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Abstract

We propose a neural network model that accounts for the emer-
gence of the taxonomic constraint in early word learning. Our
proposal is based on Mayor and Plunkett (2010)’s neurocom-
putational model of the taxonomic constraint and overcomes
one of its limitations, namely the fact that it considers arti-
ficially built, simplified stimuli. In fact, while in the original
model the visual stimuli are random, sparse dot patterns, in our
proposed solution they are photographic images from the Im-
ageNet database. In our model the represented objects in the
image can be of different size, color, location in the picture,
point of view, etc.. We show that, notwithstanding the aug-
mented complexity in the input, the proposed model compares
favorably with respect to Mayor and Plunkett (2010)’s model.

Introduction

A central issue in the current understanding of early lexical
acquisition concerns how infants learn the reference of words.
Quine (1960) famously raised the point that for every word
heard in a given circumstance, there are several possible ref-
erences: in order to infer the appropriate one, infants have
to rule out several possible alternatives. An influential so-
lution to the issue has been proposed by Markman (1989),
suggesting that infants rule out inappropriate references by
means of three constraints. By the whole object constraint
children assume that novel words refer to objects as a whole,
rather than to their parts, substance, color, or other properties.
By the mutual exclusivity constraint children assume that two
labels usually do not refer to the same object. Last, but cen-
tral to this paper, by the faxonomic constraint children extend
words to taxonomically-related objects (at the level of basic
categories): when a child hears the word “dog” pronounced
by a caregiver while pointing at a specific dog, she general-
izes the reference of “dog” to all dogs, not just to the one in
front of her.

Here we propose a neural network model that accounts
for the emergence of the taxonomic constraint in early word
learning, and can process realistic visual stimuli'. This is the
first step towards the development of a model able to cope
with visual and auditory stimuli that are both realistic.

!For the time being we leave the question of realism of the acous-
tic part to future work.

Our starting point is Mayor and Plunkett (2010)’s neuro-
computational model of the taxonomic constraint. The model
consists of two self-organizing maps (a visual and an acous-
tic map) connected with Hebbian connections. The model
successfully explains how it is possible to generalize a single
word-object association to a whole class of objects. Essen-
tially, this is the result of Hebbian learning creating word-
object associations over a previous conceptual organization
of the visual and acoustic space.

Here we want to go beyond one limitation of Mayor and
Plunkett (2010)’s model, namely the fact that it considers
artificially built, simplified stimuli: in their model the vi-
sual stimuli are random, sparse dot patterns, in the style of
(Posner, Goldsmith, & Welton Jr, 1967), whereas the acous-
tic stimuli are manipulations of acoustic signatures extracted
from sounds produced by a speaker, leading to a simplified
acoustic input stimulus.

Would the model still work if we considered realistic visual
inputs, instead? In order to address this question, we have
expanded the original model’s visual component making it
able to process realistic visual stimuli, that in our case are
images taken from the ImageNet dataset. More precisely, we
have added to the visual component of Mayor and Plunkett
(2010) an InceptionV3 deep network (Szegedy et al., 2015)
which is at the state of the art in the image classification task.
The deep network processes the visual scene in the image,
builds a representation for it, and feeds the representation to
the visual self-organizing map.

In order for the whole model to work, these representations
need to contain a description of the main object of the visual
scene, independent from the context. Understanding the na-
ture of the image representations built at the various levels
of the network is indeed one of the main points of debate in
deep neural networks (Zeiler & Fergus, 2014; Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2014; Agrawal, Girshick, &
Malik, 2014). In order to assess whether the InceptionV3
deep network feeds into the visual self-organizing map mean-
ingful object representations, we performed several clustering
experiments. These experiments investigated whether repre-
sentations deriving from images of objects can be clustered
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together by off-the-shelf clustering algorithms. They showed
that the representations provided by InceptionV3 are reason-
ably well organized. A further test investigated whether the
visual self-organizing map could organize the representations
received from the deep neural networks in a topologically sat-
isfactory manner.

We then tested the whole model to see if it still exhibits
a taxonomic responding, generalizing learned word-object
associations to the whole category. Results show that our
model, despite starting from more realistic visual stimuli,
does replicate Mayor and Plunkett (2010)’s success on tax-
onomic responding when few joint word-object associations
are considered.

