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Abstract: Network alignment is an important bridge to understanding human protein–protein interactions (PPIs) and
functions through model organisms. However, the underlying subgraph isomorphism problem complicates and
increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective
solution to the challenge of aligning large-scale networks via sequential computing. In this study, the typical
Hungarian-Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2-
nearest neighbours (HGA-2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments
demonstrate that HGA-2N can find alignments that are close to those found by HGA while dramatically reducing
computing time. The GPU implementation of HGA-2N optimises the parallel pattern, computing mode and storage
mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large-scale
networks are considered. By using HGA-2N in GPUs, conserved PPIs can be observed, and potential PPIs can be
predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human
Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which
shows the same relationships among five herpes viruses that are obtained using other methods.
1 Introduction

Biomolecular network alignment is an effective approach for
understanding similarities and dissimilarities between different
living systems. Furthermore, protein interaction network (PIN)
alignment facilitates the exploration of protein–protein interactions
(PPIs), the prediction of protein functions and the study of
evolution. There are two general classes of PIN alignment
algorithms: local and global. Local alignment is ambiguous
because one node in a network can be matched with numerous
nodes in another network. Sub-networks of PINs, including
pathways and protein complexes, can be identified using this
method. PathBLAST [1] was one of the earliest algorithms
developed for local PIN alignment, and NetworkBLAST-M [2] is
a modified form of this algorithm. In global network alignment,
each node from one network is matched with a unique node in
another network. Berger’s group proposed the first global PIN
alignment algorithm, IsoRank [3], and further improved the
algorithm to generate IsoRankN [4] and PISwap [5]. Natasa’s
group proposed a series of algorithms: GRAAL [6], H-GRAAL
[7] and MI-GRAAL [8]. Based on the IsoRank algorithm, Andrei
et al. developed an alignment method for probabilistic PINs [9].
GEDEVO [10] is an ingenious method that aligns networks using
a novel evolutionary algorithm and attempts to minimise the GED.
NETAL [11] deals with topological and biological scores
separately, then uses GA to find the global alignment. NETAL
focuses on topological similarities in the current version and aligns
networks very quickly. The Hungarian-Greedy Algorithm (HGA)
[12], which is improved from the Immediate Neighbours-in-first
Method (INM) [13], is an adaptive hybrid algorithm for global
network alignment. INM has many of the common features of PIN
alignment algorithms, such as considering the attributes of proteins
and interactions between them, computing the similarity matrix
between the aligned networks, and calling attention to the
neighbours of each protein.

The underlying subgraph isomorphism problem is referred to as
NP-hard, and it complicates and increases the time required to
align PINs. Moreover, increasing amounts of biological data, such
as the data generated through completion of the Human Genome
Project (HGP) and the Encyclopaedia of DNA Elements project,
will rapidly increase the size of these data sets [14]. The
exploration of larger PINs based on large sets of data requires
improved alignment algorithms and adaptation of existing
sequential algorithms for parallel simulations.

The graphics processing units (GPUs) of many cores are
multi-threaded chips capable of hundreds of trillions of peak
floating point operations per second (FLOPS). Although these
chips were originally designed to accelerate graphics processing,
the exceptional performance-to-cost ratio of GPUs has enabled
supercomputing power to be achieved in desktop units. The
application of GPUs was hindered by the complexity of
implementation until Compute Unified Device Architecture
(CUDA) was introduced by NVIDIA [15] in 2007. In recent years,
GPUs have been widely used in high-performance computing and
are exploited for running numerous bioinformatics algorithms,
such as the Smith-Waterman alignment algorithm [16], molecular
docking [17], BLAST [18], and network clustering [19]. Most of
these applications have concentrated on single-molecule systems,
and attempts to align PINs have been limited.

