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IMU Error Modeling Tutorial
INS state estimation with real-time sensor calibration

Jay A. Farrell, Felipe O. Silva, Farzana Rahman, J. Wendel

POC: J. Farrell (farrell@ece.ucr.edu)

December 19, 2022

Autonomous vehicle technology is rapidly advancing. Key enabling factors are the
advancing capabilities and declining cost of computing and sensing systems that enable sensor2

fusion for awareness of the vehicle’s state and surroundings. For control purposes, the vehicle
state must be estimated accurately, reliably, at a sufficiently high sample rate, and with a4

sufficiently high bandwidth. For systems with high bandwidth, these requirements are often
achieved by an aided inertial navigation system (INS) [1], [2], [3], [4], [5], [6]. An INS integrates6

data from an inertial measurement unit (IMU) through a kinematic model at the high sampling
rate of the IMU to compute the state estimate. An aided INS corrects this state estimate using8

data from aiding sensors [for example, vision, LIDAR, RADAR, and Global Navigation Satellite
System (GNSS)]. State estimation by sensor fusion may be accomplished by any of a variety of10

methods: Kalman filter (KF) [7], [8], [9], [10], [11], extended Kalman filter (EKF) [12], [13],
[14], [15], unscented Kalman filter (UKF) [16], [17], [18], particle filter (PF) [19], [20], [21],12

and maximum a posteriori (MAP) optimization [22], [23], [24], [25], [26], [27].

A data fusion system that combines the IMU and aiding sensor data will be able to14

achieve improved performance by real-time calibration if it incorporates an IMU error model in
state-space form. The IMU manufacturer supplies a data sheet characterizing the expected IMU16

performance. In accordance with the specification standards [28], [29], [30], this performance is
typically stated in terms of the Allan Variance (AV). However, it is not immediately clear how18

to translate the AV information from such data sheets into a suitable state-space model. Such
translation methods have been known and used for several decades [31], [32], [33], [34], [35],20

[36], [37], [38], [39], [40]. Despite their importance, a clear tutorial exposition of the underlying
ideas, issues, and tradeoffs is not available in the existing literature. Providing such a tutorial22

discussion is the purpose of this article. The long history of these ideas and issues relative to
successful applications is discussed in the “Aided INS History.”24
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Application Context

The INS design is based on the vehicle kinematic model,2

˙⃗xv(t) = f(x⃗v(t), u⃗(t)), (1)

where x⃗v represents the state of the vehicle and u⃗ ∈ ℜ6 represents the system inputs (that is,
specific force and angular rate vectors). A typical vehicle state vector might include subvectors4

for position, velocity, and attitude. The navigation system numerically solves (1) based on a
measurement of the signal u⃗(t),6

˙̂
x⃗v(t) = f(ˆ⃗xv(t), ˆ⃗u(t)), (2)

where ˆ⃗u(t) is computed from the IMU measurement ˜⃗u(t) using calibration factors that are
estimated in real-time. A simplified two-dimensional inertial navigation example illustrating these8

ideas is presented in “Simplified INS Example.”

For a scalar signal, the model relating the sensor measurement ũ(t) to the desired signal10

u(t) is (see Annex B in [28], [29])

ũ(t) = u(t) + d(u⃗(t)) + z(t). (3)

The measurement ũ(t) of the desired signal u(t) is corrupted by deterministic errors d(u⃗(t)) and12

cumulative stochastic error z(t). Deterministic errors are the sensor imperfections for which an
analytical model with unknown deterministic coefficients is sufficient. Some of these coefficients14

exhibit only minor variations during the lifetime of the instrument. These can be estimated and
compensated in a factory calibration process. Other deterministic errors like turn-on biases can be16

estimated in real-time via state augmentation. Forms of deterministic errors might include scale
factor error, nonlinearity, g-sensitivity for gyros, nonorthogonal axes, and axes cross-coupling18

for vector measurements u⃗(t) [5], [41], [42]. See the “Deterministic Errors” subsection in the
“Discussion of Issues and Tradeoffs.” The focus of this article is the stochastic error denoted by20

z(t), which may arise from a variety of physical phenomena (see the “Background” section).
The stochastic errors are distinct each time that the instrument is turned on, vary as a function22

of time, and cannot be predicted based on the sensor measurement ũ(t).

For clarity and simplicity, the majority of this tutorial will treat z(t) as a scalar signal.24

The underlying ideas apply to each of the three accelerometers and three gyros in a six-degree-
of-freedom IMU for the development of the full IMU stochastic error model.26

State Estimation Error Model

While the navigation system propagates the vehicle state vector through time by integrating28

the nonlinear model of (2), error denoted by δx⃗v(t) = x⃗v(t) − ˆ⃗xv(t) will develop between the
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actual and estimated state vectors. Regardless of the choice of representation of the vehicle
attitude (for example, direction cosine matrix or quaternion), the attitude error can be represented2

by a vector with three components. Therefore, the vehicle error state contains subvectors for
position, velocity, and attitude error, each being a vector with three components such that δx⃗v(t) ∈4

ℜnv with nv = 9. This vehicle state error vector can be estimated in real-time using measurements
from the aiding sensors [10], [13], [12], [31], [43], [44]. The estimation algorithm incorporates6

a linearized state-space model for the error state,

δ ˙⃗xv(t) = F (t)δx⃗v(t) +G(t)δu⃗(t), (4)

where F (t) = ∂f(x⃗,u⃗)
∂x⃗

∣∣∣
ˆ⃗x(t), ˆ⃗u(t)

, G(t) = ∂f(x⃗,u⃗)
∂u⃗

∣∣∣
ˆ⃗x(t), ˆ⃗u(t)

, and δu⃗(t) = u⃗(t)− ˆ⃗u(t). See the example8

F (t) and G(t) matrices in “Simplified INS Example.” This state-space error model is not
complete until the IMU error model for δu⃗(t) is specified. For state estimation, it is required10

that the IMU error model be in state-space form.

The real-time state estimation process is designed to estimate the augmented state vector12

x⃗(t) =
[
δx⃗v(t)

⊤ x⃗d(t)
⊤ x⃗z(t)

⊤
]⊤

∈ ℜnx , (5)

comprised of the vehicle error state vector δx⃗v(t) ∈ ℜnv , the vector x⃗d(t) ∈ ℜnd augmented to
enable calibration of the IMU deterministic errors, and the vector x⃗z(t) ∈ ℜnz augmented to14

enable calibration of the IMU stochastic errors. The total number of error states nx = nv+nd+nz,
where nv is the number of vehicle error states, nd is the number of states augmented to calibrate16

deterministic errors, and nz is the number of states augmented to calibrate stochastic errors.
The process of state augmentation as it relates to the problems of interest is discussed in “State18

Augmentation.” The presentation herein will focus entirely on the stochastic IMU errors whose
cumulative effect in (3) is denoted by z⃗(t). The majority of this article will focus on a single IMU20

output for which a scalar z(t) is sufficient. The “Discussion of Issues and Tradeoffs” section
considers the vector z⃗(t) case.22

Denote the state-space model for scalar z(t),

˙⃗xz(t) = Az x⃗z(t) +Bz ω⃗z(t), (6)

z(t) = Cz x⃗z(t) + ηz(t), (7)

where Az ∈ ℜnz×nz , Bz ∈ ℜnz×p, and Cz ∈ ℜ1×nz . The parameter p represents the number of24

distinct and independent noise processes in the differential equation portion of the the IMU error
model. The parameter nz represents the number of states in the IMU stochastic error model. The26

random signals ω⃗z(t) and ηz(t) are mutually independent Gaussian white noise processes with
power spectral densities (PSD) Sωz ∈ ℜp×p and Sηz ∈ ℜ, respectively. The elements of ω⃗z(t)28

are assumed to be independent, which yields Sωz being diagonal.
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The designer must be judicious in the choice of the model structure (particularly nz and
p) as the overall model will have 6nz states and 6 p independent noise sources.2

Power Spectral Density for Linear State-Space Systems

Corresponding to the state-space model in (6)-(7), the frequency domain model is4

Z(s) = T (s) Ωz(s) + ηz(s), (8)

where s is the Laplace variable. The transfer function model from ωz(t) to z(t) is

T (s) = Cz (sI − Az)
−1Bz,

which has one row and p columns. The symbols Z(s), Ωz(s), and ηz(s) represent the Laplace
transforms of the signals z(t), ωz(t), and ηz(t). Therefore, the PSD corresponding to signal z(t)6

is

Sz(ω) = T (jω)Sωz T (−jω)T + Sηz . (9)

Assuming that all elements of the driving noise vector ωz(t) and the output noise ηz(t) are8

mutually independent and white, this simplifies to

Sz(ω) =

p∑
i=1

Ti(jω)Ti(−jω)Sωzi
+ Sηz , (10)

with10

Ti(s) = Cz (sI − Az)
−1Bzi , (11)

where Ti(s) is the (scalar) transfer function from the i-th component of ω⃗z(t) to z(t) and
Bzi ∈ ℜnz×1 is the i-th column of Bz. Each Ti(s) is the ratio of a numerator and denominator12

polynomial in s, and Sz is a positive real function of ω. Therefore, each Ti(jω)Ti(−jω) and
Sz(ω) will always be the ratio of polynomial functions of only the even powers of the Laplace14

variable s. Examples demonstrating this fact are presented in “Finite Dimensional Linear State-
Space Systems have Even Power Spectra.”16

The fact that Sz is a positive real function leads to one of the main challenges in the IMU
error modeling approach, because some of the IMU stochastic error components have PSDs that18

cannot be exactly fit by the terms in the summation of (10). Therefore, the designer must make
judicious choices in the approximate state-space model to achieve satisfactory tradeoffs. This20

will be further discussed in the section entitled “Modeling via Independent Noise Sources.”
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Available Error Specification Information

To characterize the quality of an IMU (per the IEEE specifications [28], [29], [30]) the2

manufacturer provides the AV plot, Allan Standard Deviation (ASD) plot, or parameters extracted
from them. An ASD graph can both help instrument designers understand and improve their4

sensors and communicate expected performance to perspective users. Within the context of this
article, the main topic is how an INS designer can use information from an ASD plot to specify6

the parameters of the state-space model in (6)-(7).

Example ASD plots are shown in Figures 1 and 2. Figure 1 displays the ASD plots for8

three gyros in a Crossbow µNav IMU [45]. These ASD are computed from data provided by the
authors of [36]. The blue, black, and green asterisks (‘*’) mark the ASD data points. The ASD10

plot in Figure 2 is computed from manufacturer-supplied data obtained from an IMU mounted
on a large marble slab on top of a vibration isolation system. Each blue ‘x’ in Figure 2 marks12

an ASD data point. The horizontal axis of each ASD plot is the cluster time (or size), with
the symbol τ measured in seconds. Note that the ASD plots in these two figures have both14

similarities and differences. Both decrease with the characteristic slope of -1/2 for small cluster
sizes, as indicated by the red dashed tangent line in each figure. Then, both level off to a slope16

of zero at values indicated by the dashed cyan tangent lines. For larger cluster sizes, the ASD in
Figure 2 increases with a slope of 1/2, as indicated by the tangent line drawn with black dashes.18

For cluster times as large as τ = 1000, the ASD plots in Figure 1 do not (strongly) exhibit this
increase with slope 1/2. The value of τ and the ASD value at which these changes occur is20

distinct for each instrument. They specify certain parameters that are useful both for comparing
the performance of inertial instruments and for evaluating tradeoffs in the construction of the22

IMU stochastic error model.

