
UC Irvine
ICS Technical Reports

Title
The Overseer: A Powerful Communication Attribute for Debugging and Security in Thin-
Wire Connected Control Structures

Permalink
https://escholarship.org/uc/item/1vd1s695

Authors
Farber, David J.
Pickens, John R.

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vd1s695
https://escholarship.org
http://www.cdlib.org/

The Overseer

A Powerful Conimunications Attribute :

for Debugging and Security in Tbin-Wire
Connected Cohtrol Structures

by
David J. Farber

John R. Pickens

Tecbinal Report # 75

Notice; This Material
may be protected
f'y Copyright Law
(Title 17 U.S.C)

Spec'

The Overseer
A Powerful CommufAi cat Ions Attribute for Debugging
and Security in Thin-Uire Connected Control Structure

by
David J. Farber

University of California at Irvine
Information and Computer Science Department

Irvine. CA 926G4
Tolephone (71M 833-G831

and

John R, Pickcns
University of California at Santa Barbara

Dept. of Elec. Engineering and Computer Science
Santa Barbara, CA 931B6

bAL<GRDUND

Over the past several years , two major
trends have caused us to re-examine the
organization of processors which exist in the
computer field. These trends are;

1, Hardware cost has shown a marked

decrease and, therefore, justifies the
incorporation of more and more complex
functions Into hardware. For example, It
becomes feasible to place* computation
where it is needed; this means

distributed computation. It is also more
feasible to spend hardware to reduce the
cost' of performing a total function
and/or to enhance the reliability,
security, and fail-safety of systems.

2. Modern programming ideas have penetrated
•the practical programming practice.
Top-down, modular, loosely coupled
process oriented designs and production
oriented user centered program design
languages are becoming more commonplace.
These design and program production
oystents have enabled the field to
increase greatly the productivity of

This research has heen aupported by ARPA
under a Network Security grant and by the MSF
under the Distributed Computer Systems
Project.

Thin wire communications, otherwise known as
oerial message sending, encourages modularity
in distributed program design and makes
visible the interprocess comriiunic«3tions
streams to an unprecedented degree. In this
paper, a poMcrful process monitoring
capability, the overseer function, Is
proposed to aid the program developer in
guaranteeing the dynamic correctness of his
distributed process mix. The top down design
process Is overvlewed with the emphasis on
generating an analyzable model of the
intra-modu1e control structure. Ulth
appropriate augmentation of interprocess
communications streams it is feasible to
endow the communications with a control

sequence validation capability. The need for
dynamiC' changing process contexts is
discussed, and the overseer Is shown to be
capable of emulating this level of process
behavior. Path verification (for protection)
and single channel monitoring (for dynamic
probing) are two final attributes which may
usefully be part of the overseer function.
Overall the overseer is only a part of a
systematized process for distributed system
design, but promises great potentiol in
Improving the visibility of dynamic process
behavior in distributed systems.

designers and at the earns time Increase
the reliability and understandabiIi ty of
the resultant systems. Ir, particular,
they have allowed us to have a finished
design for a system prior to the coding
and debugging of the system. In addition
they have enabled us to abstract from the
design the control and data structures of
the resultant system.

This paper introduces a program for the
investigation of system design and examines
in depth one aspect of this program — the
Overseer. Ue do not intend to create the
Impression that the ideas outlined on this
paper are easy or that results will be
forthcoming overnijght. Uc do intend to
illustrate that the necessary theoretical and
analytic tools are either now available or
can bo developed with reasonable additional
B f for t.

THEME •

I

Uo are attempting to create a total
environment In which we may conceptualize,
design, program, debug, .and then monitor the
systems that are to be tmplenented in
distributed, or thin-wire connected,
environments. The flavor of this total
design environment Is best illustrated by
outlining a scenario that a system desiqnc'*
would go through in the courco of using the
approach outlined In this proposal,

Uhen the designer starts his task, he would
be embedded in an online program design
system similar to that proposed by Caino
CCa i751 u11 I}21ng a modi f ied Program Oesign

Language (PDL), Additional constructs' aro
necessary to allow the control mechanisms
needed by the ^thln-wire" interprocess
communications used by distributed systems.
The distributed design POL , which wo shall
call OPDL, is constructed so as to enhance
the intercommunication among humans who
jointly develop tlie system design. Toward
thio goal, tho OPDL allows a loono, omblguous

semantics but docs support and require the
statement of an. accurate, computer

analyzable, control structure. Tho ambiguous
semantics of DPDL encourages the type of open
comtnunica11ohs between designers that has
been shown to pay off in good and easily used
dealgn systomo but also gives uo the complete
interprocess level control structure which wo"
need for the analysis of the resulting
systems.

At the completion of the design cycle, or
more realistically at various critical points
in the design process, the resulting design
Is abstracted into a set of control graphs
[Pic75,Pic7B), similar In concept, but not In
interpretation, . to the Graph Model of,
Computation (Cer72,Gos713 or the Petri net
[HoIG8,HoIG3,Pat703. Ue are primarily
interested in properties of the control graph
that relate to race conditions, deadlocks,
and most importantly in the
controi-recoverabiIity. The latter term Is
closely related to the intuitive notion of
system recoverabIIity familiar to all system
designers, the primary difference being that
the transitions are limited so as to yield
systems in legal states, i.e. the system
ui II not find itself trapped in any of a set
of iI legal states. Since we have accepted
the notion of ambiguous semantics for
productivity sake, we do not know whether or
not the system being developed is correct in
the sense that it will yield correct answers
in its executing environment.

Historically In formal analyses of systems
the combinatorial complexity precludes non
trivial applications. We note however that
in the distributed environment that we

advocate, that the units of computation are
intrinsically modular and hierarchical in
nature. Thus with the nature of the systems
that are likely to be implemented on the
distributed architectures, we expect to be
able to successfully analyze the resulting
graphs piecemeal and recursively toward
higher and l>igher structures. A node of some

graph representing a given level of detailed
design can itself be a complex graph, and if
that lower level graph has no undesirable
traits (such as deadlocks) and Is
recoverable, then the node on the higher
level graph that represents the lower level
unit is an acceptable node with respect to
the analysis that we intend to perform on it
[Pos7A).

