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Abstract

Adaptive Remapping for High-Order Particle-in-Cell Methods

by

Colin Wahl

Doctor of Philosophy in Applied Science and Technology

University of California, Berkeley

Professor Phillip Colella, Chair

We present an analytic framework for understanding the errors associated with deposition in
particle-in-cell methods applied to kinetics problems in one configuration space dimension.
We begin by considering a one-dimensional advection model problem. Results of the analysis
includes a O(1) error, also referred to as a barrier error, that is dependent on the deformation
gradient of the particle locations. The presence of this barrier is confirmed by numerical
experiments. The techniques developed in the analysis of the one-dimensional advection
model problem are used to analyze a deposition model problem in the context of kinetics.
This analysis shows an error that is similar to the error that arose in the one-dimensional
advection model problem but is dependent only on the configuration space deformation
gradient of the particle locations. A set of ODEs are derived for the Vlasov-Poisson system
that can be used to compute the configuration space deformation gradient without explicit
knowledge of particle neighbors. This allows for computation of the O(1) error at each
time-step. Remapping is then introduced to control this error. Numerical experiments
confirm that remapping when the O(1) error is comparable to the other errors inherent in
the simulation reduces the “particle noise” phenomena that plagues many PIC methods
and maintains the high-order convergence. With a fourth-order kernel this leads to an
overall reduction in the number of remaps compared to a forward semi-Lagrangian method
that remaps every few time steps. We also implement adaptive-in-time-and-space (local)
remapping where only a portion of the phase-space is remapped and the O(1) error along
with the value of the distribution serve as an implicit boundary between the remapped and
non-remapped regions. The adaptive-in-time and locally remapped PIC methods are then
applied to the Dory-Guest-Harris instability which, unlike the other test problems considered,
has two velocity space dimensions.
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5.5 (a) and (b) show convergence of the linear growth rates for the two different test
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c
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Chapter 1

Introduction

1.1 Lagrangian Particle Methods

Advection equations are equations of the form

∂f

∂t
+∇ · (uuuf) = R (1.1)

f = f(xxx, t),xxx ∈ RN . (1.2)

Typically, uuu and R are related to f through

uuu = Lu(f), R = LR(f) (1.3)

where Lu and LR are integro-differential operators. To derive the equivalent Lagrangian
equations, we define the Lagrangian trajectories

XXX(ααα, t) ∈ RN (1.4)

XXX(ααα, 0) = ααα (1.5)

dXXX(ααα, t)

dt
= uuu(XXX(ααα, t)). (1.6)

It then follows that the evolution of f along the Lagrangian trajectories is written as

df(XXX(ααα, t), t)

dt
=

∂f

∂t
+

dXXX

dt
· ∇f (1.7)

=
∂f

∂t
+ uuu(XXX(ααα, t)) · ∇f (1.8)

= −f ∇ · uuu(XXX(ααα, t)) +R. (1.9)

Lagrangian particle methods are a class of numerical methods that solve advection domi-
nated problems by discretizing the Lagrangian form of the equations. The equations for this
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discretization are:

f(xxx, t)→ {fk,XXXk} (1.10)

dXXXk

dt
= uuu(XXXk), XXXk(t = 0) = αααk (1.11)

dfk
dt

= −fk ∇ · uuu(XXXk) +Rk (1.12)

where k is a particle index and now the distribution is represented by a discrete set of
particles with strength fk located atXXXk rather than a continuous representation. Implicit in
the particle representation of f is some shape function, ζ. This shape function can be used
to approximate the continuous distribution by summing over all of the particles,

f(xxx, t) ≈
∑
k

fk(t)ζ (xxx−XXXk(t)) . (1.13)

Two separate classes of Lagrangian particle methods have evolved that are distinguishable
by how they compute Lu(f) = uuu and LR(f) = R. The first class solves for uuu and R by direct
evaluation of (possibly regularized) convolutions. An example of a method that falls into
this class is vortex methods which compute the velocity field at each particle by applying
the Biot-Savart law and using fast multipole methods to compute the convolutions.

In this thesis we will focus on the second class of Lagrangian particle methods, particle-
in-cell (PIC) methods. Particle-in-cell methods are different from the first class of methods
in that they compute uuu and R by solving associated PDEs on rectangular grids. This is done
by: interpolating from the particle locations to a rectangular grid using (1.13), computing
Lu(f) = uuu and LR(f) = R on the rectangular grid, and then interpolating back to the
particles using (1.13) to obtain uuuk and Rk.

The particle-in-cell method was first developed in the 1950s to solve problems in fluid
mechanics [27]. A review of the early applications of PIC methods to fluids is given in
[31]. Particle-in-cell methods were further explored for solving systems that arise in fluid
mechanics in [8] where the fluid-implicit particle (FLIP) method was first developed and
compared to the method developed in [46] for flow over a step. FLIP was extended to
continuum problems in solid mechanics with the material point method (MPM) which was
first developed in [40].

During the late 50s and early 60s PIC was adopted by the plasma physics community
to solve kinetics problems [10, 22]. Early use of PIC methods to solve the electrostatic
Vlasov equation yielded insight into complex non-equilibrium phenomena that had been
difficult to understand using theoretical or experimental techniques. Discussion of early
work can be found in the review [23] and the books [32, 7]. PIC methods continue to be
heavily utilized in plasma physics and cosmology where Vlasov-type PDEs are frequently
encountered. A characteristic feature of PIC methods for Vlasov-type PDEs is that the
distribution is a function of phase-space, f = f(xxx,vvv, t), but the velocity is only dependent
on the configuration space, uuu = uuu(xxx). This means that for a problem with six phase-space
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dimensions, three configuration space and three velocity dimensions, the rectangular grid
where uuu is solved is three dimensions.

PIC has also been applied to the velocity-vorticity formulation of Euler’s equations. This
was first done by [14] where the vortex-in-cell (VIC) method was developed. VIC methods
have been successfully applied to problems such as a vortex ring impinging on a cylinder in
[16]. The advantages of VIC over vortex methods in this context is the ability to utilize fast
Poisson solvers developed for cartesian grids. The method of local corrections, introduced in
[4], is similar to VIC in that a Poisson solver is used to solve for the field on a grid; however,
local interactions are computed using convolutions, similar to vortex methods. The method
was expanded to three dimensional problems and applied adaptive mesh refinement to the
field solve in [2].

1.2 Numerical Analysis of Lagrangian Particle

Methods

The existing literature on the convergence theory for Lagrangian particle methods relies
heavily on techniques developed to study the convergence of vortex methods. The conver-
gence theory for vortex methods was developed in the late 70s and 80s in [30, 6, 3]. The
error bound depends on the interpolation kernel and initial discretization of the distribution
on a rectangular grid. This was determined by pulling back to the Lagrangian coordinates -
an idea we will utilize. The convergence theory developed for vortex methods was extended
to the electrostatic Vlasov system by [39, 41].

All of these convergence theories ignore the errors associated with interpolating from
a deformed set of particles to a rectangular grid to solve for the fields. Throughout PIC
literature there are references to issues arising from this but, to our knowledge, no formal
error analysis exists. Often the errors that arise and the associated degradation of accuracy is
said to be caused by “particle noise”. One way of managing these errors is by remapping the
distribution every few time-steps. Remapping is the interpolation of the distribution back
to a rectangular grid where the Largrangian particles then begin for the next time-step.
Controlling the regularity of the distribution of particles via remapping has a long history in
both vortex methods and PIC methods. The form of remapping we use was introduced in
[33]. It has been applied to achieve second-order accuracy in the context of kinetics in [45,
44]. This work was extended to high-order in [37] and a dark matter problem with singular
initial data in [38]. Remapping has also been used to develop a high-order FLIP and MPM
method in [26].

1.3 Eulerian vs Lagrangian Methods

The alternative to Lagrangian particle methods are Eulerian grid methods. Eulerian grid
methods for advection dominated problems include finite difference methods, finite volume
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methods, and finite element methods. Grid methods work very well but there are situations
in which they may need to be avoided:

1. The dimensionality of the problem is high. Typically, for kinetics the dimensionality
is greater than 4. Representing a high dimensional space with unions of rectangular
patches is inefficient at these dimensions.

2. Difficulty with representing multiple materials. Lagrangian particle methods are more
apt at correctly representing material interfaces as they are naturally adaptive and
implicitly track these boundaries. In kinetics this natural adaptivity is especially ad-
vantageous since large regions of the distribution are near-zero. In contrast, Eulerian
methods for moving boundaries require an auxilary calculation of a representation of
the moving boundary plus specialized discretizations on either side of the boundary
[15].

3. Eulerian grid methods with an explicit time-stepping algorithm require that a Courant-
Friedrichs-Lewy (CFL) condition like

||uuu||∞∆t

∆x
< 1 (1.14)

be satisfied for stability. PIC does not have such a stability constraint but rather
requires

∆t||∇uuu||∞ < C (1.15)

where C depends on the integration scheme. For problems in which the velocity is
a small perturbation of streaming, this condition leads to a much larger ∆t than the
classical CFL condition for Eulerian grid methods.

For Vlasov-type PDEs, all of these issues are present but issues 2 and 3 are unique in that
they compound upon the first issue listed.

Curse of Dimensionality

The first issue listed is often called the curse of dimensionality. The curse of dimensionality
refers to many different phenomena that appear when the dimensionality of the problem
is high - where high is varied and depends on the specifics of the application. These phe-
nomena are typically a consequence of the the volume of the space growing exponentially
with dimension. For numerical PDEs, two classical curse of dimensionality phenomena apply
that highlight the challenges with covering irregular regions in high dimensional spaces with
unions of rectangular grids. The first is that the number of points required to uniformly
sample an N-dimensional hypercube grows exponentially with the dimension N . The second
is that these points concentrate away from the center of the hypercube.
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(a) 1/4 of Unit ball covered by a cube in N = 2

(b) Volume of a unit ball versus unit cube in N
dimensions

Figure 1.1: Covering a unit ball by a hypercube is progressively less and less efficient as the
dimension increases. For a spherical distribution of data with N ≥ 4, the efficiency is less
than ∼ 30% and is ∼ 8% by N = 6.

To highlight why these two phenomena are specifically important when considering kinet-
ics problems, where the phase-space can be six-dimensional and the mass of the distribution
can be a concentrated in a small fraction of the total phase-space, consider the example
where we cover a unit ball with a hypercube with a sampling in each unit direction of 0.01.
To sample the hypercube with points separated by this spacing requires

Np = 200N (1.16)

where Np is the total number of points. Recall, for a unit ball and a covering hypercube the
volumes are

Vball =
πN/2

Γ
(
N
2
+ 1
) , Vcube = 2N (1.17)

(1.18)

where N is the dimension. It is clear from (1.16) that the total number of points grows
exponentially with the dimension but it is less clear how the increase in dimension effects
the efficiency. Figure 1.1b, plots the ratio of the volume of the unit ball compared the
volume of the covering hypercube as a function of N . In 6D, the covering hypercube would
require Np ∼ 1013 points and the unit sphere would only be ∼ 8% of the total volume of the
hypercube. If one were interested in computing something where only the dynamics within
the ball were relevant, using a union of rectangular grids would require an order of magnitude
more memory than what is strictly necessary and similarly require an order of magnitude
more computation (but it may be much worse if the algorithm does not scale linearly with
Np). This inefficiency can be even worse if the distribution is singular in multiple dimensions



CHAPTER 1. INTRODUCTION 6

or more irregular than a unit ball, as they frequently are when modeling particle accelerators,
dark matter, or plasma turbulence.

Lagrangian Methods

Forward semi-Lagrangian methods address issues 2 and 3. These methods advect particles
along the Lagrangian trajectories for a time-step and then remap the distribution to a
rectangular grid. This is similar to the PIC methods that apply remapping to reduce the
impact of “particle noise”. In fact, the remapped PIC method and forward semi-Lagrangian
method are identical when remapping is applied every few time-steps (note the similarities
in [45] and [21]). Forward semi-Lagrangian methods still frequently invoke a rectangular grid
in phase-space as part of remapping. This is costly when the dimensionality of the problem
is high for some of the same reasons that Eulerian grid based methods suffer from the curse
of dimensionality.

We address this by developing an adaptively remapped PIC method. To develop a method
that remaps minimally but does not suffer from the errors caused by deformations of the
particle locations one first needs to develop an analytical framework that pulls back to the
Lagrangian coordinates, similar to the convergence theory for vortex methods, and defines
the requirements for convergence in terms of the initial rectangular grid. This framework
allows for a principled high-order method to be developed and to understand how and when
to apply remapping to control the error. Figure 1.2 summarizes the relationship of the
different methods discussed in this section. It highlights some of the challenges that each
method faces in reducing the effects of the curse of dimensionality.

1.4 Outline of Thesis

We begin to build the analytic framework by first considering a one-dimensional model prob-
lem of advection and interpolation to a rectangular grid in Chapter 2. This model problem
and the techniques used to analyze it, specifically the use of the Faà di Bruno formula, were
inspired by [17] which built a similar framework to understand a one-dimensional forward
semi-Lagrangian method. The major result from the model problem we develop in Chapter
2 is that there is an O(1) error associated with the interpolation of a deformed set of particle
locations. We demonstrate that this has the potential to grow exponentially and also that if uuu
depends on this solution that this error has the potential to get fed back into the algorithm,
leading to an accumulation of error in the trajectories of the particles. Techniques from
the one-dimensional model problem are then used to investigate deposition for the (1+1)D
model problem in Chapter 3. We find that an O(1) error appears in the deposition. This
error is a function of the configuration space deformation of the particles. We then define
a means of computing this deformation for kinetics and introduce remapping as a means of
controlling the O(1) error. This framework is then tested in Chapter 4. We find that it does
in fact allow us to bound the O(1) error, control the “particle noise” in these benchmark
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Figure 1.2: Spectrum of methods for solving kinetics problems. Methods to the left suffer
more from the curse of dimensionality and methods on the right suffer less from the curse of
dimensionality. This is important to kinetics problems as target applications are typically
five- or six-dimensional. Brick walls separate the methods. Grid-based methods like finite
element (FEM), finite volume (FVM), and finite difference methods (FDM) have to grid the
entire phase-space domain. These methods are also limited by the Courant-Lewy-Freidrichs
(CFL) condition in the time-step that they can take which exacerbates the curse of di-
mensionality issue. Semi-Lagrangian methods introduce particles (red dots) and advect the
particles for up to a few time steps before interpolating the particles back to the phase-space
grid - an operation we will refer to as remapping. This method can have a CFL > 1 and has
a well understood convergence theory. Adaptively remapped particle-in-cell methods can
reduce the number of remaps required to the minimal necessary for a given accuracy. This
method can also be used to reduce the region of phase-space that needs to be remapped.
This method is developed in Chapter 3 and Chapter 4. Classical PIC and Monte Carlo PIC
methods never remap and thus only use a grid that is the dimension of the configuration
space; however, the accuracy of these methods is less understood than the other methods.
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problems, and achieve high-order convergence. In Chapter 5 we test this on a (1+2)D set of
benchmark problems. Finally, in Chapter 6 we discuss a way of avoiding rectangular arrays
in the remapping algorithm. We end with a discussion of future work and ways in which the
results we presented provides intuition for solutions to those problems.
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Chapter 2

Error Analysis of an Advection Model
Problem

2.1 An Advection Model Problem

We begin by considering a model problem of advection and interpolation. Recall equation
(1.1) for advection of a scalar quantity. For our model problem we will use the reduced
equations:

∂f

∂t
+∇ · (uuuf) = 0, (2.1)

xxx ∈ RN , (2.2)

f(xxx, t) = f : RN × [0, T ] → R, (2.3)

f(xxx, 0) = f0(xxx), (2.4)

uuu(xxx) = uuu : RN → RN , (2.5)

where uuu(xxx) is the smooth velocity field at position xxx. The Lagrangian form of these equations
are given in equations (1.4) and (1.7). If the velocity field is divergence free, then f is constant
along these trajectories, i.e. df

dt
= 0. If the velocity field is not divergence free, we can still

relate f to f0 at an arbitrary time. Let V0 be the initial volume of an infinitesimal parcel,
the mass of that infinitesimal particle is fV0. The change in volume along these trajectories
is related through the deformation gradient FFF = {Fij, 1 ≤ i, j ≤ N},

Fij =
∂Xi(ααα, t)

∂αj

, (2.6)

as

V (t) = V0 detFFF (ααα, t). (2.7)

Using this we see that

f(XXX(ααα, t), t) =
f0(ααα)

detFFF (ααα, t)
. (2.8)
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is an exact solution to the advection problem if we have prior knowledge of the form of
det (FFF (ααα, t)) or can compute it as a part of our system. Further discussion of this topic can
be found in [13].

An example that we will use in this chapter that does allow us to use this exact solution
is the case where the velocity field depends only on the initial position,

uuu(XXX(ααα, t)) = uuu(ααα). (2.9)

In that case, we can integrate (1.4) to get

XXX(ααα, t) = ααα + t uuu(ααα) (2.10)

which can be used to compute the deformation gradient,

FFF (ααα, t) = III + t ∇αααuuu(ααα), (2.11)

and derive the exact solution,

f(XXX(ααα, t), t) =
f0(ααα)

det
(
III + t ∇αααuuu(ααα)

) . (2.12)

2.2 Particle Method for Advection Model Problem

To discretize the Lagrangian formulation, we sample the initial distribution, f0, on a grid.
Through out we will use a rectangular initial grid with grid spacing hhhp between each particle.
To sample the initial distribution on this grid, we utilize the shape function ζ,

f0(xxx) ≈
∑
k

Mkζ (xxx−αααk) (2.13)

where k sums over our set of particles and Mk(t = 0) = f0(αααk)
∏N

n=1 hpn is the mass of a
particle and

ζ(xxx−ααα) =
N∏

n=1

ζ(xn − αn). (2.14)

Following [39, 12] one can show that given the approximation made in (2.13), a weak solution
to (2.1) satisfies the system of ODEs:

dMk

dt
= 0 (2.15)

dXXXk(αααk, t)

dt
= uuu(XXXk(αααk, t)). (2.16)
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To reconstruct f(xxx, t) at a later time, we can utilize (2.13) but with our particles at their
advected location XXXk(αααk, t) in place of the initial position αααk in (2.13). To do this in prac-
tice, we need to approximate the shape function in (2.13). We use the shape function
1/hgWq,r(x/hg), where hg is the grid spacing of the grid we are interpolating onto. Wq,r is a
one-dimensional kernel that satisfies q moment conditions,∑

i

Wq,r

(
xi − x

hg

)
= 1 (2.17)

∑
i

(x− xi)
q′Wq,r

(
xi − x

hg

)
= 0 for 1 ≤ q′ ≤ q − 1, (2.18)

and is in Cr. Historically, particle-in-cell and vortex-in-cell methods have used C0 or C1

kernels for this approximation. For example, [37] used

W2,0(x) =

{
1− |x|, 0 ≤ |x| < 1

0 1 ≤ |x|
(2.19)

and

W4,0 =


1− 1

2
|x| − |x|2 + 1

2
|x|3 |x| < 1

1− 11
6
|x|+ |x|2 − 1

6
|x|3 1 ≤ |x| < 2

0 2 ≤ |x|
(2.20)

for the deposition and force interpolation stage of second and fourth order particle-in-cell
methods. Stencil size has been a concern for particle methods and thus using minimally
smooth kernels allowed the use of smaller sized stencils due to the decrease in required
degrees of freedom.

