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Abstract

The trend in science and engineering applications has been to produce larger data

sets, since computers and imaging technology are getting faster and storage space

is increasing. Large amounts of data are difficult to visualize, and it is impossible

to directly visualize them on inexpensive computers. Many visualization techniques

exist that visualize certain types of large data. However, a general solution does

not exist. A hierarchical method provides the foundation for a solution. Linear and

quadratic decomposition elements can be used to form an approximation hierarchy

representing large data; a user can then visualize this hierarchy on low-end machines.

A hierarchical approximation method is described that uses linear, quadratic, and

curved-quadratic decompositional elements. Linear element approximation and vi-

sualization has been studied extensively in the past. Higher-order element approxi-

mation and visualization is not nearly as developed as that for linear elements, thus,

more research is needed. Fundamental visualization techniques—such as isosurfacing,

ray casting, and cutting planes—for quadratic elements are described.
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Abstract

The trend in science and engineering applications has been to produce larger data sets, since

computers and imaging technology are getting faster and storage space is increasing. Large

amounts of data are difficult to visualize, and it is impossible to directly visualize them

on inexpensive computers. Many visualization techniques exist that visualize certain types

of large data. However, a general solution does not exist. A hierarchical method provides

the foundation for a solution. Linear and quadratic decomposition elements can be used

to form an approximation hierarchy representing large data; a user can then visualize this

hierarchy on low-end machines. A hierarchical approximation method is described that uses

linear, quadratic, and curved-quadratic decompositional elements. Linear element approx-

imation and visualization has been studied extensively in the past. Higher-order element

approximation and visualization is not nearly as developed as that for linear elements, thus,

more research is needed. Fundamental visualization techniques—such as isosurfacing, ray

casting, and cutting planes—for quadratic elements are described.
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Chapter 1

Introduction

1.1 Motivation

Computing power and storage has been growing at phenomenal rates during the past 50

years. Scientists are taking advantage of these improvements by developing more complex

simulations and by recording more information. Growth in complexity and information

leads to an increase in the data set sizes generated by scientists. While the information

growth provides more accurate and higher-resolution data to researchers, these large data

sets are difficult to view. Often, the supercomputer that generated the data cannot be used

for visualization of the data, since its time is reserved for other tasks; and visualization on

low-end machines is difficult when the data is several times larger than the core memory.

This is the reason for the large-scale visualization problem that the scientific community is

facing today.

Analysis of the problem reveals the guidelines that bound it. First, the ultimate

goal is to produce a “meaningful” image of the data. The allowable time to create this image

depends upon the context. It is generally acceptable to a user to see poor representations

of the data when previewing, positioning, navigating, and exploring the data. However,

when the user finds something interesting, a higher-quality image is made to show a truer

representation of the data. Second, for a very-large data set, there are far more data points

in the data set then there are pixels on a computer screen. Consider the question of whether

all of the data is needed for visualization; since it is impossible—on low-end machines—to
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visualize all of the data in a reasonable amount of time, a data reduction step must take

place. Third, in many scientific applications, it is very important for the scientist to know

precisely how accurate the representation image is. Following these guidelines leads to a

solution.

Approximation of data is needed, since the amount of data must be reduced. Reli-

able error estimates—so that users can gauge the quality of an approximation—require the

approximation technique to be mathematically sound. Since varying quality images are re-

quired for previewing and close inspection there must also be corresponding approximations

to draw from. This leads to a two-step solution: a pre-processing step that approximates

the data, possibly yielding many approximations of varying quality, and a visualization step

that renders the approximations.

A natural solution to this problem is to represent the data as a hierarchy of in-

creasingly better approximations. An appropriate hierarchy consists of a top level that

coarsely describes the data set with few data points. (This top level generally has a high

error associated with it.) Subsequent levels increase quality by using more data points.

Once constructed, selecting and visualizing an appropriate level in the hierarchy finds a

solution to the large-scale visualization problem.

1.2 Research Goals of Dissertation

The main research goal is to promote the use of higher-order elements. Visualization of

higher-order elements assumes that there are higher-order elements to visualize, thus, meth-

ods to create meaningful higher-order element data sets are discussed. A linear element ap-

proximation method is described as a foundation for a higher-order element approximation

method.

In general, it is important to have a hierarchical data-dependent approximation

scheme to solve the large data visualization problems. A simplex-based approach is power-

ful, since simplex-based schemes are more general and can be used to decompose complex

domains—i.e., using intervals, triangles, and tetrahedra for the 1D, 2D, and 3D cases, re-

spectively, as opposed to arbitrary polyhedra. Two approximation methods using these
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attributes are discussed here (both are refinement methods). The first method uses linear

simplices as the approximation element. On a high level, these steps describe the approach:

1. Begin with a coarse decomposition of the domain—the convex hull of all data sites

(the term the “triangulation” generally refers to the decompositional mesh).

2. Compute an approximation over the triangulation.

3. Compute error estimates for each element (interval, triangle, or tetrahedron).

4. Bisect the element having the highest error.

5. Repeat steps 2, 3, and 4 until the estimated global approximation error is under a

user-specified tolerance.

The second method uses a quadratic simplex instead of a linear simplex as the

approximation element. A single quadratic element has the advantage of representing a

complex region where many linear elements might be required to approximate that same

region. (The hierarchical construction is the same as in the linear case.) Consider having

two hierarchical approximations—one is linear and the other is quadratic—that are stored

across a network from the inexpensive machine that is used to visualize the hierarchy (each

hierarchy, level-for-level, approximates the data to the same error tolerance). The quadratic

hierarchy is transmitted more quickly (than the linear hierarchy) across the network, since

fewer elements are required per level. (This scenario is analogous to transmitting elements

across the video bus inside a computer.)

Linear simplices are well studied in the visualization community, and graphics

hardware exists that can process millions of linear triangles per second. Thus, rendering of

linear-triangle hierarchies is relatively easy. The community has also extensively researched

volumetric visualization based on space decompositions of linear tetrahedral elements, thus,

many visualization techniques exists to handle these types of elements.

Research opportunities exist in the visualization of higher-order elements. Little

work has been done in regard to visualizing them. Tessellating a higher-order element with

smaller linear elements and visualizing the linear elements is the standard method for visu-

alization. This works, but the question of whether there are more efficient means still exists.
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Methods to directly visualize higher-order elements are needed. Fundamental methods for

visualization, including isosurfacing, ray casting, and cutting planes, are described here for

quadratically defined elements. In many cases, the ideas developed in this dissertation can

be extended to elements having higher order than quadratic.
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Part I

Approximation



7

One goal of data approximation is to represent data using a smaller, more concise, and more

manageable form. There are many types of data that can benefit from being approximated,

a few examples are shown in Figure 1.1. In each of these examples, there are data points that

do not need to be included in a representation of the data. These data points often introduce

redundant information that can be represented accurately even if it were approximated.

Figure 1.1: Examples of data that can benefit from approximation. Left image shows a
digitized sound wave. Middle image shows a height field. Right image shows an MRI of a
human head.

A method for the construction of hierarchies of single-valued functions in one, two,

and three dimensions is described. The input to the method is a coarse decomposition of

the compact domain of a function in the form of an interval (1D case), triangles (2D case),

and tetrahedra (3D case). Best linear spline approximations are computed, understood in

an integral least squares sense, for functions defined over such triangulations and are refined

using repeated bisection. This requires the identification of the simplex with largest error

and splitting it into two simplices. Each bisection step requires the re-computation of all

spline coefficients due to the global nature of the best-approximation problem. Nevertheless,

this can be done efficiently by bisecting multiple simplices in one step and by using an

optimized sparse matrix solver.

Different methods are known and used for the hierarchical representation of very

large data sets. Unfortunately, only a small number of these methods are based on a well

developed mathematical theory. In the context of visualizing very large data sets in 2D and

3D, it is imperative to develop hierarchical data representations that allow us to visualize

and analyze physical phenomena at various levels of detail. General, robust, and efficient

methodologies are needed to support the generation of hierarchical data representations and
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their applicability for the visualization process.

The construction of hierarchies of triangulations and best linear spline approxi-

mations of functions are described here. The main idea underlying the construction of a

data hierarchy is repeated bisection of intervals, triangles, and tetrahedra. The coefficients

associated with each vertex in a triangulation are computed in a best-approximation sense.

(The terms “triangulation” or “mesh” are used to describe the general decomposition.)

Whenever an element is bisected, due to a large local error, one needs to re-compute linear

spline coefficients for all vertices in the new, refined triangulation.

1.3 Previous Work

There are many hierarchical methods targeted at approximating large data sets. For ex-

ample, wavelet methods are described in [5, 15, 40]. The work described in [40] has the

advantage of supporting both lossless and lossy compression. In general, wavelet methods

work well for data lying on uniform, rectilinear, and power-of-two grids and provide fast

and highly accurate compression.

Simplification methods using data elimination strategies are described in [7, 8, 16,

17, 20, 27, 28]. These methods provide a hierarchy by removing data points in a specific

order to minimize the error at each level. Simplification concepts can be applied to both two-

and three-dimensional data. These methods are more general than most wavelet methods,

since arbitrary input meshes can be converted to a form appropriate for each method.

Refinement methods similar to the ones discussed here are described in [19, 23, 39]. (Most

data-dependent refinement methods—methods that consider the error relative to the data

being approximated—can also be adapted to arbitrary meshes.)

Simplification methods begin with the highest resolution data mesh and remove

data to produce the hierarchy. Another class of methods, refinement methods, begin with

a coarse mesh—covering the domain of the data being approximated—and refine this mesh

by inserting data points to produce the hierarchy, see [19, 39].

Data-dependent methods consider the data error and refine or simplify accordingly,

as those previously mentioned. Non-data-dependent methods, such as the one discussed in
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[13], are also being used. The method described in [11] performs an iterative “thinning

step” based on radial basis functions on scattered points while maintaining a Delaunay

triangulation. The method described in [11] is similar to [13] and suggests that data-

dependent methods can better approximate input data by focusing data elements around

high-gradient regions—regions where data values fluctuate produce more error (analytically

and visually) when approximated with few elements.

Comparisons of wavelet, decimation, simplification, and data-dependent methods,

including the methods discussed in [15, 20, 27, 39], are provided in [26]. This survey discusses

the many approaches to surface simplification and also examines the complexity of some of

the most commonly used methods.
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Chapter 2

Linear Elements

Linear elements provide a foundation for the hierarchical data approximation method de-

scribed here and demonstrate the capabilities of the system. Linearly defined simplices are

used as the approximation elements that represent the function being approximated. An

approximation consists of a set of approximation elements including line segments, triangles,

and tetrahedra in the 1D, 2D, and 3D case, respectively.

2.1 The 1D Case

The goal is to represent a 1D (univariate) function F (x) by a set of line segments (i.e., a

piecewise-linear spline). A linear spline is defined by a set of N knots ki ∈ R, 0 ≤ i ≤ N −1

and coefficients ci positioned at these knot locations, forming a spline point pi = (ki, ci)
T.

The individual intervals are found by considering sequentially adjacent pairs of knots km and

km+1, where km < km+1, 0 ≤ m ≤ N − 2. Figure 2.1 shows a linear spline representation

of F (x) = sin(4πx2), 0 ≤ x ≤ 1.

Representing the linear spline approximation A(x) as a linear combination A(x) =∑N−1
i=0 cifi(x) of independent functions f0(x), . . . , fN−1(x), allows the use of the best-

approximation method to find the coefficients ci, see [10]. This is done by solving the
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Figure 2.1: Linear spline representation of F (x) = sin(4πx2), 0 ≤ x ≤ 1. Orange curve
shows original function F (x). Black spline shows approximation A(x). Knot locations ki are
indicated by small black arrows along x-axis (in this case, knots are distributed uniformly
across the interval [0, 1]). Black squares denote spline points pi.

system 


〈f0, f0〉 · · · 〈fN−1, f0〉
...

...

〈f0, fN−1〉 · · · 〈fN−1, fN−1〉







c0

...

cN−1


 =




〈F, f0〉
...

〈F, fN−1〉


 , (2.1)

(abbreviated as Mc = F) for c, where fi is an abbreviation for fi(x) and 〈g, h〉 is the scalar

product of two functions g(x) and h(x), defined over the interval [a, b] as

〈g, h〉 =
∫ b

a
g(x)h(x)dx. (2.2)

The best-approximation method provides a globally optimal solution for the coefficients

by minimizing the standard L2 norm error metric for D(x) = F (x) − A(x), the difference

between the approximation A(x) and the original function F (x), defined as

√
〈D, D〉 =

√∫ b

a

(
F (x) − A(x)

)2
dx . (2.3)

The system Mc = F is solved efficiently when using mutually orthogonal and normalized

basis functions fi(x), i.e., 〈fi, fj〉 = δij (Kronecker delta). When using these basis functions,

only the diagonal elements are non-zero, and the coefficients are given by ci = 〈F, fi〉.

However, this does not guarantee a “good” approximation throughout an interval, since a

basis function fi only covers the knot location ki; a basis function that covers the entire
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Figure 2.2: Best-approximation example. Orange curve shows the original function F (x).
Black line segments show the linear spline approximation A(x). Basis functions f0, f1, and
f2 are shown for knot locations k0, k1, and k2, respectively.

interval that it connects to provides a better approximation. One such basis function is the

“hat” function. A hat function fi(x) takes on the values

fi(x) =




1, if x = ki;
ki+1−x
ki+1−ki

, if ki < x ≤ ki+1;
x−ki−1

ki−ki−1
, if ki−1 ≤ x < ki;

0, everywhere else.

(2.4)

Figure 2.2 shows a linear spline approximation, knot locations, and associated hat basis

functions. Using hat basis functions produces a tridiagonal linear system, since the only

non-zero elements of M for row i are 〈fi−1, fi〉, 〈fi, fi〉, and 〈fi+1, fi〉. These scalar products

are given by

〈fi−1, fi〉 = 1
6∆i−1,

〈fi, fi〉 = 1
3 (∆i−1 + ∆i) , and

〈fi+1, fi〉 = 1
6∆i,

(2.5)

where ∆j = kj+1 − kj . Thus, M is the tridiagonal matrix

M =
1
6




2∆0 ∆0

∆0 2(∆0 + ∆1) ∆1

∆1 2(∆1 + ∆2) ∆2

. . . . . . . . .

∆N−2 2∆N−2




. (2.6)
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Linear-time system solvers exist for tridiagonal linear systems. (For an arbitrary set of basis

functions fi(x), one must investigate a means for an efficient solution to the linear system.)

The global error E for a linear spline approximation A(x) is given by Equa-

tion (2.3). The local error ei for interval i is defined as

ei =

√∫ ki+1

ki

(
F (x) −

(
cifi(x) + ci+1fi+1(x)

))2
dx , i = 0, . . . , N − 2. (2.7)

The scalar products 〈F, fi〉 and the error values E and ei are computed using

numerical integration. Romberg integration is used to compute the required integrals, see

[4, 25]. Romberg integration is discussed in the Appendix, see Section A.1.

2.2 The 2D Case

The goal is to represent a 2D (bivariate) function F (x, y) by a set of triangles. It is assumed

that the field (scalar function) to be approximated over a domain is known analytically.

Should this not be the case, e.g., in the case of scattered data (when one is given a set of

randomly distributed points with associated function values without connectivity informa-

tion), it is possible to construct an analytical representation by performing a prior data

interpolation or approximation step, see [13, 14, 36]. In the case that a data set is defined

on a grid, the required analytical definition is given by a piecewise linear function for a sim-

plicial (triangular) grid and a piecewise bilinear function in the case of quadrilateral grid

cells. A linear spline is defined by a set of NK knots ki = (xi, yi)T ∈ R
2, 0 ≤ i ≤ NK − 1,

coefficients ci positioned at these knot locations, and a set T = {Tm} of NT knot triples

Tm = (km
a ,km

b ,km
c ), 0 ≤ m ≤ NT − 1, 0 ≤ a, b, c ≤ NK − 1, a �= b �= c, defining the tri-

angulation of the knots. Spline points pi = (xi, yi, ci)
T are formed from the knot locations

and coefficients. Figure 2.3 shows a linear spline representation of F (x, y) = x2 + y2, −1
2 ≤

x, y ≤ 1
2 .

Representing the linear spline approximation A(x, y) as a combination A(x, y) =∑N−1
i=0 cifi(x, y) of independent functions f0(x, y), . . . , fN−1(x, y), allows the use of the

best-approximation method to find the coefficients ci, see Equation (2.1). The hat function

fi(x, y) used in this case influences the platelet of triangles connected to knot ki, denoted as



14

Figure 2.3: Linear spline representation of F (x, y) = x2 + y2, −1
2 ≤ x, y ≤ 1

2 . Left image
shows original function F (x, y). Right image shows approximation A(x, y). (Gray boxes in
the xy-plane denote knot locations.)

Ti = {Tj}, 0 ≤ j ≤ nm−1, where nm is the number of triangles in the platelet Ti. Ordering

the knots of Tj so that kj
a = ki, the basis function fi(x, y) takes on the values

fi(x, y) =




1, if (x, y)T = ki;

1 − uj − vj , if (x, y)T is inside Tj ;

0, everywhere else,

(2.8)

where uj and vj for triangle Tj are found by solving(
x

y

)
= kj

buj + kj
cvj + ki(1 − uj − vj) (2.9)

for uj and vj , which are given as

uj =
(yj

c − yi)x + (xi − xj
c)y + xj

cyi − yj
cxi

(yj
b − yj

c)xi + (xj
c − xj

b)yi + yj
cx

j
b − xj

cy
j
b

(2.10)

and

vj =
(yj

b − yi)x + (xi − xj
b)y + xj

byi − yj
bxi

(yj
b − yj

c)xi + (xj
c − xj

b)yi + yj
cx

j
b − xj

cy
j
b

. (2.11)

Figure 2.4 shows an example linear spline approximation, knot locations, and associated

hat basis functions.

