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ABSTRACT OF THE DISSERTATION 

 
New bioorthogonal chemistries for multi-component detection 

 
By 

 
David Michael Patterson 

 
Doctor of Philosophy in Chemistry 

 
 University of California, Irvine, 2015 

 
Assistant Professor Jennifer A. Prescher, Chair 

 
 

Bioorthogonal chemistries enable the selective visualization and identification of 

biomolecules in complex cellular environments. Significant advances in the speed and selectivity 

of these reactions have been reported over the past few years. Despite these successes, challenges 

remain in applying bioorthogonal chemistries to studies of complex biological functions. Many 

bioorthogonal reagents cross-react with one another, limiting their utility for visualizing multi-

component processes. Additionally, many bioorthogonal reagents are not small or stable enough 

to label native biomolecules in living systems. To address these issues, I have developed new 

classes of functionalized cyclopropenes for bioorthogonal labeling experiments. These small 

motifs are stable in cells and other environments, yet robustly reactive with tetrazines and 

various 1,3-dipoles. Cyclopropenes can also be readily tuned to elicit desired covalent reactivity, 

facilitating the development of “mutually orthogonal” bioorthogonal transformations. I utilized 

these bioorthogonal cyclopropene chemistries to target glycans and proteins, as well as to tag 

cells with imaging agents for in vivo cell tracking.  
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CHAPTER 1: Finding the right (bioorthogonal) chemistry 

1.1 Introduction 

Interactions among proteins, glycans, and numerous other biopolymers and metabolites 

drive cellular processes. Thus, a complete understanding of living systems requires methods to 

probe biomolecules in real time. GFP and other genetically encoded reporters are available for 

tracking protein products in live cells and organisms. While powerful, such genetic tagging tools 

are not amenable to monitoring glycans, lipids, and other critical cellular components [1]. To 

address this need, the chemical biology community has developed a general platform to target 

cellular molecules with visual tags and other probes. This strategy relies on the installation of 

unique functional groups into target biomolecules and their selective reaction with covalent 

probes (Figure 1-1A). The chemistries employed in this approach must be selective and non-

perturbing to biological systems. For these reasons, they have been collectively termed 

bioorthogonal [2]. 

The earliest work in bioorthogonal reaction development—nearly two decades ago—

focused on methods to covalently target unique amino acid sequences with small molecule 

probes [3, 4]. Since then, dozens more unique transformations have been added to the 

bioorthogonal toolkit. The majority of these chemistries are applicable not only to protein 

tagging, but also studies with glycans, lipids, and numerous other biomolecules. The reactions 

differ widely, though, in terms of their selectivities, rates, and other attributes, and choosing 

among them can be difficult.  
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Figure 1-1. A bioorthogonal chemical reaction. (A) A unique functional group (blue circle) 
appended to a target biomolecule is covalently ligated with a complementary probe (orange arc). 
The two reagents must react selectively with one another and be inert to the biological 
surroundings (i.e., bioorthogonal). Depending on the choice of probe (star), this method enables 
the selective visualization or identification of biomolecules in complex environments. (B) Two 
types of transformations are predominant in the bioorthogonal toolkit: polar reactions between 
nucleophiles and electrophiles and cycloaddition chemistries. 

 

This chapter deconstructs the major classes of bioorthogonal chemistries and draws 

relevant comparisons and contrasts between them. Our focus is on those reactions that are 

applicable to tagging diverse types of molecules in complex environments. We first introduce the 

common bioorthogonal transformations and highlight their utility in various experiments. We 

then provide a general set of considerations for selecting a suitable reaction for a given 

application. Last, we highlight existing challenges to the development and implementation of 



	
   3 

bioorthogonal reactions. The continued use of these tools is painting a more complete picture of 

organismal biology. 

 

1.2 Meet the candidates 

The selective, covalent tagging of biomolecules—especially in live cells and tissues—is 

no easy task. For one, the biological milieu is replete with functional groups that can interfere 

with the desired labeling reaction. The bioorthogonal probes must also be stable in aqueous 

environments, yet readily reactive with one another. Furthermore, the chemistries must be 

nontoxic. The challenges involved in designing such reactions have captured the imagination of 

several chemists, and over the past decade, transformations have emerged that meet most or all 

of the criteria for bioorthogonality. The majority can be classified as either polar reactions or 

cycloadditions, although notable exceptions exist (Figure 1-1B). The chemistries differ in terms 

of the functional groups employed, reaction rates, and overall selectivities, but all are suitable for 

use in aqueous environments and, in some cases, live cells and animals (Table 1-1).  
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Table 1-1. Bioorthogonal chemistries 

Reaction type 
Reactant 1 
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Approximate rate 
(M-1s-1) Comments References 

Aldehyde/ketone 
condensation  

 
0.001  
(H2O) 

adducts prone to 
hydrolysis; aniline 

catalyst can be used 

Jencks 
1959 

 

 

0.26  
(100 mM sodium 

phosphate) 

reaction provides 
more stable C-C 

linkages  

Agarwal 
2013 

Staudinger ligation  

 

0.003  
(PBS) 

phosphines 
susceptible to 

oxidation 

Saxon  
2000 

Cyanobenzothiazole 
condensation 

 
 

9.19  
(PBS) 

side reactivity with 
free thiols 

Rao  
2009 

CuAAC 

 

 
kobs 10-100  

(10-100 µM Cu) 
copper catalyst 

required 
Tornoe 
2002 

Strain-promoted 
azide-alkyne 

cycloadditions 
(SPAAC) 

 
OCT, DIFO, BCN 

0.0012-0.14 (ACN) 
no metal catalyst; 

some octynes 
susceptible to thiol 

attack  

Agard  
2004 

 
BARAC, DIBO, DIBAC 

0.17-0.96 (ACN)  Baskin 
2006 

Alternative  
1,3-dipolar 

cycloadditions 

  

0.013-3.9 
(ACN/H2O) 

some nitrones 
susceptible to 

hydrolysis 

McKay 
2010 

 
 30  

(H2O) 

nitrile oxide  
generated in situ 

(photolysis) 

Gutsmiedl 
2009 

 

 

 

0.15-58  
(1:1 ACN:PBS) 

nitrile imine  
generated in situ 

(photolysis) 

Yu  
2012 

 

  
13.5 (ACN/H2O) 

diazo  
generated via 

Staudinger 
reduction  

McGrath 
2012 

 
 

70,000-106,000 
(H2O) 

oxanorbornadiene 
susceptible to 

reactivity with basic 
amino acids 

van Berkel 
2007 

Inverse  
Electron-Demand 

Diels-Alder  
(IED-DA) 

 

 

210-2,800,000 
(PBS, 37°C) 

TCO isomerizes 
over time 

Blackman 
2008 

 
0.12-9.46 (95:5 

H2O:MeOH) norbornene and 
functionalized 
cyclopropenes  
are shelf stable 

Devaraj 
2008 

 

0.03-13  
(12-15% DMSO in 

PBS) 

Yang  
2012 

Hetero-Diels-Alder  
 

0.0015  
(5:1 H2O:MeOH) 

quinone methide 
generated in situ 

Li  
2013 

Miscellaneous 
ligations 

  
0.03-0.3 

(PBS/tBuOH) 
ruthenium catalyst 

required 
Lin  

2013 

  
0.25 (PBS/EtOH) 

requires  
nickel-stabilization  

of pi-electrons 

Sletten 
2011 

  

0.12-0.57 
(THF/H2O) 

products hydrolyze 
in water 

Stockmann 
2011 

  
N/A 

palladium catalyst 
required; boronic 

acids are 
moderately cytotoxic 

Chalker 
2009 

  
palladium catalyst 

required 
Kodama 

2007 
!
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Approximate rate 
(M-1s-1) Comments References 

Aldehyde/ketone 
condensation  

 
0.001  
(H2O) 

adducts prone to 
hydrolysis; aniline 

catalyst can be used 

Jencks 
1959 

 

 

0.26  
(100 mM sodium 

phosphate) 

reaction provides 
more stable C-C 

linkages  

Agarwal 
2013 

Staudinger ligation  

 

0.003  
(PBS) 

phosphines 
susceptible to 

oxidation 

Saxon  
2000 

Cyanobenzothiazole 
condensation 

 
 

9.19  
(PBS) 

side reactivity with 
free thiols 

Rao  
2009 

CuAAC 

 

 
kobs 10-100  

(10-100 µM Cu) 
copper catalyst 

required 
Tornoe 
2002 

Strain-promoted 
azide-alkyne 

cycloadditions 
(SPAAC) 

 
OCT, DIFO, BCN 

0.0012-0.14 (ACN) 
no metal catalyst; 

some octynes 
susceptible to thiol 

attack  

Agard  
2004 

 
BARAC, DIBO, DIBAC 

0.17-0.96 (ACN)  Baskin 
2006 

Alternative  
1,3-dipolar 

cycloadditions 

  

0.013-3.9 
(ACN/H2O) 

some nitrones 
susceptible to 

hydrolysis 

McKay 
2010 

 
 30  

(H2O) 

nitrile oxide  
generated in situ 

(photolysis) 

Gutsmiedl 
2009 

 

 

 

0.15-58  
(1:1 ACN:PBS) 

nitrile imine  
generated in situ 

(photolysis) 

Yu  
2012 

 

  
13.5 (ACN/H2O) 

diazo  
generated via 

Staudinger 
reduction  

McGrath 
2012 

 
 

70,000-106,000 
(H2O) 

oxanorbornadiene 
susceptible to 

reactivity with basic 
amino acids 

van Berkel 
2007 

Inverse  
Electron-Demand 

Diels-Alder  
(IED-DA) 

 

 

210-2,800,000 
(PBS, 37°C) 

TCO isomerizes 
over time 

Blackman 
2008 

 
0.12-9.46 (95:5 

H2O:MeOH) norbornene and 
functionalized 
cyclopropenes  
are shelf stable 

Devaraj 
2008 

 

0.03-13  
(12-15% DMSO in 

PBS) 

Yang  
2012 

Hetero-Diels-Alder  
 

0.0015  
(5:1 H2O:MeOH) 

quinone methide 
generated in situ 

Li  
2013 

Miscellaneous 
ligations 

  
0.03-0.3 

(PBS/tBuOH) 
ruthenium catalyst 

required 
Lin  

2013 

  
0.25 (PBS/EtOH) 

requires  
nickel-stabilization  

of pi-electrons 

Sletten 
2011 

  

0.12-0.57 
(THF/H2O) 

products hydrolyze 
in water 

Stockmann 
2011 

  
N/A 

palladium catalyst 
required; boronic 

acids are 
moderately cytotoxic 

Chalker 
2009 

  
palladium catalyst 

required 
Kodama 

2007 
!  

 



	
   6 

1.2a Polar reactions  

Reactions between nucleophiles and electrophiles (i.e., polar reactions) are omnipresent 

in organic synthesis, but only a handful are suitable for use in biological settings. Among the 

most well established for biomolecule labeling are aldehyde and ketone condensations [5, 6]. 

Aldehydes and ketones—as electrophiles—are rare commodities on proteins and other 

biopolymers, and they can be selectively ligated with alpha-effect nucleophiles (e.g., hydrazides 

and aminooxy compounds) to form relatively stable Schiff bases [7-12]. Ketones and aldehydes 

have been appended to a variety of biomolecules, including proteins [13, 14] and glycans, [15, 

16] and ultimately targeted with functionalized hydrazides or aminooxy compounds for 

visualization or retrieval.  

While versatile, these chemistries have some liabilities with regard to biomolecule 

labeling. For example, the reaction products—hydrazones, in particular—are susceptible to 

hydrolysis in cellular environments [17]. To generate more stable adducts, Bertozzi and 

colleagues recently developed an aldehyde condensation that exploits aminoxy-tryptamines [18, 

19]. This transformation is a variant of the classic Pictet-Spengler reaction: the aldehyde and 

tryptamine initially react to form an oxyiminium ion; this intermediate is subject to further indole 

attack and ultimately C-C bond formation. Ketone and aldehyde condensations are also not 

'bioorthogonal' in the truest sense of the word. Aldehydes are present in glucose and other 

abundant intracellular metabolites; ketones are found in mammalian hormones and microbial 

natural products. These endogenous molecules can be inadvertently labeled when cells are 

exposed to aminooxy or hydrazide probes.  

To avoid cross-reactivity altogether, reactions that employ non-natural functional groups 

are highly prized. The quintessential example of this sort is the Staudinger ligation of organic 
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azides and triaryl phosphines [20]. Organic azides are mild electrophiles and have yet to be 

found in eukaryotes. Similarly, triaryl phosphines—as soft nucleophiles—are virtually absent in 

living systems [21, 22]. While tolerant of biological functionality, azides and phosphines react 

readily with one another [23, 24]. In the case of the Staudinger ligation, the reaction forges stable 

amide linkages between the two reactants. This transformation is slower than most bioorthogonal 

chemistries, but remains a popular choice for in vivo work, owing to its remarkable selectivity 

and compatibility with cells, tissues, and even live animals [25-29].  

 

1.2b Cycloadditions 

Nearly all recent additions to the bioorthogonal toolkit comprise cycloadditions. Two 

classes, in particular—dipolar cycloadditions and Diels-Alder chemistries—have emerged as 

excellent options for derivatizing biomolecules with visual tags and other probes. 

Dipolar cycloadditions. The most popular bioorthogonal cycloadditions also capitalize on 

the unique features of azides [30]. In addition to being mild electrophiles, organic azides are 1,3-

dipoles capable of reacting with terminal alkynes [31-33]. To proceed at a reasonable rate, 

though, this reaction requires a Cu(I) catalyst. The copper-catalyzed azide-alkyne cycloaddition 

(CuAAC)—or “click” chemistry—occurs readily in aqueous environments and provides 

chemically robust triazoles [34-36]. The speed and relative simplicity of this transformation has 

been widely exploited for biomolecule visualization (mostly in fixed cells) [37-39] and 

biomolecule retrieval in various "-omics" studies [40-43]. Azides and alkynes also rank among 

the smallest bioorthogonal motifs and are non-perturbing to most biomolecules. For this reason, 

CuAAC has been the “go-to” choice for monitoring the activities and targets of numerous small 

molecules, including enzyme inhibitors and therapeutic drugs [44-47].  
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While routinely applied in vitro, CuAAC has been slower to transition in vivo. This is 

due, in part, to the tri-component nature of the reaction and its requirement for a cytotoxic metal 

catalyst. To obviate the need for Cu(I), Bertozzi and colleagues exploited an alternative 

mechanism to drive azide-alkyne cycloaddition: ring strain [48, 49]. They initially designed a 

cyclooctyne scaffold (OCT) comprising C≡C-C bonds that were “bent” from the preferred linear 

geometry by 17 degrees [50]. The free energy from such bond deformation was sufficient to 

promote azide-alkyne reaction under ambient conditions and without metal catalyst. This strain-

promoted azide-alkyne cycloaddition (SPAAC) has been widely used to tag azido proteins and 

other biomolecules on live cells [51, 52] and in living organisms [53-55]. 

Iterative modifications to OCT have been reported over the past five years, and there are 

now over 10 different cyclooctynes suitable for bioorthogonal labeling [56]. Notable examples 

include DIBO [52] and BARAC [57] (Table 1-1). These reagents comprise cyclooctyne cores 

fused to benzene rings. The pendant rings provide increased strain energy and ultimately 

accelerate the cycloaddition reaction with azides [58]. While DIBO and BARAC provide among 

the fastest SPAAC rates, their increased hydrophobicity can result in non-specific “sticking” to 

other biomolecules and insertion into cell membranes [59]. 

Cyclooctynes are also reactive partners for 1,3-dipoles other than azides. Nitrones [60, 

61], nitrile oxides [62, 63], and diazo groups [64, 65] have all been appended to various proteins 

and selectively ligated with strained alkynes. Most of these cycloadditions are quite fast, with 

second order rate constants ranging from 1-50 M-1 s-1 [60, 66]. However, the rapid reactivity 

afforded by these strong dipoles often comes at the expense of their poor stability in aqueous 

media. Nitrile oxides are particularly prone to hydrolysis and must be generated in situ—near the 

site of intended reactivity—for efficient ligation.  
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In addition to alkynes, strained alkenes are good candidates for bioorthogonal dipolar 

cycloadditions. Lin and coworkers recently reported that cyclopropene—a highly strained 

alkene—reacts readily with nitrile imines to form pyrazoline adducts [67]. Nitrile imines, like 

other strong dipoles, are prone to rapid hydrolysis and must be generated in situ. Fortunately, 

these motifs can be generated from relatively stable precursors, including tetrazoles and 

chlorooximes, using fairly mild conditions (short pulses of UV light and mild base, respectively) 

[67-69]. These conditions are compatible with a variety of biomolecules and, in some cases, live 

cells.  

Diels–Alder cycloadditions. Strained molecules also play lead roles in the second major 

class of bioorthogonal cycloadditions: Diels–Alder ligations. In 2008, Fox and coworkers 

demonstrated that the strained molecule trans-cyclooctene (TCO) reacts efficiently with 

electron-deficient tetrazines in aqueous solution and in the presence of model proteins [70]. 

These inverse electron-demand Diels–Alder (IED-DA) reactions are the fastest bioorthogonal 

transformations on record, with rate constants ranging from 103-106 M-1 s-1 in some cases [71, 

72]. Due to their rapid reactivity, TCO-tetrazine ligations have found immediate application in a 

variety of biological pursuits, most notably live animal imaging [73-76]. Covalent tagging 

reactions in rodents and other organisms demand ultra-fast reactions as only small amounts of 

reagent can typically be used. Unreacted/unbound probe (which cannot be simply rinsed away) is 

thus kept to a minimum, resulting in high signal-to-noise ratios [77]. A variety of sterically and 

electronically modified tetrazines have also been developed that exhibit different IED-DA rates, 

enabling relatively facile “tuning” of the reaction [71, 78, 79].  

Tetrazine reactivity with other strained alkenes has also been exploited for bioorthogonal 

ligation [76, 80, 81]. Coinciding with the initial report on TCO, Hilderbrand and coworkers 
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demonstrated IED-DA reactivity with norbornene (NB) and electron-deficient tetrazines. NB 

reacts more sluggishly than TCO, but is far more stable in solution and upon storage. The 

embedded trans-double bond in TCO can isomerize to the cis configuration over time, resulting 

in the accumulation of a non-reactive scaffold [73]. We and others have also shown that another 

strained alkene—cyclopropene—is amenable to reactions with various tetrazines. Cyclopropenes 

possess a distinct advantage over TCO owing to their smaller size and broad compatibility with 

cellular enzymes [67, 81, 82]. However, the IED-DA reactions between these small microcycles 

and tetrazine are considerably slower than those with TCO. Further modifications to the 

cyclopropene core may improve these rates.  

 

1.3 Making a match 

 With over 20 bioorthogonal transformations now reported in the literature, and new ones 

being discovered at a rapid pace, selecting the “best fit” for a given application is non-trivial. The 

chemistries vary widely in terms of their selectivities and biocompatibilities, and many of their 

perceived strengths and weaknesses remain anecdotal. Below, we outline some general 

considerations for the end user of bioorthogonal chemistries and offer some guidelines for 

selecting among the options (Figure 1-2). In general, experiments with live cells or tissues 

demand the most selective reactions, with little tolerance for off-target labeling. Experiments 

with fixed cells or isolated biomolecules, by contrast, are typically less demanding in terms of 

reagent selectivity. Thus, they can interface with a larger number of chemistries.  
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Figure 1-2. Selecting an appropriate bioorthogonal chemistry. Considerations include the 
target biomolecule and mode of functional group installation, the size of the labeling agents, and 
the stability of the covalent adduct. Bioorthogonal reaction selectivity and speed are also 
important parameters. 
 

 Seeing the big picture. The selective tagging of any biomolecule requires that one of the 

chemical motifs (e.g., aldehyde, azide, alkyne) is directly attached to the target of interest. 

Several options exist for installing bioorthogonal functionality onto protein targets (Figure 1-

3A). These biopolymers can be readily derivatized at their N- or C-termini using mild 

chemistries [83-85]. A variety of bioconjugation reactions can also be employed to affix 

bioorthogonal motifs to Lys and Cys residues [86], as well as to aromatic amino acids [87-90]. 

For example, Van Hest and colleagues reported a facile method to install azido groups onto Lys 

side chains via diazo transfer [91]. While efficient, these approaches are inherently non-specific 

and typically result in more than one modification to the protein backbone. 

 For site-specific installation of bioorthogonal motifs, enzymatic tagging platforms are 

available. Most of these strategies exploit ligases that have been engineered to append modified 

substrates (bearing ketones, cyclooctynes and other reactive motifs) to defined acceptor peptides 

[92-98]. In a recent example, Ting and coworkers generated a lipoic acid ligase variant (LplA) 

capable of appending small molecule azides to lysine residues within a 13-residue consensus 

sequence [99-102]. Once installed, the azido motifs were subsequently ligated with a variety of 
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functionalized cyclooctynes and visualized over time. This two-step, enzyme-mediated tagging 

strategy can be used to tag protein targets in vitro and in a variety of cellular compartments. 

Additionally, the LplA acceptor peptide, similar to those for other engineered enzymes, is highly 

modular, and can be grafted into multiple proteins.  

 Bioorthogonal motifs can also be introduced site-specifically into proteins using 

unnatural amino acid mutagenesis [103, 104]. This strategy exploits unique amino-acyl tRNA 

synthetase (AARS)/tRNA pairs to deliver non-natural amino acids into growing polypeptide 

chains in repsonse to unique codons. Keto, azido, and alkynyl versions of Phe have all been 

introduced into protein targets (at defined positions) via this approach [105, 106]. Amino acids 

outfitted with larger motifs—including TCO and various cyclooctynes—have been similarly 

incorporated into protein targets using newly engineered AARS/tRNA pairs [67, 107-113]. 

Continued advancements in this field will enable multiple bioorthogonal units to be selectively 

installed in protein targets both in vitro and in vivo [114, 115]. It is also possible to incorporate 

bioorthogonal amino acids into target proteins relying on the cell’s own endogenous machinery, 

without the need for unique AARS/tRNA pairs [116, 117]. These residue-specific replacement 

strategies are inherently non-selective, but are nonetheless attractive for generating 

functionalized proteins owing to their high yields and relative simplicity. Since these methods 

rely on native biosynthetic pathways—and enzymes with stringent substrate specificities—they 

are only compatible with non-natural amino acids bearing small chemical appendages (e.g. 

ketones, azides, alkynes).  
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Figure 1-3. Installing bioorthogonal functionality into target biomolecules. (A) Several 
strategies exist to introduce bioorthogonal motifs (blue circles) into protein targets. These 
include direct chemical functionalization (top), enzymatic ligation of the requisite motifs onto 
defined acceptor peptides (tags, middle), and unnatural amino acid mutagenesis with 
functionalized amino acids and orthogonal tRNA/AARS pairs (bottom). (B) Unique chemical 
handles can be metabolically introduced into proteins and non-proteinaceous biomolecules alike 
via cellular biosynthesis. In this approach, metabolic precursors (left) outfitted with 
bioorthogonal functional groups (blue circles) are supplied to cells and ultimately incorporated 
into target biomolecules via the cell’s own enzymatic machinery. 



	
   14 

 For non-proteinaceous biomolecules, fewer methods exist for installing bioorthogonal 

functional groups. Direct chemical modification is possible, although impractical for most 

applications [9, 118]. Mutant enzymes are also available to append reactive motifs to glycans, 

but most are not generalizable and confined to in vitro work [119]. For experiments in cells and 

tissues, the majority of non-proteinaceous biomolecules can be outfitted with bioorthogonal 

probes via cellular biosynthesis (Figure 1-3B). This approach relies on metabolic precursors that 

are supplied to cells and ultimately installed into target biomolecules using the cell's own 

enzymatic machinery [2]. Similar to the residue-specific tagging of proteins mentioned above, 

only small bioorthogonal motifs are broadly compatible with native cellular enzymes and thus 

good candidates for this approach. Upon installation, the bioorthogonal motifs can be covalently 

ligated with probes for visualization or enrichment.  

 

Setting the limits. A primary consideration in choosing chemistries for biological use is 

the biocompatibility of the reagents. Comprehensive toxicity profiles have not been generated for 

most of the common bioorthogonal transformations. However, most can be safely used (with 

milli- to micromolar concentrations of reagents) without detriment to biological systems. One 

exception is the copper-catalyzed azide-alkyne cycloaddition (CuAAC). Copper ions are readily 

chelated by native amino acids and can induce the formation of reactive oxygen species, 

resulting in damage to cells and tissues. Concerns about copper cytotoxicity have largely 

relegated CuAAC to experiments with isolated biomolecules and fixed cells/tissues over the past 

decade. In recent years, though, Finn, Wu and others have identified ligands that sequester 

copper from unintended targets and offer improved cell compatability [120-124]. Ting and 

coworkers also devised a strategy to reduce the overall amount of copper required for efficient 
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CuAAC [125]. Their approach features picolyl azide, a chelating scaffold that pre-organizes the 

copper and azido reactants. This arrangement promotes cycloaddition at exceedingly low—and 

biocompatible—concentrations of metal [126, 127]. The picolyl azide unit can also be appended 

to numerous proteins of interest using the engineered LplA ligase [100]. Collectively, these 

advancements will facilitate the wider adoption of CuAAC in live cell labeling applications.  

A second consideration relevant to biocompatibility involves the selectivity of the 

reactants. For the majority of the transformations in Table 1-1, some degree of non-specific 

labeling has been observed. Cyclooctynes, for example, are prone to attack by cysteine and other 

biological nucleophiles [58, 128, 129]. This side reactivity has stymied their use in some 

intracellular labeling applications, but can largely be avoided in environments devoid of free 

thiols (e.g., extracellular spaces or where thiols have been capped with acylating agents). Non-

specific reactivity has also been observed in CuAAC reactions when excess alkyne is used [130, 

131]. These conditions promote the formation of reactive copper acetylides. Fortunately, such 

side reactivity can be mitigated by simply “reversing” the reactants—using low concentrations of 

alkyne and excess azide to drive the reaction. Cravatt and Speers were among the first to note 

improved signal-to-noise ratios with these conditions in protein profiling experiments [131].  