Forward semi-Lagrangian methods have began to use smooth kernels to achieve high-
order accuracy [17, 19, 18]. Although this comes at an increased cost due to the larger
stencil size associated with a smoother kernel, for memory-bound algorithms like particle
methods this is a trade-off worth making due to the increased throughput for a given accu-
racy. Examples of some of the C2 kernels that we consider are

W2,2 =


1− |x|2 − 9

2
|x|3 + 15

2
|x|4 − 3 |x|5 |x| < 1

−4 + 18 |x| − 29 |x|2 + 43
2
|x|3 − 15

2
|x|4 + |x|5 1 ≤ |x| < 2

0 2 ≤ |x|
(2.21)

and

W4,2 =


1− 5

4
|x|2 − 35

12
|x|3 + 21

4
|x|4 − 25

12
|x|5 |x| < 1

−4 + 75
4
|x| − 245

8
|x|2 − 545

24
|x|3 + 63

8
|x|4 + 25

24
|x|5 1 ≤ |x| < 2

18− 153
4
|x|+ 255

8
|x|2 − 313

24
|x|3 + 21

8
|x|4 − 5

24
|x|5 2 ≤ |x| < 3

0 3 ≤ |x|

, (2.22)
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Figure 2.1: Plot of W2,0 and W4,0

which both can be found in [17]. We also consider the C4 kernel

W4,4 =



1− 5
4
|x|2 + 1

4
|x|4 − 100

3
|x|5 + 455

4
|x|6 − 295

2
|x|7 + 345

4
|x|8 − 115

6
|x|9 |x| < 1

−199 + 5485
4
|x| − 32975

8
|x|2 + 28425

4
|x|3 − 61953

8
|x|4 + 33175

6
|x|5

− 20685
8
|x|6 + 3055

4
|x|7 − 1035

8
|x|8 + 115

12
|x|9 1 ≤ |x| < 2

5913− 89235
4
|x|+ 297585

8
|x|2 − 143895

4
|x|3 + 177871

8
|x|4 − 54641

6
|x|5

+ 19775
8
|x|6 − 1715

4
|x|7 + 345

8
|x|8 − 23

12
|x|9 2 ≤ |x| < 3

0 3 ≤ |x|
(2.23)

from [17].
The reconstruction of f can be written as

f̃i =
∑
k

Mk∏N
n=1 hgn

Wq,r

(
xxxi −XXXk

hhhg

)
(2.24)

where k indexes over the set of particles, i indexes over the uniform grid, xi and Xk denote
the position of the grid point and particle respectively,and Mk is the mass of the kth particle.

To our knowledge, little has been done to formalize how deformations in the set of particle
positions effect the representation of a distribution on the rectangular grid. It was noted as
a potential issue in [35] but was concluded that the worst case Monte Carlo estimate was
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Figure 2.2: Plot of W2,2, W4,2, and W4,4

unlikely to be achieved since the energy available in the systems was too low to cause large
fluctuations. We approach this problem similar to [19] where we first examine the simplest
one-dimensional case and then expand this theory to the kinetics problems in Section 3.3.
The one-dimensional method advects a set of particles with a velocity that is dependent on
the initial positions of the particles and computes the interpolation error on a rectangular
grid.

2.3 Error Analysis of One-Dimensional Model

Problem

We begin by analyzing the case where the spacing of the grid we are depositing onto, hg, is
equal to the initial spacing of the particles hp. For clarity, we drop the subscript and denote
the grid spacing as h. We evaluate at a fixed time t, thus suppress the explicit dependence
on t. Furthermore, we assume that both the particle positions and their values of f are given
by smooth functions of the Lagrangian coordinates α evaluated at grid points:

xk = x(kh) , fk = f(kh) ; f, x = f(α), x(α). (2.25)

We assume x(α) = x0 + α + δ(α), where δ(α) is a smooth function with δ(0) = 0, and x0 is
the nearest Lagrangian grid point to the point x̄ at which we are evaluating the interpolation
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function:

x0 = x
(⌊α(x̄)

h

⌋
h
)
. (2.26)

Similar to [17], we define

I({fk, xk}, x̄) =
∑
k

f(kh)I(k, kh), (2.27)

I(k, α) ≡ W
( x̄− x0

h
− k − δ(α)

h

)
, (2.28)

and for each summand, expand f(α) and I(k, α) in a Taylor series about α = 0:

f(kh)→
L−1∑
L=0

dlf

dαl

∣∣∣
α=0

(kh)l

l!
, (2.29)

I(k, kh)→
M−1∑
m=0

dm

dαm

(
I(k, α)

)∣∣∣
α=0

(kh)m

m!
. (2.30)

Note that dm

dαmI(k, α) is an mth order derivative of a composition of functions. Therefore,
we apply the Faà di Bruno formula [28],

dN

dxN
(f(g(x)) =

N∑
n=1

dnf

dzn

∣∣∣
g(x)

∑ N !

n1! . . . nN !

N∏
j=1

( 1
j!

djg

dxj

)nj

, (2.31)

to compute the derivatives of I(k, α):

dN

dαN

(
I(k, α)

)
=

N∑
n=1

1

hn

dnW
dzn

∣∣∣
x̄−x0

h
−k

∑ N !

n1! . . . nN !

N∏
j=1

(
− 1

j!

djδ

dαj

)nj

. (2.32)

For the case n = N , the inner sum has only one term, corresponding to the case n1 = N ,
nj = 0 for j > 1. From that we conclude

dN

dαN

(
I(k, α)

)
=

1

hN

dNW
dzN

∣∣∣
x̄−x0

h
−k

(
− dδ

dα

)N
+O(h−(N−1)). (2.33)

We replace f(kh), I(k, kh) in (2.28) by their Taylor expansions (2.29), (2.30), keeping only
the terms up to order M − 1:∑

k

∑
l,m

1

l!m!
(kh)l+m dlf

dαl

∣∣∣
α=0

dmW
dzm

∣∣∣
x̄−x0

h
−k

(
− 1

h

dδ

dα

)m
, (2.34)
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where the inner sum is over {l,m ≥ 0 : l +m < M}. Summing over k first, and using the
differentiated moment relations [17],

∑
k∈Z

kld
mW
dzm

∣∣∣
z=x−k

=

{
l!

(l−m)!
xl−m for l ≥ m

0 for l < m,
(2.35)

we obtain

I({fk, xk}, x̄) =
∑
l,m

1

l!
(x̄− x0)

l d
lf

dαl

∣∣∣
α=0

(
− dδ

dα

)m (m+ l)!

l!m!
+O

( dδ
dα

)M
+O(h). (2.36)

(2.37)

Recall that from the definition of x0,

|x̄− x0| ≤ Ch. (2.38)

Using this, we see that for all terms with l > 0 the expression is at least O(h) and thus can
be written as

I({fk, xk}, x̄) = f(0)
M−1∑
m=0

(
− dδ

dα

)m
+O

( dδ
dα

)M
+O(h), (2.39)

=
f(0)

1 + dδ
dα

+O
( dδ
dα

)M
+O(h). (2.40)

Reintroducing the time variable, I({fk, xk}, x̄) approximates the solution to the advection
equation in one-dimension

∂f

∂t
+

∂(uf)

∂x
= 0⇔ f(x(α, t), t) =

f(α, 0)

F
, F =

∂x

∂α
(2.41)

with an error given by

ϵ = O
((

F − 1
)M)

+O(h). (2.42)

Note that the leading term in the error, (F − 1)M , is an O(1) error that is a barrier to the
convergence. This leads to two different regimes: a regime where the h-error is dominant
and the spline interpolation analysis holds, and a second regime where h is sufficiently small

such that the O
((

F − 1
)M)

becomes the dominant error and thus the method will appear

to no longer converge, and in fact, the error will appear to be independent of h. The only
parameter that provides any control over either regime is the kernel choice. Once a kernel
is chosen, the barrier error is determined by the dynamics of the problem. Barriers to the
convergence of a numerical method are often addressed by setting a tolerance and controlling
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the barrier such that it stays below that tolerance. An example of a method that does this
is the fast multipole method [29]. In Chapter 4 we will introduce a means of controlling the
barrier error in the context of kinetics.

For the more general case, hg ̸= hp, we define

Np =
hg

hp

(2.43)

where Np ∈ N+. Using this, we can write down the deposition algorithm as

I({fk, xk}, x̄) =
hp

hg

∑
k

Np−1∑
np=0

f(khg + nphp)I(k, khg, nphp), (2.44)

I(k, α, nphp) ≡ W
( x̄− x0 − nphp

hg

− k − δ(α + nphp)

hg

)
. (2.45)

Defining

x̃np ≡ x0 + nphp, f̃np(α) ≡ f(α + nphp), δ̃np(α) ≡ δ(α + nphp)

allows us to rewrite (2.44) as

I({fk, xk}, x̄) =
hp

hg

∑
k

Np−1∑
np=0

f̃np(khg)Ĩ(k, khg, nphp), (2.46)

Ĩ(k, α, nphp) ≡ W
( x̄− x̃np

hg

− k −
δ̃np(α)

hg

)
, (2.47)

which resembles (2.28) and allows us to apply the same expansions. Applying these expan-
sions gives

I({fk, xk}, x̄) =
hp

hg

Np−1∑
np=0

f(nphp)
M−1∑
m=0

(
− dδ

dα

∣∣∣
nphp

)m
+O

( dδ
dα

∣∣∣
nphp

)M
+O(hg), (2.48)

=
hp

hg

Np−1∑
np=0

 f(nphp)

1 + dδ
dα

∣∣∣
nphp

+O
( dδ
dα

∣∣∣
nphp

)M+O(hg), (2.49)

which in the case of f(α) ≡ 1 and δ = cα simplifies further to give the same result as the
case hg = hp. The reason we consider this special case is that it highlights some important
features of the error for this problem. Namely, we can expect that for a fixed np, the resulting
error should decrease at a rate of hp/hg but that the total error when summed over all np

should be the same as if hp = hg. That is to say, we would not expect an improvement in
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the O(1) error by using multiple particles per cell. We will further explore this in Section
2.4.

Recall the definition of F in equation (2.41) and differentiate it with respect to time.
Applying the chain rule gives the ordinary differential equation

dF

dt
=

dv

dx
F, F (α, t = 0) = 1. (2.50)

If the velocity is time-independent, then a solution to this system is

F (α, t) = ect, c =
dv

dx
(2.51)

and the associated error would therefore be

ϵ = O
(
(ect − 1)M

)
(2.52)

which grows exponentially in time and highlights how there can be disastrous growth in the
O(1) error. If computing uuu depends on the representation of f on the rectangular grid, this
O(1) error can be fed back into the particle trajectories and lead to catastrophic losses in
accuracy.

2.4 Numerical Results for One-Dimensional Model

Problem

(a) Initial Distribution (b) Velocity Field (c) Interpolated Distribution

Figure 2.3: At initial particle positions (green plus signs) we sample a distribution (a), apply
a velocity that is dependent on the initial particle position (b), and then interpolate the
resulting distribution to a uniform grid (orange squares) where we evaluate the error (c).

To test the analysis in Section 2.3, we initially tried both a constant and Gaussian initial
condition; however, the error for both distributions were dominated by the O(1) barrier. To



CHAPTER 2. ERROR ANALYSIS OF AN ADVECTION MODEL PROBLEM 18

examine both the convergence and barrier, we found that the initial condition

f(α) = sin kα (2.53)

k = 4π (2.54)

with α ∈ [−1/2, 1/2] captured both regimes for the kernels of interest. The particles are
advected according to

x(α) = α + cα +
1√
2

(2.55)

and deposited on the initial grid where the error,

ϵ = max
i

(∣∣∣∣I({fk, xk}, (ih))−
1

1 + c
f

(
ih

1 + c

)∣∣∣∣) , (2.56)

is computed. The 1√
2
factor was included to mitigate the chances of cancellations that may

come from the particles being initially aligned with the rectangular grid that we interpolate
onto and use to evaluate the error. From above, given the form of the perturbation, the
O(1) barrier is cM where the exponent M is determined by the order and smoothness of the
interpolation kernel. Error plots for this 1D test are displayed in Figure 2.4. The parameters
used in these tests are c ∈ {10−1, 10−2, 10−3} and h = 1/N with N = 2M and M taking
integer values in the interval [4, 12].

For all of the kernels we see that there are regions where the error is O(hp) and then
reaches a O(1) barrier that dominates the error as h continues to decrease. The order and
smoothness of the kernels effect each of these regions differently. We see that for W2,0 the
kernels stay well above the barrier predicted by the number of moment conditions the kernel
satisfies and is not exhibiting the predicted second order accuracy. This suggests that the
barrier is being dominated by the smoothness rather than the order of the kernel. Where
as W2,2 converges at second order and has a barrier that scales like c2, as suggested by
the analysis. For W4,2, we see a similar result as above, where the number of moment
conditions that the kernel satisfies gives the order of convergence but the smoothness of
the kernel determines the value of the O(1) barrier. The c2 barrier for the W4,2 kernel
may be problem specific as there is numerical evidence for (1+1)D Vlasov-Poisson kinetics
simulations that controlling the O(1) error assuming it scales like c4 is enough to achieve
fourth order convergence (see Chapter 4). Finally, W4,4 has a convergence rate of h4 and
displays a barrier that scales as c4. For c = 10−3 a barrier appears earlier than expected. This
is possibly due to the effects of roundoff. For high-order interpolation kernels the condition
number can become a factor and may require using quadruple precision to compute the
interpolation and achieve the expected accuracy [34].

Multiple Particles Per Cell

As noted in the analysis above, adding more particles per cell should not increase the accuracy
of the method. This contradicts what we observe for the above one-dimensional simulations
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(a) W2,0 (b) W2,2

(c) W4,2 (d) W4,4

Figure 2.4: Log-log error plots for the 1D test problem described with one particle per cell.
These plots clearly display the dependence of the barrier on both the number of moment
conditions the kernel satisfies as well as the smoothness of the kernel.

and what the community has long held as one of the primary tools for controlling accuracy
in particle methods. To understand this discrepancy, we simplified the distribution to

f(α) ≡ 1 (2.57)

so that we could examine the contribution to the error of every npth particle separately. For
Nppc particles per cell, the contribution to the error from the set of every np-th particle is

ϵnp(x) =
∑

k: (k mod Nppc)=np

I({fk, xk}, (x))−
1

1 + c

1

Nppc

, (2.58)

where np ∈ {0, 1, . . . , Np − 1}. Figure 2.5 shows the results for W4,4 with Nppc = 1, 2, 4 and
8. For Nppc = 2 we see that the error contributions constructively add but for Nppc = 4
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(a) Nppc = 1 (b) Nppc = 2

(c) Nppc = 4 (d) Nppc = 8

Figure 2.5: Error plots for the 1D test problem with a constant distribution described in
Section 2.4. The interpolation kernel used is W4,4. These plots show the dependence of the
total error on the number of particles per cell and the way in which individual errors can
accumulate destructively or constructively.
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and Nppc = 8 the errors add destructively. However, the contribution from each set of np-th
particles decreases by half in magnitude with each increase in number of particles per cell.
This is in line with the analysis that the total error is constant with increasing number of
particles per cell; however, the analysis does not account for the possibility of the errors
adding in a constructive or destructive manner. To fully understand when these errors add
constructively or destructively appears to require a different approach to the analysis.
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Chapter 3

Particle Methods for Kinetics

3.1 Vlasov-Poisson System

The Vlasov-Poisson system models a collisionless plasma in the absence of magnetic fields.
The Vlasov-Poisson system is useful in modeling plasma phenomena such as Landau damping
as well as in the study of the evolution of dark matter where instead of electrostatic forces
there are gravitational forces.

