UC Irvine
ICS Technical Reports

Title

The Overseer: A Powerful Communication Attribute for Debugging and Security in Thin-
Wire Connected Control Structures

Permalink
https://escholarship.org/uc/item/1vd1s695
Authors

Farber, David J.
Pickens, John R.

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1vd1s695
https://escholarship.org
http://www.cdlib.org/

Thé Overseer
A Powerful Communications Attribute - -~
féor Debugging and Security in Thin-Wire
Connected Cohtrol Structures

by
David J. Farber
John R. Pickens

Techinal Report # 75

Notice: This Materia
may be protecteq

by Copyright aw
(Title 17 U.S.c)

NH

Thin ulre communications, othcruise knsua as ‘-
eerial message sending, encourages modularity
in ‘distributed program design and makes
visible the interprocess communications
streams to an unprecedented degree. In this
paper, a pouer ful process monitoring
capabillty, the overseer function, is
proposed to aid the program deveioper in
guaranteeing the dynamic correctness of his

The Overseer .o ’ distributed process mix, The top doun design

A Pouerful Comamunications Attribute for Debugging process is overvieucd nith the emphasis on
and Security in Thin-Wire Connected Control Structures . generating an analyzable mode! of the
by intra-module control structure. With

David J. Farber appropriate augmentation of interprocess

University of California at Irvine communications ‘'streams it is feasible to
Information and Computer Science Department endon the communications with a control
Irvine, CA 92664 sequence validation capability. The need for

Telephone (714) 833-6831 dynanic. changing process contexts is

and . discussed, -and the overseer is shoun to be

John R, Pickens capable of emulating this level of process

University of California at Santa Barbara behavior. Path verification (for protection)
Dept. of Elec. Engineering and Computer Science .and single channel monitoring (for dynamic
Santa Barbara, CA 93186 probing) are tuo final attributes which wmay

usefully be part of the overseer function.
Overal! the overseer is only a part of a
sysiematized process for distributed system
design, but promises great potential in
inproving the visibility of dynamic process
behavior in distributed systeas.

designers and at the sams time increase
the reliability and understandability of
the resultant systenms, In particular,
they have allowed us to have a finished
design for a system prior to the coding
and debugging of the system. In addition
. they have enabled us to abstract from the
deslgn the control and data structures of
the resultant system. «

This paper introduces a program for the
investigation of system design and examines

In depth one aspect of this program -- the
.) Overseer. . He do not intend to create the
BALKGROUND i impression that the ideas outlined on this
] : paper are easy or that resuits wuill be
Over the past several years , two major . forthcoming overnight. We do intend to
trends have caused us to re-examine the illustrate that the necessary theoretical and
organization of processors which exist in the anatytic tools are either nou available of
computer field. These trends are: can be developed uith reasonable additional
effort.
1. Harduare cost has shoun a marked © o IHEME

decrease and, therefore, justifies the :
incorporation of more and more complex ' Ue are attempting to create a3 tota!
functions into harduare. For example, it environment in wuhich we may conceptualize,
becomes feasible to place’ computation design, program, debug, .and then monitor the
where it is needed; this means systems that are to be implemented in
distributed computation. It is also more ~distributed, or thin-uire connected,
feasible to spend harduare to reduce the environments. The flavor of this total
coat’ of performing a total function design envirorment is best jllustrated by
“and/or to enhance the reliability, outlining a scenario that a system designer
security, and fail-safety of systems. would go through in the course of wuslng the

. . approach outlined in this proposal.
2. HModern programming ideas have penetrated

.the practical programming practice. When the designer starts his task, ha would
Top-doun, modular, loosely couplied be embedded in 2an online program design
process oriented decigns and production system similar to that proposed by Caine
oriented user centered program design - [Cai7S) wutiiizing a modified Program Design
tanguages are becoming more commonplace. Language (POL), Additional constructs aro
These design and program production . necessary to allow the control mechanisms
systems have enabled the field to needed by the “thin-uire” interprocess
increase grecatiy the productivity of communications used by distributed systems.’
—————————————— The distributed design POL , uhich we shall
This research has been supported by ARPA calt OPOL, is constructed so as to enhance
under a Netuork Security grant and by the NSF the intercommunication among humans uho
under the Oistributed Computer Systems C jointly develop the system design. Touard

Projact. this goal, tho OPOL allous a loose, ambiguque

semantice but does support and require the
statement of an. accurate, computer
analyzable, control structure. The ambiguous
semantics of DPDL encourages the type of open
communicatiofis betueen designers that has
been shoun to pay off in good and ecasily used
deslgn systems but also gives ugs the complete
Interpraocess leve! control structure uhich ue
need for the analysis of the resulting
systems.

At the completion of the design cycle, or
more realistically at various critical points
in the design process, the resulting design
is abstracted into a set of control graphs
[Pic75,Pic7B8), similar in concept, but not in

Iinterpretation, . to the Graph Mogel of.

Computation (Cer72,Gos71l) or the Petri net
[Hoi68,Hol63,Pat7d]}. We are primarily
Interested in properties of the control graph
that relate to race conditions, deadlocks

and most importantly in the
control-recoverability. The tlatter term is
closely related to the intuitive notion of
system recoverability famifiar to all system
designers, the primary difference being that

the transitions are limited so as to yield
systems in legal states, i.e. the system
will not find itseif trapped in any of a set

of illegal states. Since wue have accepted
the notion of ambiguous semantics for
productivity sake, we do not knou whether or
not the system being developed is correct in
the sense that it uill yield correct ansuers
in its executing environment.

Historically in formal analyses of systems
the combinatorial complexity precludes non
trivial applications. MHe note however that
in the distributed environment that we
advocate, that the units of computation are
intrinsically modular and hierarchical in
nature, Thus with the nature of the systens
that are likely to be implemented on the
distributed architectures, ue expect to be
able to successfully analyze the resuiting
graphs piecemeal and recursively toward
higher and higher structures. A node of some

graph representing a given leve! of detailed
design can itself be a complex graph, and if
that lower level graph has no undesirable
traits (such as deadiocks) and is
recoverable, then the node on the higher
levet graph that represents the lower level
unit is an acceptable node - nith respect to
the analysis that we intend to perform on it
[Pos74).