The 2D case requires integration over triangles. The change-of-variables theorem

allows the integration over arbitrary triangles in R
2 to the standard triangle T U in parameter

space U
2 having vertices (0, 0)T, (1, 0)T, and (0, 1)T.
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Figure 2.4: Best-approximation example. Orange surface shows the original function
F (x, y). Gray surface shows the linear spline approximation A(x, y) = c0f0 + c1f1 + c2f2.
Basis functions f0, f1, and f2 are shown for knot locations k0, k1, and k2, respectively.

Change-of-variables theorem

Let R and U be regions in the plane and let M : U −→ R be a C1-continuous one-to-one

mapping such that M(U) = R. Then, for any bivariate integrable function f(x, y), the

equation ∫
R

f(x, y)dxdy =
∫

U

f(x(u, v), y(u, v))Jdudv (2.12)

holds, where J is the Jacobian of M ,

J = det


 ∂

∂ux(u, v) ∂
∂vx(u, v)

∂
∂uy(u, v) ∂

∂vy(u, v)


 . (2.13)

Thus, it is possible to effectively compute an integral over a triangle T having

vertices k0 = (x0, y0)T, k1 = (x1, y1)T, and k2 = (x2, y2)T, by mapping the standard

triangle T U to T using the linear transformation
 x(u, v)

y(u, v)


 =


 x1 − x0 x2 − x0

y1 − y0 y2 − y0




 u

v


+


 x0

y1


 . (2.14)

This transformation maps the standard triangle T U with vertices u0 = (0, 0)T, u1 = (1, 0)T,

and u2 = (0, 1)T in the uv-plane to the arbitrary triangle T in the xy-plane. For this linear

mapping, the change-of-variables theorem yields

∫
T

f(x, y)dxdy = J

∫ 1

v=0

∫ 1−v

u=0
f (x(u, v), y(u, v)) dudv, (2.15)
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Figure 2.5: Platelets of km and kn and associated basis functions. (Front platelet triangles
have been removed for clarity.)

and the Jacobian is given by

J = det


 x1 − x0 x2 − x0

y1 − y0 y2 − y0


 . (2.16)

As in the univariate case, the basis functions fi(x, y) are hat functions. Thus,

fi(x, y) has value one at knot ki, varies linearly to zero as one approaches its neighbors,

and is zero everywhere else. The only scalar products one must consider are 〈N0, N0〉

and 〈N0, N1〉, where Ni = ui = (ui, vi)T is a linear spline basis function defined over the

standard triangle T U. The values of these two scalar products are

〈N0, N0〉 =
∫ 1

v=0

∫ 1−v

u=0
(1 − u − v)2 dudv =

1
12

(2.17)

and

〈N0, N1〉 =
∫ 1

v=0

∫ 1−v

u=0
(1 − u − v)u dudv =

1
24

. (2.18)

The area of influence for the basis function fi is the platelet of triangles connected to knot

ki, see Figure 2.5. The function fi varies linearly from one to zero over all triangles defining

ki’s platelet. The scalar product 〈fm, fm〉 is given by

〈fm, fm〉 =
nm−1∑
j=0

∫
Tj

fm(x, y)fm(x, y)dxdy =
1
12

nm−1∑
j=0

Jj , (2.19)

where nm is the number of triangles in the platelet of knot km and Jj is the Jacobian

associated with the jth platelet triangle Tj . (The platelet of knot km is the set of triangles
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Tm = {Tj}, 0 ≤ j ≤ nm − 1.) The scalar product 〈fm, fn〉 whose associated knots km and

kn are connected by and edge is given by

〈fm, fn〉 =
nm,n−1∑

j=0

∫
Tj

fm(x, y)fn(x, y)dxdy =
1
24

nm,n−1∑
j=0

Jj , (2.20)

where nm,n is the number of triangles in the set Tm,n, which is the intersection of sets Tm

and Tn. Mapping the knots km and kn to u0 and u1, respectively, always maps the standard

triangle T U to triangle Tj ∈ Tm,n, 0 ≤ j ≤ nm,n − 1, thus, the reason why one only needs

to consider the scalar product 〈N0, N1〉.

The global error E for the linear spline approximation A(x, y), defined by trian-

gulation T containing NT triangles, is computed using the L2 norm of D(x, y) = F (x, y)−

A(x, y), the difference between A(x, y) and F (x, y), given as

E = 〈D, D〉 =

√∫
T

(
F (x, y) − A(x, y)

)2
dxdy . (2.21)

The local error ei for triangle Ti ∈ T , i = 0, . . . , NT − 1, is defined as

ei =

√∫
Ti

(F (x, y) − Ti)
2 dx. (2.22)

Integrals in the 2D case are computed using Romberg integration, which is dis-

cussed in the Appendix, see Section A.2. An approximation A(x, y) of a height field of

Crater Lake data set is shown in Figure 2.6. The original data consists of 158346 data sites.

The approximation A(x, y) has 93 knots, 159 triangles, and an error of 8.62 based on the

sum of the local errors
∑NT−1

i=0 ei.

Figure 2.6: Bivariate approximation of Crater Lake data set. Left image shows the original
data set F (x, y). Right image shows the approximation A(x, y) having 93 knots and 159
triangles. The approximation has an error of 8.62.
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2.3 The 3D Case

The 3D case is a straightforward generalization of the 2D case. This is done by replacing

the notion of a triangle with that of a tetrahedron. Hat functions are again used as the

basis functions and the best-approximation method is applied to find the coefficients ci at

the knots ki.

A linear spline is defined by a set of NK knots ki = (xi, yi, zi)T ∈ R
3, 0 ≤ i ≤

NK −1, coefficients ci positioned at these knot locations, and a set T of NT knot quadruples

defining the tetrahedralization of the knots. Spline points pi = (xi, yi, zi, ci)
T are formed

from the knot locations and coefficients.

Only the implications of the change-of-variables theorem are discussed, which is

important in the context of computing the required scalar products and error estimates

defined over tetrahedral domains. The mapping of the standard tetrahedron T U—with

vertices u0 = (0, 0, 0)T, u1 = (1, 0, 0)T, u2 = (0, 1, 0)T, and u3 = (0, 0, 1)T—in uvw-

parameter space to an arbitrary tetrahedron T in xyz-physical space—having vertices k0 =

(x0, y0, z0)T, k1 = (x1, y1, z1)T, k2 = (x2, y2, z2)T, and k3 = (x3, y3, z3)T—is given by the

linear transformation


x(u, v, w)

y(u, v, w)

z(u, v, w)


 =




x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0







u

v

w


+




x0

y0

z0


 . (2.23)

In this case, the change-of-variables theorem implies that

∫
T

f(x, y, z) dxdydz = J

∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
f
(
x(u, v, w), y(u, v, w), z(u, v, w)

)
dudvdw,

(2.24)

where the Jacobian is given as

J = det




x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0


 . (2.25)

Using the same argument as in the 2D case, the only scalar products one needs

to consider are 〈N0, N0〉 and 〈N0, N1〉, where Ni = ui = (ui, vi, wi)T is a linear spline basis
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function defined over the standard tetrahedron T U. The values of these two scalar products

are

〈N0, N0〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
(1 − u − v − w)2 dudvdw =

1
60

(2.26)

and

〈N0, N1〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
(1 − u − v − w)u dudvdw =

1
120

. (2.27)

Integrals in the 3D case are computed using Romberg integration, which is discussed in the

Appendix, see Section A.3.

2.4 Constructing Hierarchical Approximations

For practical visualization of large data sets one must compute a hierarchy of approximations

to represent the data. In general, this hierarchy should consists of a low-resolution approx-

imation and several increasingly better approximations. For spline approximations, such as

the ones discussed here, a low-resolution approximation contains a relatively small number

of approximation elements (i.e., intervals, triangles, or tetrahedra) and higher-resolution

approximations contain progressively more elements. For visualization purposes, one can

extract a level from the hierarchy that meets desired specifications based on network traffic,

available memory, machine speed, etc.

The hierarchy of approximations created here are constructed using a refinement

method. One begins with a low-resolution level and refines this mesh—by subdividing the

element having the highest error—to construct the next level in the hierarchy. The basic

steps of the method are

1. Initial approximation. Define an initial, coarse decomposition of the function’s

domain and, for all knots, compute the coefficients defining the best linear spline

approximation.

2. Error estimation. Analyze the error of this approximation by computing appropri-

ate global and local error estimates.

3. Refinement. Identify the element with maximal local error estimate and subdivide

it.
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4. Recompute approximation. Recompute the best linear spline approximation based

on the updated knot set and decomposition.

5. Iteration. Repeat steps 2, 3, and 4 until a user-specified error tolerance is satisfied.

A refinement method constructs a hierarchy “bottom up”—from lowest resolution

to highest resolution. A method that constructs a hierarchy “top down” is called a sim-

plification method. Thus, it begins with a high-resolution representation of the data and

removes elements (or data) to construct various lower-resolution levels in a hierarchy. A

few examples of simplification methods are described in [7, 8, 16, 17, 20, 27, 28].

There are several refinement strategies and methods, some are described in [19,

39, 45]. Longest-edge bisection is used here and the details for the 1D, 2D, and 3D cases

are described in the following sections. In all cases, the element to be subdivided is bisected

by inserting a new knot at the midpoint of its longest edge. Methods that consider variable

knot locations are described in [6, 41, 42].

Alternatively, one may want to use a refinement scheme other than longest-edge

bisection. This is not an issue in the 1D case, since there aren’t very many possibilities

when subdividing, however, there may be advantages in the 2D and 3D cases. A scheme

such as red-green splitting, see [19], ensures well-shaped elements that are all similar to the

elements that define the coarsest level of the hierarchy. Thus, no chance of long and skinny

elements. Another method that does not produce skinny elements is diamond subdivision,

see [18].

2.4.1 The 1D Case

Longest-edge bisection, in this case, reduces to bisecting an interval by inserting a new knot

at the midpoint of the interval. Succussive levels in a hierarchy are created by inserting one

knot at the midpoint of the segment having the largest local error at each iteration. Five

levels from a hierarchy of approximations of F (x) = 10x
(
x − 1

2

) (
x − 3

4

)
, 0 ≤ x ≤ 1, are

shown in Figure 2.7. The initial decomposition is a single line segment, having two knots,

that covers the interval [0, 1]. One can easily see how the addition of knots to the spline

improves the overall approximation.
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2.4.2 The 2D Case

In this case, one must subdivide triangles in order to create a hierarchy of approximations.

To subdivide a triangle, one must determine the longest edge and insert a knot at the

midpoint of this edge. Incidently, one must also induce splits in neighboring elements that

share the split edge to guarantee a mesh that does not have “hanging nodes.” (In the

2D case, either no or one edge neighbor exists.) Figure 2.8 shows a sample hierarchy that

approximates F (x, y) = 10x
(
x − 1

4

) (
x − 3

4

)
y2, 0 ≤ x, y ≤ 1. The subdivision tends to

focus on high-gradient areas, since the local error estimates in these regions are relatively

high. In general, the concept of concentrating elements in high-gradient regions is intuitive

because more elements are needed to better represent these regions, since the function being

approximated changes dramatically in these areas.

When computing the hierarchy, one can at each iteration choose to refine multiple

elements simultaneously. This more quickly refines the approximation and more granular

levels are produced in the hierarchy. All of the 2D and 3D examples shown refine the top ten

percent of highest-error elements at each iteration to improve performance. Additionally,

since many of elements of the best-approximation normal equations do not change, one can

reuse matrix elements to further improve performance.

2.4.3 The 3D Case

To subdivide a tetrahedron, one must determine the longest edge and insert a knot at

the midpoint of this edge. Incidently, as in the 2D case, one must also induce splits in

neighboring elements that share the split edge to guarantee a mesh that does not have

hanging nodes. However, unlike the 2D case, there can be any number of edge neighbors.

Figure 2.9 shows a sample hierarchy approximating skull data. Two cutting planes are used

to “slice” through the 3D data domain. Light areas show high-density regions and dark

areas show low-density regions.



22

Figure 2.7: Hierarchical approximation example. Top-left image shows the original function
F (x) = 10x

(
x − 1

2

) (
x − 3

4

)
, 0 ≤ x ≤ 1. Top-middle to bottom-right images show increas-

ingly better approximations Al(x), where l is the level in the hierarchy. Approximations
contain 4, 6, 8, 14, and 19 knots, respectively.

Figure 2.8: Top-left image shows the original function F (x, y) = 10x
(
x − 1

4

) (
x − 3

4

)
y2, 0 ≤

x, y ≤ 1. Top-middle to bottom-right images show increasingly better approximations.
Triangulation for each approximation is shown in the xy-plane. Approximations contain 4,
14, 38, 162, and 859 knots and have error estimates of 3.2 × 10−2, 9.3 × 10−4, 8.3 × 10−5,
3.7 × 10−6, and 1.1 × 10−7, respectively
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Figure 2.9: Three approximations of skull data (upper-right to lower-right images). Upper-
left image shows the original data, containing 278528 data sites. The approximations contain
326, 1775, and 9776 knots and have an error of 0.1087, 0.0794, and 0.0399, respectively.

2.5 Finite Element Approach

Under certain conditions, one may be able to conserve storage space by only inserting knots

at discrete locations. Since many data sets have implied data site locations, it may be

possible to reduce the required storage space by “smart” or implied indexing of the knots

(based on the original data sites) in an approximation. Consider the case of approximating a

rectilinear grid where all the data site locations are implied. With clever knot indexing, the

required storage space for an approximation can be significantly reduced. This improvement

is easily incorporated into the refinement process that generates hierarchies. When inserting

a new knot, one simply “snaps” its location to the nearest originally provided discrete

location. Figure 2.10 shows a 1D example of the knot insertion process.

When “snapping,” one must take care that the found knot location is inside the

domain of the element being refined. In all cases (1D, 2D, and 3D), malformed elements may
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Figure 2.10: Insert new knots at discrete locations only. 1) When subdividing an element,
one wants to bisect at the midpoint of the chosen element. 2) The nearest discrete location
is found. 3) The inserted knot is “snapped” to the found discrete location.

be constructed by snapping to a knot location that is outside of the domain of the element.

This causes serious problems in the approximation process and must be avoided. Addition-

ally, snapping to one of the element boundaries—other than the edge being bisected—should

also be avoided. Figure 2.11 shows a malformed triangle formation caused when the mid-

point of the longest edge is snapped to a knot location outside of the domain of the triangle

being refined.

Figure 2.11: Example of malformed triangles when the midpoint E of the longest edge
(formed by B and C) is snapped to a knot location F outside of the domain of the triangle(s)
being refined.

2.6 Using First-derivative Information

In some applications, it may be appropriate to require an approximation to respect the

extrema of the function being approximated. One example is when approximating a sound

wave. Distortion may occur if over - and under-shoots are present, since the minimum and

maximum amplitude values may be to low (or high) to be reproduced faithfully. Examples

of over- and under-shoots are shown in Figure 2.12. Over- and under-shoots can be reduced

by including first-derivative information in the computation of the spline coefficients. The
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method described here is discussed in [44].

Figure 2.12: Demonstration of over- and under-shoots in approximation. The orange curve
is the original function F (x) = sin (4πx) , 0 ≤ x ≤ 1. Dark spline is the approximation
A(x), having 9 knots.

2.6.1 The 1D Case

First-derivative information is easily integrated into the best-approximation method. One

need only modify the definition of the scalar product 〈g, h〉 of two functions g(x) and h(x),

defined over the interval [a, b] as

〈g, h〉 =
∫ b

a
w0g(x)h(x) + w1g

′(x)h′(x)dx, (2.28)

where the “weights” w0 and w1 are user-specified, such that w0 > 0, w1 ≥ 0, and w0+w1 = 1.

A Sobolev -like L2 norm [29] for function D(x) = F (x) − A(x) is used to measure the error

of an approximation and is defined as

√
〈D, D〉 =

√∫ b

a
w0D(x)2 + w1D′(x)2dx. (2.29)

Revising the best-approximation normal equations Mc = F, see Equation (2.1), to use the

more general scalar product, which contains first-derivative information, one obtains the

elements ai,j of M from

ai,j = w0

∫ b

a
fi(x)fj(x)dx + w1

∫ b

a
f ′

i(x)f ′
j(x)dx, 0 ≤ i, j ≤ N − 1, (2.30)

and the elements li of F are given by

li = w0

∫ b

a
F (x)fi(x)dx + w1

∫ b

a
F ′(x)f ′

i(x)dx, 0 ≤ i ≤ N − 1. (2.31)
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Integral values required to compute the matrix elements ai,j are∫ k1

k0

(f0(x))2dx =
1
3
∆0, (2.32)

∫ kN−1

kN−2

(fN−2(x))2dx =
1
3
∆N−2, (2.33)

∫ ki+1

ki−1

(fi(x))2dx =
1
3
(∆i−1 + ∆i), 1 ≤ i ≤ N − 2, and (2.34)

∫ ki+1

ki

fi(x)fi+1(x)dx =
1
6
∆i, 0 ≤ i ≤ N − 2. (2.35)

Terms involving the first derivative are∫ k1

k0

(f ′
0(x))2dx =

1
∆0

, (2.36)

∫ kN−1

kN−2

(f ′
N−2(x))2dx =

1
∆N−2

, (2.37)

∫ ki+1

ki−1

(f ′
i(x))2dx =

1
∆N−1

+
1
∆i

, 1 ≤ i ≤ N − 2, and (2.38)

∫ ki+1

ki

f ′
i(x)f ′

i+1(x)dx =
−1
∆i

, 0 ≤ i ≤ N − 2. (2.39)

Thus, the tridiagonal matrix M can be described as the “weighted sum” of two tridiagonal

matrices M0 and M1, given by

M =
1
6
(w0M0 + w1M1), (2.40)

where the matrices M0 and M1 are given by

M0 =




2∆0 ∆0

∆0 2(∆0 + ∆1) ∆1

∆1 2(∆1 + ∆2) ∆2

. . . . . . . . .

∆N−2 2∆N−2




, (2.41)

and

M1 = 6




1
∆0

1
∆0

−1
∆0

∆0+∆1
∆0∆1

−1
∆1

−1
∆1

∆1+∆2
∆1∆2

∆2

. . . . . . . . .

