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Abstract

This paper explores the challenges in implementing a

message passing interface usable on systems with data-

parallel processors. As a case study, we design and imple-

ment the “DCGN” API on NVIDIA GPUs that is similar to

MPI and allows full access to the underlying architecture.

We introduce the notion of data-parallel thread-groups as

a way to map resources to MPI ranks. We use a method

that also allows the data-parallel processors to run au-

tonomously from user-written CPU code. In order to facil-

itate communication, we use a sleep-based polling system

to store and retrieve messages. Unlike previous systems,

our method provides both performance and flexibility. By

running a test suite of applications with different commu-

nication requirements, we find that a tolerable amount of

overhead is incurred, somewhere between one and five per-

cent depending on the application, and indicate the locations

where this overhead accumulates. We conclude that with

innovations in chipsets and drivers, this overhead will be

mitigated and provide similar performance to typical CPU-

based MPI implementations while providing fully-dynamic

communication.

1. Introduction

Coprocessors, particularly high-throughput, data-parallel

coprocessors, can be incorporated with new, multi-core

CPUs to create a powerful, heterogeneous computing solu-

tion. Special types of coprocessors, data-parallel machines

(DPMs) such as Graphics-Processing Units (GPUs), are

designed to give excellent performance with certain types

of problems. Due to this specialization, DPMs tend to be

used in one of two ways; single-DPM systems, such as

a workstation with a single GPU, or multi-DPM systems.

In either case, the only problems tackled tend to be those

which can be statically divided into small chunks, and whose

communication requirements are straight forward and can be

statically determined. More detail is given in Section 2.

Our work lifts this problem-domain restriction. We

modifiy the capabilities of coprocessors to allow dynamic

communication between coprocessors and both CPUs and

other coprocessors. Such communication is possible with

very little loss of performance, and sometimes no loss.

To accomplish such a task, it is necessary to re analyze

how communication happens in a data-parallel environment.

Section 3 provides this analysis and discusses the design

and implementation of a communication framework for

GPUs. We call our framework DCGN, which is pronounced

“decagon” and stands for “Distributed Computing on GPU

Networks.” It is beneficial for the communication model

to be both flexible and well-known. DCGN exports its

capabilities via the send/recv and collective communications

model from MPI. The interface to DCGN is not identical

to MPI; DCGN has support for virtualizing communication

targets across a process or DPM, something MPI does not.

Some minor differences between DCGN and MPI are shown

in snippets from a ping-pong application in Figure 3. DCGN

uses an extension called “slots” to MPI. Slots allow a

communication target (MPI rank) to be virtualized across

multiple threads, both on a CPU and on a DPM. Figure 1

demonstrates a simple use of slots to virtualize a single GPU

into multiple communication targets.

This new programming and communication model must

not sacrifice performance for flexibility, or vice versa. To

show that this trade-off isn’t necessary and that dynamic

communication is indeed possible, we provide details on sev-

eral benchmark applications in Section 4. The framework’s

test results are presented in Section 5.

Section 6 presents a thorough discussion of the appli-

cations and observed results. Finally, we provide closing

thoughts and a look towards the future and what avenues

of work are newly opened in Section 7.

2. Background

Not only are GPUs and other DPMs powerful (the

NVIDIA GTX 280 series of GPUs [4] are capable of

sustaining nearly a TFLOP), they are relatively inexpensive

and modular. High-performance GPUs use the PCI Express

bus, available in desktop and rack-mounted systems. This

modularity has helped to popularize clusters containing

DPMs, such as those at Maryland, Terrasoft, and Los

Alamos National Labs.

Clusters of CPUs and DPMs are just one example of

heterogeneous computing. Upcoming single-chip heteroge-

neous processors (such as AMD’s Fusion and Intel’s Ne-

halem) may lead to future architectures with many types of



cores, and possibly more cores than can be powered on at

the same time. This trend motivates further investigation into

programming models that support heterogeneous processors.

We submit that these heterogeneous cores must be first-

class processors in communicating with other processors in

the system, with autonomy from a primary CPU core, to

achieve their full potential. DCGN represents a significant

step towards this goal; it promotes GPUs to first-class

computational resources.

2.1. The Graphics Processing Unit

The GPU is one of the most popular DPMs in use today.

Modern GPUs are equipped with several multiprocessors,

each capable of running their own unique code simultane-

ously, potentially achieving substantial performance gains.

One significant limitation of the GPU is that its applications

must conform to a stricter programming model than the CPU

to achieve performance gains.

The first popular GPUs, designed for 3D graphics, used

a pipeline that provided only fixed functionality. The recent

addition of programmability to the GPU allows GPUs to

target a broad range of application domains, not just 3D

graphics. The modern GPU is no longer a 3D pipeline with

some programmable elements; instead it is a programmable

parallel processor with some 3D fixed- function hardware.

NVIDIA’s new GPU architectures is programmed via an

extension to C called CUDA [3]. CUDA offers developers

direct access to the GPU’s programmable units and memory.

The full scope of CUDA is beyond this paper, but NVIDIA

publishes a very thorough programming guide [3].

CUDA allows data-parallel code to be run on GPUs, but

only when told to do so by a CPU. When a CPU tells a GPU

to run a kernel, that kernel is run using threads arranged in a

multidimensional grid specified by the developer. A full grid

is typically too large to run concurrently. Instead it is broken

into a group of blocks, and each block is then separated

further into an amount of threads capable of being ran

concurrently on one of the multiprocessors. Blocks are not

time-sliced; once a block is scheduled onto a multiprocessor

it must finish execution before another block may take its

place.

CUDA kernels are not capable of managing GPU mem-

ory; this must be handled by the CPU. The GPU also

cannot communicate with any devices on the PCI-e bus,

including network cards. Thus, the execution of a CUDA

kernel without DCGN typically follows a model of: allocate

GPU memory via the CPU, copy CPU memory to GPU

memory via the CPU, modify GPU memory with one or

more kernels, and finally copy results from GPU memory to

CPU memory via the CPU. This push/pull paradigm, while

well-suited for many application scenarios, does not allow

for communication between kernels and the CPU while a

kernel is running.

2.2. Message Passing Interfaces

Massive multiprocessor machines allow for easy inter-

process communication (IPC). Primitives such as shared

memory segments and semaphores can be used for fast and

efficient synchronization and communication. As clustered

computing became more commonplace, a standard for IPC

over networks was developed. The Message Passing Inter-

face (MPI) [11] came to fruition in the mid-1990s.