With the design graph in hand, the designer
may now analyze for features that can be
verified. If the design is non recoverable
then the analysis will also show how to
modify the design so as to make it
recoverable. With the verified design in
hand, the designer is able to "package" the
design for efficient performance on a
specified set of hardware. An analysis of
the program graph allows packaging of the
modules of the system to mtntmizo certain
cost functions, like communications, while
preserving certain performance and
reliability levels. The work by Foodym
CFoo753 serves as an realistic example of the
type of packaging analysis. In certain
cases, tho designer may even modify the
eyotam parameters to see tho effect on tho
resultIng system.

With the packaged system at our disposal we
can now examino the posDibi I i ties on the
debugging and run time monitoring of the
dec i gncd sys tern.

PROPOSEn APPROACH

Given the above stated observations on
cost/function and program ' design
methodologies, wo find it Increasingly
feasible to propose a machine architecture
which executes a modular, distributed message
oriented environment. An overview of this
processor/programm Incj environment ie as
foilQws:

1. Ue begin with 3 design for an
application system that is to run on our
message oriented processor system. A
Distributed Program Design Language
(DPOL) is used to express all inteririodule
control and data dependencies, as well as
the internal module functions.

2. Ue next derive from the formal control

structure embedded in the DPOL a program
graph [Pic76) which describes the
possible control flow and synchronization
requirements for the application system

,y (APS). The graph nodes represent blocks
of code within modules as derived from

our top down design, and the arcs
represent the paths on which valid
Inter-module messages may flow. This
structure assumes that wc have

constrained tho design In such a manner
that all communication between modules on

the APS progrejm net is via the explicit
flow of messages - i.e. thin-wire
communi cat i ons.

3. From this Program Graph (PG) > we next
derive a dual graph, the Message Flow
Graph (MFG) CPic763, In which message
flow is represented by vertices rather
than arcs. The message flow graph (MFG)
is more convenient and concise than the

Program Graph for use in monitoring
control flow.

Given this flow plus the observation that
each module in a given program graph may in
and of itself be a progra.m graph (properly
imbedded and subject to the condition that it
is activated by the arrival of messages in
tho higher level program graph and terminates
by sending messages out In that higher level
graph) then it is possible to define the
complete allowable flow of the application
system (APS) as it runs. One of the goals of
the computer organization that we propose and
the purpose of this paper, is to use this
program graph by the communications system to
oversee the actual control flow, or

equivalently the message flow, of the
operating APS.

Given thla overaoer function, the claim we
make Is that it is possible to insure a set
of desirable attributes about tho APS

performance, viz:

1. fleosaofes not oniginatod by legal nodoc
of the APS program net can not enter the
program not. This Is a statement about
the security of the architecture
vis-a-vis Intrusion from non authorized
uoero (or programs).

2. If the APS arrives at a "hung-up" state,
the overseer Mill take notice and "abort"
the APS.

3. If the nodes of the APS program net take
too long to function, the overseer Mill
take note and initiate proper error
recovery procedures.

4. Inadvertent attempts to move message to
nodes that have no explicit floM path are
detected and forbidden. This occurrence

indicates system malfunction, or probably
the implementers implemented a system
with a structure different from the one
Mhich the design (in DPDL) claimed was to
be implemented.

or5. Invalid sequential/synchronous behavl
will be de tec ted.

THE OVERSEER AS A COnnUNlCATinNS ATTRIBIITF

1 Introduction

Uo now discuss the part of the interprocess
communicat ions - system which we call' the
Overseer, It contains the following
capabilities with respect to distributed
control structures;

o Control-Sequence Verification (CSV),

o Path Verification (PV),

0 Single Channel rionitoring (SCI1).

2 Overseer Operating Environment

The Overseer exists in a variety of operating
environments. Process management, naming
conventions, interprocess communications
conventions, 'and communications system
structures vary widely from system to system
and even sometimes within a particular mix of
distributed programs. Nevertheless, in order
to discuss overseer issues intelligently in a
way relevant to actual Implementations, we
define the terminology and operating
environments around which we frame our
remarks.

An Important design goal for the Overseer is
tha I it be ab ie to opera te correc t iu i n aq
cnvfronmcnt of vuInerabI a machInes. The
control sequence and path verification
techniques should be designed with this
environmental constraint in mind. Steps
should bo taken to make the Overseer
invulnerable and failsafe. Process
Initiation and machine initiation procedures
should operate correctly under the assumption
that host machines may misconstrue or even
falsify requirements and capabilities. In
short, 'the only reliable component of a
dlotributod programming onvironmont need bo
the ovorooer Itself CBai75a,Bai75b).

2.1 Review of Our Program Design Problem

Although the design and developmerrl process
has been discuscecl previously we rephrase it
hero to give a better perspective to the
operation of the overseer. The problem is as
foil owe:

CLlv&ni A designer has available one or more
machines, with zero, one or more processes
per machine and zero, one or more

psoudo-proceBses par process (Section 2.2).
A standardized - communications system,
embo Iiished with the overseer function, is to
be used for all Interprocess communications
(thin-wire communications).

Qa: Design and Implement a distributed
program composed of one or more processes
residing on one or more machines,
Interconnected via thin-wire communications,
and exhibiting an arbitrary degree of
concurrency and interprocess synchronization. •

In solving this problem it is necessary to
design , implement , debug , and validate the
control structure .