−1
∆N−2

1
∆N−2




. (2.42)
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A 1D approximation using first-derivative information is shown in Figure 2.13.

In this example, the function F (x) = sin (4πx) , 0 ≤ x ≤ 1, is approximated by a spline

having 9 knots uniformly spaced across the interval [0, 1]. A few different combinations of

weights are used to illustrate the effect of first-derivative information on the approximation.

Even the slightest addition of first-derivative information effects the resulting approximation

dramatically.

Figure 2.13: Top-left image shows the original approximation A(x) of function F (x) =
sin (4πx) , 0 ≤ x ≤ 1. In each image, the black spline shows the approximation A(x) and
the orange curve shows the original function F (x). Top-left image uses weights (1.0, 0.0),
where the weights are given as (w0, w1). Top-right image uses weights (0.9, 0.1). Bottom-left
image uses weights (0.5, 0.5). Bottom-right image uses weights (0.1, 0.9).

2.6.2 The 2D Case

Using the generalization of Equation (2.28), the scalar product 〈g, h〉 of two functions g(x, y)

and h(x, y), defined over triangle T , is given as

〈g, h〉 =
∫

T
w0,0g(x, y)h(x, y) + w1,0g

x(x, y)hx(x, y) + w0,1g
y(x, y)hy(x, y)dxdy, (2.43)

where, for an arbitrary function s(x, y), si(x, y) corresponds to the partial derivative of

function s(x, y) with respect to i ∈ {x, y}. The weights in this case are w0,0 > 0, w1,0, w0,1 ≥
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0, and w0,0 + w1,0 + w0,1 = 1, however, in general, w1,0 = w0,1 so that equal weights are

applied to each direction of the derivative.

Revising the best-approximation normal equations Mc = F, see Equation (2.1), to

use the more general scalar product, which contains first-derivative information, one obtains

the elements ai,j of M from

ai,j = w0,0

∫
T

fi(x, y)fj(x, y)dxdy +

w1,0

∫
T

fx
i (x, y)fx

j (x, y)dxdy +

w0,1

∫
T

fy
i (x, y)fy

j (x, y)dxdy, 0 ≤ i, j ≤ N − 1, (2.44)

and the elements li of F are given by

li = w0,0

∫
T

F (x, y)fi(x, y)dxdy +

w1,0

∫
T

F x(x, y)fx
i (x, y)dxdy +

w0,1

∫
T

F y(x, y)fy
i (x, y)dxdy, 0 ≤ i ≤ N − 1. (2.45)

Integral values to compute the matrix elements ai,j are

nm−1∑
j=0

∫
Tj

(fm(x, y))2dxdy =
1
12

nm−1∑
j=0

Jj , (2.46)

where nm is the number of triangles in the platelet of knot km and Jj is the Jacobian

associated with the jth platelet triangle. (The platelet of knot km is the set of triangles

Tm = {Tj}, 0 ≤ j ≤ nm − 1.) An integral value required to compute the scalar product

〈fm, fn〉 whose associated knots km and kn are connected by and edge is given by

nm,n−1∑
j=0

∫
Tj

fm(x, y)fn(x, y)dxdy =
1
24

nm,n−1∑
j=0

Jj , (2.47)

where nm,n is the number of triangles in the set Tm,n, which is the intersection of sets Tm

and Tn. The linear polynomial f(x, y) interpolating the values one, zero, and zero at the

vertices (x0, y0)T, (x1, y1)T, and (x2, y2)T, respectively, has the partial derivatives

fx(x, y) = − 1
J

det


 1 y1

1 y2


 =

y1 − y2

J
(2.48)
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Figure 2.14: Indexing scheme for platelet knots relative to km in 2D case (neighboring
triangles oriented counterclockwise).

and

fy(x, y) = − 1
J

det


 x1 1

x2 1


 =

x2 − x1

J
. (2.49)

Integrals involving these partial derivatives are

nm−1∑
j=0

∫
Tj

(
fx

m(x, y)
)2

dxdy =
1
2

nm−1∑
j=0

1
Jj


det


 1 yj

1

1 yj
2






2

, (2.50)

and
nm−1∑
j=0

∫
Tj

(
fy

m(x, y)
)2

dxdy =
1
2

nm−1∑
j=0

1
Jj


det


 xj

1 1

xj
2 1






2

, (2.51)

where (xj
0, y

j
0)

T, (xj
1, y

j
1)

T, and (xj
2, y

j
2)

T are the counterclockwise-ordered vertices of the

jth platelet triangle associated with knot km, see Figure 2.14. Other required values are

nm,n−1∑
j=0

∫
Tj

fx
m(x, y)fx

n (x, y)dxdy =
1
2

nm,n−1∑
j=0

1
Jj

det


 1 yj

1

1 yj
2


det


 1 yj

0

1 yj
1


 (2.52)

and

nm,n−1∑
j=0

∫
Tj

fy
m(x, y)fy

n(x, y)dxdy =
1
2

nm,n−1∑
j=0

1
Jj

det


 xj

1 1

xj
2 1


det


 xj

0 1

xj
1 1


 , (2.53)

where nm,n is the number of platelet triangles in the set Tm,n—the common platelet triangles

between knots km and kn—and (xj
0, y

j
0)

T, (xj
1, y

j
1)

T, and (xj
2, y

j
2)

T are vertices of a triangle

Tj ∈ Tm,n, see Figure 2.15.

A 2D approximation using first-derivative information is shown in Figure 2.16. A

“checkerboard function” was digitized to a 100 × 100 grid to which a linear spline was fit.
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Figure 2.15: Indexing scheme for platelet knots relative to km and kn in 2D case (neigh-
boring triangles oriented counterclockwise).

Figure 2.16: Four approximations of 2D checkerboard function with varying weights
(w0,0, w1,0, w0,1): (1, 0, 0), (3

4 , 1
8 , 1

8), (1
2 , 1

4 , 1
4), and (1

4 , 3
8 , 3

8), from upper-left to lower-right
corner, number of knots varying between 5000 and 6000.
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The approximations were computed for this spline using first-derivative information and

the finite-element approach described in Section 2.5. It is obvious in this example that the

first-derivative affects the over- and under-shoots significantly. As more weight is added to

the first-derivative information, the better the approximation becomes.

2.6.3 The 3D Case

Generalizing to the 3D case, the scalar product 〈g, h〉 of two functions g(x, y, z) and h(x, y, z),

defined over tetrahedron T , is defined as

〈g, h〉 =
∫

T
w0,0,0g(x, y, x)h(x, y, x) +

w1,0,0g
x(x, y, z)hx(x, y, z) +

w0,1,0g
y(x, y, z)hy(x, y, z) +

w0,0,1g
z(x, y, z)hz(x, y, z)dxdydz, (2.54)

where, for an arbitrary function s(x, y, z), si(x, y, z) corresponds to the partial derivative

of function s(x, y, z) with respect to i ∈ {x, y, z}. The weights in this case are w0,0,0 > 0,

w1,0,0, w0,1,0, w0,0,1 ≥ 0, and w0,0,0 +w1,0,0 +w0,1,0 +w0,0,1 = 1, however, in general, w1,0,0 =

w0,1,0 = w0,0,1 so that equal weights are applied to each direction of the derivative.

Revising the best-approximation normal equations Mc = F, see Equation (2.1), to

use the more general scalar product, which contains first-derivative information, one obtains

the elements ai,j of M from

ai,j = w0,0,0

∫
T

fi(x, y, z)fj(x, y, z)dxdydz +

w1,0,0

∫
T

fx
i (x, y, z)fx

j (x, y, z)dxdydz +

w0,1,0

∫
T

fy
i (x, y, z)fy

j (x, y, z)dxdydz +

w0,0,1

∫
T

fz
i (x, y, z)fz

j (x, y, z)dxdydz, 0 ≤ i, j ≤ N − 1, (2.55)

and the elements li of F are given by

li = w0,0,0

∫
T

F (x, y, z)fi(x, y, z)dxdydz +

w1,0,0

∫
T

F x(x, y, z)fx
i (x, y, z)dxdydz +



32

w0,1,0

∫
T

F y(x, y, z)fy
i (x, y, z)dxdydz +

w0,0,1

∫
T

F z(x, y, z)fz
i (x, y, z)dxdydz, 0 ≤ i ≤ N − 1. (2.56)

Integral values to compute the matrix elements ai,j are

nm−1∑
j=0

∫
Tj

(
fm(x, y, z)

)2
dxdydz =

1
60

nm−1∑
j=0

Jj , (2.57)

where nm is the number of tetrahedra in the platelet of knot km and Jj is the Jacobian

associated with the jth platelet tetrahedron. (The platelet of knot km is the set of tetrahedra

Tm = {Tj}, 0 ≤ j ≤ nm − 1.) An integral value required to compute the scalar product

〈fm, fn〉 whose associated knots km and kn are connected by and edge is given by

nm,n−1∑
j=0

∫
Tj

fm(x, y, z)fn(x, y)dxdydz =
1

120

nm,n−1∑
j=0

Jj , (2.58)

where nm,n is the number of tetrahedra in the set Tm,n, which is the intersection of sets Tm

and Tn. The linear polynomial f(x, y, z) interpolating the values one, zero, zero, and zero

at the vertices (x0, y0, z0)T, (x1, y1, z1)T, (x2, y2, z2)T, and (x3, y3, z3)T, respectively, has

the partial derivatives

fx(x, y, z) = − 1
J

det




1 y1 z1

1 y2 z2

1 y3 z3


 , (2.59)

fy(x, y, z) = − 1
J

det




x1 1 z1

x2 1 z2

x2 1 z3


 , (2.60)

and

fz(x, y, z) = − 1
J

det




x1 y1 1

x2 y2 1

x3 y3 1


 . (2.61)

Integrals involving these partial derivatives are

nm−1∑
j=0

∫
Tj

(
fx

m(x, y, z)
)2

dxdydz =
1
6

nm−1∑
j=0

1
Jj


det




1 y1 z1

1 y2 z2

1 y3 z3







2

, (2.62)
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nm−1∑
j=0

∫
Tj

(
fy

m(x, y, z)
)2

dxdydz =
1
6

nm−1∑
j=0

1
Jj


det




x1 1 z1

x2 1 z2

x3 1 z3







2

, (2.63)

and

nm−1∑
j=0

∫
Tj

(
fz

m(x, y, z)
)2

dxdydz =
1
6

nm−1∑
j=0

1
Jj


det




x1 y1 1

x2 y2 1

x3 y3 1







2

, (2.64)

where the knots (xj
1, y

j
1, z

j
1)

T, (xj
2, y

j
2, z

j
2)

T, and (xj
3, y

j
3, z

j
3)

T denote the boundary vertices

of the faces of the platelet tetrahedra associated with knot (xj
m, yj

m, zj
m)T. Other required

values are

∑nm,n−1
j=0

∫
Tj

fx
m(x, y, z)fx

n (x, y, z)dxdydz =

1
6

∑nm,n−1
j=0

1
Jj

det




1 y1 z1

1 y2 z2

1 y3 z3


det




1 y0 z0

1 y3 z3

1 y2 z2


 , (2.65)

∑nm,n−1
j=0

∫
Tj

fy
m(x, y, z)fy

n(x, y, z)dxdydz =

1
6

∑nm,n−1
j=0

1
Jj

det




x1 1 z1

x2 1 z2

x3 1 z3


det




x0 1 z0

x3 1 z3

x2 1 z2


 , (2.66)

and

∑nm,n−1
j=0

∫
Tj

fz
m(x, y, z)fz

n(x, y, z)dxdydz =

1
6

∑nm,n−1
j=0

1
Jj

det




x1 y1 1

x2 y2 1

x3 y3 1


det




x0 y0 1

x3 y3 1

x2 y2 1


 , (2.67)

where nm,n is the number of platelet tetrahedra in the set Tm,n—the common platelet

tetrahedra between knots km and kn—and (xj
0, y

j
0, z

j
0)

T, (xj
1, y

j
1, z

j
1)

T, (xj
2, y

j
2, z

j
2)

T, and

(xj
3, y

j
3, z

j
3)

T are vertices of a tetrahedron Tj ∈ Tm,n.
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Chapter 3

Linear-edge Quadratic Elements

Higher-order elements have gained in importance, since they can be used to represent com-

plex data both in the context of numerical simulation and numerical data approximation.

Figure 3.1 shows the advantage of using a higher-order element to approximate data in

the 1D case. Higher-order elements can typically represent data better when compared to

lower-order elements. This improvement in quality is true for two, three, and higher dimen-

sions. In the 2D case, a linear triangular element represents a linear polynomial defined over

the domain of the triangle. Most visualization and approximation techniques can use this

type of element. A higher-order triangular element is the quadratic triangle, which has a

quadratic polynomial defined over the same domain as the linear triangle. Figure 3.2 shows

an example of a linear triangle and a quadratic triangle. In the 3D case, linear tetrahedra

can be extended to quadratic tetrahedra in a similar fashion.

Figure 3.1: Advantage of using higher-order representation. Left image shows original piece-
wise linear data. Middle image shows linear approximation using one linear element. Right
image shows quadratic approximation using one quadratic element. Gray area represents
approximation error.
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Figure 3.2: Left image shows a linear triangular element. Right image shows a quadratic
triangular element.1

Higher-order hexahedral elements are popular in finite element applications [9], and

the method described in [47] shows the potential for substantial reductions in the number

of required elements when replacing linear elements with quadratic elements. The overall

goal is the construction of a hierarchical data approximation over 2D and 3D domains using

a best-approximation approach based on quadratic polynomials.

3.1 The 2D Case

Each simplicial element has six associated knots, one knot per corner, and one knot per

edge. For simplicity, only edge knots that are positioned at the midpoint along the edges

of the standard simplex are considered. A quadratic polynomial is associated with each

simplicial element that approximates the dependent variable over the corresponding region

in space. Each quadratic basis polynomial is represented in Bernstein-Bézier form, see

[12]. Assuming that the function being approximated—typically a scalar- or vector-valued

function—is known in analytical form, it is possible to compute the unique best quadratic

spline approximation defined as a linear combination of a set of quadratic basis functions.

The best approximation, understood in a least squares sense, is the result of solving the

normal equations, see [10].

The standard triangle T U in parameter space is the triangle with corners (0, 0)T,

(1, 0)T, and (0, 1)T. A 2D quadratic Bernstein-Bézier polynomial B2
i,j(u, v) (abbreviated

1In this dissertation, quadratic elements are often rendered with parametric lines in the interior of the
element. These lines help show the interior curvature of the element.
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Figure 3.3: Bivariate quadratic basis (or “shape”) functions. Left image shows the basis
function B2

0,0(u, v) = (1 − u − v)2 associated with corner knot located at u0,0 = (0, 0)T.
Right image shows the basis function B2

1,0(u, v) = 2(1 − u − v)u associated with edge knot

located at u1,0 = (1
2 , 0)T.

B2
i,j), is defined as

B2
i,j(u, v) =

2!
(2 − i − j)!i!j!

(1 − u − v)2−i−juivj , i, j ≥ 0, i + j ≤ 2, (3.1)

and is associated with each corner and midpoint of each edge. The six basis polynomials

correspond to the six knots ui,j = (ui,j , vi,j)T =
(

i
2 , j

2

)
, i, j ≥ 0, i+ j ≤ 2, in the standard

triangle T U.

The analytical function being approximated is denoted by F (x, y) (abbreviated as

F ). The normal equations determine the set of coefficients for the desired quadratic spline

representation—a best approximation in the least squares sense.

Corner knots of simplicial elements may be shared by any number of elements,

and the basis function associated with a corner knot vi is denoted by fi(x, y). An edge of a

simplicial element may be shared by no more than two elements in the 2D case and by an

arbitrary number of elements in the 3D case. A basis function gj(x, y) is associated with

the midpoint ej of a simplex edge. Figure 3.3 shows the two types of basis functions for the

2D case. The set of elements sharing a common corner knot is called the platelet of this

corner, and the set of elements sharing a common edge, are called “edge neighbors.” Thus,
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Figure 3.4: Basis functions associated with the platelet of knot vi and the edge neighbors
of edge ej .

a set of platelet elements defines the region in space over which a basis function associated

with the corresponding corner knot is non-zero. Edge neighbors define the region in space

over which a basis function, associated with this edge, is non-zero. Figure 3.4 shows the

basis functions associated with the platelet of a vertex and the edge neighbors of an edge.

The best approximation A(x, y) of a function F (x, y) is defined as a linear com-

bination of the basis functions associated with all distinct element corners (“corner basis

functions” fi) and simplex edges (“edge basis functions” gi). Assuming that there are m

distinct corners and n distinct edges, the best approximation is given as

A(x, y) =
m−1∑
i=0

cifi(x, y) +
n−1∑
j=0

djgj(x, y). (3.2)

The normal equations are solved to obtain the unknown coefficients ci and dj . In matrix

form, the normal equations are


〈f0, f0〉 · · · 〈f0, fm−1〉 〈f0, g0〉 · · · 〈f0, gn−1〉
...

...

〈fm−1, f0〉 · · · 〈fm−1, fm−1〉〈fm−1, g0〉 · · · 〈fm−1, gn−1〉

〈g0, f0〉 · · · 〈g0, fm−1〉 〈g0, g0〉 · · · 〈g0, gn−1〉
...

...

〈gn−1, f0〉 · · · 〈gn−1, fm−1〉 〈gn−1, g0〉 · · · 〈gn−1, gn−1〉







c0

...

cm−1

d0

...

dn−1




=




〈F, f0〉
...

〈F, fm−1〉

〈F, g0〉
...

〈F, gn−1〉




, (3.3)

abbreviated as Mc = F, where the inner product 〈g, h〉 of two functions g(x, y) and h(x, y)

is similarly defined to the 1D scalar product given by Equation (2.2).