The stated goals of MPI are high performance, scal-

ability, and portability. Achieving low latency and high

throughput is important for computing clusters, since a lack

of shared memory implies large amounts of network data

transfer. Portability is very important for MPI. Scientists

often purchase new clusters as grant money allows, and

clusters can differ in architecture or network interface from

one generation to the next. Scientists have no desire to

rewrite large amounts of code every time a new cluster

with a different architecture is purchased. The scalability

of MPI is primarily due to MPI being the de facto stan-

dard in distributed computing, as well as the lack of any

architecture-specific functionality in MPI. Supercomputer

and networking manufacturers understand that sales depend

on an available MPI implementation.

2.3. Distributed Computation using GPUs: State of

the Art

Most of today’s GPU research involves one CPU and one

GPU; distributed computation is a difficult challenge. The

ideal method would yield both performance and flexibility,

supporting performance speedups across many nodes as

well as fully dynamic communication and a choice of

programming models. Currently, such a method does not

exist.

Two vendor-supplied GPU communication schemes are

NVIDIA’s Scalable-Link Interface (SLI) [2] and ATI’s

Crossfire [1]. Neither of these methods allow for general-

purpose or programmable communication; they simply make

multiple GPUs appear as one to the application.

The research community has tended to lean towards one

side or the other. Two recent research projects, Zippy [5]

and CUDASA [12], use the Global Arrays [9] paradigm

to achieve excellent performance. However, both require

static communication patterns and thus force developers into

one specific programming and communication model. Mo-

erschell and Owens tried the opposite approach [8] with an

OpenGL-based implementation of a multi-GPU distributed-

shared memory (DSM) system to allow for maximum flexi-

bility. However, due to limitations of the API, current GPUs,

and the nature of DSM, their implementation suffered severe

performance problems.

Developing a general-purpose, high-performance inter-

GPU communication scheme presents many difficult chal-
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lenges. Perhaps the major hurdle is the traditional use of the

GPU as a coprocessor under the direction of a CPU host.

This model of GPU-as-slave (GAS) restricts the programmer

in many ways. Each GPU only communicates with its host

CPU. Implementations of this model tend toward static com-

munication and partitioning of the input space or problem

space, often times implementing Global Arrays. GAS ap-

proaches are well-matched to many computational patterns

but are limited by the lack of dynamic communication and

the dependence on a host CPU.

One typical GAS method is to statically divide work into

N parts, send each part to a free GPU, receive work when

a GPU finishes, and repeat until all work completes. This

is an effective and efficient method for static datasets. For

any problem that does not have a statically-known size, or

for any problem with data dependencies, this method is very

hard if not impossible to employ in an efficient manner.

Another GAS method involves dividing the task domain

into N parts and then connecting those N parts into a

pipeline. Data is given to the first set of GPUs, which then

all perform the same stage of a pipeline. When the first set

finishes a piece of data, the data is shipped to the second

set of GPUs for processing and more data is given to the

first set of GPUs. This method works well on certain types

of data, but as with the method discussed in the previous

paragraph, this method does not extend well to problems

poorly suited to pipelining.

3. Communication on Data-Parallel Architec-

tures

Message passing on data-parallel architectures and het-

erogeneous computing platforms has a unique problem set

and philosophy; principles from CPU-based message passing

do not necessarily transfer over. Perhaps the largest problem

for GPU-based message passing is to maintain flexibility and

dynamic communication. Developers shouldn’t be forced

into a single model of communication and/or computation.

While CPUs serve as first-class computational and com-

munication resources simultaneously, GPUs do not. This

impedes the progress of multi-GPU development; our design

addresses this inability.

3.1. Challenges with MPI and data-parallel copro-

cessors

MPI, the de facto standard API for messaging in super-

computing, is a peer-to-peer API that provides efficient and

highly optimized communication methods while not relying

on a specific network interconnet. Networking vendors de-

velop new interconnects, write an MPI implementation, and

allow scientists to compile and run previous MPI codes with

the new networking hardware.

MPI implementations assume that each of a job’s pro-

cesses are communication targets with direct access to com-

munication hardware. This is not the case on DPMs; they

yield a set of non-traditional challenges when implementing

an MPI. DPMs can’t source communication as they often

don’t have access to communication hardware. CPUs must

initiate communications with DPMs by either pushing to

or pulling from DPM memory. Two methods (each with

their own limitations) are used to communicate with a

DPM: access DPM memory inbetween kernel invocations,

or poll DPM memory while a kernel is running. The former

disallows dynamic communication, the latter suffers from

high CPU load and wasted cycles.

To make a useful DPM MPI, we first looked at how

CPUs and DPMs differ. DPM threads have large amounts

of parallelism with many short-lived, lightweight threads

per kernel. Threads are grouped, often by function and/or

memory coherence. CPU threads are autonomous from other

threads and have their own stack, registers, and instruction

pointer. CPU threads perform MIMD computations, DPM

threads oftern perform SIMD computations. Even though

CPU threads are autonomous, MPI treats processes, not

threads, as individual communication targets; each process

gets a rank, not each thread. DPMs have no concept of a

process, and thus there is no clear mapping of ranks for

DPMs. The typical mapping of one rank per process (for a

DPM, this would be a kernel) doesn’t always fit best. Nor

does one rank per thread because of complications that arise

with collectives.

Instead of forcing a DPM MPI into one mapping, we

chose a robust approach that uses a paradigm we call slots.

Ranks are virtualized N-ways across a DPM based on the

number of slots requested for a specific DPM by the user

at the start of the job. Each DPM has at least one slot.

The maximum number of slots is equal to the maximum

number of threads that are simultaneously executed (again,

this is tied to limitations introduced by collectives). As DPM

algorithms can vary wildly, slots give the developer the

flexibility to find the best mapping for their algorithm.

Slots breakaway from the MPI standard. Because of this,

we chose not to extend MPI, and instead to create our own,

similar API. As MPI is a committee based standard, we

felt it best to let the committee take what they will from

this research and we hope that the notion of slots will

find it’s way into MPI. For those concerned with the extra

overhead in porting old codes, those codes would have to

be completely rewritten for DPMs, and the added task of a

few find-and-replaces was minimal by comparison.