2,2 The Process Concept

The notion of process evokes several
different images and 1nterpretations. For
example, In normal usage in describing
operating systems, "process" often refers to
a body of code, such as the I/O Handler
'proceso". In discussing the operation of
the task scheduler, however, "process" may
connote a unique context or state space. Ue
favor the latter Interpretation,

fluUiprogramming refers to the capability of
processes to execute in 'parallel or to be
scheduled independently of each other.
Transfer of control between processes is
normally handled by the operating systerd and
may be synchronous - I.e. processes run
until they explicitely give up control- or
asynchronous — i.e. processes lose control
through rescheduling done in conjunction with
i nterrupts.

In many environments, either the high cost
of process contexts [Lau753 or the logical
structure of interprocess communications
CDC0S74j dictates the creation of
pseudo-processes. In such situations • we
often find one or more modules which appear,
as normal processes to their operating
systemls), but, internally, each module
multiplexes one or more pseudo-process
contexts by varying pointers /to
pseudo-context data blocks. Each module
handles the scheduling, creation and deletion
of pseudo-processes within its domain. For
our purposes, we may include pseudo-processes
in the notion of process, realizing that
there Is a one-to-one correspondonco between
proccsGee and overooer control graphs,

2.3 Program flodules

A distributed program is ' composed logically
of modules. A module has tlic following
attributes: .

o Modules correspond to a fixed body of.
code.

o Modules contain one or more entry points
or funcliona.

o Associated with each module are on© or

more process or pseudo-process context

Instanttolions (section 2.2).

o Associated with each context

Instantiation Is a unique Program Graph.

2.A Communications Conventions

As stated earlier, we assume a thin-wire
communications framework. In addition, we
assume that the communications system may be
isolated functionally from the cooperating
processes. Two representative communications
technologies which we use to illustrate our
overseer organization are ARPANET CARPA)
line switched - and DCS [0C0S7A) - message
switched. DCS has the additional property
that addressing is directly in terms of
process name and, since only one path per
process pair is allowed, a given pair of
communi cat i ng pseudo-process conversat ions
must be multiplexed onto a single path.

The overseer's operaliion is closely tied to
that of the communications system. The
overseer must have control over message flow
in and out of processes. The overseer's
implementation can be as distributed as the
communications .system which it oversees. A
centralized overseer may be acceptable in a
star- or ring-network, but may overload
communications In a distributed network, such
as ARPANET,

The overseer may impose other requirements
on the communications system, such as
maintaining a distributed data base for large
control structures. In the interest of
brevity, we assume that these and other
problems are solvable and, therefore, we
concentrate on the logical requirements
necessary for the tractabillty of the
overseer functions.

3 Control Sequence Verification

3.1 Definition of Problem

In control sequence verification the overseer
validates the control flow and
eynchron Iza11 on requirements for each defined
process. The verification is limited, by
definition of the Program Craph, to that
level of control expressible by the message
flow. We are not interested In the detailed
internal control flow within each process.

Messages -which represent invalid control
sequences are prevented from delivery to the
destination process. Such messages represent
control-faults and are handled either by an
error code in the delivery status, or by
discardment and causing a timeout fault.

3.2 Control Graph Partitioni ng

Each process in a distributed environment
must have a unique and logically separate
-control graph within the Overseer - note that
this does not state how the overseer
Imralementa unique Instances of graphs, but
rather it states what IoaicaI Iu must exist.
Even in a lightly coupled distributed

processes, where each asynchronous process
maintains the same view of ths total
operating control structure, separate control
graphs are maintained by the overseer, one
per eacli actual context. The overseer
guarantees valid control behavior of each
local control graph, thereby guaranteeing
valid controj behavior of the overall
distributed process.

The oversser partitions the total control
graph such that the message flow In and out
of each logical process Is represented by a
partial control graph local to that process.
If, for example, there are N operating
contexts In a single distributed process,
then the overall distributed control graph Is
partitioned Into N partial control graphs
which have a one-to-one correspondence with
the N operating contexts. A point of
simplification Is that each partial control
graph need maintain only as much structure as
is necessary to represent the local message
flow.

In numerous cases a process, or process mix,
is designed Independently of the external
control environment of which it Is to be a
part. This is not an unfamiliar phenomenon,
as wo often encounter such organizations as
subroutines or operating system calls In
monoprocessor systems, and as server
processes [ARPA,Cro72] in networf^ systems.
Such organizations are to be expected In
modular design methodologies.

Control structures enforced by modular,
general, service processes are-usually more
general tha.n actually allowed by particular
control environments. For example, a file
handler may allow reads and writes to occur
in any order on a given file, but a given
caller on the file handler may require reads
and writes to alternate.

Now that we have Identified both the total
control graph and the process of (nodular '
design, we may discuss two approaches toward
conetructing partial control graphs. In the
first, the entire control structure of a
given distributed program is delineated. In
thie environment the Individual process
contexts are tightly bound and, most likely,
are designed with detailed knowledge of each
others' operations. Ue have. In this
instance, the canonical form of the control,
graph as it is to be seen by the Overseer.
The task of partitioning such a -graph Is
simply to Isolate the subsets of arcs and
vertices local to each real process context.
Graphs partitioned in this manner lend
themselves to a structural based addressing
scheme (section 3.4), However, this method
suffers in environments which change
dynamically or which consist of general
service modules which may be Integrated Into
many particular control structures.

In the second approach the partial control
graphs of general modules are designed
Independently, The overall control graph for
a particular program is partitioned into
Independently designed partial control
graphs. This approach supports modular
design techniques, but allows non-canonical
forms of program gr.nphs, which in turn
d(oallouo structural based addressing schemes
(section 3,4).

of evory procoos or pseudo-process ulthin Its
domain. Given this fact, and tho above
delineation of possible control graph
operations, wc are faced with the follouing
quest ions:

o How visible ts the overseer operation to
comniuni ca I i ncj processes?

o How is each graph structure madu Known
to the overseer?

o How is each unique control graph context
created and destroyed?

o How is the correspondence made between
messages and graph transitions?

