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Abstract .

. ‘ .f: |  This.paper énalyzeé various methods fhat have Bgen devéiopedlrecently
fof cohstructing ; élaésicél modei for a finite'sgt.of quantum mechaniéal-
states:(électroﬁicrstgtes for our appiications) and élso:shows how one of
them;lthe spiﬁ_ﬁatrix méﬁpiﬂg ﬁéthod 6f Meyer #nd Millef; éan be generalized

;iﬁ tquaspéct$. 3First,:it is shdﬁh how the ﬁethodblogy cén be modified té
oBtéiﬁ a classical model of any desired.numbér of degreesiof fféedom, rather

than only one.dééree of ffeedom as before; Second, it is shown how the
method can be aﬁpligdiin the adiaﬂétic represenﬁation, so as to be able to
hsé directiy’thé adiabatic péteﬁfial ehergy surfaces and non-adiabatic

i o - éOupling eleménts‘produced by a 4uantumbcheﬁistry calculation.'



I. Introduction

in’fecentvpépers several methods have beenvintroducéd to model

. classica;ly thé electronic degrees of fféedom'in é molécular.éollision. Ihe
motivation for this work is to combine the usefulness of a classical
mechanical descriptidn of heavy pafticle motion (i;é.,btranslatiOn,
rotation, andivibrationj with a dynamically consistent approach that

treats all degrees of freedom, eléctionic‘and heavy pa:ticle,on the same
dynamical footing (and thﬁé'classiqally). It has been noted that models
which fail to treat allldegreeé of‘freedom‘on the same dynamical footing
will notjdéscribe.certain dyhamical effects correctly. Enéouraging_resulﬁs
‘have been'obtéined in applications of this model to Quenching of fluorine
atoms,~F(2Pl/2).+’F(2P ‘ »

3/2),'by collisions Vith qu Xe, ahd Hz. The purpose'

of the ptesent ﬁaper is to generaiize and 9xtéhd thesevmethods for obtaining

a classical Hamiltonian that corresponds to a finite set'ofFQuantum mechanical

stétes:(electronic:states‘for'the apblicationé[we_ha&e ihvmipd, élthough this
is of course not necessary). . | |

There aré ﬁasically two methods fhat have been used to”derive'the
classicalvHamiltonian for a non-adiabatic collision_system (both of which
lead to the same feSultsffor the appligations'made thus far): . the classical
pseudo-potentiél (CPP) me;hod2 and theVSpin‘matrixﬂmapping (SMM) method_.4

3 which seems'to be'more exact

The classical’analog‘of Heyer and Miller,
but ‘more diffitulf to apply in general, gives;a-different'HamiItdﬁian'from
the methods mentioned.above in thevgeneralicase, although»for'the spécific
caée of two states all the various methods lead tovprecisely the same result,

"i.e., the same classical Hamiltonian.

The SMM method, as it was derived by Meyer and Miller,4 has thé

o
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- disadvantage of always leading to a classical eléct:onic Hamiltonian

with only oné degrée of freedom. = The CPP method of McCurdy,

Meyer_ﬁndeiller,z on the'othe; haqd; yields as many electronic degrees
of freedoﬁ'as é:e physically;meahiﬁéful;‘ This lattér method,vsgiefly, |
hcbﬁsists of four steps: | | |
1. W;ite.down,the full classigal‘ﬂamil;onian; treating allvtﬁe.A

electroné and ngclei‘as classical particies, :(Oné méy'simplify-things 
by conéidéring‘only the activé eiectrons, the result is the samé;)

vf25 Change all the coordinates and ﬁomentanof the.électronic_part-_
of fhe Hamiltonian to the appropriate set of action*ahgle variables.

'3._ Idehtify_the "relevant" électroﬁic'dégrees of freedoﬁ;pi,e,, thosé
whose action variablé‘caﬁ be:chahged.by the collision--and average the

Hamiltonian over all the angle variables of the other'eleCt:oni; degrees

}“pf freedom. By»so doihg the Hamiltonian becomes independent of all the

vaﬁgle variablgs.one has averaged over, and their canonically conjugate
TaCtion'variables become constants of mbtioﬁ on which the Hamilténiaﬁ depends
bnly.pafaﬁetrically.”‘

'”;4,Aquua;¢ the pdten;ial'fpnctions, which due to the‘averaging proéessv
nbw‘depend oniy én the "reieVant" electfonic degreés of f;egdom,vtblthe
éua@tai:diabatic pqténtial métrix;~i__ |

The fourth é;ep is uSually‘the’mosp difficult pért, and there seems to

, 'be no'tota11y dnambiguoué way to determine the dependence of the parameters

in the classi¢31 Hami1tonién for'the'genéral case, although it can be done
for some special cases.
The general idea of the CPP approach, hoﬁever, is clear. Although one

starts_withrasﬂamilﬁonian thaf’treats all the electrons classically--which

of course might be a very poor approximation--one arrives at a perfectly

' reasonable.classical Hamiltonian since one concentrates on the few degrees

of freedoﬁ.-



which a.rerelevvanvt tfo'.the s.cattering' process. "The-.‘moti_on.ovfﬁ the_se'féw
.degreeé of freedoﬁ (dffen a collective‘aegrgé_ofvfreedom, éﬁch”as’ﬁhg
z-compénent_of tﬁé angulér momentum of él; the electfons_ofloné molecule)

is governed by potentials which are geherated not only by-thé'pair¥potentials':
(i.é,, the Coulombgpotehtials) but also by the motion of all the degrees of r
freedom that have béen excluded. The many»body»problem to obtain these |
botentials is, of course; solved quanﬁumvﬁéchanically, i.é.,‘ohe makes

use of the poténtiél energy surfaces suppliedvby quantum chemistry., A

very trivial example may be illustrative. quposé ﬁone of the electronic
states are e#cited auringtthevcollision; Thevprescription isithen-to' |

