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Abstract

Introduction—The infant gut microbiome is thought to play a key role in developing metabolic 

and immunologic pathways. Antibiotics have been shown to disrupt the human microbiome, 

but the impact they have on infants during this key window of development remains poorly 

understood. Through this study we further characterize the effect antibiotics have on the gut 

microbiome of infants by looking at metagenomic sequencing data over time.

Materials and Methods—Stool samples were collected on infants from a large tertiary care 

neonatal intensive care unit. After DNA extraction, metagenomics libraries were generated and 

sequenced. Taxonomic and functional analyses were then performed. Further directed specimen 

sequencing for fungal species was also performed.
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Results—A total of 51 stool samples from 25 infants were analyzed: 7 infants were on 

antibiotics during at least one of their collection time points. Antibiotics given at birth altered the 

microbiome (PERMANOVA R2= 0.044, p=0.002) but later courses did not (R2= 0.023, p= 0.114). 

Longitudinal samples collected while off antibiotics were more similar than those collected during 

a transition on or off antibiotics (mean Bray-Curtis distance 0.29 vs. 0.63, Wilcoxon p=0.06). 

Functional analysis revealed four microbial pathways that were disrupted by antibiotics given 

at-birth (p<0.1, folate synthesis, glycerolipid metabolism, fatty acid biosynthesis, and glycolysis). 

No functional changes associated with current antibiotic use were identified. In a limited sample 

set, we saw little evidence of fungal involvement in the overall infant microbiome.

Conclusion—Through this study we have further characterized the role antibiotics have in the 

development of the infant microbiome. Antibiotics given at birth were associated with alterations 

in the microbiome and had significant impact on the functional pathways involved in folate 

synthesis and multiple metabolic pathways. Later courses of antibiotics led to stochastic dysbiosis 

and a significant decrease in Escherichia coli. Further characterization of the infant mycobiome is 

still needed.
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Introduction

The infant gut microbiome is thought to play a key role in developing and establishing 

metabolic and immunologic pathways [1–5]. Multiple perinatal factors and interventions 

have now been identified to alter the infant gut microbiome, but much of this process 

remains poorly understood [6–10]. Some of these factors include mode of delivery, 

prematurity, and feeding all of which have been associated with long-term effects [7,11,12]. 

These factors represent exposures and ongoing introduction of exogenous microbes. 

Antibiotics have a more direct and deleterious effect on host bacterial populations leading to 

a dysbiosis of the infant microbiome.

Because infants are at high risk for infections, they are frequently exposed to antibiotics. 

Even before infants are born, maternal antibiotic usage has been associated with alterations 

in the infant microbiome [13,14]. Antibiotics given in the perinatal period have been 

further associated with alterations of the infant’s microbiome, especially in preterm infants 

[8,11,15–17]. Antibiotic use has further been associated with increased risk of yeast 

infections in neonates [18]. Our objective was to further characterize changes in the 

infants’ developing bacterial communities, functional shifts created by these changes, and 

changes in the fungal microbiome, when antibiotics were given at birth or later on during 

hospitalization. In order to accomplish this, we performed shotgun metagenomic sequencing 

on stool from a cohort of infants followed over time in a tertiary care neonatal intensive care 

unit (NICU).
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Materials and Methods

Study Population

All neonates admitted to the Children’s Hospital Los Angeles (CHLA) NICU between 

October 2014 and May 2015 were eligible for enrollment. There were no specific exclusion 

criteria. Families were approached and consented at, or near, the time of admission. The 

CHLA institutional review board approved this study.

Clinical Data and Sample Collection

Once enrolled in the study, sequential stool samples were collected from diapers 

approximately 1 week apart and immediately placed in a −20 degrees Celsius freezer. 

They were then aliquoted to freezer vials, labeled, and frozen at −80 degrees Celsius. 

Relevant clinical data was abstracted from the electronic medical record for each collection 

time point. Study data were filed and managed using Research Electronic Data Capture 

(REDCap) electronic data capture tools hosted at the University of Southern California [19]. 