A final point to consider with regard to reagent biocompatibility is the overall solution 

stability of the reactants and their covalent adducts. Azides, alkynes, and their triazole products 

are remarkably stable in aqueous buffers and a variety of cellular environments. Many of the 

most reactive bioorthogonal reagents, though, are prone to hydrolysis. For example, the most 

electron-deficient tetrazines used for rapid IED-DA reactions generally hydrolyze readily in 

water and only tolerate incubation times on the minutes-to-hours time scale (ligation reactions on 
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the seconds-to-minutes time scale). Similarly, nitrile imines and other 1,3-dipoles (other than 

azides) react readily with water and must be generated in situ for covalent tagging experiments.  

Based on toxicity and selectivity considerations, the Staudinger ligation of azides and 

triaryl phosphines ranks among the best reactions for biological labeling applications. Minimal-

to-no background labeling has been observed with these reagents under a variety of conditions. 

Indeed, this reaction has been employed in proteomics studies where the analytes of interest are 

in low abundance and sensitive detection is required [132, 133]. It should be noted, though, that 

phosphine reagents are prone to non-specific oxidation over time [20]. While these reactivities 

do not contribute to background labeling per se, they do reduce the effective concentration of the 

probe available for labeling. 

 

Sizing up the competition. Small bioorthogonal motifs are generally desired in any 

application to avoid perturbing the biological system under study. For experiments requiring the 

metabolic installation of chemical probes, reagent size can be the deciding factor as native 

cellular enzymes do not often tolerate large chemical appendages. Based on size considerations 

alone, azides and terminal alkynes have emerged as preferred scaffolds in bioorthogonal labeling 

[134]. Both of these moieties are remarkably compact, comprising a mere three atoms, and are 

innocuous to most (but not all) biosynthetic pathways [135]. Azido metabolites have been used 

to target proteins [117, 136], glycans [137-139], and lipids [140, 141], among other biomolecules 

[142]. In all cases, the azido species were readily detected upon covalent reaction with a 

complementary alkyne, cyclooctyne, or phosphine reagent. Alkynyl metabolites have been 

similarly employed in biological experiments [38, 143-148]. A suite of alkyne-selective reactions 

does not yet exist; therefore, these probes are typically detected using CuAAC. Ketones and 
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aldehydes rival azides and alkynes in terms of size. However, their somewhat sluggish 

reactivities at neutral pH have limited their broad utilization in cellulo.  

Identifying alternatives to the azide and alkyne—that rival these motifs in terms of size 

and selective reactivity—is an ongoing challenge. Alkenes are options, although these small 

motifs are not robustly reactive with complementary probes [149]. Nitrile imines and other 1,3-

dipoles are also candidates, though most are not amenable to long-term storage and must be 

generated in situ [62, 69, 150-154]. Cyclopropene, a recently reported bioorthogonal reagent, 

appears to strike a balance between robust reactivity and shelf stability. We and others have 

shown that these microcycles can be appended to discrete monosaccharides and metabolically 

incorporated into cellular glycans and proteins [80-82, 149]. More work must be done, though, to 

assess the long-range biological compatibility and versatility of these motifs. 

 

Assessing the need for speed. Reaction rate is another important parameter to assess when 

selecting suitable bioorthogonal chemistries. For slow reactions, a large amount of one reagent 

must typically be used to drive the labeling event. Large amounts of any of reagent can be 

prohibitively expensive or potentially toxic. Fast reactions largely avoid these issues, as only 

minimal quantities are required. When the need for speed is paramount, the IED-DA reaction 

between tetrazine and TCO is unrivaled. The rates of these reactions range from 103-106 M-1s-1, 

making them appropriate for biological processes that occur on the minutes-to-seconds time 

scale or that involve biomolecule targets in low abundance (e.g., in vivo imaging) [71, 155]. In a 

recent example, Weissleder and coworkers utilized the TCO-tetrazine reaction to image tumor 

cells in whole animals. TCO was appended to a tumor-targeting antibody (α-A33) that localized 

to colon cancer grafts upon injection [74]. Following clearance of unbound antibody, the cancer 
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cells could be readily visualized using as little as 2 mM of a tetrazine-18F conjugate to tag the 

tumor-bound TCOs. Similar imaging experiments with Staudinger ligation and SPAAC 

chemistries failed to provide adequate signal-to-noise ratios, owing to the slower kinetics of 

these transformations and the need for a large amount of reagent [156-158].  

Activatable probes can be considered when using large amounts of labeling reagent is 

unavoidable. These reagents produce detectable signal only upon covalent reaction. Thus, the 

probe can be added in excess to drive the reaction without the need for extensive rinsing. 

Fluorogenic cyclooctynes have been developed for this purpose; these scaffolds “turn on” 

fluorescence only upon reaction with azides [159-161]. In a recent example, Boons and 

coworkers reported an activatable version of DIBO that exhibits a 1000-fold increase in 

fluorescence upon azide ligation [160]. Activatable tetrazines [159, 162] and azides [163, 164] 

are also available.  

 

Fine-tuning the selection. Like most experiments, the application of any bioorthogonal 

chemistry often requires some degree of optimization. Thus, it is helpful to have access to a 

variety of scaffolds that operate via a similar mechanism, but differ in such parameters as rate, 

solubility, and lipophilicity. As mentioned above, a panel of cyclooctynes that differ in their 

electronic and solubility properties is now available; these reagents can be “matched” to a given 

application involving azide ligation. Similarly, a wide variety of tetrazine probes for IED-DA 

cycloadditions have been reported [78, 165]. Mehl and colleagues recently capitalized on 

tetrazine “tunability” to install these non-natural motifs into recombinant proteins [108]. 

Tetrazines exploited for rapid IED-DA reactivity comprise electron-withdrawing groups, making 

them susceptible to hydrolysis and reactivity with endogenous thiols. This instability is not 
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detrimental in most applications where short labeling times are employed. In the case of 

recombinant protein production, though, long incubation times are necessary to biosynthetically 

introduce amino acids into growing polypeptide chains. The authors identified a tetrazine with 

electron-donating groups that harbored the requisite stability and compatibility for long-term in 

vivo use and incorporation into recombinant proteins [53, 166]. 

The Staudinger ligation is also quite “tunable,” although most methods to boost reactivity 

also accelerate phosphine oxidation [167, 168]. Phosphine probes can be manipulated to produce 

“turn-on” fluorescence in response to azide ligation, similar to their octyne counterparts [169]. 

Raines and others have also developed phosphine scaffolds that can be cleaved from the product 

post-ligation, leaving behind native amide bonds [170, 171]. These latter reagents participate in 

“traceless” Staudinger ligations and have been particularly useful in protein semi-synthesis 

[172], installing photo-crosslinking groups on cellular metabolites [173], and templating 

biomaterials in vivo [174].  

 

Knowing the market. The accessibility of required reactants can also be a deciding factor 

when selecting a bioorthogonal chemistry. Based on reagent availability and ease of use, CuAAC 

ranks among the most accessible reactions to date. A variety of alkyne- and azide-modified 

substrates can be purchased from commercial sources, and many can be used directly in 

metabolic labeling experiments. Several additional azide and alkyne precursors are available that 

can be readily appended to biomolecules using straightforward chemistries. The availability of 

reagents, coupled with the relatively user-friendly features of the reaction, have enabled the rapid 

adoption of CuAAC in diverse disciplines. This chemistry has been used to monitor 
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oligonucleotide production [38, 136], construct organotypic hydrogels [175, 176], and even 

visualize temporal changes in glycosylation relevant to development [138, 177].  

Other bioorthogonal transformations have been slower to transition to the wider 

biological community, mostly owing to their more challenging syntheses and lack of commercial 

suppliers. However, a number of reagent precursors (based on BCN, TCO, tetrazine, and 

phosphine scaffolds) have been recently made available. We anticipate that these probes will 

bolster new discoveries in a wide variety of fields. 

 

1.4 Moving forward 

Identifying chemistries for efficient biomolecule tagging in increasingly complex 

environments—cells, animal models, and even humans—is an ongoing challenge [155]. The 

search for ever faster and more selective reactions will be aided by explorations into new realms 

of chemical space. Already, Rao, Chin and others have discovered that cyanobenzothiazole 

condensations exhibit both rapid and specific reactivity with aminothiols [178, 179]. Similar 

advances are being made in the realm of bioorthogonal organometallic transformations. In 

seminal work, the Davis group reported ruthenium-catalyzed cross-metathesis reactions for 

efficient protein tagging [180-183], along with palladium-catalyzed cross-couplings amenable to 

targeting proteins, glycans, and nucleotides [184-189].  

A corollary challenge to identifying new transformations is elucidating methods to 

control bioorthogonality (i.e., turning functional groups “on” and “off”). Such “on-demand” 

reactivity is especially critical for reagents that are only semi-stable in biological environments. 

Photochemical activation is a particularly attractive mechanism for generating reactivity “on 

demand” [68, 69, 190-195]. Pulsed light can be controlled both spatially and temporally, and 



	
   21 

thus offers a method to release bioorthogonal reagents and localize reactivity [196, 197] (Figure 

1-4). Popik and coworkers exploited the photo-triggered release of cyclooctyne reagents to 

control azide-alkyne reactivity [195, 198]. In related work, Lin and colleagues utilized “photo-

click” chemistry to tag alkene-modified proteins [68]. The derivatized proteins were incubated 

with tetrazole probes. Upon UV illumination, tetrazoles photolyze to generate nitrile imines that 

can ligate terminal alkenes. The spatial resolution of these and other photo-click reactions is 

dependent on the lifetime of the liberated reagent. For nitrile imine, the lifetime is relatively 

short, as the 1,3-dipole is subject to rapid water quenching [67]. This “react” or “self-destruct” 

scenario enables more focal labeling and thus excellent spatial resolution. Continued 

development of mild methods to release bioorthogonal reagents “on-demand,” including two-

photon absorption and selective chemical reactions, are important pursuits [192, 193, 199-201]. 
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Figure 1-4. “On-demand” bioorthogonal reactivity. (A) Bioorthogonal functionality can be 
revealed in situ in live cells using pulsed light. Selective irradiation liberates the desired 
functionality only in the region of interest, conferring both spatial and temporal resolution on the 
labeling reaction. (B) Two examples of “photo-click” reactions. Irradiation of the 
cyclopropenone scaffold releases a functional cyclooctyne capable of reacting with azides (top). 
Similarly, irradiation of the tetrazole scaffold generates a nitrile imine (bottom). This 1,3-dipole 
can covalently label nearby alkenes. 
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As new bioorthogonal reagents continue to be explored and validated, another major 

challenge looms: identifying transformations that not only work well in vivo, but also work well 

with existing bioorthogonal chemistries. Many of the most common bioorthogonal reactions are 

incompatible with one another in live cells. For example, certain cycloalkynes have been shown 

to be highly reactive with tetrazine and therefore do not lend themselves to multi-component 

studies (Figure 1-5) [202, 203]. However, careful selection of bioorthogonal reagents can enable 

simultaneous and selective labeling [110, 202]. Recently, we and others demonstrated the mutual 

orthogonality of the alkene-tetrazine ligation with variants of SPAAC [81, 109, 149, 204, 205] In 

one example, Hilderbrand and coworkers utilized Herceptin-TCO and cetuximab-DBCO 

antibody conjugates to target A431 and SKBR3 cells, respectively [204]. Upon co-administration 

of the complementary azido- and tetrazine-fluorophores, both cell populations were selectively 

labeled and visualized. 

The identification of mutually orthogonal transformations is being aided by 

computational studies. Houk and colleagues developed a distortion-interaction model that has 

proven effective at predicting reactivity of strained molecules with 1,3-dipoles and dienes [58, 

206, 207]. Steric clashes between many of the large, strained molecules can be exploited to 

disfavor certain cycloadditions, while promoting others [203]. In recent work, we utilized this 

model to identify two sets of cyclopropenes—differing by the presence of a single methyl 

group—that exhibit unique cycloaddition preferences [208]. These unique reactivities were 

employed to append unique fluorophores to model proteins. We anticipate that computational 

algorithms will continue to have a major impact in identifying combinations of mutually 

orthogonal transformations or those that can be used sequentially [203, 209]. Assays to rapidly 

identify candidate classes of probes will also be helpful in this regard [210].  
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Figure 1-5. Identifying mutually orthogonal transformations. Strained alkenes and alkynes 
possess dramatically different reactivities with azido (left) and tetrazine (right) probes. The 
alkenes in blue react rapidly with tetrazine via IED-DA chemistries, while the alkynes in red 
demonstrate rapid reactivity with azides. Bicyclononyne (BCN, black) does not significantly 
favor tetrazines or azides in terms of reaction rate. With judicious selection, some of these 
reagents can be used concurrently in bioorthogonal labeling applications. *Determined 
computationally to be unreactive with disubstituted tetrazines [203]. 
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1.5 Conclusions 

The past decade has seen a marked expansion of the bioorthogonal toolkit, with a variety 

of polar reactions and cycloaddition chemistries demonstrating utility for biomolecule labeling in 

complex environments. As the number of bioorthogonal reactions continues to grow, selecting an 

appropriate chemistry for a given application is increasingly challenging. The reactions differ in 

a number of key attributes, including selectivities and rates, and understanding the 

“personalities” of each transformation is key to their successful implementation.  

 

1.6 Objectives 

 Bioorthogonal chemistry had been largely focused on the azide. I sought to develop new 

ligations to both improve upon the azide ligations weaknesses, but also to be used in conjuction 

with the azide for multi-target detection. Objectives included the following: 

1. Identify small, stable cyclopropene scaffolds compatible with biological functional. 

2. Characterize selective reactions of cyclopropenes with tetrazines and 1,3-dipoles. 

3. Establish cyclopropene as a broadly useful chemical reporter. 

4. Develop cyclopropene ligations to use in tandem with bioorthogonal azide ligations for 

probing multiple biomolecules in tandem. 

5. Identify new mutually orthogonal reactions with new cyclopropene scaffolds and other 

existing bioorthogonal reagents. 
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CHAPTER 2: Functionalized cyclopropenes as 

bioorthogonal chemical reporters 

2.1 Introduction 

The bioorthogonal chemical reporter strategy is among the most popular methods to tag 

biomolecules in live cells and whole animals [1]. This technique relies on the metabolic 

introduction of a unique functional group (i.e., a chemical reporter) into a biomolecule of interest 

(Figure 2-1A). The reporter is detected in a second step using highly selective (i.e., 

bioorthogonal) chemistries [2]. Depending on the type of covalent labeling agent employed, this 

two-step approach can be used to visualize biomolecules in cellular environments or enrich them 

for further analyses. 

While powerful, the bioorthogonal chemical reporter strategy has been limited to only a 

handful of broadly functional reporter groups. This select class includes ketones, terminal 

alkynes, and organic azides [3-6]. Azides, in particular, have been widely utilized in live cells 

and animals owing to their remarkable biocompatibility and unique reactivity [2, 7, 8]. Azides 

can be readily affixed to metabolic precursors that target glycans, lipids, and numerous other 

biomolecules [9-11]. Once installed, these motifs can be selectively reacted with soft 

nucleophiles (via Staudinger ligation) or activated alkynes (via copper-free “click” chemistry) 

without detriment to the cell or organism [12-16]. Identifying new chemical reporters remains an 

important, yet challenging goal, as most functional groups do not meet the stringent criteria 

required for use in living systems. The scaffolds must remain inert to endogenous biological 

functionality, yet react robustly with complementary probes in complex environments. Chemical 
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reporters must also traverse biosynthetic pathways and, thus, be minimally perturbing to the 

cell’s metabolic machinery.  

In recent years, strained alkenes and alkynes have been identified that meet several of the 

criteria for broadly applicable chemical reporters [8]. These scaffolds, including trans-

cyclooctene (TCO), norbornene (NB), and bicyclononyne (BCN), are abiotic and relatively 

stable in cellular environs [17-23]. Furthermore, they react rapidly with electron-poor tetrazines 

via inverse-electron-demand Diels-Alder (IED-DA) reactions. The remarkable speed of these 

reactions is well suited for sensitive imaging applications, and a variety of TCO- and NB- 

conjugated nanoparticles and antibodies have been utilized for this purpose [17-23]. More 

recently, Chin and others have demonstrated that amino acids outfitted with BCN, TCO, or NB 

can be incorporated into cellular proteins utilizing engineered strains of bacteria; the 

functionalized proteins can be subsequently targeted with visual probes via IED-DA ligations 

[21, 24, 25]. While useful, strained alkenes and alkynes have been slow to transition as reporter 

groups for other metabolic pathways. This is due, in part, to their large size and incompatibility 

with many endogenous biosynthetic pathways. 
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Figure 2-1. Chemical reporters and bioorthogonal chemistries. (A) The bioorthogonal chemical 
reporter strategy. A biomolecule of interest (light blue rectangle) can be targeted with a chemical 
reporter group (red circle) appended to a metabolic precursor (dark blue rectangle). Subsequent 
covalent reaction enables the target biomolecule to be visualized or retrieved. (B) Cyclopropenes 
undergo cycloaddition reactions with tetrazine scaffolds. (C) Panel of cyclopropene analogs 
examined in this study. 
 

We aimed to examine a smaller strained olefin—cyclopropene—for use as a 

bioorthogonal chemical reporter. Cyclopropenes are not present in most eukaryotes, and are 

likely compatible with a variety of metabolic pathways owing to their small size. In fact, the 

steric demand of a cyclopropene unit is on par with diazirine, a widely used functional group in 

cellular labeling and photo-crosslinking studies [26, 27]. Cyclopropenes also possess a large 

amount of strain energy that can drive IED-DA reactions and other cycloadditions under 

relatively mild conditions (Figure 2-1B) [28, 29]. These types of transformations are particularly 

attractive for use in biological settings, and have been the subject of recent work by Devaraj and 

coworkers [29, 30]. In this chapter, we describe the development and utilization of 

cyclopropenes as chemical reporters in living systems.  

2.1a R1 = H; R2 = CH3         2.2a R1 = H; R2 = CH3 2.3b R1 = H; R2 = CH3 
2.1b R1 = R2 = CH3         2.2b R1 = R2 = CH3 2.3b R1 = R2 = CH3 
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Scheme 2-1. Synthesis of functionalized cyclopropenes. 

 

 

2.2 Results and Discussion  

2.2a Design and synthesis of biocompatible cyclopropenes 

While cyclopropenes possess many favorable attributes for cell-based studies, they are 

not without limitation. Cyclopropene itself is prone to polymerization at room temperature and 

susceptible to attack by thiols and other biological nucleophiles [31, 32]. However, several lines 

of evidence suggest that modifications to the cyclopropene core can markedly improve scaffold 

stability. For example, substituted cyclopropenes are found in both plant and marine natural 

products, indicating that C-1 and C-2-modified olefins possess some degree of metabolic 

stability [33-35]. Methyl-substituted cyclopropenes are also produced on the ton-scale in the 

2.4a R = TMS 
2.4b R = CH3 
 

2.6a R = TMS 
2.6b R = CH3 
 

2.1a R = H,     75% 
2.1b R = CH3, 72% 

2.9 

2.10 

2.8 R = TMS,  71% 
2.3b R = CH3, 70% 

2.7a R = H,     89% 
2.7b R = CH3, 81% 

2.2a R = H,     87% 
2.2b R = CH3, 90% 

2.3b 

2.11 
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agricultural industry and used in produce transport [36]. Additionally, carbonyls and other 

electron-withdrawing groups positioned at C-3 are known to stabilize cyclopropenes by 

imparting partial aromatic character to the ring [37-39]. 

We reasoned that a combination of steric and electronic modifications to the 

cyclopropene core would provide a chemical reporter suitable for metabolic labeling without 

compromising cycloaddition reactivity. To test this hypothesis, we designed a panel of 

cyclopropenes with vinyl methyl substituents and various C-3 appendages (Figure 2-1C). The C-

3 groups differed in their electron-withdrawing character and, in some cases, provided handles 

for eventual attachment to metabolic precursors. We were particularly attracted to the amide- and 

carbamate-functionalized scaffolds (2.2 and 2.11, respectively) as these linkages mimic those 

found in numerous bioconjugates.  

Cyclopropenes can be readily accessed from alkynes, but the synthesis of such low 

molecular weight compounds presents unique challenges. Many cyclopropenes are volatile and, 

as mentioned earlier, prone to polymerization upon concentration. To mitigate against these 

effects, we utilized di-substituted alkynes in the early stages of our syntheses. TMS-protected 

propyne and 2-butyne were first subjected to rhodium-catalyzed cyclopropenation with ethyl 

diazoacetate (2.5) to provide esters 2.6a-b (Scheme 2-1A). Subsequent hydrolysis of the isolated 

esters afforded the free acids 2.1a-b in good yield. 

With 2.1 and 2.6 in hand, we were poised to access the remaining C-3 modified scaffolds. 

The amide-functionalized cyclopropenes 2.2a-b were prepared by treating 2.1a-b with 

pentafluorophenyl trifluoroacetate (PFP-TFA), followed by isopropylamine. The hydroxy-

substituted cyclopropenes 2.3b and 2.8 were generated via DIBAL-mediated reduction of 2.6. 

Unfortunately, attempts to deprotect 2.8 to afford the mono-substituted cyclopropene 2.3a were 
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unsuccessful. NMR analyses suggested that 2.3a—with a single methyl substituent and no 

electron-withdrawing group—polymerizes rapidly upon concentration (data not shown). Last, 

the carbamate scaffold 2.11 was isolated in two steps from 2.3b (Scheme 2-1B). In contrast to 

2.3a, cyclopropenes 2.1, 2.2, 2.3b, and 2.11 exhibited remarkable stability in aqueous buffer and 

in the presence of biologically relevant thiols. Scaffolds 2.2a and 2.11, in particular, were found 

to be stable for extended periods of time in solution and in the presence of cysteine (Figures 2-2 

and 2-3). 
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Figure 2-2. Cyclopropenes 2.2a and 2.11 are stable upon storage. 1H-NMR spectra of 2.2a (100 
mM in CDCl3) taken (A) immediately after isolation and (B) 2 months after sample preparation. 
1H-NMR spectra of 2.11 (100 mM in CDCl3) taken (C) immediately after isolation and (D) 1 
week after sample preparation. 
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Figure 2-3. Cyclopropenes are stable in the presence of biological nucleophiles. Cyclopropenes 
(A) 2.2a and (B) 2.11 (5 mM) were incubated with cysteine (5 mM) in 10% DMSO-
d6/deuterated PBS and analyzed by 1H-NMR over 24 h.  

B 
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2.2b Analysis of cyclopropene-tetrazine reactivity 

To examine whether the substituted cyclopropenes were still amenable to facile 

cycloaddition, we subjected 2.1, 2.2, 2.3b, and 2.11 to the model dipyridyl-tetrazine reagent 

2.12. Cycloadduct formation was observed in all cases when excess cyclopropene was used 

(Figures 2-4A, 2-5), although the products formed between 2.1 and 2.12 degraded rapidly in 

solution. The reactions also exhibited distinct fuchsia-to-yellow color changes that were used to 

calculate second-order rate constants for the transformations (Table 2-1, Figures 2-6 and 2-7). As 

expected, faster reactions were observed in more polar solvents and with less sterically congested 

cyclopropenes [29]. Additionally, cyclopropenes with reduced electron-withdrawing character at 

C-3 were found to react more expediently with 2.12, in agreement with previous studies [37]. 

Scaffolds 2.2a and 2.11 also exhibited comparable reactivity with a functionalized tetrazine 

probe.  
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Figure 2-4. Cyclopropenes react with tetrazines to form covalent adducts. (A) HPLC analysis of 
the cycloaddition between 2.2b and 2.12. The reaction was initiated in organic solvent prior to 
the addition of aqueous buffer. (B) The cyclopropene-tetrazine ligation proceeds via an initial 
Diels-Alder reaction, followed by N2 elimination. Subsequent ring opening and closing provides 
a mixture of diastereomers (2.13 and 2.14). Intramolecular cyclization ultimately affords the 
tricyclic adduct 2.15. Diagnostic NMR chemical shifts are noted.  
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Figure 2-5. HPLC analyses (0-95% CH3CN/H2O over 10 min with detection at 214 nm) of the 
reactions between tetrazine 2.12 and (A) 2.2a (in excess), (B) 2.11 (in excess), (C) 2.3b in 1:1 
CH3CN:PBS (2.3b and 2.12 co-elute). 
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Table 2-1. Cycloaddition rates observed between cyclopropene and tetrazine scaffolds 
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Figure 2-6. Plots used to calculate second-order rate constants of the reaction between (A) 2.2a, 
(B) 2.3b, (C) 2.11 and tetrazine 2.12 in 1:1 CH3CN:PBS. Second-order rate constants were also 
calculated for (D) 2.2a and (E) 2.11 with Tz-Biotin in 1:1 CH3CN:PBS. Second-order rate 
constants in CH3CN were also calculated using the plots (F) 2.2a, (G) 2.3b, and (H) 2.11 with 
2.12. 
 

 
Figure 2-7. Plot used to calculate the rate constant for the cyclopropene 2.2b - tetrazine 2.12 
cycloaddition in CD3OD. 
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While the cyclopropene reactions are markedly slower than other tetrazine-based 

ligations (~4-5 orders of magnitude slower than some TCO reactions) [40], they are still suitable 

for use in biological systems. In fact, the cycloaddition rates measured for 2.2a and 2.11 are on 

par with two bioorthogonal reactions widely utilized in live cells and animals: the Staudinger 

ligation (k = 0.25 × 10-2 M-1s-1 in 5% H2O/CH3CN) and the strain-promoted azide-alkyne 

cycloaddition with a difluorinated cyclooctyne (k = 7.6 x 10-2 M-1s-1 in CH3CN) [14, 41]. These 

reactions remain popular despite their relatively slow rates, as the need for small, non-perturbing 

chemical reporters (e.g., azides) can often trump the need for rapid reactivity in living systems. 

