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Abstract 

This paper analyzes various methods that have been developed recently 

for constructing a classical model for a finite set of q~ntum mechanical 

states (electronic states for our applications) and also shows how one of 

them,' the spin matrix mapping method of Meyer and Miller, can be generalized 

in two aspects. First, it is shown how the methodology can be modified to 

obtain a classical model of any desired number of degrees of freedom, rather 

than only one degree of freedom as before. Second, it is shown how the 

method can be applied in the adiabatic representation, so as to be able to 

use directly the adiabatic potential energy surfaces and non-adiabatic 

coupling elements produced by a quantum chemistry calculation. 



-2-

I. Introduction 

'1-4 " ' " ' 
In recent papers several methods have been introduced to model 

classically the electronic degrees of freedom in a molecular collision. The 

motivation for this work is to combine the usefulness of a classical 

mechanical description of heavy particle motion (i.e., translation, 

rotation, and vibration) with a dynamically consistent approach that 

treats all degrees of freedom; electronic and heavy particl~on the same 

dynamical footing (and thus classically). It has been noted that models 

which fail to treat all degrees of freedom on the same dynamical footing 

will not'describe certain dynamical effects correctly. Encouraging results 

have been obtained in applications of this model to quenching of fluorine 

atoms,F(2Pl/2) -+ F(2P3/2 ) ,by collisions with H+, Xe, and H2 • The purpose 

of the present paper is to generalize and extend these methods for obtaining 

a classical Hamiltonian that corresponds to a finite set of quantum mechanical 

st'ates '(electronic states for the applications we have in mind, although this 

is of course not necessary). 

There are basically two methods that have been used to derive the 

classical Hamiltonian for a non-adiabatic collision system (both of which 

lead to the same results for the applications made thus far): the classical 

2 " 4 pseudo-potential (CPP) method and the spin matrix mapping (SMM) method. 

The classical analog of Meyer and Miller,3 which seems to be more exact 

but more difficult to apply in general, gives a different Hamiltonian from 

the methods mentioned above in the general case, although for the specific 

case of two states all the various methods lead to precisely the same result, 

i.e., the sallie classical Hamiltonian. 

4 The SMM method-, as it was derived by Meyer and Miller, has the 

• 
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disadvantage of always leading to a classical electronic Hamiltonian 

with only one degree of freedom. The CPP method of McCurdy, 

Meyer.and.Miller,2 on the other ha~d, yields as many electronic degre~s 

of freedom as are physically meaningful. This latter method, briefly, 

consists of four steps: 

1. Write down the full classical Hamiltonian, treating all the 

electrons and nuclei as classical particles. (One may simplify things 

by considering only the active electrons, the result is the same.) 

2. Change all the coordinates and momenta of the electronic part 

of the Hamiltonian to the appropriate set of action-angle variables. 

3. Identify the "relevant" electronic degrees of freedom-,...i.e., those 

whose action variable can be changed by the collision--and average the 

Hamiltonian .over all the angle variables of the other electroni!: degrees 

of freedom. By so doing the Hamiltonian becomes independent of all the 

angle variables one has averaged over, and their canonically conjugate 

action variables become constants of motion on which the Hamiltonian depends 

only parametrically. 

4 •. Equate the potential functions, which due to the averaging process 

now depend only on the "relevant" electronic degrees of freedom, to the 

quantal diabatic potential matrix. 
, , . , 

The fourth step is usually the most difficult part, and there seems to 

be no totally unambiguous way to determine the dependence of the parameters 
• 

in the classical Hamiltonian for the general case, although it can be done 

for some special cases. 

The general idea of the CPP approach, however, is clear. Althoughone 

starts with a Hamiltonian that treats all the electrons classically---which 

of course might bea very poor approximation--one arrives at a perfectly 

reasonable classical Hamiltonian since one concentrates on the few degrees 

of freedom 
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wh.ich are relevant to the scattering process. The motion of these few 

degrees of freedom (often a collective -degree of freedom, such as the 

z-component.of the angular momentum of all the electrons of one molecule) 

is governed by potentials which are generated not only by the pair-potentials 

(i. e., the Coulomb potentials) but also by the motion of all the degrees of· 

freedom that have been excluded. The many body problem to obtain these 

potentials is, of course, solved quantum mechanically, i.e., one makes 

use of the potential energy surfaces supplied by quantum chemistry. A 

very trivial example may be illustrative. Suppose none of the electronic 

states are excited during the collision. The prescription is then to 

average over all the angle variables, ·and the ave~aged potential will 

depend only on the nuclear coordinates. Step four of the procedure 

described above becomes trivial since one simply identifies this potential 

with the adiabatic Born-Oppenheimer potential surface. Thus one arrives 

at the Hamiltonian which is commonly used to study collision 

induced rotational and vibrational transitions in molecules. This example 

also shows that one may indeed neglect all the "inactive" electrons from 

the very beginning. 

In away the SMM-method accomplishes much the same result as the 

CPP-method. The quantum chemists "condense" the many body electronic 

problem to a: small diabatic potential matrix, and the SMM-method "condenses" 

this matrix to a classical Hamiltonian of one degree of freedom. Thus 

this method achieves the same "reduction of degrees of freedom" but it 

does so to the extreme: One always arrives at an electronic Hamiltonian 

with ~ degree of freedom, regardless of how many degrees of freedom are 

physically meaningful. In Section III, however, we will show how this 
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limitation of the SMM-method can be overcome to yield classical Hamiltonians 

of as many degrees of freedom as the physical problem requires. 