Summary24

This tutorial discusses issues and tradeoffs related to an example navigation system design
method: (1) using the AV information to specify the continuous-time parameters (for example, p,26

nz, Az, Bz, Cz, Sz, and Sη) for an IMU state-space stochastic error model; (2) transforming this
continuous-time model to the discrete-time, state-space error model parameters (Φ, Qzd , H , Qηd)28

that are required for implementation of the state estimator; and, (3) verifying the IMU model
relative to the AV information. Some previous articles have addressed some of the aforementioned30

topics [32], [34], [36], [39], [43], [44], [46], [47]. The goal of this article is to clearly and
comprehensively present the background and main ideas in a tutorial fashion, using notation and32

terminology consistent with instrument specification standards [28], [29]. Examples are included
throughout to clarify issues.34
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Problem Statement

The purpose of this article is to discuss methods, issues, and tradeoffs related to developing2

a model that quantitatively communicates to the state estimation algorithm the nature of the
stochastic portion of the IMU error. The inputs to this error model will be random signals.4

The available information from the manufacturer for the model development is the AV
or ASD characterization. The actual IMU output data from the experiments that produce these6

characterizations are not available to the designer; therefore, system identification methods are
not applicable.8

Because the error state estimation algorithms are formulated in state-space form, the IMU
error models will also be in state-space form. The inputs are modeled as independent Gaussian10

white noise processes. The challenge is to construct these models such that they have the same
output statistical characteristics (that is, AV) as the IMU.12

Note that such stochastic state-space models are not unique. In fact, this article is not
intended to propose a particular model; although a specific ASD plot is discussed and a model14

is given as a tutorial example. Instead, the goal of this article is to present clearly the approach
that is used or hinted at (with various specific models) in various articles, books [9], and standards16

[30], [28], [29]. The authors view the many flavors of this approach as being industry-standard.
Unfortunately, most publications describing the method are not publicly available.18

From a high-level, an outline of the method is as follows: (1) A continuous-time state-
space model is constructed using information from the AV/ASD plot. (2) The continuous-time20

IMU stochastic model is transformed to an equivalent discrete-time model. (3) The discrete-
time model is used in simulation to produce data, from which an ASD plot is computed for22

comparison with the instrument’s ASD plot. (4) When the designer is satisfied with the IMU
error model, it is appended to the vehicle state error model and used for the design of the INS24

error state estimator.

Background26

Because the manufacturer supplied AV/ASD information is the starting point for the
stochastic error model development, this section reviews the AV and its relationship to the28

power spectral density. A brief history of the AV is included in “A Brief Historical Review of
the Allan Variance.”30
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Allan Variance

The AV is a well-known time domain analysis technique that was originally developed to2

characterize and study the frequency stability of oscillators [48], [49], [50]. Due to its relative
simplicity, it has been successfully adopted to communicate IMU performance specification and4

to characterize their stochastic errors [28], [29], [32], [34], [36], [39], [43], [44], [46], [47].

Given a set of data, the process for computing the AV is as follows. Let D = {ũi}Li=16

be a (detrended) set of specific force (or angular rate) data, measured at a constant sampling
interval T for a stationary (that is, motion isolated) IMU. For each n ∈ [1, L/2], the AV is8

computed for values of the cluster time τ = nT ranging from T to LT/2. For a given n, at
each time instant ti ∈ [T, 2T, . . . , (L − n)T ], a group of n consecutive data points (beginning10

at ti) form a cluster: {ũj}i+n−1
j=i . The average value is computed for each such n-point cluster,

ūi(τ) =
1
n

∑n−1
j=0 ũi+j . The AV for duration τ is then computed as the average of the (L − 2n)12

squared cluster differences [28], [49]:

σ̂2
u(τ) =

1

2(L− 2n)

L−2n∑
i=1

[ūi+n(τ)− ūi(τ)]
2. (12)

14

Since some IMUs (especially those that are high-grade) provide the integral of specific
force (or angular rate), denoted as θ̃i, ūi(τ) may alternatively be defined as16

ūi(τ) =
θ̃i+n − θ̃i

τ
. (13)

Substitution of (13) into (12) yields

σ̂2
u(τ) =

1

2τ 2(L− 2n)

L−2n∑
i=1

(θ̃i+2n − 2θ̃i+n + θ̃i)
2, (14)

which is an alternative formula for computing the AV [28].18

For graphical analysis, the square root of the AV, σ̂u(τ), called the ASD, is typically plotted
on a log-log scale with cluster time τ along the horizontal axis. Due to the finite length of dataset20

D, the number of clusters with duration τ will decrease as τ increases; therefore, the standard
deviation of the computed ASD, σ̂u(τ), increases with n (or τ ) as [51], [52]22

σ [σ̂u(τ)] = κ

√
n

L
σ̂u(τ), (15)

where κ is an empirical constant that is generally approximated as κ ≈ 1/
√
2 for IMU error

analysis [53], [28], [29], [34], [54].24
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Power Spectral Density and Allan Variance

The AV is related to the two-sided PSD by2

σ2
u(τ) = 4

∫ ∞

0

Su(f)
sin4(π f τ)

(π f τ)2
df. (16)

The text following (C.1) in IEEE Standard 952-1997 [28] interprets this equation as the AV being
proportional to the total noise power in the signal u when passed through a transfer function that4

is determined by the method that is used to create and operate on the clusters. The derivation
of (16) can be found on p. 79 in [55]. There is no inversion formula for (16) (see [53]). In this6

expression, Su(f) = Su(s)|s=j2πf , where s ∈ C is the Laplace variable, j =
√
−1, and f ∈ ℜ

has units of Hertz.8

Modeling via Independent Noise Sources

When the power spectrum is represented as a power series in frequency f , it has the form10

Su(f) = · · ·+N2 +
B2

2πf
+

K2

(2πf)2
+ · · · . (17)

This form of the PSD is convenient. By the principle of superposition, it corresponds to the
power spectrum of the signal

u(t) = · · ·+ zN(t) + zB(t) + zK(t) + · · · (18)

where the signals zN(t), zB(t), and zK(t), are mutually independent, zero mean, noise processes.
With this assumption, applying (16) to (17) yields an AV having the form

σ2
u(τ) = · · ·+ σ2

zN
(τ) + σ2

zB
(τ) + σ2

zK
(τ) + · · · , (19)

where the specific functional form of each AV term can be computed and is available in various12

sources [28], [29], [30], [34], [55]. The functional form of each AV term is easily associated
with a portion of the ASD graph.14

The “Continuous-Time State-Space Models” section describes the method for making this
association and defining a continuous-time state-space model for each term. The state-space16

model for each term is driven by its own independent, Gaussian, white, driving noise resulting
in each of the signals zN(t), zB(t), and zK(t) being mutually independent. These state-space18

models can be exact for the terms that correspond to even functions of f in (17). However
(as previously stated and as exemplified in a sidebar) the power spectrum terms that are odd20

functions of the frequency f (for example the term B2

2πf
) cannot be exactly modeled by any finite

dimensional, linear, state-space model. Therefore, these terms must be approximately modeled,22

carefully balancing tradeoffs that are discussed later.
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Any number of terms may be included in the power series representation of (17). This
results in the same number of terms in the signal model of (18) and the AV model of (19).2

Each term represents a different type of noise coming from an independent source. The typical
shape of the ASD graph is depicted in Figure 3 with five independent noise sources (see also4

Figure C.8 in [28]). In the ASD plot, each noise type is associated with a characteristic slope
that facilitates identification of that noise type and its model parameters. Not all noise types are6

evident in each instrument. When present, the model parameters and range of τ over which the
noise term is dominant may be different for each instrument.8

The N , B, and K terms are typically dominant in commercial-grade IMU’s (see for
example Figures 1 and 2). Instrument design choices (for example quantization approach and10

sample period) cause the stochastic error to appear as white noise for small τ . This white noise
is accounted for in the random walk noise term (that is N ). However, the stochastic error is not12

truly white. As the cluster time τ increases, the ASD plot may exhibit bias instability (B), rate
random walk (K), and other noise types. For the ASD plot to exhibit these other noise types,14

the IMU data set used to generate the ASD plot must be very long. When the INS is designed to
work with aiding measurements that are expected to occur frequently (for example, several times16

per minute), the state estimator will have the aiding information that it needs to maintain the
INS calibration in real-time, while those aiding measurements are available. The ASD plot out18

to several minutes (for example, hundreds of seconds) is of interest for analyzing performance
during intervals when the aiding measurements are not available. However, the specific shape of20

the ASD curve for very large τ is typically uncertain and not of interest.

Columns 1 and 2 of Table 1 include the specific names of the N , B, and K noise terms for22

gyros and accelerometers. Columns 3 and 4 of Table 1 summarize the relationships between the
AV and PSD for these noise types, as derived in [28], [34]. The N , B, and K terms will be the24

focus of the discussion in the “Continuous-Time State-Space Models” section. The underlying
ideas of the approach extend to other types of noise when the ASD for a particular instrument26

exhibits them.

Continuous-Time State-Space Models28

This section considers the development of continuous-time state-space models that approx-
imately reproduce the ASD plots and the PSD of (17). The ideas throughout will be illustrated30

using the example ASD in Figure 2. Figure 1 will only be discussed in reference to the B and
K power series terms. The overall model will have the form,32

z(t) = zN(t) + zB(t) + zK(t), (20)

9



where zN(t), zB(t), and zK(t) are the IMU stochastic error signals associated with coefficients
N , B, and K, respectively.2

Random Walk Errors: Angular and Velocity: zN(t)

The PSD term N2 in (17) is constant with respect to frequency f , which corresponds to4

the power spectrum of white noise [56]. Therefore,

zN(t) = ωN(t), (21)

where ωN(t) is white Gaussian random noise with PSD6

SN = N2. (22)

In the literature and manufacturer specifications, this type of error is called angular random walk
error for gyros and velocity random walk error for accelerometers.8

Applying the transformation in (16) to SzN (f) = N2 yields [28],

σ2
zN
(τ) =

N2

τ
or σzN (τ) =

N

τ 1/2
, (23)

which is summarized in the corresponding row of Table 1. This shows that, on an ASD plot,10

angular/velocity random walk will be represented by a line with a slope of −1
2
, as shown in

Figure 4.12

The value of the random walk parameter N can be approximately determined from the
manufacturer supplied ASD plot. This is accomplished by identifying the range of τ on the ASD14

plot that has a slope of −1
2

and drawing a line tangent to it. In Figure 2, a red dashed tangent
line is drawn for τ ∈ [0.01, 30]. From (23), it is clear that σzN (τ)

∣∣
τ=1

= N . Therefore, the value16

of N can be extracted from the ASD plot as the value of the tangent line (with slope of −1
2
) at

τ = 1s. For the example of Figure 2, the result is N ≈ 0.0033 m/s3/2.18

Random Walk Errors: Rate and Acceleration: zK(t)

The term K2

(2πf)2
= K

s
K
s∗

∣∣
s=j2πf

in (17) corresponds to a linear system with transfer function20

T (s) = 1
s
. A state-space model is

żK(t) = ωK(t), (24)

where zK(t) is the output and the input ωK(t) is white Gaussian noise with PSD22

SK = K2. (25)

In the literature and manufacturer specifications, this type of error is called rate random walk
error for gyros and acceleration random walk error for accelerometers.24
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Given (24) and (25), the PSD of zK(t) is

SzK (f) =

(
T (s)T (s∗)

∣∣∣
s=j2πf

)
K2 =

K2

(2πf)2
, (26)

which has the desired form corresponding to the third term in (17). Using (16) on this SzK (f)2

yields [28]

σ2
zK
(τ) =

K2τ

3
or σzK (τ) = K

√
τ

3
, (27)

which is summarized in the corresponding row of Table 1. Equation (27) shows that on an ASD4

plot, the rate/acceleration random walk error will be represented by a line with a slope of +1
2
,

as shown in Figure 5.6

The rate/acceleration random walk parameter K can be approximately determined from
the manufacturer-supplied ASD plot. The first step is to identify the range of τ on the ASD plot8

that has a slope of +1
2

(if it exists) and draw a line tangent to it. In Figure 2, the dashed black
line drawn for τ ∈ [3, 500] seconds, has slope +1

2
and is approximately tangent to the ASD curve10

at values of τ ≥ 100 seconds. Because τ is large, this portion of the ASD plot usually has a
higher degree of uncertainty [as discussed relative to (15)]. The second step uses the tangent line12

to estimate K. From (27), it is clear that σzK (τ)
∣∣
τ=3

= K. Therefore, an easy way to estimate
the value of K from the ASD plot is to find the value of the straight line approximation when14

τ = 3 s. In the example of Figure 2, depending on how the analyst determines the straight-line
approximation, K ≈ 0.00014 m/s5/2.16

Based on the ASD plots in Figure 1, the gyros in the µNav unit may not require inclusion
of angular rate random walk noise for cluster times up to 1000 seconds.18

Cumulative Error Model: N, K

Since the angular random walk and rate random walk errors (or velocity random walk20

and acceleration random walk errors) each have even power spectra, it was straightforward to
establish state-space models to reproduce the corresponding terms in the power spectrum and22

their portions of the ASD plot.