Mayor and Plunkett (2010)’s model

Mayor and Plunkett (2010) neurocomputational model of tax-
onomic constraint (Figure 1) is based on two Self-Organizing
Maps (SOMs): a visual map and an acoustic map, represent-
ing the primary visual cortex and the primary auditory cortex

respectively.
The stimuli presented to the
two maps are artificially built:
the visual stimuli are random -:‘;[\_._.

dot patterns, whereas the audi-
tory stimuli are extracted from

the acoustic signatures of ut- S EIENE
tered words; the acoustic signa-

tures are manipulated in order Figure 1. Mayor and
to create simpler inputs. Plunkett (2010) model

Learning is a two-phase pro-
cess. First, the two maps are independently trained to learn
to categorize the visual and the acoustic stimuli. This first
learning phase is preliminary to word learning, and unsuper-
vised. The two maps are trained using the standard learning
algorithm for self-organizing maps. In short, a stimulus x is
presented to each neuron of the map, and the Best-Matching
Unit (BMU) is selected: this is the unit i whose weight vector
w is closest to the stimulus x (i.e. i = argmin; ||x —w;||).

The weights of the best matching unit and of its surround-
ing units are updated in order to maximize the chances that
in the future the same unit (or the surrounding units) will be
selected as the best matching unit for the same stimulus or
for similar stimuli. At iteration n+ 1, the weights for neuron
Jj are updated as follows:

wi(n+1) =w;(n) +n(n)hi j(n)(x—w;(n)) )]

where M is the learning rate, and h; ; is the neighborhood
function between i and j h; j(n) is defined as h; j(n) =
exp(—d;;/26(n)?), where d; j is the distance between i and
on the map’s grid, and 6(n) is the width of the gaussian.
After a while, the two maps learn to adequately represent
the stimuli of their training set in a topologically significant
way: close units respond similarly to similar stimuli. The
neural activation a; of a neuron j in response to a stimulus x

. _9 . .
is defined as: aj = e~ =, where g; is the quantization error

(i.e., the distance between the input vector x and j's weight
vector: ¢; = ||x—w;(n)||)), and T is a normalization constant.

Once the visual and acoustic maps have stabilized into
a topological organization, proper word learning can start.
This is the Hebbian Learning phase, in which the two kinds
of stimuli are simultaneously presented to the model. For
each joint presentation of a visual and acoustic stimulus, the
synapses between the two maps are strengthened. In partic-
ular, for each neuron v on the visual map and neuron p on
the acoustic map, the Hebbian connection u,, , is strengthened
proportionally to the resulting neural activations a, and a,, as
follows:

yp(n+1) =, p(n) +1— e v (2)

where A is the Hebbian training learning rate.

A single Hebbian learning event, combined with the pre-
viously acquired categorization capabilities of the visual and
acoustic SOMs, allows the model to generalize the associa-
tion to other stimuli belonging to the same category.

Once training is complete, the model is tested for its abil-
ity of comprehension and production. Comprehension is as-
sessed by considering what visual category is retrieved when
a word is presented to the auditory map and activation is prop-
agated via Hebbian connections. Production is assessed by
considering what word is produced by the auditory map when
a visual stimulus is presented to the visual map, and activation
is propagated through Hebbian connections.

The ability of the model to extend the learned word-object
associations to other words and objects belonging to the same
category is measured by the Taxonomic Factor which is the
percentage of correct word-object associations generated by
the model. Results show that when the SOMs are adequately
trained the Taxonomic Factor reaches 80% after a single Heb-
bian learning trial.

One of the limitations of Mayor and Plunkett (2010)’s orig-
inal model is that it uses artificially built input stimuli that are
much simpler than what would derive from realistic contexts.
Here we address this limitation, for what concerns the visual
module, by introducing deep convolutional neural networks
as shown in the next sections.

Deep Convolutional Neural Networks

In the last few years research on deep networks contributed
to reach human (sometimes super-human) performances on
several difficult tasks (Hinton et al., 2012; Li & Wu, 2015;
Socher, Bauer, Manning, & Ng, 2013; Yue-Hei Ng et
al.,, 2015). In particular, in 2011 a deep convolutional
model achieved for the first time super-human performances
in a visual pattern recognition task and, in the following
year, the AlexNet Convolutional Neural Network (CNN)
model won the ImageNet competition by a significant mar-
gin (Krizhevsky, Sutskever, & Hinton, 2012) over traditional
competitors. These successes contributed to a growing inter-
est in deep networks and today deep-network-based models
are at the forefront of research in many different areas and are
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setting performance records in tasks of interest for the cogni-
tive sciences community such as image (e.g., (Russakovsky et
al., 2015)) and speech recognition (e.g., (Xiong et al., 2016)).