The Vlasov-Poisson system can be written in the form of (1.1) if we take our “position”
variable corresponding to xxx to be the position in phase-space (xxx,vvv)T . The velocity field
is uuu = (vvv,−EEE(xxx))T where EEE(xxx) is the electric field and f is a function of the phase-space
location (xxx,vvv). We do not have sources, sinks, or collisions which means that R ≡ 0. Making
these substitutions, expanding the derivatives, and recognizing that the velocity field, uuu, is
divergence free gives the more common form

∂f

∂t
+ vvv · ∇xxxf −EEE(xxx) · ∇vvvf = 0. (3.1)

To close the system, we need some relationship between f(xxx,vvv, t) and the electric field EEE(xxx).
This relationship comes in the form of Poisson’s equation which can be written as

ρ(xxx) =

∫
f(xxx,vvv, t)dvvv − 1, (3.2)

∆ϕ(xxx) = ρ(xxx), (3.3)

EEE(xxx) = ∇xxxϕ(xxx). (3.4)

To express this in the Lagrangian frame, we use the phase-space Lagrangian variables

(xxx(ααα, t), vvv(ααα, t))T ∈ RNx+v (3.5)

where Nx+v is the phase-space dimension, which is the sum of the configuration space and
velocity space dimension. Since the configuration space and velocity space dimension may
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differ, we will typically refer to the space as (Nx + Nv)D. The initial position of the La-
grangian variables are

(xxx(ααα, 0), vvv(ααα, 0))T = (αααx,αααv)
T . (3.6)

This gives the set of ODEs

d

dt
(xxx(ααα, t), vvv(ααα, t))T = (vvv(ααα, t),−EEE(xxx(ααα, t), t))T (3.7)

d

dt
f(xxx(ααα, t), vvv(ααα, t), t) = 0 (3.8)

which are again augmented with (3.2). From these conditions, note that to define the charge
density in configuration space one takes an integral over the velocity space dimensions. In
(1+1)D this integral is

Ix(x) ≡
∫ vH

vL

f(x, v, t)dv. (3.9)

To express this in the Lagrangian coordinate system, we can express the differentials as

dx =
∂x

∂αx

dαx +
∂x

∂αv

dαv (3.10)

dv =
∂v

∂αx

dαx +
∂v

∂αv

dαv. (3.11)

Note, we are integrating for a fixed x and thus dx = 0. Using this simplifies the above
differentials into a single expression for dv:

dv =
( ∂x

∂αx

)−1( ∂x

∂αx

∂v

∂αv

− ∂x

∂αv

∂v

∂αx

)
dαv. (3.12)

This further simplifies by recalling the incompressibility condition

∂x

∂αx

∂v

∂αv

− ∂v

∂αx

∂x

∂αv

≡ 1. (3.13)

Using this change of variables, the integral defining the charge density can be written in the
Lagrangian frame as

Ix(x) =

∫ vH

vL

f0(αx(x, αv, t), αv)
( ∂x

∂αx

)−1

dαv. (3.14)

We can generalize this to higher dimensions using the implicit function theorem and the
Schur determinant formula. Recall, the implicit function theorem states that there exists
AAA(αααv) such that

xxx(AAA(αααv, t),αααv) = const (3.15)
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and

∂AAA

∂αααv

= −
(

∂xxx

∂αααx

)−1
∂xxx

∂αααv

. (3.16)

The total derivative of vvv(αααx,αααv) can then be expanded

Dvvv

Dαααv

=
∂vvv

∂αααv

+
∂vvv

∂αααx

∂AAA

∂αααv

(3.17)

=
∂vvv

∂αααv

− ∂vvv

∂αααx

(
∂xxx

∂αααx

)−1
∂xxx

αααv

. (3.18)

From the Schur determinant formula [47],

det

(
Dvvv

Dαααv

)
= det

(
∂vvv

∂αααv

− ∂vvv

∂αααx

(
∂xxx

∂αααx

)−1
∂xxx

∂αααv

)
(3.19)

= det

(
∂xxx

∂αααx

)−1

det

(
∂xxx
∂αααx

∂xxx
∂αααv

∂vvv
∂αααx

∂vvv
∂αααv

)
(3.20)

= det

(
∂xxx

∂αααx

)−1

(3.21)

where the final reduction uses the fact that the system is incompressible. As in the (1+1)D
case, this allows us to write the deposition stage of the algorithm in the Lagrangian frame
as

Ix(xxx) =

∫ vH

vL

f0(αααx(xxx,αααv, t),αααv)det
( ∂xxx

∂αααx

)−1

dαααv. (3.22)

One interesting aspect of the above is the similarity in the integrand to the exact so-
lution in Section 2.2. This should not be surprising though given that for a fixed αv the
particles on that line in configuration space are being advected with perturbations in the
velocity causing deformations in the configuration space dimensions. The interpolation of
the charge to the grid in a PIC method is then integrating contributions from each of these
advected lines and can be pulled back to the Lagrangian frame using the exact solution of
the advection equation but only the configuration space contribution. This connection to
the one-dimensional problem is motivation to apply a similar analysis to examine the exact
form of the error in the density caused by deformations in the configuration space. We do
this for (1+1)D in Section 3.3 after introducing the discrete system and algorithm in Section
3.2.

3.2 Particle-in-cell Method for Arbitrary Dimension

Vlasov-Poisson

To discretize this system for one configuration space and one velocity dimension, we follow
the procedure in Section 2.2. In this case, we are starting our particles on an initially uniform
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grid and define the mass (often called charge in the kinetics context) as

Mp = f(αααxp ,αααvp , 0)h
Nx
x hNv

v , (3.23)

where we assume, but are not limited to, a uniform grid size in each configuration space and
velocity space dimension. With this mass and the shape function approximation (2.13), we
can then advect the particles according to the Lagrangian trajectories in (3.7).

In practice, to solve this system, a particle-in-cell method traditionally has three compo-
nents to the algorithm that makes up each stage of the integrator: deposition, a field solve,
and force interpolation. We discuss our implementation of these components as well as the
Runge-Kutta method we used.

Deposition

To compute the charge density on the uniform Cartesian grid, we sum over the set of particles
as follows:

ρi =
∑
p

Mp

Vi

Wq,r

(
xxxi − xxxp

∆x

)
(3.24)

where Vi is the volume of the Poisson cell (∆xNx in this case), and Wq,r is a one-dimensional
kernel that satisfies q moment conditions and is in Cr. The application to Nx dimensional
vectors is defined in equation (2.14). Through out this manuscript we will use kernels like
those presented in Section 2.2. We found that it was beneficial to use kernels that have, at
a minimum, a continuous first derivative to achieve high orders of accuracy.

Field Solve

Once the density has been computed, each node uses a spectral method based on the FFTW
package to solve

∆ϕ = −ρ.

A fourth-order finite difference stencils is then applied to compute EEE. We chose to have each
rank solve this step independently since [45] found that this step of the PIC algorithm was
∼10% of the total computation time.

Force Interpolation

To determine the effective electric field felt by each particle, we use the following scheme:

EEEp =
∑
i

EEEiWq,r

(
xxxi − xxxp

∆x

)
(3.25)

where to avoid self-forcing we require Wq,r to be the same as used in the deposition.
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Integration

To move the particles, we use high-order Runge-Kutta schemes. In [37], a second- and
fourth-order scheme that reduced the number of required stages was presented. For our
simulations, we use a the three-stage fourth-order integrator

xxxn+1 = xxxn + vvvn∆t+
1

6
(kkk1 + 2kkk2)∆t2, (3.26)

vvvn+1 = vvvn +
1

6
(kkk1 + 4kkk2 + kkk3)∆t (3.27)

where

kkk1 = EEE (xxxn) , (3.28)

kkk2 = EEE

(
xxxn +

1

2
vvvn∆t+

1

8
kkk1∆t2

)
, (3.29)

kkk3 = EEE

(
xxxn + vvvn∆t+

1

2
kkk2∆t2

)
. (3.30)

Note, we can use the fact that kkk1 = EEE (xxxn) needs to be computed for this method and thus
could be reused as part of a forward Euler integrator of any quantity that relies on the
electric field.

3.3 Error analysis of deposition model problem in

(1+1)D

We consider a model problem similar to the one developed in Chapter 2. The ODEs we
integrate are given in (3.7) and the closure equations are given in (3.2). We assume the
electric field is some known function that we can integrate. Perturbations to the streaming
dynamics will be caused by a change in acceleration (the electric field in this case). For the
purposes of this model problem, we evaluate the error in charge density on the grid and do
not consider how this may get fed back into the system via the electric field. A perturbation
to the velocity of this form will manifest in perturbed streaming equations as

x = αx + x0(αv, t) + αvt+ δ(αx, αv, t) (3.31)

v = αv + δ̇(αx, αv, t) (3.32)

dδ

dt
= δ̇, δ(αx, αv, 0) = 0. (3.33)

Note that in deposition the velocity does not explicitly appear and thus the perturbation in
the velocity, δ̇, does not explicitly appear in our analysis below.
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From (3.24), deposition in (1+1)D can be written in a discrete form as

Ix({fk, xk, vk}, x̄) ≡
∑
k

fkhxhv
1

∆x
W∆x(x̄− xk) (3.34)

where k indexes over particles that initially sampled the distribution f0. The summation
over k can be broken into two separate components, one where we sum over all the particles
with v(t = 0) = αv fixed, and then sum in the velocity dimension. This allows us to write
deposition as

Ix({fk, xk, vk}, x̄) =
∑
jv

∑
jx

fjx,jvhxhv
1

∆x
W∆x(x̄− xjx) (3.35)

where for simplicity of notation we write f0(jxhx, jvhv) = fjx,jv . Throughout the remainder
of the analysis we will write f0 = f . We want to estimate the error,

ϵ = Ix({fk, xk, vk}, x̄)−
∫ vH

vL

f(x̄, v, t)dv (3.36)

where we have already shown the transformation of the integral into the Lagrangian coordi-
nates in (3.14).

Initially, suppose that we have one particle per cell (hx = ∆x). The discrete formulation
of the coordinates for the perturbed streaming case are xk = x0(x̄, hx, jv, hv, t) + jxhx +
jvhvt+ δ(jxhx, jvhv, t). Here, x0 is used to define the origin of the coordinate system as the
nearest grid point to the translated x̄ for each jv distribution. This amounts to choosing

x0(x̄, hx, jv, hv, t) = x
(⌊αx(x̄− jvhvt)

hx

⌋
hx

)
, (3.37)

which we can do without a loss of generality. The first expansion performed is f(·, v) around
the origin,

Ix = hv

∑
jv

∑
jx

L−1∑
l=0

f (l,0)(0, jvhv)
(jxhx)

l

l!
W
( x̄− x0 − jvhvt

hx

− jx −
δ(jxhx, jvhv, t)

hx

)
. (3.38)

Next we expand W around the origin

W (jx, jv, t) =
M−1∑
m=0

dm

dαm
x

(
W (jx, jv, t)

)∣∣∣
αx=0

(jxhx)
m

m!
+O

((
hM
x

∂M

∂αM
x

W
))

(3.39)

and use the Faa di Bruno formula to express, the Nth derivative as

dN

dαN
x

(
W (jx, jv, t)

)
=

N∑
n=1

1

hn
x

dnW

dzn

∣∣∣
x̄−x0−jvhvt

hx
−jx

∑ N !

n1! . . . nN !

N∏
j=1

(
− 1

j!

djδ

dαj
x

∣∣∣
αx=0

)nj

.

(3.40)
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For the case n = N , the inner sum has only one term, corresponding to the case n1 = N ,
nj = 0 for j > 1. From that we conclude

dN

dαN
x

(
W (jx, jv, t)

)
=

1

hN
x

dNW

dzN

∣∣∣
x̄−x0−jvhvt

hx
−jx

(
− dδ

dαx

∣∣∣
αx=0

)N
+O((1/hx)

N−1). (3.41)

Substituting this into the full expression gives

Ix = hv

∑
jv

∑
jx

L−1∑
l=0

M−1∑
m=0

f (l,0)(0, jvhv)
(jxhx)

l+m

l!m!

dmW

dzm

∣∣∣
x̄−x0−jvhvt

hx
−jx

(
− 1

hx

dδ

dαx

∣∣∣
αx=0

)m
+O(hx) +O

(
f(0, jvhv)

dMW

dzM

( dδ

dαx

)M)
(3.42)

and can be simplified by rearranging the order of the sums,

Ix = hv

∑
jv

L−1∑
l=0

M−1∑
m=0

f (l,0)(0, jvhv)
hl
x

l!m!

(
− dδ

dαx

)m∑
jx

jl+m
x

dmW

dzm

∣∣∣
x̄−x0−jvhvt

hx
−jx

+O(hx) +O
(
f(0, jvhv)

dMW

dzM

( dδ

dαx

)M)
,

(3.43)

and recognizing the sum over jx as the moment conditions for the kernels. Making this
substitution further simplifies the expression

Ix = hv

∑
jv

M−1∑
m=0

L−1∑
l=0

f (l,0)(0, jvhv)
1

l!

(
− dδ

dαx

)m (l +m)!

l!m!

(
x̄− x0 − jvhvt

)l
+O(hx) +O

(
f(0, jvhv)

dMW

dzM

( dδ

dαx

)M) (3.44)

Recall that from the definition of x0,

|x̄− x0 − jvhvt| ≤ Chx. (3.45)

Using this, we see that for all terms with l > 0 the expression is at least O(hx) and thus can
be written as

Ix = hv

∑
jv

f(0, jvhv)
M−1∑
m=0

(
− dδ

dαx

)m
+O(hx) +O

(
f(0, jvhv)

dMW

dzM

( dδ

dαx

)M)
(3.46)

which further simplifies to

Ix = hv

∑
jv

f(x̄− x0 − jvhvt, jvhv)

1 + dδ
dαx

+O
(
f(x̄− x0 − jvhvt, jvhv)

( dδ

dαx

)M)
+O

(
f(x̄− x0 − jvhvt, jvhv)

dMW

dzM

( dδ

dαx

)M)
+O(hx).

(3.47)
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Note, the similarity to the error for the one-dimensional model problem given in (2.42). As
already discussed, this is because each individual fixed αv line is streaming in configuration
space with there own perturbations and then are summed over to compute the charge density.
Introducing the configuration space deformation gradient,

Fx =
dx

dαx

, (3.48)

we can write this as

Ix = hv

∑
jv

f(x̄− x0 − jvhvt, jvhv)

Fx(x̄− x0 − αvt, αv, t)

+O
(
f(x̄− x0 − jvhvt, jvhv)

(
Fx − 1

)M(
1 +

dMW

dzM

))
+O(hx).

(3.49)

To estimate the error in the sums representation of the integral, we utilize the Euler-
MacLaurin formula. First, for simplicity of notation define the integrand as,

f̃(x, αv, t) =
f(x− αvt, αv)

Fx(x− αvt, αv, t)
, (3.50)

then we can rewrite the sum as

hv

∑
jv

f̃(x̄− x0, jvhv, t) =

∫ vH

vL

f̃(x̄− x0, αv, t)dαv

+
hv

2
(f̃(x̄− x0, vL, t) + f̃(x̄− x0, vH , t))

+
N∑
i=1

B2i

(2i)!
h2i
v

( d2i−1

dα2i−1
v

f̃(x̄− x0, αv, t)
)∣∣∣vH

vL

+
h2N+2
v

(2N + 2)!

∫ vH

vL

B̄2N+2

(αv − vL
hv

) d2N+2

dα2N+2
v

f̃(x̄− x0, αv, t)dαv

(3.51)

where it is assumed that f̃ ∈ C2N+2, B2i are Bernoulli numbers, and B̄i(x) is the periodic
extension of the Bernoulli polynomial Bi(x) [5]. For typical kinetics problems f(αx, αv) ∈ C∞

and has tails that decrease exponentially in the velocity dimension. Therefore,

hv

∑
jv

f̃(x̄− x0, αv, t) =

∫ vH

vL

f̃(x̄− x0, αv, t)dαv +O(hp
v) (3.52)

for arbitrarily large values of p. Finally, combining the results of the application of the
Euler-Maclaurin with the rest of our analysis gives an approximation of

ϵ = O
((

Fx(αx, αv, t)− 1
)M

f(αx, αv)
(
1 +

dMW

dzM

))
+O(hp

v) +O(hx). (3.53)
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Using the same transformation as in Section 2.2 for multiple particles per cell, one can
show that this error estimate holds for the case more frequently encountered in PIC where
∆x/hx ∈ N+.

The first term is an O(1) error that will have a similar effect on the convergence of
the PIC method as the barrier error we encountered in Chapter 2 for the one-dimensional
advection model problem. Unlike the model problem, we do not get to specify this quantity
exactly for (1+1)D kinetics test problems. Instead, this error is determined by the dynamics
of the individual test problems. This means that instead of appearing to dominate after a
certain resolution, if this error grows sufficiently large, we expect it to eventually dominate
the grid based errors for all resolutions. We expect to see the effect on the finest level first
but eventually for this error to dominate all levels and appear independent of the resolution.

3.4 Numerical Results

Typically, Landau damping and the two-stream instability are used to test the validity
and accuracy of (1+1)D kinetics code. Here we consider both of these and use them to
benchmark the accuracy of any method to control the O(1) error. The initial distribution
for linear Landau damping is

f(x, v) =
1

2π
e−v2/2 (1 + α cos(kx))

where x ∈ [0, L], v ∈ [−vmax, vmax], L = 2π/k, with k = 1/2 and α = 0.01. Typically
for (1+1)D tests, vmax is chosen such that the velocity space distribution is small at the
boundary. A sufficient choice for the problems we consider is vmax = 10. Analytic results
show that the norm of the electric field is damped at rate γ = 0.1533 and oscillates with a
frequency ω = 1.416 [37]. Landau damping suffers from a recurrence phenomena that was
first discussed in [11]. This is a consequence of fine scale structures developing that are
smaller than the hv resolution. The time that the solution is expected to degrade due to the
fine scale structures overwhelming the resolution is

Trec =
π

khv

.

For the resolutions considered in our convergence studies, this phenomena will begin to
dominate around t ∼ 20, 40, 80, respectively.

Using the same domain parameters and perturbation as above, the initial distribution
for the two-stream instability is

f(x, v) =
1

2π
v2e−v2/2 (1 + α cos(kx)) .

This change in the velocity space distribution leads this problem to have small scale features
in the phase-space distribution that start to appear after t = 18 and typically get smaller,
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and more difficult to resolve, for the remainder of the simulation. At t = 20 a phase-space
vortex begins to rotate and the image of the phase-space distribution at this time is often
reported in literature.

To compute the error for different grid sizes, we used Richardson extrapolation,

e = max
∣∣∣ρMg − ρMg+1

∣∣∣ (3.54)

where the grid parameters for level Mg are Nx = 2Mg , Np
x = 2Mg+1, Np

v = 2Mg+2, and
dt = 1/2Mg−1. For all convergence studies we used Mg ∈ {4, 5, 6, 7} and for plots where we
are changing values of C we use Mg ∈ {6, 7} to compute the error in the charge density of
the Mg = 6 level.

For all simulations presented here, we utilize a fourth-order Runge-Kutta scheme to
advance the particles, a spectral field solver to obtain the electric potential from the charge
density, and a fourth-order finite difference scheme to compute the electric field from the
potential. A single kernel will be used for deposition and field interpolation.