Since only highly parallelised algorithms can be efficiently run on
GPUs as a result of their single instruction multiple data (SIMD)
architecture, it is difficult to improve alignment results because
network topological information is frequently used in PIN
alignment algorithms. The high data correlation that occurs in
typical PIN alignment algorithms limits the advantages of GPUs.
Within the framework of NVIDIA’s GPUs, we propose several
methods of addressing these difficulties in PIN alignment using
GPUs. Using HGA as an example, we have improved the
algorithm by creating an HGA with 2-nearest neighbours
(HGA-2N) and implementing its GPU acceleration. The remainder
of this paper is organised as follows. In Section 2, HGA, time
complexity and HGA-2N are illustrated. In Section 3, the
acceleration methods for PIN alignment using GPUs are presented.
In Section 4, numerical experiments are designed to analyse
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Fig. 1 Example of PIN alignment

Nodes connected by dotted lines in the figure are the matched nodes, and this alignment
provides the best mapping of the two networks

Table 1 Similarities between nodes from two different networks

A1 B1 C1 D1 A2 B2 C2 D2

a 0.8 0 0.1 0.1 0.5 0 0 0
b 0.5 0.7 0 0.2 0 0 0.1 0
c 0.2 0 0.9 0 0.3 0.4 0 0
d 0.1 0 0.1 0.5 0.2 0 0.1 0
computing time and explore the computing time ratio between the
CPU and GPU (rct-CG). In addition, the running time and solution
quality of HGA, HGA-2N and some popular algorithms are
compared. Furthermore, we study the alignments obtained with
HGA and HGA-2N and reconstruct the phylogenetic tree of five
herpes viruses. In Section 5, our conclusions are presented.
2 PIN alignment

2.1 Problem definition

A PIN can be represented as an undirected and unweighted graph
and denoted by G(V, E), where V is a set of vertexes, and E is a
set of edges representing PPIs. The alignment of PINs is defined
below.

Given two PINs represented by the graphs G1(E1, V1) and G2(E2,
V2), in which |V1| = n1 and |V2| = n2, alignment is conducted to
determine the mapping, j, between the proteins of the two
networks that best represents conserved biological functions. This
problem can be formulated as follows

Sim(G1, G2) = argmax
∑
a[V1

sim(a, w(a)) (1)

in which sim(a, j(a)) represents the biological similarities between a
inG1 and the matching vertex j(a) inG2, and the mapping, j, shows
the largest value in Sim(G1, G2). Fig. 1 presents an example of a PIN
alignment, and Table 1 shows the similarities between the nodes
from the two networks in Fig. 1.
N (k)
2 (a, b) =

∑
a2�a,b2�b

S(k)(a2, b2)

(n1 − d(a))× (n2 − d(

∑
a2[V1,b2[V2

S(k)(a2, b2)

n1 × n2
,

0,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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In PIN alignment, the two graphs are represented by two adjacent
matrices: M1(n1×n1)

and M2(n2×n2)
. The entry M1(a, b) equals ‘1’ if a,

b∈G1 are neighbours; otherwise, this entry is ‘0’. The diagonal
elements in M1 are all ‘0’. The entries in M2 are the same as in
M1. Similarities are stored in another matrix, S(n1×n2)

. Each entry,
S(u, v), indicates the similarity between u∈G1 and v∈G2.
2.2 Algorithm

The HGA is a typical PIN alignment algorithm, and it has two main
stages. One stage involves the computation of similarities between
the nodes from two networks in the similarity matrix, S. In this
stage, the similarities between the neighbours and non-neighbours
of each pair of nodes are calculated [12]. The second stage
involves mapping between nodes.

The pseudo code of HGA is as follows:
See Fig. 2.
In the above code, Step 4 and Step 5 account for most of the

calculation time. Since G1 has n1 nodes and G2 has n2 nodes, in
which n1≤ n2, the MateListk has n1 pairs of nodes. Given any two
nodes, a and b, in the aligned networks, N1 indicates the average
similarity between their neighbours; N2 indicates the average
similarity between their non-neighbours; the time complexities of
N1 and N2 are O(n1 × n2); and the time complexity of Steps 4 and
5 is O(n21 × n2) and O((n1 × n2)

2), respectively, with each loop
equal to O((n1 × n2)

2). Increases in the size of the network will
result in more computational time being required for this algorithm.

