wave function. The essence of Lüscher’s method is to insist that Eq.(8.1.1)
is equal to an expansion over a periodic basis, yielding constraints on the parameters of the
expansion over the spherical harmonics. A first step is to pick a set of basis elements showing
the same singular behavior as ⌘`(kr).

A Green’s function has divergent behavior at the origin, making it a good candidate. A
Green’s function for the Helmholtz operator in a periodic volume is formed by summing over
~p 2 {(2⇡/L)~n|~n 2 Z3}.
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Strictly speaking, G is only a Green’s function if k2 is never in the set of p2 values.
�r2 + k2

�

G
�

r; k2

�

= �� (r) +
X

k2=p2

exp (i~p · ~r)

This result can be seen by adding and subtracting the o↵ending terms and then taking a
limit as p approaches the matching value of k. The Green’s function can be repaired in this
case (see Lüscher [42] section 3.3 for details), but the repair has no e↵ect on the conclusions
to be drawn. It will be assumed that p2 is not equal to any k2.

Eq.(8.1.9) can be shown to diverge at the origin in the same way as ⌘
0

(kr), but solutions
for other values of ` and m are still needed.. Derivatives commute with the Helmholtz
operator, so by applying them a set of additional solutions can be formed that can be shown
to be independent and to cover the required set of divergences. A solid harmonic is applied
to the gradient operator to form the required set of di↵erential operators, Y`m (r). Some
useful identities are

Y`m (r) ⌘
0

(kr) = (�k)`⌘` (kr)Y`m (r̂) (8.1.10)

Y`m (r) ei~p·~r = i`Y`m (~p) ei~p·~r (8.1.11)

Eq.(8.1.10) tells us that the rest of the singular part of the basis can be generated by applying
the solid harmonic of the gradient to G. Eq.(8.1.11) tells us what happens to G when it is
applied.

Y`m (r)G = G`m

�

~r; k2

�

= L�3i`
X

~p

Y`m (~p) ei~p·~r

p2 � k2

(8.1.12)
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8.1.3 Connecting Spherical and Periodic Forms

A connection between the spherical form of the Green’s function and the periodic form can
be established using

ei~p·~r = 4⇡
X

`m

i` Y`m(p̂)
⇤ Y`m (r̂) j` (pr) (8.1.13)

This form is inserted in Eq.(8.1.9).

G
�

~r; k2

�

= 4⇡L�3

X

`0m0

i`
0
Y`0m0(r̂)

X

~p

Y`0m0(p̂)j`0(pr)

p2 � k2

(8.1.14)

When combined with Eq.(8.1.6) only component `0 = `,m0 = m survives the integration.

k`

(2`+ 1)!!
g`m = lim

r!0

0

@

4⇡L�3i`

(2`+ 1)!!

X

~p

Y`m(~p)

p2 � k2

� �`,0 1p
4⇡r

1

A (8.1.15)

This relation establishes the expansion coe�cients g`m from which phase shifts can be de-
termined. Evaluation of the right hand side can be written in terms of of a zeta function
described by Lüscher. The zeta function is defined by the following equation, but requires
analytic continuation to the case where s = 1. Expressions for evaluation at s = 1 may be
found in [44].

Z`m(s; q
2) ⌘

X

~n2Z3

Y`m(~n)

(n2 � q2)s
(8.1.16)

With this definition g`m can be expressed as

g`m =
i`

⇡Lq`
Z`m(1; q

2), q = kL/(2⇡) (8.1.17)

A last step is to note that in a periodic volume that the spectrum will be discrete and that
the wave function corresponding to a member of the spectrum must necessarily match the
singular periodic free wave function derived above in Eq.(8.1.4). If the sum in that equation
is truncated at `0 = 0, then the leading order expression for the ` = 0 phase shift can be
extracted by comparing Eq.(8.1.1), Eq.(8.1.4), and Eq.(8.1.17).

k cot �
0

=
2p
⇡L

Z
0,0(1; q

2) (8.1.18)

In general the sum in Eq.(8.1.4) is truncated at a higher value of `0 where the phase shifts
should become small, resulting in a set of linear equations involving phase shifts in di↵erent
channels that must be solved together.
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8.1.4 Comments

Lüscher’s relationship between energy eigenstates of a two particle system and scattering
phase shifts is derived by requiring that the standard spherical expansion of the wave function
and an expansion in a periodic momentum basis match in the free region between the range of
the potential and the edge of the periodic volume. The existence of a free region is essential to
the mathematical analysis and results. Complicating the analysis is that such an expansion
will necessarily diverge at the origin. A HOBET implementation in a periodic volume,
found in Chapter 9, will work in a related way, building in periodicity by expanding Green’s
functions over a restricted momentum basis. However, the free region is not required as the
connection to a spherical e↵ective theory will be made in a di↵erent way. Also important is
the that result is a spherical e↵ective theory with a variety of uses, only one of which is the
production of phase shifts.

8.2 The HAL QCD Potential Method

The HAL QCD potential method is a newer method for extracting infinite volume results
from the finite volume calculations of LQCD. The method begins with the Bethe-Salpeter
(BS) wave function for the interacting particles, which will be assumed to be nucleons here.
The propagator for a pair of nucleons, with t representing Euclidian time, can be used to
produce the wave function for the pair.

�E (~r) e�Et =
X

~x

h0 |Na (~x+ ~r, t)Nb (~x, t)|N = 2, Ei (8.2.1)

Given an initial asymptotic state the matrix element expresses the amplitude for a pair of
nucleons at time t to have separation ~r, which is a wave function for the pair. The ket
indicates an initial asymptotic state of two nucleons. This is approximated with a wall
source operator for the two nucleons at t = 0. The wall source is an approximation in part
because the initial state will be contaminated with excited states which may well include
other particles than the two nucleons. Euclidian time propagation will eventually suppress
the excited states but there is a race with the usual growing Monte-Carlo noise with larger
time separation.

Once a wave function is obtained, a non-local potential is extracted, relying like Lüscher’s
method on the range of the potential being small enough to avoid interactions with periodic
images. The potential is constructed as a local potential plus a non-local correction and once
it is produced, phase shifts are extracted.

Relatively large lattices with m⇡L ⇡ 7.6 were used in reference [45] to reduce the problem
with images of the potential. However, it will be seen that even at m⇡L = 10 that the
contribution from images can shift results for Lüscher’s method. It would seem that the HAL
QCD potential method will also be perturbed by image contributions, and the magnitude of
the perturbations needs quantification.
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Chapter 9

HOBET in a Box

In the previous chapter two methods for connecting LQCD calculations to phase shifts were
reviewed. Both methods have unquantified sources of error. A common source of error is
that because of the expense of lattice QCD calculations they are performed in small volumes
where the assumption that the potential goes to 0 at the boundary is violated. In the case of
Lüscher’s method the convergence of the expansion is also at risk because successive terms
in the expression for the phase shift include zeta functions with divergences at a sequence
of energies, making it hard to claim that one can truncate the expansion. In the case of the
HAL QCD potential method there appear to be uncontrolled systematics associated with the
presence of inelastic excited states in the approximation used for the incoming asymptotic
state.

This chapter is a response to these concerns. The question is: Can the e↵ective interaction
be fit directly to the spectrum of two nucleons in a periodic box, avoiding the complexity of
extracting the phase shifts and suppressing the sensitivity to assumptions about the range
of interaction? An anticipated future advantage is the extension to determining the 3-body
e↵ective interactions where the spectrum continues to have a simple definition, unlike the
description of 3 body scattering states.

Putting HOBET in a box means construction of the HOBET e↵ective theory in a periodic
volume instead of the infinite volume domain of the previous chapters. The objective is to
fit a Cartesian e↵ective theory to the spectrum in a box and then to relate the expansion
coe�cients to the LECs of an infinite volume spherical HOBET formulation, automatically
taking into account the finite volume e↵ects. The construction bypasses all need for an
intermediate high-momentum potential and associated renormalization.

A remarkable property of the harmonic oscillator basis that is relied on here is the rela-
tionship between Cartesian and spherical representations of the basis. In each energy shell
there is separately a unitary transform between the Cartesian and spherical states. The
non-edge states in P� in either basis cover the same part of the Hilbert space and the same
can be said for the edge states which are scattered by T into Q. Much of the development of
HOBET carries over into the Cartesian basis and the basis relationship will allow Cartesian
and spherical results to be related.
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In the infinite volume HOBET construction the Green’s function for GQT acts on the edge
states of the included P space and reproducs the form of the known long range wave function.
The phase shift specifies the boundary condition needed to construct the Green’s function.
In a periodic box the boundary condition for the wave function is that it must be periodic
and smooth at the edge of the volume. While the box is periodic, it may have distinct
lengths for the sides as will happen if the LQCD state has non-zero total momentum, which
is corrected by boosting to the center of momentum frame. Boosting is important because
it allows more states to be extracted from the same set of expensive lattice configurations.
The natural way to meet the periodic boundary condition is to write the Green’s function as
an expansion over a periodic basis of sine and cosine waves. With a reasonable cuto↵ on the
maximum spatial frequency of the waves this turns out to be computationally reasonable.

Part of the formulation of HOBET in a box is to describe the e↵ective theory expansion in
a Cartesian harmonic oscillator basis so that overlaps between harmonic oscillator states and
the periodic basis can be more easily computed. Since the range of the basis and and the V �

�

part of the interaction are both assumed to be shorter than the distance to the edge of the box,
the e↵ective theory expansion will also be independent of the periodic boundary conditions
and the transformed expansion will be valid in the spherical infinite volume as well. Even
in the case where the interaction is longer range, creating contributions from neighboring
images of the potential, the impact on the e↵ective theory expansion will be demonstrated
to be small, with most of the impact of the images captured in matrix elements of VIR and
segregated from the LECs of the expansion. This is in contrast to Lüscher’s method where
an overly long range interaction results in substantial loss of accuracy in the determined
phase shifts. For HOBET, the phase shifts required for the infinite volume Green’s functions
can be found by constructing Heff,sph(E) and then dialing the phase shift until an eigenvalue
match is found. These phase shifts will be the same values as those produced by the Lüscher
method. However, the result is much more powerful, yielding an e↵ective theory from which
wavefunctions for bound and scattering states can be determined and used to compute
observables of the system.

The procedure for producing the e↵ective theory then consists of the following steps which
will appear in sections to follow: 1) forming the needed Green’s function, 2) computing the
matrix elements of T , 3) computing the matrix elements of VIR which will often be a one
pion exchange potential, 4) constructing the Cartesian ET and relating the expansion LECs
to the original spherical LECs, 5) fitting the LECs to the available periodic box pairs, 6)
determining the infinite volume phase shifts.

9.1 Green’s Function of GQT in a Periodic Box

GQT is a key building block in the construction of Heff , connecting the e↵ective theory to
the boundary conditions of the theory. In the spherical case the connection is to the phase
shifted asymptotic wave function, here it is to the requirement that the wave function be
periodic, a condition most easily expressed in a periodic momentum basis.
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A momentum basis in a periodic box is naturally Cartesian. Fortunately the 3D harmonic
oscillator basis can be easily cast in either spherical or Cartesian form. A unitary transform
Eq.(A.6.1) is available to convert one into the other.

As before, the included space P (⇤, b) is constrained by ⇤. Oscillator states will be
indexed by the vector ~n = (nx, ny, nz). The states are constrained by

nx + ny + nz  ⇤ (9.1.1)

The periodic box has side lengths Li (coordinates from -Li/2 to Li/2) and a lattice
spacing ai which divides Li. The length of the sides are independent in order to support
boosted states, a technique used in LQCD to extract more states at lower computation cost.
States with non-zero momentum are boosted to their center of mass frame, adjusting the
lengths of the sides of the volume.

The same number of lattice sites are used in each direction: N = Li/ai with i 2 x, y, z
. A complete basis of states in the periodic box is a set of sin and cosine waves in each
dimension. N will be chosen to be large enough for convergence and normalized odd and
even wave functions will be used.

�i,s,m (x) =

r

2

Li
sin (↵i,mx) , n = 1, . . . , N/2

�i,c,0 (x) =

r

2

Li
(1/
p
2), n = 0

�i,c,m (x) =

r

2

Li
cos (↵i,mx) , n = 1, . . . , N/2

with ↵i,m
i

= 2⇡ |m| /Li

(9.1.2)

Letting m range from �N/2 to N/2, negative indices are used to indicate the sine solutions
and non-negative indices to indicate the cosine solutions. This set of solutions for large
enough N is an accurate periodic basis for the periodic box. The basis of 3D solutions can
be written as

�~m (x, y, z) = �m
x

(x) �m
y

(y) �m
z

(z) (9.1.3)

The kinetic energy operator is a bit complicated by the varying side lengths.

T̂�~m (x, y, z) = 2⇡2

 

X

i

m2

i

L2

i

!

�~m = �~m�~m (x, y, z) (9.1.4)

The strategy is to use this basis set to compute

GQTP =
E

E � T

⇢

P
E

E � T
P

��1

P (9.1.5)

Using an bilinear eigenfunction expansion the Green’s function can be written as

GT (E; r0, r) =
X

~m

E

E � �~m + i"
�~m (r0)�~m (r)
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where +i" has been added to avoid the possible pole. In following equations the i" term
will be understood to be present. GQT will have well behaved limits as "! 0+. The matrix
elements can be written as

h~n0 |GT |~ni =
X

~m

E

E � �~m
h~n0 |�~m (r0)�~m (r)|~ni

The individual matrix elements in the sum decompose nicely as

h~n0 |�~m (r0)�~m (r)|~ni = �~n0,~m,�~n,~m

with � representing the integrals

�n,m =

1
Z

�1

dx Hn (x)�m (x)

�~n,~m = �n
x

,m
x

�n
y

,m
y

�n
z

,m
z

To perform the integrals the Hermite polynomial is decomposed, with a parity match yielding
non-zero integrals of the form

S
2q+1,m =

L/2
Z

�L/2

dx e�x2/2x2q+1 sin (↵mx)

C
2q,m =

L/2
Z

�L/2

dx e�x2/2x2q cos (↵mx)

These integrals can be accurately evaluated by extension of the integration bounds assuming
that the Gaussian factor suppresses the integrand beyond Lmin/2. A numerical integration
on the range �L/2 to L/2 is used to check that the length scale is small enough to confine
the harmonic oscillator basis to the box.