In Section 3.3 we showed that the error in the deposition is dependent on the deformation
gradient. Figure 3.1 and Figure 3.2 plot the results of computing the error for linear Landau
damping and the two-stream instability. These plots show that for both W2,2 and W4,4 that
for a short time the method is converging but that eventually there is a collapse of all the
computed errors onto each other. This is indicative of an error that is independent of the
mesh spacing, like the O(1) error in (3.53). The plot of the norm of the electric field for linear
Landau damping is plotted in Figure 3.3 for Mg = 6 with the kernel W4,4. The accumulation
of the O(1) error in the charge density eventually leads to noise appearing in the solution
around t ∼ 30 and eventually causes the numerical solution to no longer be damped but
rather begin to grow by t ∼ 35. From the theory, we expect the numerical solution to
capture the correct damping rate until t ∼ 80.
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(a) (b)

Figure 3.1: These plots show what happens when the O(1) error is allowed to grow un-
controlled for the linear Landau damping (a) and two-stream instability (b) test problems.
W2,2 was used for deposition and force interpolation. Three different resolutions are used:
Mg = 4(blue), Mg = 5(red), and Mg = 6(yellow).

(a) (b)

Figure 3.2: Similar to Figure 3.1, these plots show what happens when the O(1) error is
allowed to grow uncontrolled for the linear Landau damping (a) and two-stream instability
(b) test problems. W4,4 was used for deposition and force interpolation. Three different
resolutions are used: Mg = 4(blue), Mg = 5(red), and Mg = 6(yellow). Note, that for early
times we see the onset of the noise and collapse of the order of accuracy later for W4,4 than
for W2,2 as is expected from the theory above.
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(a) W2,2 (b) W4,4

Figure 3.3: Plot of the norm of the electric field (black), the analytic damping rate of 0.1533
(red dashed) for linear Landau damping with Mg = 6 and the kernel W4,4. In (a) we see
that around t ∼ 30 the solution begins to show spurious artifacts. This continues for t > 30,
as seen in (b), and begins to effect the damping of the problem that is expected to continue
to at least t ∼ 80.
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Chapter 4

Adaptive Remapping for (1+1)D
Kinetics

4.1 Computation of the Deformation Gradient

To be able to control the O(1) error, we first need a way of computing the error. Initially, it
may seem like the easiest way to compute the configuration space deformation gradient,

Fx =
∂x

∂αx

, (4.1)

would be to keep track of neighboring particles relative positions. This method would be
expensive and is not something that is available in PIC algorithms. Instead, let us introduce
another variable,

Gx =
∂v

∂αx

. (4.2)

Taking time derivatives of these variables gives us the system of equations

∂Fx

∂t
= Gx (4.3)

∂Gx

∂t
= −dE

dx
Fx (4.4)

that can be evolved with the following initial conditions

Fx(αx, αv, t = 0) = 1 (4.5)

Gx(αx, αv, t = 0) = 0. (4.6)

(4.7)

This system can be discretized so that the pair of variables {Fx, Gx} can be computed
and evolved for each of the particles. Furthermore, this system of equations generalizes to
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higher dimensions and could be used to track the deformation gradient in any (Nx+Nv)D
electrostatic kinetics problem.

One more cost saving aside is to recognize that we are simply using this to approximate
the deformation. These quantities do not feed into the PIC algorithm presented in Section
3.2 and thus can be computed using low-order methods. Using the electric field coming out
of the first stage of the algorithm, we can evolve this system using a first-order forward Euler
integrator.

4.2 Remapping

Remapping is a means of projecting the distribution onto a rectangular grid in phase-space
where particles then begin from on the next time-step. For the pth particle on the rectangular
phase-space grid, the remapped charge, M∗

p , can be computed by

M∗
p =

∑
s

MsWq,r

(
xxxs − xxxp

hx

)
Wq,r

(
vvvs − vvvp

hv

)
(4.8)

where s indexes the original particle set and Wq,r is a kernel similar to those used for depo-
sition and interpolation. For forward semi-Lagrangian methods, the order and smoothness
of the remapping kernel dictates the order of the method.

Unlike the other operations in a PIC algorithm remapping is a phase-space operations.
This means that the work per particles increases by a factor of Supp(Wq,r)

Nv compared to
deposition and interpolation. This makes it the most expensive part of the algorithm and
why, in practice, forward semi-Lagrangian methods do not remap every time step. Another
factor contributing to the expense of remapping in forward semi-Lagrangian methods is the
fact that if remapping occurs on the order of ∆t, the remapping kernel Wq,r must be at least
one degree higher order than the depositions kernel since we lose a degree of accuracy by
remapping at every time-step. In the next section we will provide a metric to determine when
remapping is required based on the error analysis in Chapter 3. This metric is independent
of ∆t and therefore we propose using a kernel of the same order and smoothness as the
deposition and force interpolation kernel.

Now that there is a means of computing the O(1) error for any (Nx+Nv)D electrostatic
kinetics test problem, we need to control the error once it approaches a level that is deemed
unacceptable. As we have already discussed, adding more particles will not decrease the
error. The only way to reduce the error is to sample the current distribution and restart the
simulation on a rectangular phase-space grid. This can be done via remapping. This reduces
the O(1) error since for a rectangular grid Fx ≡ 1. This operation is something already done
by forward semi-Lagrangian methods and is typically referred to as remapping. Remapping
has traditionally been used in particle methods as a means to regularize the distribution
and reduce the “particle noise” observed in particle methods; however, when remapping is
applied is typically not based on the numerical analysis. Remapping is typically done every
few time-steps but can be done as often as every time-step [21, 45, 37].
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4.3 Adaptive-in-time Remapping

We have demonstrated a way to compute the O(1) error that arises in (3.53) and have
provided a way of reducing the error once it reaches an unacceptable level. Similar to
adaptive Runge-Kutta methods, we can apply these tools to control the error. The analog
to decreasing the size of the time-step for PIC methods is to remap the particles when the
O(1) error is greater than some threshold value, C. In practice, the bound we use throughout
is (

Fx(αx, αv, t)− 1
)M

f(αx, αv) < C (4.9)

since dMW/dzM is bounded as long as the number of derivatives does not exceed the smooth-
ness of the kernel. That is to say that the number of moment conditions and the smoothness
of the kernel match. For all results in this section, we will use W2,2 and W4,4 listed in Section
2.2. For these kernels, M = 2 or M = 4 in (4.9) respectively. In Section 4.6, we examine
kernels with mixed orders of moment conservation and smoothness as well as examine using
one kernel for deposition and force interpolation and another for remapping.

For all simulations presented here, we utilize the fourth-order Runge-Kutta scheme to
advance the particles, a spectral field solver to obtain the electric potential from the charge
density, and a fourth-order finite difference scheme to compute the electric field from the
potential. The same kernel will be used for deposition, field interpolation, and remapping.
We utilize the deposition kernel for remapping since for a fixed value of C the number of
remaps is independent of ∆t. Deposition, force interpolation, and the field solve are discussed
further in Section 3.2. We will use the linear Landau damping and two-stream instability test
problem introduced at the end of Chapter 3 to benchmark this method. We will focus on the
error in the charge density through out this section. We compute this error by Richardson
extrapolation.

To highlight the difference that changing C makes on the error, we plot the charge density
error, which is computed using (3.54), for Mg = 6 in Figure 4.1a. Note that for C = 1 the
error saturates at the same value as if no remapping was done. This is due to the fact
that the Fx − 1 term saturates and does not continue to grow. For C = 1 no remappings
were triggered for the duration of the simulation and thus the error is identical to the finest
resolution plotted in Figure 3.1a. For C < 10−4 the discretization errors dominate the O(1)
error and thus there is no marked improvement in the error for these tighter bounds.

Similar to the second-order kernel, the control of the O(1) error directly influences the
errors at late times for the W4,4 kernel as seen in Figure 4.2a. Since the error inherent
to the method is lower by approximately two orders of magnitude, we expand the list of
bounds tested over that tested for W2,2. Although the error for C = 10−6 is approximately
the same as those for smaller values of C, we do see some noise and a structurally different
error. Therefore, for most simulations with W4,4 we utilize C = 10−8 as this appears to
be approximately the error from the convergent portions of the method and there do not
seem to be large improvements for smaller values of C. The number of remaps for each
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(a) (b)

Figure 4.1: Using the initial conditions for linear Landau damping, (a) shows the error in
the charge density for different values of C where f |Fx − 1|2 < C for the W2,2 kernel. These
plotted results are for the finest level of resolution. The equivalent plot using two-stream
instability initial conditions is shown in (b).

(a) (b)

Figure 4.2: Using the initial conditions for linear Landau damping, (a) shows the error in
the charge density for different values of C where f |Fx − 1|4 < C for the W4,4 kernel. These
plotted results are for the finest level of resolution. Given that the initial error for the finest
level is ∼ 10−8, this is the largest value of C that would likely be considered acceptable.
The equivalent plot using two-stream instability initial conditions is shown in (b). Note that
even though the initial error starts at 10−8 like linear Landau damping, the growth in the
error for the two-stream instability means that using a smaller C does not improve the error
at the end of the test beyond the results for C = 0.01. The results are clearly improved for
early times with the results for C ≤ 10−8 looking nearly identical.
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Number of Remaps for Linear Landau Damping
C W2,2 W4,4

1 0 1
10−2 1 1
10−4 7 3
10−6 24 6
10−8 72 11
10−10 - 18
10−14 - 57

Table 4.1: The number of remaps for linear Landau damping with differing values of C. For
all simulations, the total number of time steps was 960. Remapping every 5 time steps would
require a total of 192 remaps as done in [45, 37]

value of C are listed in Table 4.1. For each of these simulations, the number of remaps is
listed for Mg = 6 and thus the total number of time steps taken is 960. For the smallest
value of C, the number of remaps required is reduced by a factor of approximately 2.7 and
3.6 compared to remapping every 5 time steps for W2,2 and W4,4, respectively. For the
W4,4 kernel using C = 10−8 requires a factor of 17.5 fewer remaps than remapping every 5
time steps. This is a significant reduction in the number of remaps and clearly shows the
performance opportunities available by tracking the deformation gradient and remapping
only when needed.

Similar results are shown for the two-stream instability for W2,2 in Figure 4.1b and for
W4,4 in Figure 4.2b. Note though that the Fx − 1 term does not saturate at late times and
instead continues to grow, unlike linear Landau damping. This means that even the largest
value of C does eventually require a remap. For these large values of C, after a short initial
start up time, the error becomes dominated by the O(1) term causing noisy solutions and
errors. Eventually though, the grid errors overwhelm this bound and become the dominant
term. Thus, the error appears to end independent of the initial value of C.

For the two-stream instability, the number of remaps forW2,2 andW4,4 for different values
of C are listed in Table 4.2. Due to the deformations in the phase-space distribution after
T = 18, we see that significantly more remaps are required than for linear Landau damping.
For the finest levels, the number of remaps required increased by a factor of 1.8 and 1.7 for
W2,2 and W4,4 respectively when compared to remapping every 5 time steps. For W4,4 with
C = 10−8, we do still see a reduction in the number of remaps by a factor of 1.9. One thing
to note about remapping based on the O(1) error is that the distribution of remaps is not
uniform. For linear Landau damping, many of the remaps come early on in the simulation
and for the two-stream instability the majority of remaps come much later in the simulation.

Figure 4.3 and 4.4 examines how the second- and fourth-order kernels converge with a
bounded O(1) error for linear Landau damping and the two-stream instability, respectively.
For these plots we set C = 10−8 for both kernels. As discussed above, this is stricter
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(a) W2,2 (b) W2,2

(c) W4,4 (d) W4,4

Figure 4.3: Plots of error and convergence order for both W2,2 and W4,4 for the linear Landau
damping test problem. (a) shows the error for three different resolutions: Mg = 4(blue),
Mg = 5(red), and Mg = 6(yellow). (b) shows the order of convergence with log2(e

4/e5) in
blue and log2(e

5/e6) in red. For all tests we bound the O(1) error by 10−8. As is expected,
for the second-order kernel we see second-order convergence and for the fourth-order kernel
we see fourth-order convergence. At late times the error increases for the coarsest grids due
to the recurrence phenomenon.
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(a) W2,2 (b) W2,2

(c) W4,4 (d) W4,4

Figure 4.4: Plots of error and convergence order for both W2,2 and W4,4 for the two-stream
instability test problem. (a) shows the error for three different resolutions: Mg = 4(blue),
Mg = 5(red), and Mg = 6(yellow). (b) shows the order of convergence with log2(e

4/e5) in
blue and log2(e

5/e6) in red. For all tests we bound the O(1) error by 10−8. As is expected,
for the second-order kernel we see second-order convergence and for the fourth-order kernel
we see fourth-order convergence. At late times the error increases for both methods and
the methods convergence order decreases. This is due to the filamentation in the velocity
dimension and has been previously reported in [45].
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Number of Remaps for Two-Stream Instability
C W2,2 W4,4

1 7 11
10−2 24 20
10−4 73 35
10−6 192 60
10−8 352 100
10−10 - 156
10−14 - 331

Table 4.2: The number of remaps for the two-stream instability with differing values of C.
As for linear Landau damping, all simulations required 960 time steps and remapping every
5 time steps would require a total of 192 remaps.

than what is necessary for W2,2. For both test problems and kernels we see the expected
convergence behavior since we remap to keep the barrier error below the error of the finest
level. For linear Landau damping, there is an increase in the order of convergence caused by
the coarsest level encountering the recurrence phenomena inherent to any method discretizing
the velocity dimension of this problem. For the two-stream instability we have a decrease in
accuracy at late times due to similar filamentation issues in the velocity dimension.

Number of Remaps
Linear Landau Damping Two-Stream Instability

Mg W2,2 W4,4 W2,2 W4,4

4 55 10 114 72
5 63 11 204 92
6 72 11 352 100
7 78 11 565 108

Table 4.3: The number of remaps for the linear Landau damping and two-stream instability
for C = 10−8.

Table 4.3 provides the number of remaps for each level of refinement in the convergence
study. For W4,4 we see that for linear Landau damping the number of remaps is almost
constant for different levels of refinement and for the two-stream instability that it is con-
verging. The second-order kernel shows convergent behaviour in the number of remaps for
linear Landau damping while it grows rapidly for the two-stream instability. This is a time
where it would be beneficial to choose a bound closer to C = 10−4 or C = 10−6 for W2,2 as
the current condition appears to be too strict and forces remapping at nearly every time-step
at late times.
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This highlights the somewhat strange relationship of the order of the kernel and the
remapping condition. Since Fx − 1 < 1, the higher the order and smoothness of the kernel
used the fewer remaps that are required. This means that as one pushes the order and
smoothness of the kernel higher, which corresponds to increasing M in (4.9), not only will
the accuracy increase, but the number of remaps necessary will actually decrease for a
constant C. We see this phenomena in Table 4.3. For a given level, independent of the test
problem, W4,4 requires fewer remaps than W2,2. Furthermore, if one fixes a level of accuracy
there is even a larger disparity in the number of remaps required for W2,2 when compared to
W4,4. For example, the error in Mg = 6 for W2,2 and in Mg = 4 for W4,4 are approximately
equal. For this fixed level of accuracy, W4,4 requires 7.2 and 4.9 times fewer remaps for
linear Landau damping and two-stream instability, respectively, when compared to W2,2.
Granted, for C = 10−4 we see a much closer alignment in number of remaps required for
W2,2 compared to W4,4 for a similar level of accuracy; however, a significant difference in the
number of particles. The tradeoff is a larger stencil size for deposition, force interpolation,
and remapping. Given that particle methods are memory-bound, this is a trade-off worth
making since we do achieve increased accuracy for the increased work per particle.

Having a higher order method that converges with the expected order is only useful if
it converges to the correct solution. For linear Landau damping, we have a few different
analytic predictions to check our method against. Figure 4.5 shows the analytic damping

(a) W2,2 (b) W4,4

Figure 4.5: Plot of the norm of the electric field (black), the analytic damping rate of
0.1533 (red dashed), and the remap times (magenta stars) for linear Landau damping with
C = 10−8. There is a recurrence effect at t ∼ 80 as predicted.

rate (red dashed line) and the amplitude of the electric field (solid black line) for Mg = 6 and
t ∈ [0, 120]. The magenta stars indicate when remaps occur and, as previously mentioned,
they tend to occur early in the simulation for linear Landau damping. For our parameters, the
analytic damping rate is γ = 0.1533 [37]. We see that both W2,2 and W4,4 correctly capture
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this damping rate until the recurrence phenomenon at t ∼ 80 in Figure 4.5. Using the
interval t ∈ [0, 55] the computed damping rate is 0.1543 for W2,2 and 0.1539 for W4,4, which
correspond to a relative error of 0.700% and 0.447% respectively. The analytic frequency for
this set of parameters is 1.416 [37]. Using the same time interval, the computed frequency
of the damped electric field in the same time interval is 1.410 for W2,2 and 1.409 for W4,4.
These correspond to relative errors of 0.371% and 0.432%. Finally, we see that both tests
have recurrence phenomenon of t ∼ 80 which matches well with the theoretical results.

(a) W2,2 (b) W4,4

Figure 4.6: Plot of the norm of the electric field (black) and the remap times (magenta stars)
for the two-stream instability with C = 10−8. Note that at late times there are significantly
more remaps. This is a consequence of the phase-space distribution getting distorted, which
leads to large configuration space deformation gradients.

Figure 4.6 is a plot of the amplitude of the electric field for the two-stream instability.
Contrasting this with Figure 4.5, it is easy to see how the distribution of remaps is heavily
weighted toward late in the simulation for two-stream instability. Figure 4.7 is a plot of the
phase-space distribution at t = 20 for the two different kernels. The remapped distributions
are in good agreement with previous work [45, 37]. Figure 4.8 shows the charge density at
t = 20 for the phase-space distributions in Figure 4.7. The accumulated noise is evident
in Figure 4.8a when compared to the two remapped charge densities. The non-uniform
distribution of this noise leads to similar looking errors in the electric field which then feeds
back into the particles position and velocity.