In HGA, N1 and N2 are computed as follows

N (k)
1 (a, b) =

∑
a2↔a,b2↔b

S(k)(a2, b2)

d(a)× d(b)
, if (d(a) = 0, d(b) = 0)

∑
a2[V1,b2[V2

S(k)(a2, b2)

n1 × n2
, if (d(a) = d(b) = 0)

0, others

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2)

(see (3))

As typical sparse networks, the average degree of PINs may be <8,
meaning that each node has a greater number of non-neighbours than
neighbours. Calculating the similarities between all non-neighbours
in such cases is costly. Proteins, such as protein a, always interact
directly with proteins that have similar functions. Therefore the
proteins that are closer to a have more of an effect on the function
of a. Thus, for the non-neighbours of the computed nodes, the
influence of nodes that are far away (i.e. distance ≥3) from the
computed nodes is weak, whereas the influence of the neighbours’
neighbours of the computed nodes is significant. To consider these
factors, we improved HGA and developed HGA-2N, in which the
average similarity of non-neighbours between nodes a and b is
computed using the 2-nearest neighbours, rather than all of the
non-neighbours. The formulas for calculating the new N1 and N2

are as follows

N (k)
1 (a, b)′ =

∑
a2↔a,b2↔b

S(k) a2, b2
( )

d(a)× d(b)
, if (d(a) = 0, d(b) = 0)

0, others

⎧⎪⎨
⎪⎩

(4)
b))
, if (d(a) = n1 − 1, d(b) = n2 − 1)

if (n1 − d(a) = n2 − d(b) = 1)

others

(3)
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Fig. 2 Algorithm 1: HGA(G1, G2, S
0)
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N (k)
2 (a, b)′ =

∑
a2⇔a,b2⇔b

S(k)(a2, b2)

d2′(a)× d2′(b)
, if (d2(a)= 0, d2(b)= 0)

0, others

⎧⎪⎨
⎪⎩

(5)

where k indicates the iteration time; d(a) indicates the degree of a;
d2(a) indicates the number of 2-nearest neighbours of a; a2↔a
indicates that a2 is the neighbour of a; and a⇔a2 indicates that a2
is a 2-nearest neighbour of a. Except for the computation of N1

and N2, the pseudo code of HGA-2N is same as that of HGA.
In addition to edge correctness (EC) [8], which is often used to

compute the percentage of matched edges, we employ the sum
score (SS) [12] to measure the alignments. SS is a factor that
computes sequence and topology similarities. Experiments have
demonstrated that the alignments obtained with HGA-2N are close
to those obtained with HGA, which is described in Section 4.
3 Architecture and implementation

Owing to the global nature of the algorithms employed for PIN
alignment, implementation using GPUs involves a number of
general difficulties in parallelisation and communication. Our
approaches for resolving certain difficulties are described below.

3.1 Parallel pattern

The first challenge is the parallel computing pattern, which is used to
allocate S.

We propose a pattern of parallel computing for processing S based
on two main characteristics of the architecture of the threads of
GPUs. First, threads can be conveniently controlled in GPUs.
Second, compared with CPUs, the number of processors in GPUs
is greater, and the computational power of each processor is
relatively lower. This pattern leads to a high grain and efficiency
in the parallel computing pattern.

The method used to compute the unique ID of each entry is as
follows

EntryIDS(i,j) = i× n2 + j (6)

The next question is how to compute the ID of each thread. Fig. 3a
illustrates the framework of the threads in typical GPUs. The ID of
each thread can be computed using the following formula

ThreadID = BlockIdX.X × BlockDim+ ThreadIdX.X (7)

where ThreadIdx·x indicates the number of threads in the same block,
and BlockIdx·x denotes the number of blocks in the grid.

Table 2 presents the correspondence between the IDs of the
threads and the entries. A thread computes the entry of the same
ID. In this example, there are 32 threads in each block.

3.2 Computing mode

The processors in GPUs are powerful for performing calculations but
are not efficient for making logical decisions. Each thread typically
requires its neighbours’ information to complete the calculation.
Thus, each thread must traverse M1 and M2 to determine whether
the nodes are the neighbours of the computing nodes. Large
numbers of logical decisions reduce the performance of GPU
programs. To reduce the frequency of such judgments, we have
built two new matrices (NM1 and NM2) by traversing the two
adjacent matrices. The size of these matrices is identical to the size
of M1 and M2. Each line in these matrices consists of three
components of topological information related to one node. The
first component is one entry for the number of neighbours of the
node; the second component contains all of the neighbours of
the node; and the third component contains all of the non-neighbours
IET Syst. Biol., 2015, Vol. 9, Iss. 4, pp. 120–127
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Fig. 3 Architecture of GPU