As in the linear case, the change-of-variables theorem is used to integrate over
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arbitrary triangles. The scalar products one must consider are

〈N0,0, N0,0〉 =
∫ 1

v=0

∫ 1−v

u=0
(1 − u − v)4 dudv =

1
30

, (3.4)

〈N0,0, N1,0〉 =
∫ 1

v=0

∫ 1−v

u=0
2(1 − u − v)3u dudv =

1
60

, (3.5)

〈N0,0, N2,0〉 =
∫ 1

v=0

∫ 1−v

u=0
(1 − u − v)2u2 dudv =

1
180

, (3.6)

〈N0,0, N1,1〉 =
∫ 1

v=0

∫ 1−v

u=0
2(1 − u − v)2uv dudv =

1
180

, (3.7)

〈N1,0, N1,0〉 =
∫ 1

v=0

∫ 1−v

u=0
4(1 − u − v)2u2 dudv =

1
45

, and (3.8)

〈N1,0, N0,1〉 =
∫ 1

v=0

∫ 1−v

u=0
4(1 − u − v)2uv dudv =

1
90

. (3.9)

where Ni,j corresponds to the basis function located at ui,j =
(

i
2 , j

2

)T
.

The same Jacobian as in the linear case, see Equation (2.16), is used here, since

the domain of the quadratic triangle has linearly defined edges. The global error E for

approximation A(x) and local errors ei for an element i are computed using the same

method as the linear case, using Equations (2.21) and (2.22), respectively. The linear

system Mc = F is sparsely defined. An efficient sparse system solver is used to find the

coefficients for the best approximation.

An example showing the potential element reduction by using quadratic elements is

shown in Figure 3.5. The function being approximated is F (x, y) = x2 +y2, −1
2 ≤ x, y ≤ 1

2 .

In this ideal example (the original function is quadratic), a quadratic approximation having

two elements can, in theory, represent this function exactly (numerical floating-point error

is introduced in practice). To represent this function accurately, a linear approximation

must use a relatively large number of elements—nearly 200 elements. (This implies an

(approximate) upper bound to the potential element reduction—when comparing linear

and quadratic elements in an ideal situation—of about one hundredth the number of linear

elements.) The global error for the quadratic representation is 3.6×10−14 and is 1.6×10−6

for the linear approximation. The linear approximation was computed using the method

described in Section 2.2.

A comparison of a quadratic- and a linear-spline approximation is shown in Fig-

ure 3.6. The original image consists of 1536×1024 RGB pixels (the described approximation
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Figure 3.5: Comparison between quadratic spline representation (left) and linear spline
approximation (right). The function being approximated is F (x, y) = x2 + y2, −1

2 ≤ x, y ≤
1
2 . Below each approximation is the corresponding domain decomposition. The quadratic
representation uses 9 knots and two elements. The linear approximation uses 111 knots and
187 elements.

method was extended to support vector-valued data, thus, computing each channel of the

RGB data simultaneously). The quadratic spline approximation consists of 2989 quadratic

elements and the linear approximation uses 11482 linear elements. Computation time was

158 seconds for the quadratic approximation and 536 seconds for the linear approximation

and image-space errors are 3.61% and 3.83%, respectively. Image-space errors are com-

puted for the approximations by computing a difference image and then integrating over

the result, see the Appendix, Section B.

A hierarchy of approximations can be constructed, as in the linear case, by com-

puting element-specific errors ei, refining the highest error elements, and recomputing the

spline coefficients. A hierarchy of 2D quadratic spline approximations is shown in Figure 3.7.

The original image consists of 211 × 144 pixels. Global errors for the four approximations

are 37.05, 9.70, 1.86, and 0.45. Image-space errors for the four approximations are 8.44%,

6.95%, 5.90%, and 5.27%. Computation times ranged from six to 200 seconds for the four

approximations. 2

2All of the approximations were computed on a 1.8GHz Pentium IV graphics workstation with 512MB of
main memory. Linear approximations were rendered at interactive frame rates. Quadratic approximations
required just a few seconds to render (in software) per frame.
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Figure 3.6: Comparison between quadratic spline approximation (left) and linear spline ap-
proximation (right). Original image is shown at the top. The quadratic approximation uses
6076 knots and 2989 elements. The linear approximation uses 5816 knots and 11482 ele-
ments. Image-space errors are 3.61% and 3.83% for the quadratic and linear approximation,
respectively.

3.2 The 3D Case

The 3D case is a straightforward extension of the 2D case. Only the significant differences

are described. The quadratic tetrahedron is defined by ten knots—four corner knots and

six edge knots. The standard tetrahedron T U in parameter space is the tetrahedron with

corners (0, 0, 0)T, (1, 0, 0)T, (0, 1, 0)T, and (0, 0, 1)T. A 3D quadratic Bernstein-Bézier

polynomial B2
i,j,k(u, v, w) (abbreviated B2

i,j,k), is defined as

B2
i,j,k(u, v, w) =

2!
(2 − i − j − k)!i!j!k!

(1 − u − v − w)2−i−j−kuivjwk,

i, j, k ≥ 0, i + j + k ≤ 2, (3.10)
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Figure 3.7: Quadratic hierarchical approximation of digital image data set. Original image
is shown at the top. Four approximations are shown, from upper-left to lower-right, using
16, 48, 191, and 790 quadratic elements, respectively.

and is associated with each corner and midpoint of each edge. The ten basis polynomials

correspond to the ten knots ui,j,k = (ui,j,k, vi,j,k, wi,j,k)T =
(

i
2 , j

2 , k
2

)T
, i, j, k ≥ 0, i+j+k ≤

2 in parameter space. The scalar products one must consider are

〈N0,0,0, N0,0,0〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
(1 − u − v − w)4 dudv =

1
210

,

〈N0,0,0, N1,0,0〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
2(1 − u − v − w)3u dudv =

1
420

,

〈N0,0,0, N2,0,0〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
(1 − u − v − w)2u2 dudv =

1
1260

,

〈N0,0,0, N1,1,0〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
2(1 − u − v − w)2uv dudv =

1
1260

,

〈N1,0,0, N1,0,0〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
4(1 − u − v − w)2u2 dudv =

1
315

,

〈N1,0,0, N0,1,0〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
4(1 − u − v − w)2uv dudv =

1
630

, and

〈N1,0,0, N0,1,1〉 =
∫ 1

w=0

∫ 1−w

v=0

∫ 1−v−w

u=0
4(1 − u − v − w)uvw dudv =

1
1260

, (3.11)
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where Ni,j,k corresponds to the basis function located at ui,j,k =
(

i
2 , j

2 , k
2

)T
. The same

Jacobian as in the linear case, see Equation (2.25), is used here, since the mapping from

the standard tetrahedron T U to the linear-edge quadratic tetrahedron T is linear.

A comparison of a quadratic- and a linear-spline approximation of a 3D skull

data set is shown in Figure 3.8. The original data set consists of 278528 data sites. The

quadratic-spline approximation is visualized by tessellating each quadratic element with 512

linear elements and extracting an isosurface from the linear elements. The isosurface for

the linear-spline approximation was extracted directly from the linear elements forming the

approximation. The quadratic-spline approximation has a global error of 2.15 × 10−6, and

the linear spline approximation has a global error of 1.65 × 10−2. Image-space errors are

8.12% and 8.33% for the isosurface images from the quadratic and linear approximation,

respectively, see the Appendix Section B. The quadratic-spline approximation required

about 20 hours of computation time while the linear-spline approximation required less

than three.

Figure 3.8: Comparison between quadratic approximation (left) and linear approximation
(right). Original skull is shown in the center image. The quadratic approximation uses 7487
knots and 5348 elements. The linear approximation uses 14667 knots and 78530 elements.
Image-space errors are 8.12% and 8.33% for the isosurface images from the quadratic and
linear approximation, respectively.

A hierarchy of approximations can be constructed, as in the linear case, by com-

puting element-specific errors ei, refining the highest error elements, and recomputing the

spline coefficients. A sample hierarchy of 3D quadratic spline approximations for a 3D skull
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data set is shown in Figure 3.9. Global errors for the four approximations are 1.0 × 10−3,

4.7 × 10−4, 3.9 × 10−5, and 2.1 × 10−6. 3

Figure 3.9: Quadratic hierarchical approximation of skull data set. Four approximations,
from upper-left to lower-right, using 62, 125, 741, and 5384 quadratic elements, respectively.

3All of the approximations were computed on a 1.8GHz Pentium IV graphics workstation with 512MB
of main memory. Linear approximations were rendered at interactive frame rates. Tessellation of quadratic
approximations required several seconds. Once tessellated, computing and rendering an isosurface was
performed at interactive frame rates.
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Chapter 4

Curved-quadratic Elements

The linear-edge higher-order elements described in Chapter 3 are extended to include higher-

order (“curved”) domains. These elements are called curved higher-order elements or, more

simply, curved elements. A curved-quadratic triangle (and tetrahedron) is defined as an

element that has both a quadratically defined domain and quadratic polynomial defined

over that domain, see Figure 4.1.

Figure 4.1: Comparison of linear-edge quadratic element to curved quadratic element. Left
image shows a linear-edge quadratic triangular element. Right image shows a curved-
quadratic triangular element. Curved-quadratic element is curved in both functional space
and xy-space.1

Curved-quadratic elements can be used to decompose a domain more effectively.

For example, consider a cross section of a wing and the air flow around it. There are distinct

regions, defined by discontinuities in the data, that can be better represented by aligning
1In this dissertation, quadratic elements are often rendered with parametric lines in the interior of the

element. These lines help show the interior curvature of the element.
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element edges along these discontinuities, see Figure 4.2.

Figure 4.2: Decomposition of domain around a wing using 2D curved-quadratic elements.
Left image shows three distinct regions of interest, each separated by discontinuities. Dark
gray and light gray regions are on either side of a “shock.” White region is region bounded by
wing geometry. Right image shows possible domain decomposition using a combination of
curved-quadratic (gray) and linear-edge-quadratic (white) elements. Bullets denote corner
vertices; circles denote edge vertices.

4.1 The 2D Case

Computation of the best approximation is very similar to that of the linear-edge quadratic

element. The only difference is in the implementation of the change-of-variables theorem.

In this case, the Jacobian J(u, v) cannot be moved outside of the integral computations,

since it depends on u and v. The Jacobian for a curved-quadratic triangle is given as

J(u, v) = det


 ∂

∂ux(u, v) ∂
∂vx(u, v)

∂
∂uy(u, v) ∂

∂vy(u, v)


 , (4.1)

where the partial derivatives are

∂

∂u
x(u, v) = 2((x5 − x4 − x3 + x0)v + (x1 − 2x3 + x0)u + x3 − x0),

∂

∂v
x(u, v) = 2((x2 − 2x4 + x0)v + (x5 − x4 − x3 + x0)u + x4 − x0),

∂

∂u
y(u, v) = 2((y5 − y4 − y3 + y0)v + (y1 − 2y3 + y0)u + y3 − y0), and

∂

∂v
y(u, v) = 2((y2 − 2y4 + y0)v + (y5 − y4 − y3 + y0)u + y4 − y0), (4.2)

where the six knots ki = (xi, yi)T of the element are ordered as shown in Figure 4.3.

A curved-quadratic triangle approximation is applied to the 2D digital image data

shown in Figure 4.4. This image has three regions that are distinctly separated by disconti-
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Figure 4.3: Indexing used for curved-quadratic triangle.

Figure 4.4: Left image shows original digital image that can benefit from curved-quadratic
element approximation. Middle image shows a curved-quadratic approximation consisting
of 411 knots and 134 curved-quadratic triangles. Right image shows the triangulation of
the knots. Approximation has an image-space error of 1.14%.

nuities. An approximation using curved-quadratic triangles was constructed by first fitting

quadratic curves to the discontinuities and then triangulating the result. Since the three

different regions are separated by discontinuities, a separate approximation was computed

for each region. Knots along the discontinuities may share the same location, but have

different coefficient values associated with them.

A comparison between a linear and a curved-quadratic triangle approximation

is shown in Figure 4.5. A hierarchy of curved-quadratic approximations was constructed

and then two levels in the hierarchy were extracted for comparison. Each of the three re-

gions were treated independently. Thus, there are “hanging nodes” along the discontinuity.

However, this is acceptable in this situation because the knots lie along the discontinuity.

Image-space errors for the low-resolution quadratic, high-resolution quadratic, and linear

approximation are 1.14%, 0.63%, and 1.77%, respectively, see the Appendix, Section B.
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Figure 4.5: Comparison between curved-quadratic and linear approximations. Original
image, consisting of 800× 800 pixels, is shown in the upper-left corner. One linear approx-
imation is shown in the lower-left corner. Two curved-quadratic approximations are shown
in the middle column; their corresponding triangulations are shown on the right side. The
linear approximation has 754 knots, 1483 linear simplices, an image-space error of 1.77%,
and a computation time of 42 seconds. The upper quadratic approximation has 411 knots,
134 quadratic simplices, an image-space error of 1.14%, and a computation time of 24 sec-
onds. The bottom quadratic approximation has 3392 knots, 1473 quadratic simplices, an
image-space error of 0.63%, and a computation time of 82 seconds.

Refining a curved-quadratic triangle

Bisection of curved-quadratic triangles is a bit more complicated than bisection of linear-

edge triangles. A triangle T—defined by six knots ki, 0 ≤ i ≤ 5—is bisected (along the

edge connecting k0, k3, and k1) into two triangles Ta and Tb according to the new knot

locations ai and bi, as shown in Figure 4.6, given as

a0 = k0,

a1 = b0 =
k0 + 2k3 + k1

4
,

a2 = b2 = k2,

a3 =
k0 + k3

2
,

a4 = k4,

a5 = b4 =
k4 + k5

2
,



48

Figure 4.6: Bisection of a curved-quadratic triangle T . Left image shows triangle being
bisected. Red dot indicates bisection point along edge connecting k0, k3, and k1. Right
image shows new triangles Ta and Tb resulting from bisection.

b1 = k1,

b3 =
k1 + k3

2
, and

b5 = k5. (4.3)

4.2 The 3D Case

The 3D case is a straightforward extension of the 2D case. The only difference is in the

implementation of the change-of-variables theorem. The Jacobian for a curved-quadratic

tetrahedron is given as

J(u, v, w) = det




∂
∂ux(u, v, w) ∂

∂vx(u, v, w) ∂
∂wx(u, v, w)

∂
∂uy(u, v, w) ∂

∂vy(u, v, w) ∂
∂wy(u, v, w)

∂
∂uz(u, v, w) ∂

∂vz(u, v, w) ∂
∂wz(u, v, w)


 , (4.4)

where the partial derivatives are

∂

∂u
x(u, v, w) = 2((x7 − x4 + x0 − x5)v + (x1 + x0 − 2x4)u +

(x8 + x0 − x6 − x4)w + x4 − x0),

∂

∂v
x(u, v, w) = 2((x2 − 2x5 + x0)v + (x7 − x4 + x0 − x5)u +

(x0 + x9 − x5 − x6)w + x5 − x0),



49

∂

∂w
x(u, v, w) = 2((x0 + x9 − x5 − x6)v + (x8 + x0 − x6 − x4)u +

(x0 + x3 − 2x6)w + x6 − x0),

∂

∂u
y(u, v, w) = 2((y7 − y4 + y0 − y5)v + (y1 + y0 − 2y4)u +

(y8 + y0 − y6 − y4)w + y4 − y0),

∂

∂v
y(u, v, w) = 2((y2 − 2y5 + y0)v + (y7 − y4 + y0 − y5)u +

(y0 + y9 − y5 − y6)w + y5 − y0),

∂

∂w
y(u, v, w) = 2((y0 + y9 − y5 − y6)v + (y8 + y0 − y6 − y4)u +

(y0 + y3 − 2y6)w + y6 − y0),

∂

∂u
z(u, v, w) = 2((z7 − z4 + z0 − z5)v + (z1 + z0 − 2z4)u +

(z8 + z0 − z6 − z4)w + z4 − z0),

∂

∂v
z(u, v, w) = 2((z2 − 2z5 + z0)v + (z7 − z4 + z0 − z5)u +

(z0 + z9 − z5 − z6)w + z5 − z0), and

∂

∂w
z(u, v, w) = 2((z0 + z9 − z5 − z6)v + (z8 + z0 − z6 − z4)u +

(z0 + z3 − 2z6)w + z6 − z0), (4.5)

where the ten knots ki = (xi, yi, zi)T of the element are ordered as shown in Figure 4.7.

Figure 4.7: Indexing used for curved-quadratic tetrahedron.
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Refining a curved-quadratic tetrahedron

Bisection of curved-quadratic tetrahedra is a bit more complicated than bisection of linear-

edge tetrahedra. A tetrahedron T—defined by ten knots ki, 0 ≤ i ≤ 9—is bisected (along

the edge connecting k0, k4, and k1) into two tetrahedra Ta and Tb according to the new

knot locations ai and bi, as shown in Figure 4.8, given as

a0 = k0,

a1 = b0 =
k0 + 2k4 + k1

4
,

a2 = b2 = k2,

a3 = b3 = k3,

a4 =
k0 + k4

2
,

a5 = k5,

a6 = k6,

a7 = b5 =
k5 + k7

2
,

a8 = b6 =
k6 + k8

2
,

a9 = b9 = k9,

b1 = k1,

b4 =
k1 + k4

2
,

b7 = k7, and

b8 = k8. (4.6)
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Figure 4.8: Bisection of a curved-quadratic tetrahedron T . Left image shows tetrahedron
being bisected. Red dot indicates bisection point along edge connecting k0, k4, and k1.
Right image shows new tetrahedra Ta and Tb resulting from bisection.
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Part II

Visualization
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Visualization of linear elements has been studied much more extensively than that for

higher-order elements. Thus, it is not necessary to discuss the details of linear-element

visualization. However, for higher-order methods to be competitive with linear elements,

higher-order visualization techniques must be competitive.