Based on the two previous sections, the state-space model would be24

żK(t) = ωK(t) (28)

zNK(t) = zN(t) + zK(t), (29)

where zN(t) = ωN(t) is white random noise with PSD N2 and ωK(t) is a white random noise
with PSD K2. The random signals ωN(t) and ωK(t) are independent, which results in zN(t) and26

11



zK(t) being independent. The ASD for this model is

σ2
NK(τ) =

N2

τ
+

K2τ

3
. (30)

The ASD plot for this model using the values N = 0.0033 m/s3/2 and K =0.00014 m/s5/2 is2

shown in Figure 2 as the solid green line.

Bias Instability: zB(t)4

Some ASD plots (such as those in Figure 1) do not exhibit the +1/2 slope associated with
zK(t) but do have a wide flat region for larger values of τ . This flat region cannot be well6

modeled by either the N or K terms. For other instruments, the ASD plot may exhibit a wide
and flat portion between the values of τ corresponding to the N and K regions. In this case, the8

AV (and ASD) in (30) for the NK-model may be too small in this middle range of τ . In either
of these circumstances, there is enough bias instability such that performance may be improved10

by accounting for it in the model.

The error term zB(t) corresponding to SzB(f) =
B2

2πf
is generally referred to as the bias

instability (or flicker noise) [28], [29], [34], [44], [39]. Applying (16) to SzB(f) =
B2

2πf
for f ≤ f0

(and 0 otherwise) yields [28]

σ2
zB
(τ) =

2B2

π

[
ln(2) − sin3(x)

2x2
(sinx + 4x cosx) + Ci(2x) − Ci(4x)

]
, (31)

where x = πf0τ, Ci is the cosine integral function [57], and the parameter f0 is defined as the12

cut-off frequency [28].

The bias instability ASD plot is shown in Figure 6. The figure shows that σzB(τ) grows14

for small τ reaching a plateau for τ > 1
f0

. Therefore, the value of τ ≈ 1
f0

defines the portion of
the ASD plot for which the bias instability (or flicker noise) contributes its maximum value to16

the SD plot. In this region, it is possible to show that the sine and cosine terms in (31) approach
zero, so that in the flat region,18

σ2
zB
(τ) ≈ 2B2 ln(2)

π
or σzB(τ) ≈ 0.664B. (32)

These equations provide a simple method for extracting an approximate value of B from the
ASD plot. In this approach (see for example, p. 6 in [35], p. 21 in [44], p. 10 in [54], and p.20

114 in [55]), as can be inferred from Section B.4.5 in [28], the value of B would be selected so
that 2B2 ln(2)

π
approximates the plot of σ2

z(τ) for the values of τ for which the ASD plot is flat.22

For the ASD plot in Figure 1, the cyan horizontal lines approximate the minimum ASD values
of 9.5e-3 and 1.40e-2 deg/s, which correspond to values of B between 1.43e-2 and 2.11e-224

12



deg/s. For the ASD plot in Figure 2, the minimum ASD value of 7.4e−4 m/s2 corresponds to
B = 1.11e−3 m/s2.2

Because the power spectrum of the bias instability term (that is B2

2πf
) is not an even power of

s = j2πf , there is no finite-order linear state-space model that fits it exactly. As a consequence,4

the navigation system designer must select a state-space model to approximate the bias instability
error effects. This is somewhat of an art, as each IMU is distinct, each application has different6

specifications, and each designer may have different ideas about suitable models and tradeoffs.

Various methods have been suggested to approximately account for the bias instability.8

These include first-order Gauss-Markov [4], [32], [36], [39], [44], [58] and higher-order
autoregressive models [43], [46], [47]. One important tradeoff is that as the dimension of10

the state-space model increases, the fidelity of the approximation may increase, but so does
the required real-time computational load of the state estimation algorithm. In addition, more12

elaborate models may not be robust to unmodeled dynamics and nonlinearity, especially when
some added states are weakly observable. These topics are analyzed further in the “Discussion14

of Issues and Tradeoffs” section.

To exemplify the idea, the next section considers a first-order Gauss-Markov model, which16

uses exponentially correlated noise to model the bias instability error.

Gauss-Markov Error Model18

A first-order continuous-time Gauss-Markov model is [9], [56]

żG(t) = −µB zG(t) + ωB(t), (33)

with20

µB =
1

TB

, where TB > 0. (34)

The symbol TB represents the correlation time of the process. The symbol ωB(t) represents a
white driving noise with PSD SB.22

The transfer function corresponding to (33) is

T (s) =
1

s+ µB

,

which yields the PSD

SzG(ω) =
SB

ω2 + µ2
B

.

Applying (16) to SzG(s) yields [28]

σ2
zG
(τ) =

SB T 2
B

τ

[
1− TB

2τ

(
3− 4e

− τ
TB + e

− 2 τ
TB

)]
. (35)
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A plot of σzG(τ) is shown in Figure 7. Some special cases are noteworthy.

• For smaller cluster times, where τ << TB,2

σ2
zG
(τ) ≈ SB τ

3
, (36)

so that the ASD plot has a slope of +1
2

for small τ .
• When τ = 1.89TB, the curve is flat with4

σ2
zG
(1.8 9TB) =

(
0.4365

√
SB TB

)2 (37)

or σzG(1.89TB) = 0.4365
√
SB TB.

• For larger cluster times, where τ >> TB,6

σ2
zG
(τ) ≈ SB T 2

B

τ
, (38)

so that the ASD plot has a slope of −1
2

for large τ .

The first-order scalar Gauss-Markov process can be used (approximately) to model the flat portion8

(that is, bias instability) of the ASD plot.

If the manufacturer only provides the values of B and TB, then the value of µB can be10

computed using (34). The value of SB is selected by setting σ2
zB

from (32) equal to σ2
zG

[as
given by (37)], and solving for SB:12

SB =
2B2 ln(2)

π(0.4365)2 TB

. (39)

With µB and SB known, the state-space model of (33) is completely specified.

If instead, the manufacturer provides the ASD plot, and the bias instability is significant14

enough to warrant inclusion in the model, then the analyst can first select TB so that 1.89TB

lies near the flat portion of the ASD plot. Then, choose SB so that the value of σzG(1.89TB), as16

defined in (37), approximates the value of the ASD plot in its flat region. For the ASD plot in
Figure 2, the minimum value is 7.4e−4 m/s2 at τ = 60 s. These values correspond to TB = 31.718

s, SB = 9.0e−8 m2/s5, and B = 1.11e−3 m/s2.

Cumulative Error Model: N , B, K20

Consider the two-state state-space model structure, where z(t) is modeled by (20), zN(t)
is modeled by (21), zK(t) is modeled by (24), and the bias instability term in (20) is modeled22

by zB(t) = zG(t) as defined in (33). This yields a two-state model in the form of (6)-(7) with

Az =

[
−µB 0

0 0

]
, Bz =

[
1 0

0 1

]
, Cz =

[
1 1

]
, (40)

14



where x⃗z(t) =
[
zG(t), zK(t)

]⊤
, ω⃗z(t) =

[
ωB(t), ωK(t)

]⊤
, and ηz(t) = ωN(t). The

continuous-time process noise PSD matrix Sωz of ω⃗z is2

Sωz =

[
SB 0

0 SK

]
(41)

and the measurement noise PSD is Sηz = SN .

The ASD for this state-space model is4

σz(τ) =
(
σ2
zN
(τ) + σ2

zG
(τ) + σ2

zK
(τ)
)1/2

, (42)

where the three ASD terms on the right are defined in (23), (27), and (35).

Figure 8 builds on the ASD plot in Figure 2. The data (blue x’s) and K and N tangent6

lines are the same. Figure 8 also shows the ASD of (42) using the two sets of parameters, as
summarized in the second and third rows of Table 2 (that is, Untuned and Manually Tuned).8

The untuned parameters from the second row of the table are those stated at the end of
the “Gauss-Markov Error-Model” section. These values result in the green dashed curve, which10

is clearly too high in the region of the curve near its minimum. The suggested approaches stated
above for choosing N , B, and K independently neglect the fact that for each τ , the AV for each12

type of noise is additive:

σ2
z(τ) = σ2

zN
(τ) + σ2

zB
(τ) + σ2

zK
(τ). (43)

Therefore, the parameters N , B, K, and TB should instead be adjusted jointly so that the14

three term AV (or ASD) model fits the ASD plot for the instrument data. Manually adjusting
the values of TB and B to those in the third row of Table 2 results in the solid green curve,16

which is a better fit. An optimization-based approach to selecting the parameters is discussed in
“Optimization-based Parameter Selection for a Given Model.”18

Figure 8 includes the curve for the Gauss-Markov ASD of (35) plotted as a cyan dashed
line, using the tuned values of TB and SB.20

Summary

Many alternative choices for the structure of the state-space model exist: no states, just22

zN ; a single state zG and zN ; a single state zK and zN ; generalizations of the above two-state
model; and, higher dimensional models. Various topics related to selection of the structure of24

the state-space model are presented in the “Discussion of Issues and Tradeoffs” section.
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Discrete-time Equivalent Model

The previous section discussed the process of determining a continuous-time state-space2

model with the form of eqns. (6)-(7) to approximate the IMU error characteristics, as quantified
by the ASD (or power spectrum) plot. Since the INS and EKF are implemented in discrete-time,4

the state-space IMU error model must be transformed to the equivalent discrete-time form:

x⃗z(k + 1) = Φ x⃗z(k) + ω⃗z(k), (44)

z(k) = H x⃗z(k) + η(k), (45)

where discrete-time k index corresponds to continuous-time t = k T , ω⃗z(k) ∼ N(0, Qzd) is a6

white Gaussian random variable with covariance Qzd , and η(k) ∼ N(0, Qηd) is a white Gaussian
random variable with covariance Qηd . The processes ω⃗z(k) and η(k) are independent. Within8

this article, equivalent means that the continuous-time and discrete-time stochastic error models
produce the same first- and second-order statistics at the IMU sampling times.10

The following subsections describe how to compute the discrete-time model parameters
(Φ, Qzd , H , Qηd) that are required for the discrete-time estimator implementation from the12

continuous-time model parameters (Az, Bz, Sωz , Sηz , Cz).

Discrete-Time Equivalent to Equation (6)14

The process of transforming the continuous-time model of (6) to the discrete-time state-
space model of (44) is described in various references (see for example Section III.D in [59] or16

Section 4.7 of [3]) with

Φ = eAz T and (46)

Qzd =

T∫
0

Φ(T, s)Bz Sωz(s)B
T
z Φ(T, s)Tds, (47)

where T = tk − tk−1 is the IMU sampling interval and Φ(T, s) = exp
(
Az(T − s)

)
. Both Φ18

and Qzd can be computed simultaneously using a method by Van Loan [60], as described in
Appendix I of [59].20

Depending on the method used to model the bias instability and the state definition, the Az

matrix in the continuous-time state-space model may have various forms. For the Cumulative22

N -B-K Error Model with the discrete-time state vector, x⃗z(k) =
[
zG(k), zK(k)

]⊤
, the Az

matrix in (40) transforms to24

ϕ =

[
e−µBT 0

0 1

]
. (48)
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Since Az and Sωz are constant and diagonal, and Bz is the identity, (47) simplifies to

Qzd =

[
SB

∫ T

0
exp

(
− 2µB(T − p)

)
dp 0

0 SK T

]

=

[
SB

2µB

(
1− e−2µBT

)
0

0 SK T

]
. (49)

Because T ≪ TB and µB = 1
TB

, it is clear after expanding the exponential term that2

Qzd ≈ Sωz T =

[
SB T 0

0 SK T

]
. (50)

Discrete-Time Equivalent to Equation (7)

The objective of this section is to determine an equivalent discrete-time measurement model4

having the form of (44)-(45) that is equivalent to (6)-(7).