Hith the design graph in hand, the designer
may now analyze for features that can be
verified. If the design is non recoverable
then the analysis will also shou hou to
modify the design so as to make it
recoverable. Uith the verified design in
hand, the designer is able to “package” the

design for efficient performance on a

specified set of harduare. An analysis of
the program graph allows packaging of the
moduies of the system to minimize certain
cost functions, 1like communications, while
preserving certain per formance and
reliability tevels. The work by Foodym
{Foo75] serves as an realistic example of the
type of packaging analysis. In certaln
cases, the cdesigner may even modify the
eyatam parameters to .see tho offect on the
reaul ting system.

" Uith the packaged system at our disposal ue

can nou examine the possibilities on the
debugging and run time monitering of the
designed system,

PROPOSED_APPROACH

Given the above stated observations ~ on
cost/function and progran ® design
methodolagies, wue find it increasingly

feasible to propose a machine architecture
which executes a modular, distributed message
oriented environment. An overvieu of this
processor/programming environment is as
follous:

1, We begin with a design for an
application system that is to run on our
message oriented processor system. A
Distributed Program Design Language
(DPDOL} is used to express all intermodule
control and data dependencies, as well as
the internal module functions. :

2. UWe next derive from the formal control
structure embedded in the DPOL a program
graph (Pic76) which describes the
possible control flow and synchronization
requirements for the application system

~{APS). The graph nodes represent blocks
of code within modules as derived from
our top doun design, and the arcs
represent the paths on which valid
Inter-module messages may flow. This
structure assumes that ue have
constrained the design in such a manncr
that all communication between modules on
the APS program net is via the explicit
flou of messages =~ i,e. thin~uire
communications.

3. From this Program Graph (PG) . ue next
derive a dual graph, the Message Flou
Graph (MFG) {Pic78), in uhich message
flow is represented by vertices rather
than arcs. The message flow graph (MFG)
is more convenient and concise than the
Program Graph for use in moni toring
control flou.

Given this flon plus the observation that
each module in a given program graph may in
and of itself be @ program graph (properly
imbedded and subject to the condition that it
Is activated by the arrival of messages in
the higher teve!l program graph and terminates
by sending messages out In that higher level
graph) then it is possible to define the
complete aliowable flouw of the application
system (APS) as it runs. One of the goals of
the computer organization that we propose and
the purpose of this paper, is to use thia
program graph by the -communications system to
oversee the actual control fiou, or
equivalently the message flow, of the
operating APS.

Given this overscer function, the ciain us
make s that it is possible to insure a set
of deslrable attributes about the APS
performance, viz:

23

1. HMessages not orniginatad by legal nodos
of the APS program nel can not enter the
program net. This is a statement about
the security of the architecture
vis-a-vis intrusion from non authorized
users {or programs).

2. 1f the &PS arrives al a "hung-up" state,
the overseer uill take notice and "abort"
the APS.

3. If the nodes of the APS program net take
too long to function, the overseer will
take note and initiate proper error
recovery procedures,

4. Ipadvertent attempts to move message to
nodes that have no explicit flou path are
detected and forbidden. This occurrence
indicates system malfunction, or probably
the implementers implemented a system
with a structure different from the one
which the design (in DPOL) claimed was to
be implemented.

5. lInvalid sequential/synchronous behavior
utll be detected.

IHE OVERSEER AS A COMMUNICATIONS ATTRIBUTE

1 Introduction

He nou discuss the part of the interprocesa
communications . system wuwhich uwe call' the
Overseer. It contains the following

capabilities with respect to distributed
control structures:

o Control-Sequence Yerification (CSY),

o Path Yerification (PV),

0 Single Channe! Monitoring (SCH).
2-Overseer Operating Environment

The Overseer exists in a variety of operating

environments. Process management, naming
conventions, interprocess communications
conventions, “and communications system

structures vary uidely from system to system
and even sometimes within a particular mix of
distributed programs. Nevertheless, in order
to discuss overseer issues intelligentiy in a
way relevant to actual implementations, we
define the terminology and operating
environments around uhich we frame our
remarks.,

An important design goal for the Overseer Is
that it be able to gperate correctlu in an
environment pf wvulnerable machines. The
controt sequence and path verification
techniques should be designed with this
environmental constraint in mind. Steps
should be taken to make the Overseer
invulnerable and failsafe, Process
Initiation and machine initiation procedures
should operate correctly under the assumptlion
that host machines may misconstrue or even
falsify requiremerits and capabilities. In
short, *the only relliable component of a
diatributoed programming environmont neod be
the overoeeer itseif [Bai75a,Bai75b).

2.1 Revien c;f Odr.Program Oesign Problem

Although the design and developwen! process
has been discussed previously ue rephrase it
here to give a better perspective to the
operation of the overseer, The problem is as
fol lows:

Given: A designer has availabie one or more
nachines, With zero, one or more processes
per machine and zero, one or more
pseudo-processes per process (Section 2.2},
A standardized . communications system,
embellished uith the overseer function, is to
be used for all interprocess communications

(thin-uire communications).

Do: Design and implement a distributed
program composed of one or more processes
residing on one or more machines,
interconnected via thin-uire communications,
and exhibiting an arbitrary degree of
concurrency and interprocess synchronization, -

In solving this problem it is necessary to
design , implement , debug , and validate the
controf structure .

2.2 The Process Concept

The notion - of process evokes several
different images and interpretations., For
example, In normal usage in describing
operating systems, "process" oflen refers to
a body of code, such as the 1/0 Handler
"process"”, In discussing the operation of
the task scheduler, houever, ‘“process” ‘may
connote a unique context or state space. He
favor ths latter Interpretation.