The benefits of bounding the O(1) error term from Section 3.3 are obvious. We see that
different bounds lead to different total errors until a floor is reached where the dominant
portion of the error comes from the time step, the phase-space discretization, and the con-
figuration space discretization. We showed that bounding this error leads to a method that
converges to a solution that is in good agreement with the analytic values and converges
at the order predicted by the kernels used. Next, we investigate how remapping, accuracy,
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(a) W4,4, C =∞ (b) W2,2, C = 10−8 (c) W4,4, C = 10−8

Figure 4.7: Plot of phase-space distribution at time t=20 for the two-stream instability test
problem. All tests use grid parameters and time step parameters with Mg = 6. The large
deformations in phase-space are noticeable in (a). This leads to difficulty correctly resolving
fine features as well as large errors in the charge density, which can be seen in Figure 4.8

(a) W4,4, C =∞ (b) W2,2, C = 10−8 (c) W4,4, C = 10−8

Figure 4.8: Plot of charge density, ρ, at time t=20 for the two-stream instability test problem.
All tests use grid parameters and time step parameters with Mg = 6. The noise is not
uniformly distributed in the non-remapped charge density. This leads to noisy solutions to
Poissons equation that then feed back into the positions and velocities of the particles. This
accumulation of noise causes the disastrous losses of accuracy that we see in Figure 3.2b.

and order of convergence are effected by using both large and small time-steps. We then
show that remapping on an implicit function of the O(1) term and the distribution allows
us to remap adaptively in space as well. Finally, we will discuss how mixed kernels - either
kernels that have differing degrees of smoothness for a given number of moments or using
different kernels for remapping and deposition - effect the value of M in (4.9) and the order
of convergence.

4.4 Adaptive-in-time with Varying CFL Conditions

Thus far we have only considered time steps relative to the grid size of ∆t = 1/2Mg−1. One
significant advantage that PIC methods have over traditional grid based methods is that the
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(a) CFL= 3/4 (b) CFL= 12 (c) CFL= 48

(d) CFL= 3/4 (e) CFL= 12 (f) CFL= 48

Figure 4.9: Plots of the error for different CFL conditions for three different resoulutions:
Mg = 4(blue), Mg = 5(red), and Mg = 6(yellow). Plots in the top row depict the computed
errors for linear Landau damping. Plots in the bottom row are for two-stream instability.
The error for a CFL condition less than 12 have approximately the same initial and final
errors for all levels. For a CFL of 48 there is an increase in the error of all levels due to the
O(∆t) error increase.

Courant-Fredrichs-Lewy (CFL) condition, which is defined as

CCFL =
v∆t

hx

, (4.10)

can be larger than 1 and typically the time-step restriction is a function of the strain in
the velocity field and has no relation to the configuration or velocity space grid. It is worth
noting that this restriction on the time-step for Lagrangian particle methods is an accuracy
condition and not a stability condition like the CFL condition is for grid methods. Many
forward semi-Lagrangian methods utilize CFLs significantly larger than one. To show that
the above works well with larger CFLs, we compare the results for CFLs of 3/4, 12, and 48
with our standard time step, which equates to a CFL of 10/π.

Figure 4.9 displays error plots for the three different CFL conditions that can be compared
to Figure 4.3c and Figure 4.4c. For each CFL and test problem we use the grid and domain
parameters given previously withMg ∈ {4, 5, 6, 7}. For all tests we useW4,4 as the deposition,
interpolation, and remapping kernel as well as the associated remapping condition

f
(
Fx − 1

)4
< 10−8. (4.11)
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CFLs of 3/4, 10/π, and 12 have no noticeable increase in the error due to the differing
time-step sizes for either the linear Landau damping test problem or the two-stream instabil-
ity test problem. Increasing the CFL further to 48 does noticeably increase the error. This
is due to the fact that the time-stepping error is now dominant. Figure 4.10 highlights that

Figure 4.10: All CFL conditions correctly capture the analytic damping rate. The larger
the CFL the more sub-sampled the solution is; however, the norm of the electric field is
consistent across the CFL conditions.

all three CFLs have the same damping rate and, furthermore, the larger CFLs appear to be
a sub-sampled version of smallest CFL.

The number of remaps for each CFL for Mg = 6 are listed in Table 4.4. Similar to how
the time step restrictions are a function of the dynamics of the problem and not related to
the grid size, the deformation gradient does not depend on the parameters used to discretize
the computational domain. This leads one to expect that the number of remaps should be
relatively consistent between CFLs. This holds true for linear Landau damping which has a
variation of two remaps between the smallest and largest CFL condition. For the two-stream
instability, the number of remaps does make large changes for different CFLs. This is due
to the fact that there are many fewer time steps as the CFL increases and that many of the
remaps occur for t ∈ [20, 30]. For the largest CFL we only have 64 total time steps, which
is less than even the next closest CFLs total number of remaps. Thus, we cannot expect
agreement in the number of remaps between all the CFLs for this problem.
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CFL Comparison
CFL Number of Number of Remaps

Time Steps Linear Landau Damping Two-Stream Instability
3/4 4076 11 114
10/π 960 11 100
12 256 10 77
48 64 9 27

Table 4.4: The number of time steps and remaps for the two different test problems and four
CFL conditions for the resolution Mg = 6.

4.5 Adaptive-in-time-and-space (Local) Remapping

In Section 4.1 we demonstrated that for each particle we could compute the contribution to
the O(1) error. We then presented remapping as a way of controlling this. The remapping
method that we presented remaps the entire phase-space. This does not take full advantage
of the locality of the computation of the error metric. If we just apply the remapping
algorithm given in (4.8) to the regions that have a larger O(1) error than the tolerance, we
will be left with a distribution with discontinuities along the boundary of the region that
degrades the accuracy of the method. We propose smoothly connecting these regions by
using a compactly supported mollifier. The pseudocode for the implementation is as follows,

Algorithm 1 Local Remapping

Input:
Particles

Boxes ← getBoxes(Particles) ▷ Defines regions of phase-space to remap

for Box ∈ Boxes do

transition particles ← (1 - χ(Box))(Particles ̸∈ Box)
remapped particles ← remap(χ(Box)(Particles ∈ Box) )

Particles ← remapped particles
⋃

transition particles
end for
return Particles

where the remap function computes M∗
p , the remapped particle charge, as described in

Section 4.2 and χ(x) is our mollifier function. Here the order of operations is important to
the smooth transition from the old to the remapped portions of the distribution.



CHAPTER 4. ADAPTIVE REMAPPING FOR (1+1)D KINETICS 48

To understand the constraints on the mollifier, we follow the error analysis for global
remapping in [45, 20]. Clearly, the error outside of the remapped rectangle will not be
disturbed by the remapping and thus has no error associated with remapping. A pictorial
representation of local remapping can be seen in Figure 4.11; the black box is the phase-space
domain for the simulation, the red dots are particles, the green box is the rectangle where we
remap and the support of the mollifier function, the orange is the region where the mollifier
function is the identity. This means that between the orange and green boxes we will have
both remapped and non-remapped particles.

Figure 4.11: The orange box is where the mollifier function is identically one and the green
is the region that must be remapped.

Recall, the definition of the remapping error in [20],

E =
∑
k

M̃kδ(x− x̃k)−
∑
i

Miδ(x− xi). (4.12)

Following the analysis, we multiply by a test function ϕ(x). Making the substitution for Mi

from the definition of remapping and defining Igrid as the set of indices for which xi = ih
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and xi is within the green box, then we see that

E =
∑
k

M̃kϕ(x̃k)−
∑
k

(1− χ(x̃k)) M̃kϕ(x̃k)−
∑

i∈Igrid

∑
k

χ(x̃k)M̃kWq,r

(
xi − x̃k

h

)
ϕ(xi)

=
∑
k

χ(x̃k)M̃kϕ(x̃k)−
∑

i∈Igrid

∑
k

χ(x̃k)M̃kWq,r

(
xi − x̃k

h

)
ϕ(xi)

=
∑
k

M̃kχ(x̃k)

ϕ(x̃k)−
∑

i∈Igrid

Wq,r

(
xi − x̃k

h

)
ϕ(xi)



which allows us to define

f(x) = ϕ(x)−
∑

i∈Igrid

Wq,r

(
xi − x

h

)
ϕ(xi).

Recall that W (x) obeys the following moment condition,∑
i∈Igrid

Wq,r

(
xi − x

h

)
= 1

where x is in the green box, Igrid is representing the grid framed by the green box. Using
this we see

f(x) =
∑

i∈Igrid

(ϕ(x)− ϕ(xi))Wq,r

(
xi − x

h

)
(4.13)

=
∑

i∈Igrid

(
∞∑
α=1

1

α!
(x− xi)

αd
αϕ(x)

dxα

∣∣∣∣∣
x=xi

)
Wq,r

(
xi − x

h

)
(4.14)

where we have Taylor expanded ϕ(x). From this, if Wq,r satisfies the moment conditions∑
i∈K

(x− xi)
q′Wq,r

(
xi − x

h

)
= 0 for 1 ≤ |q′| ≤ q − 1 (4.15)

then

E = O(hq). (4.16)

Note, this does not place any restrictions on χ but one acceptable choice would smooth step
functions like those found in [25].
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This analysis suggests that we can accurately represent a distribution as a union of two
distributions: one that contains old particles, f1 = (1 − χ)f , and one made up of new
remapped particles , f2 = R(χf) where R(·) is the remapping operator. Although we can
accurately represent the distribution this way, how does it interact with our deposition error
analysis from Chapter 3?

Recall from (3.49) that we were left with a sum of the form,

hv

∑
jv

f̃(x̄− x0, αv, t). (4.17)

When we remap locally and represent the distribution as the union of two distributions then
we need to replace f̃ by a sum of the two distributions. Doing this and replacing f̃ with

f̃ = f̃1 + f̃2 = (1− χ)f̃ +R(χf̃) (4.18)

we see then that the sum can be written as

hv

∑
jv

f̃(x̄− x0, jvhv, t) = hv

JRL∑
jv=vL/hv

(1− χ)f̃(x̄− x0, jvhv, t)

+ hv

∑
iv

R(χf̃)(x̄− x0, j̃vhv, t)

+ hv

vH/hv∑
jv=JRH

(1− χ)f̃(x̄− x0, jvhv, t)

(4.19)

where iv denotes the sum over the remapped region contained by the box with jv boundary
indices [JRL, JRH ] where RL and RH denote the low and high edge of the remapped box
that contains the support of χ, respectively. Recalling the argument for the approximation
of the respective integrals for each of these sums, we note that we can no longer apply
the argument that f̃ , f̃ ′, f̃ ′′ are small at the boundary of the integral since the distribution
may not be small at these boundaries. Only the distribution multiplied by the deformation
gradient will be bounded by C at the boundary of the box.

This is a complicating factor and suggests using a metric that accounts for the value the
distribution will take at the boundary of the remapped region. One potential choice would
be to remap in regions where

max
((

Fx(αx, αv, t)− 1
)M

f(αx, αv), f(αx, αv)
)
> C. (4.20)

Using such a condition guarantees that at the boundary of the remapped region f(αx, αv) <
C and thus we can apply the argument used to obtain equation (3.52) to equation (4.19)
and achieve the same accuracy. This condition also allows us to implicitly define the regions
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that need to be remapped and does not require us to actually define boxes in phase-space.
If we let

Rc(αx, αv, t) = max
((

Fx(αx, αv, t)− 1
)M

f(αx, αv), f(αx, αv)
)

(4.21)

then the pseudocode becomes

Algorithm 2 Implicit Local Remapping

Input:
Particles

transition particles ← Particles
transition particles ← (1 - χ(Rc(Particles)))transition particles
remapped particles ← remap(χ(Rc(Particles))Particles)

eraseSmallParticles(transition particles)
eraseSmallParticles(remapped particles)

Particles ← remapped particles
⋃

transition particles

return Particles

which has the advantage of requiring only local information. This makes it much simpler
to implement and parallelize as there is no need for a particle to determine where it exists
relative to a box in phase-space or for ranks to compute and communicate boxes that may
span multiple different ranks. The actual implementation of remapping is discussed in further
detail in Chapter 6.

Numerical Results

We test the remapping condition (4.21) and the form of local remapping described in Algo-
rithm 2 by applying it to the two test problems used to test the adaptive-in-time algorithm.
For the linear Landau damping test problem with C = 10−8, Figure 4.12 shows that the
error and order of convergence is similar to the results for adaptive-in-time remapping for
W4,4. We find that this remapping condition leads to the exact same number of remaps as
when the phase-space distribution is globally remapped. We expect the number of remaps
to be the same as for global remapping or increase. The reason one expects the possibility of
an increase is because regions where f(Fx−1)4 is just less than the remapping condition will
need to be remapped in the near future and may trigger a local remap before a remap would
have been triggered had we used global remapping. Using this condition, Figure 4.13 does
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(a) Charge Density Error (b) Convergence Order

Figure 4.12: Plots of error and convergence order for W4,4 for the linear Landau damping test
problem. (a) shows the error for three different resolutions: Mg = 4(blue), Mg = 5(red), and
Mg = 6(yellow). (b) shows the order of convergence with log2(e

4/e5) in blue and log2(e
5/e6)

in red. We remap when f(Fx − 1)4 > 10−8 and remap the region where this condition
is satisfied as well as all particles with f > 10−8. As is expected, we see fourth-order
convergence and error characteristics similar to Figure 4.3.

(a) Charge Density Error (b) Convergence Order

Figure 4.13: Plots of error and convergence order for W4,4 for the two-stream instability test
problem. (a) shows the error for three different resolutions: Mg = 4(blue), Mg = 5(red), and
Mg = 6(yellow). (b) shows the order of convergence with log2(e

4/e5) in blue and log2(e
5/e6)

in red. We remap when f(Fx − 1)4 > 10−8 and remap the region where this condition
as satisfied as well as all particles with f > 10−8. As is expected, we see fourth-order
convergence and error characteristics similar to Figure 4.4.
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Figure 4.14: Plot of the norm of the electric field (black), the analytic damping rate of
0.1533 (red dashed), and the remap times (magenta stars) for linear Landau damping with
C = 10−8.

not show any substantial difference in the accuracy or order of convergence when compared
to Figure 4.4.

Remapping in this manner produces solutions that converge towards analytic answers
for these test problems and compare well with results previously reported in literature for
these problems. The amplitude of the electric field is plotted in Figure 4.14 against that
analytic damping rate of γ = 0.1533. The computed damping rate is γ = 0.1559 and has
a relative error of 1.72%. The computed frequency is 1.414 which gives a relative error of
0.12% compared to the expected frequency of 1.416.

Figure 4.15 shows the phase-space distribution at t = 20 for the two-stream instability.
The plots compare well to those from Figure 4.7. When we do not increase the particle radii
for plotting purposes, the transition region between the remapped and not remapped regions
of phase-space becomes apparent. The region being remapped is generally v ∈ [−6, 6] with
transition regions of v ∈ [6, 7] and v ∈ [−6,−7] .

Remapping all particles whose initial distribution is greater than 10−8 is somewhat re-
strictive and it is worth exploring whether this restriction can be somewhat backed off. To
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(a) Particle radii = 2 (b) Particle radii = 10

Figure 4.15: Plot of phase-space distribution at time t=20 for the two-stream instability test
problem using grid parameters and time step parameters with Mg = 6 and C = 10−8. (a)
uses small particle radii for plotting to highlight the number of particles accumulated in the
tails of the distribution. This is caused by the requirement that the boundaries have small
distribution values so that the Euler-Maclaurin formula can be applied. (b) is plotted with
normal particle radii that allow this plot to be compared to those in Figure 4.7.

do this, we can define the remapping region as

max
((

Fx − 1
)M

f(αx, αv)/C, f(αx, αv)/Cdist

)
> 1 (4.22)

where C = 10−8 is the normal condition and we vary Cdist. We tested for values of Cdist ∈
{10−8, 10−6, 10−4, 10−2, 1}. Figure 4.16 shows how large the error can become from using
too large of a Cdist value. These errors are catastrophic to the accuracy and furthermore
cause instabilities that lead to remapping being required almost every time-step. For these
test problems it appears that a better choice of Cdist would be 10−6 although 10−4 might be
sufficient for the two-stream instability. The convergence plots for Cdist = 10−6 are shown in
Figure 4.17.

To test the bounds of the Cdist parameter, we examine whether the method still converges
with the expected order for Cdist = 10−4. Figure 4.18a shows that the errors for the coarsest
and middle levels do not display spikes like those seen at the finest level. In fact, the
convergence is still approximately fourth-order up to t = 20 where the convergence order
decays as previously seen.

To compare the distributions at t = 20 for Cdist = 10−4 we plotted the distribution
in Figure 4.19. Note that like Cdist = 10−8 we get an accumulation of transition particles
around v = ±6; however, now this accumulation begins near v = ±4. Another difference is
that we also have an accumulation of particles along the vortex and the filament where the
distribution function is now sufficiently small when compared to Cdist = 10−4. Figure 4.20
shows this phenomena better and is a plot of the remapping condition 10 time steps before
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(a) Linear Landau Damping (b) Two-Stream Instability

Figure 4.16: Plot of error with varying Cdist values for the two test problems. From these
tests, it is clear that Cdist < 10−6 is required to achieve convergence similar to the globally
remapped tests for the W4,4 kernel. For the two-stream instability, a Cdist = 10−4 has an
error similar to the global remapping and could be used for only this test problem.

t = 20. We see a non-trivial remapping condition and accumulation of particles along the
filament in this region.

Remapping locally in phase-space is potentially another way to reduce the cost of remap-
ping. This provides local phase-space control of the O(1) term that is detrimental to the
accuracy. The advantages of the implicit definition are that we can do this for arbitrarily
complex contours and all of the information required for remapping a particle is local. The
cost of doing local remapping in phase-space is that particles are added to the simulation
as both remapped and non-remapped particles exist in the transition region. The growth in
the total number of particles can be bounded by occasionally remapping globally in place of
a local remap when the total number of particles is too large.

A fair way to compare global remapping to the local remapping method is to track the
number of new particles generated by remapping. This is a proxy to the phase-space volume
that is being remapped, which would be an ideal comparison but is hard to compute from
the implicitly defined curves used to remap locally in phase-space. Based on the plots in
Figures 4.15, 4.20a, and 4.19 we expect that the number of newly generated particles for
local remapping to be less than the number of particles when remapping globally. This turns
out to depend on the choice of Cdist. The number of particles generated and the difference
between the number of particles generated for varying Cdist parameters during remapping
is shown in Figure 4.21. We plot the results for all Cdist parameters that gave acceptable
convergence results for Mg = 6 and C = 10−8. For linear Landau damping it is clear that
using the largest Cdist parameter possible gives the largest reduction in number of particles
generated during remapping. From Figure 4.21c it is easy to see that using a larger Cdist
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(a) Linear Landau Damping (b) Linear Landau Damping

(c) Two-Stream Instability (d) Two-Stream Instability

Figure 4.17: Plots of error and convergence order with Cdist = 10−6 for both linear Landau
damping and the two-stream instability test problem with the W4,4 kernel. (a) and (c) shows
the error for three different resolutions: Mg = 4(blue), Mg = 5(red), and Mg = 6(yellow).
(b) and (d) shows the order of convergence with log2(e

4/e5) in blue and log2(e
5/e6) in red.

