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*MATHEMATICAL MODELS FOR ME:MORY AND LEARNING

by

R. C. Atkinson and R. M. Shiffrin

stanford University

In recent years a number of models have been proposed to account for

retention phenomena, with the emphasis primarily on short-term memory ex-

periments. There has also been an active development of models for verbal

learning, with the focus on experiments dealing with serial and paired-

associate learning. Except for a few notable exceptions, most of these

theoretical developments have been applicable either to memory or learning

experiments, and no attempt has been made to bridge the gap. It is our

feeling that theoretical and experimental work in these two areas is suffi-

ciently well advanced to warrant the development of a general theory that

encompasses both sets of phenomena. This, then, is the goal of the paper.

We must admit, however, that the term "general theory" may not be entirely

appropriate, for many features of the system are still vague and undefined.

Nevertheless, the work has progressed to a point where it is possible to

use the general conceptual framework to specify several mathematical models

*This paper was prepared for the "Third Conference on Learning,

Remembering, and Forgetting" sponsored by the New York Academy of Science

at Princeton, New Jersey, October 3 to 6, 1965. Support for the research

was provided by the National Aeronautics and Space Administration, Grant

No. NGR-05-020-036. The authors also wish to acknowledge their indebtedness

to Gordon Bower who, in discussion, contributed substantially to many of the

ideas presented in this paper.
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that can be applied to data in quantitative detail.

The theory that we shall outline postulates a distinction between

short-term and long-term memory systems; this distinction is based on the

coding format used to represent information in the two systems, and on the

conditions determining the length of stay. In addition, two process variables

are introduced: a transfer process and a retrieval process. The transfer

process characterizes the exchange of information between the two memory

systems; the retrieval process describes h.ow the subject recovers informa

tion from memory when it is needed. As one might conjecture from this brief

description, many of the ideas that we will examine have been proposed by

other theorists. In particular we have been much influenced by the work of

Bower (1964), Broadbent (1963), Estes (1965), Feigenbaum and Simoh (1962),

and Peterson (1963). However, we hope we have added to this earlier work

by applying some of the ideas in quantitative form to a wider range of phe-

namena.

In presenting the theory we shall begin with an account of the various

mechanisM involved, making only occasional references to experimental appli

cations. Only later will models be developed for specific experimental

paradigms and applied to data. Thus the initial description will be rather

abstract, and the reader may find it helpful to keep in mind the first study

to be analyzed. This experiment deals with short-term memory, and involves

a long series of discrete trials. On each trial a new display of stimuli

is presented to the subject. A display consists of a random sequence of

playing cards; the cards vary only in the color of a small patch on one

side. The cards are presented at a fixed rate, and the subject names the

color of each card as it is presented. Once the card has been named it is
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tUrJ'led face down so that the color is no longer visible, and the next card

is presented. After presentation of the last card in a display the expert-

menter points to one of the cards, and the subject must try to recall its

color. Over the series of trials, tbe lengtb of the display and the test posi-

tion are systematically varied. One goal of a theory in this case is to

predict the probability of a correct response as a function of both lise

length and test position. \iTith this expcri,ment in mind "lNe nm'T turn to an

account of the theory.

GENERA.L FORMULA.TLON OF THE BUFFER MODEL

In this section the basic model will be outlined for application

later to specific experimental problems. Figure 1 shows the overall con-

ceptiOD. An incoming stimulus item first enters the sensory buffer \\Tl1ere

it will reside for only a brief period of time. and then is transferred to

the memory buffer. The sensory buffer characterizes the initial input of

the stimulus item into the nervous system. and the amount of information

transmitted from the sensory bUffer to the memory buffer is assumed to -be

a function of the exposure time of the stimulus and related variables.

Much work has been done on the encoding of short-dura+:ion stimuli (e.g.,

see Estes and Taylor, 1964; Mackworth, 1963; Sperling, 1960), but all of

the experiments considered in this paper are concerned \vi th stimullJ.s ex-

posures of fairly long duration (one second or more). Hence we will assume

that all Hems pass successfully· through the sensory buffer and into tl1e

memory buffer; that L:" all i terns are assumed to -be attended to and entered

correctly into the memory buffer. Throughout tbis paper, tl1en, it will be

understood thE.. t the tE;Y1:l buffer refers to the memory buffer and not the

sensory buffer. Furt.hermore, we will not bEc.ome involved :llere in a
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detailed analysis of what is meant by an "item." If the word "horse" is