ﬂultlprogramming refers to the capability of
processes to execute in ‘parallel or to be
scheduled independently of each other.
Transfer of control betueen processes is
normally handled by the operating system and

may be synchronous -~ i.e. processes run
until they explicitely give up control- or
asynchronous = i.e. processes lose control

through rescheduling done in conjunction with
interrupts.

In many envireonments, either the high cost
of process contexts [Lau75} or the logical
structure of interprocess communications
(DC0S74) dictates the creation of
psecudo-~processes. In such situations - ue
often find one or more modules which appear .
as normal processes to their operating

system(s), but, internally, each module
multiplexes ane or more pseudo-process
contexts by varying pointers ‘to
pseudo-context data blocks. Each mocdule
handles the scheduling, creation and deletion
of pseudo-processes within its domain. For

our purposes, He may include pseudo-processes
in the notion of process, -realizing that
there is a one-to-one correspondence betuween
processes and overscer control graphs.

2,3 Program Modules

A distributed program is - composed logically

of modules. A module has the following
atiributes: .

o Modules correspond to a fixed body of.
code.

o HModules contain onc or more entry points ~
or functions,

o Associated uith each module are one or
more process or psecudo-process context
instantiotions (section 2.2).

o Associated uith each context
instantiation is a unique Program Graph.

2.4 Communications Conventions

As stated earlier, we assume a thin-uire
communications frameuork. In addition, we
assume that the communications system may be
isolated functionally from the cooperating
processes. Two representative communications
technologies wuhich ne use to illustrate our
overseer organization are ARPANET (ARPA) -~
line suitched - and DCS [DCOS74]) - message
suitched, DCS has the additional property
that addressing is directly in terms of
process name and, since only one path per
process pair is allowed, a given pair of
communicating pseudo-process conversations
must be multiplexed onto 2 single path.

The overseer’s operation is closeiy tled to
that of the communications system. The
overseer must have control over message flou
in and out of processes. The overseer's
implementation can be as distributed as the
communications .system uwhich it oversees, A
centralized overseer may be acceptable in a
star- or ring-netuork, but may overload
communications in a distributed network, such
as ARPANET, '

The overseer may impose other requirements
on the communications system, such as
maintaining a distributed data base for large
controt structures, In the interest of
brevity, we assume that these and other
problems are solvable and, therefore, we
concentrate on the logical requirements
necessary for the tractabliity of the
overseer functions.

3 Control Sequence Verification
3.1 Definition of Problem

In control sequence verification the overseer

validates the control flou and
synchronization requirements for each defined
process. The verification is limited, by

definition of the Program Graph, to that
level of control expressible by the message

- flow. He are not interested in the detailed

internal control flow within each process.

Messages . which represent invalid control
sequences are prevented from delivery to the
destination process. Such messages represent
control-faults and are handled either by an
error code in the delivery status, or by
discardment and causing a timeout fauit.

3.2 Control Graph Partitioning

Each process In a distributed environment

‘must have a unique and logically separate

contral grapbh within the Overseer - note that
this does not state hou the overseer
implements unique instances of graphs, but
rather it states what logically must exist.
Even in a tightly coupied distributed

processes, where each asynchronous process
maintains the same vieu of the total
operating control structure, separate control
graphs are maintained by the overscer, one
per each actual context. The overseer
guarantees valid control behavior of each
local control graph, thereby guaranteeing
valld control behavior of the overall
distributed process

The overseer partitions the total control
graph such that the message flouw in and out
of each logical process is represented by a
partial control graph local to that process.
If, for example, there are N operating
contexts in a single distributed process,
then the overal!l distributed control graph is
partitioned into N partial control graphs
which have a one-to-one correspondence with
the N operating contexts. A point of
simplification is that each partial control
graph need maintain only as much structure as
is necessary to represent the local message
flow. :

In numerous cases a process, or process mix,
is designed independently of the external
control environment of which it is to be a
part. This is not an unfamiliar phenomenon,
as we often encounter such organizations as
subroutines -or operating system calls in
monoprocessor systems, and as server
processes [ARPA,Cro72)] in netuork systems.
Such organizations are to be expected in
modular dasign methodologies. .
Control structures enforced by modul ar,
general, service processes are-usually more
general than actually altowed by particular
control environments. For example, a file
handler may allou reads and urites to occur
in any order on a given file, but a given
caller on the file handler may require reads
and wurites to alternate.

Now that we have identified both the total
control graph and the process of modular ~
design, we may discuss tuo approaches towerd
constructing partial control graphs, In the
first, the entire control structure of a
given distributed program is dellneated. In
this envirorment the individual process
contexts are tightly bound and, most fikely,
are designed with detailed knouledge of each
others’ operations. We have, in this
instance, the canonical form of the control
graph as it is to be seen by the Overseer.
The task of partitioning such a -graph is
simply to isolate the subsets of arcs and
vertices local to each real process context,
Graphs partitioned in this manper lend
themselves to a structural based addressing
scheme (section 3.4), However, this method
suffers in environments uhich change
dynamically or wuhich consist of general
service modules which may be integrated into
many particular control structures. :

In the second approach the partial control
graphs of general modules are designed
Independently. The overall control graph for
a particular program is partitioned into
Independent iy designed partial control
graphs, This approach supports modular
design techniques, but allous non-canonical
forms of program graphs, wuwhich in turn
dloallous atructural based addressing schemes
(Baction 3.4}, ' :

o

of every process or pscudo-process within its
domaln, Given this fact, and the above
delineation of possible control graph
operations, we are faced with the following
questionss

o How visible is the overseer operation to
communicating processes?

o Hou is each graph structure wads knoun
to the overseer?

o Hou is each unique control graph context
created and destroyed?

o How is the correspondence made betueen
messages and graph transitions?