Current antibiotic use was defined as antibiotics being given on the same day as sample 

collection. Feeding at birth was defined as the primary nutrition during the first 48 hours 

of life. Antibiotics given at birth was defined as antibiotics given within the first 48 hours 

of life. Ampicillin and gentamicin were the most frequent antibiotics administered, typically 

for short prophylactic courses. No more than 4 sample/time points were incorporated into 

analysis per infant.

DNA Extraction

DNA was extracted from stool samples using a QIAcube workflow (Qiagen, Hilden, 

Germany). The frozen stool samples were homogenized in PSP (Stratec, Berlin, Germany) 

stool stabilization buffer first. Then we used the AllPrep DNA/RNA Mini Kit (Qiagen, 

Hilden, Germany) for extraction following the manufacture’s protocol, substituting Lysing 

Matrix E tubes (MP Biomedicals, Burlingame, California, USA) for the provided beads. 

Extracted DNA was stored in elution buffer at −80 degrees Celsius [20].

Shotgun Metagenomics

Libraries were generated using the Nextera XT DNA Library Preparation Kit (Illumina) 

and sequenced on a Nextseq 500 platform (Illumina) using 2×150bp chemistry. A 

total of 64 fecal samples from 29 subjects were sequenced to an average depth of 

2,249,434 ± 1,429,818 read pairs per sample. Adapter trimming and quality filtering 

were performed using trim galore, host sequences were removed using kneadData, and 

taxonomic classification was performed with Kraken (v0.15-beta). A minimum cutoff of 

81,513 classified reads was identified as indicative of a robust microbial community and 

samples with fewer than this number were removed prior to further analysis. A total of 51 

samples from 25 subjects were retained. Diversity and ordination analyses were performed 

using the ‘phyloseq’ R package (version 1.20.0). Linear mixed effects models (‘lmerTest’ R 

package version 2.0–33) were used to identify specific bacterial taxa associated with current 

and at-birth antibiotics exposure, with a model specification of taxa_relative_abundance ~ 

on_antibiotics + antibiotics_at_birth + age_in_days + (1 | subject_id). To increase robustness 
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and limit the testing burden, only taxa with a relative abundance greater than 1% in at least 

10% of the samples were tested. All p-values were corrected for multiple testing using the 

Benjamini-Hochberg FDR method and an adjusted p-value < 0.1 was considered significant. 

Functional profiling was performed using HUMAnN2, and FishTaco (version 1.1.1) was 

used to identify taxonomic drivers of functional shifts in the infant gut microbiome [21].

Mycobiome profiling

Mycobiome profiling was performed using a previously published protocol [22] for 

amplification of the fungal ITS region of the 18S gene [23]. These amplicons were 

sequenced on a MiSeq desktop sequencer (Illumina, San Diego, California, USA) using 

300 cycle v2 chemistry. A custom protocol yielding 250 bases on the reverse read was used 

for the purposes of other libraries in the pool. Negative and positive mock controls were run 

in parallel. Reverse reads were de-multiplexed and split into individual files using QIIME 

1.9.1 [24]. Divisive amplicon denoising algorithm version 2 (DADA2) was used for error 

correction, exact sequence inference, and chimera removal [25]. All statistical analyses, 

including calculation of alpha and beta diversity metrics and taxonomic compositions, were 

performed using the ‘phyloseq’ package in the R software environment (version 3.3.2) 

[26]. Association testing between fungal abundances (filtered for at least 3 samples with 

at least 1% relative abundance) and clinical covariates was performed using zero-inflated 

negative binomial regression or standard negative binomial regression as appropriate (‘pscl’ 

R package). All p-values were adjusted for multiple comparisons using the Benjamini­

Hochberg method and significance was assessed at q=0.1.

Results

Study demographics

A total of 51 stool samples from 25 infants met all criteria for analysis (Table 1). Of these, 

7 infants were on antibiotics during at least one of their collection time points and 18 of the 

infants were not on antibiotics during any of the collections. In comparing these two groups, 

we saw no differences in other factors known to affect microbiome such as delivery mode, 

intrapartum maternal antibiotics, gestational age, and age at time of sampling.