S
2q+1,m ⇡

1
Z

�1

dx e�x2/2x2q+1 sin (↵mx)

= ↵m 2q+
3

2 �

✓

q +
3

2

◆

1

F
1

✓

q +
3

2
,
3

2
,�↵

2

m

2

◆

C
2q,m ⇡

1
Z

�1

dx e�x2/2x2q cos (↵mx)

= 2q+1/2 �

✓

q +
1

2

◆

1

F
1

✓

q +
1

2
,
1

2
,�↵

2

m

2

◆
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Using these results � can be constructed as

�n,m = n!
bn/2c
X

q=0

(�1)q
q! (n� 2q)! 2q

L/2
Z

�L/2

dx e�x2/2xn�2q�m (x)

=

r

2

L
n!

bn/2c
X

q=0

(�1)q
q! (n� 2q)! 2q

⇢

Sn�2q,m odd (n)
Cn�2q,m even (n)

Combining these results yields the matrix elements of GT in the P space.

h~n0 |GT |~ni =
X

~m

E

E � �~m
�~n0,~m�~n,~m (9.1.6)

The representation b�1

~n0,~n will be used for these matrix elements and b~n0,~n for the inverse.
To obtain GQT |~ni = b~n,~n0GT |~n0i, GT |~n0i is also needed, but this is easily obtained from

the work above.

GT (E; r, r0) |~ni =
X

~m

E

E � �~m
�~m (r)

L/2
Z

�L/2

d~r 0 �~m (r0)H~n (~r
0)

=
X

~m

E �~n,~m

E � �~m
�~m (r)

9.2 Kinetic Energy Matrix Elements

The kinetic energy part of the e↵ective Hamiltonian can be written in a more convenient
form for evaluation

⌧

~n0
�

�

�

�

GQTE

✓

T + T
Q

E
T

◆

EGQT

�

�

�

�

~n

�

= h~n0 |TEGQT |~ni

Starting with this form the matrix elements can be computed in terms of E and bij =
hi|GT |ji�1.

⌧

~n0
�

�

�

�

T
E

E �QT

�

�

�

�

~n

�

=

⌧

~n0
�

�

�

�

T
E

E � T

�

�

�

�

~n00
�

b~n00,~n

= E

⌧

~n0
�

�

�

�

✓

1�
✓

1� T

E

◆◆

1

1� T/E

�

�

�

�

~n

�

b~n00,~n

= E

⌧

~n0
�

�

�

�

E

E � T
� 1

�

�

�

�

~n00
�

b~n00,~n

= E (�~n0,~n � b~n0,~n)

An interesting observation is that the e↵ective kinetic energy operator diverges at the
same values of E that b~n0,~n does. V� must then have a compensating divergence at infinite
order.
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9.3 Matrix Elements of VIR

This section first addresses some of the specific issues with evaluation of the matrix elements
of VIR = V⇡, which is the long range potential of choice for nucleon-nucleon interactions.
Afterwards, more general issues related to the computational approach for any VIR are ad-
dressed. Computation of these matrix elements is the most expensive step in the construction
of the e↵ective Hamiltonian.

The general form of the required matrix elements is
D

n0, S 0,m0
S

�

�

�

G†
QT V⇡ GQT

�

�

�

n, S0,m0
S

E

(9.3.1)

with the local potential V⇡ defined as

f̃ 2

⇡m⇡⌧1 · ⌧
2

e�↵r

↵r



�
1

· �
2

+

✓

1 +
3

↵r
+

3

(↵r)2

◆

S
12

�

↵ = m⇡

p
2 b/~, f̃ 2

⇡ ⇠
m2

⇡

12⇡

✓

gAp
2f⇡

◆

2

⇠ 0.024

At the physical point the values f⇡ = 130.4 MeV and gA = 1.272 are used and in the pn
channel an e↵ective pion massm⇡ = 138.05 MeV reflects the contributions from both charged
and neutral pions. The usual delta function in V⇡ is dropped as it corresponds directly to
the lowest order term in the V� expansion.

Quantum number mS is included because the Cartesian basis states do not have good
angular momentum. In particular, the matrix elements of the S

12

operator in the spin basis
and direction r̂ are needed. Spherical vector components are listed in the order (+1, 0,�1),
so the upper right corner of the matrix below corresponds to m0 = 1, m = �1.

S
12

= 3 (�
1

· r̂) (�
2

· r̂)� �
1

· �
2

hr̂, S 0=1,m0
S |S

12

| r̂, S=1,mSi =
0

@

3r̂2z�1 3
p
2r̂z (r̂x�ir̂y) 3(r̂x�ir̂y)2

3
p
2r̂z (r̂x+ir̂y) 2 (1�3r̂2z) �3p2r̂z (r̂x�ir̂y)
3(r̂x+ir̂y)

2 �3p2r̂z (r̂x+ir̂y) 3r̂2z�1

1

A

m0,m

The matrix elements will be determined by numerical integration against V⇡. However, when
evaluating entries where both ~n0 and ~n are edge states the number of such integrals is too
large as each state expression is a sum over the momentum basis. The individual elements
of S

12

and �
1

· �
2

can be computed as part of straightforward numeric integrals. In what
follows W (r) stands for a spin component of V⇡ selected by m0 and m.

D

n0
�

�

�

G†
QT W (r) GQT

�

�

�

n
E

= b�1

n0,jb
�1

n,i

D

j
�

�

�

G†
T W (r) GT

�

�

�

i
E
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Excessive computation can be avoided by rewriting the matrix elements to expose a much
smaller number of integrals that can be computed via FFT. A double sum over the momen-
tum basis will still be required but the computation per entry will be small.

D

j
�

�

�

G†
T W (r) GT

�

�

�

i
E

=

X

~m0,~m

E

E � �m0

E

E � �m hj|m
0i hm0 |W (~x)|mi hm| ii

D

j
�

�

�

G†
T W (r) GT

�

�

�

i
E

=

X

~m0,~m

E �j,~m0

E � �~m0

E �i,~m

E � �~m

Z

V

d~x �m0 (~x)�~m (~x)W (~x)

Naively the number of integrals is equal to the number of lattice momentum states squared.
However, the two references to � can be expanded to exponentials so that the integrals
correspond to sums of a few components of the FFT of the potential. This allows quick
construction of the integrals. V⇡ can be sampled on the lattice and then a 3D FFT applied
to generate the components. As an example, take m0 = 1, 2, 3 and m = 4, 4, 4.

�m0(x)�m(x) = cos(1 · 2⇡
Lx

x) cos(4 · 2⇡
Lx

x)

cos(2 · 2⇡
Ly

y) cos(4 · 2⇡
Ly

y) cos(3 · 2⇡
Lz

z) cos(4 · 2⇡
Lz

z)

The following expansions to the products of two cos functions (or cos and sin, etc.) can be
used as a first step toward a sum of exponentials.

sin(�x) sin(↵x) = (1/2) (cos ((↵� �)x)� cos ((↵ + �)x))

cos(�x) sin(↵x) = (1/2) (sin ((↵� �)x) + sin ((↵ + �)x))

cos(�x) cos(↵x) = (1/2) (cos ((↵� �)x) + cos ((↵ + �)x))

This substitution results in

�m0(x)�m(x) =
1

8

✓

cos(3 · 2⇡
Lx

x) + cos(4 · 2⇡
Lx

x)

◆

⇤
✓

cos(2 · 2⇡
Ly

y) + cos(6 · 2⇡
Ly

y)

◆

⇤
✓

cos(1 · 2⇡
Lz

z) + cos(7 · 2⇡
Lz

z)

◆

(9.3.2)

Expanding the cos or sin functions into exponentials and expanding the product results in
43 = 64 of the FFT basis functions. The integral of W (x) against the product of momentum
states is then a sum across the corresponding FFT components of W (x). An accurate
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approximation can be had by assuming that the high frequency components are 0, enabling
runtime control of the computation. Details of using an FFT to compute the required
integrals may be found in appendix D.

If VIR is not smooth, as in a sharp potential well, then the FFT result will not converge
well and direct integration will be required.

9.4 Matrix Elements of V�

V� encodes a combination of the short range di↵erence between V and VIR as well as the
result of integrating out contributions from scattering through Q. The matrix elements can
be split into two parts, one called V �

� that only involves states in P� which omits edge states,
and matrix elements that do involve edge states. P� is the same space in both spherical
and cartesian forms, which are related by a unitary transform, hn, L,m|nx, ny, nzi, between
the two representations. V �

� is therefore also the same object in both representations. The
strategy then is to create an expansion in Cartesian harmonic oscillator lowering operators
by analogy to the spherical expansion and by insisting that V �

� represents the same object
in either representation the matrix elements, the LECs of the two forms can be related and
the resulting combinations of spherical LECs substituted into the Cartesian V�, including
the matrix elements for edge states.

An important side e↵ect of solving for Cartesian LECs as a linear combination of spherical
LECs is that symmetries like rotational symmetry which limited the number of spherical
operators are automatically imposed on the Cartesian form of the e↵ective theory, which
initially has many more LECs.

The matrix elements of states at the edge of P which are transformed by GQT , also known
as edge states, will be di↵erent because the boundary conditions used to construct the Green’s
functions are quite di↵erent. However, as the correspondence between the Cartesian LECs
and the spherical LECs has already been established, the di↵erential form of the 1D lowering
operators can be applied to the momentum basis that GQT is expressed in, substituting the
equivalent combination of spherical LECs for each operator.

The details of construction of the Cartesian ET expansion are now addressed. Parity
conservation tells us that ET operators must be built from an even number of lowering
operators ax, ay or az. The order of the operator is the number of lowering operators divided
by two. This definition matches the spherical operators.

The general form of an ET operator is some lowering operators acting to the left, a delta
function and some lowering operators acting to the right. Unlike the spherical form the LEC
values will not be adjusted with the matrix elements of the delta function. The e↵ect on
those matrix elements is a simple scaling of the LECs and as the Cartesian LECs will be
eliminated in favor of the spherical ones there would be no useful e↵ect.

The rules for distinguishing operators are simple. Operators that can’t be transformed
into each other by exchanges of directions are distinguishable, i.e. lowering the x oscillator
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twice is di↵erent from lowering along x and along y. Hermiticity tells us that the same LEC
governs operators where acting to the left and right is swapped.

The LEC label for an operator can be generated uniquely from the x, y, and z lowering
counts to the left and right as follows. First compare the total count of left and right
lowering operations. If the right hand side has more lowering operations, then swap the
sets of counts. Otherwise, sort the x, y, and z lowering counts on each side with the largest
first and compare the resulting 3 digit numbers. If the right hand 3 digit number is larger,
then swap the counts. Next, directions are ordered by weights determined by the left and
right counts (as in left ⇤ 1000 + right) with swapping by directions applied to both left and
right sets of counts. The resulting sets of left and right counts identify the same LEC for
operators that are equivalent under exchange of direction or conjugation. In what follows
the LEC name begins with c to identify it as a Cartesian LEC and the ordered left and right
lowering counts are used in the name. Table 9.1 illustrates the organization of the operators
into groups with associated LECs and the naming of the LECs.

Table 9.1: LECs and Cartesian operators

LEC operators
c000d000 �(r)
c100d100

�

a†x�(r)ax + a†y�(r)ay + a†z�(r)az
�

c100d010
�

a†x�(r)ay + a†x�(r)az + a†y�(r)az
�

+ h.c.
c200d000

�

a†2x + a†2y + a†2z
�

�(r) + h.c.
c110d000

�

a†xa
†
y + a†xa

†
z + a†ya

†
z

�

�(r) + h.c.

The matrix elements of V �
� in either basis are related by spherical-cartesian brackets,

allowing us to write the Cartesian LECs as a linear combination of spherical LECs. These
expressions can then be used to express the result of applying a Cartesian operator in terms
of spherical LECs.

Consider a simple example with even parity states up to ⇤ = 2 and an interaction that
does not mix angular momentum states. In spherical and Cartesian forms this results in 7
states:

|n, `,mi 2 {|1, 0, 0i , |2, 0, 0i , |1, 2,�2i , |1, 2,�1i , |1, 2, 0i , |1, 2, 1i , |1, 2, 2i}
|nx, ny, nzi 2 {|0, 0, 0i , |1, 1, 0i , |1, 0, 1i , |0, 1, 1i , |2, 0, 0i , |0, 2, 0i , |0, 0, 2i}

V �
� is constructed in a Cartesian harmonic oscillator basis using operators as defined in

table 9.1. Then V �
� is constructed in a spherical harmonic oscillator basis and using spherical-

Cartesian brackets transformed it to a Cartesian harmonic oscillator basis. In both bases
the matrix elements of V �

� are simple linear combinations of LECs, in one case the Cartesian
LECS and in the other the original spherical or angular momentum channel LECs. Both
constructions of V �

� must match, immediately relating the Cartesian LECs to the spherical
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ones. With these constraints one can easily solve for the LEC correspondence.

c000d000 = a1S0LO

c200d000 = a1S0NLO

c200d200 = a1S0NNLO22

+ (2/3)a1D2

NNLO

c200d020 = a1S0NNLO22

� (1/3)a1D2

NNLO

c110d110 = 2a1D2

NNLO

A key point is that in establishing this correspondence that the symmetries such as
angular momentum conservation imposed on the spherical V �

� by construction will now be
imposed as linear constraints on the Cartesian LECs. The Cartesian LECs will in fact be
eliminated in favor of the spherical ones, so that fitting of the Cartesian theory to observables
is done in terms of spherical LECs and automatically respects the associated symmetries.

After the correspondence is established, the operators can be applied as di↵erential oper-
ators to edge states, which are expressed as a linear combination of lattice momentum states.
Table 9.2 gives the action of powers of the lowering operator evaluated at 0. When applied
to momentum state �~m the derivatives produce powers of ↵~m and a sign as the derivative
cycles between sine and cosine, so the action is easy to compute.

Table 9.2: Powers of lowering operator simplified at ri = 0 for edge states. Derivative
operators have been commuted to the right and terms with remaining powers of r dropped.

Power Expansion
n 2�n/2 (@i + ri)

n

0 1
1 2�1/2 (@i)
2 2�2/2 (1 + @2i )
3 2�3/2 (3@i + @3i )
4 2�4/2 (3 + 6@2i + @4i )
5 2�5/2 (15@i + 10@3i + @5i )

The result is again a linear combination of spherical LECs. Such edge matrix elements
will include the non physical mixing between angular momentum channels that are implied
by the periodic box constraints.