, avefage'over all.the angié variables, 'and the‘éveragéd poténtialvwill
 depend only on:the nuclear coordinatés. Stéﬁ fOuf of the pfoéeduré'
-described‘aboye bécomés-trivial sincé oﬁe siﬁply identifies this potential
with the adiabatic Bofn;Oppenheimer poténfialvsurface. ’fhus 6né_arrives

at the Hamiltonian‘ﬁhicﬁ is commonly uéed.tQ-Study collision |

indﬁced fotational and_vibréfional transitions in moleculés.' This example
aiso shows that oﬁe may indeed negiect all tﬁe-"inactivé" electrons from
_the vefy beginning.v

Inia'way ;5e SMM-method accomplishés mgch“the samé'résult as the

CPP-method. The qu;ntum cﬁemists "condense" the many body electronic
probleﬁ to a small diabatic poteﬁtial matrix, and the SMM—methoa "condenses"
this matrix to a élassical Hamiltoﬁian of éne degree'of'fréedom. Thus
this method achieves the same '"reduction of degrees of freedom" but it v
does so to the e#treme: Oné always'arrives at an eleéﬁronic Hamiltopian :
with one degree of freedom, regardless of how many degrées oflfreedom are

physically meaningful. Iﬁ Section III, howevér, we will show how this
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limitation of the SMM-method can be overcome to yield classical Hamiltonians
of as ﬁany degrees of freedom as thé'phyéical problem reqﬁireé.n
As applied thus far, both the CPP-method and the SMM-method make use

of the diabatic electronic representation of the séattering'process; Quantum

'éhemists,‘howevef, usually calculate the (diagonal) matrix of adiabatic"

poténtial surfaces and the nonadiabé;ic cdupling elements. . Although -

techniques to tfansform the adiabatic potential surfaces and the

7nonadiabatic'éoupling elements‘to the diabatic potential matrix are well
" ‘established in the literat:ure,s—7 it'is'desirable to maké use of the

" adiabatic fepresentatiqn directly. ‘How this-cau be achieved for the

SMM-method is shown in Sectin IV.
In the folioWing section we first discuss an aﬁbiguity of the SMM-method,

néﬁely the'fact that different choices of the basis set which is ﬁééd_V

to obtain the matrix representation of the Hamiltonian may lead to

physically'different claséical Hamiltohians. How to remove this ambiguity,

“i.e., how to choose the appropriate basis set, is also discussed in Section

II.



II. ggantalvandn01aSSical Dynamics--fhe'Effeet-of a Unitary Transformation.

A classical Hamiltonian derived from a hermitian matrix via the
-class1cal analog of Meyer and M:Lller3 has the de51rab1e property that
a unitary transformatlon of the Hamlltonian matrix corresponds to a-
vcanonical transformation_of the classical-Hamiltonianf'Consequently,r.‘
different haSis sets used to express the quantal Hamiltonianrin a matrix
representation do ,not‘lead to physicaliy different classical Hamiltonians,
and thus all results are independent of the particuiar natrir representation
used. Since the classical analog and the SMM—method‘yield theveame classicai
Hamiltonian for.the two state case, F=2, ail this_holds alao for the SMM—method
if F=2. For F > 2, however, one is confronted with‘the_problem that_for the
vSMM—method a unitary‘transformation of the quantal Hamiltonianbmatrix in
general does EQE correspondvto a canonical traneformation of the~claesica1
Hamiltonian.- Hence different ch01ces of the ba31s set may lead to phy51cally
different classical Hamiltonians. T his arbitrarlness of the choice of the
‘basis set introdnces some.ambiguity'in the classicai.Hamiltonian which has to
-be overcome. ,It:is the.aineof this section”to-show_how-the "best",matrix
. representation can be found. | |

The "best".representation is certainly the one in which quantal and
corresponding classical motionvare most similar.“.it is therefore useful
to investigate the relationship between,qnantal and classical dynamies,i
which is most conveniently done by evaluating quantum commutators and |
éiassical Poisson,brackets.8 It is shown in Appendix A that the Poisson
bracket of thewaetion variable m with H corresponds to ;i‘times the commntator
of g and E, where»g is the (diagonal) matrix representation of the spin
operator‘Sz. Hence |

o {mH} =m @

iz .
[}
o

le

tm
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One therefore obtains an Ehrenfest-like theorem for‘the quantity m,

R L

dt "cL T dt M’ (2.2)

where the bracket denmotes the quantum mechanical expectation value. The

"Ehrenfest theorem does.not apply; however, to powérsiof m, i.e.,

d 2 d 2
ac " et dt B >0 (2‘33)_
d 3 d 3. .
at %o 3 " , (2.3b)
and,in‘general also
d o d | | |
3¢ f@ma) gy ¥ at <f'(m’~q;,)>QM o - (2.30)

where fvdenotes.some‘function oftm and q;

“AOne can now understand the effect of a unitary transformation quite clearly:
The SMM—method always forces: the action variable m, i e., the variable which
corresbonds to the quantum number labeling of the particular basis set chosen,
to behave quantum—llke, but functions of the action—angle variables will in
generalznot dozso, By changing the basis set, i. e., performing a unitary
transformation, onevforcesvanother action variable to behave quantum—llke.
Sinceﬂthis‘nen action variable, whichAcan be thought of being a function

of the old action angle Variables, did not behave quantum-like in the old

representation, the_dynamiCS resulting‘from.apblying the SMM-method to the

old and new representation:must be different. This explains not only the

fact that a unitary transformation of the quantal Hamiltonian does



in genetalvnot.correshond.to a canonical'transformation.ofvthe.correspohdihg
‘claseical Hamiltonian, hut is also shows'which’is'the approoriate.basisf |
eet to'use. One shOuld choose the representation in which the indices are
related in the most direct way. possible to the desired quantities (transition

probabllities, etc ).