Antibiotic exposure contributes to differences in the infant gut microbiome

Overall, we observed several distinct bacterial profiles including Bacteroides/
Bifidobacterium-dominant, Escherichia-dominant, and Klebsiella-dominant phylotypes (Fig. 

1a). Principal coordinates analysis (PCoA) using Bray-Curtis distances revealed a similar 

separation of sample compositions associated with specific bacterial taxa (Fig. 1b). 

Permutational multivariate analysis of variance (PERMANOVA) identified sex, age, 

intrapartum antibiotics, gestational age at time of delivery, mode of delivery, birth weight, 

antibiotics given at birth, feeding at birth, and gastroschisis as small, but statistically 

significant independent drivers of variation (Supp. Table 1). Surprisingly, the current use of 

antibiotics was not a significant independent contributor to variation (R2= 0.023, p= 0.114). 

Although the use of antibiotics did not drive directed changes in the infant gut microbiome, 

it did appear to decrease stability of the infant gut microbiome (e.g. longer lines connecting 

red points on Fig 1b). Indeed, we observed a mean Bray-Curtis distance of 0.626 versus 
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0.289 between samples encompassing a transition either on or off antibiotics versus samples 

without a transition (Wilcoxon p=0.062, Fig. 1c). This suggests stochastic instability of the 

gut microbiome associated with current exposure to antibiotics.

To identify specific bacterial taxa impacted by at-birth and current antibiotics exposure, 

we utilized linear mixed effects models (Fig. 2). Intriguingly, both Bifidobacterium breve 
and Escherichia coli trended toward being decreased in samples with at-birth antibiotics 

exposure (p=0.18), although the difference was not statistically significant after multiple 

testing correction. The current use of antibiotics was associated with a significant decrease 

in the proportion of Escherichia coli (p=0.03).

At-birth antibiotic exposure alters the functional gut microbiome

Eighteen of the 25 subjects received a course of antibiotics at birth. Given the relatively 

minimal differences in bacterial composition observed in association with antibiotics at time 

of sampling, we wondered if antibiotic exposure at birth might instead drive large-scale 

differences in microbially-encoded function irrespective of other exposures. To this end, 

we utilized a novel computational framework (FishTaco) to identify taxonomic drivers 

of functional shifts in the infant gut microbiome associated with at-birth and current 

antibiotics [21]. Four microbial pathways were significantly disrupted by antibiotics given 

at-birth (p<0.1, Fig. 3). Increased folate biosynthesis was primarily driven by decreases in 

Bifidobacterium breve and Escherichia coli when antibiotics were given at birth. In contrast, 

increases in Klebsiella species and Bacteroides species drove increases in glycerolipid 

metabolism, fatty acid biosynthesis, and glycolysis. Decreases in Bifidobacterium breve 
were further associated with increases in these metabolic pathways. Functional analysis 

revealed no significant changes associated with current antibiotics use, again demonstrating 

the stochastic effect of this intervention.

Minimal impact of antibiotics on the mycobiome

Although we had hypothesized that antibiotic use would impact the fungal microbiome 

based on prior murine studies [27,28], our study found very little evidence of fungal 

colonization in the overall microbiome in these infants (Supp. Fig. 1). Fungal sequences 

made up less than 1% of our total shotgun sequences and only 3 samples out of 51 had 

identifiable fungal species. To further evaluate this, we did direct fungal sequencing using 

the ITS region of fungal ribosomal DNA. Again, we found few fungal sequences and were 

therefore unable to do further statistical analysis. That being said, the 3 subjects that had 

fungal sequences were associated with a lack of bacterial diversity (Supp. Fig. 1). Two of 

the samples were primarily Enterococcus and Candida species with the third being primarily 

Staphylococcus and Aspergillus species.