If it is possible to replace several linear elements with higher-order ones, then the

higher-order elements need to be visualized at least as fast as the linear elements they’re

replacing. However, considering the grander scheme of large scale visualization, higher-order

elements may be able to borrow extra time from being transported more efficiently across

networks—either LANs or video. If higher-order elements can reduce the required number

of elements by 90%, even if it takes ten times longer to visualize a higher-order element

over a linear element, higher-order elements still win, since they require less storage space

and can be transported more efficiently.

Typically, higher-order elements are tessellated by several smaller linear elements

for rendering purposes. Conventional visualization methods can be applied directly to these

linear elements. Three fundamental visualization techniques including isosurfacing, ray

casting, and cutting planes are discussed for quadratic and curved-quadratic elements. Each

of the methods described strengthen the foundation of higher-order-element visualization.
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Chapter 5

Isosurfacing (or Contouring)

An isosurface (or contour) c of a function F (u) is all the values of u such that F (u) = c.

An isoline on an elevation map is an example of an isosurface in 2D. Each line represents a

constant height over the map. Considering several lines at once, one can visually determine

the “steepness” of the height field at any location by judging how close these lines are to

each other. The most popular method for computing an isosurface in 3D is that of marching

cubes, see [33]. This method works primarily on rectilinear gridded data, however, the idea

can be generalized to tetrahedra, see [7]. In each of these methods, a divide-and-conquer

approach is used to extract an isosurface from simplicial elements one at a time. These

concepts are extended to higher-order elements.

A method for extracting a contour line (2D case) and an isosurface (3D case) from

a higher-order element is shown—specifically from a quadratic triangle and tetrahedron.

A method to transform the resulting contour line (or isosurface) into a quartic curve (or

surface) based on a curved-triangle (curved-tetrahedron) mapping is shown. Figure 5.1

shows a 2D example of a contour line extracted from a curved-quadratic triangle. A con-

tour through a 2D quadratic function defined over the standard triangle T U in parameter

space is a conic section and can be represented by a rational-quadratic function [50]. The

rational-quadratic curve representing the contour is transformed into physical space based

on a curved-quadratic triangle transformation, which forms a rational-quartic curve. An

isosurface in the 3D case is approximated by a rational-quadratic patch over the standard
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Figure 5.1: Contour of curved-quadratic triangle in physical space R
2. Dark curves indicate

contour in xy-plane (domain space) and on “graph” surface in 3D space.1

tetrahedron T U in parameter space and is transformed to a rational-quartic patch in physical

space based on a curved-tetrahedron transformation.

A curved-quadratic element is isosurfaced by first mapping the quadratic function

F(u) : U −→ R defined over the element into parameter space U. Finding the representation

Q(u) : U −→ U for a contour value c such that F(Q(u)) = c, and then transforming

Q(u) into physical space R, yields the mapping C(u) : U −→ R—the representation of

c in physical space. For both the 2D and 3D case, the transformation from a rational-

quadratic function in U to rational-quartic functions in R for a curved-quadratic element

transformation is shown. The resulting contour surfaces can be rendered efficiently in

hardware.2

Finding contours (isosurfaces) in 2D and 3D linear-edge quadratic elements (i.e.,

parameter space) is discussed first. Then, the method to transform a parameter-space

contour into the physical space defined by the curved-quadratic element is shown.

5.1 Previous Work

Few higher-order element visualization techniques exist. Higher-order hexahedra visual-

ization is described in [31]. Visualization of higher-order element isosurfaces in the form
1In this dissertation, quadratic elements are often rendered with parametric lines in the interior of the

element. These lines help show the interior curvature of the element.
2The ELSA Gladiac 920, nVidia GeForce 3 and GeForce 4, and ATI Radeon 8500 and Radeon 9700 [43]

video hardware all support varying levels of higher-order patch rendering suitable for quartic patches.
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of A-patches is described in [1]. Elements with a higher-order domain and a linearly de-

fined polynomial defined over that domain are volumetrically visualized by the method in

[35]. Creation of hierarchical quadratic-tetrahedral approximations is discussed in [47]. A

quadratic tetrahedra volume renderer is described in [49].

Extracting isosurfaces from linear-edge quadratic triangles has been studied in

[3, 34, 50]. The Worsey-Farin method [50] uses a Bernstein-Bézier basis, which tends to

work better than the monomial basis used in the Marlow-Powell method, see [34]. The

Worsey-Farin method and the method discussed by Bloomquist (in his thesis [3]) provide

a foundation for finding contours in quadratic elements in their parameter spaces (i.e.,

linear-edge quadratic simplices). Bloomquist used the Worsey-Farin method for the 2D

case and extended it to the 3D case to find contour surface intersections with the faces of

a tetrahedron. The method described in the following sections is discussed in [46].

5.2 Linear-edge Quadratic Elements

5.2.1 The 2D Case

The Worsey-Farin method [50] is implemented to find rational-quadratic curves that rep-

resent the contour passing through a linear-edge quadratic triangle. The domain U ⊆ R of

the standard triangle T U—with vertices (0, 0)T, (1, 0)T, and (0, 1)T—defines the param-

eter space U and the physical space R. The contour in a quadratic triangle can be quite

complex, and it is often desirable to represent it by several segments. (Consider the case

when a contour is completely contained inside a triangle. In this case, three curves are used

to represent the contour, see [50].) A univariate rational-quadratic curve Q(u) : U
1 −→ U

2

that represents a segment of the contour, in Bernstein-Bézier form, with three control points

pi ∈ U
2 and three weights wi, 0 ≤ i ≤ 2, wi ≥ 0, is defined as

Q(u) =
∑2

i=0 wipiB
2
i (u)∑2

i=0 wiB2
i (u)

, (5.1)

where the univariate nth-degree Bernstein polynomial Bn
i (u) is

Bn
i (u) =

n!
(n − i)!i!

(1 − u)n−iui. (5.2)
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Worsey and Farin restrict the resulting rational-quadratic curve Q(u) such that w0 = 1 and

w2 = 1, since a rational-quadratic curve, having w0 and w2 set to one, represents a conic

section exactly, see [32]. Thus, the rational-quadratic curve used to represent a contour

segment is defined as

Q(u) =
p0B

2
0(u) + w1p1B

2
1(u) + p2B

2
2(u)

B2
0(u) + w1B2

1(u) + B2
2(u)

. (5.3)

5.2.2 The 3D Case

A method similar to [24] is used to extend Bloomquist’s 3D method by forming triangular

rational-quadratic patches that represent the isosurface in a linear-edge quadratic tetrahe-

dron. The rational-quadratic patch is formed by first applying the 2D method to each of the

tetrahedron’s faces to find the contour intersections. Then, patches are formed—from the

contour lines on the faces—that approximate the isosurface. A triangular rational-quadratic

patch Q(u, v) : U
2 −→ U

3 that represents a region of the isosurface, in Bernstein-Bézier

form, with six control points pij ∈ U
3 and six weights wij , i, j ≥ 0, i + j ≤ 2, wij ≥ 0, is

defined as

Q(u, v) =

∑2
j=0

∑2−j
i=0 wijpijB

2
ij(u, v)∑2

j=0

∑2−j
i=0 wijB2

ij(u, v)
, (5.4)

where the bivariate nth-degree Bernstein polynomial Bn
ij(u, v) is

Bn
ij(u, v) =

n!
(n − i − j)!i!j!

(1 − u − v)n−i−juivj . (5.5)

Patches representing the isosurface are constructed from rational-quadratic curves found

on the faces of a tetrahedron. These rational-quadratic curves have their endpoint weights

(w0 and w2) set to one, thus, when these curves are used to construct a rational-quadratic

patch, the corner weights of the patch assume a weight of one. Thus, weights w00, w20, and

w02 are all set to one, yielding the representation

Q(u, v) =

p00B
2
00(u, v) + p20B

2
20(u, v) + p02B

2
02(u, v)+

w10p10B
2
10(u, v) + w01p01B

2
01(u, v) + w11p11B

2
11(u, v)

B2
00(u, v) + B2

20(u, v) + B2
02(u, v)+

w10B
2
10(u, v) + w01B

2
01(u, v) + w11B

2
11(u, v)

. (5.6)
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Figure 5.2: Two contour surfaces inside a quadratic tetrahedron. Dark dots are contour
intersections with edges. Dark curves are face-intersections curves. There are two groups
of three curves that bound two independent surfaces of contour.

Assembling isosurfaces

The 2D algorithm is applied to each face of a tetrahedron to find the intersections of the

isosurface with each face; these intersections are called face-intersection curves. Since there

can be more than one surface passing through a quadratic tetrahedron, the face-intersection

curves are connected end-to-end to form groups of curves that bound various portions of

the isosurface, see Figure 5.2. This method is similar to the method described in [21, 22].

Each group is classified according to the number of curves it contains:

• No curve. Either the contour surface is not present or the surface is “pill-shaped”

and lies completely inside the tetrahedron.

• One curve. Only one edge of the tetrahedron is equal to the contour value, thus, it

is not treated, i.e., the coefficients along that edge are equal to the contour value and

all the others are either greater- or less-than the contour value.

• Two curves. Along one edge, the isosurface intersects two neighboring faces and

looks similar to the “peel-of-an-orange slice,” see Figure 5.3 (left).
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Figure 5.3: Constructing a triangular patch from two curves. One edge of patch is collapsed
by using point p0

0 three times along an edge. Left image shows isosurface intersecting faces
of tetrahedron. Middle image shows labelled points of two-curve boundary polygon. Right
image shows patch indexing.

• Three curves. The surface intersects three neighboring faces or the surface exits

through a face and does not intersect any edges defining that face.

• More than three curves. The surface is bounded by several curves.

Simple cases occur when there are two or three face-intersection curves bounding

the surface. An approximation to the isosurface is found by representing the surface with

one patch.

When there are two curves, one triangular patch is formed by collapsing one side

of the patch to the same point, see Figure 5.3. A “crack” would be introduced if the surface

were split across the middle to form two patches, since the curves found in neighboring

elements would not necessarily be split. Later in the rendering process—when the patch

is tessellated either in software or hardware—the degenerate patch edge produces zero-

area triangles (where two vertices have the same location). In terms of visualization, no

significant problems are introduced, since normal vectors for the vertices are computed

analytically from the patch. Three curves are converted easily into one triangular patch by

using the control points from the three boundary curves as patch control points.

More than three curves bounding the surface is non-trivial. Figure 5.4 shows an

example of this type of complicated surface. First, a polygon is formed from the control nets

of the face-intersection curves that bounds the surface; this polygon is always closed but
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Figure 5.4: Contour surface bounded by six face-intersection curves. Dark dots are end-
points of face-intersection curves.

not necessarily convex. Three steps are performed to represent the surface with rational-

quadratic patches:

1. Choose the shortest diagonal in the polygon to “split across.” Here, a diagonal splits

the polygon into two halves. Only diagonals that connect endpoints of the face-

intersection curves are considered. If n is the number of boundary curves, then the

only valid diagonals to choose from are those that partition the polygon into two sets

of n
2 curves (or additionally n+1

2 when n is odd).

2. Choose a control point and weight for the center knot of the diagonal.

3. Recurse on each half until the simple case of three boundary curves is reached.

There are several possibilities to choose from when fixing the location of the center

control point along a diagonal. Initially, this point was chosen by intersecting tangent

planes of the isosurface. However, this method turned out to be inappropriate, since the

intersection quite often lay outside the tetrahedron.

A more stable approach that considers various combinations of the center control

points of the face-intersection curves ensures a point that lies inside the tetrahedron. For
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Figure 5.5: Constructing four triangular patches from six face-intersection curves. Original
polygon is shown in image A. Circles are endpoints and squares are center control points
of face-intersection curves. Dark lines indicate chosen diagonal for each split. Dark squares
are control points used to determine center control point for each diagonal. Image B shows
first diagonal selection. Image C shows diagonal selection for left half. Image D shows
diagonal selection for right half.

each diagonal, only the center control points that are immediate neighbors to the endpoints

of the diagonal are considered. This approach always provides four control points, see

Figure 5.5.

All unique averages of each pair, group of three, and all four control points, in

addition to each of the control points themselves are considered. This combination produces

fifteen unique possibilities. For each point b i
1 in this set, try to form a rational-quadratic

curve Qi(u) to represent the diagonal with endpoints b0 and b2. The weight wi
1 for the

curve is computed by intersecting the line connecting b i
1 and m with the isosurface, where

m = b0+b2
2 , see [50] for how to compute wi

1. A point b i
1 is ignored if there is not exactly one

intersection with the contour surface. Choose the control point bi
1 that produces the curve

Qi(u) having least error. The error for Qi(u) is estimated by evaluating it at parameter

values u ={1
6 , 2

6 , 4
6 , 5

6} and then sampling the quadratic tetrahedron at these locations. An

error estimate is obtained by summing the absolute difference between the sampled values

and the contour value. If none of the control points can form a valid curve, then the diagonal

is invalid and the tetrahedron is marked as containing a surface that is “too complex.”

When a contour surface is too complex, the tetrahedron is subdivided to produce

simpler surface components. These are the criteria that indicate when a surface is too

complex:

1. There are no face-intersection curves, but there exists a pill-shaped surface completely

enclosed inside the tetrahedron. (Worsey-Farin [50] showed how to determine whether

or not there exists such a surface.)
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2. All curves in a face-intersection group lie on the same face.

3. A surface bounded by more than three face-intersection curves cannot be split into

patches.

5.3 Curved-quadratic Elements

An isosurface in a curved-quadratic element T is found by first finding the isosurface in

parameter space and then transforming the curve (or surface) to physical space based on the

curved mapping defined by T . This section focuses on how to perform the transformation—

in the 2D and 3D cases—to obtain quartic curves and surfaces that represent the isosurface

through a curved-quadratic element.

5.3.1 The 2D Case

An isosurface—in parameter space—is represented by a set of rational-quadratic curves.

Each curve is considered independently, and is put through a transformation from parameter

space to physical space. In Bernstein-Bézier form, the bivariate quadratic mapping T(u, v) :

U
2 −→ R

2 of the standard triangle in parameter space T U—having corners (0, 0)T, (1, 0)T,

and (0, 1)T—to a curved triangle in physical space having six control points bij ∈ R
2, i, j ≥

0, i + j ≤ 2, is defined as

T(u, v) =
2∑

j=0

2−j∑
i=0

bijB
2
ij(u, v). (5.7)

Substituting Equation (5.3) into Equation (5.7) transforms Q(u) from parameter

space to physical space, given by the mapping T(Q(u)) : U
1 −→ U

2 −→ R
2. Re-arranging

the terms, one obtains

T(Q(u)) =
c0 + c1u + c2u

2 + c3u
3 + c4u

4

1 + g1u + g2u2 + g3u3 + g4u4
. (5.8)

The coefficients ci and gj are omitted, since they are quite “involved.” (However, one

can easily compute these coefficients from the bij in Equation (5.7) and the pi and w1 in

Equation (5.3) using a symbolic mathematical software package.)

The univariate rational-quartic curve C(u) : U
1 −→ R

2 used to represent the

contour curve in physical space, in Bernstein-Bézier form, having five control points di ∈ R
2
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and five weights mi, 0 ≤ i ≤ 4, mi ≥ 0, is defined as

C(u) =
∑4

i=0 midiB
4
i (u)∑4

i=0 miB4
i (u)

. (5.9)

In order to represent Equation (5.8) by Equation (5.9), a conversion from the

power-basis form to the Bernstein-basis form is needed. The quartic power-basis form is

described by

α0 + α1u + α2u
2 + α3u

3 + α4u
4, (5.10)

which can be written as

[
1 u u2 u3 u4

]




α0

α1

α2

α3

α4




, (5.11)

and is abbreviated by uTa. The quartic Bernstein-basis form, having weights ωi, is de-

scribed by

ω0β0B
4
0(u) + ω1β1B

4
1(u) + ω2β2B

4
2(u) + ω3β3B

4
3(u) + ω4β4B

4
4(u), (5.12)

which can be written as

[
ω0B

4
0(u) ω1B

4
1(u) ω2B

4
2(u) ω3B

4
3(u) ω4B

4
4(u)

]




β0

β1

β2

β3

β4




=

[
1 u u2 u3 u4

]
M




β0

β1

β2

β3

β4




,

(5.13)
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and is abbreviated as uTMb, where

M =




ω0 0 0 0 0

−4ω0 4ω1 0 0 0

6ω0 −12ω1 6ω2 0 0

−4ω0 12ω1 −12ω2 4ω3 0

ω0 −4ω1 6ω2 −4ω3 ω4




. (5.14)

The conversion from the power basis to the Bernstein basis is given by

uTMb = uTa,

Mb = a, and

b = M−1a, (5.15)

where M−1 is given by

M−1 =




1
ω0

0 0 0 0

1
ω1

1
4ω1

0 0 0

1
ω2

1
2ω2

1
6ω2

0 0

1
ω3

3
4ω3

1
2ω3

1
4ω3

0

1
ω4

1
ω4

1
ω4

1
ω4

1
ω4




. (5.16)

The weights mi for curve C are found by converting the denominator of Equa-

tion (5.8) to the denominator of Equation (5.9). Using Equation (5.15), when the weights

ωi are set to one, the conversion is given by


m0

m1

m2

m3

m4




= M−1




1

g1

g2

g3

g4




. (5.17)

The weights are given as

m0 = 1,

m1 = w1,
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m2 =
1
3
(1 + 2w1

2),

m3 = w1, and

m4 = 1. (5.18)

The control points di for curve C are found by converting the numerator of Equa-

tion (5.8) to the numerator of Equation (5.9). Using Equation (5.15), when weights ωi = mi,

the conversion is given by 


d0

d1

d2

d3

d4




= M−1




c0

c1

c2

c3

c4




. (5.19)

The control points are given as

d0 = c0,

d1 =
1
4

4c0 + c1

w1
,

d2 =
1
2

2c0 + c1 + 1
3c2

1
3(1 + 2w1

2)
,

d3 =
1
4

4c0 + 3c1 + 2c2 + c3

w1
, and

d4 = c0 + c1 + c2 + c3 + c4. (5.20)

(In practice, these values are easily computed using a symbolic math package.)