To be more spec1f1c, con31der the F-H2 case for which F—3. -Rebentrost
and Lester9 calculated the diabatic potential matrix in the cartesian basis

set (x>, |y>, |25,

H | .
Veare “\© By B ) . (2.4)
0 H__ H '
yz ) zZ

where the four functions H ,thy, H_, and sz are real. Obviously the
cartesian representatlon is not the appropriate one to use, for the collision
: 1nduced transitlons occur between states which can be labeled with the
quantum number j——-the total electronic angular mouentum of the fluorlne
atom._:j is related to the cartesian basis set ih a rather indifect'and
complicated fashion. tThusvuse'of the cartesian.reptesentatiohvwould yield

a classical.Hamiltonian which.is totally_unteliahle for stuinng fine
.structurevtransitions. IR howevet,vdepende,on mL—-theaprojectiohbof the

electronic orbital angular momentum onto some quantization axis--in a much

simpler way. It is thus natural--and of course also done in the quantum
mechanical treatments of the problem—-to change_fromvthe cartesian basis

set to the angular momentum basis set {lmt>}. m = -1,0,1. Theé unitary matrix

T2 2
V2 vZ
2 = - i -i 2 (2.5)
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effects this transfdrmation,aas discussed in_reference 4. . Thus one

obtains for the potential matrix in the angular momentum representation

= - Hz
i 1 Y2 -A
' _ 4 : H_ "2 : B\ o :
. v=uv_ U = -1 = H -1 L2] : (2.6)
£ = =Cartx ) -1 z .1 v 7
H _
=A i'_L H
vZ
‘where H and A are given by
A=l +w) (272
2 Txx  yyl , : _ .
A= m__~H ) oL S (2.7b)>
-7 VYixx vy . , : ,
Applying the SMM-method to Eq. (2.6) then gives the corresponding
classical function
v )=(1—" 2)- .+'2'ii
(mL’qu : oy, H. v n, o v
‘— ZmL V{‘mei Hyz sinqmi - (L -m )Aces?qu -: (278)
where s, m, and q aré replaced by L, ﬁL-and qu.in'order to bevconsistent ’
- “with Section II1 of reference 4. B
Tﬁérerié;;hOWeVéf, more than one aﬁgdlér ﬁbﬁentﬁmxfepfeSentafibh.

Considér, for eiaﬁple; a rdﬁéfibh'by an:énglé'¢'éfbund thefz axis
" (i.e., the quantization axis). fThe ﬁnifaty matrix which performs this
transformation——fbr this topic we afe'again discussing'the:general’F-levei

case--is given by
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whgre
Fil
m.k k-1-58 k - -

as defined in the Aopendix of reference 4. Since

' . . S : A - ) o
) L o Y » » » I . ‘ .
0" = 4 Y- C(J’ )-U(¢) = ’cosWE(J’m - stntp sV 210
] - " .
where again g(j) (J’ ) and S(j’ ) “are defined in the Appendix of
reference 4, one sees that this unitary transformation corresponds
to the transformation
m'=m © (2.11a)
¢ =q+d (2.11b)

which, of course, is a canonical one. Hence all the angular momentum
' representations which differ by jnstja rotation around the quantization
axis are physically identical One may use this fact and choose ¢ = ﬂ/2

in order to make the diabatic potential matrix [Eq. (2 6)] real,

€
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B H
B
, vZ
. H ,
V' = U (m/2)veu(n/2) = L& H
x . 6 = . . /2- HZZ
A Iz
V2

:ﬁ.l -é]l:m D,‘

. 1 (2.12)

There are, however, other unitary transformacions which map an

angular momentum basis set onto an'angular momentum basis set. One may,

for example, choose the x-axis to be the quantization axis rather than .

the z-axis. In the F—H2 case this correspondsAtd the quantization axis

being perpendicular to thg‘plane of the three atoms rather than being along

the vector between F. and the center of mass of Hz. The unitary transformation

from the cartesian representation to this new angular momentum representation is

défined by the matrix

-0 1 0 -
= -2 o {g
< ’ 2 .
vz i
/ .—i 7 ‘0 -1
which leads to the diabatic potential matrix
H
zz_ yy
I
f=0Tv__6={o0
L o xcart
H -H :
-2z _YY _4iH
2 Tyz

and to the corresponding plassical function

1(2.13)
H _-H
-3%§—Jﬂi'+1 H
0
H H#H
2z _yy
2 :
' (2.14)



2=

R

o L2~ 2 2z ~ - L 2n .

. .+ (L, )[-——*ﬂg = coqumL +Hyz sin qu] . (?.15) -v
On the otherhand, with the aid of the géneratoi:12
: v L sinq

F, (¢ »m) = -L cos T ( L

Z.qu’mL - _ %L"

mLtanqu - - )
+m.L cos” (F—:Tr) o - (2.16)

the classical function Eq. (2.8) can be't_fansvformed, ‘t;o

H+H
z

: .; - ., |
V(m ,q_ ) = (1- -')H +
VL)« O D +E
4;(L2_;L2)[~E§§_XX cdSZQmL +-H s1n2qu]
é Hv -H |

+@ie) =2 C@an

Comparing Eqs. (2 15) and (2 17), one sees that changlng the quantlzatlon
axis corresponds to a canonical transformation only if L2 is replaced by

its quantum mechanical value :

L) =2 |,

rather than making the semiclassical Langer-modification

' P e +%)2 =225 .
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‘Since the choice‘L2v* L(L+l) weuld give rdise to uneven "boxes"'used in--

the clessical histogram.epproximatioﬁ“(cf.:SeCtion II1 of reference 4),

it-iseﬁrobebly desirable to fetein ;he-Langer medifieation’end live with

the small ambiguity due ia the various possible choices qf'the quantization

axis._ﬁFer'the'three state caee, F=3;'it can in fact be shown that for
arbitrarz:rotations of the quantizafion.axis, a quantum unitery transformation

: does.cofrespdhd to a classical canonical'transformatioﬁ if one replaces g

" by s(s+1); i.e., with this replacement ali'angular momentum representations

.'afe_equivalent.v‘rhis cemes ffom the fect that, for‘F=3 and 32 replaced by

s(s+l), not only m bqt also (sz-mz)llzeosq and (sz-mz)lzzsinq followvthe

quantal motion, i.e.,

d ' |
dt PcL T dt M dt e

2 2.1/2

d ., 2 21/2 d - d -
— - = < - = <

gt [(s-m7) " Tcosqlyy = G <(s7-m)™ Teosq> oy = g S
d 2 21/2 . 4 .2 21/2  _d

ac [(s—m ) isinalyy = gp <(s-m )" sing>oy =g <5y

For‘F7> 3, howevef, this is nevlonger the case.