a Model of the structure of threads
b Models of memory in GPUs

Table 2 Correspondence between the ThreadID and EntryID

BlockIdx.x 0 1 2 … BlockDim

ThreadIdx.x 0 1 2 … 31 0 1 2 … 31 0 1 2 … 31 … 0 1 2 …(n1*n2)%32
ThreadID 0 1 2 … 31 32 33 34 … 63 64 65 66 … 95 BlockIdx.x*BlockDim+ThreadIdx.x … n1*n2−1
EntryID 0 1 2 … 31 32 33 34 … 63 64 65 66 … 95 (i*n2+j) … … n1*n2−1
Entry (0,0) (0,1) (0,2) … … … (i, j) … … (n1−1, n2−1)
of the node. Fig. 4 illustrates the construction process for the new
matrices. The neighbours of each node can be obtained directly
based on the new matrix, and the judgment times and frequency of
memory access are reduced.
Fig. 4 Construction process for the new matrix

For example, in graph G, two nodes, ‘C’ and ‘B’ are neighbours of node ‘A’; thus, in line
1 of the new matrix, the first entry is 2; the next two entries are ‘C’ and ‘B’; and the next
four are ‘D’, ‘E’, ‘F’ and ‘G’, which are the non-neighbours of ‘A’
3.3 Storage mode

Different types of memory are associated with different sizes, speeds
and functionalities in GPUs. Fig. 3b illustrates the memory
architecture of GPUs. The global memory is the largest in size and
slowest in speed, and there are a maximum number of threads that
can be physically executed in parallel; this group of threads is
known as a warp. Constant memory can provide a higher
bandwidth than global memory if all of the threads of a half warp
uses the same input data. Otherwise, the performance may be
reduced. Shared memory is employed for data communication
between threads that belong to the same block. If one variable is
shared, every block will have a copy and will be shared by all of
the threads in one block. Shared memory is the fastest type of
memory, but it is the smallest and is most difficult to extend.
GPUs also have local memory, texture memory and registers,
which are difficult to control.

As noted above, when computing one pair of nodes (i.e. one entry
in S), information related to the neighbours of those nodes, such as
similarities and matching statuses, is used. In addition, all of the
threads compute different pairs of nodes simultaneously and
require different information. Thus, the three matrices (M1, M2 and
S) should be transmitted to GPUs prior to computing and cannot
be saved in a distributed manner.
IET Syst. Biol., 2015, Vol. 9, Iss. 4, pp. 120–127
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Global memory is the best type of memory for PIN alignment.
Although the global memory is the largest in size, even this type
of memory is not sufficiently large to save these three matrices
because the scale of PINs is too large. We address this problem
using two approaches: one employs a triangular matrix to save the
two symmetrical adjacent matrices, and the other employs
‘unsigned char’ to define entries in two adjacent matrices instead
of using ‘int’ because entries in these matrices only equal ‘0’ or
123



Fig. 6 Results of HGA-2N and HGA for data set 1

a Average ECs
b Average SSs

Fig. 5 Average CPU running time of HGA and HGA-2N on each group
‘1’. By combining these two methods, less than one-eighth of the
memory required by the regular mode is used.
4 Experiments

4.1 Platform

The GPU devices employed in this study have two Intel(R) Xeon(R)
E5-2680 CPUs and two NVIDIA Tesla M2090s on ZQ 4000 located
at Shanghai University. Each CPU device has 8 cores, while each
NVIDIA device has 512 cores, and the peak double-precision
floating point reaches 665 GFlops. The software environment is
CUDA-5.0 in CentOS Linux 5.7.

The CPU program is run on a DELL Poweredge T110. The
computer has 1 processor that has 8 2.53 GHz Intel Xeon X3440
cores with 8 G memory. The software environment is gcc 4.9.2 in
CentOS 5.6.