Some aspects of these problems depend upon
the particular operating system and
communications system organization. Specific
data structures and the details of module
initiation/termination, for example, are
outside the scope of this research,
Nevertheless, we make several comments on
tradeoffs that exist in most environments

The Overseer appears to incur the most
processing overhead if it is entirely

invisible to communicating processes. In.

this kind of Implementation the Overseer must
nat only detect token flow within individual
control graphs, but must also creale and
delete emulated contexts based upon the
message flow. Automatic graph restructuring
may be required, as uhen certain control

.branches are disalloued (see discussion of

graph restructuring in section 3.7).

At the other extrene, minimum Overseer
processing overhead is incurred uhen context
and structure changes are communicated
explicitefy to the Overseer. In this
implementation the Overseer maintains message
filters, uhich are directly reiated to
partial control graph paths, but are more
concisely represented, Houever, although
overseer processing is reduced, cPU
processing is increased. Qut-of-band

communications betueen overseer and process '

Is now required to update the message filter
data structure. The impact of this approach
on the programmer may be. minimized by
incorporating control structure updating into
the system programming fanguage, thus making
such overhead invisible to the programmer,
but a part of the processing nevertheless

3.4 Token and Arc ldentification

Given a Program graph for some distributed

process structure, and its transformed
Message Flow Graph, our problem is to define
the mechanism whereby the overseeer

identifies token flou. Here e explore
out-of-band message headers - [lessage &rc 10,
or MAIDs - as a possible sofution to the
probiem. As suggested previously, our
comments are framed in the ARPA and DCS
environments, but may be easily extendod into
other environments,

There are several design goals for the ideal
overseer. First, the overseer should be able
to uniquely and unambiguousiy ldentify each
and every arc over which tokens flow,
Second, the overhead incurred in marking

‘mossages for recognition should be minimal.

Third, the graph addressing scheme should be
amenable to dynamic binding, such a8 is
required for a general service module.

Not all of these goals are compatible.
There is a tradeoff, for example, betueen the
level of detail visible to the overseer and
the recoultant extra message overhead,

Four schemes for out-of-band message arc 10
fields, HMAIDs, are presented below, uith
commentis on their strengths and weaknesses.
Section 3.5 discusses the ambiguities which
must exist in any communicaltions system based
overseer.

Recall "that modularly designed Program

Graphs may be partitioned according to their
implemented process structure. Each

partition is cowmposed of an arbitrary control
graph structure and has an arbitrary number
of message arcs crossing its boundary. The
derived MFG has similar partitioning except,

that instead of message arcs crossing
partition boundaries, message vertices are.
replicated on partitions with common

boundaries {section 3.2).

Given that there is a one-to-one
correspondence betueen process context and
graph context, and that message arcs on the
PG connect pairs of processes, ue conclude
that process name is an important component
of arc identification. Each arc is
identified, partially, by the pair of
processes to which it is connected. [f ue
consider the direction of message flow and
the porticipating process names we have, in
fact, a very coarse arc identification
echeme. This scheme is precise, houever,
whenever there is only one message and/or
response betueen any pair of processes, Our
flrst attempt is: -

MAID(L) s1= < P(i) ==> P(j) >,

where P(1) and P{j) are process, or
pscudo-process, names.,

To refine our MAID uwe recognize that,
formally, an arc on the PG is identified by
its endpoints. For bound graphs -all arcs
connected- we may augment our HMAID with
structural information. If each vertex in a
PG partition is labeled, then ue generate the
follouing MAID:

MAIDI(2) ::= < Pli)}.M -—> P(j).N >,

nhere PLli) and P(j) are the communicating
processes, and M and N are vertex labels.
Using this scheme we have unique recognition
of all message arcs, but we are restricted to
completely bound program graphs

Our next step is to recognize that we may
assoclate a functional name with each arc.
Our MAID nou becomes:

F .
MAID(3) 1:m < P{i) =—=> P(]) >,

where F represents the functional identifier.
Using this scheme we allou dynamic binding of
modular, non-canonical graphs, but stili have
ambiguity for arcs wWith the same function
name,

In our final attempt we combine the
functional and structural MAlUs and generate
the following HAID:

F .
MAIB(4) 23« < Pi).M -==> P{j).N >,

uhere It and N are vertex labels, and F ie the
arc function. This scheme combines the
advantages of structural and functional MAIDs
by allouing dynamically bound graphs to
achleve complete visibility and uniqueness,

For a definable subclass of possible program
graphs, each MAID can distinguish all message
arcs. Under particular operating conditions
or design restrictions it may be satisfactory
to adopt a less precise MAID for some or all
of the process pairings.

Each of the MAID fields serves a. different
role - in the overseer recognition process.
P(1) and Plj) identify the source and
destination PG partitions, respectively. As
stated previously (section 2.2), P(i} and
P(j) may be physical processes or may each be
subdivided into pseudo processes. P(i) and
Ptj) partially identify the ends of a PG arc
{MFG vertex).

. The function field ‘serves to “unbind" the

structures of PG partitions. UWhereas, in the
structure onily MAID, - MAID(2), each arc is
identified by a member of the set
<Plidom X Pljl.n >, in the function only
MAID, - NAID(3), each arc is identified by a3
member, possibly duplicate, of the set
<F (PG)Y XP(HY >, Without functional
tdentification, communicating processes are
tightly bound to a fixed structure.

The structural fields, when added to the
functional only MAID, provide clarification
by each overseer partition and do not pass
through the communications system. In the
act of receiving and sending messages, each
process notifies its local overseer of any
required structural clarification.
Structural clarification of the remote
process’ arc ends is assumed to be done by
remote overseer partitions.