Our analyses of the cycloaddition reactions also revealed important mechanistic details. 

Cyclopropene-tetrazine ligations proceed via an initial Diels-Alder cycloaddition, followed by 

N2 expulsion. Facial selectively in the initial cycloadduct is dictated by steric considerations, 

with the anti-addition product likely predominating for most cyclopropenes (Figures 2-2, 2-8–14) 

[42]. For di-substituted cyclopropenes, though, the strain associated with multiple suprafacial 

substituents can drive further electrocyclic ring opening [43, 44]. Subsequent ring closure can 

ultimately alter the position of the C-3 substituent (placing it over the tetrazine ring, as in 2.14). 

Indeed, when dimethyl cyclopropene 2.2b was treated with 2.12, resonances for both 2.13 and 

2.14 were observed in the 1H-NMR spectrum. We also noticed that the yellow color of this 

solution faded over time in aqueous buffer. NMR and HPLC analyses revealed that the initial 

cycloadduct undergoes further intramolecular attack at the imine carbon to yield 2.15 (Figures 2-

2, 2-8–10). This internal cyclization was also observed when cyclopropene 2.3b was treated with 

tetrazine 2.12, although intramolecular attack proceeded at a faster rate (Figures 2-11 and 2-12). 

By contrast, when 2.11 (lacking a suitable C-3 nucleophile) was treated with 2.12, no 

intramolecular cyclization was observed following ring opening (Figure 2-13 and 2-14). While 
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some cyclopropene-tetrazine adducts are prone to further rearrangement, it is important to note 

that the starting materials remain covalently linked. 

 

2.2c Protein modification via cyclopropene-tetrazine ligation 

In addition to undergoing rapid and selective ligation reactions, chemical reporters must 

function in complex environments. To evaluate the cyclopropene scaffolds in a biologically 

relevant setting, we appended the reporters to a model protein (lysozyme or BSA). Standard 

carbonate- and NHS-ester coupling reactions were used to attach cyclopropene scaffolds 2.10 

and 2.24, respectively, to the protein surface (Figures 2-15A and Scheme 2-2). The modified 

protein samples were then reacted with a rhodamine-functionalized tetrazine scaffold (Tz-Rho, 

Scheme 2-3) and analyzed via mass spectrometry (Figure 2-16) or in-gel fluorescence imaging 

(Figures 2-15A and 2-16). As depicted in Figures 2-3B-D and 2-17, the ligations were both time- 

and dose-dependent, and no reaction was observed in the absence of either Tz-Rho or 

cyclopropene.  



	
   65 

 
Figure 2-8. NOESY spectrum of cycloadduct 2.15 with relevant cross peaks highlighted. 

 
 
Figure 2-9. HMBC spectrum of cycloadduct 2.15. Cross peaks highlighting the proximity of the 
C-3 proton and one methyl substituent to the quaternary center are noted.  
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Figure 2-10. The initial cycloadduct 2.16 formed from 2.2a and 2.12 exists in equilibrium with 
2.17 and presumably 2.22. Diagnostic 1H-NMR chemical shifts for the italicized methyl protons 
are provided.  
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Figure 2-11. Mechanism for cycloadduct formation upon treatment of 2.3b with 2.12. The initial 
cycloadduct further cyclizes to provide 2.21. 
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Figure 2-12. NOESY spectrum of cycloadduct 2.21 with relevant cross peaks highlighted. 
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Figure 2-13. Mechanism for cycloadduct formation upon treatment of 2.11 with 2.12. The ratio 
of 2.23 to 2.18 is 7:100 by 1H-NMR. 
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Figure 2-14. NOESY spectrum of cycloadduct 2.18:2.23 mixture with relevant cross peaks 
highlighted on the major product 2.18. 
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Figure 2-15. Methylcyclopropenes can be selectively modified on protein surfaces. (A) 
Cyclopropenes (Cp) and azides (Az) were appended to BSA (12.5 mg/mL in PBS) via NHS ester 
coupling or carbonate activation (8.4 mM labeling reagent). The labeled proteins (2 mg/mL) 
were subsequently reacted with either a tetrazine-rhodamine (Tz-Rho) conjugate or a 
cyclooctyne-fluorescein conjugate (DBCO-488). (B) Gel analysis of cyclopropene-modified 
BSA incubated with 100 µM Tz-Rho for 0-60 min or no reagent (-). (C) Gel analysis of Cp-
modified BSA labeled with Tz-Rho (0-250 µM) for 1 h. (D) Gel analysis of Cp-modified BSA 
(+) or BSA only (-) treated with Tz-Rho (500 µM) or no reagent (-) at 37 °C for 1 h. (E) Gel 
analysis of BSA functionalized with Cp, Az, or both chemical reporters (lanes 10-13) and reacted 
for 1 h with either 100 µM Tz-Rho, DBCO-488, both reagents simultaneously, or no reagent. 
For B-E, protein loading was assessed with Coomassie stain (lower panels). 
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Scheme 2-2. Synthesis of NHS-cyclopropenyl ester 2.24 and cyclopropene-modified sialic acid 
(9-Cp-NeuAc). 
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Scheme 2-3. Synthesis of tetrazine conjugates 
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Figure 2-16. Mass spec analysis of protein conjugates. Lysozyme was used as a model protein to 
verify the extent of cyclopropene and/or-azide modification utilizing NHS-ester or carbonate 
labeling methods. (A) Lysozyme was treated with carbonates 2.10, 2.25 or NHS ester 2.24. A 
portion of the conjugates was further subjected to covalent labeling with Tz-Biotin. (B) 
Spectrum of unmodified lysozyme. (C) Spectrum of lysozyme modified with 2.25. (D) Spectrum 
of lysozyme modified with 2.10. The lysozyme conjugate also appeared to be modified with an 
additional group (98 mass units). This could potentially arise via the side reaction shown in E, 
owing to the large concentration of carbonate probe used. (F) Spectrum of lysozyme modified 
with 2.24 (G) Spectrum of lysozyme modified with 2.24 and subsequently treated 100 µM Tz-
Biotin for 1 h.  
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Figure 2-17. Substituted cyclopropenes can be modified on protein surfaces. (A) Cyclopropene 
(Cp) scaffolds were appended to BSA via carbonate activation. The labeled proteins were 
subsequently reacted with Tz-Rho. (B) Gel analysis of cyclopropene-modified BSA incubated 
with 100 µM Tz-Rho for 0-60 min or no reagent (-). (C) Gel analysis of cyclopropene-modified 
BSA labeled with Tz-Rho (0-500 µM) for 1 h. (D) Gel analysis of cyclopropene-modified BSA 
(+) or BSA only (-) treated with Tz-Rho (500 µM) or no reagent (-) at 37 °C for 2 h. For B-D, 
protein loading was assessed with Coomassie staining. 

2.10 
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We also examined whether the cyclopropene-tetrazine ligation is compatible with azides 

and strained alkynes. The orthogonality of such reagents would enable cyclopropenes to be used 

in tandem with established bioorthogonal chemistries for dual labeling experiments. 

Cyclopropenes are known to react with organic azides and other 1,3-dipoles, but such reactions 

typically require strong heating [45]. Indeed, when cyclopropenes 2.2a or 2.11 were subjected to 

azidoethanol or phenyl azide in organic solvent, no reaction was observed under ambient 

conditions over 24 h (data not shown). Additionally, when cyclopropene (Cp)- and azide (Az)-

modified BSA conjugates were mixed together (providing Cp/Az-BSA), both functional groups 

could be selectively targeted with covalent probes (either Tz-Rho or a dibenzocyclooctyne-

fluorophore conjugate, DBCO-488) [46], suggesting that Cp and Az can coexist to a certain 

extent (lanes 11-13, Figure 2-15E). Reduced fluorescence intensities were observed when either 

DBCO-488 or Tz-Rho was incubated with Cp/Az-BSA (compared to BSA samples modified 

with either Az or Cp alone), but this was likely due to fewer reporter groups present in the 

sample itself—Cp-BSA and Az-BSA were combined 1:1 to generate the mixed sample (Cp/Az-

BSA), halving the number of available reporter groups (Figure 2-15E).  
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Cyclopropene reactivity with cyclooctynes and other strained molecules has not been 

extensively investigated. However, when cyclopropene-modified BSA (Cp-BSA) was treated 

with DBCO-488, no signal above background was observed under the labeling conditions 

employed (lane 6, Figure 2-15E). The faint fluorescence signal can be attributed to non-specific 

DBCO-488 reactivity (lane 3, Figure 2-15E). The compatibility of tetrazine scaffolds with both 

azides and strained alkynes, by contrast, has been examined in more detail [22, 24, 46]. In a 

recent study, Hilderbrand and coworkers observed reactivity between a mono-substituted 

tetrazine and a DBCO conjugate (k = 6 × 10-2 M-1s-1). However, no reaction was observed when 

a di-substituted, deactivated tetrazine was employed [22]. The authors further demonstrated that 

the kinetically slower tetrazine could be used in tandem with DBCO to label TCOs and azides in 

cells. In our studies, Tz-Rho was expected to react with DBCO (albeit minimally) based on 

cycloaddition rates measured for similar tetrazines and TCO [39]. However, when Tz-Rho was 

incubated with DBCO-488, no reaction was observed over 12 hours in PBS (Figure 2-18). 

Additionally, co-administration of Tz-Rho and DBCO-488 to Cp/Az-BSA did not significantly 

diminish covalent protein labeling (Figure 2-15E, Figure 2-19). While a detailed analysis of 

tetrazine-DBCO reactivity has not been performed, our results suggest that the two reagents can 

be used concurrently to target cyclopropenes and azides under certain conditions. 
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Figure 2-18. No reaction between DBCO-Rho and Tz-Rho was observed over 12 h. 
Commercially available DBCO-Rho (sold as a mixture of isomers) and Tz-Rho were dissolved 
separately in PBS (2 mM), and 200 µL of each solution were combined The final concentration 
of each reagent in the mixed sample was 1 mM (ten times the concentration used in any protein 
or cell labeling experiment). Aliquots were drawn from the reaction mixture over time and 
analyzed by HPLC (eluting with 0-50% CH3CN in water over 10 min, followed by 50% CH3CN 
for 10 min). The peak areas for each reagent are provided in the above plots. The starting traces 
for DBCO-Rho (yellow) and Tz-Rho (red) were acquired from the initial 2 mM solutions; all 
other traces were acquired from the mixed sample. 
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Figure 2-19. Pre-incubation of tetrazine and DBCO scaffolds has no noticeable affect on protein 
labeling. DBCO-488 and Tz-Rho were incubated together in PBS (1 mM each) for 0-4 h prior to 
the addition of Az- and Cp-modified BSA. Protein labeling reactions were performed as in 
Figure 3, and a representative image is shown here. Top panel: DBCO-488 fluorescence. Middle 
panel: Tz-Rho fluorescence. Lower panel: loading control with Coomassie staining. 
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2.2d Metabolic incorporation of cyclopropenes onto live cell surfaces  

Beyond biomolecule modification in vitro, chemical reporters must be able to traverse 

metabolic pathways in vivo. This requires that the scaffolds are stable in living systems and small 

enough to be tolerated by biosynthetic enzymes [1]. To investigate whether cyclopropenes would 

be useful for cellular labeling studies, we constructed a methylcyclopropene-sialic acid conjugate 

(9-Cp-NeuAc, Scheme 2-2). Modified sialic acids of this sort are known to be metabolized by 

cells and incorporated into cell surface glycans [47-50]. Jurkat cells were incubated with various 

concentrations of 9-Cp-NeuAc for 24-48 h. The presence of cell surface cyclopropenes was 

subsequently probed by reaction with a tetrazine-biotin conjugate (Tz-Biotin, Scheme 2-3) and 

avidin staining (Figure 2-20A). The fluorescence of each cell population was measured using 

flow cytometry. As shown in Figure 2-4B, a dose-dependent increase in signal was observed 

when cells were incubated with increasing concentrations of 9-Cp-NeuAc, indicating successful 

metabolic incorporation of the chemical reporter. The incorporation efficiency of 9-Cp-NeuAc 

was lower than that of a similarly functionalized azido sugar (9-Az-NeuAc, Scheme 2-2), but on 

par with other unnatural sialic acids used in metabolic engineering studies (Figure 2-21) [47-50]. 

Importantly, the fluorescence signal also diminished when 9-Cp-NeuAc-treated cells were 

cultured in the presence of unlabeled sugars (sialic acid, NeuAc or peracetylated N-

acetylmannosamine, Ac4ManNAc) targeting the same metabolic pathway [47].  
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Figure 2-20. Cyclopropenes can be metabolically incorporated onto live cell surfaces. (A) Jurkat 
cells were incubated with 9-Cp-NeuAc (0-2 mM), a control sugar (NeuAc, 2 mM) or both 9-Cp-
NeuAc and NeuAc (or Ac4ManNAc) for 24 h. After washing, the cells were reacted with Tz-
Biotin (100 µM) for 1 h at 37 °C. Subsequent staining with APC-avidin and flow cytometry 
analysis provided the plots in (B). (C) Mean fluorescence intensities (in arbitrary units, au) for 
the histograms in (B). Error bars represent the standard deviation of the mean for three 
experiments. 
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Figure 2-21. Flow cytometry analysis of 9-Az-NeuAc metabolism in Jurkat cells. (A) Cells 
incubated with 9-Az-NeuAc (0-2 mM) were treated with 100 µM DBCO-Biotin followed by 
APC-avidin. (B) Flow cytometry histograms revealing a dose-dependent increase in fluorescence 
correlating with 9-Az-NeuAc concentration. (C) Mean fluorescence intensities (in arbitrary units, 
au) for the histograms in (B). Error bars represent the standard deviation of the mean for three 
experiments A reduction in signal was observed when cells were incubated simultaneously with 
9-Az-NeuAc and unlabeled sugars (sialic acid and Ac4ManNAc). (D) Comparison of the 
metabolic incorporation efficiencies of 9-Cp-NeuAc and 9-Az-NeuAc.  
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We further investigated whether cyclopropene- and azide-modified sugars could be 

utilized concurrently for live cell labeling. In one setup, Jurkat cells were incubated with 9-Cp-

NeuAc, 9-Az-NeuAc, or no sugar. After 24 h, portions of the sugar-treated cells were combined. 

In a second setup, Jurkat cells were cultured with both sugars simultaneously. All samples were 

subsequently reacted with either Tz-Biotin, a water-soluble cyclooctyne-fluorophore conjugate 

(DBCO-Rho), or both reagents. Cells treated with Tz-Biotin were also stained with APC-avidin. 

The fluorescence of the resulting cell populations was analyzed via two-color flow cytometry, 

and the corresponding plots are depicted in Figure 2-22. For cells cultured separately with the 

unnatural sugars prior to mixing and covalent reaction, flow analysis revealed two distinct cell 

populations—one with robust APC fluorescence (corresponding to the 9-Cp-NeuAc-treated 

cells) and one with robust rhodamine fluorescence (corresponding to the 9-Az-NeuAc-treated 

cells) (Figure 2-22A). For cells cultured with the cyclopropenyl and azido sugars simultaneously, 

treatment with both covalent probes and flow analysis revealed a single population of cells 

labeled with both fluorophores (Figure 2-22B). The overall fluorescence signal attributed to the 

cyclopropene modification was reduced in this case, though, likely due to the lower 

incorporation efficiency of 9-Cp-NeuAc compared to 9-Az-NeuAc. Non-specific reactivity with 

DBCO-Rho was also observed in the cell labeling studies, but importantly, no cross-reactivity 

was observed when 9-Az-NeuAc-treated cells were labeled with Tz-Biotin or when 9-Cp-

NeuAc-treated cells were labeled with DBCO-Rho (Figure 2-23). Collectively, these results 

suggest that cyclopropene- and azide-based chemical reporters can be utilized together in live 

cells and will be useful for multiplexed metabolic engineering strategies. 
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Figure 2-22. Methylcyclopropenes and organic azides can be utilized in tandem for cellular 
metabolic labeling. (A) Flow cytometry analysis of Jurkat cells treated with 9-Cp-NeuAc (1 
mM), 9-Az-NeuAc (1 mM), or no sugar for 24 h. After washing, a portion of the 9-Cp- and 9-
Az-NeuAc cells were mixed. Cell samples were then washed and subsequently reacted with Tz-
biotin (100 µM), DBCO-Rho (100 µM) or both reagents for 1 h at 37 °C. Following staining 
with APC-avidin, cellular fluorescence was measured. Plots are shown with Rho (azide) and 
APC (cyclopropene) levels on the x- and y-axes, respectively. (B) Flow cytometry analysis of 
Jurkat cells incubated with 9-Cp-NeuAc (1 mM) and 9-Az-NeuAc (1 mM) simultaneously. 
After 24 h, the cells were washed, reacted, and analyzed as in (A). For (A) and (B), the same 
patterns of labeling were apparent in replicate experiments. 
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Figure 2-23. Cells incubated with 9-Cp-NeuAc (lower panels) or 9-Az-NeuAc (upper panels) (1 
mM) were treated with DBCO-Rho (100 µM), Tz-biotin (100 µM), both reagents, or no reagent 
and analyzed as in Figure 2-22. 
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2.3 Conclusions 

In summary, functionalized cyclopropenes have been developed for use as chemical 

reporters in living systems. These scaffolds react with tetrazines to form covalent adducts in high 

yield and with rates suitable for biological labeling applications. Our data also indicate that 

cyclopropenes are stable in biological environs and can be used to derivatize proteins and other 

biomolecules. Moreover, these functional groups can be metabolically introduced into cellular 

glycans, suggesting they are small enough to traverse biosynthetic pathways in live cells. 

Methylcyclopropenes can also be used in tandem with organic azides, and we anticipate that 

combinations of these and other chemical reporters will be widely used for targeting multiple 

classes of biomolecules [51]. 

This work also sets the stage for continued expansion of the bioorthogonal chemistry 

toolkit. We envision developing a collection of cyclopropene scaffolds suitable for use as both 

chemical reporters and secondary labeling agents. Toward this end, we are generating 

cyclopropenes that react more rapidly with tetrazine probes, along with identifying scaffolds 

with alternative modes of reactivity. These reagents will bolster efforts to monitor multi-

component biomolecular processes in living systems. 

 

2.4 Materials and methods 

2.4a Cyclopropene stability 

The relative stabilities of cyclopropenes 2.2a and 2.11 were evaluated in two separate assays. To 

determine shelf stability in solution, the compounds were dissolved in CDCl3 (100 mM) and 

monitored over time (at 4 °C) via 1H-NMR. To analyze cyclopropene stability in the presence of 



 

	
  

85 

biological nucleophiles, 2.2a or 2.11 was incubated with cysteine (5 mM of each reagent in 10% 

DMSO-d6/deuterated PBS, pH 7.4) and the resulting solutions were monitored via 1H-NMR. 

 

2.4b Rate studies 

UV-Vis method 

The reactions between cyclopropenes 2.2a, 2.3b, 2.11 and tetrazine 2.12 or Tz-Biotin were 

monitored by the change in tetrazine absorbance at 536 nm. Reactions were initiated in a 96-well 

plate by mixing 150 µL of a 0.2 mM tetrazine solution (in CH3CN or 1:1 CH3CN:PBS) with 150 

µL of cyclopropene solution (2-10 mM in CH3CN or 1:1 CH3CN:PBS). The concentration of 

cyclopropene at the start of each reaction ranged from 1-5 mM, while the tetrazine concentration 

was held at 0.1 mM. For 2.1 and 2.11, larger concentrations of cyclopropene (9-15 mM in 

CH3CN) were used to overcome slow reaction kinetics. All rate studies were performed in 

triplicate under pseudo-first order conditions. Absorbance measurements were recorded every 5 

min over a 90-min time interval using a BioTek Epoch plate reader equipped with Gen5 

software. Pseudo-first order rate constants (kobs) were calculated by plotting the natural log of 

[2.12] or Tz-Biotin versus time (in s). Second-order rate constants were determined by plotting 

kobs vs cyclopropene concentration. 

 

1H-NMR method 

The cycloaddition reaction between cyclopropene 2.2b and tetrazine 2.12 was not easily 

monitored by UV-vis spectroscopy owing to its slow rate. Therefore, 1H-NMR was used to 

calculate the rate constant for this transformation. Cyclopropene 2.2b and tetrazine 2.12 (5 mM 



 

	
  

86 

each) were combined in CD3OD, and the ensuing reaction was monitored over 48 h. An internal 

standard (TMS) was used to determine peak integration values and, ultimately, the 

concentrations of the relevant species. 

 

2.4c Reaction analyses by HPLC 

To analyze cycloadduct formation and subsequent cyclizations, the reactions between 

cyclopropenes 2.2a-b, and 2.11 with tetrazine 2.12 were monitored by HPLC. Cyclopropene 

2.2b (100 mM) was initially reacted with 2.12 (50 mM) in 2 mL CH2Cl2. After 24 h, the reaction 

mixture was concentrated and subsequently dissolved in PBS (3 mL). The reaction was 

monitored at 12 h intervals by HPLC (0-95% CH3CN in water over 20 min). The reaction 

between tetrazine 2.12 and all other cyclopropenes were performed in 1:1 CH3CN:PBS (2 mM 

cyclopropene, 0.5 mM tetrazine) and monitored over 10-48 h by HPLC (0-95% CH3CN in water 

over 10 min). 

 

2.4d Protein labeling 

Bovine serum albumuin (BSA) or lysozyme (Lyz) conjugates were prepared by treating the 

proteins with carbonates 2.10 or 2.17 as described by Sletten, et al. [51], or with cyclopropenyl 

NHS ester 2.16 using standard coupling conditions [52]. In the former case, BSA or Lys (0.5 

mL, 20 mg/mL in PBS) was treated with 100 µL carbonate 2.10 or the corresponding azide 2.17 

(67 mM in DMSO) and an additional 200 µL DMSO. The final protein solution (12.5 mg/mL 

protein, 8.4 mM carbonate) was allowed to stand at rt for 3 h. The same procedure was used to 

label with the NHS ester 2.16.  
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In-gel fluorescence analysis of BSA conjugates 

The labeled BSA samples were subsequently isolated using P-10 BioGel® (BioRad), eluting 

with 2 mL PBS (pH 7.4). The derivatized BSA eluents (180 µL, 2 mg/mL) were treated with Tz-

Rho (1.0 - 20 µL of a 5 mM solution in DMSO) or a dibenzocyclooctyne-fluorescein conjugate 

(DBCO-488, Click Chemistry Tools, Scotsdale, AZ; 2 µL of a 10 mM solution in DMSO), or 

both reagents. The samples were diluted with additional PBS to total 200 µL. For multi-

component labeling, cyclopropene- and azide-derivatized BSA samples were combined 1:1 prior 

to labeling with fluorophores. After 1-60 min of fluorophore labeling, the modified BSA samples 

were purified by passage over P-10 BioGel® and eluting with PBS. The concentrations of the 

isolated protein samples were measured using a DC Protein Assay kit (BioRad). Protein isolates 

(2-5 µg) were analyzed by gel electrophoresis using 10% or 12% polyacrylamide gels. Gels were 

rinsed in destain buffer (50% D.I. H2O, 40% CH3OH, 10% acetic acid) and analyzed by in-gel 

fluorescence measurements on a GE Typhoon TRIO+ Variable Mode Imager. Tz-Rho 

fluorescence was measured with a 532 nm excitation wavelength and 580 nm emission. DBCO-

488 was measured with a 488 nm excitation wavelength and 520 nm emission. Total protein 

loading was confirmed by subsequent staining with Coomassie Brilliant Blue.  

 

Mass spectrometry analysis of lysozyme conjugates 
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Owing to the heterogeneity of BSA, mass spectrometry analysis was performed on lysozyme. 

Lysozyme samples modified with 2.10, 2.16, and 2.17 (see above) were dialyzed into D.I. water 

and subsequently analyzed by ESI-MS via direct infusion onto a QTOF2 instrument. A 200 µL 

sample of 2.16-modified lysozyme (1-2 mg/mL) was further reacted with 100 µM Tz-Biotin for 

1 h, dialyzed with D.I. water, concentrated and analyzed by ESI-MS. 

 

2.4e Cross-reactivity analysis 

The reactivity between DBCO reagents and Tz-Rho was assessed by HPLC and protein labeling 

assays. For the HPLC analyses, DBCO-Rho (Click Chemistry Tools, Scotsdale, AZ) and Tz-

Rho were dissolved separately in PBS (2 mM) and subsequently combined in a 1:1 ratio. The 

resulting mixture was monitored over time by HPLC (eluting with 0-50% CH3CN in water over 

10 min, followed by 50% CH3CN for 10 min). For the protein labeling assays, a combined 

solution of Tz-Rho and DBCO-488 (1 mM each in PBS) was incubated at room temperature for 

0-4 h prior to reaction with Az- and Cp-modified BSA. The protein labeling reactions were 

performed as above (using 1.5 µg/mL BSA solution and 100 µM of the Tz-Rho/DBCO-488 

solution). Purification and in-gel fluorescence assays were performed as described above. 

 

2.4f Metabolic labeling studies 

Jurkat cells were plated at a density of ~1 x 106 cells/mL in RPMI media (Gibco) supplemented 

with 10 % fetal bovine serum (FBS), penicillin/streptomycin, and either 9-Cp-NeuAc (0-2 mM), 

9-Az-NeuAc (0-2 mM), both sugars in tandem (1 mM each) no sugar, or a control sugar (NeuAc, 

1-2 mM or peracetylated ManNAc, 25 mM). All cell cultures were incubated for 24-48 h in a 5% 
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CO2, water-saturated incubator at 37 °C. The presence of cyclopropenes or azides in cell-surface 

glycoconjugates was determined by reaction with Tz-Biotin, sulfo-dibenzocyclooctyne-biotin 

(DBCO-Biotin; Click Chemistry Tools, Scotsdale, AZ), or dibenzocyclooctyne-PEG-

carboxyrhodamine (DBCO-Rho, Click Chemistry Tools, Scotsdale, AZ). Briefly, the cells were 

rinsed with PBS containing 1% bovine serum albumin (FACS buffer), and then reacted with Tz-

Biotin (100 µM, 1 h, 37 °C), DBCO-Biotin (100 µM, 1 h, 37 °C) or DBCO-Rho (100 µM, 1 h, 

37 °C). The cells were subsequently washed with FACS buffer and, when necessary, stained 

with APC-avidin (Invitrogen, 1:100 dilution in FACS buffer) for 30 min on ice. The fluorescence 

of the labeled cells was analyzed by flow cytometry on an LSR-II flow cytometer (BD 

Biosciences). For each cell population, 10,000 live cells were analyzed for each replicate 

experiment. Data were analyzed using FloJo software (Tree Star, Inc.). 