4.2 Data sets

There are two data sets in our experiments. Data set 1 is for the yeast
and human PINs [6]. G1s represent the connected subnetworks
extracted randomly from the yeast PIN, and the number of nodes in
Table 3 Comparison of large-scale PIN alignment results and p-values

Algorithm C. Jejuni–E. Coli

SS HGA 75.86
HGA-2N 76.74
difference 1.1%

EC HGA 10.11%
HGA-2N 10.14%
difference 0.03%

p-value HGA-2N 8.4 × 10−5
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the subnetworks increases from 100 to 1200 in increments of 100.
For each increment, 50 different G1s with same number of nodes are
produced and aligned withG2, and the final alignment is the average
of these 50 alignments. G2 has 4451 nodes and 11 096 edges, and it
is a connected subnetwork randomly extracted from the human PIN.

Data set 2 includes three pairs of PINs from different species:
yeast and human [6], Campylobacter jejuni (C. Jejuni) and
Escherichia coli (E. Coli) [6], and Caenorhabditis elegans
(C. Elegans) and Drosophila melanogaster (D. Melanogaster) [5].
The details of these PINs are shown in Table 5.
4.3 Computing time

In this section, we compare the CPU computing time (sequential
program) of HGA and HGA-2N using data set 1. Fig. 5 displays
the average running time of HGA and HGA-2N for each group,
which indicates that HGA-2N runs much faster than HGA
especially for larger networks.
4.4 Alignment results

First, the alignments obtained for data set 1 using HGA-2N
and HGA are compared. Fig. 6 shows the ECs and SSs. The
Yeast-Human C. Elegans-D. Melanogaster

628.18 57.96
633.16 57.96
0.8% 0
7.14% 18.2%
7.15% 19.2%
0.01% 1.0%

4.9 × 10−2 4.0 × 10−3

IET Syst. Biol., 2015, Vol. 9, Iss. 4, pp. 120–127
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Table 4 Average percentage of the time spent computing Step 5 for networks of different sizes

number of proteins in G1 100 200 300 400 500 600 700 800 900 1000 1100 1200
time percentage of HGA (%) 40.2 67.0 85.0 92.2 95.0 96.9 97.7 98.0 98.5 98.7 98.8 98.9
time percentage of HGA-2N (%) 27.6 35.2 58.0 74.5 82.8 87.8 90.9 92.5 93.8 94.7 95.2 95.4

Table 6 Comparison between HGA-2N and other algorithms for yeast
and human PINs

Algorithm SS EC (%) HGp Parameters

IsoRank 333.92 3.63 663 default
GRAAL 0 3.87 5 default
MI-GRAAL 238.52 11.86 387 SeqD
NETAL 0 21.44 5 a = 0.0001, i = 2
PISwap 698.59 2.73 1204 default
GEDEVO 53.45 10.52 86 maxsame = 5000
HGA 628.18 7.14 1258 α = 0.4
HGA-2N 633.16 7.15 1246 α = 0.4

Table 5 Scales and rct-CGs of large-scale PINs

Species C.J E.C Yeast Human C.E D.M

number of nodes 1,111 1,941 2,390 4,451 2,742 6,697
number of edges 2,988 3,989 16,127 11,096 5,851 26,712
CPU run times (s) 1,194 30,076 33,766
GPU run times (s) 44 203 225
rct-CGs 27.14 148.15 150.07
results shown in Fig. 6 indicate that both the ECs and SSs of
HGA-2N are close to those of HGA for different sizes of aligned
networks.

Next, the alignments for data set 2 are compared, as shown in
Table 3. The alignments are close to each other, and the differences
between them range from 0 to 1.1%. For each pair of PINs, we
randomly change the connections in one PIN, make 50 different
random networks and align them with another PIN to compute
p-values [9]. The p-values of the three pairs of PINs shown in
Table 3 are all <0.01, indicating that the alignments exhibit high
statistical significance.

4.5 Computing time ratio between CPU and GPU

As previously mentioned, computing the similarity matrix in Step 5
is time consuming. Based on data set 1, Table 4 shows the average
percentage of the time spent computing Step 5 of HGA and
HGA-2N, respectively.

According to the methods described in Section 3, the
parallelisation of step 5 is realised using GPUs. The running time
of the GPU program is then tested and compared with the CPU
implementation time. Here, we define the computing time ratio
between CPU and GPU (rct-CG) as

rct-CG = computing time of CPU

computing time of GPU
(8)

For data set 1, the average rct-CG is computed and presented in
Fig. 7, which demonstrates that the rct-CG of HGA-2N increases
along with the increases in the size of the alignment networks,
indicating that our implementation is effective for large-scale PIN
alignment. However, the rct-CG of HGA decreases when the
number of nodes in G1 increases.