Hith the exception of process names, each of
the fietds may ar may not be required for
message-arc identification. Figures 3.4.1-4
give examples of process mixes in which each
of the four proposed HAIDs affords
satisfactory detail. In Figure 3.4.1 a mix
of three processes which exchange at most one
message in each direction is described by
MAIDs of type 1. In Figure 3.4.2 a pair of
processes which exchange more than one
mgssage in each direction is described by

"structural only MAIDs of type 2. In figure

3.4.3 tuo processes, one of which is a
general server process, are described by
function only MAIDs of type 3. In Figure
3.4.4 a process mix which contains arcs with
dup!icate function descriptions Is described
by TMAIDs of type 4. In this last example we
demonstrate that structural clarlfication may
be eliminated where ambiguity does not occur
{arcs a,b, and c}.

3.5 Control Sequence Ambiguitios

For ecach type of MAID presented in the
previous section, certain ambigulties In
control sequence verification exist. He
revien the ambiguities here and then comment
on basic uncertainties that underlie all
MAIDs.

MAIDB(1) uses process name only. For any

pair of processes, multiple paths in the same -~

direction cannot be resolved. tA10(2) uses
process name and graph structure. This
scheme has no ambiguities as to path
recognition, but suffers from the
inadequacies of early binding. MAID(3) uses
process and function names. HMultiple paths
may be distinguished, but paths uhich .cail
upon the same function are not resolvable.
MAID (4), which combines process name,
function name, and structure, suffers no
uncertainty in path recognition. .

Underiying all these MAID formulations is
the desire to validate vertex initiations and
terminations on the program graph. But,
because of the delay betueen a process
posting a2 message and the overseer receiving
it, the time that messages arrive in the
overseer may not accurately reflect vertex
activation times. [f the overseer is to have
tight influence over verter activations and
terminations, processes must wait for
overseer approval before proceeding. ~ The
natural problem here, of course, is that

potential concurrency is reduced. Thus any
Implementation will probably choose to allou
processes to proceed beyond the points at
which messages are injected into the

communications system, with the understanding
that control faults may occur downstream in
the program execution.

3.6 Reentrancy

Other than identifying message arcs . the
overseer has the task of emulating the
changing process contexts. Yarious
conditions govern the creation, delation., and
restructuring of particular instances of
program graphs. He discuss in the next
sections several dunamic properties of
overseer partitioned program graphs. Program
graph reentrancy is discussed in more detaijl
in [(Pic76]. .

The desire for reentrancy dictates that
reentrant araphs be replicated for each
context Instantiation, Recursion and
reentrancy, from the point of view of control
structure' and overseer manipulation, are seen
as nearly identlical problems.

In any executing environment of thin-ulre
process structures conventions must be
eatablished for creating and deleting process

contexts. He assume an environment of
pre-existent modules, cach of uhich has zero
or more active contexts. Each neu
process-process conversation inplies

fogicaliy, that a unigue process context is
created, This mechanism takes different
forms in different environmants, but ths
basic operation is the same:-

@

P(i)<-[Request_Context (ARGUIMENTS }] -»P(})

3
P{1) <~ [ACKNOWLEDGE] - ->P{j)
'
P{i)<~lArbitrary_Hessage_Sequence) ->P(})
P(i}<-{Destroy_Context_P(j)] ->P{])

Context creation/deletion effects the binding
and unbinding of local and remote program
graph partitions. in the ARPANET the
operations are handled by the out-of-band ICP
and CLOSE protocols. In DCS, since multiple

. process-process conversations may be

multiplexed on single channels, the ?ontext
handling primitives are handled by in-band
protocals.

An example from the ARPANET is the file
handter service module (FTP]. Prior to
issuing any file commands the ICP protocol
{ICP) must be used to effect a3 unique process
context within the service module. When the
file transfer operations are complete,
matching CLOSE commands are used to sever the
communications [ink.

An example from OCS 1is the 1/0 Handler.
Hhenever the OPENFILE function is issued, a
unique process, denoted by the Logical File
Name -LFN- is created within the IOH. Ail
subsequent file commands are addressed by the
LFN or pseudo-process name, The CLOSEFILE
function causes the destruction of the [0OH
sub-process [0C0S74].

Consideration of reentrancy, the
Create/Oestroy functions, and the ARPA ICP
function leads into an interesting redesign
of the ARPA ICP. We now see in modular
function handiing, as in the case of the 0CS
1/0 Handler, that arguments may be required
before a vaiid context is created wuwithin a
called moduie. ICP, as it now stands,
creates the context first, and then waits for
the arguments., A modified ICP, which
conforms better to the dynamics of context
'management. passes arguments to the called
process before the opening of the normal send
and receive lines, and the creation of the
context, is allowed to proceed,

Pipeline, or GOTO, control structures may
also imply control graph reentrancy. In
these contro! structures, slightly different

context creation/deletion rules are implied. .

Consider, for example, a process P{i) which
desires to execute a GOTO operation -uijth
parameters- to another process P(j}. Once
the GOTO0 is complete, the contoxt
representing P(i) . is to disappear. This
operation is represented as follows:

P{i}<-[Request_Context (ARGUMENTS)1 ~>P(j)
t

P (1) <~ (ACKNOHLEDGE) : --P(})
P{iY<-{Arbitrary_Message_Sequence) ->P(j}
P{i}<-(Destroy_Context_P(i)) ->P(})

The difference betueen this and the previous
contreal transfer sequence is that the
caller's, rather than the cailee's, context
is deleted once the conversation is complete.
Currant examples of this type of control
transfer do. not exist on the ARPANET -or on

- DCS, but may be used in implementing parailel

pipeline operations.

The overscer must have knouledge of whatever
‘mechanism is used for binding local and
remote program graph partitions and contexts
Many implementations are possible, depending
on the operating system and communications
system structure, but context creation and
delotion must be integrated carefully into
the overseer. operation.

3.7 Graph Restructuring

Reentrancy and queuing Imply a form of
dynamic graph restructuring in which ali or
portions of a graph are replicated. However,
a more general graph restructuring may be
desired and may be able to remove certain
dynamic validation functions from the
processes themselves. - Host of the
applications of graph restructuring seem to
stem from the need to restrict availability
of functions uithin a8 module. Graph
restructuring may be thought of as a form of
capability based addressing, where caller's
capabilities are determined by the callee
Wei731.