Despite unheard performances achieved in many different
tasks, deep models present important shortcomings that are
far from being completely addressed. The most important
problem from the point of view of the forthcoming discus-
sion is the difficulty they present for what concerns the under-
standing of their internal working. Consequently, recent re-
search investigated ways to make sense of the contents of the
network providing interesting insights. For instance, Zeiler
and Fergus (2014) use “deconvolution networks” to visual-
ize the patterns that causes the activation of nodes in each
layer; in Zhou et al. (2014) scenes are iteratively simplified
or occluded to investigate which image patches and which ob-
jects contribute to the activation of nodes in a given layer; in
(Agrawal et al., 2014) the authors investigate the presence of
grand-mother-cells and of distributed representations in deep
networks.

While the understanding of the representations built by
these networks is still scattered and incomplete, some of the
insights seem to be well supported. An important one con-
cerns the hierarchical organization of the features: low-level
(coarser) features are nearest to the network input, while
higher-level (more abstract) features are nearest to the output
(for an idea of the kind of features extracted at the different
levels see for instance (Zeiler & Fergus, 2014)). Interestingly
this organization mirrors a well known characteristic of the
representations in the primate inferior temporal (IT) cortex,
and hence it hints at a possible cognitive justification of this
computational model. To this regard it is interesting to men-
tion that recent research investigated the connection between
the representations built by several computational models and
the representations in the IT cortex and found that deep neural
networks are among the best models (Serre, 2016; Kriegesko-
rte, 2015). For instance, in (Khaligh-Razavi & Kriegeskorte,
2014), the authors investigate a wide range of computational
models and suggest that deep CNNs are, not only the best
performing in term of accuracy, but also the best at explain-
ing the IT representation (albeit still in an incomplete way).

Given the great accuracy they achieve and the possible cog-
nitive plausibility of the CNNs, we have chosen to use these
particular models as the visual component of the word-object
association model we propose in the next section.

Proposed model

In order to solve the problem of the lack of realism in the
visual stimuli in the Mayor and Plunkett (2010) model, we
propose to replace the input of the visual SOM with a repre-
sentation built by a CNN as shown in Figure 2.

The long term objective of this research is to find a cog-
nitively plausible model able to reproduce the word-object
association abilities observed in infants using realistic image
and audio stimuli. In this paper we keep a simplified auditory
input and focus instead on providing a visual module capable
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Figure 2: The proposed model: the visual component con-
tains a deep convolutional network (InceptionV3) in order to
process realistic images. The representation built by the deep
neural network is then fed into the visual SOM. The acoustic
component, on the contrary, only contains an acoustic SOM,
as in Mayor & Plunkett (2010)’s model, and can only process
simplified acoustic stimuli.

of handling realistic images. In fact, in this proposal the au-
ditory input is a mere placeholder that does not provide any
real processing ability.

In practice, we shall assume that an oracle provides the
auditory SOM with a perfect representation of the auditory
stimulus, or label, in the form of a binary vector. The vec-
tor contains a 1 in position i if the utterance provided to the
auditory module corresponds to the i-th label; it contains a 0
otherwise.

The visual module shall, on the contrary, be able to cope
with realistic images and, while we still assume that each im-
age contains a main object corresponding to the concept to be
learned, we pose no additional constraints. Images for a given
concept can, for instance, be of different size, color, location
in the picture, point of view, etc.. For instance, the “dogs”
concept may be represented by images of dogs of different
size, color, breed and be portrayed in different contexts, un-
der different illuminations and poses.

The visual module is the concatenation of the InceptionV3
network and the SOM network we already introduced. Incep-
tionV3 is a stack of Inception Modules, which parallelize and
combine several convolution and pooling operations provid-
ing a richer output while still maintaining a small number of
parameters. At the end of the stack of inception modules the
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model contains a pooling layer of length 2048 which is fully
connected with a shallow feed-forward neural network which
is then used to classify the input image.