For both tests we bound the O(1) error by 10−8. We achieve similar levels of accuracy and
convergence as for Cdist = 10−8.
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(a) Two-Stream Instability (b) Two-Stream Instability

Figure 4.18: Plots of error and convergence order with Cdist = 10−4 for the two-stream
instability test problem. (a) shows the error for three different resolutions: Mg = 4(blue),
Mg = 5(red), and Mg = 6(yellow). (b) shows the order of convergence with log2(e

4/e5) in
blue and log2(e

5/e6) in red. We bound the O(1) error by 10−8. We achieve similar levels
of accuracy and convergence as for Cdist = 10−8 although do notice some noise in the finest
level.

(a) Particle radii = 2 (b) Particle radii = 10

Figure 4.19: Plot of phase-space distribution at time t=20 for the two-stream instability
test problem using grid parameters and time step parameters with Mg = 6 and C = 10−8.
We set Cdist = 10−4. (a) uses small particle radii for plotting to highlight the number of
particles accumulated in the tails of the distribution. This is caused by the requirement that
the boundaries of the have small distribution values so that the Euler-Maclaurin formula can
be applied. (b) is plotted with normal particle radii that allow this plot to be compared to
those in Figure 4.7.
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(a) Remapping Condition (b) Zoomed in Remapping Condition

Figure 4.20: Plot of remapping condition 10 time steps before t=20 for the two-stream
instability test problem using grid parameters and time step parameters with Mg = 6 and
C = 10−8. We set Cdist = 10−4. (a) shows the full distribution. We transition smoothly
between the region 1 and 0.1. (b) is zoomed in on the center to show that transition particles
exist in the vortex of the distribution and along the filament.

parameter can effect when a remap is required. Specifically, for Cdist = 10−6 the final remap
occurs before either of the other tests. This is due to a region that was previously not
remapped because it satisfied f(αx, αv) < Cdist and (Fx − 1)Mf(αx, αv) < C triggering the
remap by no longer satisfying (Fx − 1)Mf(αx, αv) < C. For the two-stream instability this
increased frequency eventually eats away at the efficiency gained early in the simulation for
Cdist = 10−4 and Cdist = 10−6. The number of remaps for each of these tests are listed in
Table 4.5. These plots show the delicate balance that needs to be struck via the choice of the

Number of Remaps
Cdist Linear Landau Damping Two-Stream Instability
10−4 - 236
10−6 11 126
10−8 11 100

Table 4.5: The number of remaps for the linear Landau damping and two-stream instability
where remapping occurs when f(Fx − 1)4 > 10−8 and the region where this condition is
satisfied as well as all particles with f > Cdist. All tests use Mg = 6. This table highlights
how by remapping more locally in phase-space can lead to many more remaps and cause
more phase-space volume to be remapped than in global remapping.

Cdist parameter between the frequency of remapping and the region of remapping to achieve
optimal performance.
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(a) Linear Landau Damping (b) Two-Stream Instability

(c) Linear Landau Damping (d) Two-Stream Instability

Figure 4.21: Plots of the number of particles generated in remapping normalized by the initial
number of particles. Figures (a) and (b) show the normalized number of remapped particles
for the two tests. Figures (c) and (d) show the normalized difference between the number
of particles generated by remapping globally and the number generated for each Cdist. We
test all of the Cdist parameters that gave acceptable convergence results. For these tests
C = 10−8 and Mg = 6 which corresponds to the finest resolution error in the convergence
tests. These plots highlight how the Cdist parameter impacts the performance of locally
remapping in phase-space. For linear Landau damping it is advantageous to use the largest
Cdist that gives acceptable convergence results. At the end of the simulation, Cdist = 10−6

leads to a remapping savings of 2.5x the initial number of particles. Unlike linear Landau
damping, for two-stream instability we found that if the Cdist parameter was too large this
advantage disappeared. This is due to the increase in frequency of remapping required by
the larger Cdist parameters since regions that have a deformation gradient that will need to
be remapped at the next time step may not get remapped in the current remapping step.
This phenomena is seen in the last remap of the linear Landau damping test problem as the
Cdist = 10−6 test remaps before either of the other tests that remap a larger portion of the
distribution at each remap. We found that for two-stream instability using Cdist = 10−8 lead
to a savings approximately equal to doing 10 fewer remaps.
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4.6 Mixed Kernels

Thus far, we have considered only two kernels, W2,2 and W4,4. There are numerous other
examples of kernels that one could choose. We require that Wq,r(0) = 1. This reduces the
dissipation from remapping and, in our experience, retains better accuracy and convergence
properties. Other kernels that satisfy this property and conserve the first four moment con-
ditions are W4,0, and W4,2. For these kernels we only consider the case where the remapping
condition has the power M = 4 and again we bound the O(1) term by C = 10−8. Figure 4.22
shows the results for these two kernels for both linear Landau damping and the two-stream
instability test problem. The C0 kernel, W4,0, has a large increase in the error after only a
short time. Late in the simulation when the error increases for the two-stream instability, it
does begin to resemble the error for W4,4 (see Figure 4.4c for comparison). The C2 kernel
W4,2 has an error that is nearly identical to W4,4 for both test problems. For the linear
Landau damping test problem, we do see some noise in the error of the most refined level.
This is especially obvious at late times in the simulation. This noise is not present in the
two-stream instability results.

The main advantage of using W4,2 instead of W4,4 is that it has lower order polynomials
and thus is more robust to errors in round off. For the levels of accuracy we have examined
in these test problems the polynomials up to the ninth order in W4,4 have not caused issues;
however, in Section 2.2 we did see a barrier appearing earlier than was expected. We suspect
this was caused by the condition number of the W4,4 kernel. Both kernels have the same
support size and thus there is only a marginal computational savings of approximately eight
multiplication and four addition operations per kernel call by using W4,2 instead of W4,4.

Recall that we must use the same kernel for deposition and force interpolation to avoid
self-forcing errors. This does not restrict us from using a different kernel for remapping
though. Since deposition and force interpolation occur significantly more frequently than
remapping, it would be advantageous from a computational stand point to use low-order
kernels for deposition and force interpolation and high-order kernels for remapping. Previous
works like [45, 44, 43, 38, 37] have used high-order kernels for remapping to achieve the
accuracy predicted by the deposition and force interpolation kernel due to the fact that they
lose an order of convergence by remapping at an O(∆t) interval. It begs the question then,
do we stand to gain anything from remapping with a high-order kernel? In theory, we should
be limited by the low-order kernel used in deposition; however, by reconstructing a high-
order representation of the distribution occasionally the high-order of convergence could in
theory be retained.

We choose to investigate deposition and force interpolation kernels W2,0 and W2,2 with
the remapping kernel W4,4. From Section 2.2, M = 2 would be the appropriate choice for
these deposition kernels but we also consider M = 4 with the W2,2 kernel. For all cases, we
use the same condition that we have used thus far, namely the O(1) term is bounded by
C = 10−8.

Figure 4.23 shows the results for W2,0. The convergence plots appear to have similar
characteristics to the the plots for W2,2 but with a noticeable addition of small oscillations.
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(a) W4,0 Linear Landau Damping (b) W4,0 Two-Stream Instability

(c) W4,2 Linear Landau Damping (d) W4,2 Two-Stream Instability

Figure 4.22: Plots of error for both W4,0 and W4,2 for the linear Landau damping and two-
stream instability test problems. Three resoultions are plotted:Mg = 4(blue), Mg = 5(red),
and Mg = 6(yellow). For all tests we bound the O(1) error by 10−8 and the power M = 4.
We see that the C0 kernel has a much higher error after a few time steps than the C2

kernel and when compared to previous results for W4,4 in Figure 4.3c and Figure 4.4c. The
W4,2 kernel closely resembles the error plots for W4,4 except for some small additional spikes
that are particularly noticeable on the most refined level of the linear Landau damping test
problem.
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(a) Linear Landau Damping (b) Two-Stream Instability

Figure 4.23: Plots of error for the linear Landau damping and two-stream instability test
problems where W2,0 was used as the deposition and force interpolation kernel and W4,4 was
used as the remapping kernel. For all tests we bound the O(1) error by 10−8 and the power
M = 2. Three resolutions are plotted: Mg = 4(blue), Mg = 5(red), and Mg = 6(yellow). We
see that compared to the results for W2,2 in Figure 4.3a and Figure 4.4a the errors are quite
similar except for a small level of oscillations persistent in the results here.

It is interesting that both test problems appear to converge with second-order accuracy.
These results do not fit neatly into the theory we have developed thus far. It should be
noted though that for this test we use C = 10−8 which is a much tighter bound than what
would be required by the errors seen. This overly aggressive remapping may mean that the
error due to the C0 knot conditions may be relatively small and we are evaluating errors
between knots where the interpolation functions are C∞.

Figure 4.24 continues to push the bounds of the theory developed in Section 3.3. In
this case we see fourth-order convergence while using W2,2 as the deposition and force in-
terpolation kernel. This holds for M = 2 and M = 4. Although the M = 4 solutions have
noticeable anomalous spikes that appear to get larger and more prevalent for the finer levels.
One possibility for why we see higher orders of convergence than we initially expect is that
W2,2 might not exactly preserve the third and fourth moment conditions but it might be a
small value for the moderately deformed phase-space distributions. This would fit with what
we see in Figure 4.3a and Figure 4.4a where for a very short time the errors are small and
then grow. In those cases the reason that the high-order convergence does not continue is
that we remap the distribution with W2,2, which is second-order.

Using W2,2 for deposition and force interpolation and W4,4 for remapping has non-
negligible computational savings as the support of W2,2 is [−2, 2] where it is [−3, 3] for
W4,4. This increased convergence order should not be relied upon for general problems or
mapped geometries where the cancellations we benefit from here may not be present.
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(a) M = 2, Linear Landau Damping (b) M = 2, Two-Stream Instability

(c) M = 4, Linear Landau Damping (d) M = 4, Two-Stream Instability

Figure 4.24: Plots of error and convergence order with W2,2 used for deposition and in-
terpolation and W4,4 used for remapping for the linear Landau damping and two-stream
instability test problems. Three resolutions are plotted:Mg = 4(blue), Mg = 5(red), and
Mg = 6(yellow). For all tests we bound the O(1) error by 10−8. We tested for both M = 2
and M = 4 to see how reducing the number of remaps effected the regularity of the error. We
see that in both cases we achieve fourth order convergence, which is higher than expected.
In Figures 4.3b and 4.4b for a short time there is fourth order convergcene. By remapping
with a high order kernel we are able to preserve this convergence for long times and get
fourth order convergence even though the kernel only exactly preserves the first two moment
conditions.
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Chapter 5

Dory-Guest-Harris Instability

5.1 Problem Description

We have shown that bounding the O(1) error by remapping when it grows large compared
to the discretization errors reduces the “noise” that is often seen in non-remapped particle
methods. Although this applies for an arbitrary number of velocity dimensions, thus far
we have only considered (1+1)D problems. An electrostatic Vlasov system that has ana-
lytic predictions and can act as a benchmark for more than one velocity dimension is the
Dory-Guest-Harris (DGH) instability. The existence of unstable electrostatic waves traveling
perpendicular to the equilibrium magnetic field (k∥ = 0) was first noted in [24] after previ-
ously being thought to not exist. Dispersion relations were developed in [42] for waves of the
form ei(k⊥x−ωt) where ω has a real, ωr, and imaginary, ωi, component that are the oscillation
frequency and growth rate, respectively. This gives analytic estimates for the growth and
frequency that can be compared to the numerical results. This served as a benchmark for a
high-order finite-volume method and here we will use it to benchmark both remapped and
non-remapped particle-in-cell methods with two velocity dimensions.

The Vlasov equation for the Dory-Guest-Harris instability can be written as

∂f

∂t
+
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∂x
(vxf) +

Ze
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∂

∂vx

([
Ex +
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ωp

vy

]
f

)
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∂
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(
−vx

ωc

ωp

f

)
= 0 (5.1)

where similar to the (1+1)D case we relate the phase-space distribution and the electric field
via the Poisson equation

ρ =

∫ ∫
fdvxdvy − 1 (5.2)

∂2ϕ

∂x2
= ρ (5.3)

Ex =
∂ϕ

∂x
. (5.4)
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From this, we can derive the Lagrangian equations of motion

dMk

dt
= 0 (5.5)

dxk

dt
= vx (5.6)
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ωp
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where again the charge, M , is defined as

Mk = f0(α
k
x,ααα

k
v)hxh

2
v (5.9)

and k indexes over particles. From these then, we can derive the evolution of the deformation
gradient

Fx =
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∂αx

(5.10)
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which are identical to the (1+1)D system except for the charge-mass ratio factor. For this
test problem, we use normalized units and thus Ze/Me = −1.

Unlike the (1+1)D Vlasov-Poisson System we introduced in Section 3.1, the Lagrangian
trajectory equations are no longer equivalent to a second-order system and thus we cannot
apply the three-stage fourth-order Runge-Kutta method. This means that we revert back
to a standard four-stage fourth-order Runge-Kutta method. For memory purposes, it is
advantageous to use a Runge-Kutta method with zeroes everywhere except the sub-diagonal
of the tableau so that only one set of increments needs to be stored for each particle at any
given stage. For this reason, we use the standard fourth order Runge-Kutta [1].

Other than the change to the Runge-Kutta method, the algorithm for advancing the
particle positions for the DGH characteristic equations is the same as in Section 3.2. The
remapping algorithm is the only algorithm that is explicitly changed by the two velocity
dimensions. The remapping condition is the same as in the (1+1)D test problems,

(Fx − 1)Mf < C. (5.15)
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The justification for using this condition is discussed in Section 3.1 where the change of
variables for deposition is generalized to arbitrary configuration and velocity dimensions.

The initial distribution for the DGH instability is

f0(x, vx, vy) =
1

πα2
⊥j!

(
v2x + v2y
α2
⊥

)j

exp

(
−
v2x + v2y
α2
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)(
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x
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(5.16)

k̃ =
2πv⊥0

L

ωp

ωc

, θ = arctan (vy/vx) (5.17)

where x ∈ [0, L], vx, vy ∈ [−vmax, vmax]. This initial distribution was found optimal to excite

the dominant mode in the perturbation in [42]. For all tests, ϵ = 10−4 and α⊥ =
√

2/j so

that v⊥0 =
√
2. The length of the domain, L, is computed from the chosen k̃ and ωc/ωp.

To maintain charge neutrality, it is important to choose vmax sufficiently large for the
given j so that
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is satisfied to a sufficient precision. For j = 6, choosing vmax = 4 satisfies this condition to
within 10−15. However, for j = 2, choosing vmax = 4 only satisfies this condition to 10−6.
Choosing vmax = 6 for j = 2 gives a difference of 10−14 which is sufficiently close considering
we remove particles with a strength of 10−14 or less. This is a different means of solving
this to [42] which fixed vmax = 4 and scaled the integral by a factor that was dependent on
the value of j chosen. Doing this would then require that scale factor be used in deposition.
Although a larger vmax increases the computational cost, the test problem that we consider
with j = 2 has relatively few remaps and thus the increase in the number of particles in the
velocity dimension is not prohibitively expensive.

For this test problem, we use similar parameters to those used in Chapter 4. The grid
parameters for level Mg are Nx = 2Mg , Np

x = 2Mg+1, Np
v = 2Mg+2/3, and given the grid

parameters, we choose ∆t such that the CFL condition,

CCFL =
vmax∆t

hx

, (5.19)

satisfies CCFL = 10. For all convergence studies we used Mg ∈ {5, 6, 7}. We reduced the
the number of particles used to sample the velocity dimension since the velocity domain
shrank from vmax = 10 for the (1+1)D test problems to vmax = 4 or vmax = 6 depending
on the value of j for the problem. In [42], for the convergence studies, the three velocity
resolutions used were hv = 0.125, 0.1, 0.0833. We use a slightly larger range with hv =
0.1875, 0.09375, 0.046875.
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5.2 Numerical Results

We focus on three sets of parameters that cover the three possibilities for a perturbation:
exponential growth, oscillatory exponential growth, and a stable perturbation. With j =
6, k̃ = 3.15, ωp/ωc = 20, and vmax = 4 the perturbation exponentially grows without
oscillations. The log of the energy of the electric field,

UE =
1

2

∫ L

0

E2(x)dx, (5.20)

for this perturbation is the blue line in Figure 5.1. By using the same parameters but k̃ = 4.65
we get a perturbation that grows exponentially but in a manner that is oscillatory. This is
the orange line in Figure 5.1. Finally, choosing j = 2, k̃ = 2.12, ωp/ωc = 10, and vmax = 6
gives a stable electrostatic wave that propagates through the plasma without exponential
gain or loss in energy. This is the green line in Figure 5.1. For all three cases, we see good
agreement with the results obtained in [42] displayed in Figure 7.

Of interest is to compare the remapped and non-remapped solutions for these three
perturbations. In (1+1)D we saw that not remapping could be disastrous for the accuracy
of the simulation. Figure 5.2 and Figure 5.3 show this comparison for the kernels W2,2

and W4,4, respectively. For all tests we used Mg = 5 and C = 10−8 as the criteria to remap
globally in phase-space. The remapped solution is the solid blue line while the non-remapped
solution is the orange dashed line.

At late times, t > 400 we see disagreement between the solutions for all cases; however,
for the instabilities we see that the remapped and non-remapped solutions both capture
the correct behavior until this time. The non-remapped method does struggle to correctly
resolve the stable perturbation for both kernels. This would be the most problematic use
of the non-remapped method as it could lead one to believe that this case has oscillatory
exponential growth rather than being a stable perturbation. The remapped solutions are
not immune from issues. For example, using W2,2 for the oscillatory exponential growth
case(Figure 5.2b), the kernel appears to be too dissipative for this resolution. The second-
order method in [42] displayed similar issues for coarse grids, and as we will show shortly,
the method does converge to the correct solution for refined grids. Figure 5.3c also shows
issues at late times; however, unlike the non-remapped method it still correctly captures the
stability of this perturbation.