Tuo examples uithin a file handler modufe
are, 1) a file opened for read-only access
must not allow any writes, and 2) a
sequential file must not allow any random
access requests. These access restrictions
may be most conveniently handied by enabling
and disabling paths on the local overseer's
graph partition. Hore complex restructuring
primitives are certainly possible, but don't
seem to be required for the controf
constructs presented in this paper,

4 Path Verification

Path verification adds another dimension to
the capability of the communicatons system
overseer. Defined simply, it is the abitity
of the overseer to approve, to deny, or to
revoke communications paths. The criteria
which governs path creation is determined by
the particular protection scheme in wuse.
Although this research does not delve into

protection, it is helpful to examine the
capability of the overseer uith respect to a
representative protection scheme,

Path verification is wuseful’ both in
proteciing a distributed process from |ts oun -’
misbehavior and in isolating non-cooperating
processes from each other. The latter is
also. knoun as encapsulation, and may be
applied either at the process levei or at the
machine level [Bai75b,Bis73]., -

The problems of protection in massaﬁe based
systems have been broached elseuhere
[Hei73,Bai75,Zel75), but, uith the exception
of Bailey, the potential role of the
communications system has not been
considered. As a result, the exfating
techniques which ignore the comnunications
component are weak within environments of
vulnerable host machines. Protection/path
verification belongs In the overseer, and
offera a significantly improved level of
correctness. :

The primitive operations usually assoclated”
Hith communications path manipulation are as
fol lowus:

" o Allocate a po;h
o DeAllocate a port.
o Send a message to a por}.
o Recelive a message from a port.

The dynamics _of port allocation and
deatlocation are very closely tied to the
dynamics of process creation and detetion
(section 3.8) - when a neu process is
Invoked, a new pair of ports is also created.
Thus it is only natural to apply other
concepts normally affiliated with processes
end process hierarchies,

One effort [Zel75) vieus ports as
capabilities and affiliates uith each process

a capability vector. Additional attributes
associated uijth each port/capability include:

6 Ounership Privileges

o Protection from modification by other
processes

o Abiiity to be passed to other
processes :

The overseer is the natural agent to effect
these port or\capabilitg based attributes.

Port passing is especially significant to
the overseer in terms of how jt effects the
binding of names in program graphs, A
desired {eature of any system of distributed
processes is to be able to pass a port name
through several levels of reentrant procedure
calls, The overseer should allou this
deferred binding and also be able to detect
tnvalid bindings in the louest |eve! of the
nested call sequence. To do this, capability
based conventions must exist for passing
ports betueen processes. He are not
concerned whether the convention be caller
inherits callee rights or visa versa, or uwhat
the exact nature of the rights associated
with ounership and non-ounership of
capabilities. We are concerned that port
names may be passed betueen processes, and
that the aoverseer knowingly participates in
the passing of port names

A simple example i!lustrates the wutility of
Path verification and its relation to control
sequence verification. Figure 4.1 shous a
system of three nested processes, uhere the
first process supplies the second process
Hith the name of the third process, To
accomplish the control structure addressing a
MAID of type 1 - process name only - is used.
Arguments are passed by arcs a and ¢, and
responses are passed by arcs b and d. Thres
columns are used to represent the message arc
10, information passed along the arc, and
contaxt action Implied by the passage of the
message on each arc. The overseer must have
thess threes items of information for each
partial control graph arc. Note that the
message which passes along arc a contding not
only arguments for the called subroutine but
also the capabllity for pracess PI(2) to
establish a path to P(3), Arc c's
representalion indicates that the port
defining the P(3) connection is deferred,
Uhen P(2) places a message on arc ‘¢ the
overseor must cdetermine that the capabliity
passed from P(1] to P(2) justifies the
creation of the P(2)-->P(3) path,

5 Single Channel Monitoring

A valuable attribute of the overscer s the
ability to allow dynamic monitoring of

. interprocess communications. Lacking this

facility, artificial maneuvers are required,
such as recompiling the affected wmodules in
order to address message deliveries to a
special monitoring module. The SCM feature

of the overseer simplifies the task of
monitoring the actual data streams and, in
addition, supports a fine grain af

selectivity on messages to be rerouted to the
monitor module. The implication of this last
feature is that the overhead of nessage
rerouting need be only minimal. ’

In order for Single Channel floni toring to.. be
effective, tuo fratures are required:

1. The Overseer must have the ability - to

accept message filters, i.e. data
structures wuwhich identify messages of
interest.

2. A special process must exist, responsive
to 3 human user, and capable of analyzing
and synthesizing communications s{reamsn

In the follouing sections ue examine each of
these requirements. Prior to our discussion,
however, e note that the existence of SCH
modules and Overseer filters potentially
Increases the vulnerability . of systems,

Given the capability to intercept and alter
data streams betueen processes, SCH modules
have the potential for wreaking havoc in a
mix of distributed processes. In cefensa of
using SCH modules it should be noted that
thls probiem is shared uith more classical
debugging toals, in that the setting of
breakpoints and the abiiity to alter both
instructions and data may wreak havoc on a

single processor system. The solution for
single processor systems, shich uses
addressing protection schemes to -limit a

developer's interference to his own name
space, has an analogue in message systems
through the application of capability based
addressing or path verification by the
overseer.

5.1 Properties of Message Filters N

Communicating processes should ideally never
need to know, other than by degraded
performance,” of the insertion of special
monitoring processas. Monitoring processes
should be able to be suitched in dynamically,
with no internal renaming required on the
part of the monitored processes. [f the
communications system has the capability to
reroute messages, based upon messaga filters,
and subject to the addressing restrictions
enforced by path verification, then the
dynamic readdressing required to aultch
monitoring medules in and " out may be
convenlently achieved.