Because the method of the previous section was designed such that (6) and (44) produce6

the same first- and second-order statistics for the state, it is the case that H = Cz. The only item
left for consideration is to determine how to compute the covariance Qηd from the PSD SN so8

that the overall effect (in terms of the first two moments) of z(k) on the integrated state in the
augmented state-space model is the same as that of z(t) at the sampling periods.10

Using the principle of superposition, assume that the driving noise terms ωB(t) and ωK(t)

[and therefore ωz(t)] are zero, and the covariance of the initial conditions is zero; so that the12

only remaining nonzero error is ηz(t), which equals ωN(t) = zN(t) [according to the model in
(21) and (40)]. Consider the simple case where the kinematic model of (1) is14

ẋv(t) = u(t). (51)

This could, for example, correspond to u being an angular rate (or acceleration) measurement
and xv representing the angle (or velocity). In continuous-time, the navigation system would use16

the measurement ũ(t) to compute x̂v(t),

˙̂xv(t) = ũ(t). (52)

With the assumptions stated at the beginning of the paragraph,18

ũ(t) = u(t) + ηz(t). (53)

Define the error signal, e(t) = xv(t)− x̂v(t). Based on (51)-(53),

ė(t) = −ηz(t), (54)

17



where according to (21)-(22) the PSD of ηz(t) = ωN(t) is SN . In this special case, e(t) is a
continuous-time random walk process. Due to the assumption that the initial covariance of e(t)2

is zero [that is, cov(e(0)) = Pe(0) = 0], the covariance function [that is, cov(e(t)) = Pe(t)] is

Pe(t) = SN t, for any t ≥ 0. (55)

This result is derived in many textbook discussions of the continuous-time random walk4

processes, for example the discussion of (4.85) in [3].

The discrete-time model that is equivalent to (51) is6

xv(k + 1) = xv(k) + u(k)T. (56)

The discrete-time model that is equivalent to (52) is

x̂v(k + 1) = x̂v(k) + ũ(k)T. (57)

Given the discrete-time measurement model,8

ũ(k) = u(k) + η(k), (58)

where cov(η(k)) = Qηd [as defined in (45)], the error signal e(k) = xv(k)− x̂v(k) has the time
propagation model10

e(k + 1) = e(k)− η(k)T. (59)

In this special case, e(k) is a discrete-time random walk process. Equation (59) allows
computation of the discrete-time error covariance caused by η(k) [that is, Pe(k) = cov(e(k))]12

as

Pe(k + 1) = Pe(k) + T 2Qηd , for any k ≥ 0, (60)

where Qηd is defined in (45). Due to the assumption that the initial covariance of e(k) is zero,14

Pe(k) = k T 2Qηd , for any k ≥ 0. (61)

Given the equivalence objective stated in the first sentence of this section, the continuous
and discrete time must result in the same values for the error covariance at the discrete sample16

times. Equating the covariance of the continuous-time and discrete-time random walk error
processes at the sampling times – that is, setting (55) equal to (61) – yields,18

Pe(t)
∣∣
t=kT

= Pe(k)

SN k T = k T 2Qηd ,

which provides the equation (see also “Discussion of Equation (62)” sidebar):

Qηd =
SN

T
. (62)
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This equation relates the covariance Qηd of the discrete-time IMU measurement noise (needed
for the state estimator design) to the PSD SN of the continuous-time measurement noise (derived2

from the ASD plot). Substituting (62) into (61) shows that the covariance of the integrated error
signal (e(k)) increases linearly with time in proportion to the PSD SN , as is expected for a4

random walk.

Together, (46)-(47), (62), and H = Cz are the conversions needed to transform the6

continuous-time state-space error model to its equivalent discrete-time error model as necessary
for the EKF design.8

ASD Verification of the State-Space Model

The previous sections have presented methods to develop continuous and discrete-time10

state-space models to approximate the IMU stochastic errors, as characterized by the AV method.
If the method that a designer uses is valid, then data generated by the discrete-time state-space12

model should result in an ASD plot that closely approximates the ASD plot provided by the
IMU manufacturer. This section contains an example to demonstrate this verification process.14

The example starts from the ASD plot of Figure 2. The model, parameter selection, and
data generation methods are as follows:16

1) The AV parameters are extracted from the ASD plot using the method described in the
“Continuous-Time State-Space Models” section. The parameters for this example are stated18

in the third row of Table 2 (that is, manually tuned).
2) The value of µB = 1

TB
= 0.05 s−1 by (34), SB = 1.8528e−8 m2/s5 by (39), and SK =

1.9600e−8 m2/s5 by (25). By (41),

Sωz =

[
1.8528e−8 0.00

0.00 1.9600e−8

]
.

For Az, Bz, and Cz defined in (40), using (48) and (49),

Φ =

[
0.9995 0

0 1

]
and Qzd =

[
1.853e−10 0

0 1.960e−10

]
.

3) Using (22), the continuous-time measurement noise PSD is SN = 1.089e−5 m2/s3. Using20

(62), the discrete-time measurement noise covariance is Qηd = 1.089e−3 m2/s4.
4) Starting from an initial condition of zero, the state vector x⃗z(k) is propagated using (44)22

and the IMU error z(k) is computed using (45). The data frequency is 100 Hz, so that
T = 0.01 s. For simulation purpose, L = 107 data samples (or 105 s) were generated.24
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5) Figure 9 shows the ASD plot for the simulated data as the red dashed curve. The blue x’s
show the ASD curve for the IMU data, which is the same as is shown in Figures 2 and 8.2

The green curve is the ASD for the analytic model computed by (42), which is the same
as is shown in Figure 8.4

The close match between the green and red curves verifies the continuous-time to discrete-time
state-space model transformation. The closeness of the fit between those two curves and the6

actual ASD plot depends on the choice of the structure and parameters of the continuous-time
state-space model.8

Discussion of Issues and Tradeoffs

The previous sections presented an example approach to extract a discrete-time state-space10

model to approximate the IMU error characteristics, as quantified by an ASD graph. There is
no single correct method. This section discusses various related issues and tradeoffs.12

User-Acquired Data

When the manufacturer does not provide an ASD plot (or provides information that14

the designer considers insufficient), the designer may contemplate acquiring their own data
to construct the ASD plots. This data acquisition process should be carefully designed after16

considering the appropriate technical specifications [28], [29].

The sensor model in (3) shows that the sensor reading is a function of deterministic18

parameters, stochastic errors, and the actual signal u(t). The ASD plot is only intended to
characterize the stochastic errors z(t). The data acquisition setup to acquire data to produce20

the ASD of the instrument must isolate the IMU from the environment well enough that the
contributions to the measurement ũ from u are negligible. Under the best circumstances, this22

is done on the lowest subterranean floor of a building, with the instrument attached to a heavy
mass on a vibration isolation system. Less than optimal results can be expected for an instrument24

placed on a desk in an office on a higher floor, due to motion of the building or vibrations in
the floor, for example.26

Optimization-based Parameter Selection for a Given Model

Once the designer selects a model structure, it is possible to define an optimization problem28

to select the model parameters. See Section 12.11.4.1.2 in [28].

For example, given the state-space model structure described in the “Cumulative Error30

20



Model: N , B, K” section, the ASD model corresponding to (42) is

σ2
z(τ) =

SN

τ
+

SB T 2
B

τ

[
1− TB

2 τ

(
3− 4e

− τ
TB + e

− 2τ
TB

)]
+

SK τ

3
,

which can be written using the (positive) parameter vector θ⃗ = [ SN SB SK TB ] as2

σ2
z(τ ; θ⃗) =

θ1
τ

+
θ2 θ

2
4

τ

[
1− θ4

2 τ

(
3− 4e

− τ
θ4 + e

− 2 τ
θ4

)]
+

θ3 τ

3
. (63)

A cost function such as

C(θ⃗) =
L∑
i=1

wi

(
σ̂2
u(τi)− σ2

z(τi; θ)
)2 (64)

can be optimized over positive values of θ⃗. The cost C(θ⃗) is computed using the known values
of the σ̂2

u(τi) for i = 1, . . . , L/2 as plotted in the ASD plot and the weights

wi =
1

σ2 [σ̂2
u(τi)]

,

where σ2 [σ̂2
u(τi)] is the variance of the computed σ̂2

u(τi), approximated as [51]

σ2
[
σ̂2
u(τi)

]
= (2σ [σ̂u(τi)])

2 ,

with σ [σ̂u(τi)] defined in (15). The functional form of σ2
z(τ ; θ⃗) in (63) is linear in three parameters4

and only nonlinear in one. Therefore, the nonlinear search is only over θ4. For each value of θ4,
the other optimal parameter values can be explicitly computed.6

The results of performing this optimization are shown in the fourth row of Table 2. Note
that the optimization-based approach decreased the size of B, which can be interpreted as the8

bias instability errors being less important than thought by the designer who performed the
manual tuning. This might motivate the designer to study whether the two-state N , B, K model10

actually provides performance improvement under application conditions relative to the one-state
N , K model. The engineering art is to select the appropriate model structure that enables the12

state estimator to calibrate the IMU sufficiently well to achieve a specified performance given
the implementation tradeoffs for a particular application.14

A few words of caution are appropriate regarding the interpretation of such optimization-
based approaches to parameter selection. Note that “optimization-based” is not necessarily16

“optimal”. This approach yields the parameter vector that minimizes a cost function for a given
model structure and choice of weights. Different cost functions, weights, or a different model18

will yield different “optimized” model parameters. Also, many designers view the IMU in their
application as not quite as good as the IMU that the manufacturer specified. Therefore, their20

preference is to select the IMU stochastic error model to slightly overbound the specified AV
plot rather than to optimally match that curve.22
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Observability: Where is the Bias?

It is often the case that one of the deterministic errors accounted for in (3) is a constant2

unknown bias b. For clarity of the discussion in this section, if all other deterministic errors are
assumed to be zero, then (3) has the form4

ũ(t) = u(t) + b+ z(t). (65)

The detrending process [mentioned before (12) in reference to the computation of the AV],
estimates and removes a bias from the specific set of data used to create the ASD plot. Over6

a set of experiments, the variance of this “turn-on bias” could be determined to have the value
Pb0 . Because the IMU turn-on bias may change from one run to the next, the unknown portion8

is considered as a constant bias b with the differential equation

ḃ(t) = 0, (66)

with the initial covariance Pb(0) = Pb0 [3], [9], [56].10

Nonetheless, the ASD plot may still dictate the inclusion of the state zK with model

żK(t) = ωK(t), (67)

with the PSD for ωK(t) being SK = K2 and initial covariance PzK (0) = cov(zk(0)) = 0.12

Including both b and zK in the augmented state vector is problematic, as can be concluded
from a simple observability analysis. Assume for a moment the ideal situation where the signal
y(t) = ũ(t) − u(t) is available. Also, assume that z(t) = zK(t) (accounting for additional
stochastic errors would not improve the observability of b and zK), then (65)-(67) are equivalent
to [

ḃ(t)

żK(t)

]
=

[
0 0

0 0

][
b(t)

zK(t)

]
(68)

y(t) =
[
1 1

] [ b(t)

zK(t)

]
, (69)

where the noise ωK(t) has been dropped because it is not relevant to an observability analysis.
For this system, the observability matrix is

O =

[
1 1

0 0

]
, (70)

which has rank equal to one. Further analysis shows that it is only possible to estimate the sum
b(t) + zK(t) (see Example 3.19 in [3]). Alternative modeling approaches are discussed in the14

“Tradeoffs in State Augmentation” section.
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Computational Impact of Augmented States

The augmented state vector, as defined in (5), has dimension nx = nv + nd + nz. The2

following discussion considers the dimension of x⃗v ∈ ℜnv as fixed and known, typically nv = 9

[see (4)].4

For IMU state augmentation, the designer must choose the definition and model structure
for the deterministic and stochastic IMU error state vectors x⃗d ∈ ℜnd and x⃗z ∈ ℜnz . Because6

there are three gyros and three accelerometers in the IMU, if ng states are augmented per gyro
and na states per accelerometer, then (nd + nz) = 3(na + ng). Therefore, nx = nv +3(na + ng).8

Increasing the number of augmented states allows for a higher fidelity model, but it comes
with tradeoffs. The computational load of the extended Kalman filter increases in proportion to10

n3
x [that is O(n3

x)] see [5], [9], [56]. Also, the desired increase in performance expected to be
gained with the additional computations may not be realized. For example, as the number of12

augmented states is increased, observability issues may arise. While it is clear that unobservable
states increase the computational load without providing any performance improvement, it may14

be less clear that weakly observable states may cause the implementation to be less robust to
unmodeled dynamics and nonlinearities.16

Tradeoffs in State Augmentation

In sensor fusion applications, the IMU measurements are not processed in the state18

estimation (for example the Kalman filter) measurement update. Instead, they are treated as
known inputs and considered during the time propagation of the state vector [see (2)].20