As applied thus far, both the CPP-method and the SMM-method make use 

of thediabatic electronic representation of the scattering process. Quantum 

. chemists, however, usually calculate the (diagonal) matrix of adiabatic 

potential surfaces and the nonadiabatic coupling elements~ Although 

techniques to transform the adiabatic potential surfaces and the 

·nonadiabatic'coupling elements to the diabatic potential matrix are well 

5-7 established in the literature,it is desirable to make use of the 

adiabatic representation directly. How this can be achieved for the 

SMM-method is shown in Sectin IV. 

In, the following section we first discuss an ambiguity of the SMM-method, 

namely the fact that different choices of the basis set which is used 

to obtain the matrix representation of the Hamiltonian may lead to 

physically different classical Hamiltonians. How to remove this ambiguity, 

i~e., how to choose the appropriate basis set, is also discussed in Section 

II. 

'., 
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II. Quantal and Classical Dynamics--TheEffect of a Unitary Transformation. 

A classical Hamiltonian derived from a hermitian matrix via the 

classical analog of Meyer and Miller3 has the desirable property that 

a unitary transformation of the Hamiltonian matrix cor~esponds to a 

canonical transformation of the classical Hamiltonian. Consequently, 

different basis sets used to express the quantal Hamiltonian in a matrix 

representation do not lead to physically different classical Hamiltonians, 

and thus all results are independent of the particular matrix representation 

used. Since the classical analog and the SMM-method yield the same classical 

Hamiltonian for the two state case, F=2, all this holds also for the SMM-method 

if F=2. For F > 2, however, one is confronted with the p~oblem that for the 

SMM-rnethod a unitary transformation of the quantal Hamiltonian matrix in 

general does not correspond ,to a canonical transformation of the classical 

Hamiltonian. Hence different choices of the basis set may lead to physically 

different classical Hamiltonians. T his arbitrariness of the choi,ce of the 

basis set introduces some ambiguity in the classical Hamiltonian which has to 

be overcome. ,It is the aim of this s,ection to show how the "best" ,matrix 

representation can be found. 

The "best" representation is certainly the one in which quanta1and 

corresponding classical motion are most similar., It is therefore useful 

to investigate the relationship between quantal and classical dynamics, 

which is most conveniently done by evaluating quantum commutators and 
~, 8 

classical Poisson brackets. It is shown in Appendix A that the Poisson 

bracket of the ,action variable m with H corresponds to -i times the commutator 

of M and H, where M is the (diagonal) matrix representation of the spin 
~:::::: ~ 

operatorS. Hence z 

M = -i[M,H] ~ {m,H} = m (2.1) 
f 
,. 

f 
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One therefore obtains an Ehrenfest-like theorem for the quantity m, 

d d '- m = - <m> (2 2) dt CL ,dt QM. • 

where the bracket denotes the quantum mechanical expectation value. The 

Ehrenfest theorem does not apply, however, to powers of m, i.e., 

d. 2 .; d < 2> 
dt m CL dt m QM (2.3a) 

d 3 ~ d < 3> 
dt m CL r dt m QM. (2.3b) 

and .in gener~l also 

d d . 
dt f(m,q)CL .; dt <f(m,q»QM (2.3c) 

where f denotes some function ofm and q. 

One can nOw understand the effect of a unitary transformation quite clearly: 

The SMM-method always forces the action variable m, i.e., the variable which 

corresponds to the quantum number labeling of the particular basis set chosen, 

to behave quantum-like. but functions of the action-angle variables will in 

g~neral .not do ,so~ .By ~hangingthebasis set, Le., performing a unitary 

trans,formation, one forces another action variable to behave quantum-like. 

Since this new action variable, which can be thought of being a function 

of the old action angle variables, did not behave quantum-like in the old 

representation, the dynamics resulting from,applying the SMM-method to the 

old and new representation ;inust b.e different. T his explains not only the 

fact that a unitary transformation of the quantal Hamiltonian does 
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in gener.a1 not correspond to a canonical transformation of the corresponding 

classical Hamiltonian, but is also shows which is the appropriate basis 

set to use. One should choose the ~epresentation in which the indices are 

related in. the most direct way possible to the desired quantities (transition 

probabilities, etc.). 

To be more specific, consider the F-H2 case for which F=3. Rebentrost 

9 and Lester calculated the diabatic potential matrix in the cartesian basis 

set {Ix>, Iy>, Iz>}, 

° 
H yy 
H yz 

(2.4) 

where the four functions H H Hand H are real. Obviously the xx' yy' zz yz 

cartesian representation is not the appropriate one to use, for the ,collision 

induced transitions occur between states which can be 1abe1'ed with the 

quantum number j--the total electronic angular momentum of the fluorine 

atom. j is related to the cartesian basl-sset in a ratherindirect'and 

complicated fashion. Thus use of the cartesian representation would yield 

a classical Hamiltonian which is totally u,nreliab1e for studying fine 

structure transitions. j, however, depends on ~--the projection of the 

electronic orbital angular momentum onto some quantization axis--in a much 

simpler way. It is thus natura1--and of course also done -in the quantum 

mechanical treatments of the prob1em--to change from the cartesian basis 

set to the angular momentum basis set {I~>}, ~ =-1,0,1. The unitary matrix 

IZ 0 
12 

"2 "2 

( -i 
12 1) (2.5) u = "2 ° -i ... -

° 1 ° 

ii 

'.-
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effects this transformation, as discussed in reference 4. Thus one 

obtains for the potential matrix in, the angular momentlDD representation 

H 
H i -E.. -t::. 

( H 12 
H ) V = UtV U = -i~ H -i-E.. (2.6) 

::: ::: :::cart::: /2 zz 12 
H 

-t::. i .:..E H 
12 

where ii and t::. are given by 

-, 1 
(H +H ) (2.7a) H'= 2' xx yy 

t::. = 1 (H - H ') 2 xx yy (2.7b) 

Applying the SMM-method to Eq. (2.6) then gives the corresponding 

classical function 
. . " . 