At first glance, ignoring the overseer's
capability to monitor control structures, one
might design filters fo sinply capture the
entire message flow on channels {e.g. an
existent Ilne in line suitched communicalions
systems, or all messages betueen a given pair
of processes in message suitched systems).
While the ability to capture total
conversations is important, the ability to
factor out messages using a finer grain of
"selectivity is paramount, A filter should
not only be able to capture niessages betueen
@ given pair of processes on a given channel,
but nust also allou capture of single
messages uwhich represent fliow of primitive
control tokens,

Thus, to identify messages of interest,
filters must have several attributes. First,
filter selectivity must range from coarse
- e.g. atl messages on a given channel - to
fine - e.g. the message representing the
traversal of a specific control arc -.
HMessage sefectivity may be based on several
classifying factors, Process name,
subchannel arc, function, and graph structure
are identifying entities which, taken
individually or in logical combination,
contribute to the delineation of classes of
nessages of interest. In its most
sophisticated form, an overseer
implementation may allou set operations, such
as intersection or wunion on the classes of
messages identified by tha primitive
classification cperations.

Another attribute of filters is that they
must reflect the dynamic properties of
control structures. The messages which bind
and unbind contexts to control graphs should
be describable by the filter descriptors.
This facility may be effected either by
chaining filters - e.g. a filter to detect
the context transition followed by another to
identify messages of interest in that
context - or by special functions such as
"ENVIRONMENT OF“ for nested calls.

Each filter should have, as another of its
attributes, a name or Filter I0entifier (F10)
by uwhich its actions may be referenced. If,
for example, a monitoring process has
multiple filters outstanding, then captured
messages may be correlated to the particular
filter which captured thenm by including 3
named reference to the filter. Any given
monitoring process can correlate the actual
outstanding named filters with the code uhich
processes each of them by referral to the
FlID.

In more sophisticated systems, the overseer
may accept the definition of arbitrarily
farge sets of potentially actlve message

fifters. In such an environment, message
filters would first be defined - or
declared -~ by the monitoring process to the

overseer, and then be activated/deactivated
as needed through lou overhead enable/disable
commands.

Given the abillly of the overscer to store
multipte filters, another fealure is possible
Hhich allous chaining of filters. Chaining
ts the technique which allous the tracing of
context sensitive information flow., If, - for

example, all RETURNs from a module appear
alike, and it is desired to capiure only the
RETURN from a given sub function cald, then a

chain of tuo filters - one to delect the
CALL, folloued by one to detect the RETURN -
altlowus the correct selectivity, This
operation is effected through the NEXT_FILTER
field, uhich describes the next filter to be
invoked given a success{ul message match.

An additional fifter feature required for
tracing context sensitive information flou is
back referencing. Hhen, for example, a
filter is dependent upon context information
defined in a previous fitter, then some
mechanism is required to pass that context
information onward. Back referencing is one
Hay in uhich information detected by current
filters may be passed on to fulure filters.

The final attribute which message filters
require is a specification of the action to
be performed on detected messages. The most
useful actions appear to be the following:

o NULL ~- Do Nothing at atl, Host
likely to appear when using
the chained filters option. .

o LOG -~ Send a summary message to the
monitoring module. Data to be
summarized include a copy of
the HAID header and length
fialds. -

o COPY -~ Send an exact copy of the
message to the monitoring
module, but allow the original
message to proceed un!ouchgd._

o CAPTURE -- Reroute the complete message
to the monitoring module.

ACKNOWLEOGHENTS

The research proposed in the above document
Is based on developments during the past tuo
years. Some of the basic contributions to
the practica'l use of the theoretical methods
have been already acknouledged by references
in the paper. Additional credits should go
to Jon Postel for his thesis research in the
use of Graph Models for protocol analysis and
to Philip Merfin for his pioneering work on
the recoverability modet .

BEFERENCES

ARPA . ___, "ARPA Netuork Current Ne tiork
Protocols"”, ARPA Netitork Information
Center #7184, Stanford Research
Institute, Menio Park, CA (NIC).

Bai7%a Bai Iay.‘ D.J. "Network Structure
and Security”, Proceedings of ACM
IPC uorkshop, (March 23-24, 197S),

Bai75h

81873

Cai7s

.Cer72

Cro72

DCOS?74

Foo75
FTP

Gor73

Gos71

HoliE8

HoiBS

icp

Lau7g

Bailey.D.J. "Central Computing
Facility Planning Study: Technical
Overview," LA-5752, Los Alamos
Scientific Laboratory, Los Alamos,
New Hexice,” (March 1975)

Bisbey,R.L., G.J. Popek

“Encapsulation: An Approach to
Operating System Security,"
ISI/RR-73-17, University of Southern
California Infarmation Sciences
Institute, {October 1973).

Caine,S.H., E.K. Gordon “PDL - A
Too! for Softuare Design,” Proc.
National Computer Conference,
(May 1975).

Cerf,Y.G.

Muitiprocessors, Semaphores, and a

.Graph Model of Computation, Ph.D.

Dissertation, ENG-7223, Computer
Science Dept., U.C. Los Angetles,
(Aprit 1972).

Crocker,S.0., J.F. Heafner, R.M.
Netcatlfe, J.B. Postel :
"Function-Oriented Protocols for the
ARPA Computer Netuork," AFIPS
Conference Proceedings, Volume 43,
{(May 1972).

Rowe,L.A., E.J. Eartl, A.D. Foodym,
F.R. Heinrich "Distributed Computer
Operating System - Programmer
Guide,” U.C. Irvine Distributed
Computer Project, Technical Report,
(April 1974).

Foodym,A.D. Ph.D. Thesis in
preparation at U.C. Irvine.

_— "File Transfer Protocol," ARPA
NIC #17753.