Furthermore, data set 2 is used to compute the rct-CGs of
large-scale PINs. Table 5 shows the scales and rct-CGs of data set
Fig. 7 Average rct-CG of HGA-2N and HGA

IET Syst. Biol., 2015, Vol. 9, Iss. 4, pp. 120–127
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2, which indicate that the rct-CGs for large-scale PIN alignments
are indeed high. In addition, the rct-CG improves along with
increases in the size of the PINs, and a 150-fold rct-CG can be
achieved.
4.6 Comparison of other algorithms

There are many algorithms for network alignment, and some of them
have high performance. Here, we compare HGA, HGA-2N with
some popular algorithms based on the yeast and human PINs of
data set 2, as shown in Tables 6 and 7.

Table 6 list their SSs, ECs and HGps, where HGp is the number of
HomoloGene pairs among matched proteins. The more HGps found
by one algorithm, the more homologous proteins are matched. Thus,
the algorithm can find the alignment that expresses the more
similarities between the aligned networks. The results shown in
Table 6 indicate that HGA and HGA-2N can find the alignment
with much more HGps. Although their SSs are less than PISwap,
the ECs are higher.

Furthermore, we compare the running times of these algorithms.
The sequential programs run on an HP Z800. This computer has 8
processors with 8 G memory, and each processor has 4 2.13 GHz
Intel Xeon E5506 cores. The software environment is gcc 4.4.7 in
Centos release 6.6(final). Table 7 indicates that HGA-2N run on
the GPU dramatically reduces the computing time when large
scale PINs are aligned.
4.7 PPI analyses

Gene Ontology (GO) terms annotate protein functions. If two nodes
exhibit common GO terms, these nodes may present the same
125



Table 7 Running time of HGA-2N and other algorithms for yeast and human PINs

Algorithm IsoRank GRAAL MI-GRAAL NETAL PISwap GEDEVO HGA HGA-2N

sequential computing time 15min11s 46min8s 1h14min48s 48s 5min1s >3days >3days ∼8h
parallel computing time – – – – – 13h23min08s 6h58min56s 3min23s
parameters default default SeqD a = 0.0001, i = 2 default maxsame = 5000 α = 0.4 α = 0.4
remark – – – – – 16 CPU cores on GPU GPU GPU

Table 8 Interactions in the human and yeast PINs

1CGOP 5CGOPs 10CGOPs 15CGOPs 20CGOPs 25CGOPs

conserved interactions 1,245 159 58 30 12 6
yeast predicted interactions 1,617 413 101 32 10 6
human predicted interactions 3,882 696 185 61 18 7

existing in HPRD – – 34 26 7 3
to be proved – – 151 35 11 4

Table 9 Human PPIs predicted by 25CGOPs

Interactions Interactions

to be proved LAS17 SLA1 PRP19 SYF1
RPT1 RPT3 TAF6 TRA1

existing in HPRD TAF10 TAF6 TAF1 TAF10
TAF1 TAF6

Table 10 Alignment results for five viruses

pairs of viruses EBV KSHV mCMV EBV
SS 25.1 18.4
EC 26% 17%
pairs of viruses EBV HSV-1 KSHV VZV
SS 11.8 11.3
EC 21% 18%

Fig. 8 Phylogenetic trees reconstructed using three different methods

a Phylogenetic tree reconstructed using the method of Fossum et al. [20]
b Phylogenetic tree reconstructed using the method of Natasa et al. [8]
c Phylogenetic tree reconstructed using HGA-2N
The three trees show the same phylogenetic relationships

126
functions. For alignment, if one pair of matched nodes presents
common GO terms, the pair is referred to as a Common Gene
Ontology Pair (CGOP); 1CGOP indicates that the nodes have at
least one common GO, while 5CGOPs indicates that the nodes
have at least five GOs and so on.