presented visually, we will simply assume that whatever is stored in the

memory buffer (be it the visual image of the word, the aUdi'oory sound, or

some vector of information about horses) is sufficient to permit the subject

to report back the word Ilhorsell if we immediately ask for it. rrhis question

will be returned to later. Referring back to Fig. 1, we see that a dotted

line runs from the buffer to the "long-term store" and a solid line from

II *the buffer to tl:le lost or forgotten" state. This is to emphasize that

i terns are copied into LTS without affecting in any way their status in the

buffer. Thus items can be simultanernlsly in the buffer and in LTS. The

solid line indicates that eventually the item will leave the buffer' and be

lost. The lost state is used here in a very special way: as soon as an

item leaves the buffer it is said to be lost, regardless of whether it is

in LTS or not. The buffer, it should be noted, is a close correlate of what

others have called a "short-term store" (Bower, 1964; Broadbent, 1963;

Brown, 1964; Peterson, 1963) and "primary memory" (Waugh and Norman, 1965).

We prefer the term buffer because of the wide range of applications for

which the term short-term store has been used. This buffer will be assigned

very specific properties in the following secti.on. Later on, the features of

LTS will be considered, but with less specificity than those of the buffer.

A. THE MEMORY BUFFER

Certain basic properties of the buffer are diagrammed in Fig. 2. They

are as follows:

*The term long-term store will be used throughout the paper and hence

abbreviated as LTS.
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1) Constant size. The buffer can contain exactly r items and no

more. We start by supposing that items refers to whatever is pre-

sented in the experiment in question, whether it be a paired-associate,

a 6-digit number, or a single letter. Thus, for each experimental task

the buffer size must be estimated. Hopefully in future work it will

be possible to specify the parameter r in advance of the experiment

by considering physical characteristics of the stimulus items. For

the present, no contradiction arises in these tWD approaches if we

remember that stimulus items for any given experiment are usually

selected to be quite homogeneous, and can be roughly assumed to

carry equal information. It would be expected that the more com-

plicated the presented item, the smaller r would be . Similarly,

the greater the number of alternatives that each presented item

is chosen from, the smaller r should be.

2) Push-down buffer: temporal. ordering. These two properties are

equivalent. As it is shown in the diagram the spaces in the buffer

(henceforth referred to as "slots") are numbered in such a way that

When the next item is presented it enters the slot and pushes

when an item first enters the buffer it occupies the

th
r

th
r slot.

the preceding item down to the r- 1
st slot. The process continues

in this manner until the buffer is filled; after this occurs each

new item pushes an old one out on a basis to be described shortly.

The one that is pushed out is lost. Items stored in slots above

the one that is lost move down one slot each and the incoming item

is placed in the th
r slot. Hence items in the buffer at any point

in time are temporally ordered: the oldest is in slot nluuber I and

the newest in slot r.
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3) Buffer stays filled. Once the first r items have arrived the

buffer is filled. Each item arriving after that knocks out exactly

one item already in the buffer; thus the buffer is always filled

thereafter. It is as.swned that this state of affairs continues only

as long as the subject is paying attention and trying to remember

all that he can. At the end of a trial for example, attention

ceases and the buffer gradually empties of that trial's items.

Whether the items in the buffer simply fade out on their own or are

knocked out by miscellaneous succeeding material is a moot point.

In any event the buffer is cleared of the old items by the start

of the next trial. The important point, therefore, is the focus

of attention. Though the buffer may be filled with other material

at the start of a trial, primacy ef:'.'ects are found because attention

is focused solely on the incoming items.

4) Each~ item bwnps out an old item. This occurs only when the

buffer has been filled. The item to be bumped out is selected as

a function of the buffer pos~tion (Which is direct4Y related to the

length of time each item has spent in the bUffer). Let

K. probability
J

full buffer

Then of course Kl + K
2

+

that an item in slot j of a

is lost when a new item arrives.

+ K ~ 1, since exactly one item is
r

lost. Various schemes can be proposed for the generation of the

K.'s. The simplest scheme (which requires no additional parameters)
J

is to equalize the i< i s; , 1.. e., let K. ~ llr
J

for all j. A

useful one-parameter scheme will be described in some detail later

on. In general, we would expect the smaller the subscript j, the

larger Kj ; that is, the longer the item has been in the buffer
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the higher the probability of its being lost. The extent of this

effect would depend in each experiment upon such things as the ten-

dency toward serial rehearsing, whether or not the subject can antici-

pate the end of the list, and so on. Once an item has been bumped

out of the buffer it cannot be recalled at a later time unless it

has previously entered LTS.