‘gTo summarize, theiclassical model'obtained via the SMM~me thod for fhe
‘generel F—level eeSe depends on the perticulaf representation one - chooses
for»the quantum'ﬁemiitonian matrix; i.e., a unitary t;ansformation of the
>Hamilt9nian'matfix does not in gene;el'cbrrespond.te a eanonicai transforma—"
vtidn of tﬁe classical Hamiltonian.‘}rhe reeeletioh of_this indefinite
esituaiion'is a qualitative ene: one chooses the matrix representation of

the_Hamiltoﬁian'to be one for which the quahtum numbers (i.e., matrix indices)
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are most ciosely releted to the physical euantities:of intereet,78uch as .

angular momentum quantem.numbers. For the 2-sgtate case (F=2), however,

this ambiguity does not exist,.aed for the 3-state case the ambiguity is

removed if the replacement (éZ)CL + s(s+l), s=1 is made and 1if theklvmit»:arvy

transformations in question are rotations in space, e.g., if the various

representations in question are all angular momeﬁtum representations.

Eeen for F=3, however, we cbneider it preferable to use-the'Langer.medification,
9 .

(s )CL»+ (s +-%)2, s=i, and live with the minor dependence on'the choice of

quantization axis.
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YIII 'The SMM-Method for More than One Q;gree of Freedom.

The SMM—method makes use of the matrix representation of the electronic

Hamiltonian ;

Byv o = Vg lBIY, | - (351)

where H denotes the electronic Hamiltonian operator and wa the electronic

ﬁevefunelion.r In generei'a wiil be a composite index. Consider for

example the collision of an F-atom with a closed shell atom or molecule.

The electronic waﬁefunction, and hence the.matiix, may be thought of

' as labeled by

a= (B, S, L, mg, m ) , o . | (3.2)
where B is a composite index containingeall'the quantuﬁ numbers of the
oiosed shell molecule, the'ouentum‘numbers of the in;er shell of the
fluofine atom,gehdvthe principal quen;um.nqmber of i;eﬁopte:zehell.ﬁ_s, L,
ms,.meareothe_electronie‘spin end orbital angular momente epo their o
.projections_onto the intefmolecular axis, respectively;‘ The fluorine atom
is‘aesomed:;o.bezéo the 2P,sta»te and the collision.eoergy_so low tha;v

only m and,mL.may change during the collision. i Thus the multi-index

S -
B and the- indlces S and L are "frozen » 1l.e.y have the values B 0,

S =f% end L= 1 ;hroughoutvthe‘collisiOn. Hence a is*essentially a double
index and instead of considering H_, ‘one should consider H '
T a’,0 SmL,

To be physically correct, therefore, the classical Hamiltonian must have
two degrees of freedom, nemely“the_classical‘coun;erparts of ng and ﬁL.

“Tovmakevall this more precise, suppose on physical groundsvthe index

a can be written as a‘multi-index
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a= (B, kl"kz""'? kr)

where B represents all the "frozen" quantum numbers. The corfésponding

classical Hamiltonian should thus depend'on‘r degrees of freedom, i.e.,

H

LI L S L ST A S A S

" To be specific, consider the case r=2; the generalization to arbitrary

r will be obvious. The Hamiltonian‘matrix will be.writteﬁ as

- e e
with |
KK =12, ;f.,'F. I  (3.3a)
..k',k'; 1;2;_.,,, e R ER:

i.e., there are F states associated with the K degree of freedom and £

_ states with the k degree of freedom, so that H is an (F-f) X (F'f)‘matrix.

To obtain a classical Hamiltonian one first considers HK;k' as aFxXF
» an or ‘ T K sKk
matrix of f x f submatrices,' One then applies the SMM-method to all the

F' £ xf submat;ices and obtains a F X F métrik whose matrik elements are
functions of m and q; One then.apblies che“SMMrmephod toithis FXF

matrix HK,’K(m,q), yielding the desited funéﬁian“ﬂ(m,q;M,Q). It #s showﬁ

in Appendix B how to proceed ip detail. It is als§ shown thefe that qdnsidering
Hﬁ'k',K# és aF XVF matrix‘of‘f_x f suﬁmatrices or as a f X f mafrix of

F X F submatrices leads to the same classical Hamiltonian.

Leﬁ ﬁs return té the egample’qf fine-structure transitions in tﬁe

fluorine atom. The electronic Hamiltonian is -



[
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L aw

S ’ ‘ - - . ',
“where V is the interaction operator, and L and S are the orbital and spin
' ' . T S
angular momentum operators, respectively, i.e., 2B L-S is the spin—orbit-
coupling operator and the constant B is chosen to give the correct term

splitting. Taking matrix elements yields

S O A8 L Je ) S S S T
R A . T S e N

+V“';',‘5L *nimg @

where L;, Sx; etc., are the matrix representations of the .angular momentum

“operators for § = %-and L =1, and the matrix V is given by Eq; (2.6).