To motivate slots, consider two applications. The first

is a parallel implementation of map-reduce. Billions of

elements need to be reduced. Every element requires exactly

X nanoseconds to process, and the work-master ensures that

each DPM receives as many elements per request as there

exist available threads on the DPM. It makes complete sense
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const int SLOT_INDEX = 0;

if (dcgn::gpu::getRank(SLOT_INDEX) == 0) {

if (threadIdx.x == 0) {

dcgn::CommStatus stat;

// note that for communication, we have to use global

// memory. this is a byproduct of the memory system

// on the GPU.

dcgn::gpu::send(SLOT_INDEX, 1, gpuMem, gpuMemSize);

dcgn::gpu::recv(SLOT_INDEX, 1, gpuMem, gpuMemSize, &stat);

}

} else if (dcgn::gpu::getRank(SLOT_INDEX) == 1) {

if (threadIdx.x == 0) {

dcgn::CommStatus stat;

dcgn::gpu::recv(SLOT_INDEX, 0, gpuMem, gpuMemSize, &stat);

dcgn::gpu::send(SLOT_INDEX, 0, gpuMem, gpuMemSize);

}

}

__syncthreads(); // barrier for all threads in block.

Figure 1: A snippet from a GPU ping-pong application

written using DCGN. A ping-pong application sends data

from host A to host B, followed by host B sending data back

to host A.

to have one slot per DPM in this example as communica-

tion costs are reduced. Now change this example slightly.

Assume that 0.001% of the elements require 10,000X

nanoseconds to process. A single element can then delay an

entire DPM from communicating results, as virtually every

thread is left idle while the time-intensive element is being

processed. It makes sense to allocate extra slots to DPMs,

perhaps based on the number of multiprocessors present.

These examples demonstrate that no single mapping of ranks

to DPM resources can match every data parallel algorithm’s

requirements and that an approach must provide a flexible

level of granularity.

3.2. Case Study: Communication across GPUs

Using NVIDIA G92 GPUs and the notion of slots, we

implemented a library capable of allowing GPUs across a

cluster to communicate with each other and with CPUs on

the same cluster. The library, Distributed Computing on GPU

Networks (DCGN), offers fully dynamic communication

capabilities, just like MPI. Just like with MPI, any commu-

nication target may communicate with any other communi-

cation target, either through point-to-point communication

or through collectives. To illustrate the flow of a send from

a GPU on one node to a GPU on another node, we present

an example in Figure 2.

Dynamic communication is a very important compo-

nent of DCGN, as is granting full access to CPU and

GPU resources. DCGN employs kernels as its computing

primitive, these may be run either on the CPU or the

GPU and have complete access to both. Developers are

responsible for kernels, and they write for the GPU and

CPU as desired. DCGN will not automatically convert a

CPU kernel to a GPU kernel. Kernels are launched via calls

to DCGN. As kernels issue communication requests, DCGN

relays the requests and performs the communication in a

manner hidden from the user. We felt that allowing full

use of compute resources and fully dynamic communication

was an important approach; instead of forcing developers to

Node 1
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GPU

Thread

COMM

Thread

NIC

Node 2

GPU

GPU

Thread
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Thread
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Figure 2: Dataflow of a send from one GPU to a GPU

on another node. The numbers accompanying each arrow

dictate the order in which events happen. The solid lines

indicate paths where actual send-data is transferred. The

dashed lines indicate paths where control messages (e.g.,

handshaking, polling data) are passed. Identical time in-

dications do not necessarily mean concurrent events. Time

indications serve to order events local to their path. The send

commences as Node 1 polls the memory of the GPU (0) and

finds a send-request. Meanwhile Node 2 polls the memory of

the GPU and finds a receive-request. Next, Node 1 reads the

requested send-data from GPU memory (1) while on Node 2

the receive-request is packaged and relayed to the COMM

thread. Node 1 then finishes reading the data for the send-

request, packages it, and sends it to the COMM thread (2).

The COMM thread executes and finishes the MPI call by

transferring data to the network interface (NIC) (3) and

signaling the CPU to inform it that the send completed. The

send-data is transmitted from the NIC on Node 1 to the NIC

on Node 2 (4), as well as the CPU on Node 1 signaling the

GPU that the send completed locally. Next, the send-data is

received by the COMM thread on Node 2 (5). The send-data

is then copied to the GPU thread (6). Finally, the send-data

is copied to the GPU (7) and the GPU is signaled to let it

know the receive completed.

use the GPU with a fixed programming and communication

model (as in Zippy [5]), we view DCGN as a substrate upon

which developers construct a variety of programming and

communication models.

The communications interface of DCGN is similar to

MPI as both allow fully dynamic communication and share

similar features. However, MPI is large and complicated and

has many features not present in DCGN. GPUs are one

type of computational target of DCGN. A “slot-identifier”

parameter is present in most GPU-API functions of DCGN,

but not in MPI. Kernels pass this slot-identifier to enforce

explicit mappings of GPU-sourced communication requests

to slots. DCGN’s communication model is still very similar

to that of MPI, as can be seen in the comparison of a DCGN

code snippet and its corresponding MPI code, shown in

Figure 3.

DCGN not only allows kernels to run on the GPU and
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int x;

MPI_Status stat;

if (rank == 0) { // send and recv with rank1.

MPI_Send(&x, 1, MPI_INT, 1, 0,

MPI_COMM_WORLD); // send ping

MPI_Recv(&x, 1, MPI_INT, 1, 0,

MPI_COMM_WORLD, &stat); // recv pong

} else if (rank == 1) { // recv and send with rank0.

MPI_Recv(&x, 1, MPI_INT, 0, 0,

MPI_COMM_WORLD, &stat); // recv ping

MPI_Send(&x, 1, MPI_INT, 0, 0,

MPI_COMM_WORLD); // send pong

}

----------------------------------------------------

int x;

dcgn::CommStatus stat;

if (dcgn::getRank() == 0) {

dcgn::send(1, &x, sizeof(int));

dcgn::recv(1, &x, sizeof(int), &stat);

} else if (dcgn::getRank() == 1) {

dcgn::recv(0, &x, sizeof(int), &stat);

dcgn::send(0, &x, sizeof(int));

}

Figure 3: A snippet from a ping-pong application written

using MPI (top) and DCGN (bottom). A ping-pong applica-

tion sends data from host A to host B, followed by host B

sending data back to host A.

kernels to communicate in a fully dynamic fashion, it also

eliminates the “middle-man (CPU)” in application code.

DCGN implicitly handles all communication requests in

such a way as to shield the developer from the underlying

details. DCGN even goes a step further in allowing the

possibility for only GPU application code to be run. If a

developer so chooses, and we believe developers often will,

no CPU kernels need be run. All kernel code may run on the

GPU. This is an important step, as kernels will see a large

speedup if and when GPUs bypass the CPU and directly

communicate with the network interface card (NIC).