 

2.4g General synthetic procedures  

Compounds 2.1 [53, 54], 2.6 [53, 54], 2.25 [55], 9-Az-NeuAc [50], 2.26 [40], 2.27 [56], and 2.28 

[57] were synthesized as previously reported. All other reagents were purchased from 

commercial sources and used as received without further purification. Reactions were carried out 

under an inert atmosphere of nitrogen or argon in oven- or flame-dried glassware. 

Dichloromethane (CH2Cl2), tetrahydrofuran (THF), diethyl ether (Et2O), N,N-

dimethylformamide (DMF), methanol (CH3OH) and triethylamine (NEt3) were degassed with 

argon and passed through two 4 x 36 inch columns of anhydrous neutral A-2 (8 x 14 mesh; 

LaRoche Chemicals; activated under a flow of argon at 350 °C for 12 h). The remaining solvents 

were of analytical grade and purchased from commercial suppliers. Thin-layer chromatography 
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was performed using Silica Gel 60 F254 plates. Plates were visualized using UV radiation and/or 

staining with KMnO4. Flash column chromatography was performed with 60 Å (240-400 mesh) 

silica gel from Sorbent Technologies. In some cases, the silica was first deactivated with 1% 

NEt3 in the eluting solvent. 1H, 13C, and 19F NMR spectra were recorded on Bruker GN-500 (500 

MHz 1H, 125.7 MHz 13C), CRYO-500 (500 MHz 1H, 125.7 MHz 13C) or DRX-400 (400 MHz 

1H, 100 MHz 13C, 376.5 MHz 19F) spectrometers. All spectra were collected at 298 K unless 

otherwise noted. NOESY experiments were performed exclusively with the CRYO-500 

instrument with mixing times ranging from 0.8-1.0 s. Chemical shifts are reported in ppm values 

relative to tetramethylsilane or residual non-deuterated NMR solvent, and coupling constants (J) 

are reported in Hertz (Hz). High-resolution mass spectrometry was performed by the University 

of California, Irvine Mass Spectrometry Center. HPLC runs were conducted on a Varian ProStar 

equipped with 325 Dual Wavelength UV-Vis Detector. Analytical runs were performed using an 

Agilent Polaris 5 C18-A column (4.6 x 150 mm, 5 µm) with a 1 mL/min flow rate. Semi-

preparative runs were performed using an Agilent Prep-C18 Scalar column (9.4 x 150 mm, 5 

µm) with a 5 mL/min flow rate. The elution gradients for the relevant separations are specified 

below. 

 

2.4h Synthetic procedures 

Pentafluorophenyl 2-methylcycloprop-2-enecarboxylate (2.7a). Compound 2.1a (100 mg, 

1.02 mmol) was dissolved in 8 mL CH2Cl2. N,N-Diisopropylethylamine (0.42 mL, 2.4 mmol) 

was added and the solution was cooled to 4 °C. Pentafluorophenyltrifluoracetate (0.35 mL, 2.0 

mmol) was then added dropwise over 1 min via syringe. After 1 h, the reaction mixture was 
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concentrated in vacuo to afford a yellow oil. The crude product was purified by flash column 

chromatography (eluting with CH2Cl2) to yield 2.7a as a white solid (0.259 g, 0.979 mmol, 

89%): TLC Rf = 0.5 (10% Et2O in hexanes, KMnO4 stain); 1H NMR (400 MHz, CDCl3) δ 6.45 

(app quint, J = 1.4 Hz, 1H), 2.41 (d, J = 1.6 Hz, 1H), 2.25 (d, J = 1.2 Hz, 3H); 13C NMR (125.7 

MHz, CDCl3) δ 172.1, 111.1, 93.9, 19.5, 10.4; 19F NMR (376.5 MHz, CDCl3) δ -153.4 (dd, J = 

22.3, 5.0 Hz, 2F), -159.2 (t, J = 21.7 Hz, 1F), -163.1 (dt, J = 22.0, 5.0 Hz, 2F) HRMS (GC-CI) 

m/z calcd for C11H9O2F5N [M+NH4]+ 282.0554, found 282.0555. 

 

Pentafluorophenyl 2,3-dimethylcycloprop-2-enecarboxylate (2.7b). Compound 2.1b (0.050 g, 

0.45 mmol) was dissolved in 5 mL CH2Cl2. N,N-Diisopropylethylamine (0.260 mL, 1.49 mmol) 

was added and the solution was cooled to 4 °C. Pentafluorophenyltrifluoracetate (0.215 mL, 1.25 

mmol) was then added dropwise over 1 min via syringe. After 1 h, the reaction mixture was 

concentrated in vacuo to afford a yellow oil. The crude product was purified by flash column 

chromatography (eluting with CH2Cl2) to yield 2.7b as a white solid (0.102 g, 0.364 mmol, 

81%); TLC Rf = 0.5 (10% Et2O in hexanes, KMnO4 stain); 1H NMR (400 MHz, CDCl3) δ 2.29 

(s, 1H), 2.13 (s, 6H); 13C NMR (125.7 MHz, CDCl3) δ 172.4, 101.8, 22.5, 9.6; 19F NMR (376.5 

MHz, CDCl3) δ -153.6 (d, J = 22.9, 4.6 Hz, 2F), -159.5 (t, J = 22.0 Hz, 1F), -163.3 (dt, J = 21.2, 

4.5 Hz, 2F); HRMS (GC-CI) m/z calcd for C12H8O2F5 [M+H]+ 279.0444, found 279.0445. 

 

N-Isopropyl-2-methylcycloprop-2-enecarboxamide (2.2a). Cyclopropene 2.7a (0.170 g, 0.644 

mmol) was dissolved in 4 mL CH2Cl2. Isopropylamine (0.153 mL, 1.92 mmol) was added to the 

solution via syringe. After a few minutes, a white precipitate formed. The reaction mixture was 
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allowed to stir at rt for an additional hour before the white precipitate was removed by filtration. 

The remaining filtrate was concentrated in vacuo to yield 2.2a as a white powder (75.3 mg, 0.56 

mmol, 87%). TLC Rf = 0.2 (5% CH3OH in CH2Cl2, KMnO4 stain); 1H NMR (400 MHz, CDCl3) 

δ 6.41 (app quin, J = 1.3 Hz, 1H), 5.18 (br s, 1H), 4.12-4.07 (m, 1H), 2.15 (d, J = 1.2 Hz, 3H), 

1.95 (d, J = 1.6 Hz, 1H), 1.13 (d, J = 3.0, 3H), 1.11 (d, J = 3.0 Hz, 3H); 13C NMR (125 MHz, 

CDCl3) δ 175.1, 114.1, 96.2, 41.2, 23.10, 23.08, 22.6, 10.7; HRMS (ESI) calcd for C8H13NONa 

[M+Na]+ 162.0895, found 162.0889. 

 

N-Isopropyl-2,3-dimethylcycloprop-2-enecarboxamide (2.2b). Cyclopropene 2.7b (0.202 g, 

0.726 mmol) was dissolved in 4 mL CH2Cl2. Isopropylamine (179 mg, 3.03 mmol) was added to 

the solution via syringe. After a few minutes, a white precipitate formed. The reaction mixture 

was allowed to stir at rt for an additional hour before the white precipitate was removed by 

filtration. The remaining filtrate was concentrated in vacuo to yield 2.2b as a white powder 

(0.100 g, 0.653 mmol, 90% yield): TLC Rf = 0.3 (5% CH3OH in CH2Cl2, KMnO4 stain); 1H 

NMR (500 MHz, CDCl3) δ 5.07 (br s, 1H), 4.12–4.08 (m, 1H), 2.03 (s, 6H), 1.83 (s, 1H), 1.11 

(d, J = 6.5 Hz, 6H); 13C NMR (125.7 MHz, CDCl3) δ 175.6, 104.3, 40.9, 25.5, 23.2, 9.7; HRMS 

(ESI) m/z calcd for C9H15NONa [M+Na]+ 176.1051, found 176.1057. 

 

3-Hydroxymethyl-1,2-dimethylcyclopropene (2.3b). Diisobutylaluminum hydride (0.213 g, 

1.50 mmol) was dissolved in 5 mL Et2O, and the resulting solution was cooled to 4 °C. 

Cyclopropene 2.6b (0.142 g, 1.01 mmol) was added dropwise to the vessel via syringe over 1 

min. The resulting solution was stirred for 30 min before the reaction mixture was quenched with 
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saturated Rochelle’s salt and allowed to stir until a white gel formed. The organic layer was 

separated and the aqueous gel was extracted with Et2O (2 x 5 mL). The combined organic layers 

were dried with MgSO4 and concentrated in vacuo to afford the crude product mixture as faint 

yellow oil. The crude product was purified by flash column chromatography (eluting with 50% 

Et2O in hexanes) to yield 2.3b as a clear oil (0.091 g, 0.92 mmol, 70% two steps): TLC Rf = 0.2 

(25% ethyl acetate in hexanes, KMnO4 stain); 1H NMR (400 MHz, CDCl3) δ 3.53 (d, J = 4.3 Hz, 

2H), 2.03 (s, 6H), 1.53 (t, J = 4.3 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 110.3, 68.6, 22.8, 

10.6; HRMS (GC-CI) calcd for C6H11O [M+H]+ 99.0810, found 99.0807. 

 

3-Hydroxymethyl-2-methyl-trimethylsilylcyclopropene (2.8). Diisobutylaluminum hydride 

(0.213 g, 1.50 mmol) was dissolved in 5 mL Et2O, and the resulting solution was cooled to 4 °C. 

Cyclopropene 2.6a (0.200 g, 1.00 mmol) was added dropwise to the vessel via syringe over 1 

min. The resulting solution was stirred for 30 min before the reaction mixture was quenched with 

saturated Rochelle’s salt and allowed to stir until a white gel formed. The organic layer was 

separated and the aqueous gel was extracted with Et2O (2 x 10 mL). The combined organic 

layers were dried with MgSO4 and concentrated in vacuo to afford the crude product mixture as 

faint yellow oil. The crude product was purified by flash column chromatography (eluting with 

20% Et2O in hexanes) to yield 2.8 as a faint yellow oil (0.138 g, 0.883 mmol, 71% two steps): 

TLC Rf = 0.2 (10% EtOAc in hexanes, KMnO4 stain); 1H NMR (500 MHz, CDCl3) δ 3.48 (d, J = 

4.6 Hz, 2H), 2.21 (s, 3H), 1.56 (t, J = 4.6 Hz, 1H), 0.17 (s, 9H). This material was subjected to 

deprotection conditions (2.0 mL of 1 M tetrabutylammonium fluoride in THF) without further 

purification. 
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p-Nitrophenyl carbonate dimethyl cyclopropene (2.10). Cyclopropene 2.3b (59 mg, 0.60 

mmol) and dry pyridine (0.30 mL, 3.7 mmol) were dissolved in 5 mL CH2Cl2. The resulting 

solution was stirred and cooled to 4 °C before adding p-nitrophenyl chloroformate (0.266 g, 1.32 

mmol). The solution was allowed to warm to rt and stir for 2 h before quenching the reaction 

with D.I. H2O. The organic layer was separated and the aqueous layer was extracted with CH2Cl2 

(2 x 15 mL). The organic layers were combined, dried with MgSO4, and concentrated. The crude 

mixture was purified via flash column chromatography (eluting with 10-20% Et2O in hexanes) to 

afford 2.10 as a white solid (0.123 g, 0.467 mmol, 78% yield): TLC Rf = 0.7 (25% ethyl acetate 

in hexanes); 1H NMR (400 MHz, CDCl3) δ 8.27 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 

4.18 (d, J = 5.3 Hz, 2H), 2.04 (s, 6H), 1.64 (t, J = 5.3 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 

155.9, 152.8, 145.3, 125.3, 121.9, 109.5, 77.9, 19.0, 10.5; HRMS (GC-CI) calcd for C13H13NO5 

[M]+ 263.0794, found 263.0796. 

 

(2,3-Dimethylcyclopropenyl)methyl isopropylcarbamate (2.11). Carbonate cyclopropene 2.10 

(163 mg, 0.619 mmol) was added to a solution of isopropylamine (230 µL, 2.8 mmol) in 5 mL 

CH2Cl2. The solution turns yellow and is allowed to stir overnight. The reaction mixture was 

rinsed with water (3 x 20 mL). The organic layer was dried with MgSO4 and concentrated. The 

crude mixture was purified via flash column chromatography (eluting with 20% Et2O in 

hexanes) to afford 11 as a pale yellow oil (82.7 mg, 0.451 mmol, 73% yield): TLC Rf = 0.4 (20% 

ethyl acetate in hexanes); 1H NMR (500 MHz, CDCl3) δ 4.42 (br s, 1H), 3.92 (d, J = 4.9 Hz, 2H), 

3.79 (app octet, J = 6.7 Hz, 1H), 1.99 (s, 6H), 1.50 (t, J = 5.0 Hz, 1H), 1.14 (d, J = 6.7 Hz, 6H); 
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13C NMR (500 MHz, CDCl3) δ 156.3, 109.9, 72.0, 43.0, 23.1, 19.6, 10.3; HRMS (GC-CI) calcd 

for C10H17NO2Na [M+Na]+ 206.1157, found 206.1157. 

 

Mixture of cycloadducts 2.13 and 2.14. Cyclopropene 2.2b (18.0 mg, 0.117 mmol) was added 

to a solution of 3,6-dipyridyl-1,2,4,5-tetrazine 2.12 (28.2 mg, 0.119 mmol) in 3 mL CH2Cl2. The 

solution was allowed to stir for 2 d at 37 °C, and the color changed from pink to pale purple. The 

reaction mixture was concentrated in vacuo and purified by flash column chromatography with 

deactivated silica (eluting with 0-5% CH3OH in CH2Cl2) to afford a 5.5:1 (2.14 : 2.13) mixture 

of diastereomers as a yellow solid (17.4 mg, 0.0481 mmol, 41% yield): TLC Rf = 0.3 (10% 

CH3OH in CH2Cl2, UV); 1H NMR (500 MHz, CDCl3, 2.13) δ 8.69 (app d, J = 4.7 Hz, 2H), 7.94 

(app d, J = 7.8 Hz, 2H), 7.83 (dt, J = 7.7, 1.6 Hz, 2H), 7.38 (ddd, J = 7.5, 4.9, 1.0 Hz, 2H), 6.96 

(ddd, J = 7.5 Hz, 1H), 4.15 (m, 1H), 1.74 (s, 1H), 1.47 (s, 6H), 1.26 (d, J = 6.5 Hz, 6H); 1H NMR 

(500 MHz, CDCl3, 2.14) δ 8.73 (app d, J = 4.8 Hz, 2H), 8.04 (app d, J = 7.8, 2H), 7.83 (dt, J = 

7.7, 1.6 Hz, 2H), 7.56 (d, J = 7.5 Hz, 1H), 7.38 (ddd, J = 7.5, 4.9, 1.0 Hz, 2H), 3.75 (m, 1H), 

2.70 (s, 1H), 1.43 (s, 6H), 0.80 (d, J = 6.6 Hz, 6H); 13C NMR (125 MHz, CDCl3, mixture) δ 

165.3, 165.1, 163.8, 163.0, 156.2, 155.6, 148.8, 148.7, 137.1, 137.0, 124.6, 124.4, 124.3, 123.6, 

41.6, 41.4, 35.0, 31.0, 28.8, 27.9, 23.0, 22.1, 18.0, 13.5; HRMS (ESI) calcd for C21H23N5ONa 

[M+Na]+ 384.1800, found 384.1810. 

 

Cycloadduct 2.15. The cycloadduct mixture of 2.13 and 2.14 (12.0 mg, 0.0326 mmol) was 

dissolved in water and the reaction progress was monitored by HPLC. After 1 d, the resulting 

cycloadduct was purified by HPLC (0-95% CH3CN in water over 20 min) and concentrated in 
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vacuo to yield 2.15 (6.0 mg, 0.017 mmol, 52% yield) as a white solid: 1H NMR (400 MHz, 318 

K, CDCl3) δ 8.68 (m, 2H), 7.82 (dt, J = 8.0, 1.8 Hz, 1H), 7.81 (app d, J = 7.9 Hz, 1H), 7.68 (dt, J 

= 7.8, 1.8 Hz, 1H), 7.59 (app d, J = 8.0 Hz, 1H), 7.34 (ddd, J = 7.5, 5.0, 0.9 Hz, 1H), 7.31 (br s, 

1H), 7.19 (ddd, J = 7.4, 4.9, 1.1 Hz, 1H), 2.66 (sept, J = 6.8 Hz, 1H), 1.90 (s, 1H), 1.29 (s, 3H), 

1.12 (s, 3H), 1.04 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 

174.0, 156.2, 154.9, 152.1, 149.4, 148.9, 136.5, 136.2, 123.8, 122.7, 120.7, 80.9, 45.2, 34.9, 29.0, 

25.6, 20.4, 18.7, 17.0, 12.4; HRMS (ESI) calcd for C21H23N5ONa [M+Na]+ 384.1800, found 

384.1798. 

 

Mixture of cycloadducts 2.16 and 2.17. Cyclopropene 2.2a (11.8 mg, 0.0847 mmol) was added 

to a solution of 3,6-dipyridyl-1,2,4,5-tetrazine 2.12 (10.0 mg, 0.0423 mmol) in 4 mL CH2Cl2. 

The solution was allowed to stir for 3 h at 37 °C, and the color changed from pink to yellow. The 

reaction mixture was concentrated in vacuo and purified by flash column chromatography with 

deactivated silica (eluting with 0-5% CH3OH in CH2Cl2) to afford a mixture of isomers as a 

yellow solid (10.0 mg, 0.0288 mmol, 68% yield): 1H NMR (500 MHz, CDCl3, 2.16) δ 8.76 (app 

d, J = 4.2 Hz, 1H), 8.68 (app d, J = 4.6 Hz, 1H), 8.43 (d, J = 7.9 Hz, 1H), 8.01 (d, J = 7.9 Hz, 

1H), 7.81 (m, 2H), 7.39 (m, 2H), 6.21 (d, J = 7.8 Hz, 1H), 4.21 (m, 1H), 3.94 (d, J = 5.1 Hz, 1H), 

1.48 (s, 3H), 1.43 (d, J = 5.1 Hz, 1H), 1.28 (d, J = 6.5 Hz, 3H), 1.22 (d, J = 6.5 Hz, 3H); 13C 

NMR (125 MHz, CDCl3, 2.16) δ 166.1, 164.3, 161.0, 155.1, 153.9, 149.5, 148.8, 137.1, 136.5, 

125.2, 124.8, 123.7, 122.0; HRMS (ESI) calcd for C20H22N5O [M+H]+ 348.1824, found 

348.1815. 
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Cycloadduct 2.21. Cyclopropene 2.3b (8.3 mg, 0.085 mmol) was added to a solution of 3,6-

dipyridyl-1,2,4,5-tetrazine 2.12 (10.0 mg, 0.0423 mmol) in 5 mL CH3OH at rt. After 8 h, the 

resulting yellow solution was concentrated in vacuo. The crude mixture was purified by flash 

column chromatography with deactivated silica (eluting with 0-5% CH3OH in CH2Cl2) to afford 

2.21 as a white solid (10.0 mg, 0.0326 mmol, 77% yield): TLC Rf = 0.4 (5% CH3OH in CH2Cl2, 

UV); 1H NMR (500 MHz, CDCl3) δ 8.69-8.67 (m, 1H), 8.65-8.64 (m, 1H), 7.85 (d, J = 8.0 Hz, 

1H), 7.77 (dt, J = 8.0, 1.8 Hz, 1H), 7.69 (dt, J = 7.7, 1.7 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.29 

(ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 7.20 (ddd, J = 7.5, 5.0, 0.9 Hz, 1H), 6.82 (s, 1H), 4.39 (dd, J = 

8.4, 4.2 Hz, 1H), 4.25 (d, J = 8.4 Hz, 1H), 1.91 (d, J = 4.0 Hz, 1H), 1.28 (s, 3H), 1.03 (s, 3H); 

13C NMR (125 MHz, CDCl3) δ 159.6, 156.7, 152.9, 149.1, 148.7, 136.7, 136.3, 123.4, 122.5, 

122.3, 121.2, 97.6, 71.0, 37.2, 31.9, 22.9, 16.8, 13.0; HRMS (ESI) m/z calcd for C18H19N4O 

[M+H]+ 307.1559, found 307.1557. 

 

Cycloadduct 2.18. Cyclopropene 2.11 (46.1 mg, 0.252 mmol) was added to a solution of 3,6-

dipyridyl-1,2,4,5-tetrazine 2.12 (29.5 mg, 0.125 mmol) in 3 mL CH2Cl2. The solution was 

allowed to stir for 8 h at 37 °C, and the color changed from pink to yellow. The reaction mixture 

was concentrated in vacuo and purified by flash column chromatography with deactivated silica 

(eluting with 0-5% CH3OH in CH2Cl2) to afford product in a 100:7 ratio as a yellow solid (42.9 

mg, 0.110 mmol, 88% yield): 1H NMR (500 MHz, CDCl3) δ 8.67 (d, J = 4.0 Hz, 2H), 7.99 (app 

d, J = 7.9 Hz, 2H), 7.78 (dt, J = 7.6, 1.4 Hz, 2H), 7.34 (m, 2H), 4.69 (br s, 1H), 3.73 (m, 1H), 

3.68 (d, J = 7.4 Hz, 2H), 2.35 (t, J = 7.5 Hz, 1H), 1.48 (s, 6H), 1.08 (d, J = 6.6 Hz, 6H); 13C 

NMR (125 MHz, CDCl3) δ 163.5, 156.2, 155.7, 148.7, 136.7, 124.4, 124.0, 60.4, 53.5, 42.8, 
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32.5, 27.0, 23.1, 18.1; HRMS (ESI) m/z calcd for C22H25N5O2Na [M+Na]+ 414.1906, found 

414.1923. 

 

4-(6-(Pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)benzoic acid (2.26). (Procedure adapted from Karver 

et al.) [40] To a dried round bottom flask was added 2-cyanonitrile (1.071 g, 10.28 mmol) and 4-

cyanobenzoic acid (0.3134 g, 2.130 mmol) followed by addition of anhydrous hydrazine (1.2 ml, 

25 mmol). The reaction was stirred at 80 °C for 90 min under N2. After cooling to rt, the reaction 

mixture was diluted with acetic acid (7 mL) a cooled to 4 °C in an ice bath. Aqueous NaNO2 

(1.40 g in 3 mL D.I. H2O) was added dropwise to the reaction mixture turning resulting in a 

purple solution. Once the evolution of gas subsided, the purple solid was isolated by 

centrifugation (3000g x 1 min) followed by rinsing with copious amounts of acetone until the 

filtrate was colorless. The resulting solid was dried in vacuo yielding the product 2.27 as a purple 

solid (147 mg, 0.527 mmol, 25% yield): 1H NMR (400 MHz, DMSO d6) δ 8.95 (d, J = 4.0 Hz, 

1H), 8.69 (d, J = 8.5 Hz, 2H), 8.61 (d, J = 7.9 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.17 (td, 1, J = 

7.7, 1.7), 7.74 (t, 1, J = 6.2). 

 

Tetrazine-biotin conjugate (Tz-Biotin). To a dried round bottom flask was added anhydrous 

DMF (4 ml), tetrazine 2.26 (60.0 mg, 0.215 mmol), triethylamine (100 µL, 0.722 mmol), 1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride salt (56.0 mg, 0.361 mmol), and 

hydroxybenzotriazole (24.0 mg, 0.178 mmol). The solution was allowed to stir for 20 min. To 

this solution was added biotin-PEG-NH2 2.27 (80.0 mg, 0.179 mmol). The solution was stirred 

for 5 h at 50 °C. The product isolated by HPLC (30% CH3CN in water over 20 min) and 
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concentrated in vacuo to yield a purple solid (39.6 mg, 0.508 mmol, 31%): 1H NMR (400 MHz, 

CD3OD) δ 8.88 (d, J = 4.5 Hz, 1H), 8.76 (d, J = 8.23 Hz, 3H), 8.16 (t, J = 7.62 Hz, 1H), 8.09 (d, 

J = 7.9 Hz, 2H), 7.88 (s, 1H), 7.72 (app t, J = 5.8 Hz, 1H), 4.49-4.45 (m, 1H), 4.30-4.25 (m, 1H), 

3.65-3.45 (m, 17H), 3.20-3.10 (m, 3H), 2.89 (dd, J = 12.9, 4.6 Hz, 1H), 2.68 (d, J = 12.8 Hz, 

1H), 2.16 (t, J = 7.3 Hz, 2H), 1.95-1.52 (m, 10H), 1.44-1.38 (m, 2H); 13C NMR (125 MHz, 

CD3OD) δ 174.5, 167.6, 163.2, 150.1, 138.1, 138.1, 134.6, 128.0, 128.0, 126.7, 124.1, 70.2, 70.2, 

69.9, 69.9, 68.9, 68.5, 62, 60.2, 55.6, 39.7, 37.6, 36.4, 35.5, 29.0, 29.0, 28.4, 28.1, 25.5. HRMS 

(ESI) m/z calcd for C34H45N9O6SNa [M+Na]+ 730.3111, found 730.3116. 