Applying the=(generalized) SMM—metnodédescribed above'and in Appendix B

to Eq.. (3.5) yields

| 7 v, , 1, ) 2B{ mg V{ - K Y/Sz—m 2 cos ‘~ )
AL N m’- TR (q%qSJ

o (l--mL )H + mL H - ZmL‘VE yz sinqmL

- (L"-m, ") A cos2q : : "~ (3.6)

vwhich one recalls is identical to the electronic Hamiltonian of
references 2 and 4, except for the constant, and hence unimportant, :

term B(L + S ) Adding this term to the Hamiltonian, the spin orbit "
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interaction can be written as

5 4 ‘,‘.. : _ _‘ (3.7)_
‘.with

v' - | (3.8)

in both the quantal and the classical Hamiltonianr
| The electronic Hamiltonian was derivedvhere in_the'uncoupled (cf.
reference 4)'|mSmL§ representaticn, whereas tne object of the method is
ro describe Aj-transitions. Thus, in light of the discussion of Sectianl
II, the coupled representatlon |3,mJ> should be the better one. ,Unfortunately
the SMM—method does not work in the IJ,mJ> representation because mj varies
from -j to j rather than between flxed numbers. The electronic Hamiltonian
in the lj,mj> representation is'thue.a matrix:of Submatricea of which some ;
are non-square matrices, and the SMM-method can obviously not be applied
to non—square matrices. |

'In referenCe 4 we derived the classical_functlon which correspondsvb
to the interaction operator V via the simnler minded version of the
SMM—method‘whlch always gives'ﬁamiltoniane of cne degree of freedom. It
worked because \Y o' mL’m is diagonal in and independent ofdms. Hence
the correspondlng funct;on V(mS,qm ,mL,qﬁL) depends on neither q nor

m,

x For the spin-orblt coupling term, however, one must use the

generalized SMM—method and in reference 4 this was circumvented by making
use of the CPP-analysis. The structure of this term is so simple, however,
that it is clear from the very beginning what the corresponding classical

function must be.
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.7

IV. The Adiabatic Representation. R T

This section shows how the éﬁM;method’cahkﬁake use ‘of ‘the adiabatic-

representétion directly; ,Théiidéé is simply to apply the SMM-method to the

‘matrix of nonadiabatic coupling elements, e

\'F.;f.:SmitBS has éhown'that in the adiabatic'repreSentation'thé '

~ schrodinger Equation can be written in matrix form as

. (6.6
2 g L+ U - e
wﬁere’x deﬁotes the vecﬁor of”heavy'partiéieélwavéfunct;énéiméftﬂ;- -
adi;baticuﬁotential matrix, and I is the matrix of coupling elements
defined by i
i . fﬁ) =f¢*.(r,R) P2y (rmyar . (4.2)
k', k™7 k i o9R k._?. o ’

Here wk stands: for the k h adiabatic electronic wavefunction, and r and
R;;gpresent all electronic and nuclear coordinates, respectively. T

can be shown to be hermitian.

[

In order to keep the notation simple we assume that the elect;oniégfgfi
Hamiltonian has only one "relevant" degree of freedom. AfterAapplying
thé:SMM-méthodvto'both T and U,Eq. (4.1) strongly suggest that the

classical Hamiltonian in the adiabatic representation is given by (. )
' : e PEVERER I & (. Bb}

H(P,R,m,0) = 5 [P +T(0,a,0]% + U(n,R) .3

I NN

Ctandan

where' the classical function U(n,R) is q-independent since U is -

~

diagonal. - ' o o . vv_f;uq:iug i,
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The quantal Hamiltonian in the adiabatic representation can be
"obtained by applying a unitary transformation to the Hamiltonain in

~ the diabatic representation. Thus it is tempting to assume that there

exists a canonical transformétion which transforms the classical Hamiltonian

-of the diabatic reﬁresentation'to the classical'Hamiltqnian in the adiabatic

representation. In fact for the two state case, F=2, this has already been

proved by Miller and McCurdyl’10 and--using a different method--by Meyer

3,11 If the number of states F 1s léfger than two, however,

and Miller.
a cénoniqal transformation connécting the Hamiltoﬁians of. the diabétic

and the honadiabatic representatiog cannbt be found. This is dué‘to the
fact, discussed in Section II, that for F > 2 a unitary transformation of
the quantum Hamiltonian does not in geﬁerai cortespbhd to a cénonical
transformation of the cofresponding claSsical Bamiltoniap derived §ia

. the SMM-method. Thé fagt.fhat e do gét.fhe correct classical Hamiltonian

for the two statevcase,‘however, leads to the assumption that Eq. (4.3)

is the correct classical Hamiltonian--i.e., the best possible classical

approximaﬁion—-for uéing the adiabatic representation.

To emphasiée this pbint ﬁe apply Eq.‘(473) to é known example which-
is very much the same as the one studied in Our'previous_papgr,4 namélfv
the coliiﬁear étom—diatom (harmonic_oscillator).collision system. The

Hamiltonian of this system is

u=—+P—+lu'w02r +V@R, ) . (4.4)

For test purposes the vibrational degree'of freedom will be considered to

be the quantum-like degree of freedom, i.e., to play the role of the

-~

D
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electronic degrees of freedom. - Again, V(k,r) is expaﬁdéd in_é Taylor‘s'

series in r throhgh_terms in rz, i.e., V(R,T) is replacgd.by.

VR U@ 3 V,@ o (4.5)

whére

" S énV(R,r)~‘ :
Vn(R) B ——_—7;_——Ir=0

L e
‘ or |

Assumihg this form of the potential, the Hamiltonian Eq. (4}4) can be

written as

| 2 2 |
‘ P- 1 2 on 12
H(R,P,T,p) = 35 +52 +3 1 0 (R) [rr(R)]

V(R + (20 @1t vym .1
 with
W (®) = w02‘+-u_l v2<g; T (4. 8a)
‘and
. r0~f fvlp wz(R)]fl vi(R) ». . . - (4.80)

This form of the Hamiltqnian is wéll suited for the transformation to the

adiabatic representation. We first transform the classical Hamiltonian

to the adiabatic representation using an F3-Generator.12 Deﬁoting the

"old" variables as {P,R,p,r} and the "new" variables as {p',R',hn,q},
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where we use hn as action variable rather than n in order to make n.

dimensionless, the generator is given'by

2
. = -PR' + B cotq
F3(PR%poa) = PR + 20D

i il LN CO NN

(4.9)

The canonical trénsfofmation is now Spécified by the usual derivative |

relations
oF o
D =__3_= '
R 5 R' .
, ~ 9F, 2  dr
PR S
. 3F3 vOt h v
, Bpg‘ Hw 0
Chae 3 p?
nE TS T 2 "7
q 24 w sin'q

Thus the "old" variables are given in terms of‘the_"neﬁ"“ones'by

v2n + 1

'r—ro =-h cosq
Vitho '
p=vV2n + 1 /Hhw sing
k-
P=rP' - g%‘ % (n +—;-) sin2q

dr T '
0 - :
- 4drR' JZn +1 /uﬁw sinq -,

(4.10a)

(4.10b)

(4.ldc)

.(4.10d)

(4.11a)
(é.l;b)

(4;11c)_

(4.114d)
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and using.Eqs.'(é.S)_énd (4.11c) gives

Ty

] TRt T
®CZ W ZE @

Hw

(4.1235

4.12n)

if-one_how substitutes Eqs.-(4.1l) apd:(4;12) into Eq,i(4.2).andidrops o

the prime'from R and P, oné obtains the classical»Hamiltonian in the

adiabatic representatioh:f

: . /—ﬂ » dV2 S
_H(R’P_sny.q)vg — [P +G W ( . 2 dR) + .