3.2.1. Design Goals of a DPM-Communication Library.

The two high-level design goals of a DPM-communication

library should be performance and flexibility. Lower level

goals also exist and aid in the implementation of the two

high-level goals.

Modern PCs and cluster nodes are equipped with multi-

core CPUs. MPI only treats processes, not threads, as first-

class communication sources. To take full advantage of a

multi-core and/or multi-CPU machine, MPI must run one

process per core, or the developer must be content to have

all threads share the same rank. It is essential for a modern

communication library to better utilize all the cores on a

CPU without resorting to heavy weight processes and inter-

process communication.

Modern computers contain multicore CPUs and/or mul-

tiple CPUs, they can also contain multiple GPUs. However

modern graphics drivers use a one-to-one mapping of CPU

threads to GPUs. A library used to control both computation

and communication should be able to efficiently handle all

GPUs, as well as make launching computation kernels on

all GPUs a simple task.

GPU drivers are not the only pieces of software that

potentially are unsafe for multiple threads. Many implemen-

tations of MPI either do not guarantee thread safety, or they

guarantee thread safety with a performance penalty. A high-

level communication library for DPMs is likely to leverage

an existing MPI implementation. It is then very important

that safe, concurrent access be guaranteed by the higher-

level library, as such access is not always guaranteed by

MPI implementations.

Along with guaranteeing safe access to the MPI imple-

mentation, it is also important to fully leverage the power of

the underlying MPI implementation. Most implementations

contain highly-optimized versions of collective communica-

tion routines (e.g. broadcast, scatter). One could easily write

their own version of these collectives, but shrugging off the

research and fine tuning already done by others would be

asinine.

Many DPMs are not capable of pushing data to a CPU.

This makes sourcing communication a challenge. This chal-

lenge must be overcome by any worthwhile communication

library though, as having no ability to source communication

from all computational entities severely restricts developers.

3.2.2. DCGN Architecture. With these design goals in

mind, we created DCGN, a multithreaded communication

library. DCGN takes advantage of the multithreading capa-

bilities of modern CPUs by spawning many internal threads.

Thread-safe queues are used to control inter- thread and

inter-node communication.

Internal DCGN threads are assigned specific tasks, and

stay alive for the life of the application. Each thread owns

a work queue, into which requests such as kernel launches

or communication calls are funneled. DCGN uses MPI as

its underlying communication library and executes compu-

tational kernels on the CPU and GPU. DCGN allows for

fully dynamic communication between any combination of

CPUs and GPUs.

DCGN supports three types of threads, each based on

the responsibilities it holds. CPU-controlling threads execute

kernels on the CPU and funnel communication requests

from CPU kernels to the communication thread. In this

manner, DCGN takes care of the details behind launching

computational threads.

DCGN threads that control a GPU execute kernels on

the GPU, monitor the GPU for communication requests,

transfer memory between the CPU and GPU, and funnel

communication requests from GPU kernels to the commu-

nication thread. As DCGN handles the GPUs, the developer

need to perform any explicit GPU management. Developers

request a number of GPUs for a specific machine and let

DCGN handle the details. They also do not need to split

kernels across communication calls as DCGN allows GPUs

to source communication via normal function calls like send

and recv. Certain facilities such as file I/O are not present in

CUDA (and thus not yet in DCGN). While this prevents full

autonomy from CPUs, all the demanding parts of scientific
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computations can be handled by user-developed DCGN-

kernels for the GPU, thus giving the GPU near-complete

autonomy from the CPU.

Another benefit of this design is that applications that

perform both CPU and GPU computations no longer need to

be tied together in one big piece of code. Kernels and GPU

kernels may be separated; DCGN handles all requests to

launch kernels and requests for communication from kernels

on the GPU.

The last class of threads are communication threads.

The communication thread initializes the underlying MPI,

handles communication requests from kernels, signals CPU-

and GPU-controlling threads as communications complete,

and shuts down the underlying communication library upon

application completion. Each DCGN process spawns exactly

one communication thread. This method allows DCGN to

provide thread-safe access to any communication library,

even a potentially non-threadsafe implementation of MPI.

Figure 4 shows the typical DCGN instantiation on a single

node.

Figure 4: The typical architecture of a DCGN process run-

ning on a single node. The CPU thread(s), GPU thread(s),

and MPI thread all run on the node’s CPU(s). The GPU(s)

and NIC are physically connected via the PCI-e bus. Each

GPU threads issues kernel requests and memory copies to its

respective GPU. Each CPU thread and GPU thread relay

communication requests to and from the MPI thread. The

MPI thread communicates data to and from other nodes via

the NIC.

To illustrate a real-world instance of the DCGN archi-

tecture, consider a small cluster with four nodes. Each node

has two CPUs, each with two cores, and each node also

has two GPUs. A developer decides to use a homogeneous

setup with all nodes using two CPU-kernel threads per node

and two GPU-kernel threads per node. A communication

thread is implicitly created on each node as well. Therefore,

each node has five threads: two threads control CPU kernels,

two threads control GPU kernels and monitor GPUs for

communication, and one thread controls all inter-node and

intra-node communication. A total of twenty threads are

running on the four nodes.

3.2.3. DCGN Implementation. The implementation of

DCGN posed several original challenges. First and foremost,

the GPU must become a network-capable device. Secondly,

the GPU must become (pseudo-) autonomous from the

controlling CPU. These two challenges, coupled with the

goals from Section 3.2.1 (utilize all cores, efficiently handle

GPUs, guarantee safe concurrent access, and fully utilize

underlying libraries) shaped the final implementation of

DCGN.

DCGN takes advantage of multiple cores by multiplexing

MPI ranks across all requested CPU cores and light-weight

GPU threads; a DCGN node with a certain configuration

could easily multiplex a single MPI rank one-thousand ways.

As DCGN multiplexes these ranks, there needs to be a

way for the DCGN library to know the virtualized rank.

MPI uses global variables to achieve this task, DCGN uses

thread-specific data (TSD). Internal DCGN data structures

are allocated on the heap, and then stored for lookup. TSD

allows for a fast, flexible, and cross-platform method of

referencing DCGN information.