 

Tetrazine-rhodamine conjugate (Tz-Rho). Tetrazine 2.26 (15.0 mg, 0.0537 mmol) was 

dissolved in DMF (5 ml) with triethylamine (30.0 µL, 0.215 mmol), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride salt (20.7 mg, 0.108 mmol), and N-

hydroxysuccinimide (8.4 mg, 0.055 mmol). The solution was allowed to stir for 5 min under N2. 

Rhodamine-piperazine 2.28 (27.6 mg, 0.0539 mmol) was then added, and the reaction mixture 

was stirred overnight at rt. The reaction mixture was concentrated in vacuo and the product was 

isolated by HPLC (0-100% CH3CN in water over 20 min) as a red solid (7.2 mg, 0.0093 mmol, 

17%): HRMS (ESI) m/z calcd for C46H46N9O3 [M]+ 772.3724, found 772.3723. 

 

NHS-cyclopropenyl ester (2.16). Cyclopropene 2.1a (100 mg, 1.02 mmol) was dissolved in 1 

mL of CH2Cl2. N-Hydroxysuccinimide (121 mg, 1.05 mmol) was added, followed by 1-ethyl-3-

(3-dimethylaminopropyl)carbodiimide hydrochloride salt (128 mg, 1.07 mmol) and NEt3 (0.3 

mL, 2 mmol). The reaction mixture was allowed to stir at rt overnight, then diluted with 50 mL 
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of ethyl acetate and washed with saturated NH4Cl (2x20 mL) followed by brine (1x20 mL). The 

organic layers were combined, dried with MgSO4, and concentrated in vacuo to afford 2.16 (90.0 

mg, 0.461 mmol, 45%) as pale yellow oil. The product was used without further purification; 

TLC Rf = 0.6 (50% ethyl acetate in hexanes); 1H NMR (400 MHz, CDCl3) δ 6.38 (t, J = 1.2 Hz, 

1H), 2.78 (br s, 4H), 2.32 (d, J = 1.6 Hz, 1H), 2.20 (d, J = 1.2 Hz, 3H); 13C NMR (125 MHz, 

CDCl3) δ 171.1, 169.5, 110.5, 93.3, 25.6, 17.5, 10.3; HRMS (ESI) m/z calcd for C9H9O4NNa 

[M+Na]+ 218.0429, found 218.0427. 

 

Sialic Acid-cyclopropene conjugate (9-Cp-NeuAc). 9-Az-NeuAc (0.34 g, 1.0 mmol) was 

dissolved in 11.0 mL water and the pH of the reaction mixture was adjusted to 1-2 with acetic 

acid. After the addition of Pd/C (33 mg), the reaction mixture was stirred under H2 at rt 

overnight. The reaction mixture was then filtered through Celite and concentrated in vacuo. The 

residue was dissolved in 28 mL dioxane:water (3:2) and the pH of the reaction mixture was 

adjusted to 8-9 with saturated NaHCO3. NHS-cyclopropenyl ester 2.16 (0.250 g, 1.26 mmol) was 

added and the reaction mixture stirred at rt overnight. The resulting reaction mixture was 

concentrated in vacuo and purified via HPLC (0-30% CH3CN in water over 20 min). Fractions 

containing product were combined and lyophilized to yield a white solid (44.7 mg, 9% yield, α:β 

= 1:5); TLC Rf = 0.5 (50% CH3OH in CH2Cl2); 1H NMR (500 MHz, CD3OD, β-anomer) δ 6.56 

– 6.57 (m, 1H), 4.01 – 4.03 (m, 2H), 3.94 – 3.98 (m, 1H), 3.71 – 3.74 (m, 1H), 3.66 (dt, J = 5.0, 

14.0 Hz, 1H), 3.32 (app d, J = 9.0 Hz, 1H), 3.26 (ddd, J = 5.5, 14.0 Hz, 1H), 2.17 – 2.18 (m, 3H), 

2.14 (d, J = 4.5 Hz, 1H), 2.10 (d, J = 1.5 Hz, 1H), 2.04 (s, 3H), 1.90 (app t, J = 12.5 Hz, 1H); 13C 
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NMR (125 MHz, CD3OD): δ 178.6, 176.1, 172.9, 112.7, 96.3, 95.0, 70.4, 70.2, 69.6, 67.4, 52.6, 

43.2, 40.5, 21.5, 21.3, 9.1; HRMS (ESI) m/z calcd C9H9O4N [M-H]- 387.1404, found 387.1412. 
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Chapter 3: Improved cyclopropene reporters for probing 

protein glycosylation 

3.1 Introduction 

The chemical reporter strategy is a popular method to tag biomolecules with probes in 

live cells and animals [1, 2]. This strategy relies on the metabolic introduction of unique 

functional groups (i.e., chemical reporters) into target biomolecules [3]. The reporters can be 

selectively modified in a second step using highly specific (i.e., bioorthogonal) chemistries. 

This two-step approach has been widely employed to visualize and profile cellular 

biopolymers, including glycoconjugates [3-8]. For example, sialylated glycans have been 

targeted with various N-acetyl mannosamine (ManNAc) and sialic acid precursors [9-12]. 

Similarly, mucin-type O-linked glycans and O-GlcNAc-modified proteins have been targeted 

with N-acetyl galactosamine (GalNAc) and N-acetyl glucosamine (GlcNAc) analogs, 

respectively [5, 13]. In most cases, the sugars were equipped with azide or alkyne reporter 

groups and ultimately detected via Staudinger ligation [14, 15], copper (I)-catalyzed azide-

alkyne cycloaddition (CuAAC), or strain-promoted cycloaddition [16]. 

In recent years, cyclopropenes have gained traction as broadly useful chemical 

reporters for biomolecule visualization and retrieval [17-21]. Cyclopropenes are small in size 

and likely compatible with a variety of endogenous biosynthetic pathways. These motifs can 

also be readily ligated with tetrazine probes via inverse electron-demand Diels-Alder (IED-

DA) reactions or nitrile imines via 1,3-dipolar cycloaddition. Importantly, cyclopropenes can 

be used concurrently with organic azides and alkynes—the most established chemical 
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reporters to date [17, 19, 22, 23]. Thus, cyclopropenes are well suited for multi-component 

imaging studies.  

We and others have recently utilized cyclopropene-modified sugars (including the 

ManNAc analog, Ac4ManNCyc, Figure 3-1A) to target sialic acid residues on live cell 

surfaces [17, 19]. In these previous studies, cells were first incubated with Ac4ManNCyc, 

and then treated with various tetrazine probes. Cyclopropene-specific signal was observed in 

all cases, but the intensities were quite low, likely due to poor metabolic conversion of the 

unnatural sugar, inefficient tetrazine ligation, or both of these issues. Indeed, the N-acyl unit 

in Ac4ManNCyc is branched at the beta carbon; beta-substituted N-acyl chains are not well 

tolerated in the sialic acid biosynthetic pathway [24, 25]. Additionally, cyclopropenes with 

amides or other electron-withdrawing groups at C-3 (see Figure 3-1A) are sluggish IED-DA 

reactants [17, 21].  

Here we report three cyclopropene-modified sugars that enable more facile tagging of 

mammalian cell glycoconjugates in a variety of assays. These monosaccharides comprise 

carbamate linkages between the requisite cyclopropene and sugar core (Figure 3-1A). The N-

cyclopropenyl carbamate derivative Ac4ManCCp was designed to intercept the sialic acid 

biosynthetic pathway and target sialylated glycoconjugates [26]. The analogous GalNAc and 

GlcNAc analogs (Ac4GalCCp and Ac4GlcCCp) were designed to target mucin-type O-

linked structures and O-GlcNAcylated proteins, respectively. Carbamates are relatively stable 

moieties, making them attractive for use in cells and live organisms. Indeed, Pratt and 

coworkers recently synthesized a set of N-propargyloxycarbamate sugars that can be readily 

detected via CuAAC for proteomics applications [27]. For the cyclopropene probes, the 

carbamate linkage also alleviates steric congestion at the beta-position, improving the 
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likelihood that cellular enzymes will efficiently process the sugars. Moreover, we and others 

have shown that cyclopropenes outfitted with carbamates (versus amides) at C-3 react ~100 

times faster with electron-poor tetrazines [17, 18, 21, 26]. 

 

3.2 Results and Discussion 

We prepared the desired probes (Ac4ManCCp, Ac4GalCCp, Ac4GlcCCp, Scheme 3-

1) via direct conjugation of amino sugars 3.4-3.6 with an activated cyclopropene unit (3.3). 

Carbonate 3.3 was prepared by treating alcohol 3.1 with anhydrous cesium fluoride (to 

remove the silyl group), followed by nitrophenyl chloroformate (Scheme 3-1A). These 

transformations were performed sequentially as intermediate 3.2 was not stable upon 

concentration. Direct activation of 3.1 also resulted in product decomposition. Ultimately, 

carbonate 3.3 was used to acylate the hydrochloride salts of mannosamine (3.4), 

galactosamine (3.5), and glucosamine (3.6, Scheme 3-1B). The resulting carbamate sugars 

were then globally acetylated to provide the desired probes Ac4ManCCp, Ac4GlcCCp, and 

Ac4GalCCp. Acylation of sugar hydroxyl groups has been previously shown to facilitate 

probe uptake into mammalian cells [28]. 
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Figure 3-1. Cyclopropene-modified ManNAc derivatives can be metabolically incorporated 
onto cell surfaces and covalently detected with tetrazine probes. (A) Structures of the 
ManNAc analogs (Ac4ManNCyc and Ac4ManCCp) and tetrazine reagent (Tz-biotin) used 
in this study. (B) Ac4ManCCp is robustly incorporated onto live cell surfaces. Jurkat cells 
were incubated with Ac4ManCCp (0-50 µM), Ac4ManNCyc (0-50 µM) Ac4ManCCp (50 
µM) plus Ac4ManNAc (10 µM, +Ac4ManNAc) or no sugar (-sugar). Samples were then 
treated with Tz-biotin (10 µM) for 30 min at 37 °C. One Ac4ManCCp-treated sample (10 
µM) was not labeled with Tz-biotin (-Tz). All cells were then stained with APC-avidin and 
analyzed by flow cytometry. Representative histograms are shown. (C) and (D) Ac4ManCCp 
enables more robust cell surface labeling than Ac4ManNCyc. (C) The mean fluorescence 
intensities (MFI, in arbitrary units) for the histograms in (B) are plotted. MFI values for cells 
treated with Ac4ManNCyc (10-50 µM) are also shown. (D) Ac4ManCCp can be rapidly 
detected with Tz-biotin. Jurkat cells were incubated with Ac4ManCCp (25 µM) or 
Ac4ManNCyc (25 µM), then treated with Tz-biotin (10 µM) for 0-60 min at 37 °C. The cells 
were stained with APC-avidin and analyzed by flow cytometry. The mean fluorescence 
intensities of the cell populations are plotted. In (C) and (D), error bars represent the standard 
deviation of the mean for three labeling reactions. 
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Scheme 3-1. (A) Synthesis of carbonate 3.3 via sequential deprotection and activation of 3.1. 
(B) Synthesis of carbamate-linked cyclopropene sugars. i) CsF (1.05 equiv), 18-crown-6 
(1.10 equiv), THF, rt, 3 h; ii) 4-nitrochloroformate (2 equiv), pyridine (6 equiv), CH2Cl2, rt, 
overnight; iii) mannosamine, galactosamine, or glucosamine hydrochloride (0.25 equiv), N,N-
diisopropylethylamine (4 equiv), DMF, rt, 4-12 h, followed by Ac2O, pyridine. 
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Once in hand, the modified sugars were used to metabolically target glycoconjugates 

in live cells. Jurkat T cells were first incubated with Ac4ManCCp (0-50 µM) for 24 h, then 

reacted with a tetrazine-biotin probe (Tz-biotin, 10 µM, 30 min at 37 °C). Cell surface 

cycloadducts were detected upon staining with a fluorescent streptavidin conjugate and flow 

cytometry analysis. As shown in Figures 3-1 B-C, Ac4ManCCp-dependent fluorescence was 

observed, indicating successful metabolism and cell surface incorporation of the unnatural 

sugar. Notably, Ac4ManCCp provided enhanced cellular fluorescence compared to the N-

acyl variant Ac4ManNCyc at all reagent concentrations and labeling times investigated, with 

nearly a 130-fold improvement in signal at the maximal doses and times. This was likely due 

to the improved incorporation efficiency of the carbamate probe, along with its faster rate of 

reaction. Similar trends were observed in other cell lines cultured with Ac4ManCCp (Figure 

3-2) [26]. The fluorescence signal from Ac4ManCCp-treated cells was also diminished in the 

presence of Ac4ManNAc, the native substrate, suggesting that the carbamate probe enters the 

sialic acid biosynthetic pathway. Furthermore, Western blot analysis of proteins harvested 

from Ac4ManCCp-treated cells (and reacted with Tz-biotin) revealed a similar banding 

pattern—or “fingerprint”—compared to proteins isolated from cells treated with a previously 

validated report of sialylation, the azido-ManNAc analog Ac4ManNAz (Figure 3-3 and 3-4) 

[29]. In this experiment, Ac4ManNAz-labeled glycoproteins were detected via CuAAC with 

an alkyne probe.  
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Figure 3-2. Ac4ManCCp is metabolically incorporated into 4T1 and HEK293 cell surface 
glycans. Cells were incubated with Ac4ManCCp (0-50 µM), Ac4ManCCp plus a control 
sugar (+ Ac4ManNAc, 10 µM), or no sugar (- sugar) for 24 h. After washing, the cells were 
treated with Tz-biotin (10 µM) for 30 min or no secondary reagent (-Tz) at 37 °C, stained 
with streptavadin-APC, and analyzed by flow cytometry. The mean fluorescence intensity 
(MFI) values for the cell populations are plotted.  Error bars represent the standard deviation 
of the mean for three experiments. 
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Figure 3-3. Carbamate-linked cyclopropene sugars label cellular glycoproteins. Jurkat cells 
were incubated with cyclopropene (Cp) or azido (Az) analogs of ManNAc (Man), GalNAc 
(Gal), or GlcNAc (Glc) (75 µM) for 36 h, then lysed. Soluble protein isolates were treated 
with either 100 µM Tz-biotin to tag Cp-modified proteins or an alkyne-modified biotin 
(structure shown in Figure 3-4, 100 µM) to tag Az-modified proteins via CuAAC. All 
samples were separated by gel electrophoresis and analyzed via Western blot. Equivalent 
protein loading was confirmed using Ponceau S stain (Figure 3-4). 

 
Figure 3-4. Equivalent protein loading was observed via Ponceau S staining. Jurkat cells 
were incubated with cyclopropene (Cp) or azido (Az) analogs of ManNAc (Man), GalNAc 
(Gal), or GlcNAc (Glc) (75 µM) for 36 h, then lysed. Protein isolates were treated with either 
100 µM Tz-biotin to tag Cp-modified proteins or alkyne-biotin (100 µM) to tag Az-
modified proteins via CuAAC. The labeled proteins were separated by gel electrophoresis 
and transferred to nitrocellulose prior to Ponceau S staining. 
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Ac4GalCCp and Ac4GlcCCp, the putative metabolic reporters for GalNAc and 

GlcNAc, respectively, were similarly evaluated in cultured cells. Jurkat or HEK293 cells 

were incubated with the unnatural sugars (0-50 µM) for 24 h prior to tetrazine ligation and 

flow cytometry analysis. Cell surface cyclopropenes were detected in all cases (Figure 3-5). 

The glycoprotein targets of these sugars were also analyzed. Soluble protein isolates from 

Ac4GalCCp- or Ac4GlcCCp-treated Jurkat cells were reacted with Tz-biotin, then separated 

by gel electrophoresis and analyzed by Western blot. As shown in Figure 3-3, both 

Ac4GalCCp and Ac4GlcCCp produced “fingerprints” similar to their azido counterparts [30-

32]. It should be noted, though, that some N-acyl analogs of GalNAc, GlcNAc, and ManNAc 

have been observed to target multiple classes of biomolecules due to N-deacetylation and/or 

enzymatic scrambling [30-32]. The extent to which the carbamate sugars are interconverted 

remains to be determined, and further biochemical studies will ultimately elucidate their 

metabolic fates. Based on our work to date, though, the cyclopropene sugars appear to 

function similarly to the analogous azido probes (Figures 3-3 and 3-6).  
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A 

 
B 

 
 
Figure 3-5. Ac4GalCCp and Ac4GlcCCp are metabolically incorporated into cell surface 
glycans. Jurkat (A) and HEK293 (B) cells were incubated in the presence of Ac4GalCCp (0-
50 µM), Ac4GlcCCp (0-50 µM), or no sugar (-sugar) for 24 h. After washing, the cells were 
treated with Tz-biotin (10 µM) or no reagent (-Tz) for 30 min at 37 °C, stained with 
streptavadin-APC, and analyzed by flow cytometry. The mean fluorescence intensity (MFI) 
values for the cell populations are plotted.  Error bars represent the standard deviation of the 
mean for three experiments. 
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A          B 

        
Figure 3-6. Carbamate-linked cyclopropene sugars label cellular glycoproteins. (A) HEK293 
and (B) 4T1 cells were incubated with cyclopropene (Cp) or azido (Az) analogs of ManNAc 
(Man), GalNAc (Gal), or GlcNAc (Glc) (75 µM) for 36 h, then lysed. Soluble protein isolates 
were treated with either 100 µM Tz-biotin to tag Cp-modified proteins or 100 µM alkyne-
biotin (structure shown in Figure 3-4) to tag Az-modified proteins via CuAAC. All samples 
were separated by gel electrophoresis and analyzed via Western blot. Protein loading was 
confirmed using Ponceau S stain. 
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Azide-alkyne cycloadditions and cyclopropene-tetrazine ligations can be used 

simultaneously to visualize distinct biomolecules in live cells.  However, in most examples to 

date, the cyclopropene-tagging reactions required either extensive labeling times (>1 h with 

100 µM tetrazine) or large probe concentrations (>100 µM Ac4ManNCyc or >100 µM 

tetrazine). Such conditions resulted in cellular toxicity and higher levels of background 

labeling. With the carbamate-functionalized sugars, lower concentrations of reagents and 

shorter reaction times can be employed, facilitating glycan visualization in live cells. Indeed, 

when 4T1 cells were treated with Ac4ManCCp or Ac4GalCCp (25 µM), the targeted 

glycoconjugates could be readily detected with functionalized tetrazines in just 15 min 

(Figures 3-7 and 3-8). By contrast, no detectable fluorescence was observed in 

Ac4ManNCyc-treated cells even after extended tetrazine labeling times (1 h, Figure 3-10).  
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A 

 
B 

 
Figure 3-7. Carbamate cyclopropene sugars can be metabolically introduced and visualized 
in 4T1 mammalian cells. Cells were incubated in the presence of Ac4ManCCp (25 µM, +) or 
no sugar (–) for 36 h. After washing, the cells were treated with Tz-biotin (25 µM, +) or no 
reagent (–) for (A) 1 h or (B) 15 min at 37 °C, stained with streptavadin-APC and DAPI, and 
analyzed by flourescence microscopy. Cell surface fluorescence (red) was only observed in 
samples treated with both Ac4ManCCp and Tz-biotin). Representative bright-field (DIC) 
images AF594 images, and merged images are shown. Scale bar = 10 µm. 
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Figure 3-8. Cyclopropene-GalNAc reporters can be metabolically incorporated and 
visualized in 4T1 cells. Cells were incubated in the presence of Ac4GalCCp (25 µM, +) or no 
sugar (–) for 36 h. After washing, the cells were treated with Tz-biotin (25 µM, +) or no 
reagent (–) for 1 h at 37 °C, stained with streptavadin-APC and DAPI, and analyzed by 
flourescence microscopy. Representative bright-field (DIC) images, AF594 images, and 
merged images are shown. Scale bar = 10 µm. 
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Figure 3-9. Ac4GlcCCp is incorporated into cellular glycoconjugates (as shown in Figures 3-
3, 3-5, and 3-6), but minimal cell surface labeling is observed.  Cells were incubated in the 
presence of Ac4GlcCCp (25 µM, +) or no sugar (–) for 36 h. After washing, the cells were 
treated with Tz-biotin (25 µM, +) or no reagent (–) for 1 h at 37 °C, stained with 
streptavadin-APC and DAPI, and analyzed by flourescence microscopy. Representative 
bright-field (DIC) images, AF594 images, and merged images are shown. Scale bar = 10 µm. 
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Figure 3-10. No cell surface labeling observed with Ac4ManNCyc. Cells were incubated 
with Ac4ManNCyc (25 µM, +) or no sugar (–) for 36 h. After washing, the cells were treated 
with Tz-biotin (25 µM, +) or no reagent (–) for 1 h at 37 °C, stained with streptavadin-APC 
and DAPI, and analyzed by flourescence microscopy. Representative bright-field (DIC) 
images, AF594 images, and merged images are shown. Scale bar = 10 µm.  (Note: the 
exposure times used for the AF954 panels in this experiment were ~3X greater than those 
used to generate the images in Figure 3-7). 
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  We used the optimized carbamate cyclopropenes in tandem with azido reporters to 

target unique subsets of cellular glycans (Figures 3-11 and 3-12). In brief, cells were treated 

with either Ac4ManCCp (to target sialylated structures), the azido GalNAc analog 

(Ac4GalNAz), both unnatural sugars, or no sugar. All cell samples were reacted concurrently 

with Tz-biotin (to tag cell surface cyclopropenes) and a strained alkyne (DBCO-FLAG, 

Scheme 3-2) to tag cell surface azides. Selective labeling of each unnatural sugar was 

observed with no cross-reactivity. Unique sites of biomolecule co-localization were also 

observed near cellular junctions. Further insights into these and other multi-component 

processes will be aided by the cyclopropene chemical reporters described in this work. 
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Figure 3-11. Distinct metabolic targets can be simultaneously imaged using cyclopropene 
and azido reporters. 4T1 cells were cultured in the presence of both Ac4ManCCp (25 µM) 
and Ac4GalNAz (25 µM) for 24 h, followed by concurrent treatment with Tz-biotin (25 µM, 
1 h at 37 °C) and DBCO-FLAG (100 µM, 1 h at 37 °C) to covalently tag cell surface 
cyclopropenes and azides, respectively. Cells were then stained with streptavidin-AF594 and 
FITC-a-FLAG and imaged via confocal microscopy. Representative images are shown. Red: 
AF594, Green: FITC, Blue: DAPI. Scale bar: 10 µm. 
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Figure 3-12. Control images for the dual labeling experiment in Figure 3-11. 4T1 cells were 
cultured in the presence of Ac4ManCCp (25 µM, +), Ac4GalNAz (25 µM, +), both sugars 
(25 µM each), or no sugar (–) for 36 hours. The cells were then treated with Tz-biotin (25 
µM, +), DBCO-FLAG (100 µM, +), both reagents (+) or no reagent (–) for 1 h at 37 °C. 
Cells were then stained (streptavidin-AF594, FITC-α-FLAG, and DAPI) and imaged by 
fluorescence microscopy. Representative bright-field (DIC), AF594, FITC, and merged 
images are shown. Scale bar = 10 µm. 
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Scheme 3-2. Synthesis of DBCO-FLAG.  
 

 
  

NN
H

O

O

O

N

O

1:1 DMF/H2O

H3N DYKDDDDK N
H

O

CO2

SH
+

N
N
H O

O

ON
O

H3N DYKDDDDK N
H

O

CO2

S

S1

S2 DBCO-FLAG

41%

3.7 

3.8 



 127 

3.3 Conclusions 

Cyclopropenes are versatile chemical reporters for biomolecule tagging in live cells. 

Despite their remarkable cellular compatibilities and unique chemistries, they have been 

inefficient reports of glycosylation to date. We developed a set of carbamate-functionalized 

cyclopropenes with improved utility for glycan imaging and profiling. These tools were 

readily processed in cultured cells and rapidly ligated with tetrazine probes. The carbamate-

cyclopropene sugars can also be used in tandem with other chemical reporters including 

azides and alkynes, and we utilized combinations of these tools to tag two different subsets of 

glycans in live cells. Future multi-component imaging studies of glycans and related 

biomolecules will benefit from the versatility of the cyclopropene probes presented here. 

 

3.4 Materials and methods  

3.4a Metabolic labeling studies with cultured cells 

  Jurkat cells were plated at a density of ~500,000 cells/mL in RPMI media (Corning) 

supplemented with 10% fetal bovine serum (FBS, Life Technologies), penicillin (100 U/mL), 

and streptomycin (100 mg/mL). HEK293 and 4T1 cells were plated at ~500,000 cells/well in 

2 mL DMEM media (Corning) supplemented with 10% FBS, penicillin (100 U/mL), and 

streptomycin (100 mg/mL). Cells were incubated with Ac4ManNCyc, Ac4ManCCp, 

Ac4GalCCp, or Ac4GlcCCp (0-50 µM) for 24 h in a 5% CO2, water-saturated incubator at 

37 °C. The cells were rinsed with PBS containing 1% bovine serum albumin (FACS buffer, 3 

x 200 mL), then reacted with Tz-biotin (10 µM, 30 min, 37 °C). The cells were subsequently 

pelleted (1500 rpm), washed with FACS buffer (3 x 200 mL), and stained with streptavidin-

APC (eBioscence, 1:500 dilution in FACS buffer) for 20 min on ice. The cells were pelleted 
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and washed with additional FACS buffer (3 x 200 mL), then analyzed by flow cytometry on 

an LSR-II flow cytometer (BD Biosciences). For each sample, data were acquired for 10,000 

live cells.  Cells were analyzed in triplicate, and three replicate experiments were performed 

for each study. Cellular fluorescence data were analyzed using FloJo software (Tree Star, 

Inc.). 