In the Inception architecture a representation of the input
is propagated through the layers up to the top of the network
where it is used to train the classifier. A question worth inves-
tigation is if and where a good representation of the concept
in the input image is created by the deep network. In this
paper we work under the assumption that such representation
exists and argue that it has to be found in the last pooling layer
(just before the fully connected neural classifier). Based on
this assumption, we propose to use the vector containing the
value of the 2048 neurons in that layer as the representation of
the stimuli for the visual SOM. To verify the validity and the
consequences of this assumption, we performed two sets of
experiments: in the “Representation Quality” sub-section of
the Experiments section we investigate the nature of the pro-
posed representation, while in the subsequent section (Word
Learning) we investigate the quality of the complete model.
In our simulations we used the pre-trained Inception network
provided by the TensorFlow library?.

The complete system is trained as outlined in the “Mayor
and Plunkett (2010)’s model” section. In summary, given the
representation from the CNN and the simplified auditory in-
put, the two SOMs (composed by 20 x 30 neurons each) are
trained to cluster together similar representations using the
standard SOM training algorithm. In our tests, the two SOMs
attain their best topological organization of the objects in the
training set after 60 epochs (the learning rate is set to 0.3 and
decreases linearly at each epoch). Afterwards, the associa-
tion between the visual and the auditory input is created us-
ing Hebbian connections between the two maps: two stimuli
belonging to the same category are presented together to the
model, the visual stimulus is processed to extract its repre-
sentation and presented along with the auditory stimulus to
the corresponding SOMs. Finally the SOMs activations are
used to update the Hebbian connections using the update rule
in Formula 2.

To better cope with the variability in the input represen-
tation, we introduce two variations to the Hebbian training
(with respect to the procedure outlined in (Mayor & Plunkett,
2010)): i) we allow the network to learn from an increasing
number of stimuli pairs (in the original paper a single pair of
stimuli is presented to the network), this allows us to study
how performances increase as the number of presentations
grows; ii) we suppress the activation of a neuron in a SOM if
its activation value is below 0.6.

Experiments

In the following two sub-sections we investigate two impor-
tant facets of the proposed model. In particular, in the “Rep-
resentation Quality” Section we show that the representation
found in the last pooling layer of the InceptionV3 network al-

2https://github.com/tensorflow/models/tree/master/
inception

lows one to cluster the input images into groups that correlate
well with the classes assigned with the images themselves.
This is arguably an evidence that such a representation can
be usefully exploited as the input of the SOMs. In the “Word
Learning” Section we focus on the complete model, repli-
cate part of the experiments in (Mayor & Plunkett, 2010),
and compare our results with those reported in that paper.
All the experiments have been performed on two datasets.
A first dataset is composed by 10 classes associated with
100 stimuli each, for an overall 1.000 stimuli. A sec-
ond dataset contains 100 classes associated with 100 stim-
uli each, for an overall of 10.000 stimuli. Since the re-
sults for the two datasets are very similar, for the sake of
readability we focus on the smaller dataset and refer to
(Fenoglio, 2016) for the details of the experiments on the
larger dataset. The code for the complete model along with
the datasets used can be found at https://github.com/
ml-unito/NNsTaxonomicResponding.

Representation Quality

In order to assess the quality of the representation found in
the last pooling layer of the InceptionV3 model, we investi-
gate how well these representations can be clustered together.
For each image we extract the representation found in the last
pooling layer of the deep network, we then cluster the result-
ing representations using a K-means and an agglomerative
algorithm. For both algorithms the number of clusters is set
to 10. The clustering experiments have been conducted using
the scikit-learn python library?.

Figures 3 and 4 report results for K-means clustering.
Analogous results hold for agglomerative clustering. In par-
ticular, Figure 3 reports, for each class, a bar showing how
the class objects are partitioned among clusters; Figure 4 re-
ports, for each cluster, a bar showing the distribution of the
classes within it. We then investigate the topological organi-
zation provided by the visual SOM out of the representations
created by the deep model. We report in Figure 5 a repre-
sentation of the topology found by the visual SOM after 60
learning epochs.