Some aspects of these problems depend upon
the particular operating system and
communications system organization. Specific
data structures and the details of module
i n i t i a t i on/term i na 11on, for example, are
outside the scope of this research.
Nevertheless, we make several comments on
tradeoffs that exist in most envi ronments.

The Overseer appears to incur the most
processing overhead if it is entirely
invisible to comniunicat ing processes. In
this Kind of i mpIen»enta 11on the Overseer must
not only detect token flow within individual
control graphs, but must also create and
delete emulated contexts based upon the
message flow. Automatic graph restructuring
may be required, as when certain control

.branches are disallowed (see discussion of
graph restructuring in section 3.7).

At the other extreme, minimum Overseer
processing overhead Is incurred when context
and structure changes are communicated
expllcitely to the Overseer. In this
implementation the Overseer maintains message
filters, which are directly related to
partial control graph paths, but are more
concisely represented. However, although
overseer processing is reduced, CPU
processing Is increased. Out-of-band
communications between overseer and process
Is now required to -update the message filter
data structure. The impact of this approach
on the programmer may be- minimized by
Incorporating control structure updating Into
the system programming language, thus making
such overhead invisible to the programmer,
but a part of the processing nevertheless.

3.4 Token and Arc Identification

Given a Program graph for some distributed
process structure, and its transformed

Message Flow Graph, our problem is to define
the mechanism whereby the overseeer
Identifies token flow. Here we explore
out-of-band message headers - tlessage ^rc iQ»
or MAIDs - as a possible solution to the
problem. As suggested previouGly, our
comments are framed in the AfiPA and DCS

environments, but may be easily extended Into
other environments.

There are several design goals for the ideal
overseer. First, the overseer should be able
to uniquely and unambiguously Identify each
and every arc over which tokens flow.
Second, the overhead incurred in marking
mossagos for recognition should be minimal.
Third, the graph addressing scheme should be
amenable to dynamic binding, such as is
required for a genera! service module.

Not all of these goals arc compatible.
There is a tradeoff, for example, between the
level of detail visible to the overseer and
the rcoultant extra message overhead.

Four schemes for out-of-band message arc ID
fields, MAiDs, are presented below, with
comments on their strengths and weaknosses.
Section 3.5 discusses the ambiguities which
must exist in any communicaIions system based
overseer.

Recall that modularly designed Program
Graphs may be partitioned according to their
implemented process structure. Each
partition is composed of an arbitrary control
graph structure and has an arbitrary number
of message arcs crossing its boundary. The
derived MFC has similar partitioning except,
that Instead of message arcs crossing
partition boundaries, message vertices are
replicated on partitions with common
boundaries (section 3.2).

Given that there is a one-to-one

correspondence between process context and
graph context, and that message arcs on the
PG connect pairs of processes, we conclude
that process name is an important component
of arc identification. Each arc Is

identified, partially, by the pair of
processes to which it is connected. If we
consider the direction of message flow and
the participating process names ue have, in
fact, a very coarse arc identificat ion
scheme. This scheme is precise, however,
whenever there is only one message and/or
response between any pair of processes. Our
first attempt is:

MAIDd) n- < P(i) --> P(jl >, •

where P(i) and P(j)
pseudo-process, names.

are process,

To refine our MAID ue recognize that,
formally, an arc on the PG is identified by
its enclpoints. For bound graphs -all arcs
connected- we may augment our MAID with
structural information. If each vertex in a

PG partition is labeled, then we generate the
following MAID:

MA1D(2) < P(i).M —> P(j).N >.

where P(i) and P(j) are the communicating
processes, and M and N are vertex labels.
Using this scheme we have unique recognition
of all message arcs, but we are restricted to
completely bound program graphs.

Our next step is to recognize that we may
associate a functional name with each arc.

Our MAID now becomes:

nAlD(3) P(i) p(j)

where F reprosonts the functional Idontlfler.
Using this scheme we allow dynamic binding of
modular, non-canonical graphs, but still hove
ambiguity for arcs with tho same function
name.

In our final attempt wo conrblno the
functional and structural flAIOs and generate
the following HAID:

HAlDtA) < P(i).n —P{j).N >,

where M and N are vertex labels, and F is the
arc function. This scheme combines the
advantages of structural and functional MAIOs
by allowing dynamically bound graphs to
achieve complete visibility and uniqueness.

For a definable subclass of possible program
graphs, each MAID can distinguish all message
arcs. Under particular operating conditions
or design restrictions It may be satisfactory
to adopt a less precise MAID for some or all
of the process pairings.

Each of the MAID fields serves a different
role • in the overseer recognition process.
P(i) and P(j) Identify the source and
destination PG partitions, respectively. As
stated previously (section 2.2), P(i) and
P(j) may be physical processes or may each be
subdivided into pseudo processes. P(i) and
P(j) partially identify the ends of a PG arc
(MFG vertex),

. The function field serves to "unbind" the
structures of PG partitions. Uhereas, in the
structure only flAlD, ' nAID(2), each arc is
identified by a member of the set
< P(i),m X P(j).n >, in the function only
MAID, MAIDO), each arc Is identified by a
member, possibly duplicate, of the set
< F (P (i) X P(j)} >. Uilhout functional
r den 11 fication, communicating processes are
tightly bound to a fixed structure.

The structural fields, when added to the
functional only flAID, provide clarification
by each overseer partition and do not pass
through the communications system. In the
act of receiving and sending messages, each
process notifies its local overseer of any
required structural clarification.
Structural clarification of the remote
process' arc ends Is assumed to be done by
remote overseer partitions,

Ulth the exception of process names, each of
the fields may or may not be required for
message-arc identification. Figures 3.A.1-A
give examples of process mixes In which each
of the four proposed flAlOs affords
satisfactory detail. In Figure 3.4.1 a mix
of three processes which exchange at most one
message in each direction is described by
riAIDs of type 1. In Figure 3.4.2 a pair of
processes which exchange more than one
message in each direction is described by
structural only HAIDs of type 2. In figure
3.4.3 two processes, one of which Is a
general server process, are described by
function only flAIDs of type 3. In Figure
3.4.4 a process mix which contains arcs with
duplicate function descriptions is described
by HAIOs of type 4. In this last example wo
demonstrate that structural clarification may
bo eliminated whore ambiguity does not occur
(arcs a,b, and c).