Discussion

Antibiotics have been shown to disrupt the human microbiome, but the impact they have on 

infants remains poorly understood. Studies have now shown that early antibiotic exposure 

may be associated with diseases such as asthma and obesity, but the mechanisms have 

not been fully elucidated [29–32]. Through this study we further characterize the effect 
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antibiotics have on the gut microbiome of infants in the NICU by looking at metagenomic 

sequencing data over time.

Even when accounting for age, gestational age, mode of delivery, and feeding, we 

demonstrate that antibiotics given at birth significantly affected the overall bacterial 

microbiome compared to those infants who did not receive antibiotics. This is corroborated 

by many recent studies looking at the microbiome in infants receiving early courses of 

antibiotics [11,16,33–35]. These studies demonstrate a relative decrease in species richness 

within the gut microbiome that persists even after the cessation of antibiotics [11,16,35]. The 

first years of life is thought to be critical in the establishment of a healthy microbiome. We 

show that even disruptions due to antibiotics in the first days of life can lead to recognizable 

dysbiosis later on. Studies have demonstrated that these early courses of antibiotics can lead 

to the development of populations of bacteria carrying antibiotic resistance genes which may 

put the infants at increased risk for more difficult to treat infections [33,34]. Further clinical 

studies have showed increased mortality in infants on prolonged antibiotic courses at birth 

who are culture negative [36].

Functional analysis of the microbiome demonstrated changes in multiple pathways after 

antibiotics given at birth. Those significantly affected included folate synthesis, glycerolipid 

metabolism, fatty acid biosynthesis, and glycolysis. These changes were driven by 

Bifidobacterium breve, Escherichia coli, Klebsiella species, and Bacteroides species, all 

bacteria that are thought to be key components of the developing infant microbiome. In 

particular, we found further evidence that a small loss of Bifidobacterium drives large 

functional changes in the microbiome. Bifidobacterium species are the targets of probiotic 

interventions in newborns [37]. Although studies have not demonstrated significant long­

term changes in the microbiome due to probiotic supplementation, they have shown a 

difference in the metabolome reflecting the functional pathways of the bacteria themselves. 

Functional analysis tools such as FishTaco will continue to expand our knowledge of the 

functional microbiome [21].

In contrast to the changes we saw with antibiotics given at birth, we found that later 

antibiotic use did not appear to significantly change the microbiome in a directed fashion. 

Instead, we found that these courses of antibiotics led to disruptions in the gut microbiome 

that were more random. Instability and dysbiosis have separately been linked necrotizing 

enterocolitis [38,39]. It is thought that disruptions due to an antibiotic course may predispose 

infants to episodes of necrotizing enterocolitis and late onset sepsis. We did find a significant 

decrease in Escherichia coli populations in these later courses of antibiotics. This makes 

sense as the antibiotics used are frequently active against common pathogens such as 

Escherichia coli.

Beyond focusing on the bacteria, through this study we also attempted to identify the 

impact antibiotics have on the infant gut mycobiome. Infants in the NICU setting are at 

increased risk for invasive fungal disease [18]. Furthermore, they are frequently exposed 

to broad spectrum antibiotics which have been associated with candidiasis. Few descriptive 

studies of the human mycobiome exist [23] and only recently have any been published in 

neonates [40]. Murine and now human studies indicate that fungal communities change 
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significantly during development and demonstrate increases in fungal populations after 

courses of antibiotics [27,28,40]. Despite extensive efforts to identify the fungal signature 

within the stool samples from our cohort, we found few fungi. What we did find was not 

enough to identify any impact based on antibiotic use. That being said, anecdotally, we 

saw loss of bacterial diversity associated with a fungal signature. Two samples contained 

predominantly Enterococcus which has been shown in prior studies to inhibit the virulence 

of Candida species in animal models [41]. The importance of this finding is unclear and 

merits further investigation.

This study is limited by its small sample size. Larger studies with more subjects and more 

frequent stool collection are underway to further evaluate this critical period of development. 