5) Perfect representation of items _i_n _t_h_e ?uffer. Items are always en-

coded correctly when initially placed in the buffer. This, of course,

only holds true for experiments with slow enough inputs, such as those

considered in this paper. This postulate would have to be modified

if items entered very quickly; the modification could be accomplished

by having an encoding process describing the transfer of information

from the sensory buffer to the memory buffer.

6) Perfect recovery of item from the buffer. Items stiJ.I in the buffer

at the time of test are recalled perfectly (subject to the "perfect-

representation" assumption made above). This and the previous assump-

tion are supported by certain types of digit-span experiments where

a subject will make no mistakes on lists of digits whose lengths are

less than some critical vaDle.

7) Buffer is unchanged by the transfer process. The contents of the

buffer are not disturbed or otherwise affected by the transfer of items

from the buffer to LTS. Thus an item transferred into LTS is still

represented in the buffer. The transfer process can be viewed as

one of copying an item in the buffer, and placing it in LTS, leaving

the contents of the buffer unchanged.

This set of seven assumptions characterizes the memory buffer. Next we shall

consider the transfer process which moves items out of the buffer into LTS,
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but before we do this let us examine a simple one-parameter scheme for

generating the K.! s.
J

We want the probability that the jth item in a full buffer is the

one lost when a new item enters. The following process is used to determine

which item is dropped: the oldest item (in slot 1) is dropped with prob-

ability 5. If that item is not dropped, then the item in position 2 is

dropped wHh probability 5. If the process reaches the th slot and itr

also is passed over, then the process recycles to the 1st slot. This

process continues until an item is dropped. Hence

K. = 5(1 _ 5) j-l +
J

=
5(1_5)j-l

1 - (1_5)r

5(1 _ 5)r+j -l + 5(1- 5)2r+j -l + 5(1 _ 5)3r +j-l + .••

(1)

If we expand the denominator in the above equation and divide top and

bottom by 5 it is easy to see that K.
J

approaches l/r for all j as

5 approaches zero. Thus, this limiting case represents a bwnp-out process

where all items in the buffer have the same likelihood of being lost. When

Le., the5 = 1, on the other hand, K. = 1 and K = K
3

= '" = K = 0,'
l 2 r

oldest item is always the one lost. Figure 3 illu.strates what this process

is like. What is graphed is a recency curve; the probability that the

i th item from the end of the list is still in the buffer at the time of

test. The last item presented is the leftmost point and of course is always

1 since there are no additional items to bump it out. The line labeled

5 = 1 represents the case where the oldest item is lost each time. In

this case the last r items presented are all still in the buffer at the

time of test; no older item is present however. The line labeled 5 ~ °

10



I- I. 0
en
w .9

::EI-
wlJ.. .8
1- 0

"" w 7... ::E ..-
I- I- 6
«I-':I:«
I- .5a::

~.
>-w

f--' ~ It· .4
-:J
alal

.3«zal_
0 .2a::...J
a....J

I- .1en
en

°1 2 3
LAST
ITEM
PRESENTED

4 5 6 7
THE NUMBER OF THE i1h ITEM

8 9 10

Figo 3, Recency curves as a fl'nction of 6 (the functions
are computed for r = 5) 0



shows the case when the bump-out probabilities are all equal. This curve

is a simple geometric function, since the probability that any item will

still be in the buffer when n items follow is (r- l)n. The shaded
r

region indicates the range in which the recency function must lie for

o < 0< 1. Hence, depending upon the value of 0, either S-shaped or

exponential curves can be obtained.

B. THE TRANSFER PROCESS TO LONG-TERM STORE

For now .it will suffice to say that the transfer process involves

making copies of items in the buffer and then placing them in LTS. Later

we will want to think of each item as a mosaic of elements and to view a

copy as either a complete or partial representation of the array. Thus

the transfer process can be thought of as all-or-none if the initial copy

is complete, and incremental if each copy is incomplete and the item's

accurate representation in LTS depends on an accumulation of partial copies.

We shall let Bij be the transfer parameter. In particular eij

the probability that an item in the i th plot of the buffer is copied

is

into LTS between one item presentation and the next if there are j items

in the buffer during this period. The parameter Bij thus depends on the

number of items currently in the buffer and on the buffer slot. It also

depends on the buffer size, the rate at which items are input into the

bUffer, and such things as the complexity and codability of the items.