Discussion The experiments show that the two clustering
algorithms are able to find good, albeit not perfect, partitions
for the representations. In particular, Figure 3 shows that the
objects in 7 out of 10 classes are mostly assigned homoge-
neously to a single cluster: in two of the remaining cases the
objects are almost all distributed among two classes, while in
a single case (and only for the k-means clustering algorithm)
the objects are distributed on three clusters. Figure 4 shows
a similar picture, but from the point of view of the clusters:
in almost all cases (8 out of 10) we have clusters which are
almost pure. The remaining two clusters conglomerate ob-
jects from different classes acting almost as folders where all
uncertain objects are put.

Overall, it seems that the clustering algorithms do find a
way to partition the representations of the objects into co-

3http://scikit-learn.org/stable/modules/clustering
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Figure 3: Per class distribution of objects into clusters (K-
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Figure 4: Distribution of classes among clusters (K-means
clustering).

herent clusters. This is consistent with what happens for the
topological organization that the SOMs create for the repre-
sentations provided by the deep networks. Figure 5 shows
that, with the exception of few cases, the visual SOM is able
to group all related objects into nearby spaces.

Word Learning

In order to evaluate the performance of our model in the task
of word learning, we calculate the Taxonomic Factor of the
model as defined in (Mayor & Plunkett, 2010). We do so by
testing the model for its production skills: for each class, 100
images are presented to the visual module, the activation is
propagated through the deep neural network, then fed into the
visual SOM. The activation of the visual SOM’s best match-
ing unit is propagated through the Hebbian connections up
to the acoustic SOM. At the end of the process the resulting
most active unit on the acoustic map is identified. It will be
considered correct if it belongs to the area of the acoustic map

house

guitar

mug

=

fish

Figure 5: SOM clustering of the visual stimuli representations

associated to that word*. The percentage of correct words
produced by the model when tested through all the classes is
the Taxonomic Factor.

We have performed a number of experiments where we
varied the number of presentations per class used to update
the Hebbian connections. Specifically we let the number of
presentations vary from 1 to 15. For each experiment we
repeated the test over 1.000 different training sets (we kept
fixed the SOM and let vary the images presented to the Heb-
bian learning module) and report the average taxonomic fac-
tor over an independent test set composed by additional 1000
images (100 images per class). Results are shown in Figure
6.

90%
85%
80%
75%
70%
65%

Taxonomic Factor

60%
55%

50%
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of pairs used

Figure 6: Taxonomic factor of the model, using an increasing
number of pairs of stimuli per class during the training of the
Hebbian Connection (on the x-axis).

Discussion The experiments show that the Taxonomic Fac-
tor steadily grows as more word-object associations are pre-
sented and reaches an accuracy above 80% (which is compa-
rable with results in Mayor and Plunkett (2010)) at the fourth
joint presentation.

4 An area in the map is associated to a word if the activation of the
neurons within it are at their peak when they respond to a stimulus
of that particular word.
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Conclusions

In this paper we have proposed an extension of the Mayor and
Plunkett (2010) model for taxonomic responding. We have
addressed the issue of adding realism to the visual stimuli.
As a difference with respect to the original model in which
these inputs were random dot patterns, the model can now
deal with realistic images as those in the ImageNet dataset.
This is possible thanks to the insertion of a deep convolu-
tional neural network in the visual component of the model.
Notwithstanding the higher complexity of the stimuli consid-
ered, our model exhibits taxonomic responding with perfor-
mances comparable to the original one.

In our future work we will address the issue of making the
acoustic module work with realistic stimuli. It can be inter-
esting to explore whether a deep neural network for acoustic
processing, as for instance the one proposed in (Xiong et al.,
2016), could be nested into the acoustic part of the model in a
way similar to what we already did for the visual component.

We will also explore whether the model proposed here can
be used to provide a mechanistic account of the whole object
constraint proposed by Markman (1989) by which a word is
associated to the whole object instead of anyone of its prop-
erties. We conjecture that a model as the one proposed, with
the deep component that extracts a representation of an object
out of a more complex visual scene, can be adequate to the
purpose: the whole object constraint may naturally emerge
from the association of the word to the object’s representa-
tion formed by the deep network. Important to this regard
is the current discussion about the nature of the object repre-
sentation built by deep networks (Ullman, Assif, Fetaya, &
Harari, 2016; Tang & Kreiman, 2017).
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