Examining the transformation of the control net of Q(u)—defined by the three

points p0, p1, and p2—reveals some similarities between the knots (control net) of Q(u) and

those of C(u). The similarities are found by transforming two tangent lines TL and TR from

parameter space to physical space, where TL is the line segment connecting p1 and p0 and

TR is the line segment connecting p1 and p2. Two quadratic curves in physical space repre-

sent these tangent lines, which are found by fitting two quadratic curves—l(u) and r(u)—to

the transformed points
{
T(p0),T

(p0+p1
2

)
,T(p1)

}
and

{
T(p2),T

(p2+p1
2

)
,T(p1)

}
, re-

spectively. The curves l(u) and r(u) are found by first constraining their endpoints such

that l0 = T(p0), l2 = T(p1), r0 = T(p2), and r2 = T(p1). Then, center controls points
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Figure 5.6: Relationship between control net of Q(u) and control net of C(u). Left im-
age shows rational-quadratic curve Q(u) in parameter space. Middle image shows Q(u)
transformed into physical space, together with the curves l(u) and r(u) and their control
polygons. Right image shows rational-quartic curve C(u) resulting from transforming Q(u)
into physical space. It turns out that l1 = d1, r1 = d3, T(p0) = d0, and T(p2) = d4.3

l1 and r1 are found by adding the constraints l
(

1
2

)
= T

(p0+p1
2

)
and r

(
1
2

)
= T

(p2+p1
2

)
,

which results in the solutions

l1 = 2T
(

p0 + p1

2

)
− T(p0) + T(p1)

2
and (5.21)

r1 = 2T
(

p2 + p1

2

)
− T(p2) + T(p1)

2
. (5.22)

The center control points for l(u) and r(u) turn out to be d1 and d3, respectively, and d0

and d4 turn out to be p0 and p2 transformed to physical space, respectively, see Figure 5.6.

This property is proved in the Appendix, see Section C.

Using this observation, four of the five required points are obtained that define the

control net of C(u), given by

d0 = T(p0),

d1 = l1,

d3 = r1, and

d4 = T(p2), (5.23)

while d2 is found using Equation (5.20).
3In this dissertation, quadratic elements are often rendered with parametric lines in the interior of the

element. These lines help show the interior curvature of the element.
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5.3.2 The 3D Case

An isosurface—in parameter space—is represented by a set of rational-quadratic patches.

Each patch is considered independently, and is put through a curved quadratic transfor-

mation from parameter space to physical space. In Bernstein-Bézier form, the trivariate

quadratic mapping T(u, v, w) : U
3 −→ R

3 of the standard tetrahedron in parameter space—

having corners (0, 0, 0)T, (1, 0, 0)T, (0, 1, 0)T, and (0, 0, 1)T—to a curved tetrahedron hav-

ing ten control points bijk ∈ R
3, i, j, k ≥ 0, i + j + k ≤ 2, is defined as

T(u, v, w) =
2∑

k=0

2−k∑
j=0

2−k−j∑
i=0

bijkB
2
ijk(u, v, w), (5.24)

where the trivariate nth-degree Bernstein polynomial Bn
ijk(u, v, w) is

Bn
ijk(u, v, w) =

n!
(n − i − j − k)!i!j!k!

(1 − u − v − w)n−i−j−kuivjwk. (5.25)

Substituting Equation (5.6) into (5.24) transforms Q(u, v) from parameter space to physical

space, T(Q(u, v)) : U
2 −→ U

3 −→ R
3. This mapping is defined as

T(Q(u, v)) =

c0 + c1u + c2uv + c3uv2 + c4uv3 + c5u
2 + c6u

2v + c7u
2v2+

c8u
3 + c9u

3v + c10u
4 + c11v + c12v

2 + c13v
3 + c14v

4

g0 + g1u + g2uv + g3uv2 + g4uv3 + g5u
2 + g6u

2v + g7u
2v2+

g8u
3 + g9u

3v + g10u
4 + g11v + g12v

2 + g13v
3 + g14v

4

(5.26)

The coefficients ci and gj are omitted here, since they are quite complicated. (However,

one can easily compute these coefficients from the bijk in Equation (5.24) and the pij and

w10, w01, and w11 in Equation (5.6) using a symbolic mathematical software package.)

The bivariate rational-quartic surface C(u, v) : U
2 −→ R

3 used to represent the

contour surface in physical space, in Bernstein-Bézier form, having fifteen control points

dij ∈ R
3 and fifteen weights mij , i, j ≥ 0, i + j ≤ 4, mij ≥ 0, is defined as

C(u, v) =

∑4
j=0

∑4−j
i=0 mijdijB

4
ij(u, v)∑4

j=0

∑4−j
i=0 mijB4

ij(u, v)
. (5.27)

The generalization of Equation (5.15) to the bivariate case is used to convert

Equation (5.26) to Equation (5.27). Thus, the parametrization of C(u, v) is given by the
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values

m00 = 1,

m10 = w10,

m20 =
1
3
(1 + 2w10

2),

m30 = w10,

m40 = 1,

m01 = w01,

m11 =
1
3
(w11 + 2w10w01),

m21 =
1
3
(w01 + 2w10w11),

m31 = w11,

m02 =
1
3
(1 + 2w01

2),

m12 =
1
3
(w10 + 2w01w11),

m22 =
1
3
(1 + 2w11

2),

m03 = w01,

m13 = w11, and

m04 = 1, (5.28)

and

d00 = c0,

d10 =
1
4

4c0 + c1

w10
,

d20 =
1
2

2c0 + c1 + 1
3c5

1
3(1 + 2w10

2)
,

d30 =
1
4

4c0 + 3c1 + 2c5 + c8

w10
,

d40 = c0 + c1 + c5 + c8 + c10,

d01 =
1
4

4c0 + c11

w01
,

d11 =
1
4

4c0 + c1 + c11 + 1
3c2

1
3(2w10w01 + w11)

,
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d21 =
1
4

4c0 + 2c1 + c11 + 2
3(c2 + c5) + 1

3c6

1
3(2w10w11 + w01)

,

d31 =
1
4

4c0 + 3c1 + 2c5 + c6 + c2 + c11 + c8 + c9

w11
,

d02 =
1
2

2c0 + c11 + 1
3c12

1
3(1 + 2w01

2)
,

d12 =
1
4

4c0 + 2c11 + c1 + 2
3(c2 + c12) + 1

3c3

1
3(2w01w11 + w10)

,

d22 =
1
2

2c0 + c1 + c11 + 2
3c2 + 1

3(c3 + c5 + c6 + c7 + c12)
1
3(1 + 2w11

2)
,

d03 =
1
4

3c11 + 4c0 + c13 + 2c12

w01
,

d13 =
1
4
c4 + c13 + c2 + c3 + 2c12 + c1 + 3c11 + 4c0

w11
, and

d04 = c0 + c11 + c12 + c14 + c13. (5.29)

(In practice, these values are easily computed using a symbolic math package.)

5.4 Examples

An isosurface of a curved-quadratic tetrahedral representation of the “spherical data set”

(x2+y2+z2 = c) is shown in Figures 5.7, 5.8, and 5.9. Data set was created by first approx-

imating F (x, y, z) = x2 + y2 + z2 using the linear-edge quadratic tetrahedra approximation

method described in Chapter 3 and then twisting the mesh to form curved-quadratic tetra-

hedra. This data set consists of 320 curved-quadratic tetrahedra. The extracted isosurface

consists of 308 triangular rational-quartic patches.

Figures 5.10 and 5.11 show the isosurface of a data set consisting of 15918 quadratic

tetrahedra representing “eight spheres.” The curved quadratic-tetrahedral mesh uses the

same 90◦ twist as the one shown in Figure 5.7. The resulting contour surfaces consist of

6112 patches.
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Figure 5.7: Left image shows “un-twisted” mesh containing only linear-edge quadratic tetra-
hedra. Right image shows twisted mesh containing curved-quadratic tetrahedra. The mesh
is twisted by 90◦ when comparing orientations of top and bottom faces of configuration.

Figure 5.8: Magnification of piecewise rational-quadratic contour surface extracted from
original mesh shown in Figure 5.7 (left); 320 quadratic tetrahedra.
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Figure 5.9: Magnification of piecewise rational-quartic contour surface extracted from
twisted mesh shown in Figure 5.7 (right); 320 curved-quadratic tetrahedra.

Figure 5.10: Piecewise rational-quadratic contour surface extracted from original mesh
consisting of 15918 quadratic tetrahedra.
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Figure 5.11: Piecewise rational-quartic contour surface extracted from 15918 curved-
quadratic tetrahedra.
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Chapter 6

Ray Casting

A fundamental rendering technique for tetrahedral elements (and all other types of volu-

metric mesh elements) is ray casting, see [30, 37]. The basic idea is to “shoot” rays—from a

viewpoint to each pixel on an image plane—into a mesh of tetrahedra and color each pixel

by accumulating intersection segments that result from intersecting the ray with elements in

the mesh, see Figure 6.1. Many implementations of ray casting sample the data being visu-

alized at discrete locations along the ray. This method works well for linear-edge elements,

since it is relatively easy to determine where, inside an element, a sample point lies. Given

a linear mapping Tlinear from parameter space U to physical space R for an element, one

puts the point p ∈ R through the inverse transform T−1
linear to find its parameter space tuple

u ∈ U. The function overlying the element is then evaluated at u to provide the sample.

When considering curved elements, however, determining a parameter space coordinate is

non-trivial, since it is difficult to determine the inverse of a higher-order mapping.

While it is possible—and recommended—to discretely sample linear-edge quadratic

elements along a ray (since a linear mapping defines the transformation from parameter

space to physical space), a more cumbersome method of finding a close approximation to

the actual intersection—between a ray and a quadratic element—is discussed as a founda-

tion for intersecting a ray with a curved-quadratic element. Thus, the ray casting discussion

for quadratic elements is limited to this problem: intersecting a line with a quadratic and

curved-quadratic element. (This discussion assumes that the elements being visualized are
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Figure 6.1: Ray casting of an MRI (magnetic resonance imaging) data set of human head.

valid and do not self-intersect.)

Ray casting is easily implemented by sampling the data set being visualized uni-

formly along a ray. For each sample point, one finds the element it lies in and then evaluates

the polynomial overlying the containing element at that point to provide the sample. For

a rectilinear grid, it is trivial to find the voxel (element) in which a sample point lies, and

also to find the parameter-space (barycentric) coordinates of that point with respect to that

element. These parameter space coordinates are needed to evaluate the polynomial over

the containing element.

In the case of curved-quadratic tetrahedra, it is difficult to determine which ele-

ment (in a mesh of curved-quadratic tetrahedra) contains a sample point. Even if it were

known which curved-quadratic tetrahedron contained the point, it is difficult to obtain the

parameter-space coordinates for that point with respect to the containing curved element,

since its domain is defined by a curved mapping.

To provide samples along a ray, it is easier to intersect a line with the faces of

a curved-quadratic tetrahedron to find the intersection segments that lie inside the tetra-

hedron. In physical space, these segments are straight lines, since they follow the ray.
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However, looking at these segments in parameter space shows that they curve through the

standard tetrahedron.

A method to construct a quadratic curve that approximates the intersection seg-

ment as it curves through parameter space is described in the following sections. Using this

curve, one can sample along the curve to provide parameter-space coordinates that are used

to sample the polynomial defined over the curved tetrahedron.

To reduce the time required to sample the polynomial defined over the curved

element, an additional quadratic curve is found that approximates the polynomial overlying

the intersection segment.

6.1 Linear-edge Quadratic Elements

Finding the intersection of a line with a quadratic element is more complicated than with a

linear element. The goal is to find a representation Cc(t) : U −→ C of the polynomial defined

over the intersection segment. To better understand the 3D problem, the intersection

between a line l(s) : U −→ R
2 and a linear-edge quadratic triangle T (u, v) : U

2 −→ R
2 is

studied first.

6.1.1 The 2D Case

A quadratic curve Cc(t) is used to approximate the polynomial defined over the intersection

segment. The curve Cc(t) : U −→ C, having three coefficients ci, 0 ≤ i ≤ 2, distributed

uniformly across its domain t ∈ [0, 1], is defined as

Cc(t) =
2∑

i=0

ciB
2
i (t), (6.1)

where B2
i is given by Equation (5.2).

There are two steps to finding an approximation to the intersection. First, intersect

l(s) with the boundary of T (u, v). (This intersection is easily computed, since the boundaries

are linearly defined in physical space.) There are three possibilities when intersecting a line

with a triangle:
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Figure 6.2: Intersection of line l(s) with linear-edge quadratic triangle T (u, v) at points a
and b.

1. No intersection. The line does not intersect the triangle. Thus, this triangle does

not contribute any information.

2. One intersection. The line intersects one of the corner knots, however, since such a

small portion of the triangle intersects the ray, it does not contribute any information.

3. Two intersections. The line intersects two of the three boundary edges, forming

one segment. This type of intersection is the only one that contributes information

to the ray. (This includes the case when an edge is collinear with l(s).)

Thus, there are at most two intersection points a = (xa, ya)T = T (ua) and b = (xb, yb)T =

T (ub), see Figure 6.2, where ua and ub are the parameter space tuples of a and b, respec-

tively, which are found by using the inverse of T , such that ua = T−1(a) and ub = T−1(b).

Second, fit Cc(t) to the polynomial defined over T (abbreviated as T c) sampled at locations{
ua,

ua+ub
2 ,ub

}
. The approximation curve Cc(t) is required to interpolate the endpoint val-

ues T c(ua) and T c(ub) so that neighboring-element intersections are at least C0-continuous.

Thus, c0 = T c(ua), c2 = T c(ub), and c1—constrained by having C
(

1
2

)
= T c

(ua+ub
2

)
—is

defined as

c1 = 2 T c

(
ua + ub

2

)
− T c(ua) + T c(ub)

2
. (6.2)

(In the case where a quadratic approximation does not produce an accurate enough repre-

sentation of the intersection, one can alternatively use a rational-quadratic or a higher-order
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curve—such as cubic or quartic—to represent an intersection segment.)

6.1.2 The 3D Case

Ray casting a linear-edge quadratic tetrahedron is a straightforward extension of the 2D

case. The only difference is the intersection points a and b are found by intersecting line

l(s) with the planar faces of a quadratic tetrahedron T (u, v). As in the 2D case, there

can be at most two intersection points, thus, only one intersection segment per ray. The

approximation curve Cc(t) is computed using the same method as in the 2D case.

A ray casting of a skull data set consisting of 5348 linear-edge quadratic tetrahedra

is shown in Figure 6.3. Light regions show low-density areas and dark regions show high-

density areas in the data set. (Similar to the inverse of an x-ray.)1 The image-space error

is 1.96%, see the Appendix, Section B. Back-to-front compositing was used to accumulate

several uniform samples along each ray. A pixel intensity Ii,j
n computed from the nth sample

cn ∈ [0, 1] is given by

Ii,j
n = Ii,j

n−1D(1 − cn), (6.3)

where D is the sampling distance and (i, j)T is the location of the pixel. The samples in

the quadratic case were taken from the intersection segments found along each ray. The

samples in the “original” case were taken directly from the rectilinear data set.

6.2 Curved-quadratic Elements

Ray casting curved elements is more difficult than ray casting linear-edge elements, since

1) there can be more than one intersection segment per element and 2) it is difficult to

represent the polynomial overlying the intersection segment. The method to intersect a line

with a curved-quadratic element is first discussed in the 2D case and then extended to the

3D case.
1The 305× 311 pixel image required one hour to compute on a 2.8GHz Pentium IV graphics workstation

with 2GB of main memory. The “original” image—computed from a rectilinear scalar field consisting of
278528 data sites—required one minute to compute. (No optimization was performed for the quadratic
tetrahedron implementation; the brute force method of testing all elements for intersection with each ray
was used.)
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Figure 6.3: Ray casting of skull data set. Left image shows an approximation consisting of
5348 linear-edge quadratic tetrahedra and 7487 knots. Right image shows original data set
consisting of 278528 data sites. Light and dark regions show low- and high-density areas in
the data set, respectively. The image-space error for the approximation is 1.96%.

6.2.1 The 2D Case

A line l(s) : U −→ R
2 intersects the boundary of a curved-quadratic triangle T (u, v) : U

2 −→

R
2 in at most six locations (not considering degenerate cases). The goal is to find segments—

between intersection points—that lie inside T (u, v). To compute the intersections between

l(s) and the boundary edges of T (u, v) one must intersect l(s) with three quadratic curves—

the boundary edges of T (u, v). One might consider finding the inverse l−1(t) : U −→ U
2 of

l(s) based on the mapping T (u, v). In this case, l−1(t) could then be intersected with the

standard triangle in parameter space, see Figure 6.4. It is possible to find a closed form

representation of the inverse of T (u, v) in 2D, however, since T (u, v) is not always bijective,

there may exist none, more than one solution, or imaginary solutions, for a given point. In

3D it is not possible to find a closed form representation. Thus, a method that is extensible

to higher dimensions is desired. The method to find an approximation C(t) to l−1(s) based

on a curved-quadratic mapping T (u, v) has four steps:

1. Intersect l(s) with the three boundary curves of T (u, v) to produce a set of N inter-

section points pm = (xm, ym)T, 0 ≤ m ≤ N − 1.

2. Reorder the points pm sequentially based upon the distance from the viewpoint.



79

Figure 6.4: Transformation of line l(s) in xy-space to l−1(t) in uv-space by the inverse
transformation of the curved-quadratic triangle T (u, v).

3. Form intersection segments from sequentially adjacent pairs of points.

4. Discard invalid segments by testing whether the segment is inside or outside of the

triangle T (u, v).

Each of these four steps is described in detail in the following paragraphs.

Step 1

The intersection of line l(s) with quadratic curve Qe(t)—representing edge e of curved-

quadratic triangle T (u, v)—can be computed analytically or iteratively, see [4]. (An iterative

method is more stable than an analytical method and the speed of the iterative method

(i.e., number of iterations used) is inversely proportional to the accuracy of the result.)