The Cl.uestion, "What is stored in long-term memory?" is basic to the

theory, and we shall be more flexible in considering it than we were in

laying down the postulates for the buffer. A number of different models
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will be developed in the paper and several more proposed. The first view-

point, and the simplest, holds that:

1) Items are represented in ar, all-or-none fashion no more than once

in LTS.

In this case the parameter eij represents the probability of placing a

copy of an item in LTS; once a copy has been placed in LTS no further

copies of that item are made. A variation of this version is:

2) Items are represented in LTS by as many copies as were made during

the time the item was in the buffer.

In this case e.. is the same as before except that the process does not
1.J

end when the first copy is made. (Looking ahead a bit, we note that a

simple retrieval scheme, such as perfect recall of all items in LTS will

not differentiate between 1 and 2. This is, of course, not the case for

more elaborate schemes.) Cases 1 and 2 will be called the "single-copy"

and "multiple-copy" schemes, respectively. If the all-or-none assumption is

now removed from the multiple-copy scheme we have:

3) Items are represented by partial copies, the number of partial

copies being a function of the time spent in the 'buffer. One

partial copy will allow recall with probability less than one.

If items are again vi.ewed as information arrays, then each partial copy

can be viewed as a sample from the array characterizing that item. With a

partial copy the subject may be able to recognize an item previously pre-

sented, even though he cannot recall it. Processes of this type will be

considered in greater detail later in the paper. Case 3 leads to its

continuous counterpart (the strength postulate):

13



4) Each item is represented by a strength measure in LTS, the strength

being a function of the amount of time the item was in the buffer.

For both cases 3 and 4, eij is best considered as a rate parameter.

These various storage schemes naturally lead to the guesti.on of recall

or retrieval from LTS.

D. RETRIEVAL OF ITEMS FROM MEMORY

1) Retrieval from the buffer. Any item in the buffer is recalled

perfectly (gi.ven that it was entered correctly in the buffer).

2) Retrieval from the lost state. No item can be recalled from this

state. It must be noted, however, t.hat an item can be in this

state and also in LTS. Thus an item that has been lost from the

buffer can be recalled only if it has been previously entered in

LTS. If an item is in neither LTS nor the buffer, then the prob-

ability of making a correct response is at a guessing level.

3) Retrieval ._fr_o_m _L_T_S. Each storage process mentioned in the previous

section would, of course, have its own retrieval scheme. Later we

will propose retrieval postUlates for each storage process, but for

now the topic will be considered more generally.

In order to place the pro"blem in perspective, consider the free

verbal recall data of Murdock (1962) which is shown in Fig. 4.

The experimental situation consists of reading a list of words to

a subject and immediately afterward having him write down every word

he rcan remember. The graph shows the probability of recalling

the word presented in position i for lists of various lengths

and input rates. The two numbers appended to each curve denote the

list length and the presentation time in seconds for each word.

14
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In particular consider the data for lists of 30 and 40 items. The

first items in the list (the oldest items) are plotted to the left

and exhibit a primacy effect; i.e., the probability of recall is

higher for the se than for the middle items" The last items are

plotted to the right and exhibit the recency effect; i.e., the

probability of recall is higher for these also. Most important for

present purposes is the response level for items in the middle of

each list; notej)articularly the drop in the probability of recall

for these items from the 30 to the 40 list. Specifically, why

are the middle items in the 30 list recalled more often than the

middle items in the 40 list? The effed itself seems reliable

since it will be given corroborating support in similar experiments

to be reported later. Furthermore, the effect appears intuitively

to be what one would expect. For example, imagine presenting lists

of lengths 10, 20, 1000, etc. It is obvious that the probability

of recalling items in the middle of a list is going to tend to the

guessing level as list length increases indefinitely, but what is

there in the theory to predict this occurrence?

Two different answers to this question suggest themselves. The

historical answer is that of interference. Each item placed in LTS

interferes somewhat with each succeeding item placed there (proactive

interference), and each item placed in LTS interferes somewhat with

each item already there (retroactive interference). The other

answer that suggests itself is that retrieval from LTS is less

effective as the number of items in LTS increases. In particular

we can view the retrieval process as a search of LTS that occurs

16



at the moment of test (we will assume that the search does not

take place if the item is in the buffer at the time of test--in

that case the item is reported out quickly and perfectly). The

notion of a search process is not new. For some time workers in

the area of perception and psychophysics have been employing such

schemes (e.g., Estes and Taylor, 1964; and Sperling, 1960). Stern

berg has presented a search theory based on memory reaction time

studies (1963), and Yntema and Trask (1963) have proposed a search

scheme, for recall studies. In many experimental tasks it is intui

tively clear that the subject engages in an active search process

and often can verbalize his method (Brown and McNeill, 1966).