9.5 Fitting the LECs

It is common in LQCD calculations to perform calculations in more than on volume. Because
V� is isolated from the boundary conditions and to a lesser extent from an overly long range
potential, data from all volumes can be combined in the fitting of the LECs. For each pair
of energy and periodic box Heff (E) can now be constructed. The V� portion of Heff has
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matrix elements that are a linear combination of LECs. The fitting goal is to choose a single
set of LEC values such that for all sample energies Heff (E) has an eigenvalue close to that
energy.

The Monte-Carlo measures of the energy eigenvalues naturally have uncertainty. This
uncertainty may also be correlated because because multiple measurements can be taken
from a single configuration. A procedure for taking uncertainty and correlation into account
in the fit may be found inSection 6.2.

The spectrum in a box will contain states belonging to di↵erent cubic representations
which overlap subsets of angular momentum states. One possible strategy is to fit all the
angular momentum states of a given parity up to some ` cuto↵ simultaneously. At low
energy, the angular momentum barrier above that cuto↵ will make LEC values for high `
channels unimportant. With ample sample data this is a successful strategy.

If less data is available, it is possible to fit just the ` = 0 channel. LQCD states can
be projected onto cubic representations, only one of which, the A+

1

representation, overlaps
` = 0. More discussion of cubic representations will follow in the next chapter, but some
properties of A+

1

are relevant here. The A+

1

representation overlaps only ` = 0, 4, 6 and higher
even values of `. This means that ` = 0 can be independently fit for moderate energies where
` = 4 is unimportant.

An additional issue in fitting is that the Cartesian Heff covers all the states up to the
energy cuto↵ ⇤ and will be a fairly large matrix with a large number of eigenpairs, only one of
which represents the Bloch-Horowitz state being fit. It is quite possible that one of the other
eigenpairs with no ` = 0 overlap will actually be initially closer to the sample energy than
the correct eigenpair with the initial LEC values used in fitting. In such a case modest trial
changes to the ` = 0 LECs will not change the closest eigenvalue to the sample energy and
the fitting process will not make progress. To overcome this, only eigenpairs overlapping the
target channel should be considered when determining the nearest eigenvalue in the spectrum
of the matrix. With this addition, the fitting process for a restricted set of LECs works well.

9.6 Determining Phase Shifts from the E↵ective
Theory

After LECs are fit to minimize the consistency error of the Cartesian Heff (Ei), the LECs
can be used in the spherical Heff construction. Normally, the phase shifts would be an input
to the process and the LECs would be unknown and fit to achieve energy consistency. In
this case the reverse is true and the phase shifts are fit to achieve energy consistency with
the known LEC values fixed.

The phase shifts can be found numerically by generating an initial set of phase shifts
and then for each one iterating the equation Heff (E, �`)P | i = EP | i until the energy
E = k2/2 converges. Some trial phase shift values may have no solution and should be
discarded. The resulting pairs of

�

k2`+1 cot(�`), k2

 

can be used to fit an e↵ective range
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expansion.

k2`+1 cot (�`) = � 1

a`
+ r`k

2 + v`k
4 + · · · (9.6.1)

The e↵ective range expansion is then used to estimate an initial phase shift for a selected
energy, which can be refined by bisection.
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Chapter 10

Demonstration of HOBET in a Box

The demonstration of HOBET in a box has two parts. The first part is an examination of
the impact of periodic boundary conditions and the non-physical mixing induced by them.
This establishes the context in which the e↵ective theory is constructed and fit.

The second part uses a known potential with a one pion exchange like long range behavior
to generate a spectrum in a periodic box. As an extra challenge, the potential does not die
out by the edge of the box. The potential is also used to establish reference phase shifts
that HOBET can be tested against. The periodic box Cartesian harmonic oscillator based
e↵ective theory is fit to the spectrum, transformed to a spherical infinite volume e↵ective
theory and then used to recover phase shifts and bound states. The recovered phase shifts
are expected to match the reference values, demonstrating that the derived e↵ective theory
is a faithful representation of the full theory.

10.1 Induced Mixing via Periodic Boundary
Conditions

Periodic boundary conditions lead to non physical mixing of angular momentum states.
Consider a bound state in one dimension about a central potential. Outside of the range
of the potential the wave function will be a linear combination of an exponentially growing
part and an exponentially decaying part. In an infinite volume normalization considerations
rule out the exponentially growing part. If one now imposes periodic boundary conditions
about the origin of the potential, then the exponentially growing part must be reintroduced
to satisfy the boundary conditions.

Generalizing to three dimensions, if one starts with an S-channel bound state and in-
troduces periodic boundary conditions, then one not only has to re-introduce the growing
exponential solution, but also higher L components are needed to establish periodicity away
from the centers of the faces.

A concrete example can be constructed by solving the Schrödinger equation in an 35 fm
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side length periodic volume for a simple well potential.

V (r) =

⇢ �V
0

r  R
0 r > R

,
R = 2.1 fm
V
0

= 33.73416 MeV

This potential was tuned to produce a bound state with the binding energy of the deuteron,
⇡ �2.2245 MeV.

The low lying eigenstates of this system were found on a 4003 lattice with a solver
described in Section 11.5. The side length of the volume is quite a bit larger than the range
of the potential and one might think that this would reduce the mixing.

Outside the range of the potential and inside the box these eigenstates have the usual
form.

 (~r) =
X

`m

Y`m (r̂) `,m (r)

An assumption made by Lüsher [42] is that this is a rapidly convergent series in L. The bound
state is only slightly modified by the boundary conditions, gaining only small contributions
in other channels, but other low lying states are significantly a↵ected. With this very simple
example, the 3rd positive parity state with E = 1.336 MeV has an interesting structure
shown in Fig. 10.1. The figures show the wave function on a spherical slice outside the range
of the potential as a radial displacement on a unit sphere. This state has large L = 2, 4, 6
components and no L = 0 component. The higher order structure is clearly visible in the
top view in the neck between the top and bottom lobes. This state would not be useful
in deriving an S-channel model because it belongs to the E+ representation of the cubic
rotation group which does not overlap S.

Figure 10.1: Spherical slice of the 3rd positive parity eigenstate in a 35 fm box. The wave
function is displayed as a radial displacement on a unit sphere. Points in the top half are
gold to give a depth cue in the top view on the right.

The next state up in energy at E = 1.692 MeV belongs to the A+

1

representation which
has the following 3 components up to ` = 6 with m = 0. Details on cubic representations
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can be found in Luu and Savage [44] as well as Lüscher [42].

|0, 0i
1

2

r

5

6
|4, 4i+ 1

2

r

7

3
|4, 0i+ 1

2

r

5

6
|4,�4i

p
7

4
|6, 4i � 1p

8
|6, 0i+

p
7

4
|6,�4i

(10.1.1)

Table 10.1: Angular momentum content of the E = 1.692 MeV state.

` m |Amplitude|
0 0 0.31431
4 -4 0.30036
4 0 0.49887
4 +4 0.30036
6 -4 0.45430
6 0 0.24317
6 +4 0.45430

To check this the angular momentum content of the lattice solution was extracted by
numerically integrating against Y`,m on a shell inside the volume but outside the range of
the potential at two closely separated radii, giving the derivative of the radial function.
Using Eq.(C.0.1) the amplitude of the component can be calculated. For Table (10.1) the
amplitudes were normalized ignoring states above ` = 6. If this state belongs to the A

1

representation, then the amplitude ratios of the components for ` = 4 as well as ` = 6 should
match the ratios from Eq.(10.1.1).

0.30036/0.49887 = 0.60208,
1

2

r

5

6
/

 

1

2

r

7

3

!

= 0.60208

0.45430/0.24318 = 1.86816,

p
7

4
/

✓

1p
8

◆

= 1.86818

These results show that to high precision the ratios of the components, which are independent
of the normalization, match the expected values.

When LQCD states are generated, they can be projected on to cubic representations.
This is important because each cubic representation has specific angular momentum content.
As an example, states in the E representation have no L = 0 content and should not be
included in a fit unless LECs connecting to L = 2 states are part of the fit. The danger is
that a non-physical eigenstate of the Heff (Ei) matrix will respond to changes in S-channel
LECs, leading to an incorrect local minimum in the fitting cost function. A similar problem
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can occur if a non-physical eigenstate with no L = 0 overlap may have the closest eigenvalue
to Ei. The result is that even when trial changes to LECs move the correct eigenstate’s
eigenvalue closer to Ei that the even closer non-physical eigenvalue hides the improvement
from the cost function. To avoid this problem the fitting program has been modified to
ignore eigenstates of Heff that don’t match the cubic representation of the target state.

10.2 Construction of the E↵ective Interaction from a
Spectrum

For this example he periodic volume corresponds to m⇡L ⇡ 10, yielding L = 14.3 fm. This
periodic volume size is large compared to typical LQCD volumes which are used with heavier
pion masses.

A potential with the long range form of a one pion exchange potential was used. The
Schrödinger equation with the full potential is solved in the periodic volume on a lattice sizes
of N3 with N = 350, 400, 450. The energy eigenvalues are expressed as a quadratic function
of the lattice spacing 14.3 fm/N and extrapolated to the continuum to produce a spectrum.
The idea is to avoid as much as possible the introduction of error in the result due to small
errors in the spectrum so that other error sources can be better analyzed. The rest of the
calculations use only the IR part of the potential, the volume size and the spectrum.

VIR(r) = �1.3 ⇤ 100.0 e�m
⇡

r

m⇡(r + 0.75 fm)
MeV

V (r) = VIR(r) + 1.3 ⇤ 138.0e�4m
⇡

r MeV

The addition of 0.75 fm in the denominator avoids an infinite potential at the origin and has
little impact on the OPEP like behavior at long range. The value of m⇡ is set to the blended
value of 138.039 MeV so that the potential decays like a physical pion mass potential would.
Originally, a potential with a more realistic hard core was tried, but the periodic volume
Schrödinger equation solver had insu�cient resolution near the origin, resulting in too much
error in the generated spectrum that is input for both HOBET and Lüscher’s method. The
somewhat smoother potential with the long range part broken out separately is shown in
Figure (10.2). The behavior of the potential near the center of a face of the periodic volume
is shown in Figure (10.3). A ⇤=500 calculation yields a bound state at �4.0518 MeV, which
HOBET should predict.
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Figure 10.2: The full and long range po-
tential VIR.
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Figure 10.3: The potential at the edge
of the box is not zero.

An important aspect of the chosen long range potential is that it does not completely go
to 0 by the edge of the box. This violates a requirement for Lüscher’s method, which relies
on a free propagation region between the range of the potential and the edge of the periodic
box at L/2. Choosing L so that the potential has some remaining e↵ect at the edge will
show the impact of a small violation on calculated phase shifts for Lüscher’s method.

The set of positive parity states found with potential V and box size 14.3 fm is shown in
Table (10.2). A few other states are omitted that had not converged in the allowed runtime
of the solver. Only the states belonging to the A

1

representation are included in the fit as
the states in the E representation have no overlap with L = 0.

Some selected states have a small overlap with L = 0 and some a large overlap, but the
size of the overlap is not important as long as it is not zero. The S-channel wave function
with its phase shift in a free propagation region in the box can be continued as a valid and
independent infinite volume solution regardless of its relative amplitude. Lüscher’s method
relies on the existence of the free propagation region to obtain the phase shift. HOBET does
not have this requirement as the phase shifts are determined later from V�.
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Table 10.2: Spectrum of H = T + V in a periodic volume with L = 14.3 fm plus the overlap
with angular momentum states.

Rep MeV L=0 L=2 L=4 L=6
A+

1

-4.4428 0.5 0 0.866 0
A+

1

2.0314 0.155 0 0.988 0
E+ 7.5995 0 0.424 0.361 0.830
E+ 15.2980 0 0.474 0.393 0.788
A+

1

21.6167 0.326 0 0.265 0.908
E+ 23.2423 0 0.468 0.597 0.651
A+

1

29.4041 0.521 0 0.853 0.023
E+ 30.9457 0 0.567 0.428 0.704
A+

1

35.2449 0.655 0 0.189 0.732
E+ 38.4043 0 0.882 0.176 0.437
A+

1

45.1402 0.526 0 0.576 0.625

E↵ective Hamiltonians with ⇤ = 8 and b = 0.8 fm were constructed for the 6 indicated
states, parameterized by a full set of LECs up to N3LO. The e↵ective Hamiltonian is repre-
sented as a matrix with the dimension of the P space and has a full set of eigenvectors with
di↵erent angular momentum content. Only eigenvectors that do not overlap D(L=2) were
considered in the fitting process, which was in other respects standard. At N3LO, there are
no LECs for G state operators, so the fitting was restricted to S-channel LECs. A tight fit
was found with the LEC’s shown in Table (10.3).

Table 10.3: S-channel LECs from fit to 6 states in L = 14.3 fm box.

LEC Value
aSLO 70.0274
aSNLO 10.2596
a40,SNNLO 1.94882
a22,SNNLO 3.12887
a60,SN3LO 0.13716
a42,SN3LO 0.10177

Based on these LECs, a self consistent infinite volume bound state energy of �4.066 MeV
was found by iteration which should be compared to the �4.0518 MeV value found in a large
basis.

Reference phase shifts can be computed straight from the full potential using Eq.(7.4.1).
A sample of phase shifts from 1 to 20 MeV is shown in Table (10.4).

For comparision, Lüscher’s method was used to compute the phase shifts corresponding
to the 6 states and an e↵ective range expansion up to k6 was fit to the data. The formula
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for the L = 0 phase shift with k̃ = kL/(2⇡) is found in reference [44].

k cot �
0

=
2p
⇡L

Z
0,0

⇣

1; k̃2

⌘

+
12288⇡7

7L10

Z
4,0

⇣

1; k̃2

⌘

2

k9 cot �
4

+ O �

tan2 �
4

�

(10.2.1)

A common assumption is that the second term is small because the L = 4 phase shifts are
expected to be small and also that the term is suppressed by a high power of k. There is a
more complex way to solve for cot �

0

and cot �
4

at the same time, but in this case �
4

is easily
obtained from the known potential so both the leading and next to leading calculations are
displayed.

HOBET phase shifts are computed by searching for a phase shift that makes the equation
Heff (Ei)P | ii = "i | ii self consistent, meaning that Ei = "i.

Table 10.4: Phase shifts in degrees from the potential, HOBET, and Lüscher’s method from
a L = 14.3 fm periodic volume.