V(~',) = (l-~2)Hzz + ~ 2 
ii 

- ~ vf2~t Hyz'Si~~ - (L2~2)~COS2~ (2.8) 

where s, m, and q are replaced byL, ~' and ,in order to be consistent 

with S~ction III of ref~rence 4. 
, -

There 'is, however, more than one angular momentum representation. 

Consider, for eXample; a rota'tion by an angle '<I> 'around thez axis 

(Le., the <i~antization axis) • The unitary matri~ Jh:l.ch performs this 

transformation--for this topic we are again discussing the general F-level 

case--is given by 
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-i~ 
= Ok' k e ., ' 

(2.9) 

where 

= k 1 S = k 
_' _F+l 

~ - - 2 

as defined in the Appendix of reference 4. Since 

(j) , ut(~)·M(j).U(~) = M(j) M , - (2.l0a) 
'IS ... ... ~ ~ 

cO ,R.)' - ut(~).c(j,R.)·U(~) = cosR.~ C(j,R.) sinR.~ ~(j,R.) 
~ - "- - :::: -, - - ". .. (2.10b) 

S(j,R.)' - ut(~)·s(j,R.)·U(~) = cosR.~ S(j,R.) + sinR.cp C (j ,R.) (2.l0c) 
~ :;: ~ ~ ::: ::: 

where again ~(j), £(j,R.) and ~(j,R.) are defined in the Appendix of .... -
reference 4, one sees that this unitary transformation corresponds 

to the transformation 

m' = m (Z.lla) 

q' = q +~ (2.llb) 

which, of cours~isa canonical one. Hence all the angular momentum 

representations which differ by just a rotation around the quantization 

axis are physically identical. One may use this fact and choose ~ = n/2 

in order to make the diabatic potential matrix [Eq. (2.6)] real, 
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H 

V' = Ut 
(7T/2) .V.U(7T/2) = (HYZ 

:t == . '" as ./2 

/). 

H 
..E. 
12 
H zz 
H 
..E. 
12 

/). 

H ) ..E. 

'! 
H 

There ~re, however, other unitary transformationS which map an 

(2.12) 

angular momentum basis set onto an angular momentum basis set. One may, 

for example, choose the x-axis to be the quantization axis rather than 

the z-axis~ In the F-H2 case this corresponds to the quantization axis 

being perpendicular to the plane of the three atoms rather than being along 

the vector between F and the center of mass of H2• The unitary transformation 

from the cartesian representation to this new angular momentum representation is 

defined by the matrix 
0 1 

· ( n 0 U=--
::;' . 2 

_i12 
0 

2 

which leads to the diabatic poten~iai matrix 

H +II ·zz YY 
2 

H -H 

0, 

12 
2 

-i 
12 

2 

zz YY -iH 
2 . yi 

and to the corresponding classical function 

) 

o 

H xx 

o 

H -H 
zz yy +i 

2 

o 

H -iii 
zz yy 

2 

(2.l3) 

(2.14) 
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"A " A 2 A 2 H +,H 
V(m.. ,q ) = (1-m..)H + m.. zz. yy. 

L ~ L xx ··L 2 

2 A 2 H ;... H" 2" 
+ (L ~) [ zz 2 . yy COS2, + Hyz sin ,] • 

12 On the otherhand, with the aid of the generator 

" F2(,,~) 
-1 = -L cos 

"'. -1 
+~ cos 

L sinq . 
mL 

the classical function Eq. (2.8) can be transformed to 

H +:H ,.. " " 2 ,.. 2 zz yy 
V(~ ,q~) = (l-IIIy., )Hxx + ~ . 2 

(2.15)· 

(2.16) 

2 "2 H -H" " 
+ (L -~ ) [ zz 2 YY COS2, + Hyz . 8in2,] 

H -H 
+ (L2_2) xx zz 

2 
(2.17) 

Comparing Eqs. (2.15) and (2.17), one sees that changing the quantization 
. 2 

axis corresponds to a canonical transformation only if L is replaced by 

its quantum mechanical value 

. L2 -+ L(L+l) ~= 2 , 

rather than making the semiclassical Langer-modification 

-'" 
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Since the choiceL2 
+ L(L+1) would give raise to uneven "boxes"used in>' 

the classical histogram approximation (cf. Section III of reference 4), 

it is probably desirable to retain the· Langer modification and live with 

the smail ambiguity due to the various possible choices of the quantization 

axis. For the three state case, F=3, it can in fact be shown that for 

arbitrary' rotat,ions of the quantization axis, a quantum unitary transformation 

, 2 
does corres'pond to a classical canonical' transformation if one replaces s 

. by 8(s+1); Le., with this replacement all angular momentum representations 

2 are, equivalent. T his comes from the fact that, for F=3 and s replaced by 

2 2 1/2 2 2 1/2 
s(s+l), not only m but also (s -m) cosq and (s -m) ,sinq follow the 

quantal motion,L e. , 

d d d 
- m = -d <m> = dt <Sz> dt CL t QM 

d 2 2 1/2 d 2 2· 1/2 d 
dt [(s -m) cosq]CL = dt «s -m) cosq>QM = -d-t 

For F > 3, however, this is no longer the case. 