Without yet fixing on a specific scheme, two possibilities can

be considered under the heading of search processes. First, there

can be a destructive process in which each search into LTS disrupts

the contents of the store, and second, there can be a stopping

rule so that the search may stop before an item actually in LTS is

found. Using either of these processes or some combination, the

drop in recall probability as list length increases can be explained.

While not denying that an interference theory may be a viable

way of explaining certain data, we have decided for several reasons

to restrict ourselves to search theories in this paper. First, it

is obvious that some manner of search process must be present in

most memory experiments. Second, an interference process seems to

require a more exact specification of just what is stored than a

search theory. Third, a search theory gives a natural interpretation

of reaction time data.

17
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Two representative retrieval schemes may now be proposed:

a. The subject makes R searches in LTS and then stops. If

there are n items in LTS, then it is assumed that on each

search the subject has probability lin of retrieving the

item. Thus, the probability of correctly recalling an

item stored only in LTS is

1 - (1 -
1 R
n)

For greater generality it could be assumed that the number

of searches made has a distribution with mean R.

b. On each search the subject samples randomly and with re-

placement from among the items in LTS. He continues to

search until the item is found. Each search, however, may

disrupt the looked-for item with probability R', and hence

when it is finally found the subject may be unable to

reproduce it.

It should be noted that these retrieval schemes are strictly appli-

cable only to a storage process where each item is stored once and

only once in an all-or-none fashion. The schemes would have to be

modified to be applied to a mUltiple-copy or a strength process.

The central consideration in this regard is the probability of a

In the mUltiple-items in the store.n

hit, denoted hi' which is the probability that the desired item

i will be found in a single search. In the single-copy scheme

h. = n- l if there are
~

copy scheme h. = n./r,n.
~ ~ J

where is the number of copies of

item j. In the strength scheme if the i th item has strength

~i then hi = ~i/r,~j' These more complicated schemes will be

treated in detail as they occur.

18



APPLICATION OF MODEL TO SHORT-TERM MEMORY EXPERIMENT

Enough general features of the buffer model have been presented to

make it possible to apply certain special cases to data. Consequently, we

will now analyze a study reported by Phillips and Atkinson (1965).

The experiment involved a long series of discrete trials. On each

trial a display of items was presented. A display consisted of a series

of cards each containing a small colored patch on one side. Four colors

were used: black, white, blue, and green. The cards were presented to the

subject at a rate of one card every two seconds. The subject named the color

of each card as it was presented. Once the color of the card had been

named by the subject it was placed face down on a display board so that the

color was no longer visible, and the next card was presented. After pre-

sentation of the last card in a display the cards were in a straight row on

the display board: the card presented first was to the subject's left and

the most recently presented card to her right. The trial terminated when

the experimenter pointed to one of the cards on the display board, and the

subject attempted to recall the color of that card. The subject was in-

structed to guess the color if uncertain and to qualify her response with a

confidence rating. The confidence ratings were the numerals 1, 2, 3, and 4.

The subjects were told to say 1 if they were positive; 2 if they were

choosing from two alternatives, one of which they were sure was correct;

3 if they were choosing from three alternatives, one of which they were

sure was correct; and 4 if they had no idea at all as to the correct response.

Following the subject's confidence rating, the experimenter informed

the subject of the correct answer. The display size (list length) will be

denoted as d. The values of d used in the experiment were 3, 4, 5, 6,

19



7, 8, 11, and 14. Each display, regardless of size, ended at the same place

on the display board, so that the subject knew at the start of each display

how long that particular display would be. Twenty subjects, all females,

were run for a total of five sessions, approximately 70 trials per session.

Figure 5 presents the proportion of correct responses as a function

of the test position in the display. There is a separate curVe for each of

the display sizes used in the study. Points on the curves for d ~ 8, 11,

and 14 are based on 120 observations, whereas all other points are based

on 100 observations. Serial position 1 designates a test on the most

recently presented item. These data indicate that for a fixed display

size, the probability of a correct response decreases to some minimum value and

then increases. Thus there is a very powerful recency effect as well as

a strong primacy effect over a wide range of display sizes. Note also that

the recency part of each curve is S-shaped and could not be well described

by an exponential function. Reference to Fig. 5 also indicates that the

overall proportion correct is a decreasing function of display size.