Part of the TSD stored for DCGN is whether a specific

thread controls outside communication via MPI (comm.

thread), runs CPU kernels (CPU-kernel threads), or controls

a GPU (CPU-kernel threads). Not every MPI implementation

is thread- safe; DCGN avoids potential problems by having

a single thread interact with MPI; this thread initializes and

finalizes MPI, and performs all communication calls (e.g.

MPI Recv). CPU-kernel threads and GPU-kernel threads use

a thread-safe queue to relay communication requests to the

comm. thread. CPU-kernel threads are simply in charge of

invoking CPU-based kernels and relaying communications.

GPU-kernel threads are responsible for initializing and final-

izing a GPU, invoking kernels on the GPU, and monitoring

the GPU for communication requests and handling them

appropriately.

The GPU-kernel thread was the largest challenge because

GPUs can’t source communication. Kernels are currently

split across points of communication. DCGN alleviates this

problem by allowing direct communication calls (e.g. send,

recv) in GPU kernels. These calls don’t interact with the

network driver; they set regions of GPU memory that are

monitored by a GPU-kernel thread. When the memory

is noticed, the request is obtained via cudaMemcpyAsync,

handled, and the appropriate memory is set on the GPU to

flag the GPU kernel, telling it to continue execution.

Side effects arise from CPUs controlling GPUs; mes-

sages are not instantaneously transfered by GPUs, the CPU

must implement a polling scheme, and a trade-off between

low-latency messages and efficient CPU-utilization must be
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made. Messages have to be polled from a GPU; this requires

several rounds of PCI-e transfers. The CPU must poll the

GPU at a certain interval since the GPU can’t signal the

CPU. Tradeoffs in performance are required because high-

frequency polling strains the CPU whereas low-frequency

polling increases message latency.

It is desirable to run MPI codes as many MPI algorithms

already exist. This raises two issues; mapping MPI calls to

DCGN calls, and automatically assigning the number of slots

to a GPU. The first issue is straightforward. The second

issue is non-trivial and beyond the scope of this paper. The

simplest static mapping of slots would be a one-to-one slot-

to-GPU pairing. This is not always optimal and it discards

the entire notion of slots.

While the automatic allocation of slots is a hard problem,

assigning virtualized ranks to CPU-kernel threads and slots

is easy. Every Noden is given Cn +(Gn ×Sn) ranks, where

Cn is the number of CPU-kernel threads requested, Gn is the

number of GPUs requested, and Sn is the number of slots

per GPU requested. Ranks are assigned consecutively within

a node, and in increasing order across successive MPI ranks.

The lowest non-issued rank is given to the first CPU, then

the second, and so on. Then slot 0 on GPU 0, then slot 1

on GPU 0, and so on, until all CPUs and GPU slots are

assigned virtualized ranks. There’s no implicit assumption

of ranks per node, and threads from different processes on

the same node have no explicit interaction.

Use MPI collective routines with multiplexed MPI ranks

All DCGN collectives follow a similar pattern and dif-

ferentiate themselves upon calls to MPI. As local requests

for collectives trickle in from CPU kernels and GPU kernels,

these requests are stored. Once all CPU kernels and GPU

kernel slots initiate the collective, data is massaged as needed

and then the MPI function is called. Upon completion of the

MPI function, data is copied as necessary to local buffers,

then each CPU kernel and GPU kernel slot is notified of the

communication completion.

From an individual node’s perspective, when a broadcast

is called, the root of the broadcast is either resident on the

node or on a different node. In the case of the root being

resident on the node, the MPI broadcast is executed using the

root’s specified buffer. If the root is not resident on the node,

one buffer is selected at random from those specified for use

with the MPI broadcast. In either case, upon completion, the

memory is copied from the buffer given to MPI to all the

other buffers. One optimization intended for the future is

to have memory copies happen in a tree-like manner across

CPU and GPU threads. This would drastically cut the local

time taken for large broadcasts. It would also significantly

alleviate bandwidth to the GPU if multiple slots per GPU

were used.

Other collectives come with more challenges. DCGN

does not implement all collectives found in MPI. However

we propose a general pattern for use with gather, scatter, and

all-to-all. Homogeneous node configurations simply require

an invocation of the MPI collective with all the represen-

tative data for the entire node, followed by a dispersal to

the appropriate CPU threads and GPU slots. Heterogeneous

configurations work in much the same way, but as data

sizes can differ from node to node, the vector variants (e.g.

MPI Scatterv) should be used.

3.2.4. DCGN Limitations. As of right now, developers

using DCGN must deal with a few limitations. Our design

anticipates mitigating these limitations with future improve-

ments to GPU and chipset drivers. Currently, CPU kernels

cannot directly use MPI but instead must use DCGN prim-

itives to communicate. User-spawned CPU-threads cannot

call DCGN communication functions. Certain GPU kernels

have limitations as to the number of blocks that can be

scheduled. Communication currently is not as efficient when

sourced from the GPU as it is when sourced from the CPU.

Developers are not allowed to directly call MPI func-

tions. At this time, MPI is used under the hood, but that

may not always be the case. Also, DCGN relies on MPI

being in a stable and expected state. This may not be the

case if a developer manually changes the state of the MPI

implementation. This restriction may be lifted as advances

in MPI and/or GPU drivers are made.

Users have the ability to spawn their own threads

on the CPU beyond the number of threads supplied by

DCGN. Communication from these threads via DCGN is

not allowed. This is because DCGN does not have any

knowledge of these threads, and thus no thread-specific data

for communication is stored.

GPU kernels that use DCGN communication are limited

in the number of blocks that can be scheduled onto the

GPU; The number capable of being scheduled onto the GPU

is limited by the hardware, and once a block is scheduled

to a multiprocessor, it runs until completion. The order of

block scheduling is arbitrary, and thus if one expects a single

block (e.g. block 0) to perform communication before all

other blocks can perform computation, a deadlock will occur

if all multiprocessors are taken before that block can be

scheduled.

Communication involving a GPU is not as efficient as

communication only involving CPUs. Two primary reasons

cause this inefficiency: GPU memory must be polled to

check for communication requests and the CPU must act

as a relay between GPU memory and the NIC. Small data

transfers are impacted more than large data transfers as

initialization time is much larger compared to transfer time

with respect to a small amount of data.

These limitations may seem constricting, but empirical

evidence shows this is not the case. DCGN strives to

provide communication functionality so as to mitigate the

need to call MPI functions. If a developer want more

7



communicatoin- capable CPU threads, they simply request

more CPU-kernel threads. GPU kernels can be wrapped

in a loop to get around the limitation with respect to

number of blocks. Finally, GPU developers may not achieve

ideal speedups because of communication overhead, but we

believe vendors will add functionality to chipsets, GPUs,

and drivers to eliminate the need for the CPU to mediate

between the GPU and NIC.