Beyond capturing the correct behavior, it is important that the adaptively remapped PIC
method converges for these test problems. Since it is difficult to resolve the oscillation period
for the stable perturbation, we only test convergence for the two unstable perturbations - as
was done in [42]. For both of these perturbations we compute the slope of the exponential
growth of the electric energy. We compute this by taking the log of UE and then fitting a
linear approximation to this line. For the oscillatory growth, we compute the linear fit based
on the local maxima. To compare with the theoretical imaginary part of the frequency, we
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Figure 5.1: Plot of three different stability regimes for the Dory-Guest-Harris instability.
These plots were generated by using the kernel W4,4 for deposition, force interpolation, and
remapping. For this test we used Mg = 5 and remapped when the O(1) condition was larger
than C = 10−8. Blue depicts pure exponential growth of the electric field and is initialized
with j = 6, k̃ = 4.65, ωp/ωc = 20, and vmax = 4. Orange shows oscillatory exponential
growth in the electric field energy that comes from using the same initial condition as the
pure exponential except for k̃ = 4.65. Finally, green is the electric field energy of a stable
electrostatic wave propagating through the plasma. The electric field energy does not grow
in time. The initial conditions for this stable wave is j = 2, k̃ = 2.12, ωp/ωc = 10, and
vmax = 6. The vmax was extended to ensure charge neutrality.
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(a) j = 6, k̃ = 3.15,
ωp/ωc = 20, vmax = 4

(b) j = 6, k̃ = 4.65,
ωp/ωc = 20, vmax = 4

(c) j = 2, k̃ = 2.12,
ωp/ωc = 10, vmax = 6

Figure 5.2: Plot of three different stability regimes for remapped (blue solid) and non-
remapped (orange dashed) for the Dory-Guest-Harris instability with W2,2, Mg = 5, and
C = 10−8. (a) depicts pure exponential growth of the electric field and we see that both the
remapped and non-remapped methods capture the growth and only differ significantly in the
nonlinear regime. (b) shows oscillatory exponential growth in the electric field energy. The
remapped solution appears to be dissipative and does not capture the behavior correctly at
this resolution. (c) shows the electric field energy of a stable electrostatic wave propagating
through the plasma. The electric field energy should not grow in time but rather oscillate
for the duration of the simulation. We see agreement in the solution until t ∼ 200 and
then complete divergence in the solutions after t = 400. In this case, the non-remapped
versions electric field energy grows in a manner that is exponential and oscillatory. This is
the incorrect behavior and in contrast to the lack of growth in the remapped implementation.

have to scale the slope, S, by

ω̃i =
1

2

ωp

ωc

S. (5.21)

For the oscillatory exponential growth we also use these local maxima to compute the
period which can then be compared to theoretical results. To compute the real part of the
frequency from the period, T , we compute

ω̃r =
π

T

ωp

ωc

. (5.22)

For k̃ = 3.15, we compute the slope for t > 138 and for k̃ = 4.65 we compute the slope and
period for t > 150. Figure 5.4 plots UE for Mg ∈ {5, 6, 7} versus time for the two test cases
and both kernels. In all plots blue is the coarsest level and green is the most refined.

As is evident from these plots, for W2,2, the coarsest level appears to be too dissipative.
This may be exacerbated by the tight remapping bound of C = 10−8. Table 5.1 lists large
relative errors in the coarsest level for all test problems. The finest level has much more
reasonable relative errors of all less than 2%. Figure 5.5 plots the results as well as the linear
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(a) j = 6, k̃ = 3.15,
ωp/ωc = 20, vmax = 4

(b) j = 6, k̃ = 4.65,
ωp/ωc = 20, vmax = 4

(c) j = 2, k̃ = 2.12,
ωp/ωc = 10, vmax = 6

Figure 5.3: Plot of three different stability regimes for remapped (blue solid) and non-
remapped (orange dashed) for the Dory-Guest-Harris instability with W4,4, Mg = 5, and
C = 10−8. (a) depicts pure exponential growth of the electric field and we see that both the
remapped and non-remapped methods capture the growth and only differ significantly in the
nonlinear regime. (b) shows oscillatory exponential growth in the electric field energy. The
remapped solution and non-remapped solution begin to noticeably diverge around t = 200
and the non-remapped solution no longer captures the oscillatory behavior after t = 400. (c)
shows the electric field energy of a stable electrostatic wave propagating through the plasma.
The electric field energy should not grow in time but rather oscillate for the duration of the
simulation. We see agreement in the solution until t ∼ 300 and then complete divergence in
the solutions after that time. In this case, the non-remapped versions electric field energy
grows in a manner that is exponential and oscillatory. This is the incorrect behavior and in
contrast to the lack of growth in the remapped implementation. We see a noisier solution for
after t = 400 for the remapped solution; however, the solution does not grow dramatically
like the non-remapped solution.

fit. Using Richardson extrapolation we achieved between third and fourth order convergence
for all test problems. We plotted this and computed the converged value with (hv/h

c
v)

4

rather than (hv/h
c
v)

2.
For the fourth-order kernel, W4,4, we obtained much better relative errors. Table 5.2 lists

the relative errors for each level of refinement as well as the converged value. The worst
relative error is 6.224%. The finest level of refinement has relative errors all less than 0.9%.
With this kernel, the computed orders of convergence are fourth-order for the growth rates.
We see less than the expected order of convergence for the frequency; however, for this test
problem the relative error for every level is less than 1%. This is in good agreement with
what [42] found using a fourth-order finite volume method.

For the test with oscillatory growth, we plot slices of the phase-space distribution in
Figure 5.7 at late times. The distribution begins to deform substantially here as we get
features reminiscent of the two-stream instability in the (1+1)D case. This explains why the
non-remapped method struggles more at late times to correctly capture the behavior for this
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(a) W2,2, k̃ = 3.15 (b) W2,2, k̃ = 4.65

(c) W4,4, k̃ = 3.15 (d) W4,4, k̃ = 4.65

Figure 5.4: (a) and (b) show convergence plots for the two different test problems in Figure
5.1 with W2,2. Blue, yellow, and green show the solutions for the parameters Mg ∈ {5, 6, 7}
respectively. For all tests the initial conditions are j = 6, ωp/ωc = 20, and vmax = 4 with
k̃ varying for the two tests. As discussed in Figure 5.2a, for the coarsest grid we see issues
with dissipation for this kernel in (b). (c) and (d) show the same tests for W4,4. Unlike for
the second-order kernel, we see good agreement for all levels for both test problems.
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(a) ω̃i, k̃ = 3.15 (b) ω̃i, k̃ = 4.65 (c) ω̃r, k̃ = 4.65

Figure 5.5: (a) and (b) show convergence of the linear growth rates for the two different test
problems with W2,2. (c) plots the convergence of the oscillation frequency. For all plots, the
blue, yellow, and green dots show the computed values for Mg ∈ {5, 6, 7} respectively. For
all tests the initial conditions are j = 6, ωp/ωc = 20, and vmax = 4 with k̃ varying for the
two tests. For W2,2 we see between third and fourth order convergence for the different tests
and exact solutions. For this reason, we chose to fit and plot with hv/h

c
v taken to the fourth

power as the plots with the expected order displays this behaviour.

(a) ω̃i, k̃ = 3.15 (b) ω̃i, k̃ = 4.65 (c) ω̃r, k̃ = 4.65

Figure 5.6: (a) and (b) show convergence of the exponential growth rates for the two different
test problems with W4,4. (c) plots the convergence of the oscillation frequency. For all plots,
the blue, yellow, and green dots show the computed values for Mg ∈ {5, 6, 7} respectively.
For all tests the initial conditions are j = 6, ωp/ωc = 20, and vmax = 4 with k̃ varying for
the two tests. For the linear growth rates, we see fourth-order convergence while for the
oscillatory frequency computed for k̃ = 3.15 is lower than expected but all solutions have a
computed frequency within less than 1% of the theoretical value.
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∼
k Theoretical Mg = 5 Mg = 6 Mg = 7 Extrapolated
3.15 ω̃i 0.4912 0.4652 0.4933 0.4954 0.4954

% error - 5.295 0.4214 0.8622 0.8470
4.65 ω̃i 0.2899 -0.002 0.2550 0.2846 0.2794

% error - 100.7 12.03 1.814 3.628
4.65 ω̃r 1.0361 0.7256 1.0166 1.0341 1.0356

% error - 29.96 1.883 0.1951 0.0466

Table 5.1: Computed growth, ω̃i, and frequency, ω̃r, for unstable test problems using W2,2.
The % error is a relative error to the theoretical solution. Data is plotted in Figure 5.5.
Some of the extrapolated and finest resolution values are reported as equivalent. This is an
artifact of rounding to the precision that the theoretical value is reported with in [42].

∼
k Theoretical Mg = 5 Mg = 6 Mg = 7 Extrapolated
3.15 ω̃i 0.4912 0.4828 0.4948 0.4956 0.4956

% error - 1.712 0.7382 0.8954 0.9037
4.65 ω̃i 0.2899 0.2719 0.2866 0.2874 0.2876

% error - 6.224 1.125 0.8501 0.8082
4.65 ω̃r 1.0361 1.0265 1.0341 1.0366 1.0357

% error - 0.9254 0.1951 0.0507 0.0397

Table 5.2: Computed growth, ω̃i, and frequency, ω̃r, for unstable test problems using W4,4.
The % error is a relative error to the theoretical solution. The extrapolated values, which
utilize the linear fit to compute the value for Mg →∞, are all within 1% of the theoretical
value. This is in good agreement with what [42] found using a fourth-order finite volume
method. Data is plotted in Figure 5.6. Some of the extrapolated and finest resolution values
are reported as equivalent. This is an artifact of rounding to the precision that the theoretical
value is reported with in [42].

test problem.
We also tested the local remapping method using the contours defined by

max
((

Fx − 1
)M

f(αx, αv), f(αx, αv)
)
> C (5.23)

with C = 10−8 and the transition function specified in Chapter 6. There was no noticeable
degradation in the solution when compared to the globally remapped method; however,
remapping locally led to many more remaps. This is the expected behaviour as particles

with remapping conditions slightly less than C, for example
(
Fx−1

)M
f = 10−10, would not

be remapped but needed to be remapped within a few time steps (or even the next time step).
Figure 5.8 shows the solution for t ∈ [0, 600] and Table 5.3 lists the comparative number of
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(a) t = 500.12, x = L/2 (b) t = 500.12, vx = 0 (c) t = 500.12, vy = 0

(d) t = 550.88, x = L/2 (e) t = 550.88, vx = 0 (f) t = 550.88, vy = 0

(g) t = 598.65, x = L/2 (h) t = 598.65, vx = 0 (i) t = 598.65, vy = 0

Figure 5.7: Slices of the phase-space distribution at multiple times and in multiple planes
for j = 6, k̃ = 4.65, ωp/ωc = 20, and vmax = 4. For these plots we use W4,4, C = 10−8, and
Mg = 5. Notable is the deformation in the ring that occurs between t = 500 and t = 600.

remaps for adaptive-in-time and adaptive-in-time-and-space for the three test problems.
The adaptively remapped PIC method performs as expected in (1+2)D for both adaptive-

in-time and adaptive-in-time-and-space remapping. We see that the method correctly cap-
tures the behavior where the non-remapped method fails. For the second-order kernel the
convergence is between third- and fourth-order while for the fourth-order kernel we converge
at fourth-order for the growth rates. The finest resolution shows good agreement with the
theoretical results for all kernels.
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Figure 5.8: Plot of three different stability regimes for the Dory-Guest-Harris instability
with the kernel W4,4, Mg = 5, C = 10−8, and adaptive-in-time-and-space remapping. Blue
depicts pure exponential growth of the electric field and is initialized with j = 6, k̃ = 4.65,
ωp/ωc = 20, and vmax = 4. Orange shows oscillatory exponential growth in the electric field
energy that comes from using the same initial condition as the pure exponential except for
k̃ = 4.65. Finally, green is the electric field energy of a stable electrostatic wave propagating
through the plasma. The electric field energy does not grow in time. The initial conditions
for this stable wave is j = 2, k̃ = 2.12, ωp/ωc = 10, and vmax = 6. The vmax was extended
to ensure charge neutrality. This is comparable to plots in Figure 5.3. The results are not
noticeably different than the global remapping solution.
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Number of Remaps
∼
k Number of Time Steps Adaptive-in-time Adaptive-in-time-and-space
3.15 272 90 153
4.65 401 89 229
2.12 549 9 10

Table 5.3: The number of remaps for the three different modes of stability for global and
adaptive-in-space remapping with t ∈ [0, 600]. Each test is denoted by the associated k̃.
For k̃ = 3.15 and k̃ = 4.65 the other parameters used to initiate the distribution are j = 6,
ωp/ωc = 20, and vmax = 4. For k̃ = 2.12, the parameters are j = 2, ωp/ωc = 10, and vmax = 6.
There increase in number of remaps is expected since regions that are not remapped will
likely need to be remapped soon.
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Chapter 6

Software Implementation of
Remapping

6.1 Implementation of Global Remapping

In Chapter 1 we introduced the curse of dimensionality in the context of PIC and showed
how inefficient a rectangular grid becomes in dimensions that are encountered in kinetics.
However, there are clear advantages in the error analysis to using a rectangular discretization.
Namely, the application of the Euler-Maclaurin formula allows for the integration over the
velocity dimension necessary for deposition to be done with arbitrary order accuracy. This
suggests that we need to utilize a rectangular grid but that an explicit representation of this
grid, like using rectangular arrays, must be avoided. One way of doing this of doing this is
by using a hash function based on Morton ordering of the phase-space to implicitly define
the grid [36]. Figure 6.1 shows the Morton ordering of the (1+1)D phase-space from the test
problems in Chapter 4. When remapping, this hash function allows us to uniquely define the
particle at a specific phase-space location and add it to a map without allocating non-zero
entries. This hashing (or a different hashing metric) can then be used to define ownership of
particles to ranks. For this work we used the Morton ordering keys to partition phase-space
among the ranks. This may not be the most efficient splitting since from the remapping
condition it is easy to see that large changes in the velocity dimension for a set of particles
with the same initial velocity, αv, will lead to the deformation gradient rapidly growing. This
suggests that distributing the particles between ranks based on αv will maintain the locality
of the particles for a longer time.

The pseudocode for how to implement this using the Berkeley Container Library (BCL),
developed in [9], is shown in Algorithm 3. The advantage of using BCL for this problem is
that it allows us to use queues that can be written into just as a C++ map would be while
also being able to be flushed asynchronously. This allows some of the computation and
communication to be overlapped. Note that if a particle is already generated, the particle
charge is summed. This prevents the generation of the same particle by every original particle
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Figure 6.1: Plot of (1+1)D Morton order hash key. At each x-v location we plot the value
of the hash key from interlacing the location. This provides a unique key for each location.
A limitation of this approach is that for large dimensional problems the allowable resolution
in each dimension decreases.

within the particles support.
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Algorithm 3 Parallel Remapping

for p ∈ Particles do
support box ← InterpolationKernel.support(p)
for (xxx,vvv) ∈ support box do

key ← MortonOrder(xxx,vvv)
BCL FastQueue( key).charge += Interpolate(p);
Push circular queue if larger than specified size

end for
end for
Push out the rest of the particles
Process received particles
return Particles

The exact implementation of this is shown in the C++ code below. The input to the
global remapping function is a vector of particles. This vector could be the entire set of
particles, as it is for global remapping, or it could be a subset of the particles, like seen in the
local remapping(see Algorithm 2 in Chapter 4). As noted in the pseudocode, if the particle
we are writing to exists we increment the strength. We do have the possibility of generating
more than one particle at a location in the queue if the particles are pushed at different
times. This is a tradeoff that is made to allow the queues to be pushed asynchronously. We
have not done any performance analysis or tuned any of the parameters listed. We have
typically ran on small clusters of up to 16 MPI processes. We do believe though that to
do remapping in a performance oriented manner that one needs to use a map structure like
BCL’s FastQueues.