<S > 
x 

To summarize, the classical model obtained via the SMM-method for the 

general F-level case depends on the particular representation one chooses 

for the quantum Hamiltonian matrix; i.e., a unitary transformation of the 

Hamiltonian matrix does not in general correspond to a canonical transfoima-

tion of the classical Hamiltonian. The resolution of this indefinite 

situation is a qualitative one: one chooses the matrix representation of 

the Hamiltonian to be one for which the quantum numbers (Le., matrix indices) 
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are most closely related to the physical quantities of interest, such as 

angular momentum quantum numbers. For the 2-state case (F=2), however, 

this ambiguity does not exist, and for the 3-state case the ambiguity is 

2 
removed if the replacement (s )CL -+- ,s(8+l) , s=l is made and if the unitary 

transformations in question are rotations in space, e.g., if the various 

representations in question are all angular mome,ntum representations. 

Even for F=3, however, we consider it preferable to use the Langer modification, 

. 2 
(s )CL -+-

1 2 
(8 + 2) , s=l, and live with the minor dependence on the choice of 

quantization axis. 
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III .. The SMM-Method for Mor~ than One Degree' of Freedom. 

The SMM-method makes use of the,matrix repr~sentation of the el~ctronic 

Hamiltonian 

(3.1) 

where H denotes the electronic Hamiltonian operator and lJ1 the electronic a 

wavefunction. In general a will be a composite index. Cons'ider for 

example the collision of an F-atom with a closed shell atom or molecule. 

The electronic wavefunction, and hence the matrix, may be thought of 

as labeled by 

a = (13, S,L, mS' ~) (3.2) 

where e is a composite index containing all the quantum numbers of the 

c1 osed shell 'Dlolecule, the quantum numbers of the inner shell of the 

fluorine at,om,.,. and the principal quantum n~ber of its outer shell. S, L, 

1Ilg' ~"are the electronic spin and orbit;al angular momenta and their 

projections onto the intermolecular axis, respectively. The fluorine atom 

is assumed to be in the 2p state and the collision energy so low that 

only mS and~ may change during the collision. Thus the multi-index 

13 and the indices Sand.L are "frozen", 1.~., have the values 13 = 130 , 
. 1 . 

S =2 and L = 1 throughout the collision. Hence a is essentially a double 

index and instead of considering H, on~ should consider H" • 
a ,a mS'DLL,mSmL 

To be physically correct, therefore, the classical Hamiltonian must have 

two degrees of freedom, namely the classical, counterparts of mS and ~. 

To make all fhis more precise, suppose on physical grounds the index 

a can be written as a multi-index 
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where 13 represents all the· "frozen" quantum numbers. The corresponding 

classical Hamiltonian should thus depend on r degrees of freedom, i.e., 

Hel , ,el = Hk , k' 
l' 2' • • . , k', 

r 

To. be specific, consider the case r=2; the generalization to arbitrary 

r will be obvious. The Hamiltonian matrix will be written as 

'1<'k' ,Kk 

with 

K',K = 1,2, ••• ,F (3.3a) 

k',k = 1,2, ••• , f (3.3b) 

Le., there are F states associated with the K degre~ of freedom and f 

states with the k degree of freedom, so that H is an (F·f) x (F·n matrix. 

To obtain a ,classical Hamiltonian one first considers '1<'k',Kk as a F x F 

matrix of f x f submatrices. One then applies the SMM-method to all the 

F2 f x f submatrices and obtains a F x F matrix whose matrix elements are 

functions of m and q. One then applies the SMM-method to this F x F 

matrix IL, (m,q) " yielding the desired functiQn"H(m,q,M,Q). It is shown -l\. , K 

in Appendix B how to proceed in detail. It is also shown there that considering 

~'k',Kk as a F x.F matrix of f x f submatrices or as a f x f matrix of 

F x F submatrices leads to the same classical Hamiltonian. 

Let us return to the example of fine-structure transitions in the 

fluorine atom. The electronic Hamiltonian is 

.~ . 
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.......... 
H = 2BL"S + V (3.4) 

..... ..... 
'where V is the interaction operator, and Land S are the orbital and spin 

, .......... 

angular momentum operators, respectively, i.e., 2B L·S is the spin-orbit-

coupling operator and the constant B is chosen to give the correct term 

splitting. Taking matrix elements yields 

+ 

(3.5) 

where L , S , etc:, are the matrix representations of the angular momentum x x 
1 operators forS = '2 and L'= 1, and the matrix V is given by E,q. (2.6). 

, . 
Applying the (generalized) SMM-method described above and in Appendix B 

to E,q. (3.5) yields 

22 - _ LZ z' . + (l-m..)H + DL H- - 2m... VL -m. H sin'L 
L zz L L' L yz ~ 

- (L 2 -m... 2)6 cos2q 
L 11]. 

which one recalls is identical to the electronic Hamiltonian of 

references 2 and 4, except for the constant, and hence unimportant, 
2 '", 2 

term B(L + S). Adding this term to the Hamiltonian, the spin orbit 

(3.6) 
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interaction can be written as 

(3.7) 

with 

(3.8) 

in both the quanta1 and the classical Hamiltonian. 

The electronic Hamiltonian was derived here in the uncoupled (cf. 

reference 4) Ims~> representation, whereas the object of the method is 

to describe llj-transitions. Thus, in light of the discussion of Section 

II, the coupled representation Ij,m.> should be the better one. Unfortunately 
. J 

the SMM-method does not work in the Ij,mj > representation because mj varies 

from -j to j rather than between fixed numbers. The electron:f.c Hamiltonian 

in the Ij,l;Ilj> representation is· thus a matrix of submatrices of which some 

are non-square matrices, and the SMM-method can obviously not .. be applied" 

to non-square matrices. 