3.5 Control Sequence Amblguitios

For each type of flAlO presented in the
previous section, certain ambiguities In
control sequence verification exist. I4e
review the ambiguities here and then comment
on basic uncertainties that underlie all
MAIDs.

MAIDd) uses process name only. For any
pair of processes, multiple paths in the same
direction cannot be resolved. nAI0(2) uses
process name and graph structure. This
scheme has no ambiguities as to path
recognition, but suffers from the
inadequacies of early binding. nA!D(3) uses
process and function names. Ilultiple paths
may be distinguished, but paths which cali
upon the same function are not resolvable.
MAID (4), uhi ch combines process name,
function name, and structure, suffers no
uncertainty in path recognition.

Underlying all these flAlO formulations Is
the desire to validate vertex initiations and
terminations on the program graph. But,
because of the delay between a process
posting 3 message and the overseer receiving
it, the time that messages arrive In the
overseer may not accurately reflect vertex
activation times. If the overseer is to have
tight influence over vertex, activations and
terminations, processes must wait for
overseer approval before proceeding. ' The
natural problem here, of course, is that
potential concurrency is reduced. Thus any
implementation will probably choose to allow
processes to proceed beyond the points at
which messages are injected into the
conimun icat i OTIS system, with the understanding
that control faults may occur downstream in
the program execution.

3.G Reentrancy

Other than identifying message arcs .the
overseer has the task of emulating the
changing process contexts. Various
conditions govern the creation, deletion, and
restructuring of particular instances of
program graphs. Ue discuss in the next
sections several dynamic properties of
overseer partitioned program graphs. Program
graph reentrancy is discussed in more detail
In [Pic7G].

The desire for reentrancy dictates that
reentrant graphs be replicated for each
context instantiation. Recursion and
reentrancy, from the point of view of control
structure" and overseer manipulation, are seen
as nearly identical problems.

In any executing environment of thin-wire
process structures conventions must bo

established for creating and deleting process
contexts. He assume an environmont of
pre-existent modules, each of which has zero
or more active contexts. Each new
procoos-process conversation iwplios,
logically, that a unique process context is
created. This mechanism takes different
forme in different environments, but the
basic operation Is the samo:-

P(i)<-IReque8t„Context (ARGUMENTS)3 ->P(j)
i

P t i) <-[ACKNGULEDGEl ->P(j)
I

P(i) <-CArbi trary_nessage_Sequencel ->P(j)

P(i) <-tOes troy_Con teKt_P(j)] ->P(j)

Context creation/deletion effects the binding
and unbinding of local and remote program
graph partitions. in the ARPANET the
operations arc handled by the out-of-band ICP
and CLOSE protocols. In DCS, since multiple

. process-process conversations may be
multiplexed on single channels, the context
handling primitives are handled by in-band
protocols.

An example from the ARPANET is the file
handler service module CFTP}. Prior to
issuing any file commands the ICP protocol
tICP) must be used to effect a unique process
context within the service module. Uhen the
file transfer operations are complete,
matching CLOSE commands are used to sever the
communications I ink.

An example from DCS is the I/O Handler.
Uhenever the OPENFILE function is issued, a
unique process, denoted by the Logical File
Name -LFN- is created within the lOH. All

subsequent file commands are addressed by the
LFN or pseudo-process name. The CLOSEFI.LE
function causes the destruction of the lOH
sub-process EDC0S7AI.

Consideration of reentrancy, the
Create/Destroy functions, and. the ARPA ICP
function leads into an interesting redesign
of the ARPA ICP. Ue now see in modular

function handling, as in the case of the DCS
I/O Hand Ier, that arguments may be required
before a valid context is created within a
called module. ICP, as it now stands,
creates the context first, and then waits for
the arguments. A modified ICP, which
conforms better to the dynamics of context
management, passes arguments to the called
process before the opening of the normal send
and receive lines, and the creation of the

context, is allowed to proceed.

Pipeline, or GOTO, control structures may
also imply control graph reentrancy. In
these control structures, slightly different
context creation/deIetion rules are implied. .
Consider, for example, a process P(i) which
desires to execute a GOTO operation -with
parameters- to another process P(j). Once
the GOTO is complete, the context
representing P(i) is to disappear. This
operation is represented as follows:

P(H<-[Requeat_Context t ARGUMENTS)] ->P(j)

P(I)<-[ACKNOWLEDGE] —P(] 1

P(I)<- [ArbI trary_f1o3sage_Sequenc0] ->P(j)

P {i) <- tDestroy_Context_.P (I)] ->P(jl

The difference between this and the previous
control transfer sequence is that the
caller's, rather than the callee's, context
is deleted once the conversation is complete.
Current examples of this type of control
transfer do - not exist on the ARPANET or on
DCS, but may be used in implementing parallel
pipeline operations.

The overseer must have knoulodge of whatever
mechanism Is used for binding local and
remote program graph partitions and contexts.
Many implementations are possible, depending
on the operating system and communications
oystom structure, but context creation and
dclotion must be integrated carefully into
the overseer operation.

3.7 Graph Restructuring

Reentrancy and queuing imply a form of
dynamic graph restructuring in which all or
portions of a graph are replicated. However,
a more general graph restructurjng may be
desired and may bo able to remove certain
dynamic validation functions from the
processes themselves. Most of the
applications of graph restructur ing seem to
stem from the need to restrict availability
of functions within a module. Graph
restructuring may be thought of as a form of
capability based addressing, where caller's
capabilities are determined by the callee
[Uei733.