 

3.4b Western blot analyses 

  Jurkat cells were plated at a density of ~500,000 cells/mL in RPMI media (Corning) 

supplemented with 10% FBS along with penicillin (100 U/mL) and streptomycin (100 

mg/mL). Cells were incubated with azido sugars Ac4ManNAz, Ac4GalNAz, or Ac4GlcNAz 

(75 µM) or cyclopropene sugars Ac4ManCCp, Ac4GalCCp, or Ac4GlcCCp (75 µM) for 36 

h in a 5% CO2, water-saturated incubator at 37 °C. The cells were pelleted (1500 rpm), rinsed 

with PBS (3 x 0.5 mL), and then lysed with 100 mL lysis buffer (1% Igepal™ CA-630, 150 

mM NaCl, 50 mM triethanolamine, pH 7.4) on ice for 30 min. The lysates were pelleted 

(13,000 rpm for 10 min at 4 °C) and protein concentrations were measured using a BCA 

protein assay kit (Pierce). Lysates (~1 mg/mL, 50 mL) were treated with either freshly 

prepared "click" chemistry cocktail containing alkyne-biotin (100 µM); sodium ascorbate (1 

mM); tris[(1-benzyl-1-H-1,2,3-triazol-4-yl)methyl]amine (TBTA) (100 µM); CuSO4•5H2O 

(1 mM)] or Tz-biotin (100 µM, 1 h, 37 °C). To precipitate the labeled proteins, ice-cold 

methanol (1 mL) was added and the samples were stored at -80 °C overnight.  Protein 

precipitates were pelleted via centrifugation (13,000 rpm for 10 min at 4 °C), aspirated and 

dried for 1 h at rt. The protein isolates were then re-suspended in 10 mL buffer (4% SDS, 150 

mM NaCl, 50 mM triethanolamine, pH 7.4), then treated with SDS-PAGE loading buffer (10 
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µL of a 2X stock containing 20% glycerol, 0.2% bromophenol blue, 1.4% β-

mercaptoethanol). The samples were heated at 90 °C for 5–10 min, separated by gel 

electrophoresis using 12% polyacrylamide gels, and then electroblotted to nitrocellulose 

membranes (0.2 µm; Bio-Rad). Transfer efficiency was analyzed with Ponceau S staining. 

The membranes were rinsed with water and incubated with blocking buffer (7% bovine 

serum albumin in PBS containing 1% Tween® 20, PBS-T) for 1 h at rt, followed by IRDye® 

800CW streptavadin (LI-COR Biosciences; 1:10,000 dilution in blocking buffer) for at least 

1 h. The membranes were subsequently washed with PBS-T (5 x 10 min) and imaged using 

an Odyssey infared imaging system (Li-Cor, Odyssey version 3.0). 

 

 

3.4c Microscopy 

  4T1Luc2 cells were grown on glass cover slips submerged in 0.5 mL DMEM media 

(Corning) supplemented with 10% FBS, penicillin (100 U/mL), and streptomycin (100 

mg/mL) (in 24-well culture dishes). The media also contained Ac4ManCCp (25 µM), 

Ac4GalCCp (25 µM), Ac4GlcCCp (25 µM), or no sugar. After 36 h, the cells were washed 

with FACS buffer (3 x 0.25 mL). Cells were then treated with Tz-biotin (25 µM) in media 

for 15 min at 37 °C. The cells were washed with FACS buffer (3 x 0.25 mL) and fixed with 

4% paraformaldehyde in PBS for 15 min at rt. After washing with PBS (3 x 0.25 mL), the 

cells were blocked for 1 h at rt with PBS + 5% BSA (0.5 mL). The cells were treated with 

streptavidin-AlexaFluor594 (Jackson Labs; 1:1000 in FACS buffer) for 30 min at rt, then 

washed with FACS buffer (3 x 0.25 mL). The cover slips were mounted on glass slides with 

Vectashield® mounting media (Vector Laboratories) for imaging. Images were acquired on a 
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Nikon Eclipse Ti inverted microscope with NIS-Elements Microscope Imaging Software and 

analyzed with ImageJ. 

 

  For dual labeling experiments, 4T1Luc2 cells were grown on glass cover slips 

submerged in 0.5 DMEM media (Corning) supplemented with 10% FBS, penicillin (100 

U/mL), and streptomycin (100 mg/mL) (in 24-well culture dishes). The media also contained 

Ac4ManCCp (25 µM), Ac4GalNAz (25 µM), both sugars (25 µM each), or no sugar. After 

36 h, the cells were washed with PBS + 1% BSA (3 x 0.25 mL). Cells were then treated with 

Tz-Biotin (25 µM), DBCO-FLAG (100 mM), both reagents, or no reagent in media for 1 h 

at 37 °C. The cells were then washed with FACS buffer (3 x 0.25 mL) and blocked for 1 h at 

rt with PBS + 5% BSA (0.5 mL). The cells were treated with streptavidin-AlexaFluor594 

(Jackson Labs; 1:1000 in FACS buffer) and FITC-a-FLAG (Sigma-Aldrich; 10 µg/mL in 

FACS buffer) for 1 h at rt. The cover slips were washed with FACS buffer (3 x 0.25 mL), 

then fixed with 4% paraformaldehyde in PBS for 15 min at rt. The cover slips were washed 

with FACS buffer (3 x 0.25 mL) and mounted on glass slides with Vectashield® mounting 

media (Vector Laboratories) for imaging. Images were acquired on a Nikon Eclipse Ti 

inverted microscope with NIS-Elements Microscope Imaging Software and analyzed with 

ImageJ. 
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3.4d General synthetic procedures 

  Compounds Ac4ManNCyc [19], Tz-biotin [17], alkyne-biotin [33], 3.7 [34], and 3.8 

[35] were synthesized as previously reported. All other reagents were purchased from 

commercial sources and used as received without further purification. Reactions were carried 

out under an inert atmosphere of nitrogen in oven- or flame-dried glassware. 

Dichloromethane (CH2Cl2), tetrahydrofuran (THF), N,N-dimethylformamide (DMF), and 

triethylamine (NEt3) were degassed with argon and passed through two 4 x 36 inch columns 

of anhydrous neutral A-2 (8 x 14 mesh; LaRoche Chemicals; activated under a flow of argon 

at 350 °C for 12 h). The remaining solvents were of analytical grade and purchased from 

commercial suppliers. Thin-layer chromatography was performed using Silica Gel 60 F254 

plates. Plates were visualized with UV radiation or staining with 10% sulfuric acid in ethanol 

or KMnO4. Flash column chromatography was performed with SiliaFlash® F60 40-63 mM 

(230-400 mesh) silica gel from Silicycle. 1H and 13C NMR spectra were recorded on CRYO-

500 (500 MHz 1H, 125.7 MHz 13C) or DRX-400 (400 MHz 1H) spectrometers. All spectra 

were collected at 298 K. Chemical shifts are reported in ppm values relative to residual non-

deuterated NMR solvent and coupling constants (J) are reported in Hertz (Hz). High-

resolution mass spectrometry was performed by the University of California, Irvine Mass 

Spectrometry Center. HPLC runs were conducted on a Varian ProStar equipped with 325 

Dual Wavelength UV-Vis Detector. Semi-preparative runs were performed using an Agilent 

Prep-C18 Scalar column (9.4 x 150 mm, 5 µm) with a 5 mL/min flow rate. The elution 

gradients for the relevant separations are specified below. 
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3.4e Synthetic Procedures 

3-Hydroxymethyl-2-methyl-trimethylsilylcyclopropene (3.1). To a stirring mixture of 

TMS-propyne (4.0 mL, 27 mmol) and rhodium acetate dimer (15 mg, 0.034 mmol) was 

slowly added ethyl diazoacetate (1.0 mL, 8.6 mmol) dissolved in 15 mL CH2Cl2 at a rate of 

0.5-1.0 mL/min. Once the addition was complete, the reaction was stirred for an additional 30 

min. The mixture was then partially concentrated under reduced pressure and eluted through 

a plug of silica gel (eluting with CH2Cl2) to remove the rhodium catalyst. The eluant was 

gently concentrated under reduced pressure and added dropwise (over 1 min) to a solution of 

DIBAL-H (14.0 mL of a 25% wt/wt solution in hexanes, 17.2 mmol) in 15 mL Et2O at 4 °C. 

The reaction was stirred until the cyclopropene ester was consumed (30–60 min). Saturated 

Rochelle’s salt was then added and the mixture was stirred until a white gel formed. The 

organic layer was isolated and the aqueous layer was further extracted with Et2O (2 x 20 mL). 

The combined organic layers were dried with MgSO4, filtered, and concentrated in vacuo to 

afford the crude product as a faint yellow oil. The product was purified by flash column 

chromatography (eluting with 30% Et2O in hexanes) to yield 3.1 as a faint yellow oil (714 

mg, 53% two steps): 1H NMR (500 MHz, CDCl3) δ 3.48 (d, J = 4.6 Hz, 2H), 2.21 (s, 3H), 

1.56 (t, J = 4.6 Hz, 1H), 0.17 (s, 9H). Data is in agreement with previously reported spectrum 

[17]. 

 

(2-Methylcycloprop-2-enyl)methyl (4-nitrophenyl) carbonate (3.3). Cyclopropene 3.1 

(392 mg, 2.51 mmol) was dissolved in 10 mL THF. Anhydrous 18-crown-6 (729 mg, 2.76 

mmol) and anhydrous cesium fluoride (400 mg, 2.63 mmol) were added, and the solution was 

stirred until 3.1 was fully consumed (2.5 h). The reaction was then diluted with CH2Cl2 (25 
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mL). Pyridine (1.2 mL, 15 mmol) was added, followed by 4-nitrophenyl chloroformate (1.01 

g, 5.01 mmol), and the reaction was stirred overnight. The reaction mixture was then 

concentrated in vacuo, dissolved in Et2O (30 mL), rinsed with concentrated NaHCO3 (3 x 30 

mL), and dried with MgSO4. The crude product was filtered, then gently concentrated and 

purified by flash column chromatography (eluting with 5% Et2O in petroleum ether) to afford 

carbonate 3.3 as a clear oil (459 mg, 73%): 1H NMR (500 MHz, CDCl3) δ 8.27 (m, 2H), 7.38 

(m, 2H), 6.61 (s, 1H), 4.20 (dd, J = 10.9, 5.2 Hz, 1H), 4.13 (dd, J = 10.9, 5.5 Hz, 1Hz), 2.17 

(d, J = 1.2 Hz, 3H), 1.78 (m, 1H); 13C NMR 125 MHz, CDCl3) δ 155.8, 152.7, 145.3, 125.3, 

121.9, 120.2, 101.7, 77.5, 16.7, 11.7; LRMS (ESI) calcd for C12H11O5NNa [M+Na]+ 

272.0535, found 272.0460. 

 

General procedure for the synthesis of carbamate sugars  

  The hydrochloride salt of mannosamine (3.4), galactosamine (3.5), or glucosamine 

(3.6) (20.1 mg, 0.0932 mmol) was added to a solution of DMF (2 mL) and N,N-

diisopropylethylamine (65 mL, 0.37 mmol) and heated to 60 °C. The solution was cooled to 

ambient temperature and treated with a solution of carbonate 3.3 (91.0 mg, 0.365 mmol) 

dissolved in 0.5 mL DMF. The solution quickly turned yellow, indicating the release of 4-

nitrophenol. The reaction was stirred for 4-12 h. The solvent was removed in vacuo onto 

silica gel and was run through a plug of silica gel (flushed with 5% and eluted with 10% 

MeOH in CH2Cl2). The isolated sugar was dissolved in 1 mL pyridine and treated with acetic 

anhydride (0.5 mL, 4 mmol). The reactions were stirred overnight and concentrated in vacuo. 

The crude acetylated sugar was diluted with CH2Cl2 and rinsed with NaHSO4 (3 x 10 mL) 

and washed with brine (10 mL). The product was purified by flash column chromagraphy 
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(eluting with 3:2 hexanes:ethyl acetate) or HPLC (eluting with 30–70% CH3CN in H2O over 

20 min). The desired fractions were combined and dried to yield Ac4ManCCp, Ac4GalCCp, 

or Ac4GlcCCp. 

 

Ac4ManCCp. Mixture of anomers isolated (16.1 mg, 0.0352, 38%) as a white solid: 1H 

NMR (400 MHz, CDCl3, 2:1 α:β) δ (α  anomer) 6.58 (d, J = 4.8 Hz, 1H), 6.09 (s, 1H), 5.31 

(dd, J = 10.2, 4.2 Hz, 1H), 5.20 (app t, J = 9.8 Hz, 1H), 5.02 (m, 1H), 4.34 (dd, J = 8.6, 2.9 

Hz, 1H), 4.25 (dd, J = 12.2, 4.2 Hz, 1H), 4.02 (m, 1H), 3.95 (app t, J = 5.2 Hz, 2H), 2.17 (s, 

3H), 2.14 (s, 3H), 2.10 (s 3H), 2.05 (s, 3H), 2.02 (s, 3H), 1.65 (m, 1H); (β anomer) 6.58 (d, J 

= 4.8 Hz, 1H), 5.85 (s, 1H), 5.16 (app t, J = 9.7 Hz, 1H), 5.09 (d, J = 9.2 Hz, 1H), 5.02 (m, 

1H), 4.47 (m, 1H), 4.25 (dd, J = 12.2, 4.2 Hz, 1H), 4.13-4.04 (m, 2H), 3.78 (ddd, J = 9.5, 4.8, 

2.6 Hz, 1H), 2.14 (s, 3H), 2.12 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.65 (m, 1H); 

13C NMR (125 MHz, CDCl3, 298 K) δ 170.7, 170.6, 170.2, 170.2, 169.7, 169.7, 168.5, 168.2, 

156.9, 156.3, 120.7, 120.5, 102.3, 102.2, 102.1, 92.0, 90.8, 73.4, 73.2, 73.2, 73.0, 71.6, 70.2, 

69.2, 65.4, 65.3, 62.0, 61.9, 51.3, 51.1, 21.0, 20.9, 20.8, 20.8, 20.8, 20.8, 20.7, 20.7, 17.1, 

17.1, 11.7, 11.7; 13C NMR (125 MHz, CDCl3, 318 K) δ 170.4, 170.4, 169.9, 169.9, 169.4, 

169.4, 168.3, 168.0, 156.2, 120.5, 120.5, 102.2, 102.1, 92.1, 90.9, 73.5, 73.2, 72.9, 71.5, 70.3, 

69.2, 65.6, 65.6, 62.1, 62.0, 51.3, 51.3, 20.7, 20.7, 20.6, 20.6, 20.6, 20.6, 20.5, 20.5, 17.2, 

17.1, 11.5, 11.5; HRMS (ESI) calcd for C20H27O11NNa [M+Na]+ 480.1482, found 480.1460. 

 

Ac4GalCCp. Mixture of anomers isolated (14.3 mg, 0.0313 mmol, 17%) as a white solid: 1H 

NMR (500 MHz, DMSO-d6, 3:1 α:β) δ (α  anomer) 7.53 (m, 1H), 6.86 (d, J = 9.0 Hz, 1H), 

6.08 (dd, J = 5.1, 3.6 Hz, 1H), 5.41 (d, J = 2.3 Hz, 1H), 5.09 (dd, J = 11.7, 3.0 Hz, 1H), 4.34 
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(app t, J = 6.2 Hz, 1H), 4.15-3.97 (m, 3H), 3.92-3.74 (m, 2H), 2.16 (s, 3H), 2.14 (s, 3H), 2.11 

(s, 3H), 2.00 (s, 3H), 1.95 (s, 3H), 1.53 (m, 1H); (β anomer) 7.23 (m, 1H), 6.86 (d, J = 9.0 

Hz, 1H), 5.66 (d, J = 8.7 Hz, 1H), 5.29 (d, J = 3.0 Hz, 1H), 5.09 (dd, J = 11.7, 3.0 Hz, 1H), 

4.17 (app t, J = 6.1 Hz, 1H), 4.15-3.97 (m, 3H), 3.92-3.74 (m, 2H), 2.14 (s, 3H), 2.11 (s, 3H), 

2.07 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H), 1.53 (m, 1H);13C NMR (125 MHz, DMSO-d6, α 

anomer) δ 170.5, 170.4, 170.1, 169.7, 156.9, 120.5, 102.7, 90.7, 71.8, 68.7, 67.9, 67.1, 61.8, 

48.7, 21.3, 21.0, 21.0, 20.9, 17.1, 11.8; HRMS (ESI) calcd for C20H27O11NNa [M+Na]+ 

480.1482, found 480.1466. 

 

Ac4GlcCCp. Single isomer isolated (57.9 mg, 0.127, 51%) as a white solid: 1H NMR (500 

MHz, DMSO-d6, α anomer only) δ 7.51 (d, J = 8.6 Hz, 1H), 6.86 (s, 1H), 6.00 (s, 1H), 5.17 

(app t, J = 10.2 Hz, 1H), 5.01 (app t, J = 9.8, 1H) 4.19 (dd, J = 12.4, 3.8 Hz, 1H), 4.11 (ddd, J 

= 10.3, 3.5, 2.2 Hz, 1H), 4.01 (dd, J = 12.0, 1.5 Hz, 2H), 3.93-3.75 (m, 2H), 2.18 (s, 3H), 

2.11 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.96 (s, 3H), 1.53 (m, 1H); 13C NMR (125 MHz, 

DMSO-d6) δ 170.5, 170.1, 169.7, 169.7, 156.9, 120.6, 102.6, 90.3, 71.8, 70.9, 69.5, 68.5, 

61.8, 52.6, 21.3, 21.0, 20.9, 20.9, 17.1, 11.8; HRMS (ESI) calcd for C20H27O11NNa [M+Na]+ 

480.1482, found 480.1464. 

 

Dibenzocyclooctyne-FLAG peptide conjugate (DBCO-FLAG). The peptide conjugate was 

prepared as previously described [35]. Briefly, DYKDDDDKC (20 mg, 0.018 mmol) was 

dissolved in 0.25 mL H2O and added to a solution of DBCO-maleimide (Click Chemistry 

Tools; 5.0 mg, 0.012 mmol) in 0.2 mL DMF. The reaction was stirred overnight. The product 

was isolated via HPLC (eluting with 20–80% MeCN in H2O over 20 min). The desired 
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fractions were combined and lyophilized to yield DBCO-FLAG (7.5 mg, 41%) as a white 

solid; LRMS (ESI) calcd for  C69H88N14O25S [M+2H]2+ 772.27, found 772.26. 
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CHAPTER 4: Orthogonal bioorthogonal chemistries 
 
 
4.1 Introduction 
 

 Bioorthogonal reactions provide a versatile platform to probe and manipulate 

biomolecules. These reactions employ unique functional groups that are relatively inert to life’s 

diverse chemical functionality, but react expediently with one another in complex environments. 

Bioorthogonal chemistries have been used extensively to image proteins and other biomolecules 

in living systems [1], retrieve active enzymes from tissues [2], identify drug targets in vivo [3], 

and even build designer antibody conjugates [4]. Additional creative applications are anticipated 

as new reactions are developed.  

While the bioorthogonal toolbox is rapidly expanding, notable voids have emerged. For 

example, many of the most well known bioorthogonal reagents—including organic azides and 

strained reagents—are incompatible with one another and cannot be used in tandem to probe 

biological systems. Thus, it has been historically difficult to image multiple biomolecules in live 

cells and craft multi-functional proteins using distinct bioorthogonal chemistries. Multi-

component studies require not only reliable transformations, but also combinations of 

transformations that are compatible with one another –i.e., mutually orthogonal bioorthogonal 

chemistries (Figure 4-1).  

Identifying “orthogonal bioorthogonal” transformations is a formidable challenge. The 

barrier to developing a single biocompatible reaction remains high: the reactants must remain 

inert to biological functionality while maintaining robust reactivity with their complementary 

reagent [5]. Applications in vivo typically impose further restrictions on reagent size, reactivity 

rates, and product stability [6]. Mutually orthogonal reactions must meet these same demands 

and also remain inert to each other. This chapter highlights recent efforts to identify such 
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orthogonal bioorthogonal transformations via mechanistic insights and synthetic tuning. We also 

showcase examples of how pairs of compatible reactions have been used to construct antibody 

conjugates and bifunctional proteins, in addition to image multiple biomolecules simultaneously.  
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Figure 4-1. Targeting multiple components requires ‘orthogonal bioorthogonal’ reactions. (A) 
Mutually orthogonal reactions can be utilized in tandem to label distinct targets in a biological 
setting. The targets (green and brown rectangles) are outfitted with unique, bioorthogonal 
functional groupa (blue and magenta circles) that reacts selectively with complementary reagents 
(blue and magenta arcs). (B) Mutually orthogonal reactions have been applied in several 
contexts, including antibody conjugate assembly, heterobifunctional protein construction, 
metabolic labeling, and enzyme tagging experiments. 
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4.2 Mutually orthogonal bioorthogonal reactions 

4.2a Unique reaction mechanisms 

One straightforward method to identify compatible reactions is to search for 

transformations with unique mechanisms. Two of the earliest reported bioorthogonal reactions–

keto/aldehyde condensations and the Staudinger ligation–are orthogonal in this regard [7]. 

Keto/aldehyde condensations are polar reactions involving a hard electrophile (ketone or 

aldehyde) and hard nucleophile (hydrazide or aminooxy group). By contrast, the Staudinger 

ligation exploits a soft electrophile (azide) and a soft nucleophile (phosphine) to form an amide 

linkage. These mechanistic features mitigate cross-reactivities among the reagents and enable the 

ligations to be performed in concert in biological settings [7]. Keto/aldehyde condensations can 

also be performed in tandem with other azide-specific chemistries, including the venerable 

copper-catalyzed azide-alkyne cycloaddition (CuAAC). CuAAC is among the most rapid (105 M-

1s-1 per mole of catalyst) and most accessible bioorthogonal transformations [8], making it 

attractive for numerous applications. Distefano and coworkers recently utilized CuAAC in 

combination with the oxime ligation to craft bifunctional proteins for imaging and therapeutic 

applications [9]. These researchers used farnesyl transferase to append alkyne- and aldehdye-

modified farnesyl groups to proteins bearing a C-terminal CaaX recognition sequence. The 

alkyne and aldehyde motifs were subsequently modified with a variety of imaging and targeting 

agents via simultaneous bioorthogonal ligation.  

Another class of azide-specific ligations - strain-promoted azide-alkyne cycloadditions 

(SPAAC) - is also compatible with ketone/aldehyde condensations. SPAAC reactions exploit 

strained cycloalkynes; these molecules react with organic azides under mild conditions (and in 

the absence of copper) in a variety of biological environments. SPAAC has been used 
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extensively in combination with keto/aldehdye ligations to assemble defined antibody conjugates 

(Figure 4-2A and B) [10-12]. In one recent example, Schultz and coworkers exploited these 

reactions to assemble bispecific antigen-binding fragments (biFabs). BiFabs are capable of 

binding two distinct targets and can control immune cell recruitment to cancer cells [11]. In this 

study, antibody fragments targeting either human C-type lectin-like molecule-1 (CCL1) or CD3 

were modified with keto groups installed via non-canconical amino acid (ncAA) mutagenesis. 

The keto groups were then reacted with aminooxy linkers bearing an azide or strained 

cyclooctyne. SPAAC ligation between the two fragments provided the desired biFab. This 

conjugate exhibited potent antitumor activity in mice via T cell recruitment (via CD3 binding) to 

cancer cell grafts (via CCL1 binding). BiFabs and other protein conjugates have numerous 

biomedical applications, and further developments in bifunctional synthesis are expected with 

improved ligation chemistries [13-15]. 

 Strained alkenes, similar to their alkyne counterparts, are also widely used in 

bioorthogonal reaction development. Recent examples include trans-cyclooctene (TCO), 

norbornene, and cyclopropene [16]. These motifs react efficiently with electron-poor dienes 

(e.g., 1,2,4,5-tetrazines) via strain-promoted inverse-electron-demand Diels-Alder cycloaddition 

(SPIEDAC) [17]. Importantly, most strained alkenes and tetrazines are unreactive with organic 

azides and terminal alkynes; thus, SPIEDAC ligations can often be used in tandem with CuAAC 

(Figure 4-2C) [18-20]. The TCO-tetrazine ligation and CuAAC are especially well suited for 

dual and quantitative protein labeling owing to their fast rates. The Chin group recently 

capitalized on these features to append FRET fluorophores to calmodulin (Figure 4-2D) [18]. 

Alkynyl and cyclopropenyl ncAA’s were site-specifically into the protein and subsequently 
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tagged with azide and tetrazine fluorophores simultaneously. Quantitative, dual labeling of 

calmodulin was achieved in only 30 min. 
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Figure 4-2. Orthogonal bioorthogonal ligations with distinct reaction mechanisms. (A) 
Keto/aldehyde condensations and strain-promoted azide-alkyne cycloadditions (SPAAC) can be 
used simultaneously. (B) Keto-functionalized Fabs (αCLL1 and αCD3) were modified via oxime 
ligation to install azide or bicyclononyne linkers, respectively. These modified Fabs were mixed, 
to form a covalently linked bispecific Fab via SPAAC. (Reprinted in part with permission from 
Ref [11]. Copyright 2014 Wiley)  (C) The cyclopropene-tetrazine ligation is mutually orthogonal 
to CuAAC. (D) Alkynyl and cyclopropenyl ncAAs were installed in calmodulin. These residues 
were covalenlty targeted with matched fluorophores (via CuAAC and SPIEDAC) for FRET 
studies. Efficient labeling was observed when the reactions were performed sequentially (with or 
without purification, lanes 4 and 5, respectively) or simultaneously (lane 6). Reprinted in part 
with permission from Ref [18]. Copyright 2014 ACS Publications 
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4.2b Tuning reactions for orthogonality  

 While strained-promoted cycloadditions are ubiquitous in chemical biology, many of the 

reagents cross-react with one another. For example, several tetrazines react robustly with strained 

alkynes, precluding many tandem applications of SPIEDAC and SPAAC [21, 22]. This is 

detrimental for many live cell imaging applications, where the two reaction classes have 

traditionally excelled. Fortunately, most SPAAC and SPIEDAC reagents can be “tuned” to 

access desired reactivities. For example, tetrazines can be outfitted with electron-withdrawing or 

donating groups to modulate reactivity [23]. Bulky appendages to the tetrazine core can similarly 

influence reactivity [24]. Cyclooctyne reactivities can also be tuned via steric or electronic 

modification [25, 26]. For example, bicyclononyne reacts readily with both azides and tetrazines 

[21, 22, 27]. By contrast, dibenzylcyclooctyne (DBCO) and other bulky cycloalkynes are 

reactive with azides, but inert to di-substituted tetrazines due to predicted steric clashes (Figure 

4-3D) [24]. This sterically-driven orthogonality has been exploited by many groups for 

biological applications [27-36]. In one example, the Weissleder group used DBCO and a bis-

alkyl tetrazine in tandem to label multiple cell lines with visual probes via SPAAC and 

SPIEDAC [28]. 