In reference 4 we derived the classical function which corresponds 

to the interaction operator V via the simpler minded version of the 

SMM-method which always gives Hamiltonians of one degree of freedom. It 

worked because V,, is diagonal in and independent of mS. Hence 
mS ,tnt,ms~ 

the corresponding function V{mS'~ ,~,q ) depends on neither q nor 
S ~ fig 

mS. For the spin-orbit coupling term, however, one must use the 

generalized SMM-method and in reference 4 this was circumvented by making 

use of the CPP-ana1ysis. The structure of this term is so simple, however, 

that it is clear from the very beginning what the corresponding classical 

function must be. 
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IV~ The Adiabatic Representation. 
- :'. ,', - ,.., 
~. c:.':) ,.,. \.. • ~. 

This section shows how the SMM-method can make use 'of . the adiabatic 

'. 

representation directly. The idea is simply to apply the SMM-method to the 

matrix of nonadiabatic coupling elements. 

F. ,:r. SmithS has shown that in the adiabatic representation the 

Schrodinger Equation can be written in matrix form as 

1 h d 2' 
2M [7-- 1 + T] ·X + U·X = EX 

1 dR ~ ~'. _ ~_ 
(4.1) 

where X d'enotes the vector of heavy particles wavefunctions, U the 
-

adiabatic potential matrix, and T is -the matrix of coupling elements 

defined by 

Tk',k(R) =~~~,(r,R) I d~ ~k(r,R)dr (4.2) 

" 

, - th 
Here ~k stands, for the k adiabatic electronic wavefunction, and rand 

Rrepresent all electronic and nuclear coordinates, respectively. 
, ... ,1 t.·

L 

T 

can be shown to be hermitian. 

, : I. .':';:.( ~ 

In order to keep the notation simple weassiJme that the electronic' '-, 

Hamiltohian has only one "relevant" degree of freedom. After applying 

the SMM-method to both T and U,Eq. (4.1) strongly suggest that the 
~ :t: 

classical Hamiltonian in the adiabatic representation is given by 
. ~ (I" go) 

H(P,R,n,q) 
1 2 

= 2M [P +T (n,q,R)] + U(n,R) (4.3) 
; ; ';. 'I,~ , j 

where the classical function U(n, R) is q-independent sinceU is ", : ',If', i :',' 

diagonal. 

f' I ,,-" , ... ~. 
, ___ C ,t' n" q.1 , 
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The quantal Hamiltonian in the adiabatic representation can be 

obtained by applying a unitary transformation to the Hamiltonain in 

the diabatic representation •. Thus it is tempting to assume that there 

exists a canonical transformation which transforms the classical Hamiltonian 

of the diabatic representation to the classical Hamiltonian in the adiabatic 

representation. In fact for the two state case, F=2, this has already been 

1 10 proved by Miller and McCurdy' and--using a differept method--by Meyer 

d Mill 3,11 an . er. If the number of states F is larger than two, however, 

a canonical transformation connecting the Hamiltonians of the diabatic 

and the nonadiabatic representation cannot be found. This is due to the 

fact, discussed in Section II, that for F > 2 a unitary transformation of 

the quantum Hamiltonian does not in general correspond to a canonical 

transformation of the corresponding classi~al Hamiltonian derived via 

the SMM-method. The fact that we do get the correct classical Hamiltonian 

for the two state case, however, leads to the assumption that Eq. (4.3) 

is the correct classical Hamiltonian--i.e., the best possible classical 

approximation--for using the adiabatic representation. 

To emphasize this point we apply Eq., (4.3) to a known example which 

4 
is very much the same as the one studied in our previous paper, namely 

the collinear atom-diatom (harmonic oscillator) collision system. The 

Hamiltonian of this system is 

(4.4) 

For test purposes the vibrational degree of freedom will be considered to 

be the quantum-like degree of freedom, i.e., to play the role of the 
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electronic degrees of freedom. Again, V(R,r) is expanded in a Taylor's 

2 ' 
series in r through terms in r , i.e., V(R,r) is replaced by 

where 

VO(R) + Vl(R) r ,+1 V (R)r 2
, 22, 

V (R) 
n 

= d~(R,r)I' 
n r=O 

dr 

Assuming this form of the potential, the Hamiltonian Eq. (4.4) can be 

written as 

P~ 2 1 2 " 2 
H(R,P,r,p) = 2M + ~f.l +If.l W (R) [r-rO(R)] 

2 -1 
+ V 0 (R) + [2f.l W (R) ] VI (R) 

with 

and 

(4.5) 

(4.6) 

(4.7) 

(4~8a) 

(4.8b) 

This form of the Hamiltonian is well suited for the transformation to the 

adiabatic representation. We first transform the classical Hamiltonian 
, 12 

to the adiabatic representation using an F3-Generator. Denoting the 

"old" variables as {P,R,p,r} and the "new" variables as {p' ,R' ,hn,q}, 
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where we· use lin as action variable rather than n in order to make n 

dimensionless, the generator is given by 

2 
F

3
(P,R',P,q) = -PR' + P cotq 

2lJ. W(R') 

The canonical transformation is now specified by the usual derivative 

relations 

dF3 
R = - TP = R' 

dF3 
p' = - -- = p 

dR' 

dF 
.3 r =---=-
dP 

dF3 

2 dw 
+ dR' 

p cotq 

2lJ. 
2 W 

p cotq 
+ rO llW 

2 
p.1i 

drO +p --dR' 

lin = - -- = oq 2 - '2 
2lJ. W sin q 

Thus the "old" variables are given in terIi\.s of the "new" ones by 

I2n + 1 . r-r
O 

= -'Ii ---
/lJ.bw 

cosq 

p = 12n + 1 /i.iJiW sinq 

R = R' 

dw h 1 
p = p' - dR' 2w (n +"2) siti2q 

drO 
- dR' y'2n + 1 fijliW sinq 

(4.9) 

(4.l0a) 

(4.l0b) 

(4.10c) 