Leading Next Order
E MeV V HOBET Lüscher Lüscher

1 142.023 141.931 142.552 142.751
2 128.972 128.860 129.571 129.823
4 113.602 113.464 114.205 114.403
8 96.919 96.752 97.575 97.3135
10 91.473 91.296 92.228 91.6403
15 81.672 81.480 82.852 81.3184
20 74.876 74.691 76.667 74.0936

The HOBET phase shifts are clearly better than those from Lüscher’s method, so some
discussion of the sources of error is appropriate.

One common source of error for both HOBET and Lüscher’s method is the accuracy
of the solutions with the full potential of the Schrödinger equation in a periodic box. By
computing the spectrum at 3 lattice spacings and performing a continuum extrapolation the
expected residual quantization error is very small. For each eigenstate the 3 values have a
consistent behavior, increasing slightly and consistently as the the lattice spacing shrinks.

Two columns for Lüscher’s method have been included in the table, showing that the
next order correction is not insignificant. The root cause is that the zeta function has many
k̃ values at which it diverges and at values near those points it becomes quite large, raising
the importance of the second term. Because the slope of the zeta function is very large near
these points, small uncertainties in energy are magnified to large uncertainties in k cot �

0

.
An additional potential source of error for HOBET is the cuto↵ on the momentum basis

which ends at N = 30 for this demonstration. The impact of the cuto↵ can be measured
by examining the matrix elements hj |GTQVIRGQT | ii because GQT is implemented as a sum
over the momentum basis. When i and j correspond to non-edge states the matrix element
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can be simplified to hj |VIR| ii. Calculating this matrix element both ways for all non-edge
j, i the largest error found was 0.0059 on a value of �9.91251, resulting in an error of about
0.06%, which is much smaller than the observed error in the phase shifts.

One more possible source of error for HOBET is the harmonic oscillator length scale
which has been set here to b = 0.8 fm so that basis functions are very close to 0 at the edge
of the box. If b were much larger, then images of the harmonic oscillator potential would
disturb the basis states and the overlap calculation between the states and the momentum
basis used in many of the calculations.

The most important error source comes from the fact that the potential is not 0 at the
edge of the box and will lead to a poorly quantified error in Lüscher’s method. In a periodic
volume the neighboring images of the potential also contribute to a total potential Vimage.
For HOBET an overly long range Vimag will enter in first power in the direct matrix elements
of VIR and with two powers of Vimage in V�. So the impact on V� of the images of the potential
will be suppressed by an extra power making it much less sensitive. In this case the ratio of
Vimag/V (0) = 0.32/68.4 ⇡ 0.005 so the square will have a small impact on V�.

To summarize what has been accomplished here: An e↵ective theory for the interaction
was constructed from a spectrum in a periodic box plus a one-pion like long range potential,
without knowledge of the short range part of the interaction. The e↵ective theory was
transformed into an infinite volume spherical form with LECs fixed, but without knowledge
of the phase shifts. Subsequently, the phase shifts were derived from the e↵ective theory by
demanding energy consistency of the Bloch-Horowitz equation. The resulting phase shifts are
significantly more accurate than Lüscher’s method. And finally, HOBET produces not just
phase shifts but an e↵ective interaction that can be used to perform additional calculations.
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Chapter 11

Computation

The work in this dissertation is a combination of theory and computation. This chapter is
devoted to an overview of the software constructed to implement, test, and demonstrate the
concepts. It is surprising how often an actual implementation can detect an error or reveal
a new concept.

Much of the code is organized in a library that is shared by all the applications. All of
this software was written in C++ in parallel form using both OpenMP for shared memory
computations as well as MPI for message passing based distribution of work across nodes in
a supercomputer. C++ code written for this project totals about 32K lines of code.

11.1 Library

Most of the code written in support of this dissertation is in a shared library. Like any other
substantial project, it relies in turn on substantial code written by others who deserve credit
for their useful software. Prerequisites for the library include:

• GSL - The GNU scientific library.

• GMP - An arbitrary precision integer package.

• MPFR - An arbitrary precision floating point package.

• Cubature - A simple N-dimensional numerical integration package written by Steven
G. Johnson.

• LAPACK - A linear algebra package [46].

• FFTW - A fast Fourier transform package [47].

The library itself has the following subcomponents:
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• Vector and matrix support with direct, sparse graph, sparse compressed and one-the-
fly evaluation. Arithmetic operations are implemented with simultaneous use of both
OpenMP and MPI for parallelism. Matrix operations include inversion and eigenpair
generation.

• A parallel implementation of the Lanczos algorithm for computing low lying eigenpairs
of extremely large sparse matrices. Both OpenMP and MPI are used to achieve high
levels of parallelism.

• Special Functions: Lüscher’s zeta function, Laguerre polynomial, Legendre polyno-
mial, Hermite polynomal, spherical harmonics, spherical Bessel functions of complex
arguments.

• Harmonic oscillator functions for the 1D case and the radial function of the spherical
harmonic oscillator for large n.

• Various transform coe�cients: Clebsch-Gordan, 3J/6J/9J symbols, Moshinsky brack-
ets, and spherical Cartesian harmonic oscillator brackets.

• Cubic spline for interpolation.

• A uniform spherical random point generator for sampling the 2D surface.

• Binary input/output with cross platform support.

11.2 Hobfit - Fitting LECs

Hobfit solves an inverse eigenvalue problem. The input is a list of pairs of a target eigenvalue
and a parameterized matrix. Additional input describes the mapping from matrix indices
to states for either a Cartesian or spherical harmonic oscillator basis. The target eigenvalue
is the energy at which Heff was built. The parameterized matrix is Heff (E) with the
contributions of the LECs represented symbolically.

The problem is to pick a set of LEC values such that all input matrices have an eigenvalue
as near as possible to their target eigenvalue, and in the case of a Cartesian basis with the
appropriate angular momentum content for the associated eigenvector.

A control file specifies an initial set of LEC values and the set of LECs to be involved
in the fit. The control file also specifies the energy range or cost function options such as
enabling variance estimation by measuring derivatives of the fitting cost with respect to
LECs above the included order of LECs. Two fitting strategies are alternated in fitting.

The first strategy is to fit a quadratic surface to the cost function and then to solve for
the optimal location on this surface. The resulting point is used to define a line in LEC
space along which to search for an improvement. The job of generating and evaluating
points near the line is divided up over processes connected with MPI. The points to evaluate
are independently generated in each process beginning with a di↵erent pseudo random seed.
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The number of points in each process is chosen to obtain a target density of sampling. If
more MPI processes are used then the number of points tested in each process is reduced.

The second strategy is to attach to each LEC a distribution parameter that controls the
range of values generated for the LEC. The distribution parameters are independent and
are updated after each major iteration based on the change from the previous value. If the
motion is less than the distribution parameter then the distribution parameter is reduced
to the amount of motion with a minimum of 0.5 times the old value. Each MPI process
independently generates points around the last best point following these distributions. A
typical number of points for an N3LO or N4LO fit is 400,000 divided up over the MPI
processes.

The first strategy loses some e↵ectiveness at higher LEC order, but is cheap. The problem
seems to be that higher order derivatives become important and the direction found on the
quadratic surface is valid for shorter and shorter distances. The second strategy continues
to be e↵ective in high order fits and has some ability to recover from poor starting points
such as is shown in Figure (6.1).

11.3 Hoblat - HOBET in a box

The program name hoblat was originally meant to indicate a connection to LQCD, but hoblat
is really aimed at forming a Heff in a Cartesian harmonic oscillator basis in a periodic box.

Refering to Eq.(5.0.2), the most expensive parts of the computation are the matrix ele-
ments of VIR for edge states.

hj |GTQVIRGQT | ii =
X

m0,m,s,t

bjs
E

E � �m0
hs|m0i hm0 |VIR|mi hm| ti E

E � �m bti (11.3.1)

In the summation, m and m0 range over the momentum basis and s and t range over the
Cartesian harmonic oscillator basis. The inner part, hm0 |VIR|mi is independent of E and
is calculated once and reused for production of Heff (E) at multiple energies. Results are
saved to disk as they are produced and the computation is restartable. The choice of an
FFT based calculation or direct numerical integration is an option. For the demonstration
the momentum basis was cut o↵ at N = 30, yielding 4951 matrix elements.

When hoblat is run for a specific E it first produces Eq.(11.3.1) and saves it to disk. A last
run computes other parts of Heff and the result is saved to disk in the format expected by
hobfit. Part of this last run is the construction of V�. The construction is done symbolically
in terms of LECs in both Cartesian and spherical forms. The spherical form with the same
⇤ cuto↵ is transformed to Cartesian form using an implementation of spherical-Cartesian
brackets from Appendix A.6. Insisting that both forms represent the same object results in
a set of linear constraints between the two sets of LECS. Hoblat solves this set of equations
by repeatedly finding a constraint equation expressing a single Cartesian LEC in as a linear
combination of spherical LECs and substituting into all the other constraints. This simple
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strategy works because the next order of matrix elements introduces a single LEC in both
V� forms so the substitutions ripple up in order.

Hoblat produces matrices in Mathematica format representing the contributions of T ,
VIR, and V� to Heff (E). V� is rendered as list of terms each of which is product of an LEC
and a matrix. Additionally the energy E at which Heff was built and a mapping of matrix
indices to Cartesian harmonic oscillator states is included in the output. This enables the
fitting process in hobfit to evaluate the angular momentum content of eigenvectors of Heff

to aid in filtering out non-physical states.
A general testing strategy is that non-edge matrix elements are computed both directly

in the Cartesian harmonic oscillator basis and with the insertion of a resolution over the
identity with the momentum basis. Too small a cut o↵ on the momentum basis or a coding
error results in a significant di↵erence between the two calculations.

11.4 Hobme - Solving the Schrödinger Equation in a
large spherical harmonic oscillator basis

Hobme takes the matrix elements of H = T +V in a large harmonic oscillator basis. Matrix
elements of T are easily had using Eq.(A.4.1). V is more arbitrary so matrix elements must
in general be determined by numeric integration. For large nodal number n the harmonic
oscillator basis is di�cult to evaluate because the terms in the required Lagaurre polynomial
become large and of opposite sign, canceling to leave a small result. An arbitrary precision
implementation of the radial function was constructed to obtain the required accuracy. This
makes the individual numerical integrations slow, so OpenMP was used to parallelize the
computation of V matrix elements, producing reasonable runtimes. In hindsight, MPI would
have been a better choice as the calculations are independent and could have been spread
over more cores.

Once the matrix is produced, the eigenpairs are found with LAPACK and reported. If
the harmonic oscillator length scale is chosen to match the one used for the e↵ective theory
then the lower components of the eigenvectors form a useful reference to test the e↵ective
theory against.

A additional important use of this program is to implement a direct construction of non-
edge state matrix elements of V�. With a given energy E and matrix elements of T and V
one can simply compute

⌧

j

�

�

�

�

H
1

E �QH
QH

�

�

�

�

i

�

(11.4.1)

yielding a matrix of simple numbers. By doing this is a very large basis, say ⇤ >= 500,
the error associated with scattering through states left out of the calculation can be made
insignificant. If one then asserts that the matrix elements lying in P� equal the matrix
elements generated for V� in P� by Eq.(5.4.18) the result is a set of easily solvable linear
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equations for the LECs. This process was used in analysis of the energy dependence of LECs
shown in Figure (7.4).

11.5 Hobeig - Solving the Schrödinger Equation in a
Periodic Box

HOBET in a periodic volume requires a spectrum for the interacting particles. In it’s eventual
use with LQCD the spectrum will come from the energy eigenvalues or e↵ective mass of the
two nucleon propagator on the lattice. For testing purposes, the spectrum generated by a
potential in a periodic volume has the advantage that the same potential can be used in
infinite volume to generate bound states, phase shifts, and wave functions that are good
references to compare the e↵ective theory results to.

Numerically solving the 3D Schrödinger equations for an arbitrary potential is a surpris-
ingly challenging problem. Two methods usually in use for the problem are DMC (Di↵usion
Monte-Carlo) and the FDTD (Finite Di↵erence Time Domain) method [48]. Because of
the need for the determination of excited states the DMC method is not useful for testing
HOBET. The FDTD method is based on the same Euclidian time concept used in LQCD.
An initial state is evolved in Euclidian time with a discrete space time lattice, eventually
leaving only the ground state. The ground state can then be projected out of wave functions
saved at earlier times, exposing the excited states at the cost of numerical noise.

Because of the need for an accurate spectrum a decision was made to investigate an
alternative solver that solves the stationary Schrödinger equation on a discrete lattice. A
matrix is constructed where each row corresponds to a statement of the local correctness at
a lattice point of the Schrödinger equation with the Laplacian approximated by a di↵erence
operator acting on the lattice point and 6 neighbors and the potential evaluated at the lattice
point.

The next step is to find the low lying eigenstates of the matrix. A related situation
happens in nuclear structure calculations where a very large sparse matrix representation
of the Hamiltonian is constructed over an M-scheme basis discussed previously in Section
4. There, the Lanczos method is commonly used to find the low lying eigenstates of the
Hamiltonian, requiring a few hundred iterations to converge 10 or so states for large problems.
In operation, the Lanczos method repeatedly applies the matrix to an initial usually random
state. At each step the new result is expressed as a linear combination of the previous
state, the current state, and a new state and all new states are mathematically orthogonal
to the previous ones, forming a basis reflecting the strongest moments of the matrix and
matrix elements in that new basis. Eigenstates of the new, smaller dimension matrix quickly
converge to the extreme eigenstates of the original very large matrix.

One reason the Lanczos method works well for the nuclear structure problem is that a
modest number of applications of the Hamiltonian connects any two states in the basis that
are not protected from each other by a symmetry of the Hamiltonian. In the lattice case,
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each row of the matrix only connects immediate neighbors on the lattice. The resulting
convergence is known to be very poor for 1D problems and the lore is that it is also poor
for 2D and 3D problems. Initial experiments backed this notion up, taking a large number
of iterations to converge to inaccurate results for simple problems that could be solved more
directly as a reference. Before abandoning the method, the dependence on the lattice spacing
was investigated and found to be responsible for for the inaccurate results. Decreasing the
lattice spacing produced a working method, but with a very long runtime due to requiring
even more iterations. An alternative to decreasing the lattice spacing is to improve the
operators. The potential evaluation at the lattice point was replaced by an integration over
the volume associated with the lattice point. For rapidly changing potentials such as a sharp
edged spherical potential well the error is obviously reduced. A more important change is
the conversion from a 7 point stencil Laplacian to a 27 point stencil Laplacian [49]. This
change dramatically improves the rotational symmetry of the operator and the new operator
also connects lattice points that are farther away, reducing the number of iterations of the
Lanczos algorithm. An even larger stencil may continue the improvement, but at the cost
of substantially more matrix entries.