Cycloalkynes, while suitable for some dual labeling applications, are relatively large in 

size and can perturb native biomolecule function. Lemke and coworkers recently attempted to 

study viral particle assembly, where small tags are necessary to preserve critical protein 

interactions. Toward this end, the group developed a smaller, “minimal” cyclooctyne scaffold 

(SCO) that reacts efficiently with mono-substituted tetrazines and can be used in combination 

with some TCO ligations [27]. TCO reacts readily with nearly all tetrazines (Figure 4-3C), but 

SCO remains inert to di-substituted tetrazines. This is likely due to steric clashes between the 
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tetrazine substituents and SCO’s propargylic linker. The researchers exploited this differential by 

labeling viral proteins with TCO, followed by SCO, in a pulse-chase type experiment. The 

motifs were ultimately visualized via reaction with a di-substituted tetrazine (to tag TCO), 

followed by a mono-substituted tetrazine (to label SCO). These orthogonal reactions enabled the 

dynamics of virus-like protein assemblies to be examined via super-resolution microscopy. 

Strained alkenes can also be tuned to elicit specific reactivities. While TCO exhibits 

remarkably fast reaction rates with tetrazines in SPIEDAC (>105 M-1s-1), its large size and 

modest stability can be limiting in some applications [37]. TCO can also react with organic 

azides, making certain applications with these two popular reagents inaccessible [28]. To address 

some of these limitations, our group turned to a smaller strained alkene for bioorthogonal 

reaction development: cyclopropene. The small size of the cyclopropene has proven useful for 

metabolic targeting of biomolecules in vitro and in vivo [29-31, 33, 38, 39]. Additionally, 

cyclopropene is completely unreactive to azides and alkynes under ambient conditions, and thus 

orthogonal to SPAAC reagents (Figure 4-3A). We capitalized on this selective reactivity by 

targeting unique glycans with cyclopropene- and azide-bearing sialic acid derivatives. The 

biomolecules were ultimately visualized with DBCO and bis-aryl tetrazine, simultaneously, on 

live cells (Figure 4-3B) [29, 30].  

Cyclopropene itself offers unique opportunities for orthogonal bioorthogonal reaction 

development. The motif can be tuned both sterically and electronically to access collections of 

mutually orthogonal transformations. In one example, we collaborated with the Houk lab to 

design a cyclopropene that remains inert to tetrazines, but exhibits rapid reactivity with 1,3-

dipoles [40]. This cyclopropene differs from others by the position of a single methyl group: 

tetrazine-reactive cyclopropenes harbor a single substituent at C3. Installing a second methyl 
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group at this position thwarts cyclopropene-tetrazine reactivity by preventing effective orbital 

overlap between the diene and dienophile (Figure 4-4). While recalcitrant to tetrazine reactions, 

3,3-disubstituted cyclopropenes, undergo rapid cycloadditions with nitrile imines [41, 42]. We 

exploited this reaction differential to label proteins bearing both 1,3- and 3,3-cyclopropenes [40].  
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Figure 4-3. Tetrazines and cyclooctynes can be tuned to generate mutually orthogonal reaction 
pairs. (A) Cyclopropene-tetrazine and azide-DBCO cycloadditions can be performed 
simultaneously. (B) Orthogonal reactions were used to visualize distinct classes of 
glycoconjugates. Cells were incubated with a cyclopropenyl-ManNAc analog (ManCCp), an 
azido-GalNAc analog (GalNAz), or both sugars. The distinct biomolecules targeted with these 
probes were subsequently visualized via simultaneous treatment with tetrazine and DBCO 
probes. Scale bar: 10 µm. [30] – Reproduced by permission of the Royal Society of Chemistry. 
(C) Sequential ligations can be used to detect trans-cyclooctene (TCO) and a cyclooctyne variant 
(SCO). TCO reacts with both mono- and di-substituted tetrazines, while SCO reacts only with 
mono-substituted tetrazines. In a pulse-chase experiment, TCO- and SCO-bearing amino acids 
were incorporated into viral hemagglutinin. The protein conjugates were co-expressed with 
matrix protein 1 in mammalian cells, and ulimately visualized via reaction with a fluorescent di-
substituted tetrazine (cyan, to tag TCO), followed by a mono-substituted tetrazine probe 
(magenta, to tag SCO). (D) Steric clashes preclude reactions between di-substituted tetrazines 
and cyclooctynes with propargylic substituents. Reprinted in part with permission from Ref [27]. 
Copyright 2014 Wiley. 
 



	
   148	
  

4.3 Orthogonal reactivity via controlled reagent activation  

Several bioorthogonal reactions rely on strained or otherwise highly reactive molecules 

that are often incompatible with one another. In such cases, masking one reagent in an inactive 

form and liberating it on demand can render the motif orthogonal. Thus, after an initial ligation 

proceeds to completion, liberation of the masked functional group provides a second competent 

bioorthogonal reagent for reaction. Such “activation’ methods exploited in recent years include 

metal-catalysis, photolysis, and chemical transformation. Examples are provided below. 

 

4.3a Metal-catalyzed reactions 

The most well-known bioorthogonal reaction, CuAAC, serves as an example of a metal-

activated reaction. In the absence of copper (I), terminal alkynes and azides do not react under 

ambient conditions. When copper ions are present, the dipolar cycloaddition ensues [43]. The 

activatable nature of this reaction enables azides and alkynes to be used concurrently–targeting 

different species–and covalently detected via control over copper addition. For example, azide-

labeled biomolecules can be reacted via Staudinger ligation or SPAAC; the alkyne can be 

subsequently detected via CuAAC [44-47]. An early demonstration of SPAAC/CuAAC 

compatibility was reported by Wolfbeis and coworkers to craft protease sensors. This group 

designed an MMP II substrate bearing cyclooctyne or terminal alkyne handles. The peptide was 

appened to an azido-lableld nanoparticle (via SPAAC) and then modfied with an azido-

fluorophore (via CuAAC). This sensor was used to report on protease activity [47].  

Note that reverse sequential labeling approach – reacting the alkyne first via CuAAC, 

followed by SPAAC or Staudinger ligation to target azides – is problematic. Azides will cross-

react with alkynes during the initial CuAAC reaction. This side-reactivity can be circumvented 
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using alternative 1,3-dipoles in place of azides. The Raines group reported an elegant example of 

this approach with diazo units [48]. Diazos are small, remarkably bioinert functional groups that 

do not react with terminal alkynes under CuAAC conditions. These groups can be efficiently 

ligated with strained alkynes, though. This unique reactivity enabled the researchers to perform 

sequential CuAAC and strain-promoted diazo-alkyne cycloadditions to detect alkynyl and diazo- 

labeled glycans. Excitingly, the labeling reactions could be performed in either order with no 

cross-reactivities observed. Sequential azide-alkyne cycloadditions are also possible using 

unique alkyne protecting groups [49, 50] or asymmetric azides with differential reactivity [51]. 

Futher advances in metal-activated orthogonal bioorthogonal chemistries are anticipated with 

several recent reports on transition metal-mediated reactions that are biocompatible [52, 53]. In 

particular, advances in bioorthogonal palladium-catalyzed reactions have enabled cross-

couplings on proteins in vitro and in live cells [54-58]. 

 

4.3b Light-activated reactions 

Similar to metal catalysis, light can be used to liberate bioorthogonal functional groups 

and thus control reagent activation for dual labeling experiments. In one example, Popik and 

colleagues utilized cyclopropenone as a photolabile protecting group for cyclooctyne in 

constructing protein-nanoparticle conjugates [59]. The researchers synthesized a bifunctional 

linker comprising azadibenzocyclooctyne (ADIBO) and a masked dibenzocyclooctyne (photo-

DIBO). ADIBO was reacted with azide-functionalized nanoparticles to append the linker to the 

surface. The nanoparticles were subsequently photolyzed to unveil a cyclooctyne for reaction 

with azide-modified bovine serum albumin (as a model protein). Similarly, the Lin group 

pioneered the use of tetrazoles as photolabile masks for nitrile imines. Nitrile imines are 1,3-
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dipoles that react readily with 3,3-disubstituted cyclopropenes and other alkenes [60]. However, 

these dipoles must be liberated on demand owing to their aqueous instabilities and short 

lifetimes. Our group employed tetrazole photolysis and nitrile imine generation for cyclopropene 

detection discussed above (Figure 4-4) [40]. While they have differential tetrazine reactivity 

(vide supra), both 1,3- and 3,3-disubstituted cyclopropenes undergo rapid dipolar cycloaddition 

with nitrile imines. Thus, dual labeling of proteins with 1,3- and 3,3-disubstituted cyclopropenes 

requires that the tetrazine ligation be performed first to target the 1,3-disubstituted variants, 

followed by nitrile imine liberation via tetrazole photolysis to tag proteins bearing 3,3-

disubstituted cyclopropenes. Ongoing work to develop new photoactivatible reactions and 

masking groups responsive to unique wavelengths of light [61, 62] will offer new paths to 

mutually orthogonal reactions. 
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Figure 4-4. Isomeric cyclopropenes exhibit unique bioorthogonal reactivities. (A) 1,3-
Disubstituted cyclopropenes react readily with tetrazines. 3,3-Disubstituted cyclopropenes, by 
contrast, do not react with tetrazines, but react efficiently with nitrile imines (available from 
tetrazole photolysis). These differential reactivities can be exploited for dual labeling 
applications. (B) Predicted transition state geometries for the tetrazine-cyclopropene ligations 
account for the observed reactivity differences. The C3 methyl substituent (in the 3,3-
disubstituted cyclopropene) blocks the approach of tetrazine. In the 1,3-disubstituted 
regioisomer, this position is occupied by a smaller H atom. (C) Both 1,3- and 3,3-disubstituted 
cyclopropene (5 mM in 15% MeCN/PBS) were treated with dipyridyl tetrazine (10 mM) and 
monitored by HPLC. Dipyridyl tetrazine reacted exclusively with the 1,3-disubstituted 
cyclopropene. Reprinted in part with permission from Ref [40]. Copyright 2014 ACS 
Publications 
 

4.3c Chemical activation 

Controlled reactivity can also be achieved through in situ formation of bioorthogonal 

functional groups. Boons, Pezacki and others have established that nitrones and nitrile oxides 

react rapidly with strained alkynes in 1,3-dipolar cycloadditions [63-67]. Both nitrones and 

nitrile oxides have limited stability under biological conditions, though, and they cross-react with 

multiple strained reagents. Fortunately, both can be formed in situ from aldehydes and oximes, 

respectively, under relatively mild conditions. Using these conditions, Boons and coworkers 

were able to assemble a bifunctional glycan dendrimer utilizing a bifunctional azide-oxime linker 

[63]. The azide reacts selectively with DIBO modified with biotin or a fluorophore. 

Subsequently, the oxime group was activated through mild oxidation with hypervalent iodide, to 
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a nitrile oxide, which reacts rapidly with a second DIBO reagent modified with a glycan 

dendrimer. The on-demand generation of nitrile oxides and nitrones enables sequential strain-

promoted cycloadditions. 

 

4.4 Identifying new mutually orthogonal reactions 

A comprehensive understanding of biological systems requires studying many 

biomolecules and pathways simultaneously. While impressive strides have been made in 

developing mutually orthogonal reactions for this purpose, additional groups of compatible 

reagents are necessary. To date, only one example using three bioorthogonal reactions on a 

single biological system has been described [20]. Analyses of multiple enzyme activities and 

signaling pathways require more mutually orthogonal bioorthogonal ligations. Fortunately, many 

recently reported bioorthogonal reagents and reactions are potentially useful for multi-

component applications. These include those based on sydnone [68-70], quinone methide [71, 

72], isonitrile [36, 73], acyltrifluoroborate [74], azetine [75], and 1,2-quinones [76]. 

Additionally, several new metal-catalyzed bioorthogonal reactions based on palladium, 

ruthenium, and nickel may offer compatible reactivity based on selective metal activation [53].  

Identifying reaction combinations for mutual orthogonality has typically been through 

empirical testing of established bioorthogonal reactions or by developing clever 

activating/uncaging strategies. Such efforts could be greatly accelerated using computational 

modeling to compare established bioorthogonal reagents for reactivity. Computation is 

extensively used for identifying and improving bioorthogonal reactions and is quickly becoming 

invaluable for developing compatible reactions. In a recent paper, the Houk group predicted an 

orthogonal pair of di-substituted tetrazines and 1,3-cyclopropene with azide and 
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tetramethylthiocycloheptyne [32]. Our group independently confirmed a similar orthogonal pair 

and applied them to live cell glycan imaging (described in chapters 2 and 3). 

In an effort to identify new orthogonal pairs, we collaborated with the Houk group to 

develop a computational model capable of predicting reactivity between known bioorthogonal 

reagents. They identified potential reaction pairs using their distortion-interaction model to 

predict transition state energies. These transition state energies can be used to calculate a relative 

rate constant (Figure 4-5). Our group then synthesized several of these reagents to 

experimentally verify predicted orthogonal pairs. This led to identification of potential mutually 

orthogonal pairs, including a new pair based on cyclooctyne-nitrone and norbornene-tetrazine 

ligations. To date, orthogonality between cyclooctyne and tetrazine reactions has been driven 

through steric repulsions that prevent orbital overlap between the alkyne and tetrazine π-

electrons (Figure 4-3D) [24, 32]. The Houk group predicted that an electron-deficient 

cyclooctyne, difluorocyclooctyne (DIFO), would be unreactive towards electron-poor tetrazines, 

likely resulting from the electronic “mismatch” between the reagents. 

A popular cyclooctyne for use in living systems, DIFO was predicted to react readily 

with two commonly used nitrone scaffolds, a cyclic nitrone (cyc-nitrone) and glyoxylate-derived 

nitrone (gly-nitrone). Nitrones, as noted above, are 1,3-dipoles that react with cyclooctynes and 

typically display faster kinetics than azides. Both were experimentally determined to have rate 

constants of ~3 M-1 s-1 with DIFO via 1H NMR (Figure 4-5, 4-6A, and 4-6B). While this closely 

matched the computationally predicted rate constant for the DIFO–gly-nitrone, the DIFO–cyc-

nitrone rate constant was smaller by roughly two orders of magnitude. The Houk group is 

investigating the source of this discrepancy.  
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Importantly, both nitrones are largely unreactive towards norbornene, which is a 

commonly used strained alkene in SPIEDAC with tetrazines. Expectedly, norbornene was shown 

to react readily with dipyridyl tetrazine (k2 = 3.3 M-1 s-1). This was slightly larger than the 

predicted rate contant of 0.1 M-1 s-1. Finally, DIFO was tested for reactivity with tetrazine. 

Interestingly, the expected rate constant between DIFO and mono-substituted tetrazines is 1 M-1 

s-1, but only 10-4 M-1 s-1 with di-substituted tetrazines (Figure 4-5, 4-6C and 4-6D). This suggests 

the differential might also be sterically driven in addition to the assumption that DIFO would be 

electronically “mismatched” with tetrazine in an IED-DA cycloaddition. The experimental data 

matched the rate predictions very closely in both cases, verifying the computational analysis.  
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Figure 4-5. Difluorinated cyclooctyne and norbornene react preferentially with nitrones and di-
substituted tetrazines, respectively. M06-2X/6-311+G(d,p)//6-31G(d)-computed relative rate 
constants were obtained by the Houk group and rate constants were determined experimentally 
by 1H NMR in CD3CN. All rate constants are reported in M-1 s-1. Standart deviation is reported 
for 2–3 experiments. *No reaction seen over ~ 2 days. 
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Figure 4-6. Plots used to calculate second-order rate constants of the reaction between DIFO and 
(A) gly-nitrone, (B) cyc-nitrone, (C) dipyridyl tetrazine, and (D) phenyl tetrazine in CD3CN. 
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Scheme 4-1. Reactions between DIFO and (A) gly-nitrone, (B) cyc-nitrone, (C) dipyridyl 
tetrazine, and (D) phenyl tetrazine in CD3CN. Structures of adducts are shown along with 
calculated and observed HRMS data (ESI). 
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4.5 Conclusions 

Finding the right bioorthogonal chemistry for a given task has become increasingly easier 

as the bioorthogonal toolbox grows. However, cross-reactivity between reagents of many of the 

most popular chemistries has limited their utility for multi-component applications. Imaging 

multiple biomolecules and forming complex biomolecular assemblies, for example, will require 

identifying compatible combinations of these chemistries. Recently, several orthogonal 

bioorthogonal reactions have been developed through mechanistic insight, synthetic tuning and 

caged reagents.  Moving forward, new and better mutually orthogonal bioorthogonal reactions 

are necessary as some of the approaches outlined here suffer from slow kinetics, multiple steps, 

or poor specificity. A combination of empirical and computational methods, as well as the 

continued discovery of novel bioorthogonal reactions, will aid in the hunt for mutually 

orthogonal reactions.  

We successfully identified a novel mutually orthogonal bioorthogonal pair in DIFO-

nitrone and norbornene-diaryl tetrazine. The Houk group is continuing to refine their model as 

we provide additional experimental data to guide their calculations. This should prove to be a 

useful tool to evaluate the expanding bioorthogonal reaction toolkit for new mutually orthogonal 

pairs.  
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4.6 Materials and methods 

4.6a Rate studies [77] 

UV-Vis method 

The reactions between cyclopropenes and dipyridyl tetrazine were conducted in 96-well plates 

and monitored by the change in tetrazine absorbance at 536 nm. All runs were conducted in 

triplicate under pseudo-first order conditions and repeated at least two times. For each 

measurement, 150 µL of a 0.2 mM tetrazine solution (in 15% DMSO/PBS) was added to a well 

containing 150 µL of cyclopropene solution (2-10 mM in 15% DMSO/PBS). The cyclopropene 

concentration at the start of each reaction ranged from 1.0-5.0 mM, while the tetrazine 

concentration was held at 0.1 mM. Absorbance values were recorded every 5 min over a 90 min 

interval or every 4 seconds over a 30 min interval for faster reactions (using a BioTek Epoch 

plate reader).  

 

1H-NMR method  

All DIFO reactions were monitored by 1H-NMR spectroscopy. Each reagent was dissolved in 

CD3CN at 10 mM and combined in a 1:1 ratio immediately prior to the first acquisition (~5 mM 

final concentrations of each reagent). The reaction of DIFO with nitrones and phenyl tetrazine 

was monitored continuously with an acquisition every minute for 15 min. The reaction between 

DIFO and dipyridyl tetrazine was monitored over 24 or 48 h with acquisition times every few 

hours. An internal standard (1,3-benzodioxole) was used to determine peak integration values 

and, ultimately, the concentrations of relevant species. Second-order rate plots were made by 

plotting ln(([Ao]*[B])/([Bo]*[A])) versus time. The slope was converted to a second-order rate 
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constant using the following equation:  k = |slope/([Bo - Ao)|. Adducts were confirmed by HRMS 

(ESI). 

 

4.6b HPLC analysis 

The 1,3- and 3,3-disubstituted cyclopropenes (5 mM in 15% MeCN/PBS) were treated with 

commercially available dipyridyl tetrazine (10 mM) and monitored by HPLC over 3 h. A 

gradient of 100% H2O with 0.1% TFA to 100% MeCN with 0.1% TFA over 15 min was used. 

 

4.6c Synthetic procedures  

Compounds DIFO [78], gly-nitrone [79], cyc-nitrone [80], 1,3-disubstituted cyclopropene 

[29,40], and 3,3-disubstituted cyclopropene [40] were synthesized as previously reported, and 

spectroscopic data were consistent with literature values. All other reagents were obtained from 

commercial sources and used without further purification. Reactions were run under an inert 

atmosphere of nitrogen, unless otherwise indicated. Tetrahydrofuran (THF), diethyl ether (Et2O), 

triethylamine (NEt3), dichloromethane (CH2Cl2), N,N-dimethylformamide (DMF), and methanol 

(CH3OH) were degassed with argon and run through two 4 x 36 inch columns of anhydrous 

neutral A-2 (8 x 14 mesh; LaRoche Chemicals; activated under a flow of argon at 350 °C for 12 

h). Thin-layer chromatography was performed using Silica Gel 60 F254-coated glass plates (0.25 

mm thickness), and visualization was realized with KMnO4 stain, CAM stain, and/or UV 

irradiation. Chromatography was accomplished with 60 Å (240-400 mesh) silica gel, 

commercially available from Sorbent Technologies. HPLC purifications were performed on a 

Varian ProStar equipped with 325 Dual Wavelength UV-Vis Detector. Analytical runs were 

performed using an Agilent C18 Scalar column (4.6 x 150 mm, 5 µm) with a 1 mL/min flow 
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rate. Semi-preparative runs were performed using an Agilent Prep-C18 Scalar column (9.4 x 150 

mm, 5µm) with a 5 mL/min flow rate. NMR spectra were collected on a Bruker DRX-400 (400 

MHz 1H, 100 MHz 13C, 376.5 MHz 19F) or CRYO-500 (500 MHz 1H, 125.7 MHz 13C) 

instrument. All spectra were collected at 298 K. Chemical shifts are reported in ppm values 

relative to tetramethylsilane or residual non-deuterated NMR solvent, and coupling constants (J) 

are reported in Hertz (Hz). High-resolution mass spectrometry was performed by the University 

of California, Irvine Mass Spectrometry Center.  

 

N-(4-(1,2,4,5-tetrazin-3-yl)benzyl)acetamide (phenyl tetrazine): (4-(1,2,4,5-Tetrazin-3-

yl)phenyl)methanamine hydrochloride was synthesized as previously reported.[23] The 

hydrochloride salt (10.1 mg, 0.0335 mmol) was dissolved in CH2Cl2 (2 mL) containing pyridine 

(0.5 mL). To this solution was added acetic anhydride (0.25 mL) followed by stirring for 1 h. 

The reaction mixture was diluted with 10 mL CH2Cl2 and rinsed with 1 M NaHSO4 (3 x 20 mL). 

The organic layer was dried over MgSO4 and concentrated under reduced pressure to afford 10.1 

mg (95% yield) of pure phenyl tetrazine: 1H NMR (500 MHz, CDCl3) δ 10.28 (s, 1H), 8.66 (d, J 

= 8.1 Hz, 2H), 7.58 (d, J = 7.9 Hz, 2H), 5.95 (br s, 1H), 4.63 (d, J = 5.8 Hz, 2H), 2.15 (s, 3H); 

13C NMR (125 MHz, CDCl3) δ 170.2, 166.3, 157.9, 143.9, 130.8, 128.8, 128.7, 43.4, 23.4; 

HRMS (ESI) m/z calcd for C11H12N5O [M+H]+ 230.1042, found. 
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Chapter 5: Progress towards an “off-the-shelf” luciferase for 

imaging implanted cells 

5.1 Introduction 

Cell-based therapies, such as immunotherapies and regenerative stem-cell treatments, 

hold great promise for the treatment of injuries, degenerative diseases and cancer [1-3]. 

Successful implementation of these therapies requires a complete understanding of the fates of 

transplanted cells. Imaging technologies are well suited to non-invasively track cell proliferation 

and migration through a whole organism [4, 5]. In many labs, access to expensive equipment and 

short-lived reagents make methods such as MRI or PET imaging infeasible. More user-friendly 

fluorescent strategies are not ideal for in vivo imaging owing to high background absorbance 

from tissue and requisite knowledge of cell location within the organism [6, 7].  

Bioluminescence imaging is better suited to noninvasively imaging whole organisms. 

This technique relies on enzymes (luciferases) that generate light via oxidation of small molecule 

substrates (luciferins) [8]. Cells expressing luciferase (and incubated with luciferin) generate 

light that can be detected using sensitive cameras. Bioluminescence techniques are, 

comparatively, easy to use, offer high signal-to-noise, and provide a snapshot of the entire 

organism [8, 9].  

In addition to enabling sensitive imaging, bioluminescence is suitable for serial imaging. 

Typically, luciferases are genetically encoded into a desired cell line or expressed as a “reporter 

gene” to identify changes in gene-expression. Such applications require transfection of the 

requisite luciferase gene into cells, which can be time-consuming and incompatible with certain 

cell types [10, 11]. To circumvent these issues, we aimed to develop an “off-the-shelf” luciferase 
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reporter than can be rapidly appended to a cell of interest immediately prior to implantation 

(Figure 5-1A). Similar strategies are used to incorporate small molecule fluorophores onto live 

cell surfaces. These typically rely on membrane fusion or non-specific NHS-coupling to cell 

surface proteins to append the fluorophores [10, 12, 13]. Once attached, they can be used to track 

cells in the hours post-implantation.  

We chose to use a similar approach to chemically append the luciferase from Gaussia 

princeps (Gluc) to model cell surfaces. Gluc emits a photon of light through oxidation of the 

small molecule coelenterazine to coelenteramide (Figure 5-1B) [8]. Unlike other luciferases, 

Gluc requires only molecular oxygen to catalyze the oxidation of coelenterazine, thus, it can 

function in extracellular environments [14, 15]. Gluc is also one of the brightest and most stable 

luciferases — maximizing the signal given a limited cell surface area. However, there are no 

general methods to append this protein to cells in a facile manner. Moreover, Gluc is not 

compatible with intracellular delivery strategies due its five disulfide bonds [16]. Thus, we 

sought mild chemical methods to append Gluc to the cell surface. Several strategies could be 

envisioned, but we initially focused on a bioorthogonal chemistry attachment strategy. Herein, 

we report progress towards a membrane-bound Gluc for noninvasive cell tracking in vivo. 
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Figure 5-1. Design for “off-the-shelf” bioluminescent cell tracking. (A) Cells are first outfitted 
with a bioorthogonal functional group. The cells are then treated with a functionalized luciferase 
(Gluc) bearing the complementary bioorthogonal probe to outfit them with the bioluminescent 
probe. Cells are then implanted into a live animal for immediate monitoring. (B) Gluc oxidizes 
coelenterazine to coelenteramide, releasing a photon of light. 
 