To illustrate the tradeoffs related to state augmentation for modeling stochastic IMU
errors in such a filtering context, the differential equation for velocity shall be considered. In22

a navigation frame mechanization, this velocity differential equation is given by (see Section
11.24 in [3])24

˙⃗v n
eb = Cn

b f⃗
b
ib − (2 ω⃗ n

ie + ω⃗ n
en)× v⃗ n

eb + g⃗ n
l . (71)

In this notation, v⃗ n
eb ∈ ℜ3 is the velocity of the platform (that is, body frame) with respect to Earth

and represented in navigation frame coordinates, Cn
b is the direction cosine matrix describing the26

rotation from body frame to navigation frame, ω⃗ n
ie is the Earth rotation rate, ω⃗ n

en is the platform
transport rate, and g⃗ n

l is the local gravity vector. The axes of the navigation frame point in the28

directions north, east, and down. The axes of the body frame usually coincide with the sensitive
axes of the IMU. The quantity f⃗ b

ib is the specific force vector, which is defined as the difference30

between platform acceleration and local gravity vectors. The accelerometer triad contained in
the IMU provides measurements ˜⃗

f b
ib of this specific force, which – assuming no deterministic32

23



errors – relates to the true specific force via the stochastic error vector z⃗a ∈ ℜ3:

˜⃗
f b
ib = f⃗ b

ib + z⃗a. (72)

Each scalar component of the vector z⃗a is modeled as in (6)-(7). Substituting (72) into (71)2

yields
˙⃗v n
eb = Cn

b
˜⃗
f b
ib − (2 ω⃗ n

ie + ω⃗ n
en)× v⃗ n

eb + g⃗ n
l −Cn

b z⃗a . (73)

Consider two accelerometer error modeling scenarios:4

1) If only velocity random walk errors would be considered (see the “Random Walk Errors:
Angle and Velocity: zN(t)” section), the Kalman filter state vector would not need to be6

augmented. The velocity random walk simply ends up as process noise in the Kalman
filter system model without the need for additional states. This model could be accurate8

for small time durations (τ smaller than a few seconds for the IMU in Figure 2), but
would largely ignore the other sensor characteristics described by the corresponding ASD10

plot for larger τ . It would not allow the sensor fusion algorithm to calibrate the IMU (for
example, estimate and remove a bias) on the fly.12

2) Using the first-order Gauss-Markov error model (or the acceleration random walk model)
would add one accelerometer “bias state” per axis. In this case, the IMU stochastic error14

model can match the ASD plot out to several tens of seconds. The estimated bias state
allows removal of the effect of the sensor bias (that is, calibration).16

For the second case, both options (that is, the first-order Gauss-Markov error model or the
acceleration random walk model) have their pros and cons. With an acceleration random walk18

model, the variance of the bias state grows linearly with time (that is, without bound) during
time intervals when the bias is not observable (see Section 4.6.3.2 in [3]). The physical inertial20

sensor bias is of course bounded. When the bias becomes observable through aiding measurement
information and vehicle motion, the unrealistic growth of the bias variance may cause the22

estimator gain to be unreasonably large. With the Gauss-Markov model, the variance of the
bias state stays bounded, even during time intervals when the bias state is not observable (see24

(4.102) in [3]). However, when the bias is unobservable, the bias state estimate itself tends to
zero during time-propagation (that is, the previously estimated quantity is slowly forgotten).26

Whether this is relevant or not depends on the duration of time without observability of the bias
state and Gauss-Markov model correlation time.28

With the Gauss-Markov choice, (20) reduces to

z⃗a = z⃗N + z⃗G.

24



The augmented system model is given by[
˙⃗v n
eb

˙⃗zG

]
=

[
Cn

b
˜⃗
f b
ib − (2 ω⃗ n

ie + ω⃗ n
en)× v⃗ n

eb + g⃗ n
l −Cn

b z⃗G

−µ⃗B z⃗G

]

+

[
−Cn

b

I

][
ω⃗N

ω⃗B

]
, (74)

with the velocity random walk (that is, ω⃗N ) and the driving noise of the Gauss-Markov model2

(that is, ω⃗B) constituting the process noise.

This state augmentation allows for a calibration of the inertial sensors during the mission,4

which improves the inertial navigation performance, especially when no aiding information is
available. The time-correlated nature of the inertial sensor biases is respected, and the sensor6

characteristics represented in the corresponding ASD plot are modeled to the extent (that is,
cluster duration) where they are meaningful for the application. For example, typically in a8

GNSS/INS system, GNSS measurements are processed with a rate of approximately 1 Hz. This
means that the time interval over which the INS propagates the state, without aiding corrections,10

is normally limited to 1 s. Using inertial sensors up to tactical grade, an inertial-only navigation
during GNSS outages is only meaningful for a few minutes at best, because the inertial navigation12

errors grow with time relatively quickly. In consequence, from the perspective of the filter design,
it is not required to model inertial sensor characteristics that become dominant in the ASD plot14

for time intervals of several hundreds or thousands of seconds.

While the advantages of such an augmentation have just been outlined, as discussed earlier,16

the augmentation with additional states increases the computational load. Before augmentation
with inertial sensor biases, a tightly coupled GNSS/INS filter would typically require 11 states:18

three position error states, three velocity error states, three attitude error states, and two states
for the receiver clock error model. For multi-GNSS implementations, additional clock model20

states are required per constellation. The augmentation with accelerometer and gyroscope bias
states (either z⃗G or z⃗K) adds six states, which increases the computational load by roughly a22

factor of four. Augmentation with two states per instrument (for example, both z⃗G and z⃗K) adds
12 states, which increases the computational load by roughly a factor of 10.24

Deterministic Errors

So far (for stochastic error modeling), only the ASD plots provided by the sensor26

manufacturer have been considered. However, when designing a sensor fusion filter, additional
“deterministic” aspects of the IMU may need to be addressed. Inertial sensor manufacturers28

usually provide a variety of specifications in addition to the ASD plots, which are addressed

25



briefly below.

Misalignment. The IMU axis-to-axis misalignment describes the non-orthogonality of the2

sensitive axes of the sensors. Some manufacturers provide a typical standard deviation for the
angle by which two sensor axes may deviate from an ideal 90 deg. With sufficient dynamics4

and inertial sensor accuracy, misalignment could be estimated in the navigation filter, adding
nine states defined as follows. The IMU sensitive axes span the body frame. When considering6

misalignment, it has to be defined how this is to be understood. One possible approach is to
define the sensitive axis of the z-accelerometer as z-axis of the body frame. The nonorthogonality8

of the y-accelerometer axis to the z-accelerometer axis can be described with a single angle.
The x-axis is defined as the unique vector that is orthogonal to the y-z plane, so that the body10

frame is defined completely. The description of the misalignment of x-accelerometer, and x, y,
and z-gyroscopes with respect to this body frame requires two angles for each sensor. For three12

sensors, this requires up to nine states total. An IMU axis to platform frame misalignment (which
is to be understood as a simple rotation of the body frame with respect to the IMU frame that14

it is supposed to be aligned with) has no negative impact on inertial navigation performance.

Nonlinearity. This term refers to the deviation of the sensor input-output curve from a straight16

line. A line is fit to the input-output curve and the maximum deviation of the input-output curve
with respect to this fitted line, divided by the sensor measurement range (full scale), is defined18

as nonlinearity. The nonlinearity usually cannot be estimated in the navigation filter.

Scale Factor. In the definition of nonlinearity, the line would ideally have a slope of one. The20

deviation of the actual slope from one is the scale factor error (often stated in parts per million).
Scale factor error could potentially be estimated in the navigation filter, adding six states: three22

for the gyroscopes and three for the accelerometers. However, as for the misalignment, the
linear scale factor error is often difficult to observe. Without vehicle motion, both scale factor24

and misalignment are indistinguishable from biases.

Linear acceleration effect. MEMS gyroscopes show an acceleration-dependent bias error. Usually,26

a navigation filter does not consider this type of error explicitly.

Vibration rectification error. This is especially relevant to accelerometers that exhibit a vibration28

dependent bias. Possible reasons for such a vibration dependent bias include nonlinearity and
aliasing. Usually, a navigation filter does not consider this type of error explicitly.30

The above brief discussion of deterministic sensor errors states that some of them (for
example, nonlinearity) cannot be accounted for explicitly in the system model of the state32

estimator. Whether the augmentation of states for scale factor and misaligment calibration is
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worthwhile is application dependent. First, not all of them are observable individually. Second,
the increase in computational complexity could be prohibitive. Furthermore, the IMU is often2

exposed to vibrations. Vibrations are micro-movements of the sensor, which may not be resolved
correctly by the IMU and INS strapdown algorithm. For example, the frequency of some of the4

vibrations may exceed the Nyquist frequency of the sensor, causing aliasing to occur. These
errors might be modeled as additional time-correlated noise. However as the vibrational model6

for each sensor would require at least a second-order Gauss-Markov model, such an approach
would require twelve additional states. Instead of explicitly considering vibration induced noise,8

misalignment, linear and nonlinear scale factor errors, an often used approach is to increase the
navigation filter process noise beyond the levels that have been obtained from an analysis of the10

ASD plot.

IMU Manufacturer Terminology12

This section briefly discusses various additional terms that appear on some manufacturer
data sheets.14

Bias in-run stability. The bias in-run stability is the component of the total sensor bias that
varies with time in a correlated fashion. This correlated temporal variation is typically modeled16

as a first-order Gauss-Markov process, that is, zG(k). The bias in-run stability (or in-run bias)
is described on IMU data sheets with units that correspond to the ASD. In accordance with the18

IEEE specifications [28], [30], this value corresponds to B at the minimum of the ASD plot,
as discussed relative to (32). However, the cluster time corresponding to this minimum value20

is typically not provided by sensor manufacturers. It can be extracted from the ASD plot, if
provided; otherwise, the correlation time must be selected and tuned by the designer.22

Turn-on bias. The turn-on bias (also referred to as the start-up, run-to-run, or repeatability bias)
is an offset in the sensor readings, that potentially changes each time the sensor is switched on.24

The total inertial sensor bias can be seen as the sum of this turn-on bias and a time varying
contribution (that is, bias in-run stability). The turn-on bias is relevant for the initialization of the26

variance of the inertial sensor bias states in the navigation filter. Using the state vector defined
relative to (48) as an example, the initial covariance of the augmented states zG(0) and zK(0)28

should be selected to add up to the manufacturer specified variance of the turn-on bias. As
explained in the “Observability: Where is the Bias?” section, the turn-on bias cannot be inferred30

from an ASD plot.

Angle/velocity random walk. The random walk describes the impact of the sensor inherent
white noise when integrating. The unit is ◦√

h
for gyroscopes and m/s√

h
for accelerometers. An
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angular random walk of α ◦√
h

indicates that after integrating angular rate measurements for H

hours, an angle error standard deviation of α
√
H degrees will result due to the sensor inherent

white noise. The random walk contributes to the process noise in the navigation filter system
model [for example, see (74)]. The angle/velocity random walk parameter is the square root of
the PSD of the sensor inherent white noise, which is denoted by N throughout this article. In
some data sheets, the angle/velocity random walk is referred to as the noise density, typically
provided with the unit ◦/h√

Hz
for gyroscopes and m/s2√

Hz
for accelerometers. The noise density is

an alternative representation to the random walk parameter N . It is possible to convert between
both representations of the sensor inherent white noise. For example,

m/s2√
Hz

=
m

√
s

s2
=

m/s√
s

= 60
m/s√

h
.

Available Software Package

An open-source Matlab software package is available at https://github.com/jaffarrell/AV-2

Matlab-SW. The software has two components. The first component completes the following: (1)
Given a continuous-time error model, it computes an equivalent discrete-time state-space model.4

(2) Given that discrete-time model, a simulation produces a stochastic error sequence zk = z(tk),
where tk = k T for k = 1, . . . , L. (3) Given a sequence of stochastic errors {zk}Lk=1, it computes6

the AV (i.e., σ2
u(τ)) and plots the ASD (i.e.