Hobeig implements the algorithm described above. For the demonstration problems
several thousand iterations, which can be thought of as 10 or so transits across the lattice,
are required to converge roughly 30 eigenstates on a 4503 lattice, which is more than 10
times the number of iterations required for the same dimension nuclear structure problem.
At completion each state is checked and the maximum error at any lattice point is reported
to measure the convergence of the state. The resulting eigenstates and program options are
saved to a large database for later analysis. This separation is made because large problems
will need to run on a many-node system, but the post run analysis is less demanding and
can be run on a desktop. The database is saved in a binary format that can be written and
read on di↵erent computer architectures such as IBM and Intel processors.

The post processing determines the angular momentum content of the states by numeri-
cally integrating against spherical harmonics near the edge on two closely placed shells and
using C.0.1 to compute the associated amplitude of the component.

The most important future improvement to hobeig is to support a variable lattice spacing
to more accurately model fast changing potentials such as the hard core of a realistic nu-
clear potential and to accurately compute the Laplacian where the wave function has large
curvature. Using a dense lattice only in these regions will reduce the size of the matrix
dramatically and improve both runtime and memory consumption.
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Chapter 12

Conclusions

The last component of the bridge from LQCD to nuclear structure is the construction of an
A-body e↵ective Hamiltonian for use in the configuration interaction shell model. Included
below is a sketch of that final construction. Questions of convergence and evaluation of some
remaining terms in the expansion remain as a future project.

In the last section, with the A-body sketch in hand, the results and contributions of this
work are summarized.

12.1 Next Step - A Sketch of the A-body E↵ective
Hamiltonian

A last part of the bridge between LQCD and nuclear structure is the construction of an
A-Body e↵ective Hamiltonian from the two-body e↵ective interaction constructed in prior
chapters. There will also be three- and four-body contributions eventually, so in the con-
struction from a two-body interaction we can defer contributions that involve a nucleon
interacting with multiple other nucleons.

A sketch of a possible construction follows. Most contributions have been evaluated in
terms of the two-body interaction, but a few interesting ones remain. It also remains to be
demonstrated that the expansion is well behaved with higher order contributions making
smaller contributions in a controlled way.

A-body HOBET refers to a rigorous application of e↵ective theory to A nucleons. This
sketch concerns itself with connecting that two-body interaction to a consistent A-body one.
One key factor is the definition of an included space. For translation invariance the proper
way to cut o↵ the included space is to limit the total excitation quanta for all particles. With
this definition of P a two body interaction in a A-body context will become sensitive to the
excitation of nucleons not directly included in the interaction. Nucleons not participating in
the interaction are known as spectators and the excitation of spectators limits the two-body
P space for interacting pairs of particles.
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It will also be seen that beginning with a two-body interaction that Heff naturally grows
3, 4, and N-body interactions.

12.1.1 A-Body Formulation

P is defined as a projection operator from the full Hilbert space to a subspace where the
total excitation quanta for all particles is limited to ⇤. Such a consistent energy cuto↵ is
required to maintain translation invariance. As usual the complementary projection operator
Q = 1� P is defined for the excluded space.

To begin, the assumption is that H may be decomposed into a sum of two body contri-
butions.

H =
X

i<j

Hij =
X

a

Ha (12.1.1)

Here each ordered pair {i, j} has been given a label a. The e↵ective Hamiltonian can be
written in a slightly compressed way.

Heff = P



H
E

E �QH

�

P = P

" 

X

a

Ha

!

E

E �QH

#

P (12.1.2)

The operator equation 1/(A� B) = 1/A+ (1/A)B(1/(A� B)) is used to reorganize Heff .

Heff = P

"

X

a 6=b

Ha
E

E �QHa

 

1 +
1

E
Q

 

X

b 6=a

Hb
E

E �QH

!!#

P (12.1.3)

Heff
a = Ha (E/ (E �QHa)) is used to denote the two-body part of the e↵ective Hamiltonian.

Performing the obvious repeated expansion on the right results the following expansion.

Heff = P

"

X

a

Heff
a +

1

E

X

a 6=b

Heff
a QHeff

b +
1

E2

X

a 6=b,b 6=c

Heff
a QHeff

b QHeff
c + · · ·

#

P (12.1.4)

Now evaluation of Heff needs to be understood. Q and P in the definition refer to the
total quanta for all particles. If one examines the interaction of a specific pair of particles,
say 1 and 2, then the excitations of the uninvolved particles will be una↵ected. The P space
can then be described as a sum over the possible total excitation value of the uninvolved
spectator particles ⇤S.

P =
⇤

X

⇤

S

=0

|⇤Si h⇤S| P
12

(⇤� ⇤S) (12.1.5)

This simply says that the P space for the pair 1,2 is reduced by the sum of the excitations of
the other particles. One should interpret |⇤Si h⇤S| as a projection operator for the subspace
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where the other particles total excitation is equal to ⇤S, in other words, the excitation of
the spectators. In a two body contribution for the pair a

Heff
a = Ha

E

E �QHa
(12.1.6)

there is the complication that the Q is the three body Q. Otherwise, this is the known 2
body e↵ective Hamiltonian. The total excitation of the other particles can range from 0 to
⇤, the maximum excitation for the system. Heff

a can now be written as a sum over the
spectator quanta ⇤S.



Ha
E

E �QHa

�

=

"

⇤

X

⇤

S

=0

Ha
E

E �Qa (⇤� ⇤S)Ha
Pa(⇤� ⇤S) |⇤Si h⇤S|
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(12.1.7)

Heff
a =

"

⇤

X

⇤

S

=0

|⇤Si h⇤S|Pa(⇤� ⇤S)Ha
E

E �Qa (⇤� ⇤S)Ha
Pa(⇤� ⇤S) |⇤Si h⇤S|
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(12.1.8)

The interpretation of this equation is straightforward. The usual two body Heff must
be constructed for a range of P spaces determined by the spectator excitation. With this
understanding the first term in Eq.(12.1.4) is easily evaluated.

To understand the evaluation of other terms it is helpful to decompose Heff
a into kinetic

and potential parts using the Haxton-Luu form of the Bloch-Horowitz equation.

Heff
a = T eff

a + V eff
a

T eff
a = GT

a

Q
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Ta + Ta
Q

E
Ta

◆

= GT
a

QTa = TaGQT
a

V eff
a = GT
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Q

✓

Va + Va
1

E �QHa
QVa

◆

GQT
a

A subset of the terms in Eq.(12.1.4) are pure sequences of T eff
x which can be removed and

implemented globally. Their sum must be equivalent to pure kinetic energy scattering of the
A-body state. The replacement is

⌦
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�T eff

�
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↵

= E
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⌧
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�
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E
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�
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�
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�◆

(12.1.9)

where n0 and n label A-body states in P . This expression may be evaluated by insertion of
states in a Jacobi basis in which T is diagonal [50].

The second term PHeff
a QHeff

b P can now be evaluated with the restriction that a 6\b. If
there is an intersection, then a single particle is involved with two other particles and we can
classify the interaction as a 3-body interaction, to be considered later. With that restriction

PHeff
a QHeff

b P = PPaH
eff
a PaQabPbH

eff
b PbP (12.1.10)
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where the quanta limits for the labled projectors are set by the quanta associated with the
state of spectators to the 4 involved particles. The central Pb projectors inserted next to
Qab states that the pair labeled b may not exceed the quanta limit for the 4 particles on it’s
own. If it did, then the total quanta for a and b could not be corrected by application of
Heff

a . The two parts on the right are complete 2-body interactions wrapped in projection
operators and are easily evaluated. Arbitrary sequences of Heff

x where the x do not overlap
can be evaluated in the same way.

Sequences of three Heff
x do produce a new situation that requires more study where each

particle interacts with at most one other particle. In the following, a does not intersect b.

PHeff
a QHeff

b QHeff
a P = PPaH

eff
a QPbH

eff
b PbQHeff

a PaP (12.1.11)

Pa can’t be inserted on both sides of Heff
a because the second instance of Heff

a can couple
an arbitrary state of pair a back to the P space. With a known potential such terms are
easily calculated in a large basis, the problem is to express the result in terms of the 2-body
e↵ective interaction. Summing such higher order terms, showing their convergence, and the
inclusion of three+ body interactions in the A-body e↵ective Hamiltonian will require more
investigation.

12.1.2 Reducing H(⇤)

eff to a Smaller P Space

In the formulation of the A-body Heff a need was found to produce the two body H(x)
eff

for all x 2 {0, . . . ,⇤}. As one would hope, the smaller P (x) space Heff can be determined
from the P (⇤) one. Let S(y) be a projection operator for states with exactly y quanta, then

P (⇤) = P (⇤� 1) + S(⇤) and Q(⇤) = 1� P (⇤� 1)� S(⇤). This enables a rewrite of H(⇤)

eff

in the following way.

H
E

E �Q(⇤)H
= H

E

E � (1� P (⇤� 1)� S(⇤))H
= H

E

E �Q(⇤� 1)H + S(⇤)H

This form is suitable for expansion by the operator equation 2.0.6 with A = E�Q(⇤� 1)H
and B = �S(⇤)H.

P (⇤)H
E

E �Q(⇤)H
P (⇤) = P (⇤)H

E

E �Q(⇤� 1)H
P (⇤)

✓

1� S(⇤)H
E

E �Q(⇤)H

◆

P (⇤)

The equation is wrapped in P (⇤) to complete the two body e↵ective interaction, and P (⇤)
has also been propagated from the P (⇤) on the right to the middle position, yielding two
P (⇤) space matrices. Solving for the first matrix on the right yields a matrix including the
desired smaller ⇤� 1 e↵ective interaction.

P (⇤)H
E

E �Q(⇤� 1)H
P (⇤) = H(⇤)

eff

n

P (⇤)
⇣

1� S(⇤)H(⇤)

eff

⌘

P (⇤)
o�1
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Finally, using P (⇤ � 1)P (⇤) = P (⇤ � 1) the left hand side is restricted to the ⇤ � 1 two
body e↵ective interaction.

H(⇤�1)

eff = P (⇤� 1)H
E

E �Q(⇤� 1)H
P (⇤� 1)

= P (⇤� 1)H(⇤)

eff

n

P (⇤)
⇣

1� S(⇤)H(⇤)

eff

⌘

P (⇤)
o�1

P (⇤� 1) (12.1.12)

Only the largest P space two body interaction need be constructed or fit, all smaller ones
are easily generated from the larger ones.



CHAPTER 12. CONCLUSIONS 116

12.2 Summary

Building on the prior work by Haxton, Song, and Luu on HOBET in which they demonstrated
the construction of a convergent harmonic oscillator based e↵ective theory from a known UV
potential, this work directly derives the e↵ective theory from a sample of the spectrum and
associated wave function boundary conditions. In one case the boundary conditions are the
familiar phase shifts and mixing angles.

The construction of the e↵ective Hamiltonian is directly from observables with a single
cuto↵ in the harmonic oscillator basis avoids a common pitfall in other e↵ective theory work,
a first cuto↵ in a momentum basis followed by a second cuto↵ in the harmonic oscillator
basis. The pitfall manifests as increasing errors when matrix elements in a large harmonic
oscillator basis are reduced to a small one and the violation of symmetries such as translation
invariance, which allows the center of mass oscillations to contaminate the spectrum. The
root cause of the problem is an overlap between the included harmonic oscillator basis and
the cut o↵ part of the momentum basis. HOBET avoids this problem by directly constructing
the e↵ective theory in the harmonic oscillator basis.

In testing of the resulting e↵ective theory against known potentials the relationship be-
tween scattering observables and energy was reproduced with constant LECs, including the
continuation to bound states and showing the continuity with energy achieved with HOBET.

As was argued, the residual energy dependence of the LECs is small, manifesting only
in the sensitive S-D channel as a small variation in the D and S channel wave function. A
heuristic was demonstrated to determine the LECs as a function of energy, but it should be
put on a more formal basis.

A second application of HOBET described here makes the connection to ongoing work in
LQCD which aims to measure the spectrum of two and eventually three-body scattering in
a periodic volume. In this second case, called HOBET in a box, the periodicity of the wave
function replaces the phase shifts and mixing angles and the spectrum is necessarily discrete.
A key result is that the Cartesian e↵ective theory in the periodic volume can be described
in terms of the LECs of the spherical infinite volume e↵ective theory. If the range of the
interaction R is smaller than L/2, the distance to the edge of the volume, then the finite
volume e↵ects are sequestered in Green’s functions. In the transition to an infinite volume
e↵ective theory the Green’s function boundary conditions are changed to phase shifts which
are determined by energy consistency of the infinite volume e↵ective theory. The result is
an e↵ective interaction.

Of interest to the LQCD community, HOBET in a box gives a new way to determine
phase shifts from a spectrum in a periodic volume that is demonstrated to be more accurate
than the commonly used Lüscher’s method when the potential actually has longer range than
L/2. The e↵ective interaction constructed in the periodic volume is parameterized in terms
of the spherical infinite volume LECs and then fit to the spectrum. The LECs are then used
to construct the infinite volume spherical form of the interaction, automatically removing
finite volume e↵ects from the construction of the infinite volume interaction. Phase shifts
are then easily determined as a consequence of energy self consistency of the Bloch-Horowitz
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equation.
The e↵ect of neighboring images of the potential is first absorbed in matrix elements of

VIR, leaving the kernel of the e↵ective theory expansion V� isolated from the e↵ect of the
periodic images. The degree to which the interaction goes to 0 at the edge is quantified by
the product m⇡L, with common values in calculations for this product from 4-8 and with
next generation calculations a bit larger. The comparison in this work had m⇡L = 10, larger
than in current use, and still had 1% errors from Lüscher’s method.

The connection to A-body HOBET was explored, sketching out how a 2-body e↵ective
interaction generates an A-body e↵ective interaction with 3 and higher body terms. The
inclusion of a fundamental 3-body interaction has not yet been investigated. Integration into
configuration interaction shell model code is straightforward but more time consuming to
run than the usual energy independent interactions because the algorithm will have to be
iterated to energy self consistency for each state. The prospect of an e↵ective theory correct
shell model code is exciting. Many persistent issues in nuclear physics are most likely due
to oversimplified treatment of operators, often involving the evaluation of bare operators
against distorted and cut o↵ wave functions. A rigorous construction of Heff o↵ers the
possibility of renormalizing operators in a matching way [14].