5.2 Results and Discussion 

 We envisioned using bioorthogonal chemistry to selectively attach Gluc to the cell 

surface (Figure 5-1A).  In this approach, one functional group must be installed onto Gluc, while 

the complementary probe is attached to the cell surface. The functionalized cells and Gluc are 

then mixed to install the bioluminescent probe. Several attachment strategies were explored and 

herein we discuss two promising methods. 

 

5.2a Aldehyde-tagged Gluc 

In one method, we utilized the formylglycine generating enzyme (FGE) to enzymatically 

install an aldehyde onto Gluc [17]. FGE is a sulfatase that recognizes the sequence LCTPSR and 

converts the thiol side chain of cysteine into an aldehyde [18]. The aldehyde is a small non-
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perturbing functional group that can be modified bioorthogonally via the oxime ligation, as well 

as other selective ligation chemistries [19, 20]. Additionally, aldehydes can be installed on cell 

surfaces by mild oxidation of sialic acid with sodium periodate [21]. We envisioned linking the 

aldehyde-tagged Gluc to cell surface aldehydes with a bis(aminooxy) linker. This linker could 

first be attached to the protein and then to the cell surface (Figure 5-2A-B).  

We generated an LCTPSR-Gluc fusion and co-expressed it with FGE in E. coli, but 

encountered several issues. First, we were unable to successfully identify the incorporation of the 

aldehyde tag via mass spectrometry. Moreover, Gluc expression in E. coli can lead to misfolded 

and inactive enzyme (Joanna Laird, pers. comm.). Thus, we decided to express LCTPSR-Gluc 

and FGE in mammalian cells [17]. Others have shown improved Gluc expression through 

mammalian cell culture [14, 16]. We inserted the gene encoding LCTPSR-Gluc into a pBMN 

destination vector downstream of the CD8 leader sequence. The fusion protein would ultimately 

be destined for secretion and isolable from the media for further conjugation. Toward this end, 

HEK293 cells stably expressing LCTPSR-Gluc were transiently transfected with FGE in 

pcDNA. After several days, the media—containing the putative aldehyde-modified Gluc—was 

collected. Cells stably expressing both LCTPSR-Gluc and FGE are currently being prepared and 

efforts are currently underway to purify, quantify and characterize the resulting protein. 

 With the aldehyde-tagged Gluc in hand, we aimed to append the enzyme to cell surfaces 

via oxime ligation. The sample was treated with 1 mM of the bis(aminooxy) linker and dialyzed 

to remove excess linker. Cells treated with periodate were then incubated with media containing 

the aminooxy-Gluc (AO-Gluc) sample for 90 min [21]. As shown in Figure 5-2C, the Jurkat and 

HEK293 cells treated with the LCTPSR-Gluc demonstrate a 5-7-fold signal above Gluc lacking 
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formylglycine. These results are encouraging and the signal-to-noise should improve with 

optimized labeling conditions, including the use of cells stably expressing FGE. 
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Figure 2. Gluc attachment strategy utilizing the oxime ligation. (A) An aldehyde is incorporated 
into Gluc using FGE, which is subsequently modified with a bis(aminooxy) linker to generate 
AO-Gluc. (B) Cells are treated with sodium periodate to generate cell surface aldehydes. Cells 
are then treated with AO-Gluc to covalently append Gluc to the cell surface. (C) After 
modification, cells were plated and compared to cells treated with unmodified Gluc. Both 
HEK293 and Jurkat cells were plated (50,000 cells/well) in a black 96-well plate followed by 
addition of coelenterazine. The total flux was then recorded. Cells treated with AO-Gluc showed 
a 5- to 7-fold increase in total flux compared to cells treated with unmodified Gluc. 
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5.2b Sortagging of Gluc 

 In an alternative approach, we aimed to incorporate bioorthogonal functional groups into 

Gluc utilizing the sortagging method (Figure 5-3). Sortagging employs a bacterial transpeptidase 

enzyme, sortase A, to append peptide probes to proteins bearing the consensus sequence LPETG 

[22-24]. Sortase A cleaves the amide bond between the threonine and glycine residues and 

creates a new linkage between the now sortase-bound threonine and exogenous N-terminal 

glycine motifs [24]. Based on strong literature precedent, we surmised that sortagging would be a 

viable strategy to append bioorthogonal functional groups to Gluc for cell surface attachment. 

Sortagging has been exploited by the Ploegh group to append a broad array of substrates to 

proteins, including bioorthogonal functional groups [25-27]. Toward this end, we generated a 

Gluc-LPETG construct and expressed the fusion protein in E. coli. The isolated protein 

demonstrated bioluminescent activity, although we have evidence that only a portion is properly 

folded (Joanna Laird, pers. comm.).  

The Gluc-LPETG protein allows us to use sortagging to readily insert our bioorthogonal 

functional group of choice. We chose to install tetrazine, owing to its synthetic accessibility, 

rapid kinetics with strained alkenes, and suitable stability [19]. By appending tetrazine motifs to 

the C-terminus of a triglycine peptide (G3Tz), we could use sortagging to functionalize Gluc-

LPETG (Figure 5-3A, and Scheme 5-1A) [25].The resulting conjugate (Gluc-Tz) could then be 

attached to cyclopropene-labeled cell surfaces.  Toward this end, Gluc-LPETG was converted to 

Gluc-Tz by treatment with sortase A and G3Tz for 24 h at 4 °C. (Figure 5-3D). We were able to 

detect the ~2 kDa mass change via SDS-PAGE (Figure 5-3E). Gluc-Tz was then purified and 

dialyzed to remove sortase and excess G3Tz. After modification, the luciferase conjugate also 

maintained its bioluminescent activity (Figure 5-3E). 
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Purified Gluc-Tz was then ready for live cell attachment. We investigated two methods to 

achieve cell surface cyclopropene incorporation using either a lipid-cyclopropene conjugate 

(DPPE-Cp) or an amine reactive cyclopropene (NHS-Cp). Lipid derivatives have previously 

been utilized to insert many chemical moieties into cell membranes, such as DNA [28], 

fluorophores [10], and bioorthogonal functional groups [29, 30]. Amine reactive NHS esters are 

also commonly used to install fluorophores non-specifically to cell surface proteins for cell 

tracking [12, 13]. Both derivatives were synthesized using standard bioconjugation chemistries 

(Scheme 5-1B). 

 Unfortunately, initial attempts with both NHS-Cp and DPPE-Cp proved intractable for 

labeling. For example, treatment of cells with varying concentrations (1-20 µM) of NHS-Cp led 

to significant cell death. This is likely due to either excessive labeling or the need to perform the 

labeling in protein-free media. The former could be minimized by using a more polar reagent to 

prevent intracellular labeling [31]. DPPE-Cp was minimally soluble in DMSO or aqueous 

buffers, hampering initial labeling attempts. After sonication to partially solubilize the lipid, cell 

labeling was performed on Jurkat cells, which saw a very slight signal over background (Figure 

5-3F), but further characterization and optimization is required before this approach can be fully 

realized. Aside from optimizing conditions, a switch from cyclopropene to bicyclononyne could 

offer a significant increase in labeling. Bicyclononyne exhibits >100 fold faster reaction kinetics 

with tetrazine compared to cyclopropene and is commercially available [32]. It has recently been 

utilized in a similar sortagging approach recently reported by Ploegh and Weissleder [25]. 

 



	
   176 

1.00E+05 

1.00E+06 

1.00E+07 

Cells Only Gluc-Tz DPPE-Cp + 
Gluc-Tz 

to
ta

l f
lu

x 
(p

ho
to

ns
/s

) 

cells

DPPE-Cp 
or NHS-Cp

G3
N N

NN
Me

Gaussia
luciferase

LPETG—His6

sortase A
LPETG3

N N

NN
Me

Gluc-Tz

Gluc-Tz H3C O

O

O

O

H3C
O

P
O

O
N
H

O

O
7

7

DPPE-Cp

O

O
N

O

O NHS-Cp

A

B

C

N
H

O

O

G3Tz

O

D F

E

1.0 x 107 

1.0 x 106 

1.0 x 105 

1 2 3 4

Gluc-Tz

1 2 3

1.0

x 109

4.0

(p
ho

to
ns

/s
/c

m
2 /s

r)

Gluc-LPETG

sortase A

 
Figure 3. Gluc cell surface attachment method via sortagging. (A) Tetrazine is incorporated via 
sortase-mediated transpeptidation of G3Tz onto the Gluc-LPETG protein. (B) Cell surfaces are 
modified with cyclopropene groups through lipid insertion (DPPE-Cp) or non-specific amine 
attachment (NHS-Cp). The cells are then treated with Gluc-Tz to functionalize the cells with the 
bioluminescent protein for in vivo tracking. (C) Structure of the two cyclopropene probes. (D) 
Expressed Gluc (100 µM) was treated with sortase A (20-40 µM) and G3Tz (750 µM) for 24 h at 
4 °C. Lane 1 and 2 are the sortase A and Gluc-LPETG controls. Lane 3 and 4 are sortagging with 
20 µM and 40 µM sortase A, respectively. (E) Gluc-Tz (lane 3) shows comparable 
bioluminescence activity when compared to the parent Gluc-LPETG (lane 2). Lane 1 contains no 
Gluc. (F) Jurkat cells were briefly incubated with DPPE-Cp (0 or 2 µM) for 5 min with mild 
agitation. After washing, the cells were reacted with Gluc-Tz (20 µM) for 60 min at 37 °C. Upon 
treatment with coelenterazine, cells treated with DPPE-Cp and Gluc-Tz showed slightly higher 
bioluminescence signal than cells treated with Gluc-Tz only. 
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Scheme 1. Synthesis of reagents for sortase-mediated cell surface attachment. (A) Synthesis of 
G3Tz for Gluc functionalization. (B) Synthesis of reagents for attachment of cyclopropene 
moieties to cell surfaces. 
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5.3 Conclusions and future directions 

Selective, cell surface attachment of luciferases onto live cell surfaces offer obvious 

advantages for tracking applications.  The approaches outlines in this chapter show promise in 

terms of their modularity, but significant improvements are necessary. For example, current 

cyclopropene incorporation strategies are currently insufficient due to solubility issues (DPPE-

Cp) and toxicity (NHS-Cp). Alternate probes, such as alternate lipids or more polar NHS probes 

could improve labeling. Additionally, bicyclononyne offers faster kinetics and could further 

reduce labeling time. 

In addition to optimizing current strategies, alternative approaches for Gluc attachment 

can be explored. For example, enzymatic attachment methods such as the SpyCatcher:SpyTag 

system [33] or SNAP tags [34] have recently been utilized for cell surface modification. Upon 

optimization of the attachment chemistry in vitro, the bioluminescence signal strength and 

lifetime will have to be evaluated in vivo. We are also exploring bioorthogonal ligation strategies 

to attach Gluc to antibodies for in vivo imaging of cell contacts. Recent work by our lab has 
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demonstrated the utility of genetically-encoded split Gaussia luciferase for imaging cell 

proximity [35]. We hope to utilize bioorthogonal chemistry to attach these splits to cells and 

antibodies to image cell contacts in vivo using our “off-the-shelf” bioluminescent probes. 

 

5.4 Materials and methods 

5.4a Plasmids 

Construction of Gaussia luciferase vectors containing N-term formylglycine generating enzyme 

recognition (LCTPSR) motif (LCTPSR). PCR was used to generate the gene containing LCTPSR 

from a previously described Gaussia luciferase gene (courtesy of Grant Walkup). The LCTPSR-

Gluc gene was then inserted into pET28a(+) using the following primers:  

5’ - TATACATATGCTGTGTACCCCGTCTCGTAAACCGACCGAAAACAACG - 3’  

5’ - TATAGAATTCCTAGTCACCACCCGCAC - 3’ 

 

The gene was then moved into pBMN using the following primers: 

5’ - ATAGAATTCCATCACCATCACCATCACCTGTGTACCCCATCAAGACTCGAGATA - 3' 

5’ - ATACTCGAGTCTTGATGGGGTACACAGGTGATGGTGATGGTGATGGAATTCATA - 3’ 

 

Construction of Gaussia luciferase vectors containing C-term sortase recognition (Srtrs) motif 

(LPETG). Overlap PCR was used to generate the gene containing G4S linked Srtrs from a 

previously cloned Gaussia luciferase gene. The Gluc-LPETG gene was then inserted into 

pET28a(+) using the following primers:  

5’ - TATACCATGGATAAACCGACCGAAAACAACGAAGACTTCAACATCGTTGCG - 3’ 

5’ - TATAGAATTCCCGCCGGTTTCCGGCAGGCTACCGCCGCCACCGCTACC - 3’ 
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Formylglycine generating enzyme. Formylglycine generating enzyme (FGE) gene (courtesy of 

David Rabuka - Redwood Biosciences) was inserted into pcDNA using the following primers: 

5’ - TATAGCTAGCATGCTGACCGAGTTGGTTGACCTGC - 3’ 

5’ - TATACTCGAGCTACCCGGACACCGGGTCG - 3’ 

 

5.4b Expression of Guassia luciferase [36] 

Both GLuc fusion proteins were expressed in E. coli BL21 cells. The cells were cultured in 10 

mL Luria-Bertani (LB) medium containing ampicillin (50 µg/ml) at 37 °C for 8-12 h. The starter 

culture was then transferred into 1 L LB and incubated at 37 °C with shaking (225 rpm) until the 

O.D. (590 nm) reached 0.7–0.9. Protein expression was induced with 1 mM isopropyl-β-D-1-

thiogalactopyranoside (IPTG). After addition of IPTG, E. coli cells were cultured for 24 h at 

18 °C and harvested by centrifugation. All GLuc variants were purified exclusively from the 

supernatant (soluble fraction) by using Ni2+-NTA affinity chromatography.  

 

5.4c Cell culture 

HEK293 cells (American Type Cell Culture) were cultured in DMEM (Corning) supplemented 

with 10% (vol/vol) fetal bovine serum (FBS, Life Technologies), penicillin (100 U/mL), and 

streptomycin (100 µg/mL). Jurkat cells were cultured in RPMI media (Corning) supplemented 

with 10% (v/v) FBS, penicillin (100 U/mL), and streptomycin (100 µg/mL). Cells were 

maintained in a 5% CO2, water-saturated incubator at 37 °C. Transient transfections of the 

LCTPSR-Gluc construct were performed with cationic lipids (Lipofectamine 2000; Invitrogen). 

HEK293 cells stably expressing the LCTPSR-Gluc were selected with puromycin (10 µg/mL; 

Corning). HEK293 cells stably expressing LCTPSR-Gluc were transfected with FGE contruct 
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using cationic lipids. Cells stably expressing both constructs were selected with G418 (250 

µg/mL; Corning). 

 

5.4d Sortase mediated Gaussia luciferase modification 

 The heptamutant sortase A with enhanced catalytic activity and Ca2+-independent activity 

was used [26]. The reaction mixture contained expressed Gluc-LPETG (100 µM) in Tris-

buffered saline (50 mM Tris base, 150 mM NaCl, pH 8.0) with G3Tz (750 µM) and sortase A 

(20-40 µM). The reaction was rocked for 24 hours at 4 °C before analysis by SDS-PAGE. Gluc-

Tz was purified via Ni2+-NTA affinity chromatography as previously described [23] followed by 

dialysis to remove excess G3-Tz.  

 

5.4e Cell surface attachment of Gaussia luciferase 

Oxime ligation method 

Media was collected (4 mL at pH 6.5) from ~6 x 106 HEK293 cells stably expressing LCTPSR-

Gluc and transiently expressing FGE. The media was rocked gently overnight with 1 mM 

bis(aminooxy) linker at 4 °C. The samples were dialyzed into PBS (4 L, pH 6.5) to remove 

excess linker. HEK293 and Jurkat cells (1.5 x 106 cells) were each treated with 1 mM NaIO4 for 

30 min at 4 °C followed by quenching with 1 mM glycerol and rinsing with PBS (2 x 1 mL, pH 

6.5) [21]. Cells were then incubated at 37 °C with media only, media containing unmodified 

LCTPSR-Gluc, or media containing AO-Gluc and 100 mM aniline (at 4 °C or 37 °C) for 90 min. 

Cells were rinsed extensively with 1% BSA in PBS (7.4) and transferred to a 96-well black-well 

plate (50,000 cells/well). A stock solution of coelenterazine (Nanolight Technology, 5 mg/mL in 
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ethanol) was diluted 1:500 in water and 20 µL was added to each well. Bioluminescence images 

were acquired using an IVIS Lumina II (Xenogen). 

 

Tetrazine ligation method 

Jurkat cells (~2 x 106 cells) were pelleted and rinsed (3 x 4 mL) with PBS (pH 7.4) containing 

1% bovine serum albumin (BSA). Cells were resuspended in 200 µL PBS and divided into three 

50 µL aliquots (0.5 x 106 cells/reaction). To one aliquot was added 0.2 µL DPPE-Cp (500 µM). 

Each sample was agitated with gentle vortexing for 5 min followed by washing with 1% BSA in 

PBS. Cells were resuspended in 50 µL of Gluc-Tz (0-20 µM) in DMEM media. Samples were 

incubated at 37 °C for 1 h before rinsing with 5% BSA in PBS. Cells were then suspended in 

DMEM media (80 µL) transferred to a 96-well clear-bottom black-well plate (50,000 cells/well). 

A stock solution of coelenterazine (Nanolight Technology, 5 mg/mL in ethanol) was diluted 

1:500 in water and 20 µL was added to each well. Bioluminescence images were acquired using 

an IVIS Lumina II (Xenogen). 

 

5.4f General synthetic procedures  

Compounds bis(aminooxy) linker [37], 5.2 [38], and 5.3 [39] were synthesized as previously 

reported. All other reagents were purchased from commercial sources and used as received 

without further purification. Reactions were carried out under an inert atmosphere of nitrogen or 

argon in oven- or flame-dried glassware. Dichloromethane (CH2Cl2), tetrahydrofuran (THF), 

diethyl ether (Et2O), N,N-dimethylformamide (DMF), methanol (CH3OH) and triethylamine 

(NEt3) were degassed with argon and passed through two 4 x 36 inch columns of anhydrous 

neutral A-2 (8 x 14 mesh; LaRoche Chemicals; activated under a flow of argon at 350 °C for 12 
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h). The remaining solvents were of analytical grade and purchased from commercial suppliers. 

Thin-layer chromatography was performed using Silica Gel 60 F254 plates. Plates were visualized 

using UV radiation and/or staining with KMnO4. Flash column chromatography was performed 

with 60 Å (240-400 mesh) silica gel from Sorbent Technologies. In some cases, the silica was 

first deactivated with 1% NEt3 in the eluting solvent. 1H, 13C, and 19F NMR spectra were 

recorded on Bruker GN-500 (500 MHz 1H, 125.7 MHz 13C), CRYO-500 (500 MHz 1H, 125.7 

MHz 13C) or DRX-400 (400 MHz 1H, 100 MHz 13C, 376.5 MHz 19F) spectrometers. All spectra 

were collected at 298 K unless otherwise noted. NOESY experiments were performed 

exclusively with the CRYO-500 instrument with mixing times ranging from 0.8-1.0 s. Chemical 

shifts are reported in ppm values relative to tetramethylsilane or residual non-deuterated NMR 

solvent, and coupling constants (J) are reported in Hertz (Hz). High-resolution mass 

spectrometry was performed by the University of California, Irvine Mass Spectrometry Center. 

HPLC runs were conducted on a Varian ProStar equipped with 325 Dual Wavelength UV-Vis 

Detector. Analytical runs were performed using an Agilent Polaris 5 C18-A column (4.6 x 150 

mm, 5 µm) with a 1 mL/min flow rate. Semi-preparative runs were performed using an Agilent 

Prep-C18 Scalar column (9.4 x 150 mm, 5 µm) with a 5 mL/min flow rate. The elution gradients 

for the relevant separations are specified below. 

 

2.4g Synthetic procedures 

Triglycine tetrazine conjugate (G3Tz). To a solution of Boc-Gly-Gly-Gly-OH (5.1) (100 mg, 

0.35 mmol) in DMF (0.5 mL) was added N,N-diisopropylethylamine (300 µL, 1.7 mmol) and 

hydroxybenzotriazole (53 mg, 0.35 mmol). The solution was cooled to 4 °C on ice followed by 

addition of N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (133 mg, 0.692 
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mmol). The solution was removed from ice and allowed to stir for 15 min. Tetrazine (5.2) (104 

mg, 0.347 mmol) in DMF (0.5 mL) was then added to the reaction, and the solution was allowed 

to stir overnight. The reaction mixture was diluted with CH2Cl2 (10 mL) and rinsed with 1 M 

NaHSO4 (2 x 20 mL). The organic layer was dried with MgSO4 and filtered. The organic layer 

was cooled on ice before addition of triisopropylsilane (0.5 mL) and trifluoroacetic acid (10 mL). 

The reaction was stirred at rt for 1 h, then concentrated under reduced pressure. The crude 

mixture was purified via HPLC (5-20% CH3CN in water with 0.1% TFA over 4 min and 20% 

over 6 min) to afford G3Tz as a red solid (45.4 mg, 0.122 mmol, 35% yield): 1H NMR (400 

MHz, CDCl3) δ 8.59 (br s, 1H), 8.49 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 4.52 (d, J = 

6.0 Hz, 1H), 4.00 (s, 2H), 3.95 (s, 2H), 3.74 (s, 2H), 3.02 (s, 2H); 13C NMR (500 MHz, CDCl3) δ 

170.4, 170.3, 167.4, 166.7, 163.8, 143.4, 131.0, 127.8, 127.5, 42.3, 42.1, 41.9, 40.1, 19.6; HRMS 

(ESI) calcd for C16H20N8O3Na [M+Na]+ 395.1556, found 395.1542. 

 

Dipalmitoyl-cyclopropene conjugate (DPPE-Cp). 1,2-Dipalmitoyl-sn-glycero-3-

phosphoethanolamine (DPPE) (100 mg, 0.14 mmol) was dissolved in 9:1 CH2Cl2:CH3OH (20 

mL) at 30 °C. To this solution was added triethylamine (100 µL, 0.72 mmol) followed by 

carbonate 5.3 (45.6 mg, 0.183 mmol). The reaction mixture was allowed to stir at 30 °C for 30 h 

before being concentrated onto silica gel under reduced pressure. The product was purified by 

flash column chromatography (eluting with 5-10% CH3OH in CH2Cl2) to afford product DPPE-

Cp (41 mg) in ~70% purity with unknown DPPE byproduct: HRMS (ESI) calcd for 

C43H80NO10Na [M+Na]+ 824.5417, found 824.5398. 
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4-((((2-Methylcycloprop-2-en-1-yl)methoxy)carbonyl)amino)butanoic acid (5.5). To a 

solution of 4-aminobutyric acid (5.4) (41 mg, 0.40 mmol) and potassium carbonate (166 mg, 

1.20 mmol) in 1 mL of water was added 5.3 (150 mg, 0.60 mmol) in 1 mL CH3CN. The solution 

turned yellow immediately and the reaction was allowed to stir overnight. The reaction mixture 

was diluted with 10 mL water and rinsed with ethyl acetate (2 x 20 mL). The organic layer was 

discarded, the aqueous layer was acidified with 1 M NaHSO4 to pH ~2, and extracted with ethyl 

acetate (3 x 20 mL). The organic layer was dried with MgSO4, filtered, and purified via flash 

column chromatography (eluting with 30% ethyl acetate in hexanes) to afford 5.4 as a clear oil 

(41 mg, 32% yield): 1H NMR (400 MHz, CDCl3) δ 6.56 (s, 1H), 4.86 (br s, 1H), 3.93 (d, J = 3.9 

Hz, 2H), 3.25 (q, J = 12.7, 6.3 Hz, 2H), 2.42 (t, J = 7.2 Hz, 2H), 2.13 (s, 3H), 1.85 (m, 2H), 1.64 

(s, 1H); HRMS (ESI) calcd for C10H15NO4Na [M+Na]+ 236.0899, found 236.0891. 

 

NHS-cyclopropenyl ester (NHS-Cp). To a solution of 5.5 (40 mg, 0.19 mmol) in 1 mL CH2Cl2 

was added N-hydroxysuccinimide (43 mg, 0.37 mmol) and pyridine (60 µL, 0.75 mmol). The 

solution was cooled to 4 °C on ice before dropwise addition of trifluoroacetic anhydride (52 µL, 

0.37 mmol) with stirring. The reaction mixture was allowed to warm to rt and stir for 1.5 h. The 

reaction mixture was diluted with 10 mL CH2Cl2 and rinsed with 1 M NaHSO4 (3 x 10 mL) and 

saturated NaHCO3 (2 x 10 mL). The organic layer was dried with MgSO4 and concentrated 

under reduced pressure. The product was purified by flash column chromatography (eluting with 

30-60% ethyl acetate in hexanes) to afford the NHS-Cp as a clear oil (20 mg, 35% yield): 1H 

NMR (400 MHz, CDCl3) δ 6.57 (s, 1H), 4.89 (br s, 1H), 3.93 (m, 2H), 3.29 (q, J = 13.0, 6.5 Hz, 

2H), 2.84 (s, 4H), 2.68 (t, J = 7.3 Hz, 2H), 2.14 (s, 3H), 1.98 (m, 2H), 1.64 (s, 1H); HRMS (ESI) 

calcd for C14H18N2O6Na [M+Na]+ 333.1063, found 333.1066. 
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