1 void ParticleSet : : globalRemap ( vector<Particle>& t_particles )
2 {
3 i n t Npx = 1./ m_hx ;
4 i n t Npv = 1./ m_hv ;
5 i n t total_num_particles ;
6 i f ( VDIM > 1)
7 total_num_particles = t_particles . size ( ) ∗ 1 . 5 ;
8 e l s e
9 total_num_particles = Power (Npx , XDIM ) ∗Power (2∗Npv , VDIM ) ;

10 i n t numParticles = t_particles . size ( ) ;
11

12

13 // Tuning parameters
14 const i n t message_size = max ( floor ( numParticles/BCL : : nprocs ( ) ) ,
15 floor ( total_num_particles/BCL : : nprocs ( ) /BCL : : nprocs ( ) ) ) ∗2 ;
16 i n t num_messages_per_rank ;
17 num_messages_per_rank = 2 ;
18 const size_t bucket_size = max ( message_size∗BCL : : nprocs ( ) ∗←↩

num_messages_per_rank ,
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19 total_num_particles/BCL : : nprocs ( ) ∗num_messages_per_rank ) ;
20

21 // I n i t i a l i z e FastQueues
22 std : : vector <BCL : : FastQueue <Particle2Send> > queues ;
23 f o r ( i n t rank = 0 ; rank < BCL : : nprocs ( ) ; rank++) {
24 queues . push_back ( BCL : : FastQueue<Particle2Send>(rank , bucket_size ) ) ;
25 }
26

27 // I n i t i a l i z e f u tu r e s f o r f a s tqueue s
28 list<BCL : : future<vector<Particle2Send>>> futures ;
29

30 // Worth t ry ing both o f the se
31 std : : vector <std : : unordered_map<unsigned long long int , Particle2Send>> ←↩

message_queues ( BCL : : nprocs ( ) ) ;
32

33 // Computation o f p a r t i c l e i n t e r p o l a t i o n on phase−space g r id
34 f o r ( i n t j = 0 ; j< t_particles . size ( ) ; j++)
35 {
36 array<int , XDIM> iposLowX , iposHighX ;
37 array<int , VDIM> iposLowV , iposHighV ;
38 array<double , XDIM> posX ;
39 array<double , VDIM> posV ;
40 // f i nd p a r t i c l e s phase space ”bin ”
41 f o r ( i n t l = 0 ; l < XDIM ; l++)
42 {
43 posX [ l ] = t_particles [ j ] . m_x [ l ] ;
44 t_particles [ j ] . m_F [ l ] = 1 . 0 ;
45 t_particles [ j ] . m_G [ l ] = 0 . 0 ;
46 iposLowX [ l ] = floor ( posX [ l ] / ( m_hx∗m_L ) ) ;
47 iposHighX [ l ] = ceil ( posX [ l ] / ( m_hx∗m_L ) ) ;
48 }
49 f o r ( i n t l = 0 ; l < VDIM ; l++)
50 {
51 posV [ l ] = t_particles [ j ] . m_v [ l ] ;
52 iposLowV [ l ] = floor ( posV [ l ] / ( m_hv∗m_vmax ) ) ;
53 iposHighV [ l ] = ceil ( posV [ l ] / ( m_hv∗m_vmax ) ) ;
54 }
55

56 // Bui lds the support box in phase space
57 Point<XDIM> ShiftX ;
58 ShiftX = ShiftX . getUnitv (0 ) ;
59 ShiftX ∗= 0 ;
60 ShiftX += 1 ;
61 ShiftX ∗= ( m_W_Remap . supportSize ( ) − 1) ;
62 Point<VDIM> ShiftV ;
63 ShiftV = ShiftV . getUnitv (0 ) ;
64 ShiftV ∗= 0 ;
65 ShiftV += 1 ;
66 ShiftV ∗= ( m_W_Remap . supportSize ( ) − 1) ;
67
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68 Point<XDIM> HighCornerX ( iposHighX ) ;
69 Point<XDIM> LowCornerX ( iposLowX ) ;
70 Point<VDIM> HighCornerV ( iposHighV ) ;
71 Point<VDIM> LowCornerV ( iposLowV ) ;
72 Point<XDIM> LCX = LowCornerX − ShiftX ;
73 Point<XDIM> HCX = HighCornerX + ShiftX ;
74 Point<VDIM> LCV = LowCornerV − ShiftV ;
75 Point<VDIM> HCV = HighCornerV + ShiftV ;
76 DBox<XDIM> SupportBoxX (LCX , HCX ) ;
77 DBox<VDIM> SupportBoxV (LCV , HCV ) ;
78

79 // loops over support box in phase space
80 f o r ( Point<VDIM> sV = SupportBoxV . getLowCorner ( ) ; SupportBoxV .←↩

notDone (sV ) ; SupportBoxV . increment (sV ) )
81 {
82 Point<VDIM> moV = sV ;
83 moV += Npv ;
84 pointVelocitySpaceMod ( moV ) ;
85 f o r ( Point<XDIM> sX = SupportBoxX . getLowCorner ( ) ; SupportBoxX .←↩

notDone (sX ) ; SupportBoxX . increment (sX ) )
86 {
87 //compute key and rank f o r phase space g r id po int
88 Point<XDIM> moX = sX ;
89 pointRealSpaceMod ( moX ) ;
90 unsigned long long i n t Key = m_MortonOrder (moX , moV ) ;
91 i n t rank = computeHashRank ( Key ) ;
92 //compute i n t e r p o l a t e d value at phase space g r id po int
93 double KernelProduct = 1 . 0 ;
94 f o r ( i n t dir =0; dir<XDIM ; dir++)
95 {
96 i n t regionX = min ( abs (sX [ dir ] − LowCornerX [ dir ] ) , abs (sX←↩

[ dir ] − HighCornerX [ dir ] ) ) ;
97 double valX = abs (sX [ dir ] ∗ ( m_hx∗m_L ) − posX [ dir ] ) /( m_hx∗←↩

m_L ) ;
98 KernelProduct ∗= m_W_Remap . apply (valX , regionX ) ;
99 }

100 f o r ( i n t dir =0; dir<VDIM ; dir++)
101 {
102 i n t regionV = min ( abs (sV [ dir ] − LowCornerV [ dir ] ) , abs (sV←↩

[ dir ] − HighCornerV [ dir ] ) ) ;
103 double valV = abs (sV [ dir ] ∗ ( m_hv∗m_vmax ) − posV [ dir ] ) /(←↩

m_hv∗m_vmax ) ;
104 KernelProduct ∗= m_W_Remap . apply (valV , regionV ) ;
105 }
106

107 // read , increment , wr i t e Par t i c l e2Send
108 // I f P a r t i c l e does not ex i s t , i t member data i s i n i t i a l i z e d ←↩

to 0
109 Particle2Send p2s = message_queues [ rank ] [ Key ] ;
110 p2s . strength += t_particles [ j ] . strength∗KernelProduct ;
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111 p2s . key = Key ;
112

113 f o r ( i n t dir=0; dir<XDIM ; dir++)
114 {
115 p2s . m_x [ dir ]=moX [ dir ]∗ m_hx∗m_L ;
116 }
117 f o r ( i n t dir=0; dir<VDIM ; dir++)
118 {
119 p2s . m_v [ dir ]=sV [ dir ]∗ m_hv∗m_vmax ;
120 }
121 message_queues [ rank ] [ Key ] = p2s ;
122

123 // push l o c a l queue i f i t i s l a r g e r than some s p e c i f i e d s i z e←↩
.

124 i f ( message_queues [ rank ] . size ( ) >= message_size )
125 {
126 vector<Particle2Send> local_buffer ;
127 local_buffer . reserve ( message_queues [ rank ] . size ( ) ) ;
128 f o r ( auto iter = message_queues [ rank ] . begin ( ) ; iter != ←↩

message_queues [ rank ] . end ( ) ; ++iter )
129 local_buffer . push_back (iter−>second ) ;
130 auto future = queues [ rank ] . push ( std : : move ( local_buffer ) )←↩

;
131 i f ( ! future . has_value ( ) )
132 {
133 throw std : : runtime_error ( ” e r r o r : Queue on ” + std : :←↩

to_string ( rank ) +
134 ”out o f space ” ) ;
135 }
136 message_queues [ rank ] . clear ( ) ;
137 futures . emplace_back ( std : : move ( future . value ( ) ) ) ;
138 }
139 }
140 }
141 }
142

143

144 // Flush any remaining queues .
145 f o r ( i n t rankIter = 0 ; rankIter < message_queues . size ( ) ; rankIter++) {
146 vector<Particle2Send> local_buffer ;
147 local_buffer . reserve ( message_queues [ rankIter ] . size ( ) ) ;
148 f o r ( auto iter = message_queues [ rankIter ] . begin ( ) ; iter != ←↩

message_queues [ rankIter ] . end ( ) ; ++iter )
149 local_buffer . push_back (iter−>second ) ;
150 auto future = queues [ rankIter ] . push ( std : : move ( local_buffer ) ) ;
151 i f ( ! future . has_value ( ) ) {
152 throw std : : runtime_error ( ” e r r o r : Queue on ” + std : : to_string (←↩

rankIter ) +
153 ” out o f space ” ) ;
154 }
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155 futures . emplace_back ( std : : move ( future . value ( ) ) ) ;
156 }
157

158 f o r ( auto& future : futures ) {
159 future . get ( ) ;
160 }
161

162 BCL : : barrier ( ) ;
163

164 ∗( m_RemapPtr [ BCL : : rank ( ) ] . local ( ) ) = f a l s e ;
165 std : : vector <Particle2Send> my_bucket = queues [ BCL : : rank ( ) ] . as_vector ( ) ;
166

167 // Places p a r t i c l e s i n to morton−ordered vec to r
168 map<unsigned long long int , Particle> map2ZOrder ;
169 f o r ( i n t k = 0 ; k<my_bucket . size ( ) ; k++)
170 {
171 map2ZOrder [ my_bucket [ k ] . key ] . strength += my_bucket [ k ] . strength ;
172 map2ZOrder [ my_bucket [ k ] . key ] . key = my_bucket [ k ] . key ;
173 map2ZOrder [ my_bucket [ k ] . key ] . m_x = my_bucket [ k ] . m_x ;
174 map2ZOrder [ my_bucket [ k ] . key ] . m_v = my_bucket [ k ] . m_v ;
175 map2ZOrder [ my_bucket [ k ] . key ] . alpha_x = my_bucket [ k ] . m_x ;
176 map2ZOrder [ my_bucket [ k ] . key ] . alpha_v = my_bucket [ k ] . m_v ;
177 }
178 // Replaces input p a r t i c l e s by remapped p a r t i c l e s
179 my_bucket . clear ( ) ;
180 t_particles . clear ( ) ;
181 t_particles . reserve ( map2ZOrder . size ( ) ) ;
182 f o r ( auto iter=map2ZOrder . begin ( ) ; iter !=map2ZOrder . end ( ) ; ++iter )
183 t_particles . push_back (iter−>second ) ;
184

185 // Tracks the t o t a l number o f new p a r t i c l e s generated by remapping
186 t_numParticlesRemapped += t_particles . size ( ) ;
187 }

Recall the pseudocode for the local remapping algorithm from Chapter 4. Utilizing this
global remapping function, remapping based on the implicit transition function is quite
simple. We give the code for this below where the transition function used for all tests is
χ((x− 0.1)/0.9) with

χ(x) =


x3(x(6x− 15) + 10), 0 < x < 1

1 x ≥ 1

0 x ≤ 0

(6.1)

where x is the remapping condition for a particle normalized by the bound C or Cdist. The
remapping region is 0 when this normalized remapping condition is less than 0.1 and 1 when
the condition is 1 or greater. This means that the transition function goes from 0 to 1 in
the span of an order of magnitude of the remapping condition.
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1 void ParticleSet : : contourRemap ( double zeroTFVal , double oneTFVal )
2 {
3 vector<Particle> oldParticles = m_particles ;
4

5 // charge <− (1 − t r an s i s t i onFunc t i on ) ∗ charge
6 f o r ( auto& p : oldParticles )
7 {
8 m_TransitionFunction ( oneTFVal , zeroTFVal , p , t rue ) ;
9 }

10 eraseSmallParticles ( oldParticles ) ;
11

12 // charge <− t r an s i s t i onFunc t i on ∗ charge
13 f o r ( auto& p : m_particles )
14 {
15 m_TransitionFunction ( oneTFVal , zeroTFVal , p ) ;
16 }
17 eraseSmallParticles ( m_particles ) ;
18 globalRemap ( m_particles ) ;
19 copy ( oldParticles . begin ( ) , oldParticles . end ( ) , back_inserter ( m_particles )←↩

) ;
20 oldParticles . clear ( ) ;
21 eraseSmallParticles ( m_particles ) ;
22 // e r a s eNega t i v ePa r t i c l e s ( m pa r t i c l e s ) ;
23 ∗( m_RemapPtr [ BCL : : rank ( ) ] . local ( ) ) = f a l s e ;
24 } ;
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Chapter 7

Conclusion

Previous error estimates for PIC methods have provided no insight into how the deformation
of a set of particles initialized on a rectangular grid leads to errors that can accumulate in
the trajectories of the particles. We have developed a framework that begins to understand
these errors. We now understand the errors that arise in the deposition stage of the PIC
algorithm due to deformations in the configuration space of the particles for Nx = 1. From
analysis of the (1+1)D model problem, we found that an O(1) error, given in full in (3.53),
of the form (Fx − 1)Mf appeared where M depends on the interpolation kernel used for
deposition. The form this error takes indicates that regions of phase-space which carry
more mass must continue to be approximately on a rectangular grid in configuration space.
When the O(1) error became too large relative to other errors in the simulation, we applied
remapping. Remapping allowed us to control the source of the O(1) error by interpolating
the distribution to a rectangular grid in phase-space and thus set the source of the error to
0 for the next iteration of deposition. We did not invent remapping; however, it has always
been used in an ad-hoc way that was not based on a mathematically systemic analysis of the
error, such as provided here. This typically meant that remapping was applied with a fixed
frequency that was determined empirically for the application. Our principled approach
allowed us to not only remap only when necessary but also remap locally in phase-space. By
remapping to control the O(1) error, we were able to eliminate the “particle noise” in the
test problems. In fact, by varying the bound on the O(1) error we demonstrated that we
could control the degradation in accuracy for the (1+1)D test problems.

For the remainder of the concluding remarks we will focus on what lessons we have learned
in the course of this work that can be applied to future work. There are four orthogonal
directions that could expand upon this work:

1. Understand errors associated with deposition in Nx > 1

2. Investigate the performance implications and bottlenecks of high-order PIC with adap-
tive remapping

3. Determine errors from deformation of the particles for deposition of current
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4. Understand the stability implications of (2.52)

Points one and two need to be addressed to understand the errors associated with PIC for
Vlasov-Poisson in (3+3)D and efficiently control these errors. The first three points would
need to be addressed to handle the more general PIC application, Vlasov-Maxwell in full
(3+3)D phase-space. The fourth point is required to fully understand the mechanism with
which the O(1) error feeds back into the positions and velocities of the particle through the
field solve and force interpolation stages of the PIC algorithm.

To consider kinetics problems in (2+2)D and (3+3)D, this framework needs to be ex-
panded to understand deposition in multiple configuration space dimensions. We have shown
that the change of variables for the continuous analog of deposition still depends on the de-
terminant of the configuration space deformation gradient, independent of dimensionality
of the problem. This indicates that for Nx > 1 that this quantity is likely to arise in the
O(1) error, similar to how it arose in Nx = 1. Having more than one configuration space
dimension provides more degrees of freedom for the distribution to stray from the initial rep-
resentation on a rectangular grid. Developing a full suite of model problems that addresses
these will be instrumental in understanding the deposition error in Nx > 1. Early results
for a two dimensional model problem similar in spirit to the one developed in Chapter 2 is
already bearing fruit in on going work. The analysis of these model problems suggests even
rigid-body rotation and incompressible strain in configuration space (so det(FFF x) = 1) lead to
errors that must be controlled through remapping. This suggests that even these seemingly
benign transformations of the initial particle configuration will lead to errors in the charge
density for PIC problems with two or more configuration space dimensions.

We are able to track the configuration space deformation gradient, Fx, for each particle
and able to compute the O(1) error for an individual particle. This allows us to define
regions of phase-space for which the O(1) error is above some threshold and remap locally in
that region. Stitching the distribution of particles that are not remapped and the particles
remapped locally back into one distribution needs to be done carefully. Specifically, the
boundaries of these regions cannot cut through places where f is of similar magnitude to
our O(1) error. This is a direct consequence of the application of the Euler-Maclaurin
formula to the approximation of the deposition integral. If we do not respect this condition
we lose the arbitrary order accuracy for deposition. This lead us to define contours that
control both the O(1) error as well as the error coming from the Euler-Maclaurin formula
(see (4.22)). We found that remapping locally based on these contours could reduce the
cost of remapping when compared to global remapping. However, this was not true in all
cases that we tested. We found that when the total number of remaps was significantly
more for local remapping than global remapping that the volume of phase-space remapped
over the duration of a simulation was greater for local remapping than global remapping.
Adaptively controlling the Cdist parameter in the definition of the contours would allow for
more consistent performance increases for local remapping. One way to get insight into when
local remapping is beginning to require many more remaps than global remapping would be
to use an extra set of particles that are sub-sampled and are evolved based on the electric
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field generated by the full simulation but globally remapped whenever the O(1) error reaches
the specified threshold. These particles would not feed into the algorithm but would allow for
the tracking of the number of global remaps required for a simulation without having to run
a test with global remapping. This could then be compared to the number of local remaps
being performed in the simulation for the full set of particles. The Cdist parameter could
be decreased based on whether using local remapping is requiring significantly more remaps
than global remapping. Optimizing local remapping will become increasingly important as
the dimension is increased and the of cost of remapping grows.

For both local and global remapping we demonstrated that using an implicit representa-
tion of the phase-space grid is feasible and will be important as the dimension of the problem
increases. We did not study the performance of our current implementation. Comparing
and contrasting it to other means of implementing an implicit rectangular phase-space grid
would be valuable. Other partitions of the phase-space among ranks and methods of imple-
menting a distributed map are specific areas that we have not studied here but will impact
performance of remapping. This investigation needs to be a portion of a larger investigation
into the performance of an adaptively remapped PIC method. PIC methods, as described
in Chapter 3, are memory-bound. We have shown that we can in fact increase the order of
an adaptively remapped PIC method by increasing the number of moment conditions that
the deposition kernel satisfies. These high-order kernels have a larger support and therefore
increase the arithmetic intensity for the deposition, interpolation, and remapping. This can
be used to increase the throughput for a given precision on modern systems by moving the
algorithm further up and to the right on the memory-bound region or, ideally, moving the
algorithm into the computationally-bound regime.

The robustness of this theory in the (1+1)D and (1+2)D numerical experiments and how
similar the O(1) errors appeared to those in the one-dimensional model problem suggests that
the framework is building upon the correct ideas. The most important being that pulling
back into the Lagrangian coordinates to evaluate the errors is the correct way to approach
the analysis for deposition in PIC methods. To extend this theory to the Vlasov-Maxwell
system, a similar model problem and pull back to the Lagrangian frame would be necessary
for the current deposition stage. The main difference between the deposition of charge and
current is a factor of v in the integrand. One issue that is unique to current deposition is that
direct deposition does not automatically satisfy the continuity equation. For direct current
deposition this has lead to the use of the Boris correction. This analysis framework would be
extremely useful in judging other methods of depositing current that are charge conserving.

The model problem presented in Chapter 2 does not address the effects that the O(1)
error has on stability in the context of PIC algorithms. In this example the velocity was
computed exactly; however, a better approximation to a PIC algorithm would be to advect
the particles for ∆t and then recompute the velocity by doing a particle-to-grid and grid-to-
particle interpolation. One could imagine solving Burgers’ equation like this and computing
the error for each ∆t. This would give insights into how the errors cause by repeated
deposition accumulates in the velocity and position of the particles. Extending this to
PIC for kinetics requires understanding the effect that solving Poisson’s equation has on
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this feedback loop. Beyond the theoretical importance of understanding the stability, this is
important since it will have implications on how often remapping is required. The smoothing
properties of solving Poisson’s equation might make much larger O(1) errors tolerable than
would be expected based on (3.53).

All of these points need to be addressed to implement a high-order Vlasov-Maxwell
solver in (3+3)D that controls the errors arising from deformations to the set of particles.
We believe that this work is an important first step and provides valuable insight into how
to take the next necessary steps.
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