(4.10d) 

(4.lla) 

(4.llb) 

(4.llc) 

(4.l1d) 
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and using Eqs.' (4.8) and (4.11c) gives 

v 

dw ,1 dV2 
dR' = lJW dR' (4.12a) 

(4.12b) 

If one now substitutes Eqs. (4.11) and (4.12) into Eq. (4.2) and drops 

the prime from Rand P, one obtains the classical Hamiltonian in the 

adiabatic representation: 

dV2 . b 1 2 
{2'n + 1 sinq - dR .~ (n+ 2')sin2q] .,' 

2\lw 

(4.13) 

If one now,:goes back to Eq. (4.7) and looks llPon it as the quantum 

Hamiltonian, one notices. that the (internal) adiabatic eigenfunctions 

are always harmonic oscillator eigenfunctions. The interaction merely 

shifts the frequency wand the location of the equilibrium rOo Thus the 

nonadiabatic coupling elements are given by 

(4.14) 

, , th ' .. 
where lIIk(r) denotes the k· harmonic oscillator eigenfunction 
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(4.15) 

and 

Z =- ~ (r-r ) . V h 0 

th where Hk(z) is the k Hermite polynomial. The arithmetic is easily 

done, and one obtains 

dV 
-~ ~ i{Ok'k~2 Ik'(k'+l) - 0k'_2 k Ik(k+l)}· (4.16) 
~w' , 

The adiabatic potential matrix is simpler to evaluate: 

(4.17) 

Trucating these infinite matrices to F x F matrices and substituting 

them into Eq. (4.1) yields the usual set of coupled equations in the 

adiabatic representation. On the other hand, applying the SMM-method 

to these truncated matrices yields 

(4.18) 

(4.19) 
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where, after making the Langer~modification as discussed in reference 4, 

12 .fc 1 2 2' F-2 
m

j F-1 
w(l) E E If f (n) = - (s + -) -m j,k F 2 2 j=O k=l 

(4.20a) 

l' 1·22 F-3 
mj F-2 

w(2) gF(n) =- [(s +-) -m] E E lk(k. + 1) 2 2 j=O k=l j ,k 
u 

(4.20b) 

and 

m = n-s 

.. wj~) and s both depend on the number of states Fand are defined in the 

Appendix of reference 4. The functions fF(n) and gF(n) are precisely 

the functions discussed in Section lIe of reference 4. Substituting 

Eqs. (4.8) and Eq. (4.19) into Eq. (4.3) gives the classical Hamiltonian 

via the SMM-method in the adiabatic representation 

H(R,P,n,q) 1 =-2M 

This HamiltPnian would be identical to the exact one of Eq. (4.13).if 

the functions fF(n) and gF{n) were the exact functions 

f en)' = /2n + 1 exact· . 
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Figures 1 and 2 of reference 4 show that fF(n) and gF(n) seem to converge 

to the exact functions as F ~~, thus indicating that most, and perhaps 

all, of the error introduced is due to truncation. In any event, the 

main result of this "test" is that the SMM-method applied to the adiabatic 

representation gives classical Hamiltonian functions which are of the same 

"quality" as applying it to the diabatic representation. 
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v • Concluding Remarks ...; .,' 

The Spin-Matrix-Mapping (S~) method has been. re:-ana1yzed ~~: tl:J£_:)~s.p~~ts •. 

First, its relation to the C1assica1-Pseudo-Potentia1 (CPP) method has been 

shown. Second, the origin of the ambiguity of the SMM-method which comes from 

the arbitrariness of the choice of the quanta1 basis set has been clarified, 

and a way to identify the appropriate basis set has been proposed. The SMM~ 

method has then been modified to obtain a classical model of any desired 

number of degrees of freedom. This is an important generalization, since 

only a very limited number of problems require an electronic Hamiltonian of 

only one effective degree of freedom. In fact, to derive the electronic 

4 Hamiltonian for the F-H2 collision system, as done in our previous paper, 

we had to make use of both the SMM-method and the CPP-ana1ysis. Since that 

electronic Hamiltonian has two degrees of freedom, the SMM-method was applied 

there to only part of it. 

The second generalization was to show how the SMM-method can make use 

of the adiabatic representation directly. Although for the scattering 

systems investigated so far we have used a diabatic representation, the 

direct use of the adiabatic representation might be of great value for other 

systems. Indeed, more often than not quantum chemistry supplies one with 

the adiabatic potential curves and the non~adiabatic coupling elements 

rather than with the diabatic potential .matrix. The derivation of the 

classical Hamiltonian directly from the adiabatic representation not only 

saves one from having to transform the adiabatic information to the diabatic 

potential matrix, but the resulting Hamiltonian might also be preferred over 

the classical Hamiltonian derived from the diabatic representation. This 

will be the case if the coefficients of the q-dependent part of the Hamiltonian 
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.. are significantly smaller in the adiabatic representation than in the 

diabatic one, i.e., if the electronic dynamics -is more nearly adiabatic. 

,. 
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AppendiX A 

It is useful to introduce non-hermitian matrices and complex functions. 

One defines the matrices E(j,t) by 
:::: 

= --

and the corresponding classical function by 

itq 
e 

if t > 0 

if t = 0 

(A.I) 

(A.2) 

where the F x F matrices c(j,t), S(j,t) and M(j) and the number s are defined 
~ ~ = 

in the Appendix of reference 4. We also use a notation in which h=l so that 

m and q both are dimensionless. One then likewise defines 

I 
-2 (a. a - i b. n) 

J, A.o. J, A.o 
if ·t > 0 

c = 
j,t d. 