Tuo examples iiithin a file handler nodule
are, 1) a file opened for read-only access
must not allow any writes, and 21 a
sequential file must not allow any random
access requests. These access restrictions
may be most conveniently handled by enabling
and disabling paths on the local overseer's
graph partition. More complex restructurIng
primitives are certainly possible, but don't
seem to be required for the control
constructs presented in this paper.

4 Path VerIf i cat i on

Path verification adds another dimension to
the capability of the communications system
overseer. Defined simply, it is the ability
of the overseer to approve, to deny, or to
revoke communications paths. The criteria
which governs path creation is determined by
the particular protection scheme in use.
Although this research does not delve into
protection, it is helpful to examine the
capability of the overseer with respect to a
representative protection scheme.

Path verification is useful' both in
protecting a distributed process from its own '
misbehavior and in isolating non-cooperating
processes from each other. The latter is
also, known as encapsulation, and may be
applied either at the process level or at the
machine level [Bai75b,Bis73].

The problems of protection in message based
systems have been broached elsewhere
[Uei73,Bai75,Zei75I, but, with the exception
of Bailey, the potential role of the
communications system has not been
considered. As a result, the existing
techniques which ignore the communications
component are weak within environments of
vulnerable host machines. Protection/path
verification belongs In the overseer, and
offers a significantly improved level of
correctness.

The primitive operations usually associated'
with communications path manipulation are as
foI Iowoi

o Allocate a port.

o DeAllocate a port.

o Send a message to a port.

o Receive a message from a port.

The dynamics .of port allocation and
deallocation are very closely tied to the
dynamics of process creation and deletion
(section 3.S) - when a new process is
invoked, a new pair of ports is also created.
Thus it is only natural to apply other
concepts normal ly affi Mated with processes
end process hierarchies.

One effort [2et75] views ports as
capabilities and affiliates with each process
a capability vector. Additional attributes
associated with each port/capability Include:

o Ownership Privileges

o Protection from modification by other
processes

o Ab iIi ty to
processes

be passed to

The overseer is the natural agent to effect
these port or capability based attributes.

Port passing is especially significant to
the overseer in terms of how it effects the
binding of names in program graphs. A
desired feature of any system of distributed
processes is to be able to pass a port name
through several levels of reentrant procedure
calls. The overseer should allow this
deferred binding and also be able to detect
invalid bindings in the lowest level of the
nested call sequence. To do this, capability
based conventions must exist for passing
ports between processes. Ue are not
concerned whether the convention be caller
inherits callee rights or visa versa, or what
the exact nature of the rights associated
with ownership and non-ownership of
capabilities. Ue are concerned that port
names may be passed between processes, and
that the overseer knowingly participates in
tfie passing of port names,

A simple example Illustrates the utility of
path verification and Its relation to control
sequence verificatioo. Figure 4.1 shows a
system of three nested processes, where the
firs.t process supplies the second process
with the name of the third process. To
accomplish the control structure addressing a
MAID of type 1 - process name only - is used.
Arguments are passed by arcs a and c, and
responses are passed by arcs b and d. Three
columns aro used to represent the message arc
lO, information passed along the arc, and
context action Implied by the passage of the
message on each arc. The overseer must have
thes.a three Items of information for each
partial control graph arc. Note that the
message which passoa along arc a contains not
only arguments for the called subroutine but
also tho capability for procooa P(2) to
establish a path to P{3). Arc c's
rcpresentolion indicates that the port
defining the P(3) connection Is deferred,
when P(2) places a message on arc 'c tho
ovGroeor must determine that the capability
passed from P(l) to P(2) justifies the
creation of the P(2)—>p(3) path.

5 Single Channel Monitoring

A valuable attribute of the overseer is tho
ability to allow dynamic monitoring of

. interproccDS communications. Lacking this
facility, artificial maneuvers are required,
such ao rDConipiiing the affected modules In
drcJor to address message deliveries to a
special monitoring module. The SCM feature
of the overseer simplifies the task of
monitoring the actual data streams and, in
addition, supports a fine grain of
selectivity on messages to be rerouted to tiie
monitor module. The implication of this last
feature Is that the overhead of message
rerouting need be only minimal.

In order for Single Channel Monitoring to,, be
effective, two features are required;

1. The Overseer must have the ability to
accept message filters, i.e. data
structures which identify messages of
interest.

2. A special process must exist, responsive
to a human user, and capable of analyzing
and synthesizing communications streams.

In the following sections we examine each of
these requirements. Prior to our discussion,
however, we note that the existence of SCM
modules and Overseer filters potentially
Increases the vulnerability of systems.

Given tho capability to intercept and alter
data streams between processes^ SCM modules
have the potential for wreaking havoc in a
mix of distributed processes, in defense of
using SCM modules it should be noted that
this problem Is shared with more classical
debugging tools, in that the setting of
breakpoints and the ability to alter both
instructions and data may wreak havoc on a
single processor system. The solution for
single processor systems, which uses
addressing protection schemes to limit a
developer's interference to his own name
space, has an analogue in message systems
through the application of capability based
addressing or path verification by the
overseer.

S.l Properties of Message Filters

Communicating processes should ideally never
need to know, other than by degraded
performance, of the insertion of special
monitoring processes. Monitoring proeosses
should be able to be switched in dynamically,
with no internal renaming required on the
part of tho monitored processes. If the
communications system has the capability to
reroute messages, based upon message filters,
and subject to the addressing restrictiono
enforced by path verification, then the
dynamic readdressing required to switch
monitoring modules in and ' out may be
conveniently achiovecl.

At flrot glance, ignoring the overseer'B
capabilitg to monitor control structures, one
might dc-Bicjn filters lo simply capture Iho
entire message flow on channels (e.g. an
existent line in line switcl^ed communi cat ions
systems, or al I messages between a given pair
of processes in message switched systems).
While the ability to capture total
conversations Is important, the ability to
factor out messages using a finer grain of
selectivity Is paramount. A filter should
not only be able to capture messages between
a given pair of procesoes on a given channel,
but must also allow capture of single
messages which represent flow of primitive
control tokens.