- dV ,"'
- v2n +1 singq
2w

+ oo+ 2w’ w - CTI

- _Tﬁ_{z_ Lo (a+3) sin2q)®

(413

‘If one:noﬁﬂgoes back to Eq. (4.7) and looks upon it as the quantum

Hamiltonian, one nétices that the.(ihterngl) adiabatic eigenfunctions

are always harmonic oscillator eiggnfunctibns. The interéctiqn mereiy

shifts the frequency w and the location of the equilibrium r

’0’

nonadiabatic coupiing elements are given by

e dw R
k.’k(R) = v?ﬁi["’k'(.r),'éa Y () dr

- dr o s L
' ' 9, ,
_'ih —aig’f?kn(?) —3-;; Wk(r) dr...

- where wk(r)'deﬁotes the k;h harmonic oscillator eigenfunction

Thus the

(4.14)
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1/4 -1/2 z H.(Z‘ B (4.15)

HE i (2

ho - @ eyt

and

z ”\/‘h‘ (r-r)
The arithmetic is easily

where Hk(z) is the kP Hermite'polynomial.,

done, and one obtains

av. vy oav, [ -
ek ® T m T w® Vae w {Gk' k-1 KT Sy KD
W _a < .  o ) (4.16)
w7 M e M - 60, , KD - @30

.The-adiabatinpotentiai matrix is simpler t9 eVa1uate:
(4.17)

S

%“k=k. uk+>mm>+vm)+uw<m1 Ly lwy

T rucating these infinite matricés to.F‘x F matrices and substituting
them into Eq. (4.1) yiéids the usual set Of:coupled_equations in the

‘adiabatic representation. On the other hand, épplying the SMM-method

to these truncated matrices yields

U(,R) = (n+ Pho® + VR + 2w ®17 v iR 4.18)

: S dv V., av : - ‘
o 1 ,%1 1 /h
- T(n,q,R) = Py ( ® - 2 dé‘) — fF(n) sinq

Hw
--c_i_V_z_ i_ (n) in2q (4.:‘[9.)
dr 2w Bp' SINAA :

.4
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where, after making the Langer-modification as discussed in reference 4,

F-2  , F-1

fF(n) = {g (s-+%?2-m2 ‘ 2: mi 2: W§1;, vk | C  . - (4.20a)
o =0k R »
: ' ! S 3.9 o F<3 F-2 . >e _ S o
gp(n) = Lics +-1-)2'-m2] ) m? Tz ) vk(k +1) ' (4.20b)
F. 2 2 3.k
. A j=0 . k=1 S : : S
and
m = n-s .
§k) and s ﬁoth depend on the number of stateé F and are defined in the

'Appendix'of reference 4. The functions fF(n) and gF(n) are'precisely

the functions discussed in Section IIlc of reference 4. Substi;uting‘
Eqs. (4.8) and Eq. (4.19) into_Eq; (4.3) gives the classical Haniitonian

via the SMM-method in the adiabatic representation

‘ : av vV, dv, .
- S ! : 1 -1 2.1 /h
'H(R’P’nsQ) = [p + (- - —=) \F‘ f_.(n) sing
R | M ~ 'dR | 2uw2 dr W °F
v, a

TR 7w () ein2a)

+ (n,‘+-§-)‘hw.-‘+ Vo * (2uw2]'1 (4.21)

This Hamiltonian would be identical to the exact one of Eq. (4. 13) if

the functions f (n) and gF(n) were the exact functions

f (nv)"‘=.f V.Zn,f!-l

exact

gexact(g) = n'*ni .
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Figures 1 and_2vof“refereﬁce.4 show that fF(n) and gF(n) seem to convergé
‘to the exact func;i&ns as F + o, thus indicating that most, and perhaps
all, of the error introduced is dué to trunéation. In aﬁy event, the’
main'£esult of this "test" is that the SMM-method applied to_the adiaﬁatic
representation gives classical Hamiltonian functions whiéh'are of the same

- "quality" as applying it to the diabatic representation.
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V. Concluding Remarks

The Spin—Matrix-Mapping (SMM) me;hod.has bee@vreégpalyzed ;q{twgwﬁspggts,”
First, its relation to the'Classical-Pseudo—Potentiai (CPP) method has been
shown. vSecond; theborigin of the ambiguity'of the SMM-method whicﬂ comes from
the arbitrariness of the choice of the quantal basis set has beén clarified,
‘and a way to identify the.appropriate basis set has been'proposed. TheISMMF
method has then been modified to obtain a classical model of any desired
number of degfees of freedom.‘ This is an important generalizétion, since
only a veryvlimited-number of pfoblems require an electronic Hamiltonian of
only one effective degree of freedom. Ip fact, to derive the glectronic
Hamiltonian for the F-H2 éélligion system, as done ih pur.previous paper,4
we had to make use éf both the SMM-methodlaﬁd the CPP-analysis. Since that
electronic.Hamiltonian has two degrées of freedom, the SMM—methéd was applied
theré to only part of it. |

The second generalization was to ShOW'ﬁOW‘the SMM-method can make use
. of the édiabatic repfesentation directly. Althéugh for the'scatteting :
.systems investigated so far we;have used a diabatic representation, the
direct uéé of the adiabatic represéntation might be of great valﬁe for other
sysfems. Indeed,.more often than not quantum chgmistry supplieé one with
the adiabatic potenfial.gurveé and'the noﬁéadiabatié coupling elements
rather than with the diabatic potential matrix. The dérivation éf ;he.
classical Hamiltoniénvdirectly from the adiabatic represgntation not oniy
saves one from having to transform the adiabatic information to the diabatic
poténtial ﬁatrix,.bgtrthe resulting Hamiltonian might also be préferred over
the classiéal Hamilfoﬁian derived from.the diabaﬁic repfesenfatibn. bThis |

will'bé the case'if'the coefficients of the q-dependent part of the Hamiltonian
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‘are significantly smaller in the adiabatic representation than in the

diabatic one,‘i.e;, if the electronic dynamicé -is more nearly adiabatic.