3.2.5. DCGN vs. PGAS. With a PGAS implementation,

code is ran with a hierarchical address space. Algorithms

rely on implicit copies of memory from a neighboring node

to local memory. Communication costs are determined stati-

cally at compile time because the communication is simple.

This predictability is a strength as it allows for optimizations

such as pre-fetching. However it limits users in that efficient

implementations of more complex communication patterns,

especially collectives, are not possible.

With DCGN, just as with MPI, communication can be

dynamic, and highly optimized routines can be used. Users

must extend their own energy to do things such as pre-

fetching and overlapping communication with computation.

However this extra effort at the trade-off of optimized com-

munication is common in modern distributed applications.

4. Test Applications

To fully test DCGN, we wrote several applications. These

exercised throughput and latency for point-to-point and col-

lective communications. We tested GPU GPU, CPU GPU,

GPU CPU, and CPU CPU communication, as well as

several communication models including fully dynamic and

simultaneous communication.

It’s an easy task to pick applications that are easily

parallelizable, applications that have minuscule amounts of

communication and lots of computation. Such applications

can have perfect speedup. We avoided these applications and

instead chose challenging applications that would thoroughly

test DCGN’s abilities and give a good measure of real-world

performance. These applications either have non-trivial com-

munication patterns or communication requirements that

can’t be overlapped with computation and have a significant

effect on parallel efficiency.

The test applications were run on a cluster of four

nodes, each with two dual core AMD Opteron(tm) 2216

processors with 1 MB of cache, 4 GB of RAM, and two G92

NVIDIA GPUs with 512 MB of GPU memory connected

via PCI e. The machines run 64 bit Gentoo Linux 2.6.24 r3

with SMP support. The underlying MPI implementation was

MVAPICH2-1.0. The nodes were connected via infiniband.

This configuration allowed for a total of 8 CPUs and 8 GPUs

meaning 16 total computation units. This number is less than

ideal, but access to a machine with at least 32 G92 GPUs

was not possible.

Sending and Receiving Simple send-and-recv applications

were implemented to test throughput and latency of point-

to-point communications. We implemented tests for both

small (including zero-sized) and large message sizes. We

also implemented tests that used multiple slots per GPU

to understand the behavior of our system with respect to

latency.

One-to-All Two applications were implemented to analyze

one-to-all (broadcast) performance. The first test executed

broadcasts of varying sizes. The second application im-

plemented was a brute force N-body simulation [10]. N-

body applications simulate the movement of celestial bodies

based on the laws of gravitational physics. Given N bodies

and P processors, the distributed algorithm works by each

processor accumulating the force of all N bodies on N
P

bodies. As all bodies affect the movement of other bodies, a

brute force algorithm requires O(N2

P
) time per time step for

computation. Once all forces are calculated and applied, each

communication target broadcasts its updated bodies to the

rest of the targets. This process is repeated for an arbitrary

number of time steps.

Simultaneous Communication Cannon’s matrix multiplica-

tion [6] is a distributed algorithm that performs dense matrix

multiplication of two N×N matrices, A and B, and computes

the matrix C = A×B. The algorithm uses P communication

targets and runs in O(N2
√

P)) time. P must be a perfect

square, and N mod
√

P must be 0. Cannon’s algorithm works

by arranging the targets in a square grid and distributing

chunks of each matrix to the targets. Each target computes

a chunk of C by performing incremental multiplications of

chunks from A and B. After each sub-multiplication, the

chunks of A and B are rotated among the processors. This is

done using a call similar to MPI Sendrecv replace, and hap-

pens for each communication target nearly simultaneously.

This algorithm has known communication costs and can

thoroughly stress any network given large enough matrices.

Unpredictable Communication Calculating the Mandel-

brot set [7] is an excellent candidate for testing dynamic

and unpredictable communication. An iterative, per-pixel

algorithm is used to generate an image of the Mandelbrot

fractal. The number of iterations varies upon the location of

the pixel in the problem domain. There is no shared data

in the calculations of pixels. While global communication

costs can be calculated, per-target communication costs

cannot be calculated with one-hundred-percent accuracy. We

implemented a dynamic work queue with GPUs to generate

a Mandelbrot fractal. As GPU processors become available

they contact the master thread (target 0) and request a strip

of the output image to generate. The master responds by

allocating a strip and marking that strip as in progress. Once

a target is done with a strip, it returns the calculated strip to

the master. Network and device latency yield unpredictable
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and truly dynamic communication. Figure 5 shows how

running the application twice with the same parameters can

produce a different work distribution.

Figure 5: Two separate runs of a Mandelbrot fractal

generator using eight DCGN ranks. Horizontal strips are

color-coded to show which ranks computed which sections.

5. Results

DCGN proved to be a formidable asset when developing

GPU and hybrid CPU-GPU applications. DCGN layered a

fast, efficient, and familiar abstraction on top of the low-

level communication primitives of the GPU. The ability to

focus on the high-level algorithms instead of the low-level

communication primitives made for an anecdotally faster and

more productive development cycle.

5.1. Results from High-Level Applications

Not only does DCGN provide an efficient layer for

writing applications, it is capable of yielding performant

applications on par with those written using the GAS+MPI

model. All three test applications obtained at least 90%

of the performance of the corresponding single-node GAS

implementations (the CPU didn’t do any work).

Why should DCGN be used at all if its performance

is consistently below GAS+MPI approaches? The answer is

two things: application codes that use DCGN will be future-

proof as advances in GPU, chipset, and driver technology

will be integrated into DCGN and the exact same application

code will suddenly run faster. The other reason is that with

DCGN, one can write code at a higher level and focus on

the algorithms, not the communication requirements. As an

analogy, developers can write their applications using BSD

sockets or the Infiniband API, this may very well run faster

than the corresponding MPI code. However, very few would

ever do this as it would imply more effort, more lines of

(potentially buggy) code, and less portability.

Mandelbrot The Mandelbrot test application, at peak per-

formance, computed more than seventeen million pixels

per second with a GAS implementation and more than

fifteen million pixels per second with a DCGN implemen-

tation. With eight GPUs, the GAS implementation yielded

a speedup of 3.08× and a parallel efficiency of 38% (where

efficiency is defined as the speedup obtained with N com-

putational units divided by N), while the DCGN imple-

mentation yielded a speedup of 2.72× and an efficiency

of 34%. Anecdotally, our DCGN implementation contained

25% fewer lines than our GAS+MPI version.