Using the analytical approach, assuming Qe(t) is in the form

Q(t) = r0t
2 + r1t + r2, (6.4)

and l(s) is in the form

l(s) = q0 + q1s, (6.5)

where ri = (xr
i , y

r
i )

T, 0 ≤ i ≤ 2, and qj = (xq
j , y

q
j )

T, 0 ≤ j ≤ 1, the intersections of Q(t)

and l(s) are given by the roots of

(xr
0y

q
1 − yr

0x
q
1)t

2 + (xr
1y

q
1 − yr

1x
q
1)t + xr

2y
q
1 + xq

1y
q
0 − xq

0y
q
1 − xq

1y
r
2 = 0 (6.6)

and

s(t) =
(r0

xr1
y − r0

yr
1
x)t + r0

yq
0
x + r2

yr
0
x − r0

yr
2
x − q0

yr
0
x

r0
xq1

y − r0
yq

1
x

. (6.7)
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Thus, there are two solution pairs {(ti, si)}, 0 ≤ i ≤ 1, where si = s(ti). Points not

satisfying the constraint 0 ≤ ti ≤ 1 lie outside of the curved triangle and are discarded.

Step 2

Labelling the intersection points pm based upon their distance from the viewpoint orders

the points. This ordering is important, since only points that are adjacent sequentially can

form an intersection segment. Since the parameter values si that result during Step 1 are

directly related to the distance from the viewpoint, this ordering is easily determined.

Step 3

An approximation to l−1(t) is constructed by transforming two vectors—aligned with l(s)—

to parameter space, so that they become tangent vectors to the quadratic curve C(t) used to

approximate l−1(t). The curve C(t) : U −→ U
2, having three knots ui and three coefficients

ci, 0 ≤ i ≤ 2, distributed uniformly across its domain t ∈ [0, 1], is defined as

C(t) =
2∑

i=0

uiB
2
i (t), (6.8)

where B2
i is given by Equation (5.2).

A vector v in physical space—located at point p = T (u), where u ∈ U
2—is

transformed to a vector w in parameter space by considering the linear combination v =

αX + βY, where X = T u(u), Y = T v(u), and T i(u, v) denotes the partial derivative of

T (u, v) with respect to the ith direction. Solving for α and β yields the transformed vector

w = (α, β)T, see Figure 6.5. (The inverse transformation of vectors is possible because the

partial derivatives of T (u, v) are linear functions.)

An intersection segment m is bounded by two sequentially adjacent points pm

and pm+1. An approximation to the inverse of the intersection segment is constructed

by first transforming vectors vm and vm+1 in physical space—which are aligned with l(s)

and positioned at pm and pm+1, respectively—to vectors wm and wm+1 in parameter

space. (This step assumes parameter space coordinates um are known for points pm. These

coordinates are computed in Step 1 from the solutions ti for each edge.) The lines implied

by vectors wm and wm+1—while located at um and um+1, respectively—are intersected



81

Figure 6.5: Inverse transformation of vector v—located at point p = T (u)—through curved-
quadratic mapping T (u, v). Vector v is transformed from physical space to vector w in
parameter space by considering the linear combination v = αX + βY, where w = (α, β)T.

Figure 6.6: Quadratic curve C(t) approximates the inverse of line l(s) based on the curved-
quadratic mapping T (u, v).

to form a third point bm. The three points {um,bm,um+1} are used as control points for

Cm(t) : U −→ U
2, which represents an approximation to l−1(s), see Figure 6.6.

Next, the coefficients of Cm(t) are computed by fitting the uniformly spaced coef-

ficients ci to the three samples
{

T c
(
C(0)

)
, T c

(
C
(

1
2

))
, T c

(
C(1)

)}
. They are given by

c0 = T c
(
C(0)

)
= T c(ui),

c1 = 2 T c

(
C

(
1
2

))
− T c(ui) + T c(ui+1)

2
, and

c2 = T c
(
C(1)

)
= T c(ui+1), (6.9)

where T c(u, v) evaluates the polynomial overlying T (u, v).
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Step 4

Each intersection segment Cm is checked to see whether it lies inside or outside of curved-

quadratic triangle T . This is done by checking where the point Cm(1
2) lies relative to the

standard triangle; if it lies outside, the intersection segment is also outside and does not

contribute information to the ray.

6.2.2 The 3D Case

The ideas discussed in the 2D case are extended to the 3D case. The intersection between

a ray and a curved-quadratic tetrahedron T (u, v, w) reduces to the intersection between a

ray and the curved surfaces (faces) of T (u, v, w). Thus, rather than intersecting l(s) with

planar faces (as in the case of a linear-edge quadratic tetrahedron), l(s) is intersected with

four curved-triangular patches Qe(u, v) : U
2 −→ R

3, 0 ≤ e ≤ 3. The four steps to compute

an approximation Cm(t) : U −→ U
3 to an intersection segment m are the same as in the

2D case. Only the details of the differences for each step are discussed.

Step 1

There are several options for performing the intersection between l(s) and the curved patch

Qe(u, v). Tessellating the patch with several linear triangles, then, intersecting l(s) with

these triangles is used here. It is possible, with this method, to directly compute the pa-

rameter space coordinates um of the intersection points pm simultaneously when computing

the intersection between l(s) and Qe(u, v).

Step 2

The intersection points pm are sorted based upon the distance from the viewpoint. The

parameter value s along l(s) is used, since it was computed during the intersection process

of Step 1.
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Step 3

A vector v in physical space—located at point p = T (u), where u ∈ U
3—is transformed to

a vector w in parameter space by considering the linear combination v = αX + βY + γZ,

where X = T u(u), Y = T v(u), Z = Tw(u), and T i(u, v, w) denotes the partial derivative of

T (u, v, w) with respect to the ith direction. Solving for α, β, and γ gives the transformed

vector w = (α, β, γ)T.

An intersection segment Cm(t) is constructed using the same method as described

in Step 3 of the 2D case, see Section 6.2.1. The only difference is that it is the exception for

two lines in 3D to intersect. Rather than intersecting the two lines lm and lm+1—implied by

vectors wm and wm+1, while positioned at um and um+1, respectively—two points gm and

gm+1 are found so that gm is the closest point on lm to lm+1 and gm+1 is the closest point

on lm+1 to lm. (Points gm and gm+1 are computed by minimizing the distance between lm

and lm+1.) Point bm is given by bm =
gm+gm+1

2 .

Step 4

The same method used in Step 4 of the 2D case is used to discard intersection segments

that lie outside of the curved-quadratic tetrahedron, see Section 6.2.1.

6.3 Examples

A ray casting of a single curved-quadratic tetrahedron having uniform density—all coeffi-

cients have value one—is shown in Figure 6.7. The 467 × 569 pixel image required 12.5

minutes to compute. Ray intersections were performed by tessellating each “face” of the

curved-quadratic tetrahedron with 400 linear triangles. (No optimization was performed;

the brute force method of testing all triangles—from all four faces—for intersection with

each ray was used.) The same accumulation method used in the linear-edge case was used

here, see Section 6.1.2.

A ray casting of a single curved-quadratic tetrahedron having non-uniform density—

where the corner coefficients are zero and edge coefficients are one—is shown in Figure 6.8.

The 487 × 473 pixel image required 11.1 minutes to compute. Ray intersections were per-
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Figure 6.7: Ray casting of curved-quadratic tetrahedron T (u, v, w) having coefficients ci =
1, 0 ≤ i ≤ 9. Left image shows a rendering of the curved “faces” of T (u, v, w). Right image
shows ray casting of T (u, v, w) (dark areas denoting higher density).3

formed by tessellating each “face” of the curved-quadratic tetrahedron with 400 linear

triangles. The same accumulation method used in the linear-edge case was used here, and

the density values were mapped so that three isosurfaces were visualized. Isosurfaces are

for a small range of values near {0.2, 0.575, 0.725}. The “egg” corresponds to the isosurface

at 0.725 and the corners correspond to 0.2.2

For both examples, the accumulation method used along each ray was the same

method used in the linear-edge quadratic tetrahedron case, as described by Equation (6.3).

2Both examples were computed on a 2.8GHz Pentium IV graphics workstation with 2GB of main memory.
3In this dissertation, quadratic tetrahedra are often rendered with parametric lines on the faces of the

element. These lines help show the curvature of the element.
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Figure 6.8: Ray casting of curved-quadratic tetrahedron T (u, v, w) having non-uniform
density—where corner coefficients are zero and edge coefficients are one. Top image shows
a rendering of the curved “faces” of T (u, v, w). Bottom image shows ray casting of T (u, v, w).
Isosurfaces are for a small range of values near {0.2, 0.575, 0.725}. The “egg” corresponds
to the isosurface at 0.725 and the corners correspond to 0.2.
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Chapter 7

Cutting Planes

A cutting plane is used to “cut” through a data set—usually a planar cut in the context

of a 3D domain. A cutting plane visualization shows the intersection between a plane and

a data set. This is useful when volume visualization, such as ray casting, is impractical

because too much data needs to be processed. For example, consider examining various

layers of the Earth’s atmosphere. If a user wanted to examine all of the layers at once,

instead of using volume visualization, it would be more useful to visualize the intersection

of the data with, say, a plane passing through the equator.

There are many methods for the visualization of cutting planes. As in ray cast-

ing, one could simply sample the data at discrete locations across the plane. However, as

in ray casting, the sampling method does not work well for curved elements, since it is

difficult to determine the parameter space coordinate of an arbitrary point with respect

to a curved element. Visualization of a cutting planes is done by intersecting elements

independently of each other. Thus, the essence of cutting planes is to intersect an element

T with cutting plane R. The actual intersection is computed by intersecting each of the

edges of T with R, forming edge-intersection points. Then, the edge-intersection points are

connected together—over each face—to form face-intersection curves (as in isosurfacing).

Then, face-intersection curves are grouped together to form polygons that bound the inter-

section surface. In the case of linear elements, there is only one intersection segment (2D

case) or surface (3D case). The surface in the 3D case may be bounded by either a triangle
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or a quadrilateral.

While it is possible—and recommended—to discretely sample linear-edge quadratic

elements across the cutting plane, a more cumbersome method of finding a close approxi-

mation to the actual intersection is discussed. The cutting plane discussion for quadratic

elements is limited to this problem: intersecting a plane with a quadratic and curved-

quadratic element. (This discussion assumes that the elements being visualized are valid

and do not self-intersect or overlap with other elements.)

7.1 Linear-edge Quadratic Elements

The goal is to represent the intersection of quadratic tetrahedron T with cutting plane R by

a set of quadratic triangles T . The set T contains either zero, one, or two triangles, since

the intersection of a plane with a linear-edge tetrahedron is limited to 1) no intersection,

2) an intersection forming a triangle, or 3) an intersection forming a quadrilateral (which is

represented by two triangles).

Assuming T is defined by ten knots ki, 0 ≤ i ≤ 9, only the corner knots 0 ≤ i ≤ 3

are considered, since the edge knots are positioned at the midpoints of the edges, see

Figure 7.1. Thus, the six edges ej , 0 ≤ j ≤ 5 of T are bounded by knot pairs (0, 1), (0, 2),

(0, 3), (1, 2), (1, 3), and (2, 3). Line segments—formed between the corner knots defining

each edge—are intersected with the R to yield a set of N intersection points pm, 0 ≤ m ≤

N − 1, in physical space (the parameter space coordinate um for each pm is also computed,

such that pm = T (um)). There are five values that N can take on:

• Zero. Plane R does not intersect T .

• One. Plane R intersects one corner knot of T .

• Two. One of the edges of T lies on R (only the endpoints of the intersection are

counted).

• Three. Plane R intersects three edges of T .

• Four. Plane R intersects four edges of T .
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Figure 7.1: Indexing used for curved-quadratic tetrahedron.

(An intersection surface is produced only for the cases where N is three or four.) When N

is three, a quadratic triangle C(u, v)—having six knots vn and six coefficients cn—is used to

approximate the intersection and is formed by first setting its knots to the locations given

by

v0 = u0,

v1 = u1,

v2 = u2,

v3 =
u0 + u1

2
,

v4 =
u0 + u2

2
, and

v5 =
u1 + u2

2
. (7.1)

Then, the function overlying the intersection surface is approximated by defining the coef-

ficients cn of C(u, v) as

c0 = T c(u0),

c1 = T c(u1),

c2 = T c(u2),

c3 = 2T c

(
u0 + u1

2

)
− T c(u0) + T c(u1)

2
,



89

c4 = 2T c

(
u0 + u2

2

)
− T c(u0) + T c(u2)

2
, and

c5 = 2T c

(
u1 + u2

2

)
− T c(u1) + T c(u2)

2
, (7.2)

where T c(u, v, w) evaluates the polynomial defined over T (u, v, w).

When N is four, an artificial diagonal is added to divide the quadrilateral into two

triangles. This is done by choosing the shortest edge to use as the diagonal. (In the case

where both diagonals are the same length, and one desires a unique solution, an additional

point could be added in the middle of the quadrilateral to create four triangles.) The

coefficients for the two triangles are found by first relabelling the intersection points pm

and um with respect to each triangle, then, using Equation (7.2) finds the coefficients.

7.2 Curved-quadratic Elements

It is more difficult to compute an approximation to the intersection of a cutting plane R with

a curved-quadratic tetrahedron T than with a linear-edge quadratic tetrahedron. In this

case, a close approximation to the exact intersection is left for future research because of the

case shown in Figure 7.2 where R does not intersect any of the curved edges of tetrahedron T .

However, a sampling method that leverages the ray casting method of the previous chapter

is described. The plane R is discretized so that a set of parallel rays—lying on the plane—

are passed through the data being visualized. A uniform rectilinear representation of the

cutting plane is then constructed by discretely sampling each ray uniformly, see Figure 7.3.

The cutting plane is visualized by rendering this uniform rectilinear representation.

7.3 Examples

Two cutting planes through a single curved-quadratic tetrahedron—where corner coeffi-

cients are zero and edge coefficients are one—are shown in Figure 7.4. Each cutting plane

visualization used the ray casting method described in Section 6.2.2 as applied in Section 7.2

and was discretized to a 652 × 621 grid (producing an RGB pixel image of the same size).

Each curved face of the tetrahedron was tessellated with 400 linear triangles for the intersec-
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Figure 7.2: Intersection of plane and curved-quadratic tetrahedron. Difficulties arise since
the plane can intersect the tetrahedron without intersecting its edges.1

tion testing.2 The color map used starts from red, changing to orange, to yellow, to green,

and finally to blue, spreading uniformly across the domain from zero to one, respectively.

(Corners are red and the center is green-blue.)

1In this dissertation, quadratic tetrahedra are often rendered with parametric lines on the faces of the
element. These lines help show the curvature of the element. Plane R intersects the parametric lines shown
on the faces of tetrahedron T in Figure 7.2, however, these lines are not as useful as the edges of the
tetrahedron.

2Each cutting plane visualization required 12 seconds to compute on a 2.8GHz Pentium IV graphics
workstation with 2GB of main memory.
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Figure 7.3: Discrete sampling of cutting plane. Rays are cast through data and then
sampled discretely to construct a uniform rectilinear grid that represents the cutting plane.
Left image shows rays—lying on the cutting plane—used to intersect elements. Middle
image shows discretely sampled rays. Right image shows resulting uniform rectilinear grid
used for visualization.

Figure 7.4: Two cutting planes intersecting curved-quadratic tetrahedron.
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Chapter 8

Serendipity Element “Hex20”

Finite element methods commonly use higher-order so-called “serendipity” hexahedral ele-

ments [9]. The Hex20 serendipity element uses 20 Lagrange basis functions associated with

its 20 knots and is parameterized by 20 Lagrange coefficients li, 0 ≤ i ≤ 19, see Figure 8.1.