1

P,
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Appendix A

It is useful to introduce non-hermitian matrices and complex functions.

One defines the matrices E(J’l) by

o |
9(j,il) i §(J,£)‘ 1£2 >0
C(j’m)_ - 1's(j’m) if 2 <0 (A.1)
. . ’

and the corresponding classical function by .

£(3:2) z_mz)‘lzl/z R |

(m,q) = m (s : (a2

where the F x F matrices C(j’l), S(J’Q) and M(J)
: - . o x ' N

~

and the'number s are defined

~

in thé Apbendix of reference 4. We also use a notation in which h=1 so that

m and q both ére.dimensioniess. One then likewise defines

r _
‘ 1 , _
-zf(aj’zfibj,z) if % >0
c. . = d, o if 2=0
Jsz < J .
L(a, |,y +1b, £ <0 (A.3)
2 J:Izl J’Izl
.

_ where a, l; b, 3 and dj are also definedvin the Appendix of”réferenceva.

J>» Js

Equivalent to the definitions above are the’following equationsi
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(3,8 L -
2 v, Gk'-z Y if 2 >0
- 'k',k - . < mk Sk"k D if.. ! - 0
2V St -8k if 8 <0 (A.G6) . 5
N : ' .
"and
(.
1 (R) -
> QE: Wik _nk4£ e .if % >.o
L 0) - _ e 0o
N éé;-wj’k* Hye k if L =0
1 Pl LD S
L2 & Bk lk,k+|2l if z»< 0 (A.5)

again are deflned in the Appendlx of

where the quantltles V(J’l) and W§ )

reference 4. sting these new matrices and functions, the quantum and

eorresponding classical Hamiltonian may be written,'reépectively, as
H= Y e, gd-Y) " (A.6a)

'H(t.n,q) - (J ’2')

|
0

(m,q) i (A.6b)

In order to investigate the classical and quantum mechanica; dynamics,

(J’ )

we will evaluate Poisson brackets'and commutators of the functions E (m,q) WV

(3,2

and the matrices E

=

with the action variable m and its correspondlng
matrix M, respectively. Straight-foward differentiation shows that the Poisson

bracket9 is.given by
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{m;E(j’z)(m,q)} = - ilE(j’z)(m,q) .

(

WX

(E

requires

(3,2

5 (150 28
NI

.o}é)k' = 2 6

_k'-l,k u

g G0
’k k’-'q"k H

R e T

it follows that the commutator is given by

[y,g(j’z)]k',v~= 2 8

k 7 k'-2,k U

v @0y

k

E

- On the other hand, with Equations (A.1)-(A.4) it follows that

(3,%)
k',k

where y = k if £ 2 0and u = k' if £ < 0. Since the Kronecker delta

(A.7)

.(A.8a)

" (A.8b)

(A.9)

Therefore, comparing Egs. (A.7)‘and (A.9) one obtains for ail j+|2 <F

[,

=

or in view of “Equation (A.6),

[,

H

] i{m,H} .

- (A.10)
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Aggendix'B
- . In this appendix‘we shall derive explicit'formulas for the classical
-analog Hamiltonian  depending on:tﬁo degrees of freedom. We also shall
use the notation in the Appendix of reference 4;

| ASSume'th§ (internal) Hamiltonian matrlx HK'k',Kk is gnv(F~f) X
(F-f) hermitian matrix with k',k = 1,2, ..., f and K',K = 1,2, ..., F.

We first separate the real and imaginary part of H.

Bt xe ™ Bee,ee t 7 Trw i oo 6D

where R is a real symmetric and I a real antisymmetric matrix. We now

consider R and I as F x F matrices which matrix elements are f x f matrices.
These f x f submatrices are in genéfal neither symmetric nor antisymmetric,
but they can be, of courSe, uniquely decomposed into a sum of a symmetric

“and an antisymmetric matrix, i.e., we may write H as

L EYR L ®K)
,Hkal ,Kk - SRkl _,k +A-Rkv ,k .
oo (K',K) (K',K), | |
+iny O +anl 2 e

where for fixed K and K' the matrices SR and SI are symmetric and AR and

R xx

Al are antisymmetric with respect to k,k'.

Thus SR, SI, iAR, iAM ére hermitian matrices and one may apply the
SMM-method to them as described in the Appendix of reference 4. Doing
so one obtains an F x F matrix whose matrix elements are functions qf m

and q, i.e.,



HK" (m,Q) = » z:

-2-1

rh
1

—

Hh

o
]

_ Qo
oL

=
]
[
de

=0

~To prqceed further, we first

The matrices SR, AR,

~ T Ao
~re

Lemma-:

symmetry “properties

f-l-l'
‘ j::o '."
£f-2-1

=0 -

0
-2-1
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j(sz_mz 1/? coskq' k=1 ;li SRk k*Q
m (s? m2)£/2 81p2q S §%& ARé?kzg)
) 3 . f-R, '. .
m?(s?—mz)zlz coslq‘ z wifi SI§Kk;§)
j 2 2 /2 | ' '
(s -n°) (2) (K »K)
sinfq 2: W k K

formuléte-the f0110wihg Lemma;

ﬁich respect to K,K'.

(K',K)

Rk

(K',K) _

'Axk.

(K',K)'=

SIk',k ‘

(KK
k',k

' (K"K)r. 