These numbers show how communication costs can

dampen the results of any GPU application. Instead of

allowing a single GPU to run the algorithm over the entire

image, partial results are messaged back to a master. As dark

pixels (those that converged quickly) took virtually no time

to compute, large portions of the run time were dominated

by communication. The DCGN version performed almost

as well as the GAS version, with the discrepancy due to

DCGN’s higher overhead in communication.

Matrix Multiplication The matrix-multiplication algorithm

of Cannon makes use of the send/recv function in both

DCGN and MPI. With a matrix size of 1024 × 1024 and four

GPUs, the DCGN implementation yielded an efficiency of

71%, while the GAS implementation yielded an efficiency of

74%. Implementing a send/recv function in DCGN, instead

of forcing users to manually use asynchronous sends and

receives, helped performance. Not having to perform two

GPU-memory polls and have two outstanding communi-

cation requests allowed DCGN to more efficiently handle

communication, thus bringing the performance almost to the

level of the GAS+MPI implementation.

N-body The N-body simulation allowed us to thoroughly

examine the efficiency of collectives with both small and

large message sizes. Both the DCGN and GAS implemen-

tations yielded the same efficiency when compared with

the single-GPU implementation. This showed us that when

computation severely outweighs communication, DCGN is

just as powerful as GAS+MPI. Using eight GPUs and

four thousand bodies, we obtained an efficiency of 28%.

But when the number of bodies was increased to sixteen

thousand, the efficiency rose to 64%. Efficiency peaked at

just over 90% with thirty-two thousand bodies.

5.2. Results from Low-Level Micro Benchmarks

GPUs yield great speedup for many computations, but

in a multi-node environment, they have fewer features and

more overhead when communicating with other processors

in the system. GPUs have many multiprocessors, so it is

no surprise that decomposable tasks would execute signif-

icantly faster. But since GPUs are only connected to the

CPU through a bus, and the two do not share memory,

communicating data from a GPU on one node to a CPU

or GPU on another node incurs more overhead. This is

regardless of whether one uses the GAS or DCGN models.

DCGN works to alleviate this overhead in many ways.

DCGN grants access to GPUs and provides abstract com-
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munication such that advances in certain technologies are

integrated with no effort on the developer. They see per-

formance gains for free. This is important because DCGN

currently yields good performance with both point-to-point

and collective communications, but the performance could

stand to improve. In particular, the higher overheads of

DCGN compared to MPI+GAS leads to a slight performance

degradation, as we described in Section 5.1. We now exam-

ine these overheads in more detail.

Point-to-Point Communication Point-to-point communica-

tion with DCGN was measured using micro-benchmarks of

sends, receives, and ping-pong tests. We performed several

iterations of communication with varying sizes of data

to gather comparable numbers for communication speeds.

For example, to compare broadcast speeds, timings were

taken on the root node with a series of iterations per data

size, with data sizes ranging from one byte to sixty-four

megabytes. The time taken by MPI Bcast, dcgn::broadcast,

or dcgn::gpu::broadcast was recorded and compared across

MPI, DCGN CPU, DCGN GPU, and DCGN CPU + GPU.

The results for all four were similar, we discuss sends here.

Small messages give poor performance with DCGN when

compared to MVAPICH2. A zero-byte, CPU-CPU message

with DCGN takes more than 28× as long to deliver than

with MVAPICH2, and GPU-GPU message took 564× longer

than with MVAPICH2. These large differences are due to the

nature of DCGN and the GPU. DCGN uses a multi-threaded

architecture with thread-safe work queues. When compared

to the time it takes to simply call MPI Send, it becomes

clear why a CPU-CPU send takes longer. The GPU-GPU

send can also be explained in terms of DCGN overhead.

Three separate communications with the source GPU must

take place. The CPU polls GPU memory, the CPU copies the

appropriate memory from the GPU, and once the message is

handled (which can take time), the CPU tells the GPU that

the message was sent. All three stages require a significant

amount of time.

As message sizes increase, the performance of DCGN

nearly matches that of MVAPICH2. A 1 MB CPU-to-

CPU send with DCGN takes only 4% longer than with

MVAPICH2. To send a 1 MB GPU-to-GPU message with

DCGN takes 1.5× longer than a CPU-to-CPU message with

MVAPICH2. The reason for the drop in discrepancy is that

actual message transfer time far outweighs the initialization

time for each stage of communication. A complete graph of

the send micro benchmark is shown in Figure 6.

Collective Communication Even though optimizes DCGN

for collectives, MVAPICH2 collectives tend to be faster.

Collectives are built upon the send and receive primitives

so collectives of a certain size show some of the same

tendencies as point-to-point communication.

Barriers in DCGN took much longer to complete than

with MVAPICH2. This is primarily because almost no data
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Figure 6: Sends for CPUs and GPUs with and without

DCGN. The graph shows the time taken to send mes-

sages of various sizes. MVAPICH2 provides a baseline of

performance. CPU-only DCGN timings perform very close

to MVAPICH2 applications for large messages, where as

small-message timings are dominated by the overhead of

thread safety. Communication involving the GPU adds extra

time as memory copies must be made between the CPU and

the GPU.

is sent with a barrier. Almost all communication time (both

in DCGN and MVAPICH2) is initialization. A full table of

timings is presented in Table 1.

Broadcasts in DCGN had similar performance to that of

sends. However, small-to-medium sized broadcasts with only

CPUs in DCGN were actually faster than the corresponding

MVAPICH2 broadcasts. This is because of the way DCGN

handles collectives. If a process hosts more than one DCGN

rank, the communication is dealt with internally via memcpy

and cudaMemcpy. In MVAPICH2, inter-process communi-

cation (IPC) or Infiniband are used to perform the data copy.

As the size of a broadcast grew to several megabytes,

the time for an all-CPU DCGN broadcast was equal to that

of an MVAPICH2 broadcast. The DCGN GPU broadcast

was still slower, again due to the overhead in performing

communications with the GPU. A full graph of broadcast

timings is shown in Figure 7.

Looking Forward These results show that DCGN perfor-

mance is very close to an MPI implementation. DCGN can

close the gap on or even overtake MPI’s performance with

vendor support. Several things are necessary: A method

for signaling the CPU from the GPU, a direct connection

to the NIC, a direct GPU-to-GPU connection via PCI-e,

and buffers in system memory so the GPU may push data.