Gord,E.P., N.D. Hopucod
“Nonhierarchical Process Structure
in a Decentralized Computing
Environment," Technical Report 32,
u.Cc. Irvine, Dept of ICS,

(June 1973).

Gostelow,K,P.

Elow of Control, Resgurce Allocation,
and the Proper Termipation of Proaran
8. Ph.0. Dissertation,
ENG-7179,Computer Science Dept.,

U.C. Los Angeles, (December 13971},

Holt,A.l., H. Saint, R.H.

Shapiro, and S. Warshall "Final
Report for the Information System -
Theory Project," Rome Air
Development Center, Applied Data
Research, Inc., Neu York, contract

AF 301862)-4211, (1968).

Holt,A.d. and F. Commoner “Events
and Conditions," (Parts 1-3),
Applied Data Research, Inc,, Neu
York, (1969).

Postet, J.B. "Ofticial Initial
Connection Protocol, .
ARPA NIC #7101, (June 18971).

Lausen,S. A Large Semaphore Based
Operating System," CACH 18, 17,
{July 1975}, .

Pat78

Pic75

Pic76

Pos74

Hei73

Zel75

Patii,S.
Co-ordination of Asynchronoys Eyenta,

Ph.0. Dissertation, MAC-TR-72, HIT, .

Cambridge, Mass., (1978).

Pickens,J.R. "A Study on Program
Graphs and Their Gencrated Message
Flow," Tech., Report #55, Dept. of

"Info. and Computer Science, U.C.

Irvine, (May 1975).

Pickens, J.R.

Debugging_and Monitoring of
Distributed Control Structures,
Ph.D. Dissertation, Oept, of
Electrical Engineering and Computer
Science, U.C. Santa Barbara, Santa
Barbara, CA, (Early 1976)

Postel,J.B.

A Graph Model Analysis of Computer
Communications Protocols, Ph.D.
Dissertation, ENG-7418, Computer
Science Dept., U.C. Los Angeles,
(January 1374).

Weinstock,C.B, - "A Survey of
Protection Systems,"” Computer
Science Dept., Carnegic-Mellon
University, (July 1973).

Zelkowitz,M.V. “A Proposal on
Process Hierarchy and Netuork
Communication," Proc. of ACH IPC
Workshop, (March 23-24, 19781,

Yo [eeee] Gres o

Ty F)

11 !

WA L
Jé_ sy [(d :{)‘LV Ld‘)l:%] (d4¢--d
Ty P BYop qrew

1
I
|
I
!
|
1
t

2)

R

. C'swd)sho sLUd e (UNMIed
RiEP PUT GD10A Uf JUINHO(IAOP Dueh}jus Juj
21qIsuodsas 8| puw ‘TLuJSop L] VI CONY U
YA RUa4Nd S| LYo toupAJg] U Biuung | n])
jo Aypsasatun auy e annlody Hypandag
NONYON VggY BUl JO Yand BC GuGT 01 p/GT wod)
Y4298 5wa)shs UDLIEIIUNLNAD S 1Y) Pawao) sod
% *gonss| Odepaojug Jasn Dupien|cAD
pue BICUINIA) PIICQ JO54EIDAIUQUD (W pug
aaemy)os s2iydedld yiomau Gutufisdp *yuonyon
J31ndeo) ydayy 9l Wil paajoautr fijeagyioe
sen Ay 9B OV [ZRl w044 Ceasqueg ejues.
uy Ul [H] Wi in Sweysha Buissodoud jeuliyu
oafyocsoiu| BuiuBisop wommpulosd aweyshs
e sen 9y /6] O 938f woJt4 -Hroajydodsod
S(BT Pue “yZGl ‘2961 U} ooue1ag uayndwa)
pug DugsaauiBuy [e21032913 Ul saoudop pid
pue 28y 'Ig@ Ul BJeqaeg wiues ¢ 2luddz)e)
3o Ayissoajun 8wy wdJy pajenpestl sududtyd uyor

‘paceg Aaos) apy
@duaLdg pJedded-11athay Ay o JdqEon
e pue pseog Ruosiapy DButdasuifiul pue aou3|og
2931ndEo] vO|IePUNC SDUDLIDG (eUGEIEN IYY SO
Jaguan £ 63 JOGJed Jodq Hiiwadiny t (X endig
40 sagmay B 81 O JOV|SIA PAUSInBullsI(
3331 ve pue Jaunyda JousiieN W)y ue
usaq sey syl e 12efodd swonjedjunuwol]
jecon) agy pue Ry 1ansag RELTEIN] Yy
gy * 1oufoug swaysfig soindmo) patngiaysiQ
45N 2 jo so1eD1ysoaul Jedioutlag oYy 5y oy
T(NZBT-§361) t9U0] %0U3YX My} pue (230T-Z951)
dse) GvY UV “(L3RT-9SGI) SItJojesoqen
ouoydaja] 1193 e swoilrsod (el sabcuen pue
[8D1UY23) PISY SCU B ‘¥IN1IVJLIYdue swoHysfis
suoryedlunwEed puz Jdindwod pue ‘swayshs
Guyjeseds ‘sofenbuct Ouinmesbouy ut s3.u0540
1UDRAO | IADP PUE YILTISEI PIPNISUL Sy S98aed
Si1H C2ulal] je eruagjige) jo Aysusayuf
Byl JE SP0WB13§ L)) pue uollewuojul
JO JOS5230J4d 01@D03SY ue §| Jaqsey plang

[a] (e
mg Cucdy

1
|

anw b D*(L.L L‘_u:nlaa Bnpanag BbE by

Gayd < (92 232 ‘
L <-v-'l'\'7d> ciiq
() <-p 1 UMY TED

t

1Lar(t p9
<\n<)<3(.)a> P’
Qnd <.V @)dy w70

g -=2(d =i p
[ISR RO PR
(=1)d ¥ 2uq
<1)d > 2

{E) d< -\ PP
Qg a--B1dy 2130
[CUEEIN S PP
(I REEPEP S