J 
if t = 0 

if t < 0 (A.3) 

where a. a' b. a and d. are also defined in the Appendix of reference 4. 
J,JJ.. J,JJ.. J 

Equivalent to the definitions above are the following equations: 
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2 V (j, R,) 
k . °k'-R"k 

ifR,>O 

EO,R,) 
k' ,k 

=. ~j ok' ,k ifR, = 0 

2 Vk ' 
(j,/R,!) 

°k'-R"k 
if.R,<O (A.4)' 

and 

F-R, 
w(R,) lI: ~~,k 

if R, .,> 0 
2 k=l j, k 

F 
w(O) c. Q, = E Hk,k if Q, = 0 .' J , 

k=l j, k 

1 
F- IQ, I ( I Q,! ) 

"2 I: Wj,k ' Hk,k+IQ,! ifR,<O (A.S) 
k=l 

where the quantities v(j,Q,) and w(Q,) again are defined in the Appendix of 
k . j ,k 

reference 4. Using these new matrices and functions, the quantum and 

corresponding classical Hamiltonian may be written, respectively, as 

F-l F-IQ,I-l E(j,Q,) H I: I: c. 
::: Q,=-F -Ii j=O J,Q, ::: 

(A.6a) 

F-l F-IQ,I-l 
E(j,Q,) (m,q) H(m,q) = E I: c. Q, 

Q,=-F -Ii j=O J, 
(A.6b) 

In order to investigate the classical and quantum mechanica~ dynamics, 

C R,) 
we will evaluate Poisson brackets and commutators of the functions E J, (m,q) 

and the matrices E(j,R.) with the action variable m and its corresponding 

matrix ~,respectively. Straight-toward differentiation shows that the Poisson 

bracket 9 is given by 

~, 

,.. 

<v 
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(A.7) 

On the other hand, with Equations (A.l)-(A.4) it follows that 

(A.8a) 

(A.8b) 

where ~ = k if t ~ 0 and ~ = k' if t < O. Since the Kronecker delta 

requires 

it follows that the commutator is given by 

[M,E(j,t)] ,= 2 0 V (j,t) (m. +R.-m
k

) 
~ ~ k ,k k'-t,k ~ k 

= t ~(j,t) 
k' ,k 

(A.9)' 

Therefore, comparing Eqs. (A.7) and (A.9) one obtains for all j + I t I < F 

or in view of 'Equation (A.6), 

o 
[M,H] +-+ i {m,H} (A.10) 
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A'ppendixB 

In this appendix we shall derive explicit formulas for the classical 

analog Hamiltonian depending on two degrees of freedom. We also shall 

use the notation in the Appendix of reference 4. 

Assume the (internal) Hamiltonian matrix l1<'k' ,Kk is an (F·f) x 

(F·f) hermitian matrix with k'~k = 1,2, ••• , f and K',K = 1,2, ••• , F. 

We first separate the real and imaginary part of H. 

l1<.'k' ,Kk = ~'k' ,Kk + i IK'l<!,Kk 

where R is a real symmetric and I a real antisymmetric matrix. We now 

(B .1) 

consider R and las F x F matrices wnich matrix elements are f x f matrices. 

These f x f submatrices are in general neither symmetric nor antisymmetric, 

but they can be, of course, uniquely decomposed into a sum of a symmetric 

and an antisymmetric matrix, i. e., we may write H as 
:::: 

(B.2) 

where for fixed K and K' the matrices SR and SI are symmetric and AR and 
as ... 

AI are antisymmetric with respect to k,k'. 

Thus SR, SI, tAR, iAM are hermitian matrices and one may apply the 

SMM-method to them as described in the Appendix of reference 4. Doing 

so one obtains an F x F matrix whose matrix elements are functions of m 

and q, 1. e. , 

l...! 
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f-l f-1-l 
j (2 2/,/2 f-1 (1) (K' ,K) 

l1c' ;K(m,q) = E E m s-m cos1q E Wj k S~k-l-t 
1=0 j=O . k=l' , 

f-l f-1-l 
j( 2 2)R.l2 f-1 1 ' 

-i E E m s-m sin1q E W( ) ~K ,K) 
1=1 j=O k=l j ,k ,k~ 

f-l f-1-1 
j( 2 2)1/2 

f-1 , 
E E E W(1) SI (K ,K) +.l m s -m· cos1q 
1=0 j=O k=l j ,k k, kit 

f-l f-1-1 
j (2 2)R.l2 £-1 (1 ' + E E m s-m sin1q E W· ) AI(K ,K) (B.3) 1=1 j=O k=l j ,k k,kit 

To proceed further, we first formulate the following Lemma. 

Lemma: The matrices SR, AR, SI and AI as defined above have the following -- -- -- ---- -- -- --
symmetry properties with respect to K,K'. 

S~(K',K) = S~(K,K') 
~1t',k -1c.',k (B.4a) 

A~(K',K) = _~(~,K') 
--1c.' ,k --It ,k (B.4b) 

SI(K',K) = _SI(K,K') 
k',k k',k· 

(B.4c) 

AI (K' , K) = AI (K, K ' ) 
k',k·· k',k (B.4d) 

. . .' -' -

With the aid of this Lemma, Which we will prove shortly, it is not difficult 

to see that 11<' ,K(m,q) . is a hermitian matrix. . One may thus apply the SMM­

technique again and obtain 
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F-l f-1 F-L-1 f-R.-l 
H(m,q,M,Q) = E E E L ~ mj (s2_m2)Ll2 (s2_m2)R./2 

L=O R.=O J=O j=O 

F-L f-R. 
W(L) W(R.) S~K,K-tL) {cosLQ cosR.q E E 

K""l k=l J,K j,k . ,k~ 

F-L f-R. .' 
- sinLQ sinR.q E L W(L) W(R.) ~K,K-iL) 