We believe these additions would put DCGN on par with

MPI while preserving its advantage of a higher-level, more

flexible interface.

10



MPI DCGN DCGN DCGN
Nodes Configuration (CPU) (CPU) Ratio (GPU) Ratio (CPU+GPU) Ratio

1 2 CPUs/0 GPUs 3 µs 38 µs 12.67×
1 0 CPUs/2 GPUs 313 µs 104.3×
1 1 CPU/1 GPU 50 µs 16.67×
1 2 CPUs/2 GPUs 53 µs 10.60×
2 4 CPUs/0 GPUs 5 µs 41 µs 8.20×
2 0 CPUs/4 GPUs 747 µs 149.40×
2 4 CPUs/4 GPUs 55 µs 9.17×
4 8 CPUs/0 GPUs 6 µs 43 µs 7.17×
4 0 CPUs/8 GPUs 806 µs 134.33×
4 8 CPUs/8 GPUs 70 µs —

Table 1: Barrier Timings for CPUs and GPUs. Inter-thread messages in DCGN add significant overhead, especially to

barriers as no data is transferred. For DCGN applications that use GPUs, we compare the total number of kernels executing

to MPI with an equal number of CPUs. These timings are not directly comparable as significantly more work is done to

perform a barrier by a GPU than to perform a barrier by a CPU. However, these numbers provide a baseline for current

and future comparisons.
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Figure 7: Broadcast timings with and without DCGN. The

graph shows timings with eight DCGN ranks. Up to two

MPI processes or DCGN-CPU threads run on the same

node. As is expected, GPUs introduce slowdown. Much of

this is attributed to the two trips over PCI-e for GPU

communications. DCGN is faster in certain cases because

the underlying MPI broadcast is executed with one-half as

many participating ranks.

6. Discussion

6.1. Programming Model

Scientists want to take full advantage of the computa-

tional power of GPUs, Cells, and other DPMs. Allowing

them the ability to develop kernels with full access to

underlying hardware and software, and providing a message

passing interface, is essential to giving scientists the access

and power they desire. Other existing software packages

either constrict developers and enforce a restrictive program-

ming model, or provide access to raw resources with no

higher-level support.

DCGN achieves an excellent trade-off in allowing full

access to GPUs as DPMs while providing higher-level

support. Developers use fully-functional kernels, and com-

municate through non-invasive techniques. Instead of forcing

a user into treating their computation resources as slave

devices with one very specific purpose, DCGN allows devel-

opers to treat GPUs as first-class computing resources with

a wide range of power.

Very few tradeoffs are made in application development

with DCGN. Users must implement kernels in a callback

style fashion. This adds virtually no complexity to appli-

cations. At the absolute maximum, developers must define

one or two additional structures, and these structures are

only used to pass parameters to kernels via DCGN.

To say DCGN doesn’t impose limitations on developers

is false. On the CPU side, MPI is always off-limits, and

threading libraries can only be used under certain conditions.

As DCGN uses MPI, developers mustn’t use MPI. Since

communication is provided by DCGN, this restriction is

actually moot; another communication library is not needed.

DCGN limits access to certain features of the GPU.

DPMs map a number of data elements to threads. GPUs

schedule blocks of threads to work, afterwards the blocks

die. The blocks stay scheduled until completion, and it’s

common to use thousands to millions of blocks. DCGN

requires persistent blocks to handle synchronous communi-

cation. The number of blocks can be reduced by employing

a work queue instead of numerous blocks; work-queues help

to ensure a balanced load.

6.2. Communication Patterns

DCGN provides dynamic communication but with a high

cost. Polling creates a significant CPU load. Transferring

GPU memory and synchronizing kernels with communica-

tions add overhead. Synchronization and tradeoffs in the

implementation change the expected semantics of intra-
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node communications to be globally synchronized. This

reduces back-end complexity, but at a potential cost to

performance. When intra-node communication occurs, the

communication thread performs memory copies instead of

using MPI. Local sends finish upon matching with a local

receive and performing the memory copy. Local sends to

a GPU will not have to wait for the memory to be copied

to the GPU, but they’ll wait for memory to be copied to a

temporary CPU buffer.

This method was written to avoid using MPI for local

communication. It was also written to make implementing

the architecture of DCGN much easier. Communication

requests that arise from DCGN all look the same to the

MPI thread. All calls provide a communication partner (or

root, in the case of most collectives) and potentially a buffer

and byte-count. There is no distinction made by the DCGN

thread between requests made by a CPU and requests made

by a GPU. This allowed for rapid development and high

level optimizations of DCGN.

7. Conclusions

Over time, as modern processors become more parallel

and more heterogeneous, we submit that it will become

increasingly important to build and support abstractions that

allow both high performance and utilization of all system

resources as well as permit many flexible and powerful

programming models to be built atop those abstractions.

Creating a die with both a CPU and GPU, such as the

upcoming AMD Fusion R© and Intel Nehalem R© processors,

perfectly exemplifies this trend towards heterogeneity. As

this trend continues, many believe that processors will have

more components than can be turned on simultaneously due

to power and heat restrictions.

The current methods for working with multi-GPU and

heterogeneous systems are insufficient. Many problems exist

that cannot be easily mapped onto a GAS or Global Arrays

programming model. It is a hard question to answer: “How

can we integrate parallel systems into a heterogeneous

environment?”

DCGN enables us to merge heterogeneous computing

resources and make a bigger, more powerful computing

platform. At a high level, DCGN permits building scalable

applications. One can write an application for a GPU, or

for many hundreds of CPUs and GPUs and still expect

scalable performance. Not only can scalable applications be

built upon DCGN, but so can new and better programming

models, as well as new systems. Developers can leverage

the dynamic-communication capabilities to create virtually

any communication model. DCGN provides a road map

for future devices and drivers. Chipset and coprocessor

manufacturers have a clear idea of the need for fast paths

not just to the CPU, but to the NIC and other PCI-e

siblings. Devices and drivers will hopefully support such

paths, allowing DCGN and other libraries’ performance to

rival that of CPU-based communication libraries, thereby

eliminating all the limitations of DCGN.

It’s important to understand that DCGN does all these

things in the right manner. By separating the user-level in-

terface from the lower-level communications, DCGN makes

technological innovations immediately accessible to devel-

opers with no change to their code. This also allows device

manufacturers and driver writers to test new hardware and

systems software with benchmarks and open-source appli-

cations designed to test such systems.
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