Thus, to Identify messages of interest,
filters must have several attributes. First,
filter selectivity must range from coarse
- e.g. all messages on a given channel - to
fine - e.g. the message representing the
traversal of a specific control arc
Message selectivity may be based on several
classifying factors. Process name,
Bubchanne I arc, function, and graph structure
are^ identifying entities which, taken
Individually or in logical combination,
contribute to the delineation of classes of
messages of interest. In its most
sophisticated form. an overseer
imp Ietnen ta t ion may allow set operations, such
as intersection or union on the classes of
messages identified by the primitive
class!fication operations.

Another attribute of filters is that they
must reflect the dynamic properties of
control- structures. The messages which bind
and unbind contexts to control graphs should
be describable by the filter descriptors.
This facility may be effected either by
chaining filters - e.g. a filter to detect
the context transition followed by another to
Identify messages of interest in that
context -- or by special functions such as
"ENViROfJritNT OF" for nested calls.

Each filter should have, as another of its
attributes, a name or Filter iOentifier (FIO)
by which its actions may be referenced. If,
for ^ example, a monitoring process has
multiple filters outstanding, then captured
messages may be correlated to the particular
filter which captured them by including a
named reference to the filter. Any given
monitoring process can correlate the actual
outstanding named filters with the code wfiich
processes each of them by referral to the
FID.

In more sophisticated Eystems. the overseer
may accept the definition of arbitrarily
largo sets of potentially active message
fi ters. In such an environment, message
filters would first be defined -or
declared - by the monitoring process to the
overseer, and then be activated/deactivated
as needed through low overhead enable/disable
Commands.

Givon the ability of the overseer lo store
multiple filters, another feature is possible
which allows chaining of filters. Chaining
is the technique which allows the tracing of
conteKl sensitive information flow. If, for
example, all RETURNS from a module appear
alike, and it is desired to capture only the
RETURN from a givon sub function call, then a
chain of two filters - one to detect the
CALL, followed by one to detect the RETURN -
allows the correct selectivity. This
operation is effected through the NEXT_FiLTER
field, which describes the next filter to be
invoked given a successful message natch.

An additional filter feature required for
tracing context sensitive information flow is
back referencing. When. for example, a
filter is dependent upon context information
defined in a previous filter. then some
mechanism is required to pass that context
information onward. Bock referencing is one
way in which information detected by current
filters nay be passed on to future filters.

The final attribute uiiich message filters
require is a specification of the action to
be performed on detected messages. The most
useful actions appear to be the following!

o fJULL — Do Nothing at ail. Most
likely to appear when using
the cha ined filters op t ion. •

o LOG — Send a summary message to the
monitoring module. Oata to be
summarized include a copy of
the MAID header and length
fields.

o COPY — Send an exact copy of the
message to the monitoring
modulo, but allow the original
message to proceed untouched.

o CAPTURE — Reroute the complete message
to the monitoring module.

The research proposed in the above document
is based on developments during the past two
years. Some of the basic contributions to
the practical use of the theoretical methods

have been already acknowledged by references
in the paper. Additional credits should go
to Jon Postel for his thesis research in the

use of Graph Models for protocol analysis and
to Philip Merlin for his pioneering work on
the recoverabiIIty model .

be£eeem;es

• . "ARPA Network Current Network
Protocols", ARPA Network Information
Center /If7104, Stanford Research
Institute, Menlo Park, CA (NIC).

Bai75a Bailey, D.J. "Network Structure
and Security", Proceedings of ACM
IPC workohop, (March 23-24, 197S),

Bai75b Bailey.D.J. "Central Computing
Facility Planning Study: Technical
Overview," LA-5752, Los Alamos
Scientific Laboratory, Los Alamos,
New Nex i CO,"" {flarch 1975).

BIs73 Oisbey.R.L,, G.J. Popek
"Encapsulation: An Approach to
Operating System Security,"
IS1/Rn-73-17, University of Southern
California Information Sciences
Institute, (October 1973).

Cai75 Ceine.S.H., E.K. Gordon "POL - A
Tool for Software Design," Proc.
National Corijputer Conference,
(May 1975).

•Cer72 Cerf,V.G.
Mul t inrocessors. Semanhores. and

. pranh Model of Comnutation. Ph.D.
Dissertation, ENG-7223. Computer
Science Dept., U.C. Los Angeles,
(April 1972).

Cro72 Crocker,S.D. . J.F. Heafner, R.M.
flotcalfe, J.0. Poslel
"Function-Oriented Protocols for the
ARPA Computer Network," AFIPS
Conference Proceedings, Volume A0
(May 1972).

DC0S74 Rowe.L.A., E.J. Earl, A.O. Foodym.
F.R. Helnrich "Distributed Computer
Operating System - Programmer
Guide," U.C. Irvine Distributed
Computer Project, Technical Report.
(April 197A).

Foo75 Foodym,A.D. Ph.D. Thesis in
preparation at U.C. Irvine.

. "File Transfer Protocol," ARPA
NIC tfl7759.

Gor73

Goa71

HoIGS

Ho IBS

Gord,E.P,, M.D. Uopwood
"Nonhierarchical Process Structure
in a Decentralized Computing
Environment," Technical Report 32,
U.C. Irvine, "Oepl of ICS,
(June 1973).

GosteIow.K.P.
FIow of Con troI , Resource Allocatinn,
and the Ppoppr Termination of Prggrani
£. Ph.D. Disserla t ion,
ENG-7179,Computer Science Dept.,
U.C. Los Angeles, (December 1971).