A method to approximate a Hex20 serendipity element F (r, s, t) by a set of linear-edge

quadratic tetrahedra is discussed. Once converted, the visualization techniques described

in the previous chapters can be utilized to visualize the Hex20 element. The Hex20 element

is defined as

F (r, s, t) =
19∑
0

liLi(r, s, t), −1 ≤ r, s, t ≤ 1, (8.1)

where the Lagrange basis (or shape) functions Li associated with each knot i of a Hex20

Figure 8.1: Lagrange coefficient labelling used for serendipity quadratic hexahedron
(Hex20).
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element are given as

L0 =
1
8
(1 − r)(1 − s)(1 − t)(−r − s − t − 2),

L1 =
1
8
(1 + r)(1 − s)(1 − t)(r − s − t − 2),

L2 =
1
8
(1 + r)(1 + s)(1 − t)(r + s − t − 2),

L3 =
1
8
(1 − r)(1 + s)(1 − t)(−r + s − t − 2),

L4 =
1
8
(1 − r)(1 − s)(1 + t)(−r − s + t − 2),

L5 =
1
8
(1 + r)(1 − s)(1 + t)(r − s + t − 2),

L6 =
1
8
(1 + r)(1 + s)(1 + t)(r + s + t − 2),

L7 =
1
8
(1 − r)(1 + s)(1 + t)(−r + s + t − 2),

L8 =
1
4
(1 − r2)(1 − s)(1 − t),

L9 =
1
4
(1 − s2)(1 + r)(1 − t),

L10 =
1
4
(1 − r2)(1 + s)(1 − t),

L11 =
1
4
(1 − s2)(1 − r)(1 − t),

L12 =
1
4
(1 − r2)(1 − s)(1 + t),

L13 =
1
4
(1 − s2)(1 + r)(1 + t),

L14 =
1
4
(1 − r2)(1 + s)(1 + t),

L15 =
1
4
(1 − s2)(1 − r)(1 + t),

L16 =
1
4
(1 − t2)(1 − r)(1 − s),

L17 =
1
4
(1 − t2)(1 + r)(1 − s),

L18 =
1
4
(1 − t2)(1 + r)(1 + s), and

L19 =
1
4
(1 − t2)(1 − r)(1 + s). (8.2)

Five quadratic tetrahedra are used to approximate a Hex20 element. Figure 8.2 shows the

knot labelling for the quadratic tetrahedra. The indices of the five tetrahedra are given by

(0, 1, 3, 4, 8, 11, 16, 20, 22, 25), (5, 4, 6, 1, 12, 13, 17, 21, 22, 23), (2, 3, 1, 6, 10, 9,

18, 20, 24, 23), (7, 6, 4, 3, 14, 15, 19, 21, 24, 25), and (3, 1, 6, 4, 20, 24, 25, 23, 22, 21),

where—for a tetrahedron with indices (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)—the first four indices are
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Figure 8.2: Vertex labelling used for five-tetrahedra approximation of Hex20 element.

the corner knots and the remaining six are the edge knots between knot pairs (0,1), (0,2),

(0,3), (1,2), (1,3), and (2,3), respectively. The five-tetrahedra approximation introduces

additional knots on the faces of the hexahedral element. The coefficients for these knots are

computed by fitting a quadratic curve to the three values obtained by evaluating F (r, s, t)

at the endpoints and midpoint defining the edge containing the new knot. The coefficients

ci used by the tetrahedra are given by

c0 = l0,

c1 = l1,

c2 = l2,

c3 = l3,

c4 = l4,

c5 = l5,

c6 = l6,

c7 = l7,

c8 = 2l8 −
l0 + l1

2
,

c9 = 2l9 −
l1 + l2

2
,

c10 = 2l10 −
l2 + l3

2
,

c11 = 2l11 −
l3 + l0

2
,
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c12 = 2l12 −
l4 + l5

2
,

c13 = 2l13 −
l5 + l6

2
,

c14 = 2l14 −
l6 + l7

2
,

c15 = 2l15 −
l7 + l4

2
,

c16 = 2l16 −
l0 + l4

2
,

c17 = 2l17 −
l1 + l5

2
,

c18 = 2l18 −
l2 + l6

2
,

c19 = 2l19 −
l3 + l7

2
,

c20 = l8 + l9 + l10 + l11 − l1 − l3 −
l0 + l2

2
,

c21 = l12 + l13 + l14 + l15 − l4 − l6 −
l5 + l7

2
,

c22 = l8 + l12 + l16 + l17 − l1 − l4 −
l0 + l5

2
,

c23 = l9 + l13 + l17 + l18 − l1 − l6 −
l2 + l5

2
,

c24 = l10 + l14 + l18 + l19 − l3 − l6 −
l2 + l7

2
, and

c25 = l11 + l15 + l16 + l19 − l3 − l4 −
l0 + l7

2
. (8.3)

The five-tetrahedra approximation can represent F (r, s, t) exactly along the edges of the

Hex20, however, the values over the faces and the interior are approximated. The error

ei of the ith tetrahedron Ti in the approximation is estimated using the root-mean-square

(RMS) error over the domain of Ti, defined as

ei =

√∫
Ti

(F − Ti)2, (8.4)

where F is the Hex20 element being approximated. (This error is computed analytically,

since F and Ti are known analytically.) To evaluate the quality of the approximation, the

approximation error for several random hexahedral elements was computed. Each hexahe-

dron was defined over the domain of the unit cube and Lagrange coefficients were randomly

generated in the range [0, 1]. The average RMS error ei for each of the five tetrahedra
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Ti, 0 ≤ i ≤ 4, for 1000000 individual random hexahedral elements is

e0 = 6.253e−2,

e1 = 6.255e−2,

e2 = 6.255e−2,

e3 = 6.247e−2, and

e4 = 7.262e−2.

(8.5)

(Tetrahedron T4 has a higher error e4 than the other tetrahedra, since it is larger in volume.)

When approximating a grid of Hex20 elements, one must alternate the indexing, so that

neighboring elements share edges correctly.
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Chapter 9

Conclusions and Future Work

Higher-order elements reduce the required number of elements needed to represent data

significantly. Efficient means to use them, whether for approximation or visualization,

should be studied. Consider the scenario of having to send a representation of a large data

set across a network. One could send several linear elements or a few higher-order elements,

saving on bandwidth, and speeding up the transfer. This speed-up permits interactive

visualization of relatively large data sets on relatively more inexpensive machines.

The methods for approximation, isosurfacing, ray casting, and cutting planes are

meant to be foundations for future research to extend and optimize upon. With video

hardware making advances in support of higher-order patch rendering and programmable

vertex and pixel shaders, hardware-assisted visualization of higher-order elements is feasible

and has the potential to be competitive with conventional linear techniques. Usage of

higher-order elements will succeed when three problems are solved:

1. Creating curved-element decompositions of domains.

2. Obtaining C1-continuous (or G1-continuous) isosurface representations.

3. Improving performance of approximation and visualization.

Each problem is discussed:
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9.1 Curved Domain Decomposition

Curved elements can better decompose domains, since element edges can be aligned with

features (and boundaries) in the underlying data. This, in addition to better field ap-

proximation, further reduces the required number of elements and provides a better rep-

resentation of the data. Existing curvilinear grids—that already take advantage of such

features—may be easily converted to use curved elements, however, non-curvilinear data

(i.e., rectilinear grids and unstructured meshes) cannot benefit so easily. Methods to con-

struct artificial features and align curved elements along those features are needed. For

example, it may be reasonable to extract several isosurfaces from a rectilinear data set, fit

higher-order patches to them, and then triangulate the data in-between patches to form a

curved-quadratic tetrahedral representation of the data, see [48]. Alternatively, scientists

could use curved-element meshes from the beginning.

9.2 Isosurface Continuity

It is visually (and possibly functionally) important for an isosurface to appear “smooth” to a

viewer. Using the isosurfacing method described, an isosurface from a higher-order element

results in C0-continuous patches. This tends to be quite obvious if the surface is extracted

from a coarse mesh. A reasonable solution is to smooth the resulting patches, so that they

appear to be C1-continuous. This can probably be done by first raising the degree of the

resulting quadratic patches to a quartic (an isosurface from a curved-quadratic element

already uses a quartic representation, thus, no elevation in degree is required). Then,

the three control points in the interior of each patch can be adjusted so that neighboring

elements share tangent planes across each edge, making them G1-continuous (tangent-plane-

continuous). (It may also be possible to make them C1-continuous using a variation of this

method.)
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9.3 Performance

To be competitive with linear elements, higher-order element speed, in general, must be

addressed. This concerns the generation of approximations and visualizations of higher-

order elements. In terms of approximation, the method described in this dissertation is slow

for both linear and higher-order elements. This behavior is caused by having to sample the

function F being approximated several times at arbitrary locations. Better integration and

sampling strategies are needed to accelerate this required step. (Acceleration would greatly

improve performance of linear approximation techniques as well.)

Regarding the speed of visualization, none of the methods described in this disser-

tation were optimized. Many research possibilities exist for the optimization and improve-

ment of the described methods. Assisting any of these methods with hardware is desirable

and, since higher-order patch rendering is already supported, feasible.
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Appendix A

Romberg Integration

It is non-trivial to perform integration of an arbitrary function defined over intervals, trian-

gles, and tetrahedra. A method that extends easily from 1D to 3D is Romberg integration

and is discussed in the following sections.

A.1 The 1D Case

For the integration of a function f(x) over the unit interval [0, 1] one computes a sequence

of trapezoidal sums,

At =
1
2t

1
2


f0 + f2t + 2

2t−1∑
i=1

fi


 , t = 0, . . . , n, (A.1)

where fi = f( i
2t ), and uses this sequence to compute extrapolated, usually better, integral

approximations. The sequence of At values converges linearly to the exact value of the

integral of f(x) defined over the unit interval, see [38].

Having computed the values A0
0 = A0, A0

1 = A1, A0
2 = A2, . . . , A0

n = An, the

extrapolated approximation is

Aj
i =

Aj−1
i+1 − 2−2jAj−1

i

1 − 2−2j
, j = 1, . . . , n, i = 0, . . . , n − j. (A.2)

Initially, the triangular Romberg scheme is computed for n = 1 and then n is increased one-

by-one until the condition |An
0 −An

1 | < ε, where ε is some user-defined tolerance. Figure A.1

illustrates the triangular Romberg scheme resulting from Equation (A.2).
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A0
0 → A1

0 → A2
0 . . . An−2

0 → An−1
0 → An

0

A0
1 →↗ A1

1 →↗
... An−2

1 →↗ An−1
1

↗

A0
2 →↗

... →↗
... An−2

2
↗

... →↗
... →↗ A2

n−2

... →↗ A1
n−1

↗

A0
n

↗

Figure A.1: Triangular Romberg scheme.

A.2 The 2D Case

Regarding the computation of scalar products 〈F, fi〉 and error estimates in the bivariate

case, one can choose from a large pool of numerical integration schemes. A simple yet robust

and efficient adaptive triangular cubature scheme is described in [2] and one could use it as

an alternative to the bivariate Romberg scheme described here. The Romberg scheme was

chosen, since it generalizes nicely to arbitrary dimension. Regardless of the chosen numerical

method, all cubature methods assume that one knows an analytical definition of the function

being integrated—this can be a discontinuous, C0-, C1-, . . ., or C∞-continuous definition,

and that one can effectively evaluate the function. The bivariate Romberg scheme and the

construction of a sequence of integral estimates based on linear-edge triangular elements,

is briefly discussed. The description is limited to the standard triangle—having vertices

v0
0,0 = (0, 0)T, v0

1,0 = (1, 0)T, and v0
0,1 = (0, 1)T.

An initial estimate of the value of
∫

f(x, y)dxdy for some function f defined over

the standard triangle is

A0 =
1
2

1
3

(
f(0, 0) + f(1, 0) + f(0, 1)

)
, (A.3)

which is the area of the standard triangle multiplied by the average of the three function

values at the three vertices. One obtains a better estimate by splitting the standard triangle

into four subtriangles, and adding the resulting values. The six vertices defining the vertices

of the four subtriangles are v1
0,0 = (0, 0)T, v1

1,0 = (1
2 , 0)T, v1

2,0 = (1, 0)T, v1
0,1 = (0, 1

2)T,

v1
1,1 = (1

2 , 1
2)T, and v1

0,2 = (0, 1)T, see Figure A.2. The vertex triples defining the four sub-
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Figure A.2: Indexing of first and second levels in Romberg integration scheme.

triangles are (v1
0,0,v

1
1,0,v

1
0,1), (v1

1,0,v
1
2,0,v

1
1,1), (v1

0,1,v
1
1,1,v

1
0,2), and (v1

1,0,v
1
1,1,v

1
0,1). Multi-

plying the areas of the subtriangles with the averages of the three function values at their

respective vertices and adding the individual results yields the approximation

A1 =
1
22

1
2

1
3

(f0,0 + f2,0 + f0,2 + 3f1,0 + 3f0,1 + 3f1,1+) , (A.4)

where fi,j = f(v1
i,j). The general level-t approximation is given by

At = 1
22t

1
2

1
3

(
f0,0 + f2t,0 + f0,2t + 3

∑2t−1
i=1 fi,0 + 3

∑2t−1
j=1 f0,j+

3
∑

i,j>0, i+j=2t fi,j + 6
∑2t−2

j=1

∑2t−1−j
i=1 f(i, j)

) , (A.5)

where fi,j = f
(

i
2t ,

j
2t

)
. This is a generalization of the trapezoidal sums used in the 1D

case, see [38]. The At values are then used to compute integral approximations Aj
i using

the triangular Romberg scheme.

A.3 The 3D Case

Romberg integration is used for the computation of scalar products 〈F, fi〉 and error val-

ues. The description is limited to the standard tetrahedron. Subdivision of the standard

tetrahedron into subpolyhedra is more complicated than subdividing the standard trian-

gle. An initial estimate of
∫

f(x, y, z)dxdydz for some function f defined over the standard

tetrahedron is

A0 =
1
6

1
4

(
f(0, 0, 0) + f(1, 0, 0) + f(0, 1, 0) + f(0, 0, 1)

)
, (A.6)
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which is the volume of the standard tetrahedron—having vertices v0
0,0,0 = (0, 0, 0)T, v0

1,0,0 =

(1, 0, 0)T, v0
0,1,0 = (0, 1, 0)T, and v0

0,0,1 = (0, 0, 1)T—multiplied by the average of the

four function values at the four vertices. One obtains a better estimate of the integral

by decomposing the standard tetrahedron into four tetrahedra and one octahedron (which

is split into four subtetrahedra), estimating integral values for the four tetrahedra and

the octahedron, and adding the individual results. The 10 vertices defining the first-level

decomposition are v1
i,j,k =

(
i
2 , j

2 , k
2

)T
, k = 0, . . . , 2, j = 0, . . . , 2 − k, i = 0, . . . , 2 −

k − j. The vertex quadruples defining the four tetrahedra are (v1
0,0,0,v

1
1,0,0, v1

0,1,0,v
1
0,0,1),

(v1
1,0,0,v

1
2,0,0, v1

1,1,0,v
1
1,0,1), (v1

0,1,0,v
1
1,1,0, v1

0,2,0,v
1
0,1,1), and (v1

0,0,1,v
1
1,0,1, v1

0,1,1,v
1
0,0,2). The

vertex tuple (v1
1,0,0,v

1
1,1,0, v

1
0,1,0,v

1
0,0,1,v

1
1,0,1,v

1
0,1,1) defines the octahedron. The octahedron

is split into four subtetrahedra of equal volume by adding an edge connecting v1
0,0,1 and

v1
1,1,0. Multiplying the volumes of the tetrahedra and subtetrahedra with the average of the

four function values at their respective vertices and adding the individual results yields the

approximation

A1 = 1
23

1
6

1
4

(∑1
k=0

∑1−k
j=0

∑1−k−j
i=0 (fi,j,k + fi+1,j,k + fi,j+1,k + fi,j,k+1) +

4f0,0,1 + 4f1,1,0 + 2f1,0,0 + 2f0,1,0 + 2f1,0,1 + 2f0,1,1

)
,

(A.7)

where fi,j,k = f(v1
i,j,k). The general level-t approximation is given by

At = 1
23t

1
6

1
4

(∑2t−1
k=0

∑2t−1−k
j=0

∑2t−1−k−j
i=0 (fi,j,k + fi+1,j,k + fi,j+1,k + fi,j,k+1) +∑2t−2

k=0

∑2t−2−k
j=0

∑2t−2−k−j
i=0 (4fi,j,k+1 + 4fi+1,j+1,k + 2fi+1,j,k+

2fi,j+1,k + 2fi+1,j,k+1 + 2fi,j+1,k+1) +∑2t−3
k=0

∑2t−3−k
j=0

∑2t−3−k−j
i=0 (fi+1,j+1,k + fi+1,j,k+1+

fi,j+1,k+1 + fi+1,j+1,k+1)
)

,

(A.8)

where fi,j,k = f
(

i
2t ,

j
2t ,

k
2t

)
. This is a generalization of the trapezoidal sums used in the

1D case. The At values are then used to compute integral approximations Aj
i using the

triangular Romberg scheme.



108

Appendix B

Image-space Error

In some applications, it is more appropriate to compare resulting images (from a visualiza-

tion) of an approximation rather than to compute an analytical error measurement for the

approximation. To do this, a difference image is constructed between an “original” image

and an image of the approximation. A quantitative measurement, the image-space error, is

computed by integrating over the difference image. For an M × N RGB pixel image, the

image-space error E (as a percentage) is given by

E =

(∑N−1
j=0

∑M−1
i=0 Ii,j

MNV

)
100, (B.1)

where Ii,j = ri,j+gi,j+bi,j

3 is the intensity of the pixel at (i, j)T and V is the maximum value

that an intensity Ii,j can obtain (for eight-bit RGB data V = 255). Thus, if two images

are exactly the same, the difference image is “black” and the error is 0%. Two images

that are exactly opposite produce a “white” image with an error of 100%. This is more

intuitive than an arbitrary RMS error measurement. Figures B.1 and B.2 show difference

images—and their associated image-space errors—formed from two sets of images.



109

Figure B.1: Image-space error measurement. Left and middle images show images being
compared. Right image shows the difference image (error E being 1.35%).

Figure B.2: Image-space error measurement. Left image shows the original. Middle image
shows the approximation. Right image shows the difference image (error E being 3.56%).
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Appendix C

Mapping Control Net

The similarities between the control net of Q(u) and that of C(u) are proved, as illustrated

in Figure 5.6. The property for the left tangent line formed by p0 and p1 is proved first,

where pi = (ui, vi)T, 0 ≤ i ≤ 2 . It must be shown that l0 = d0 and l1 = d1. First, it is

found that l0 = T(p0) and l2 = T(p1). The variable l0 is given as

l0 =







b20 b11 b10

b11 b02 b01

b10 b01 b00







u0

v0

1 − u0 − v0







T 


u0

v0

1 − u0 − v0


 , (C.1)

which is the same as

l0 = c0, (C.2)

where c0 is obtained from Equation (5.8), thus, finding that l0 = d0. The variable l2 is

given as

l2 =







b20 b11 b10

b11 b02 b01

b10 b01 b00







u1

v1

1 − u1 − v1







T 


u1

v1

1 − u1 − v1


 . (C.3)
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A quadratic curve is fit to {l0,T
(p0+p1

2

)
, l2} and it is found that l1 is

l1 =







b00 0

b10 − b00 b00 + b20 − 2b10

b01 − b00 b00 + b11 − b10 − b01

b10 − b00 0

b01 − b00 0

0

b00 + b11 − b10 − b01

b00 + b02 − 2b01

0

0







1

u1

v1







T




1

u0

v0

u1

v1




. (C.4)

By substituting the solutions for c0 and c1, from Equation (5.8), into the solution for d1

from Equation (5.20) it follows that d1 = l1. A similar proof can be constructed to show

that r0 = T(p2) = d4 and r1 = d3, where r1 is given as

r1 =







b00 0

b10 − b00 b00 + b20 − 2b10

b01 − b00 b00 + b11 − b10 − b01

b10 − b00 0

b01 − b00 0

0

b00 + b11 − b10 − b01

b00 + b02 − 2b01

0

0







1

u1

v1







T




1

u2

v2

u1

v1




. (C.5)