Without a control group of vaginally delivered, full-term infants without antibiotic exposure 

makes this primarily an observational study. Much of the previous research looking at the 

effects of antibiotics were done in premature infants. The infants enrolled in our study 

were in general older by gestational age. Furthermore, these results reflect the population 

of a single tertiary care NICU that is not associated with a birthing center and may not be 

applicable to other centers. As a major surgical center, gastroschisis was somewhat overly 

represented in our enrolled subjects, though this was not by design and more a function of 

sampling at time of enrollment. As with most microbiome studies, we are further limited in 

how we interpret the data based on relative abundances and not absolute values.

Through this study we have further characterized the role antibiotics may have in the 

development of the infant microbiome. Antibiotics given at birth led to clear alterations in 

the gut microbiome that had significant impact on the functional pathways involved in folate 

synthesis, glycerolipid metabolism, fatty acid biosynthesis, and glycolysis. Later courses of 

antibiotics led to stochastic dysbiosis and a significant decrease in Escherichia coli. Further 

characterization of the infant mycobiome and how it is impacted by antibiotics is still 

needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Availability of data and materials- Sequence data has been deposited to the NCBI 

Sequence Read Archive under BioProject accession number PRJNA521878. All code and 

intermediate files to reproduce the analyses are available at https://github.com/fanli-gcb/

NICU_microbiome.
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Fig. 1. 
Effect of antibiotics exposure on the infant gut microbiome. (a) Genus-level composition 

for n=51 samples collected either during antibiotic treatment (red) or without current 

exposure (blue). Genera with a mean relative abundance less than 1% are grouped into 

‘Other’. (b) Principal coordinates analysis (PCoA) plot using Bray-Curtis distances with 

lines connecting samples from the same infant. Percentages in brackets indicate the percent 

variation explained by each axis. (c) Boxplot of Bray-Curtis distances between samples 

encompassing a transition either on or off antibiotics versus those without a transition.
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Fig. 2. 
Effect of antibiotics on bacterial relative abundances. Forest plot of results from linear mixed 

effects modeling of species-level relative abundances as a function of antibiotics exposure at 

birth (a) or current antibiotics exposure (b). Statistically significant effects are shown in blue 

(decreased) and error bars denote 95% confidence intervals.
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Fig. 3. 
Taxonomic drivers of functional shifts in infants who were exposed to antibiotics at birth 

(p<0.1). Overall enrichment of each KEGG pathway is denoted by an open diamond (◊). 

Taxa attenuating each functional shift are shown to the left of the vertical line, and taxa 

driving each functional shift are shown to the right of the vertical line. For each KEGG 

pathway, taxa shown along the top are increased in infants with at-birth antibiotics exposure 

and taxa shown along the bottom are decreased in infants with at-birth antibiotic exposure.
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Table 1.

Demographic characteristics comparing infants in a tertiary care neonatal intensive care unit who received no 

antibiotics during sample collection compared to 7 infants on antibiotics during sample collection.

No antibiotics during sample 
collection

On antibiotics during sample 
collection

p-value

Number of subjects 18 7

Number of samples 34 17

Sex

 male 10 (55.6%) 5 (71.4%) 0.66

 female 8 (44.4%) 2 (28.6%)

Gestational age in weeks, mean [range] 37.4 [30.4–40.4] 35.6 [29.7–39.9] 0.29

Gestational age <34 weeks 3 (17%) 1 (14%) 0.88

Intrapartum antibiotics 6 (33.3%) 2 (28.6%) 1

Delivery Mode

  Vaginal 5 (27.8%) 3 (42.9%) 0.64

  C-section 13 (72.2%) 4 (57.1%)

Birth weight, mean [range] 2.81 [1.50–4.31] 2.27 [1.20–3.25] 0.30

Antibiotics given at birth 12 (66.7%) 6 (85.7%) 0.63

Gastroschisis 5 (27.8%) 2 (28.6%) 1

Infant age at sample collection in days, mean 
[range]

36.0 [6–122] 24.3 [6–82] 0.13
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