√
σ2
u(τ)). The second component implements the

optimization-based approach described in (63)-(64) to fit the parameters of the NBK continuous-8

time state-space model described in (40)-(42) to a given set of AV data. Together, these two
components enable a complete design cycle. Inclusion of the optimization-based approach is for10

completeness; it is not meant to imply that it is the recommended approach for selecting the
state-space stochastic error model.12

This software release includes a dataset for the demonstration example herein. The user
must adapt that approach and software to the model appropriate for their instrument.14

Conclusions

The main purpose of this article has been to present a tutorial on the process that starts16

from an instrument’s ASD plot (or its derived parameters) and constructs a state-space IMU
error model suitable for real-time INS error state estimation and IMU calibration using data18

fusion methods such as the KF, EKF, UKF, PF, or MAP. An example model construction and
verification method is included. We do not claim that this approach is unique or optimal. It is20

representative of industry-standard methods.
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In addition, this tutorial included an extensive discussion of the issues and tradeoffs that a
designer should consider, including performance, computational load, observability, and extent2

of the cluster time τ that is relevant to a given application.

Finally, the manufacturer provided ASD plot or parameters should be considered as a4

starting point. It will dictate the dominant forms of error and reasonable values for the error model
parameters. Minor tuning relative to those reasonable parameters will normally be required to6

accommodate the particular IMU that is available, and error terms that were ignored or neglected
due to observability or computational reasons. A considerable tuning might be required, in case8

the IMU is exposed to vibrations containing frequencies exceeding the Nyquist frequency.
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Sidebar: Nontechnical Article Summary

Autonomous vehicles utilize control systems to cause the vehicle state to follow a2

desired trajectory. The control system incorporates information about the vehicle position,
velocity, acceleration, attitude, and angular rate, which can be computed by integration of the4

measurements of an inertial measurement unit (IMU). This integrative process also accumulates
IMU measurement errors that cause the integrated IMU measurements (which is the vehicle6

state estimate) to slowly diverge from the true vehicle state. The difference is referred to as the
vehicle error state vector. This vehicle error state vector and various IMU calibration parameters8

can be estimated through the state estimation process using information from external sensors
[for example, camera, global navigation satellite systems (GNSS), Lidar, Radar]. Such real-time10

calibration of the IMU (and other sensors) results in improved accuracy and slower rates of IMU
error accumulation during the time intervals between the measurements from external sensors.12

Design of the state estimator requires definition of the IMU error state vector and
its stochastic discrete-time state-space model. This modeling process begins from the IMU14

performance specification information provided by the IMU manufacturer, which (per the IEEE
standards) is communicated through the Allan Variance. Information extracted from the Allan16

standard deviation graph allows the analyst to evaluate various issues and tradeoffs involved in
selecting the continuous-time IMU error state-space model. This tutorial article discusses this18

approach, the issues and tradeoffs, the translation of the continuous-time model to an equivalent
discrete-time model for implementation, and a verification approach. Example Matlab scripts are20

supplied that implement each step of this process.
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Sidebar: Aided Inertial Navigation System History

The first use of inertial navigation dates back to the German V-2 missile in 1942. After2

World War II, the United States started to develop inertial navigation systems (INS) for ballistic
missiles, and (later in the 1960s) for the Apollo missions, as well as military and commercial4

airplanes [61]. The early inertial navigation systems used a gimballed platform that decoupled
the host vehicle attitude changes from those of the platform. This decoupling allowed three6

accelerometers mounted on the platform to maintain alignment with the north, east, and down
directions. For many applications, a reduced set of sensors was sufficient, for example, the vertical8

axis and respective sensors were omitted. Because the initial position and velocity were known,
integration of the accelerometer measurements propagated the position and velocity vectors10

forward in time. Gyroscopes were used to measure small perturbations of the platform attitude,
which were then compensated mechanically to maintain the alignment of the accelerometers12

with the north, east and down directions.

These gimballed systems, despite their impressive accuracy, had several drawbacks. The14

mechanical construction was complex, bulky, and expensive. Furthermore, aerobatic maneuvers
could cause a gimbal lock: When two gimbal axes become aligned, a rotation perpendicular to16

this axis causes the platform to lose alignment. A solution was to add a fourth gimbal, which
further increased complexity and cost [62].18

Advances in electronic and gyroscope technology in the 1960s enabled the development
of strapdown INS. In a strapdown INS, an inertial measurement unit (IMU) consisting of three20

accelerometers and three gyroscopes is attached rigidly to the host vehicle. The gyroscopes
measure the attitude changes of the host vehicle, thereby enabling computational tracking of its22

attitude. This requires that these gyroscopes be capable of accurately measuring angular rates of
up to several hundred degrees per second for highly agile host platforms, whereas for a gimballed24

system, a gyroscope measurement range of few degrees per hour would have been sufficient.
Knowledge of the host vehicle attitude allows transformation of the accelerometer measurements26

of the specific force from the body frame to an Earth reference frame (for example, a north-
east-down fixed tangent frame) in which compensation of gravity is straightforward; thereby28

yielding measurements of the host vehicle acceleration. As in a gimballed system, this host
vehicle acceleration is then integrated twice to compute the changing host vehicle position and30

velocity over time.

For any INS (gimballed or strapdown) the errors in the inertial measurements accumulate,32

and together with the inaccuracies of the host vehicle initial state estimate, cause a deterioration
of the accuracy of the navigation solution with time. To counter this temporal growth of34
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position, velocity and attitude errors, the inertial navigation system can be corrected using aiding
measurements from external sensors (for example, GNSS receiver, camera, lidar, radar).2

A typical GNSS-aided INS architecture is shown in Figure 10. The strapdown algorithm
numerically integrates the nonlinear kinematic model described in (2) using the calibrated4

IMU measurements ˆ⃗u(t) as inputs. This integration is at the sampling rate of the IMU (for
example, hundreds or thousands of times per second), which is designed to be high relative6

to the bandwidth of both the IMU and the host vehicle. When aiding sensor measurements
are available, the navigation filter – often an extended or linearized Kalman filter – estimates8

corrections for the state and calibration factors. Aiding measurements are typically available
at low rates (for example, one vector measurement per second), relative to the host vehicle10

bandwidth. Calibration factors may include deterministic errors (for example, scale factor and
sensor-axis alignment errors) and time-correlated stochastic errors. This on-the-fly estimation of12

IMU calibration factors continuously recalibrates the INS, leading to a superior INS performance
during time intervals when aiding sensor measurements are not available (for example, GNSS14

outages).

Two aided INS system architectures are widely used: loose and tight coupling (see Ch. 2816

in [63]). In a loosely coupled GNSS-aided approach, the GNSS receiver computes position and
velocity estimates internally from its pseudorange and Doppler measurements without using INS18

information. This GNSS computation can occur only when the receiver has at least four satellites
in view. When the GNSS position and velocity measurements are output from the receiver, the20

residual between them and their INS computed values are used to drive the navigation filter to
estimate the INS error state; otherwise, the INS continues to integrate without correction. In22

a tightly coupled approach, the residual of the navigation filter is formed between the GNSS
pseudorange and Doppler measurements and the predictions of those quantities as computed24

by the INS. This allows aiding even when fewer than four satellites are in view. The main
tradeoff is that tightly coupled systems offer the potential for higher-performance, especially26

when fewer measurements are available, but are more complex to implement due to the need
for the navigation system: to process GNSS ephemeris data; to calculate satellite positions and28

velocities; and, to apply corrections for ionosphere, troposphere, satellite clocks and broadcast
group delays (see Section 28.2 of [63]). Similar tradeoffs apply for aiding with alternative aiding30

sensors.

There is a rich literature concerning dynamics, control, and system theoretic contributions32

within the inertial navigation context [1], [64]. Throughout their history, the Kalman filter has
played an important role [7], [8], [65]. This history has included a focused effort on numerical34

methods [66], [67], [68], [69]. Observability studies for both stationary and time-varying systems
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systems is critical both for initialization and on-the-fly calibration [31], [70], [71], [72], [73],
[74], [75], [76], [77], [78], [79], [80]. Also understanding the controllability of the state from2

the perspective of the driving noise was critical to removing issues of Kalman filter divergence
[81]. More recently (but still with a long history [82], [83], [84]), efficient numeric methods for4

real-time trajectory (as opposed to state) estimation (that is, real-time smoothing) are important
for inertial-based simultaneous location and mapping applications [23], [24], [25], [26].6

The ongoing decreases in the cost of inertial sensors, aiding measurements, and compu-
tation are allowing aided strapdown INS to be feasible with respect to both cost and accuracy8

in commercial applications. For example, the interest in combining GNSS-aided INS with Real-
Time Kinematic (RTK) techniques (see Chapter 26 in [63]) capable of achieving submeter10

accuracy is growing. An overview on possible architectures is given in [85]. The performance
of aided inertial systems is dependent on the navigation filter incorporating a state-space model12

of the IMU stoshastic errors. This article provides a tutorial describing the industry standard
process and tradeoffs related to defining such models.14
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Sidebar: Simplified Inertial Navigation System Example

This section presents a simplified two-dimensional inertial navigation system (INS)2

example. The purpose is to present a nonlinear kinematic model, the INS equations that would
propagate the vehicle state through time, the linearized model that predicts the growth in the4

INS error over time, how that error model is used to propagate the error covariance through
time, and state augmentation for sensor calibration.6

Various reference frames and variables are illustrated in Figure 11. Earth is assumed to be
circular with radius R, nonrotating, and uniform density. The point P represents the location of8

the inertial measurement unit (IMU) on the vehicle. The vehicle is free to translate in ℜ2 and
rotate with one degree of freedom, denoted by θ. The IMU sensitive axes are in the directions10

indicated by the unit vectors u⃗ and w⃗, which define the vehicle reference frame. The origin of
the geographic reference frame is defined as the projection of the point P onto the Earth surface12

along the vector to the Earth’s center. The instantaneous Earth tangent plane at the origin of the
geographic frame defines the unit vectors n⃗ and d⃗. The height of the point P above the tangent14

plane is the altitude h. The latitude ϕ and pitch θ are defined as positive in the directions indicated
in the figure. The vectors z⃗ and p⃗ define the axes of the Earth-centered reference frame.16

The kinematic model for the IMU at point P (that is, the vehicle model) is[
ϕ̇

ḣ

]
=

[
1

R+h
0

0 −1

][
vn

vd

]
(75)[

v̇n

v̇d

]
= a⃗giv +

[
vnvd
R+h
−v2n
R+h

]
(76)

θ̇ = ωgv, (77)

where a⃗giv is the inertially-referenced vehicle acceleration vector represented in the geographic18

frame and ωgv is the rotation rate of the vehicle relative to the geographic frame. This angular
rate is computed as ωgv = ωiv −ωig, where ωiv is the rotation rate of the vehicle with respect to20

an inertial frame (which is measured by the gyro) and ωig = −ϕ̇ = − vn
R+h

is the transport rate
of the geographic frame with respect to the inertial frame. The superscript g (or v) on the vector22

quantities indicates that the vector is represented in geographic (or vehicle) frame. The vector
[vn, vd]

⊤ is the Earth-relative velocity of point P , represented in the instantaneous tangent plane.24

The second term on the right side of (76) is due to the rotation rate of the geographic frame
with respect to the Earth-centered inertial frame (that is, transport rate). Equations (75)-(77) are26

an example of the nonlinear kinematic model of (1) in the main body of this article.

For INS computations, the acceleration vector and angular rate are computed from the28
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IMU measurements. The IMU consists of a dual-axis accelerometer and a single-axis gyro with
output measurements modeled as2

˜⃗uv
1 = (⃗aviv − g⃗v)− ε⃗v1 = f⃗ v − ε⃗v1 (78)

ũ2 = ωiv − ε2, (79)

where the tilde indicates a measurement, f⃗ = a⃗iv− g⃗ is the specific force vector, and g⃗ represents
the gravity vector. The terms

ε⃗v1 = −dv1(u⃗)− zv1 and ε2 = −d2(u⃗)− z2

represent the sum of the deterministic and stochastic accelerometer and gyro errors, as defined
in (3).4

The IMU provides the measurements in v-frame, but they are needed for computations in
g-frame. Vectors are transformed between frames using a direction cosine matrix (for example,
f⃗ g = Rg

v f⃗
v, where f⃗ g is the specific force vector represented in geographic frame). The rotation

matrix Rg
v from platform to geographic frame is defined as

Rg
v =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
and Rv

g = (Rg
v)

⊤ .