Holt,A.U.. H. Saint. R.H.
Shapiro, and S. Uarshall "Final
Report for the Information System •
Theory Project." Rome Air
Development Center, Applied Data
Research. Inc., Ncn York, contract
AF 3G(B02)-A211, .(13E8}.

Holt.A.U. and F. Commoner "Events
and Conditions," (Parts 1-3),
Applied Data Research, Inc., New
York, (19G9).

ICR Poslel, J.B.- "Official Initial
Connection Protocol,".
ARPA NIC #7101, (Juno 1971).

Lau75 Lausen.S. "A Large Semaptioro Daseil
Operating System," CACD 18, 17,
(July 1375),

Pat70 Patll.S.
Co-ordination of Asunchronous Events,
Ph.D. Dissertation, nAC-TR-72. MIT. .
Cambridge, Mass., (1970).

PIc75 PIckens.J.R. "A Study on Program
Graphs and Their Generated Message
Flow," Tech. Report //G5, Dept. of
Info, and Computer Science, U.C.
Irvine. (May 1375).

P i c7B Pi ckens,J.R,
Dohuoning and Monitoring of
Distributed Control Structures.
Ph.D. Dissertation, Dept. of
Electrical Engineering and Computer
Science, U.C. Santa Barbara, Santa
Barbara, CA, (Early 1375).

Po374 Poste I, vl. 8.
A Gratjh Model Analysis of Comnuter

Communications Protocols. Ph.D.
DIssertation, ENG-7A1B, Computer
Science Dept., U.C. Los Angeles,
(January 1374).

Uei73 Ueinstock.C.B. • "A Survey of
Protection Systems," Computer
Science Dept.. Carnegie-Mellon
Universi ty. (July 1973),

Zel75 2eIkowItz,M.V. "A Proposal on
Process Hierarchy and Network
Communication," Proc. of ACM IPC
Workshop. (March 23-24, 1975).

ik

•SiySlsHs CU3 1JIJ3 luniirioa

C{ep pu? Q3I0A u| }uowdo{aAop ja)
oidisuodaaj »| |)U'# 'V lujot\J\ 'om }j»jH
10 (n f\nuaj.inD «i uyof 'oujajj H' tt [u jo; | | >23
JO n^jsJOAjun 9'-J) IB n?{o.i(j

YdliV 10 oc s/fA ^/.CT
i(3.4e9adj sicaisfia uo j j ea lunutraoa p<^»i JOj ^ad
ojj *«ons<:| 03i;j.J9)ut jasn Oui)cn|CAS
pge Qicuinja) p9?cq jos'saoojUo J31 lu pug
ojpnjjos S3i^<i(.'jO OutufJieop
j92ndi903 Vd^ MM" pnA|OAut HiaAijao
sen OM s^GI 0^ IZSl "O-'d 'BJcqjcg ejucs.
u| *au| {H3 M)<" Stva)t'^9 Gui-ioaaojd |cgG|a
OAM^cgo^ui CgtuG|60p jaMmc-'Oojd 9'.vi>i'>r\9
e sen aq tZ&l 83St "OJJ -ftiaAMiodsoj
3i6T *j£Gl '?9Sr "! 4>au9ias jajnclwoo
pue 0u|ja9ui0u3 10319)3913 u| saoj&ap p).{^
pue 3SU '^SQ M) I" ojcqjog 0)^05)e cigjoMI^^D
jo ft)jG93Aiuf) sq) udj> pa^qnpeji) 5oa'/|a}j uqop

•pjcog rtjos jApy
eausps p jp-^aoj-) 1 a jnan aq) ;o jatjaora

e puo p.ieog Gjosiapy 0utjaduiGu3 pue aauapg
ja)fidao3 uojjcpunoj aauops aq; ^o
jaqwaio e c; jaqjej jOJJ rtjVJ^JJn^ '(x ciiOiS
JO jar,Kay e 0 ! oH * -'^M^JA p3M«1nGu j 1s rq
3333 P^" jajroaaq icuapefj y^y ub
uaaq scq SH '1331 Jaafojj iuo j) ea juni-jwo^
leaoT aq» pue ftjjjnaag >tJOnp.M Vdl/V
aq) ' laofojj saa)sA5 jojndrio^ pa^nq j j)« jq

i'5N 9M3 10 JOieOiJsaAUj jeiJiauiJ^j oqj a j
•(azGI-S3S3) "-"X Bill pue (gOCT-^3Sl)

tJjoD CJVd OMV *(Z2Gt-SSGn sajjoicjoqe^
auoqddfa^ ipg le suojiteod leijaOcuon puc
leaiuqsai ppq ccy oh *9jniaoMM3-'B siuaioAs
6uoi jea junivRoa pue jajrjriKoa pue 'scjjjsGs
CuiieJado 'sa&cnCuei OuinoejOojj ui si.iojjo
;ua«do|OAap pue qojcassj papniaui s<*q jaajqa

sijj 'auiAjj le iMujo;iiq3 jo GijejoAiof)
aq) le saanQjag ja)*>dn03 pue uoiieujo/uj
JO jossajojd oieiao^sy ue 9[jaqjo^ PIahq

WB'

11°:)

V\Xi <,!!<--
/^<-

o \<i' ^

ai»i=o

p5pO^ T3^P Qli/lV

-?
a

•O

-3J-D

:IO I

aw ^ f.v£

<y!)<} <-v- t')d>
<(.2)J <yivu> :;;q
<0)a <--ri.iM>-:=D

Qivw "S *3')I'KS

iw <y W> •-"'•o

Q/VW C C'̂ 'S 2-^nCs-

>= '• : P

<J'U)J<--"4'(.')J •? = ••: 3

<row<-rw;4> -"•q

<i'U).i<-r(i)<) > i'.-.D

d• ' 'a

<(.C)J<,--\3)d>:'.;p

<I,2M '.-i,'l'i> =i;o
<li)d<--l,t)>J> -1:1
<(,;)<) <.--i,i)'l>:;:-0