(B.3)

SI and AI as defined above have the following

© e,

(B.4a)
(B.4b)
(B.4c)

(B.4d)

With the aid of this Léﬁma, which ve will-prove shortly, it is not difficult

to see that HK K(m,q) is a hermitlan matrix.

.technique again and obtain

_One may thus apply the SMM-
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| F-1 £-1 F-L-1 f£-8-1 R '
| 2
(RIS Y N ) M’ 3 (2eatyLI2 (2 gty¥2
=0 #£=0 R

» F-L
{cosLQ cosiq ) 2: }L; 52) SRéKkizL)

F-L »
. . . _ L) . 2) ,,(K,K4)
- sinlQ sinfq 3. W W, AR
e ] J,K ",k Jk#
: F-L f-2
. L) ) . (K,K4)
+ cosLQ sinfq Z W W, AT ?
K1 g DKk ek
- ' -L  f-2 o , .
+ sinLQ cosfq z: 2: §L; ngi SIéKiﬁzL)} . v -(B.5)
o , k=1 ’ :

NMw consider H as a f x £ matrix of F x F submatrices; the decomposition of

~
~

H then reads .

(k' 4+ ap(K'5K)

H‘Kk' Kk‘ SRev g Y AR g

(', k) , (k'K

&AL ) (8.6)

(SI

where SR and SI are symmetric and AR and AI are antisymmetric with respect

to K,K'. If we apply the SMM-procedure now first to the F x F matrices
and then to the f x f matrix of corresponding classical functions, we arrive

at an expression similar to Eq. (B.5) but with SR, AR, SI, and AI replaced

~= <= it

by SR, A1 and SI. Thus it remains to show that

~a~ ~ o~
~ - ~ e
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(K' 9K) A(k' ’k)'

SRevk T SRk

'J{(B;7a)

(K',K) _ 2(k',k)

ary o0 <Rt D)

(K',K) _ 7 (k'K : (B.7c)

SIk',k T RRYLK
v '
FICSI SR (A ) (B.74d)

k',k K',K :

With the aid of thé Lemma, however, this is evident if one recalls the
.fact that the decompositidn of a real matrix into a sum of a symmetric
and an antiSymmétric matrix is unique. This thus shows that considering

_the matrix HK' as an F x’F matrix of £ x f submatrices, or considéring _

k',Kk
it as an f b4 f ‘matrix of F X F submatrices, yields the same result.

T he only remalning task is to prove the Lemma. _To do sovit is useful

to define the matrix D by

~

(K',K) _ (K' ) ®K) N
Dk',k v. . R-k kl v v‘ . (B'S) .

Since R is symmetric with respect to interchange of both indices one obtains

Rk o Akéx"K) RK k',Kk Kk,K'k'
- e
S o1 L KO
so that |
(x'.x) ‘(k k')' AR K

Pv,k T AR i e @9
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" For fixed K,K' D must be a symmetric matrix with regard to Eq. (B.8) and an

~

'antisymmetric matrix with regard to Eq. (B.9), hence it must be zero. With
- D=0 it follows from Eqs. (B.8) and (B.9) that SR and AR are symmetric with

respect to interchange of both sets»of variables. Equations (B.4a,b) are then

proved by

(K'K) _ oo (K,K') oo (K,K')
k

SR R'k

+

(K',K) o (K,X') ' (K;K')'

"A-Rk'.,k__ = ARk_,k' = ARGk

Equatlons (B 4d c) can be proved by the same technique applied to SI and .

=X

AI.

It is sometimes convenient to make use of the non-hermitian matrices

E(J’z) and the complex functions E(J’z)(m,q) as they are defined in Appendix

~

A. Using them the quantum Hamiltonian may be written ‘as

F-1 - f-1 F-|L|-l £-[2]-1 |
® L=-FH 2£=-fH J= 0 ‘ :
where the‘tensor product is defined by_
(A ﬁ B)K k! ,Kk AK' ,K.Bk',k ’ . . (B’ll)

and where the coefficients c are given by (cf. Appendix A)

TLjR
- F-L £-%
= L) L&)
- SILe K{:l 1?; e(L) e(R) wJK ik “1(+L K4 .K, K (B.12a)

for £ 2 0 and L 2 0. If one of the 2-indices is negative one must transpose
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H with'reSpect to:this éubsetfof indices and take the absolute value of

the hegétive L-index, e.g.,

F-L £-2%

¢H) (12|> |
e " Kf_: k§l ¢(L) e(R) Wry H‘K-iLkKk+|SL|
(B.12b)
for L > 0, 2 < 0. The functioh e(R) 1is given by
1 1if 4 =0
e() = ' (B.13)
' 3 ELF0 |

and similar for e(ﬂ);ﬁ Equation (B.12) can be proved by substituting Eq.

(B.10) into it. frhexcbrresponding ciassical'Haﬁiltonian is now given by

F-1 £4  P-|L|-1 £-|8]-1

JLJQ

_H(MsQ,‘uh(l) = 2 :
 L=-FH =f4 J=0 =0
9D a0 - e @) RS

whiéh can be shéwn to be i&entical tq Eq. (5.5). This forﬁ of the Hamiltonian
is easier ﬁo generalize to more than twovdegreeé‘of freedom. It also shows
that the "Eh;enfestvtﬁéorem" aé discﬁséed in Section.II holas fdr all the
Various m's, i.e.,'ﬁhe dynamiés is,correct for as many:éction variables as
thefe are (internal) degrees of freedom. Thistfollows from

T R AL G R A RPRC 15 S E(J,L) g (g4 | g6,

~
-~

(B.14a)
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(

w9 @, 9P a0 9P @) = e P a0 29 V@,
EGB o) o - (B.14b)
which, with the aid of the results df Appendix A, shows that -

(1,0)

(1,0)

,» H} < {E »q),H} = {m,H} (B.15a)

-~
~

-i[1 8 E
and, using an equation similar to Eq. (B.14),

{M,n} .» (B.15b)

: -i[g(l’o) 2 }', g]‘ A {E(l’o)(M,Q),H}
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