A navigation system calculates the vehicle state by integration of6 [ ˙̂
ϕ
˙̂
h

]
=

[
1

R+ĥ
0

0 −1

][
v̂n

v̂d

]
(80)

[
˙̂vn
˙̂vd

]
= R̂g

v

(
˜⃗uv
1 +

ˆ⃗εv1

)
+ ˆ⃗gg(ĥ) +

[
v̂n v̂d
R+ĥ
−v̂2n
R+ĥ

]
(81)

˙̂
θ =

v̂n

R + ĥ
+ (ũ2 + ε̂2), (82)

where ε̂1 is an estimate of the accelerometer error vector and ε̂2 is an estimate of the gyro
error. Equations (80)-(82) provide an example of (2) in the main body of the article. The INS8

integrates these nonlinear equations to propagate the vehicle state through time.

The inputs to (1) and (2) are, respectively,

u⃗ =
[
(u⃗v

1)
⊤, u2

]⊤
and ˆ⃗u =

[
(ˆ⃗uv

1)
⊤, û2

]⊤
.

Because the actual inputs u⃗v
1 = a⃗viv − g⃗v and u2 = ωiv are not available, for the purpose of

integrating (80)-(82), they are computed from the measurements as

ˆ⃗uv
1 =

˜⃗uv
1 +

ˆ⃗εv1 and û2 = ũ2 + ε̂2.
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For use later, define  ˆ⃗
fn
ˆ⃗
fd

 = R̂g
v
ˆ⃗uv
1. (83)

The calibration terms ˆ⃗εv1 and ε̂2 are computed using IMU error model parameters that are esti-
mated in real-time. These calibration parameters are denoted as x⃗d(t) for the IMU deterministic2

errors and x⃗z(t) for the IMU stochastic errors in the augmented state vector defined in (5).

In this example, the vehicle state and estimated vehicle state are defined as

x⃗v = [ϕ, h, vn, vd, θ]
⊤ and ˆ⃗xv = [ϕ̂, ĥ, v̂n, v̂d, θ̂]

⊤.

Because the actual state x⃗v is not known, the navigation error state defined as δx⃗ = x⃗v − ˆ⃗xv is
also not known. Defining δu⃗ = u⃗− ˆ⃗u, the linearized error model of (4) would have

G(t) =


0 0 0

0 0 0

cos(θ̂) sin(θ̂) 0

− sin(θ̂) cos(θ̂) 0

0 0 1

 , and

F (t) =



0 − v̂n

(R+ĥ)2

1

R+ĥ

0 0

0 0 0 −1 0

0 − v̂nv̂d

(R+ĥ)2

v̂d

R+ĥ

v̂n

R+ĥ

ˆ⃗
fd

0

(
v̂2n

(R+ĥ)2
+ ∂g⃗g(h)

∂h

∣∣∣
h=ĥ

)
−2v̂n

R+ĥ

0 − ˆ⃗
fn

0 − v̂n

(R+ĥ)2

1

R+ĥ

0 0


.

The main purpose of this tutorial is to discuss the issues and methods related to defining the4

stochastic error state vector x⃗z(t) and its state-space model in the form of (6). When this is
done, the F and G matrices defined above are used with state augmentation methods to define6

the complete error model.

The augmented state-space model communicates to the mathematics of the state estimation8

process both how the IMU calibration states x⃗d and x⃗z change dynamically with time and how
they affect the vehicle state estimate x⃗v. The explicit method by which this is done is by using10

(86) to propagate the error state covariance matrix through time. It is critical to note that the
vehicle state vector is propagated through time using the nonlinear kinematic model of (2); the12

linearized model of (86) is only used to propagate the error covariance matrix.
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For more extensions to this example (such as its use to decouple the horizontal and
vertical error dynamics to explain the vertical channel instability and horizontal channel Schuler2

oscillation), see p. 105 in [3].

In actual three-dimensional applications, the attitude representation and its update become4

more complicated; nevertheless, the basic approach and issues remain the same.
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Sidebar: State Augmentation

The estimation algorithm estimates the augmented error state as defined in (5). The2

dimension of this augmented state is nx = nv + nd + nz.

The state-space error model for the vehicle error state is defined in (4). The state-space4

model for the inertial measurement unit (IMU) stochastic errors is defined in (6)-(7). For this
sidebar (to allow for modeling three accelerometers and three gyros), the dimension of the output6

matrix will change to Cz ∈ ℜ6×nz .

Similarly, define the state-space model for the IMU deterministic errors as8

˙⃗xd(t) = Ad x⃗d(t) +Bd ω⃗d(t), (84)

zd(t) = Cd x⃗d(t), (85)

where Ad ∈ ℜnd×nd , Bd ∈ ℜnd×r, and Cd ∈ ℜ6×nd . The parameter r represents the number of
distinct noise processes in the deterministic error model. The parameter nd represents the number10

of states selected to model the IMU deterministic errors. The elements of x⃗d in the deterministic
error model are usually considered to be unknown constants; therefore, the corresponding model12

has Ad, Bd, and r all being identically zero [that is, ˙⃗xd(t) = 0].

Combining (4), (6)-(7), and (84)-(85) the linearized state-space error model is14

˙⃗x =

 F GCd GCz

0 0 0

0 0 Az


 δx⃗v

x⃗d

x⃗z

+

 G 0

0 0

0 Bz

[ η⃗z

ω⃗z

]
, (86)

where the time dependence of all quantities has been dropped from the notation.

Given a set of aiding measurements, the objective of the data fusion system is to estimate16

the augmented error state vector x(t) that is defined in (5) in real-time. Success requires that
the state vector be observable, which is a well-studied problem [76], [77], [78].18
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Sidebar: Power Spectral Density

For a stationary process, the correlation function R(τ) = E⟨x(t)x(t + τ)⟩ and two-sided
PSD are Fourier transform pairs related by

S(ω) =

∫ ∞

−∞
e−jωτ R(τ)dτ (87)

R(τ) =
1

2π

∫ ∞

−∞
ejωτ S(ω)dω. (88)

Instrument error models include nonstationary stochastic processes such as random walk and2

integrated random walk. Nonstationary stochastic processes can be analyzed using average
correlation functions and average power spectrum (see Section 2.7 in [11] or p. 109 in [86]),4

which are related to each other in the same way as shown in (87)-(88). This article will not
distinguish between the two.6
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Sidebar: Finite-Dimensional Linear State-Space Systems have Even Power Spectra

The main text stated that the power spectrum for a linear state-space model (without pure2

delay) will be an even polynomial function of s = jω. This sidebar discusses two aspects of
this statement.4

State-Space to Transfer Function

Consider the single-input, single-output, finite-dimensional, linear state-space model6

˙⃗x(t) = F x⃗(t) +Gu(t), (89)

z(t) = H x⃗(t), (90)

where F ∈ ℜn×n, G ∈ ℜn×1, and H ∈ ℜ1×n. The parameter n represents the order of the
system. The transfer function from u(t) to z(t) is denoted by Z(s)

U(s)
= T (s), where s is the8

Laplace variable, Z(s) and U(s) are the Laplace Transforms of z(t) and u(t), respectively. The
transfer function T (s) can be computed from the state-space model parameters as (see Section10

3.5.2: in [3]):

T (s) = H (sI − F )−1G. (91)

This transfer function is the ratio of polynomials in s, namely:

T (s) =
N(s)

D(s)
.

The purpose of this sidebar is to provide examples to demonstrate that the power spectrum

S(ω) = T (s)T (s∗)|s=jω =
N(s)N(s∗)

D(s)D(s∗)

∣∣∣∣
s=jω

is an even polynomial function of ω. For related theory and additional examples, see Sections12

3.2-3.7 in [56].

State-Space to Power Spectrum14

Consider the double integrator state-space system:[
ṗ(t)

v̇(t)

]
=

[
0 1

0 0

][
p(t)

v(t)

]
+

[
0

1

]
u(t)

z(t) =
[
1 0

] [p(t)
v(t)

]
.

Using eqn. (91), the transfer function is16

Z(s)

U(s)
=

[
1 0

] [s −1

0 s

]−1 [
0

1

]
=

1

s2
.
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For T (s) = 1
s2

,

S(ω) =
1

(jω)2
1

(−jω)2
=

1

ω4
,

which is an even polynomial function of ω. Additional examples can be found in many text
books.2

Power Spectrum to State-Space

The fact that any power spectrum S(ω) that is an even (finite-order) polynomial function of4

ω can be represented by a finite-dimensional linear state-space system is shown by first factoring
S(ω) = T (jω)T (−jω), where T is the ratio of finite-dimensional polynomials in jω and then6

finding a state-space representation for T (s).

For example, the power spectrum S(ω) = A2

ω4 can be factored as S(ω) = A
(jω)2

A
(−jω)2

, where8

the first term provides the transfer T (s) = A
s2

. The transfer function Z(s)
U(s)

= A
s2

is equivalent to
s2 Z(s) = A U(s). Multiplication by s in the Laplace domain corresponds to differentiation in10

the time domain. Therefore, z̈(t) = Au(t), which has the state-space model:[
ṗ(t)

v̇(t)

]
=

[
0 1

0 0

][
p(t)

v(t)

]
+

[
0

A

]
u(t)

z(t) =
[
1 0

] [p(t)
v(t)

]
.
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Sidebar: A Brief Historical Review of the Allan Variance

The Allan Variance (AV) was originally proposed in the 1960s for the study of frequency2

stability of oscillators and signal generators [49], [50], [87]. Since its definition, the AV has
found utility for the specification of inertial measurement unit (IMU) performance. The IEEE4

standards are written in terms of the AV [28], [29], [30]. This section provides a very brief
introduction to the history of the AV.6

Consider a signal generator with instantaneous output voltage V (t) given by

V (t) = [V0 + ϵ(t)] sin [2πν0t+ φ(t)] , (92)

where V0 and ν0 are the nominal output amplitude and frequency, respectively; and ϵ(t) and φ(t)8

are the instantaneous random amplitude and phase fluctuations. From φ(t), the instantaneous
fractional frequency fluctuation u(t) is defined as10

u(t) =
φ̇(t)

2πν0
. (93)

Before the introduction of the AV, the standard measure of frequency stability was the spectral
density Su(f). The AV is an alternative, time-domain measure of frequency stability defined as12

σ2
u(τ : N, Ts) =

〈
1

N − 1

N∑
k=1

(
ūk −

1

N

N∑
j=1

ūj

)2〉
. (94)

The notation σ2
u(N, Ts, τ) is standard in the AV literature. This sidebar uses the more descriptive

notation σ2
u(τ : N, Ts) to indicate that N and Ts are parameters that the analyst selects to evaluate14

the value at cluster duration τ . In this notation, N is the number of clusters of duration τ that
are used in the computation, and Ts is the time between the start of consecutive clusters. The16

operator ⟨·⟩ indicates an infinite time-average. In (94),

ūk =
1

τ

tk+τ∫
tk

u(t)dt, (95)

with tk = tk−1 + Ts. The expression in (94) can be understood as the sample variance of N18

averages of u(t) each over a time interval of duration τ . The minimum value of τ and Ts is the
sample period T . The symbols used in this discussion are defined in Table 3. The relationship20

between these parameters is illustrated in Figure 12. In the case where the time interval satisfies
Ts > τ , the computation has deadtime between clusters where data is unused.22

The “Two-Sample Without Dead-Time” formula

σ2
u(τ) ≡

〈
σ2
u(τ : 2, τ)

〉
=

〈
(ūk+1 − ūk)

2

2

〉
(96)
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(that is, ⟨σ2
u(N = 2, Ts = τ, τ)⟩ in the standard notation) is recommended in [49], [50] and

eventually became known as the AV.2

Since practical data records are of finite length, the infinite time averages are not available;
therefore, approximations are required. Barnes et al. [50] proposed and studied4

σ̂2
u(τ) =

1

2(m− 1)

m−1∑
k=1

(ūk+1 − ūk)
2 . (97)

Note the hat in the left side of (97) which indicates that it is designed as an estimate of σ2
u(τ)

defined in (96). This formula has become known as the “Non-Overlapping” AV, in reference to6

the fact that Ts = τ .