K=l k=l J,K j,k ,k~ 

F-L f-R. 
W(L) W(R.) AI (K,K-iL) + cosLQ sinR.q E L 

K=l k=l J,K ,j,k K,k~ 

F-L f-R. 
W(L) W(R.) SI(K,K-tL)} + sinLQ cosR.q L L . (B. 5) 

K=l k=l J,K j,k k,k~ 

Nbw consider H as a f x f matrix of F x F submatrices; the decomposition of 

H then reads 

= SR(k' ,k) + ~~k' ,k) 
l1c'k' ,Kk ~1(' ,K --1(' ,K 

+ i (SI (k' , k) + AI (k' , k» 
K',K K',K (B.6) 

where SR and SI are symmetric and AR and Al are antisymmetric with respect 

to K,K'. If we apply the SMM-procedure now first to the F x F matrices 

and then to the f x f matrix of corresponding classical functions, we arrive 

at an expression similar to Eq. (B.5) but with SR, AR, SI, and Al replaced 

by SR, AR, A1. and s"I. Thus it remains to show that 
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S~K' ,K) = SRik' ,k) 
, ,k ' ,K (B.7a) 

~K' ,K) ,A(k',k) 
, ,k = ARK, ,K (B.7b) 

SI(K',K) 
k' ,k 

;:: AI (k' ,k) 
K' ,K (B.7c) 

AI (K' ,K) "(k' ,k) 
= SIK, ,K k' ,k (B.7d) 

With the aid of the Lemma, however, this is evident if one recalls the 

fact that the decomposition of a real matrix into a sum of a symmetric 

and an antisymmetric matrix is unique. This thus shows that considering 

the matrix_~~k',Kk as an Fx F matrix of f x f submatrices, or considering 

it as an f x fmatrix of F ~ F submatrices, yields the same result. 

The only remaining task is to prove the Lemma. To do so it is useful 

to define the matrix n by .... .... 

n(K',K) = S~(K',K) _ S~(K,K') 
k',k -It',kk,k' (B~8) 

Since ~ is symmetric with respect to interchange of both indices 'one obtains 

S~(K' ,K) + AR., (,K'"K) ~_ R 
-1<.' ,k --1<.' ,k = -X'k',Kk = Kk,K'k' 

= S~(K,K') + AR..:(K,K') 
-1<.,k' --1<.,k' 

== S~(K' ,K) _ n(K',K) + AR.(K,K') 
-1<.',k k',k --It,k' 

so that 

n(K',K) = AR.(K,K') _ A~(K',K) 
k',k --1<.,k'1<.',k (B.9) 
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For fixed K,K' D must be a symmetric matrix with regard to Eq. (B.B) and an --
antisymmetric matrix with regard to Eq. (B.9), hence it must be zero. With 

~ = ~ it follows from Eqs. (B.B) and (B.9)' that ;~ and ~ are synunetric with 

respect to interchange of both sets of variables. Equations (B.4a,b) are then 

proved by ~, 

SR.(K',K) 
-It' ,k 

= SR.(K,K') = 
-It,k' 

SR(K,K' ) 
-It' ,k 

AR(~' ,K) ~ AR.(K,~') = _ AR(~,K') 
--:-It ,k --1<.,k --:-It ,k· 

Equations (B.4d,c) can be proved by the same technique applied to SI and 

AI. ----
It is sometimes convenient to make use of thl~ non-hermitian matrices 

E(j,~) and the complex functions E(j'~)(m,q) as they are defined in Appendix 

A. Using them the quantum Hamiltonian may be written as 

F-1 f-1 F-ILI-1 f-t l-1 
E(J,L) i E(j ,R.) H = E L L CJLjR. ::: (B.10) 

::: L=-:F-+i R.=-f +1 J=O j=O :::: 

where the tensor product is defined by 

(B .11) 

and where, the coefficients cJLj~ are given by (cf. Appendix A) 

c JLjR. 
F-L 

=L 
K=l 

f-R. E e(L) e(~) wi~) WJ~kR.) 
k=l ~-+L, k-it ,K, k 

(B.12a) 

for R. ~ 0 and L ~ O. If one of the R.-indices is negative one must transpose 

\.,' 
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H with respect to this subset of indices and take the absolute value of ... .... 
the negative 1-index, e.g., 

f-1 

E 
k=l 

for L ~ 0, 1 < O. The function 

e(1) = 

e(1) is given by 

t if 1 = 0 

if 1 ; 0 

(B.12b) 

(B.13) 

and similar for e(L). Equation (B.12) can be proved by substituting Eq. 

(B.10) into it. The corresponding classical Hamiltonian is now given by 

F-l 
H(M,Q,lD,q) =E 

L=-F+l 

c E(J,L)(M Q) • E(j,1)(lD q')' 
JLj1 .' , 

f-111-l 
E 
j=O 

(B.14) 

which can be shown to be identical to Eq. (B.5). This form of the Hamiltonian 

is easier to generalize to more than two degrees of freedom. It also shows 

that the "Ehrenfest theorem" as discussed in Section II holds for all the 

various m's, i.e., the dynamics is correct for as many action variables as 

there are (internal) degrees of freedom. This follows from 

and 

... ... 
(B.14a) 
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E(j ,R.) (m,q)} (B.14b) 

which, with the aid of the results of Appendix A, shows that 

-i[l ia E(l,O) H) +-+ {E(l,O)(m,q),H} = {m,H} (B.15a) 
::: ::: ::: 

and, using an equation similar to Eq. (B.14) , 

_i[E(l,O) i 1 , H) +-+ {E(l,O)(M,Q),H} = {M,H} (B.1Sb) 
::: ::: ::: 
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