Improved 2-nucleon scattering data from LQCD will be coming in the next few years
and it is exciting to apply HOBET to that data in order to calculate the low lying states of
light nuclei. It has been a long term goal in nuclear physics to connect nuclear structure to
the fundamental theory of QCD [51]. In this dissertation much of a formal e↵ective theory
bridge has been constructed from a 2-nucleon spectrum generated by LQCD in a periodic
volume to an e↵ective interaction used in the construction of an A-body nucleon e↵ective
interaction, suitable for nuclear structure calculations, which will be an answer to the goal.
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Appendix A

The Harmonic Oscillator Basis

Much of the development of this thesis depends on the rich theory of the harmonic oscillator
in both 1D and 3D forms. This appendix will specify conventions and assemble and organize
the relevant facts and formulas about quantum harmonic oscillators. A list of conventions
used here are specified in Appendix E.

The base reference on the theory of 1D and 3D harmonic oscillators used here is Moshin-
sky’s book on the topic [36]. A notational di↵erence is that he used nodal quantum numbers
for the spherical harmonic oscillator starting with 0, instead of 1, which is used here. Also,
his ⌘i and ⇠i correspond to ⌘†i and ⌘i here.

It should be emphasized that the harmonic oscillator basis is used for calculation and
the harmonic oscillator Hamiltonian plays no other role than defining the properties of that
basis.

A.1 The Harmonic Oscillator Hamiltonian and Units

The harmonic oscillator basis is defined by a Hamiltonian and a choice of coordinate basis,
spherical or Cartesian. Letting M be twice the reduced mass µ of a two nucleon system.

Hho
⇢ =

P 2

M
+

M

4
!2⇢2 = �~2

M
r2

⇢ +
M!2

4
⇢2

Dimensionless energy values E = Energy/~! and radial coordinate r = ⇢/
�

p
2b
�

are
adopted with harmonic oscillator length scale b2 = ~/ (M!). Equivalently, one can adopt
units where ~ = 1, µ = 1 and ! = 1. Substituting this into the harmonic oscillator
Hamiltonian yields

Hho = �1

2
r2

r +
1

2
r2 (A.1.1)

An advantage of this choice of energy and length units is that the wave number for a free
wave is very simply related to the dimensionless energy. Substituting ~ = µ = 1 into the
usual relationship gives

k2 = 2E (A.1.2)
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E < 0 results in k = i
p

2 |E| = i where  =
p

2 |E|.

A.2 3D Cartesian Harmonic Oscillator

In the Cartesian basis there are independent oscillators in the x, y and z directions. Three
dimensional states are described by a vector of excitations counts ~n = (nx, ny, nz) for 1D
harmonic oscillators in the three basis directions. These excitation counts begin with 0.

The 1D eigenfunctions are given for the x direction below and are known as Hermite
functions, a product of a Gaussian and a Hermite polynomial.

 n (x) =
1

⇡1/4
p
2nn!

e�
1

2

x2

Hn (x)

Hn (x) = n!
bn/2c
X

q=0

(�1)q2n�2q

q! (n� 2q)!
xn�2q

(A.2.1)

These states have lowering and raising di↵erential operators

⌘i =
1p
2
(xi + ipi) =

1p
2
(ri + @i) and ⌘†i =

1p
2
(xi � ipi) =

1p
2
(ri � @i) (A.2.2)

The operators can be organized as vectors ~⌘ = (⌘x, ⌘y, ⌘z). They satisfy the commutation
relations

h

⌘i, ⌘
†
j

i

= �ij, [⌘i, ⌘j] =
h

⌘†i , ⌘
†
j

i

= 0

Angular momentum can be expressed in terms of the raising and lowering operators as

~L = (Lx, Ly, Lz) = �i ~⌘† ⇥ ~⌘ (A.2.3)

As vectors, they also have representation as spherical vectors

⌘m =

8

>

>

>

>

<

>

>

>

>

:

⌘
1

= � 1p
2
(⌘x � i⌘y)

⌘
0

= ⌘z

⌘�1

=
1p
2
(⌘x + i⌘y)

⌘†m =

8

>

>

>

>

>

<

>

>

>

>

>

:

⌘†
1

= � 1p
2

�

⌘†x + i⌘†y
�

⌘†
0

= ⌘†z

⌘†�1

=
1p
2

�

⌘†x � i⌘†y
�

The angular momentum operators can be expressed in terms of spherical operators as

Lz =
⇣

⌘†
1

⌘
1

� ⌘†�1

⌘�1

⌘

L
+

= Lx + iLy =
p
2
⇣

⌘†
1

⌘
0

+ ⌘†
0

⌘�1

⌘

L� = Lx � iLy =
p
2
⇣

⌘†�1

⌘
0

+ ⌘†
0

⌘
1

⌘

(A.2.4)
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The operator ⌘†m as well as the new operator ⌘̃m = (�1)m⌘�m both transform as rank-1
spherical tensors with magnetic projection m, e.g.,

h

L
+

, ⌘†
1

i

= 0
h

L
+

, ⌘†
0

i

=
p
2⌘†

1

h

L
+

, ⌘†�1

i

=
p
2⌘†

0

⇥

Lz, ⌘
†
m

⇤

= m⌘†m
h

L�, ⌘
†
1

i

=
p
2⌘†

0

h

L�, ⌘
†
0

i

=
p
2⌘†�1

h

L�, ⌘
†
�1

i

= 0

An important scalar operator that will find use as a nodal lowering operator is ~⌘ · ~⌘ = ⌘̃ · ⌘̃.
The dot product for spherical vectors results in a scalar and is defined as

~x · ~y =
1

X

m=�1

(�1)mxmy�m (A.2.5)

and is equivalent to the Cartesian vector dot product.
Any state of the 3D Cartesian Harmonic oscillator can be constructed by application of

the raising operators to the ground state.

|nx, ny, nzi = [nx!ny!nz!]
�1/2⌘nx

†
x ⌘ny

†
y ⌘nz

†
z |0, 0, 0i

A.3 3D Spherical Harmonic Oscillator

The basis has the usual decomposition into a radial part parameterized by a nodal quantum
number n 2 1 . . .1, and a Y m

` .

 n,`,m (r, ✓,�) = hn,` (r)Y
m
` (r̂)

hn,` (r) = rHn,` (r) =

s

2� (n)

� (n+ `+ 1/2)
r`+1e�r2/2L`+1/2

n�1

�

r2
�

(A.3.1)

L`+1/2
n�1

�

r2
�

=
n�1

X

j=0

(�1)j �(n+ `+ 1/2)

(n� j � 1)! �(j + `+ 3/2) j!
r2j (A.3.2)

where L is the associated Laguerre polynomial of Abramowitz and Stengun [35], which also
happens to match the convention followed in Mathematica. In a large basis, evaluation of
Eq.(A.3.1) can become quite expensive, requiring high precision (100’s of digits) to compute.
A recurrence relation given by Alvarez-Nodarse, et al. [52] can be used to compute a set of
basis state values at a given r, dramatically speeding up the process, though high precision
arithmetic will still be required.
p

(n�1)(n+`�1/2)Hn�1,`(r)+
�

r2� (2n+`�1/2)�Hn,`(r)+
p

n (n+`+1/2)Hn+1,`(r) = 0
(A.3.3)
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The spherical states can be manipulated with raising and lower operators as well. In
particular, an arbitrary state may be generated as

|n, `,mi = An`

�

~⌘ † · ~⌘ †�nY`m

�

~⌘ †� |1, 0, 0i

An` = (�1)n


4⇡

(2n+ 2`� 1)!!(2n� 2)!!

�

1/2 (A.3.4)

Exploiting the fact that |n = 1, ` = 0,m = 0i = |nx = 0, ny = 0, nz = 0i can be used to con-
struct brackets relating the Cartesian states to the spherical states.

Y`m (~r) = r`Y`m (r̂) is a solid harmonic and Y`m

�

~⌘ †� is a harmonic polynomial in the
Cartesian raising operators. This suggests correctly that the nodal lowering and raising
operators are (~⌘ · ~⌘) and

�

~⌘ † · ~⌘ †�. Moshinsky gives an easy way to see this by pointing

out that ⌘†i and ⌘j have the same commutation relations as xi and @j. Given this corre-
spondence, (~⌘ · ~⌘) will act on �

~⌘ † · ~⌘ †�nY`m

�

~⌘ †� in precise analogy to the action of r2 on
r2(n�1)Y`,m(r) = r2(n�1)r`Y`,m(r̂), yielding

r2r2(n�1)+`Y`,m (r̂) = 2(n� 1)(2n+ 2`� 1)r2(n�2)+`Y`,m (r̂) (A.3.5)

Applying this reasoning to both raising and lowering operators and combining this result
with the change in normalization constant An` between the starting and ending state results
one finds

(~⌘ · ~⌘) |n, `,mi = �2
p

(n� 1) (n+ `� 1/2) |n� 1, `,mi
�

~⌘ † · ~⌘ †� |n, `,mi = �2
p

n (n+ `+ 1/2) |n+ 1, `,mi
(A.3.6)

A raising operator for ` will also be needed. ⌘† is a rank one spherical operator meaning that
the tensor product of ⌘† with |n, `,mi will generate overlap with angular momentum values
`+ 1, `, and `� 1. The raised part can be projected out.

⇥

⌘† ⌦ |n, `i⇤`+1

m
=

r

2 (`+ 1) (n+ `+ 1/2)

2`+ 3
|n, `+ 1,mi (A.3.7)

The scaling must be independent of m, so the coe�cient may most easily be determined by
raising |n, `, `i to |n, `+ 1, `+ 1i which will have a single contribution to the tensor product.
To declutter the notation raising and lowering operators are defined.

â† |n, `,mi = �

~⌘† · ~⌘†� |n, `,mi = �2
p

n (n+ `+ 1/2) |n+ 1, `,mi (A.3.8)

â |n, `,mi = (~⌘ · ~⌘) |n, `,mi = �2
p

(n� 1) (n+ `� 1/2) |n� 1, `,mi (A.3.9)

ĉ† |n, `,mi = ⇥

⌘† ⌦ |n, `i⇤`+1

m
=

r

2 (`+ 1) (n+ `+ 1/2)

2`+ 3
|n, `+ 1,mi (A.3.10)

The corresponding ` lowering operator scaling can be determined by insisting that
⌦

n, `+ 1,m
�

�ĉ†
�

�n, `,m
↵

= hn, `,m |ĉ|n, `+ 1,mi and assuming that |m|  `� 1.

ĉ |n, `,mi =
r

2` (n+ `� 1/2)

2`+ 1
|n, `� 1,mi (A.3.11)
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The iterated ` raising operator is used in producing matrix elements of V�.

ĉ†` |n, 0, 0i = 2
`

2

s

`!

(2`+ 1)!!

s

� (n+ `+ 1/2)

� (n+ 1/2)
|n, `,mi (A.3.12)

A useful property of these operators that can be found by application to an arbitrary
state is that

[ĉ, â] = 0 (A.3.13)

Both lowering operations can also be implemented by di↵erential operators on the ra-
dial part of the position space wave function. This is useful for evaluating e↵ective theory
operators on the infinite superpositions of harmonic oscillator states used for HOBET edge
states.

A.4 Kinetic Energy Operator T

The kinetic energy operator, T = �(1/2)r2, acting on SHO states is a hopping operator in
label n 2 1 . . .1, mapping state n to a superposition of neighboring states with the same `.
See Moshinsky eqn 3.10 [36] for a derivation.

T |n, `,↵i = 1

2

2

4

p

n (n+ `+ 1/2) |n+ 1, `,↵i+
(2n+ `� 1/2) |n, `,↵i+

p

(n� 1) (n+ `� 1/2) |n� 1, `,↵i

3

5 (A.4.1)

An important property of T is that its application leaves angular momentum quantum
numbers una↵ected. This property propagates to (E � T ), 1/(E � T ) and 1/(E � QT ) as
well.

A.5 Di↵erential Forms of Raising and Lowering
Operators

The e↵ective theory expansion will require the application spherical lowering operators to
arbitrary radial wave functions. One method would be to decompose the wave function into
the SHO basis and then apply Eq.(A.3.9). This would be computationally expensive. A
more e�cient approach is the use of di↵erential operators to implement the lowering. The
operators can depend on ` because separate the angular momentum channels, but may not
depend on the nodal quantum number.

These operators can be constructed from the following first order operators described
by Lui and Zeng in [53] with the first up/down arrow referring to ` and the second to
N = 2(n � 1) + `, which describes the energy E = (N + 3/2). These di↵erential operators
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should be applied to the radial wave function in the form of hn` (r) = rHn`(r).

d̂""hn,`(r) = (@r � (`+ 1) /r � r)hn,`(r) = �2
p

n+ `+ 1/2 hn,`+1

(r)

d̂"#hn,`(r) = (@r � (`+ 1) /r + r)hn,`(r) = �2
p
n� 1 hn�1,`+1

(r)

d̂#"hn,`(r) = (@r + `/r � r)hn,`(r) = 2
p
n hn+1,`�1

(r)

d̂##hn,`(r) = (@r + `/r + r)hn,`(r) = 2
p

n+ `� 1/2 hn,`�1

(r)

(A.5.1)

For example, the nodal quantum number di↵erential lowering operator â which is equivalent
to (~⌘ · ~⌘) is defined as

â hn,`(r) =
1

2
d̂##d̂"#hn,`(r) = �2

p

(n� 1) (n+ `� 1/2)hn�1,`(r)

â =
1

2

✓

@2r �
`(`+ 1)

r2
+ 2r@r + r2 + 1

◆

â = �T +
1

2

�

1 + r2 + 2r@r
�

(A.5.2)

The operator can also be cast in a form useful for operating on Hn`(r) instead of hn`(r).

â Hn,` (r) =



�T +
1

2

�

3 + r2 + 2r@r
�

�

Hn,` (r) (A.5.3)

The forms expressed in terms of T will be useful when applying the lowering operator to
edge states formed in part by the application of the Green’s function E/(E � T )

A last required operator is ĉ, which lowers ` by 1 while holding n constant to implement
the nuclear tensor interaction.