Because the duration of the available data set is finite, for each value of τ and choice of8

Ts, the number of clusters m will change (with longer clusters and larger values of Ts yielding
smaller values of m). Given a data record with L samples and a constant sample period T , the10

total experiment duration is LT seconds. The number of averages ūk (that is, clusters) that can
be computed for a cluster duration of τ = nT , without deadtime, is m = L/n.12

Several alternative AV formulae have been proposed based on different choices for Ts. For
instance, Howe, Allan, and Barnes [88] introduced the (Fully) Overlapping AV with Ts = T14

[which is the same as (12)]:

σ̂2
u(τ) =

1

2(L− 2n)

L−2n∑
k=1

(ūk+n − ūk)
2 . (98)

Its stated objective is to provide the best confidence in the estimates, which is achieved by high16

data utilization, that is, the number of formed averages ūk is no longer m = L/n, but instead,
m = L − n; therefore, the estimation accuracy of the Overlapping AV (based on (L − 2n)18

differences) increases dramatically (relative to the Non-Overlapping AV) for long cluster-times.
The Overlapping AV has since become the standard for IMU stochastic error modeling [28],20

[29].

Allan and Barnes [87] modified the Overlapping AV to improve its ability to distinguish22

stochastic processes with spectral densities Su(f) ≈ fα, such that α = +1 or +2 (flicker phase
noise and white phase noise, respectively). However, these are generally not the main sources24

of stochastic errors corrupting an IMU [see (17)].

A more recent alternative to (98) is the Not-Fully-Overlapping AV, wherein τ > Ts > T26

[54]. In the article, the authors show that the method has similar estimation accuracy to the
(Fully) Overlapping AV (but at a reduced computational cost), which is relevant because AV28

analysis for IMU characterization generally requires large datasets.
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It is not the purpose of this tutorial to detail the historical development of the AV [48],
[89], [90]. For the interested reader, Table 4 summarizes and compares various formulations of2

the AV and provides pointers to selected references.
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Sidebar: Discussion of Equation (62)

Equation (62) may appear to be counterintuitive. Why would the discrete-time measurement2

variance Qηd decrease as the sample period T increases? This phenomenon has a long history
that can be understood from different perspectives.4

Sensor Model. The general assumption is that a discrete-time measurement is obtained as the
mean of the continuous-time quantity within the sample interval:

ũ(k) =
1

T

∫ tk+1

tk

(u(τ) + ηω(τ)) dτ (99)

ũ(k) = ū(k) +
1

T

∫ tk+1

tk

ηω(τ)dτ (100)

ũ(k) = ū(k) + η(k), (101)

where the discrete-time measurement noise is

η(k) =
1

T

∫ tk+1

tk

ηω(τ)dτ. (102)

If ηω(τ) is white, then its covariance function is E⟨ηω(ζ)ηω(τ)⟩ = SN δ(ζ− τ), where δ denotes
the Dirac delta function and SN is the power spectral density (PSD). Therefore, the covariance
of η(k) is computed as

Qηd(k) = E ⟨η(k)η(k)⟩

= E

〈(
1

T

∫ tk+1

tk

ηω(τ)dτ

)(
1

T

∫ tk+1

tk

ηω(ζ)dζ

)〉
=

1

T 2

∫ tk+1

tk

∫ tk+1

tk

E ⟨ηω(τ)ηω(ζ)⟩ dζdτ

=
1

T 2

∫ tk+1

tk

∫ tk+1

tk

SN δ(ζ − τ)dζdτ

=
1

T 2

∫ tk+1

tk

SN dτ

Qηd(k) =
1

T
SN , (103)

which is the same as (62).

Angle Increments. From (99), the discrete-time samples from the inertial measurement unit6

(IMU) may be presented (that is, scaled) as either an angular rate (or acceleration) measurement
u(k) or an angle (or velocity) increment ∆(k) = u(k)T over the time increment of length T .8

The analysis of (56)-(62) presented the IMU white noise conversion from continuous to discrete
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time for the first case: IMU angular rate (or acceleration) outputs, which resulted in (62). This
section considers the analysis for the case where IMU outputs angle (or velocity) increments.2

The discrete-time model that is equivalent to (51) is

xv(k + 1) = xv(k) + ∆(k). (104)

The discrete-time model that is equivalent to (52) is4

x̂v(k + 1) = x̂v(k) + ∆̃(k). (105)

Scaling both sides of (58) by T yields the discrete-time measurement model,

∆̃(k) = ∆(k) + η∆(k), (106)

with white measurement noise η∆(k) ∼ N(0, Qη∆). By the definition of ∆(k) in the previous6

paragraph, Qη∆ = T 2Qηd , where Qηd is defined in (45). The error signal e(k) = xv(k)− x̂v(k)

has the time propagation model8

e(k + 1) = e(k)− η∆(k) (107)

which is a discrete-time random walk process. The discrete-time propagation of the covariance
of e(k) driven by η∆(k) is10

Pe(k + 1) = Pe(k) +Qη∆ for any k ≥ 0. (108)

Due to the assumption that the initial covariance of e(k) is zero, (108) simplifes to

Pe(k) = k Qη∆ . (109)

Because the continuous and discrete-time models are equivalent, their covariance must be12

the same at the discrete sample times. Equating (55) to (109) yields

Pe(t)
∣∣
t=kT

= Pe(k)

SN k T = k Qη∆ ,

which provides14

Qη∆ = SN T, (110)

which is equivalent to (62) because Qη∆ = T 2Qηd .

The fact that the PSD SN must be equal to Qη∆

T
is discussed in Example 3.20 in [91],16

which attributes that example to Kalman in [92]. The example discusses continuous-time white
noise as the limit of discrete-time white noise as T approaches zero.18

Unit Analysis. Consider the units of SN , Qη∆ , and Qηd .
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• The symbol SN represents the PSD of ηz(t), which has units of (deg/s)2

Hz
= (deg)2

s
for gyros

and (m/s2)
2

Hz
= (m)2

s3
for accelerometers.2

• The symbol Qηd represents the covariance of η(k), which has units of (deg/s)2 for gyros
and (m/s2)

2 for accelerometers.4

• The symbol Qη∆ represents the covariance of η∆(k), which has units of (deg)2 for gyros
and (m/s)2 for accelerometers.6

Note that all these units work out consistently in (62) and (110). Equation (62) is used to compute
the covariance of the discrete-time white noise covariance Qηd (which is needed for the design8

of the state estimator) from the continuous-time PSD SN [which is extracted from the Allan
Standard Deviation (ASD)].10

54



Short Biography for each Author

Farrell2

Jay A. Farrell received B.S. degrees in physics and electrical engineering from Iowa
State University, and M.S. and Ph.D. degrees in electrical engineering from the University4

of Notre Dame. At Charles Stark Draper Lab (1989-1994), he was principal investigator
on projects involving autonomous vehicles, receiving the Engineering Vice President’s Best6

Technical Publication Award in 1990 and Recognition Awards for Outstanding Performance and
Achievement in 1991 and 1993. He is the KA Endowed Professor in the Department of Electrical8

and Computer Engineering at the University of California, Riverside. For the IEEE Control
Systems Society (CSS), he has served as vice president finance, vice president of technical10

activities, CSS general vice chair of IEEE CDC-ECC 2011, general chair of IEEE CDC 2012,
president elect, president, and past president. For IEEE he served three terms on the Fellow12

Committee, as EAB treasurer, and on IEEE FinComm. In 2020-2021, he served as president of
AACC. He is author of over 250 technical articles and three books. He was recognized as a14

GNSS Leader to Watch by GPS World Magazine in 2009 and is a Distinguished Member of
IEEE CSS, a Fellow of the IEEE, a Fellow of AAAS, and a Fellow of IFAC.16

Silva

Felipe O. Silva received the B.S. Degree in automatic control engineering (with honors)18
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Article Summary

Autonomous vehicle technology is advancing rapidly. Their control capabilities often2

rely on high-bandwidth state estimation incorporating inertial measurements. High-performance
state estimation incorporates inertial measurement error models through the process of state4

augmentation to enable on-the-fly instrument calibration.

This article is a tutorial describing the process and issues related to developing a state-6

space model for the stochastic errors affecting an Inertial Measurement Unit (IMU). The starting
point is the instrument error characterization data sheet provided by the manufacturer, which is8

typically either a Allan Standard Deviation graph or the Allan Variance parameters extracted
from that graph. The desired output of the modeling process is a linear discrete-time state-space10

model of the IMU stochastic errors suitable for augmentation to the INS error state model.

Along with this tutorial, supplementary open source software is available. One software12

component does the following: (1) Given a continuous-time state-space IMU stochastic error
model selected by the designer to match the Allan variance, the software computes a discrete-14

time equivalent state-space model. (2) Given that discrete-time model, it produces a stochastic
error sequence suitable for Allan Variance computations. (3) Given a sequence of stochastic16

errors, it computes and plots the Allan Variance. Given Allan Variance data and a specific
continuous-time state-space IMU stochastic error model structure, a second software component18

implements an optimization-based approach to select the model parameters to match the Allan
Variance data.20
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TABLE 1: Dominant errors in consumer grade inertial measurement units (IMUs)

Noise type Coef. Allan Variance PSD

(Coef.) unit Acc: (m/s2)2 Acc: m2/s3

Gyro: (deg/s)2 Gyro: deg2/s

Ang./Vel. Acc: m/s3/2 N2

τ
N2

random walk, N Gyro: deg/s1/2

Bias Acc: m/s2 2B2 ln(2)

π

B2

2 π finstability, B Gyro: deg/s

Rate/Accel. Acc: m/s5/2 K2 τ

3

(
K

2 π f

)2

random walk, K Gyro: deg/s3/2
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TABLE 2: Extracted Allan Variance (AV) parameters related to Figure 8

Coef. N B K TB

Untuned Value 0.0033 0.0011 0.00014 32

Manually-tuned Value 0.0033 0.0004 0.00014 20

Optimization-based Value 0.0033 0.0001 0.00012 50

Unit m/s3/2 m/s2 m/s5/2 s
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TABLE 3: Symbols used in the discussion of Allan Variance (AV).

Symbol Meaning
T Sample period for u(t)
L Total number of samples in the data set
LT Duration of the data set
τ Cluster or averaging duration
n Number of sample periods per cluster: τ = nT
N Number of clusters of duration τ used in (94)
m Number of values of σ2

u(τ : 2, τ) averaged in (97)
tk Start time of the k-th averaging interval, see (95)
Ts Time interval between consecutive averaging intervals
ūk Average of u(t) for t ∈ [tk, tk + τ ], see (95)
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TABLE 4: Main Allan Variance (AV) estimation formulae

AV Stated Selected
Estimate Benefits References

Non-Overlapping
— [49], [38],with Dead- [93], [94], [95], [96], [97]Time (NODT)

Non-Overlapping Simpler to compute [50], [51], [52]
(NO) (compared to NODT) [98], [94], [99]

Gives high

Overlapping data utilization/

(O) better confidence [88], [100], [101], [102]
in the estimate

(compared to NO)

Able to better
Modified distinguish some [87], [102]

(M) types of noise [103]
(compared to O)

Not-Fully- More computational
Overlapping efficient [54]

(NFO) (compared to O)
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Figure 1: Allan Standard Deviation (ASD) plots for three Crossbow µNav gyros [36], [45], with
straight line approximations for dominant errors. Sampling interval is T = 0.02 s.
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Figure 2: Accelerometer Allan Standard Deviation (ASD) plot for the NV IMU-1000 from Nav
Technology, with straight line approximations for dominant errors. Sampling interval is T = 0.01
s.
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Figure 3: Typical gyro Allan Standard Deviation (ASD) shape corresponding to (17)-(19).
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Figure 4: Angular/Velocity random walk Allan Standard Deviation (ASD) plot. See (23).
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Figure 5: Rate/Acceleration random walk Allan Standard Deviation (ASD) plot. See (27).
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Figure 6: Bias instability Allan Standard Deviation (ASD) plot with f0 = 1. See (31).
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Figure 7: Gauss Markov Allan Standard Deviation (ASD) plot with qB =
√
SB TB. See (35).
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Figure 8: Allan Standard Deviation (ASD) from Figure 2 along with ASD plots for N, B, and
K.
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Figure 9: Allan Standard Deviation (ASD) plot for inertial measurement unit (IMU) data, model
defined by (42), and simulated data as described in the “ASD Verification of the State-Space
Model” section.
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Figure 10: Generic block diagram of a global navigation satellite system (GNSS)-aided inertial
navigation system (INS).
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Figure 11: Variables for a two-dimensional simplified inertial navigation system (INS) example.
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Figure 12: Relationship between T , τ , Ts, tk, and ūk for this example: τ = 5T and Ts = 7T ;
therefore, it has a deadtime of 2T .
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