Proteins usually interact and work together with other proteins.
Given two CGOPs, u, j(u) and v, j(v), there is an interaction
between u and v. If there is an interaction between j(u) and j(v),
HSV-1 VZV mCMV HSV-1 EBV VZV
17.2 13.7 12.5
27% 21% 13%

mCMV KSHV mCMV VZV HSV-1 KSHV
10.3 9.6 7.9
12% 13% 9%

IET Syst. Biol., 2015, Vol. 9, Iss. 4, pp. 120–127
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these two interactions are conserved interactions. If there is no
interaction between j(u) and j(v), a potential interaction can be
predicted between j(u) and j(v). Based on different numbers of
CGOPs in the alignment of human and yeast PINs, conserved
interactions can be found, and new interactions in human and
yeast PINs can be predicted. As shown in Table 8, 34 of 185
human PPIs, 26 of 61 human PPIs, 7 of 18 human PPIs, and 3 of
7 human PPIs predicted by 10 to 25 CGOPs can be found in the
Human Protein Reference Database (HPRD); the percentage
ranges from 18.4 to 42.8%, demonstrating the validity of our
method. However, further studies must be performed for the
remaining predicted interactions. The details of the predicted
results of the 25CGOPs are shown in Table 9, and additional
details of the predictions can be found in the supplementary file.

4.8 Phylogenetic tree

Fossum et al. [20] reconstructed phylogenetic relationships by
counting the number of conserved interacting orthologous pairs in
species, with a focus on biological relevance. Natasa and Przulj
[8] used EC as the distance between species to reconstruct
phylogenetic relationships, with a focus on topological structures.
We present a new method for reconstructing phylogenetic trees
that uses SS, which combines the biological sequence similarities
and topological structures of PINs. First, the FASTA data for five
herpes viruses are downloaded from the National Center for
Biotechnology Information and Universal Protein Resource
(Uniprot) databases, and then BLAST [21] is used to calculate
their similarity. These viruses include varicella zoster virus (VZV),
Kaposi’s sarcoma-associated herpes virus (KSHV), herpes simplex
virus 1 (HSV-1), murine cytomegalovirus (mCMV) and Epstein–
Barr virus (EBV), and they are aligned with HGA-2N. Based on
the alignment results (Table 10), a phylogenetic tree is
reconstructed, which is shown in Fig. 8. The phylogenetic trees
reconstructed using the three methods show the same phylogenetic
relationships.
5 Conclusions

In this study, the typical algorithm HGA is used as an example for
PIN alignment, and HGA-2N is proposed, followed by
implementation of its GPU acceleration. This process utilised the
architecture of GPUs and features of PIN alignment algorithms.
The programs and alignments can be found at http://biocenter.shu.
edu.cn/software/index.php/hga.

HGA-2N considers 2-nearest neighbours, rather than all
non-neighbours, which reduces the scale of computing and
balances tasks during parallelisation. The GPU implementation of
HGA-2N optimises the parallel pattern, computing mode and
storage mode. For the parallel pattern, a one-to-one
correspondence between the threads in the GPUs and entries in the
matrix is explored to enable full utilisation of the thread
architecture in the GPUs. For the computing mode, an algorithm is
introduced to reduce judgment times and allow full use of the
GPU’s calculating power. For the storage mode, we utilise an
upper triangular matrix and ‘unsigned char’ to save memory. By
integrating the three methods, the parallel algorithm of HGA-2N
can achieve up to a 150-fold rct-CG in large-scale PIN alignment.

Numerical experiments have demonstrated that HGA-2N can find
alignments that are close to those found by HGA while dramatically
reducing computing time. Compared with other algorithms for PIN
alignment, HGA-2N has better performance on HGp, EC and SS.
By using GO terms for proteins and the results aligned with
HGA-2N in GPUs, conserved interactions can be observed, and
interactions in yeast and human PINs can be predicted. Among the
predictions based on 10 to 25 common GO terms, 18.4% to 42.8%
can be found in the HPRD [22], which indicates the validity of
our predictions. Further analyses will be required for the remaining
predicted interactions.
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In addition, we introduce a new method of reconstructing
phylogenetic trees using the significance of the biological
relevance and topological structures of the alignment results. Five
herpes virus PINs are aligned using the GPU algorithm, and their
phylogenetic tree is reconstructed, revealing the same relationships
shown using the previous methods.

In general, the new GPU alignment algorithm proposed in this
paper provides many insights into the development of improved
GPU implementations for networks alignment that takes both
nodes and edges into consideration.
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