ĉ hn,`(r) =

r

2`

2`+ 1

1

2

✓

@r +
`

r
+ r

◆

hn,`(r) =

r

2`

2`+ 1

p

(n+ `� 1/2) hn,`�1

(r) (A.5.4)

The operator can also be written for Hn,` as

ĉ Hn,`(r) =

r

2`

2`+ 1

1

2

✓

@r +
`+ 1

r
+ r

◆

Hn,` =

r

2`

2`+ 1

p

(n+ `� 1/2)Hn,`�1

(r) (A.5.5)

A.6 Spherical Cartesian Brackets

The states of the 3D harmonic oscillator can also be expressed in Cartesian form as the
simple product of 3 1D harmonic oscillator states |nx, ny, nzi where nx indicates the number
of quanta in the oscillator along the x-axis. Expressed either way, there are the same number
of states for each energy eigenvalue. The unitary transform hn, `,m|nx, ny, nzi for m � 0
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is given by Davies and Krieger in [54]. Modified to match the conventions used here the
bracket is

�
2(n�1)+`,n

x

+n
y

+n
z

(�1)(2(n�1)+n
x

+n
y

�m)/2 iny



(2`+ 1) (`�m)! (n� 1 + `)!

2` (`+m)! n! (2(n� 1) + 2`+ 1)!

�

1/2

⇥
✓

nx + ny +m

2

◆

! [nx! ny! nz!]
1/2

"

1 + (�1)(nx

+n
y

+m)

2

#

⇥
s
max

X

s=s
min

(�1)s (2`� 2s)! (n� 1 + s)!

s! (`� s)! (`� 2s�m)! (n� 1 + s� (nx + ny �m) /2)!

⇥
p
max

X

p=p
min

(�1)p
p! (nx � p)! (p+ (ny � nx �m) /2)! ((nx + ny +m) /2� p)!

(A.6.1)
with the understanding that the factorial of a negative value is to be treated as 0 and limits
are set by

s
min

=

⇢

0 n > (nx + ny �m) /2
(nx + ny �m) /2 n 6 (nx + ny �m) /2

s
max

=

⇢

(`�m) /2 (`�m) odd
(`�m� 1) /2 (`�m) even

p
min

=

⇢

0 ny > nx +m
(nx � ny +m) /2 ny 6 nx +m

p
max

=

⇢

nx nx < ny +m
(nx + ny +m) /2 nx > ny +m

For negative m the bracket can be transformed as

hn, L,�m|nx, ny, nzi = (�1)m hn, L,m|nx, ny, nzi⇤ (A.6.2)

This expression can be found by inserting the operator 1 = T̂ †T̂ acting to the right where T̂ is
the time reversal operator and then reversing the direction of T̂ †, noting that T̂ |n, L,�mi =
(�1)m |n, L,mi. Conjugation is the result of the change of direction of the anti-linear oper-
ator T̂ †.

A.7 Brody-Moshinsky Brackets

Brody-Moshinsky brackets [30] implement a unitary transform between the states of a pair
of independent harmonic oscillators and a pair of relative and center of mass oscillators. A
common use of these brackets is in the implementation of integrals of functions of relative
coordinates in a basis of independent oscillators. Buck and Merchant [55] developed a useful
generalization, which is used here, to the case where the two oscillators labeled x and y have
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di↵erent length scales b2i = ~/(µi!i) and tan � = by/bx characterizes the relationship of the
oscillator parameters. The states of the independent oscillators are specifed with nx, `x and
ny, `y. The relative and center of mass oscillator states are specified with n, ` and N,L. N is
not to be taken as an energy quantum number in this section. On both sides of the bracket
the oscillator angular momentums are coupled to total angular momentum ⇤ and the result
is independent of the z component of total angular momentum which must be conserved.
Their expression for the bracket connecting independent oscillators to the relative and CM
oscillators with nodal numbers n and N is

n
4

= n� 1, `
4

= `, n
3

= N � 1, `
3

= L, n
2

= ny, `2 = `y, n
1

= nx � 1, `
1

= `x
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Y
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i�`
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⇥
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(�1)`d(sin �)2a+`

a

+2d+`

d

(cos �)2b+`
b

+2c+`
c

8

<

:

`a `b `
1

`c `d `
2

`
3

`
4

⇤

9

=

;

⇥
d
Y

p=a

(�1)`p
p
2`p (2`p + 1)

p! (2 (p+ `p) + 1)!!
h`a0`b0| `10i h`c0`d0| `20i h`a0`c0| `30i h`b0`d0| `40i

#

The inner product over p should be read as p takes on the 4 labels a, b, c, d. The summation
over 8 variables above is constrained by

2a+ `a + 2b+ `b = 2n
1

+ `
1

2c+ `c + 2d+ `d = 2n
2

+ `
2

2a+ `a + 2c+ `c = 2n
3

+ `
3

2b+ `b + 2d+ `d = 2n
4

+ `
4

The new relative and center of mass coordinates are

r = rx cos � � ry sin �

R = rx sin � + ry cos �

As long as !x = !y R will be the center of mass coordinate.
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Appendix B

Spherical Green’s Function and
Action on Harmonic Oscillator States

This appendix collects together technical details about the the Green’s function for E/(E �
QT ) in spherical coordinates, which plays a central role in HOBET. The use of phase shifts
as boundary conditions for the Green’s functions creates a kind of basis transform of P
for the e↵ective Hamiltonian that restores the IR behavior of the full wave function from
the truncated harmonic oscillator basis. It is what makes HOBET IR-correct, enabling an
analytic sum of the impact of repeated scattering through the excluded Q space by the
kinetic energy operator T and also implements a large part of the renormalization of the
potential.

The sections below begin with the decomposition of E/(E � QT ) to separate the e↵ect
of Q, which complicates the construction of the Green’s function. Next, analytic expressions
for matrix elements of the Green’s function with phase shift boundary conditions in a har-
monic oscillator basis are derived. And last, the action of the Green’s function on harmonic
oscillator states is also computed in analytic form.

Numerical calculations are often much simpler to implement, but because e↵ective op-
erators involve high order derivatives the results are noisy and damage results. However,
numerical calculations have been an essential crosscheck of the analytic forms below.

B.1 E/(E-QT) Decomposition

The presence of the operator Q in the resolvent greatly complicates the construction of a
Green’s function. Fortunately the decomposition for E/(E � QT ) can be found in Luu’s
thesis [32].

E

E �QT
P =

E

E � T

⇢

P
E

E � T
P

��1

P (B.1.1)

This is such a central result that it is worth including a derivation with some additional
commentary. First a supporting lemma is needed that comes immediately from application
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of Eq.(2.0.6).
E

E � T
= 1 + T

1

E � T
(B.1.2)

Letting A = E � T and B = �PT then E � QT = A� B the same operator equation can
be used again to isolate 1/(E �QT ) inside a pair of P projection operators.

1

E �QT
P =

1

E � T

✓

1� PT
1

E �QT

◆

P (B.1.3)

This is already a win as the part isolated in the pair of projection operators is simply a
matrix. Next a simpler way to evaluate the matrix is needed . Substituting Eq.(B.1.3) into
the matrix will allow a solution for the matrix in terms of 1/(E � T ).

PT
1

E �QT
P = PT

1

E � T
P � PT

1

E � T
PT

1

E �QT
P

P

✓

1 + T
1

E � T

◆

P PT
1

E �QT
P = P T

1

E � T
P (B.1.4)

Re-writing with Eq.(B.1.2) results in an equation involving P space matrices.
⇢

P
E

E � T
P

�

PT
1

E �QT
P = P �

⇢

P
E

E � T
P

�

P

Multiplying through by the inverse of the left hand matrix the desired result is obtained.

PT
1

E �QT
P =

⇢

P
E

E � T
P

��1

P � P

Substitution into Eq.(B.1.3) and multiplication by E yields Eq.(B.1.1). Often the equation
is written using index notation with an implied summation over j.

E

E �QT
Pi =

E

E � T

⇢

P
E

E � T
P

��1

i,j

Pj (B.1.5)

In this form it is clear that one can apply the linear operator E/(E � T ) directly to all the
basis states in P and then sum over the matrix elements, which for a given value of E are
just constants.

This equation gives a direct way to numerically evaluate E/(E�QT ) Pi using a di↵eren-
tial equation solver. The wavefunctions produced in this way are useful for testing, but will
be too noisy for application of e↵ective operators. Instead, analytic forms are pursued so
that the higher order derivatives used in the e↵ective operators can be accurately evaluated
for edge states.

The remaining issue in computing E/(E � QT ) Pi is the implementation of a Green’s
function for E/(E � T ), which is covered in the following sections.
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B.2 The Free Green’s Function G0

Two representations are needed of the Green’s function for G
0

= 1/(k2+r2) where E/(E�
T ) = k2G

0

. The first representation is expressed in ~x = (~r 0 � ~r) and will be used in
section B.5 to take matrix elements of E/(E � T ). The second is decomposed into angular
momentum channels with a radial Green’s function for each channel and is used everywhere
else.

Applying the operator to the Fourier representation of G
0

(~x) yields

�

k2 +r2

� 1

(2⇡)3

Z

d3p G
0

⇣

~k
⌘

e�i~p·~x = �(3) (~r)

1

(2⇡)3

Z

d3p
�

k2 � p2
�

G
0

⇣

~k
⌘

e�i~p·~x = �(3) (~r)

To form a delta function one must have G
0

⇣

~k
⌘

= 1/ (k2 � p2). The next step is to convert

to a position space form and change to more convenient spherical coordinates with the z-axis
aligned with ~x. Now only the magnitude |x| of ~x is needed.

G
0

(~x) =
1

(2⇡)3

Z

d3p
1

k2 � p2
e�i~p·~x =

1

(2⇡)3

Z

d�d✓dp p2 sin ✓
1

k2 � p2
e�ip|x| cos ✓

� can be immediately integrated out and the substitution u = � cos ✓ is made.

G
0

(~x) =
1

4⇡2

1
Z

0

dp p2
1

Z

�1

du
1

k2 � p2
eip|x|u = � i

4⇡2 |x|

1
Z

0

dp p
eip|x| � e�ip|x|

k2 � p2 ± i"

The final integration of the two terms can be completed by contour integration where the
±i" selects between two options for avoiding the poles at p = ±k. eipx should be closed in
the upper half plane and e�ipx in the lower plane. The two resulting options for a Green’s
function are

G
0

(~x) = � i

4⇡2 |x|2⇡i
⇣

�⇡
2

⌘

e±ik|x| = �e±ik|x|

4⇡ |x|
These Green’s functions can be averaged to produce a real Green’s function which is more
convenient.

G
0

(~r � ~r 0) = �cos k |~r � ~r 0|
4⇡ |~r � ~r 0| (B.2.1)

This Green’s function is known as a “free” green’s function.

B.3 G0 With Phase Shifts

For other uses of G
0

a decomposition into angular momentum channels is needed with a
phase shift in each channel. A related development of a di↵erent Green’s function may be
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found in Jackson[56], page 427. As before, the first step is the application of the operator
(k2 +r2) to the Green’s function, but producing a spherical coordinate delta function.

�

k2 +r2

�

G
0

(~r,~r 0) =
1

r2
� (r � r0) � (r̂ � r̂0)

The completeness theorem gives us an angular delta function representation.

1
X

`=0

X̀

m=�`

Y ⇤
`m (r̂)Y`m (r̂0) = � (r̂ � r̂0)

This suggests that the solution can be found as a linear combination of these terms

G
0
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1
X
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0` (r, r

0)Y`m (r̂) Y ⇤
`m (r̂0)

Using r2 (f (r)Y m
` (r̂)) = [(@2r + (2/r) @r � ` (`+ 1) /r2) f (r)]Y m

` (r̂) the gradient operator
can be applied to G

0

.
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k2 +r2

�

G
0
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1
X

`=0
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✓
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r
@r + k2 � ` (`+ 1)

r2

◆

G` (r, r
0)

�

Y`m (r̂) Y ⇤
`m (r̂0)

For this to work, the bracketed expression must generate radial part of the delta function,
separating G

0

into a radial Green’s function per angular momentum channel.
✓

@2r +
2

r
@r + k2 � ` (`+ 1)

r2

◆

G` (r, r
0) =

1

r2
� (r � r0) (B.3.1)

Multiplying both sides on the left by r r0 and then commuting over the di↵erential operator
allows reexpressing the equation in terms of g`(r, r0) = rr0G`(r, r0).

✓

@2r + k2 � ` (`+ 1)

r2

◆

g` (r, r
0) = � (r � r0) (B.3.2)

The solutions to the homogeneous part are known to be the spherical Bessel functions rj`(r)
and r⌘`(r). One can construct a radial Green’s function from a linearly independent pair of
solutions of the homogeneous part of the above di↵erential equation above. The pair consists
of an inner and an outer solution which meet boundary conditions at the origin and infinity
respectively. The constructed Green’s function with constant K to be determined later is:

g` (r, r
0) = K

⇢

u`,in(r) u`,out(r0) r  r0

u`,in(r0)u`,out(r) r > r0

The crossing of r0 and r yields a derivative discontinuity, producing a delta function when
acted on by the di↵erential operator.
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The inner solution must go to 0 at the origin, so the only choice is uin,`(r) = rj`(r). To
constrain the outer solution one observes that the Green’s function will be applied to wave
functions in a truncated harmonic oscillator basis. Such wave functions are bounded to some
range R and for r > R results in

 (r) =

1
Z

0

dr0g`(r, r
0)hn,`(r

0) = Ku`,out(r)

0

@

R
Z

0

dr0u`,inhn,`(r
0)

1

A

The parenthesized expression is simply a constant, and at large r it is seen that  (r) is
a constant times a linear combination of j`(r) and ⌘`(r). This combination will need to
reproduce the target phase shift �` as r !1, so the outer solution must have the form.

u`,out(r) = r (� cot (�`) j`(kr) + ⌘`(kr))

Which at large r reduces the expected form.

u`,out(r) !
r!1
� 1

sin (�`)

⇣

cos (�`) sin(kr � `⇡
2
) + sin (�`) cos(kr � `⇡

2
)
⌘

= � 1

sin (�`)
sin(kr + �` � `⇡

2
)

There are two important points. First, this outer solution remains correct for bound states
where cot (�) = i. Second, the form of the long range wave function is independent of the
bounded wave function to which the Green’s function is applied. Only the amplitude of the
long range wave function is a↵ected by the source.

A last step in the construction of the radial Green’s function is the determination of K,
which is essentially a normalization value for the bend at r = r0. As the di↵erential equation
is of a Sturm-Liouville form, K is a constant easily determined from the Wronkskian of the
inner and outer solutions.

K =
1

u0
`,out(r)u`,in(r)� u0

`,in(r)u`,out(r)
= k

The final radial Green’s function is then

rr0G`(r, r
0) = g` (r, r

0) = krr0
⇢

j`(kr) (� cot (�`) j`(kr0) + ⌘`(kr0)) r  r0

j`(kr0) (� cot (�`) j`(kr) + ⌘`(kr)) r > r0
(B.3.3)

The free Green’s function from the previous section is related to G` with cot(�) = 0.

G
0free (~r,~r

0) =
X

`,m

G` (r, r
0)Y`,m(r̂)Y`,m(r̂

0), cot (�`) = 0
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B.4 Applying E/(E�T ) to Harmonic Oscillator States

Numerical results are much better if the Green’s function from Eq.(B.3.3) is applied analyt-
ically.

1
Z

0

dr0 g` (r, r
0)hj` (r

0) =kr (� cot �` j` (kr) + ⌘` (kr))

r
Z

0

dr0r0j` (kr
0)hj` (r

0) (B.4.1)

� k cot �` rj` (kr)
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+ krj` (kr)

1
Z

r

dr0r0⌘` (kr
0)hj` (r

0)

The harmonic oscillator wave function expands to terms that are a Gaussian times a power
of r. The key building block integral, with m > ` is:
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(B.4.2)

In which the spherical Bessel function has been expanded using Rayleigh’s formula. The
result can be integrated by parts.

= (�k)�1e�r2/2rm(�kr)`�1
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(B.4.3)

By restoring the Bessel functions one obtains a simple recursion relation for the integral.

= �1

k



e�r2/2rmj`�1

(kr)+

Z

dr e�r2/2rm+1j`�1

(kr)� (m+`�1)
Z

dr e�r2/2rm�1j`�1

(kr)

�

The recursion relation can be repeatedly applied until all terms requiring integration contain
the Gaussian, j

0

and a positive power of r. The same steps apply to integrals involving ⌘`.
The base integrals can be constructed by taking derivatives with respect to k.
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To complete the process the base cases of the integral of a Gaussian and sin or cos are needed
and can be obtained by expanding the sin or cos to exponentials, followed by completing the
square of the resulting exponents.
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For real k, this result can be transformed to eliminate complex values.
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Two new functions Reerf and Imerf are defined above. These functions have simple deriva-
tives which can be specified to symbolic mathematics packages such as Mathematica.
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p
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p
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2�x2
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For imaginary k, the argument of the erf (z) function will be real. The integrals can be
restated in terms of  = �ik.
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1
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
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◆
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✓
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k

Z
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Z
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
e
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✓

erf

✓
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◆
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✓
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2

◆◆

/2

Again it is convienient to define a special function for the combination of erf functions.
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2

◆
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/2 = Aerf
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p
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This combination also has simple derivatives.
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The last step for imaginary k is to replace spherical Bessel functions of imaginary arguments,
resulting in an even power of i in all terms, eliminating imaginary values.

j` (iz) =

r

⇡

2z
i`I`+1/2 (z)

⌘` (iz) =

r

⇡

2z
i`+1

✓

I`+1/2 (z) + (�1)` 2
⇡
K`+1/2 (z)

◆

Finally, the resulting analytic integrals can be combined with the matrix elements of
E/ (E � T ) to give h~r | E

E�QT |n `mi for edge states, enabling simple generation of edge state
matrix elements of V .

B.5 E/(E-T) Matrix Elements

The matrix elements
⌦

na`ama

�

�

1

E�T

�

�nb`bmb

↵

can be computed analytically. First, the free
Green’s function can be written either in Cartesian form or decomposed across angular
momentum states. It will be convenient to use the Cartesian form for matrix elements of
the free Green’s function. This equivalence is valid for both real and imaginary k.

E

E � T
= k2G

0

= �k2

cos k |r� r0|
4⇡ |r� r0| = k3

X

`m

⇢

j` (kr) ⌘` (kr0) r < r0

⌘` (kr) j` (kr0) r > r0

�

Y`m (⌦)Y ⇤
lm (⌦)

(B.5.1)
The phase shift requirement is satisfied with a homogeneous term scaled by cot �` to produce
the right long range linear combination of j` (kr) and ⌘` (kr). For bound states cot�` = i,
yielding a cancelation of imaginary parts and a an exponentially decaying wave function.
The product of two copies of j` (kr) is real for imaginary k as is kcot�`. See Eq.(B.5.5)
below.

Ghom = �k cot �`
X

`m

j (kr) j (kr0)Y`m (⌦)Y ⇤
lm (⌦) (B.5.2)

Some expansions and integrals necessary for computation of the matrix elements are
summarized here. The harmonic oscillator basis, with nodal quantum number n=1,2,... is

Hn` (r) =

s

2� (n)

� (n+ `+ 1/2)
e�r2/2r`L`+1/2

n�1

�

r2
�

(B.5.3)

L`+1/2
n�1

(r) =
n�1

X

i=0

✓

n+ `� 1/2
n� i� 1

◆

(�1)i
i!

ri (B.5.4)

This tells us how complex arguments a↵ect j`.

jn(iz) =

r

⇡

2z
i�1/2Jn+1/2(iz) =

r

⇡

2z
inIn+1/2(z) (B.5.5)
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Important integrals generated by Mathematica follow.
1
Z

0

dr e�r2/2r`+2i+2j` (kr) = 2i�
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2k`
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2
, `+
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(B.5.6)
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p
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⇢2j+1 = 2jj!
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j + 1, 1/2, �k2
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(B.5.7)

For the following one expands the Laguerre polynomial in HN0

and sums the resulting terms.
1
Z

0

dR R2 HN0

(R) = (�1)N�12
p

� (N + 1/2) /� (N) (B.5.8)

The free Green’s function contribution is computed first and the homogeneous part is
done separately.
⌧
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�

�

�

E

E � T

�

�

�

�

nb`bmb

�

free

=�k2�`
a

`
b

�m
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Z

dr r2Hn
a

`
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(r)

Z

dr0 r02
cos k |r� r0|
4⇡ |r� r0| Hn

b

`
b

(r0)

(B.5.9)
Brody-Moshinsky brackets [30] can be used to to perform a coordinate transform on the input
and output harmonic oscillator states from independent oscillator coordinates to relative and
center of mass oscillator coordinates. An analytic expression suitable for implementation on
a computer was provided by Davies and Krieger [54] and can be found in Appendix A.7.

For the coordinate transform the key notion is that the operator E/(E�T ) is a scalar, so
the ket and conjugated bra state must couple to an ` = 0, m = 0 state which is then coupled
via the Brody-Moshinksy brackets to the relative and center of mass harmonic oscillator
states. Because the result is not dependent on orientation, the magnetic quantum numbers
can be set to 0, ma = mb = 0. Given that `a = `b following equations will use ` for the
common value.

h`, 0, `, 0| 0, 0i = (�1)`p
2`+ 1

(B.5.10)

The new coordinates after the transform will be ⇢ = (r� r0) /
p
2 and R = (r+ r0) /

p
2 with

Jacobian 1. In making the transformation the sum is over the compatible nodal numbers
for the center of mass and relative oscillators. The energy constraint N + n = na + nb + `
gives the range of the sum over n and determines N from n. The 4⇡ is absorbed into the
constant ` = 0 spherical harmonics that are immediately integrated away, leaving only radial
coordinates.

⌧
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(B.5.11)
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The resulting integrals over ⇢ and R are now separable. The key integral can be had by
expanding the Laguerre polynomial in the harmonic oscillator basis function and summing
over the terms in the polynomial. The final integral in this expansion is Eq.(B.5.7).
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(B.5.12)
The integral over R is Eq.(B.5.8). Combining all pieces results in:
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(B.5.13)

The next part is the homogeneous contribution that is responsible for matching boundary
conditions. For scattering states cot �` is real. Bound states result in cot �` = i. The negative
energy finite volume lattice states which are extrapolated to infinite volume result in a pure
imaginary cot �`. The following form works uniformly in all three cases.

⌧
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` (r
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0)

There are two identical integrals to compute. The next step is expanding the Laguerre
polynomial and summing over the integrals of the terms. The remaining integral in the
expansion is Eq.(B.5.6).
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Finally, the pieces are substituted.
⌧
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(B.5.14)
Summing the free Green’s function matrix elements, Eq.(B.5.13), and the homogeneous term,
Eq.(B.5.14), matrix elements produces the complete result.
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Appendix C

Measuring the Angular Momentum
Content of a Free Wave

When a free wave is represented in a form other than a decomposition over spherical har-
monics there is often a need to extract the amplitudes of the asymptotic wave functions in
the di↵erent angular momentum states. Two representations used in this dissertation where
this applies are wave function values on a lattice in a periodic box and a decomposition
over a harmonic oscillator basis. The measurement should be done outside the radius of a
potential, but close enough to the origin to avoid the edge of the box or the truncation of
the harmonic oscillator expansion.

The radial wave function is assumed to have the following standard form.

u` (r) = A` kr (sin �` ⌘` (kr)� cos �`j` (kr))
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r
� A`k
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(C.0.1)

Terms are isolated using two intermediates X and Y constructed from known values.
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The result is assembled as a matrix equation.
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Isolate A`.

Z` =

✓

⌘` (kr) (�j` (kr))
⌘`+1

(kr) (�j`+1

(kr))

◆�1

✓

X`

Y`

◆

= A`

✓

sin �`
cos �`

◆

A2

` = Z` · Z`

The calculation is finished by dividing the HO components of the state by A`. The low order
components are then the overlaps with the P space.

In the two uses cases mentioned at the beginning, the derivative of the radial function
is computed by repeating the integration of the wave function against a Y`,m at two closely
space radii.
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Appendix D

FFT Based Matrix Elements of
⌦

j
�

�GTQV GQT
�

� i
↵

in a Periodic Volume

In Section 9.3 the matrix elements of V⇡ were reduced to computing a large set of integrals
of the form

Z

V

d~x e±i~m·~xW (~x)

An inexpensive way to compute these integrals is an FFT. Following the convention used in
FFTW [47] the backward FFT is defined as:

I~k =
X

~j2V

W~je
2⇡i

n

~k·~j

V is the set of integer positions with 0  ji < N for each component i. Position N
corresponds to wrapping back to position 0 in a periodic volume. Discrete positions are
described by an integer vector ~m,mi 2 {�N/2 + 1 . . . N/2} so that ~x = (L/N) ~m. Letting
~N = (N,N,N) , the position x can be related to the index ~j used in the definition of I~k as

~m = ~j � ~N/2 +~1

~x = (L/N) ~m = (L/N)~j + ~L (1/N � 1/2)

(L/N)~j = ~x� ~L (1/N � 1/2)

~j = (N/L) ~x� ~N (1/N � 1/2)

~j = (N/L) ~x+ ~N/2�~1
The definition of I~k is rewritten in terms of ~m and ~x.

I~k =
X

~j

W~je
2⇡i

N

~k·~j = e
2⇡i

N

~k·( ~N/2�~1)
X

~m

W~me
2⇡i

N

~k·(N/L)~x

I~k = e(1�
2

N

)⇡i
P

k
ie�

2⇡i

N

k
X

~m

W~me
2⇡i

L

~k·~x



APPENDIX D. FFT BASED MATRIX ELEMENTS OF hj |GTQV GQT | ii IN A
PERIODIC VOLUME 144

The final sum is of course an approximation to an integral.

I~k ⇡ e(1�
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(D.0.1)

Note that frequency �~k is equivalent to ~N � ~k.



145

Appendix E

Conventions

To spare the reader from guessing about conventions the choices are detailed here.

E.1 External

• The constants ~, ! (the oscillator frequency), and µ (the oscillator mass) are all set to
1.

• The spherical harmonic oscillator basis nodal quantum number begins with n = 1.
Many authors, including several referenced here, begin with n = 0. For Cartesian
harmonic oscillators the nodal index begins with n = 0.

• Laguerre Polynomials follow the convention of Abramowitz and Stengun [35], which is
also the convention followed in Mathematica.

• Jacobi coordinates are used beginning with the 2 body problem.

~⇢ =
1p
2
(~⇢

1

� ~⇢
2

) ~⇢cm =
1p
2
(~⇢

1

+ ~⇢
2

) (E.1.1)

Relative and CM two-body coordinates are often done with di↵erent scaling, but this
treatment is consistent with the more general Jacobi coordinate transformations of
simple rotations.

• The notation ~r will be used instead of r because the author’s eyes don’t pick out the
bolding.

• The reference of choice for manipulation of angular momentum states and matrix ele-
ments is Edmonds’ “Angular Momentum in Quantum Mechanics” [57]. When formulae
are used from this book they will be referenced as Edmonds (7.1.6), where 7.1.6 is the
equation number in the book.
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E.2 Internal

An attempt has been made to consistently use the same variables and terms with the same
meaning. The most commonly used are listed here.

b is used as the length scale for the harmonic oscillator before setting ~ = ! = µ = 1.

T is the kinetic energy operator. In dimensionless form T = �(1/2)r2.

P is the projection operator from the full Hilbert space to the included space with P 2 = P .

P� is the projection operator P minus edge states which T couples to Q.

Q is the complementary projection operator to P , Q = 1� P .

|ei is an HO state in P such that QT |ei 6= 0, also known as an edge state.

G
0

is shorthand for 1/ (k2 +r2). GT = k2G
0

.

GT is shorthand for E/ (E � T ).

GQT is shorthand for E/ (E �QT ).

GQH is shorthand for E/ (E �QH).

bi,j is the inverse of the matrix elements of GT , indexed by abstract state indices.

b`,mn0,n is the inverse of the matrix elements of GT , indexed by nodal quantum numbers and
in the `,m subblock.

k is the wave number. In dimensionless form k2 = 2E.

m is the magnetic quantum number for Y`m, or momentum index in a periodic box.

n is used for SHO nodal label, or for Cartesian nodal number.

⇢ represents the nucleon separation in fm. The use of ⇢ is minimized.

r is used for the dimensionless separation between nucleons.

V is a potential.

VIR is a simplified potential, correct long range but missing short range detail.

V⇡ is a one pion exchange potential, or OPEP.
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