MODEL I (PERFECT RETRIEVAL OF ITEMS IN LTS)

We shall begin our analysis of these data using an extremely simple

form of the buffer model. The buffer will be specified in terms of postulates

A-I through A-7, along with the time-dependent bump-out process of E~. 1.

The LTS assumptions are those indicated in C-l; i.e., each item in the

list is stored possibly onge and no more than once in LTS. The transfer

function also will be simplified by assuming that transfer of any item in

the buffer to LTS depends only on the number of items currently in the buffer.

Thus the first subscript on the

,

So 0

lJ

20
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dropped, and e j will denote the probability that any item in the buffer

will be copied into LTS between presentations of successive items, given

that there are j items in the buffer during that period. Further, we

will assume that
ee =-

j j

where e is an arbitrary parameter between 0 and 1. This assumption is

justified by the following considerations: if in each small unit of time

the subject attends to just one of the items in the bUffer, and if over

many of these small units of time the subject's attention switches randomly

among the j items currently in the buffer, then the amount of time spent

attending to any given item will be linearly proportional to j. We use

this argument to justify setting e. = e/j, but we recognize the arbitrariness
J

of the assumption and later will examine other schemes.

The last feature to be specified is the retrieval scheme. In Model I

we will assume simply that any item in the LTS is retrieved correctly with

probability 1. Hence the probability of a correct response for an item

stored in either the buffer or LTS is 1. The probability of a correct re-

sponse for an item in neither the buffer nor LTS is the guessing probability,

which will be set equal to 1/4 since there were four response alternatives

in the experiment.

Mathematical Development of Model.!

is indin a display of size

test.

We begin by defining the following quantities:

f~d) = probability that item i in a display of size d is
J.

neither in the buffer nor in LTS at the time of test.

s~d) = probability that item i
J.

the buffer at the time of

22
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probability that item i in a display of size d

in LTS and not in the buffer at the time of test.

is

Of course, It should be emphasized that in our

analysis of this experiment, position i denotes items counted from the

end of the list; i.e., the last item presented is number 1, the second to

last number 2, etc.

In order to facilitate the derivation of expressions for this model,

we define the ~uantity, ~ij' Given that there are j items yet to be

presented, ~ij is the probability that an item currently in slot i,

which has not yet entered LTS, will be neither in LTS nor in the buffer

at the time of test. We note that for the first position of the register

(i = 1) these expressions are first-order difference e~uations of the form

For

~3 .,J

~..
l, J

i > 2

K. +
l

the expressions are somewhat more formidable:

(1- ~)[K + K
2

+ ...+ K. l)~' 1 . 1 + (K. 1 + K. 2 + ...+ K )~.. 1]
r 1 l- l- ,J- l+ l+ r l,J-

The initial condition for each of these e~uations is ~. 0 = O.
l,

The e~uations above can be derived by the following argument. We want

to specify ~ij in terms of the ~' s for j - 1 succeeding items.
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next item is presented] plus
e

1- - [the probability that the item does
r

CPij

the

equals K.
1

[the probability that the item in slot i is lost when

not enter LTS] times the quantity

+ K. l)CP. 1 . 1 + (K1'+1 + K. 2 + ••. + K )cp. . 1) •1- 1- ,J- 1+ r 1,J-

But the quantity in brackets is simply K
l

+ K
2

+ ••• + K
i

_
l

[the proba

bility that an item in a slot numbered less than i is lost which means

that the item in slot i will move down to slot i - 1] times

(since the item has moved to slot i- 1 with j -1 items to

cp. 1 . 11- ,J-

be presented]

plus Ki +l + Ki +
2

+ ... + Kr [the probability that an item in a slot num-

[since the item is still inbered greater than i is lost] times cPi,j-l

slot i with j - 1 items to be presented].

The quantity f~d) may now be defined in terms of the
1

cp.. ' S.
1J

It is

clear that any item numbered less than d - r + 1 will enter the buffer with

all the slots filled. Thus, for i:S d - r + 1, f~d) equals 1- §. [the
r

probability of not entering LTS at once] times

i th item there are i - 1 still to come]. For

cp [since after the
r,i-l

i > d- r+ 1 we must con-

sider the probability that the item stays in the buffer until it is full

without entering LTS. Specifically, this probability is

e e e(1- -) (1- -) ... (1- -.-)
r r-l d-1+1

r

IT
e(1- .",)

. d . 1 J
J~ '~l+

at which time the item will be in slot d - i + 1 of the buffer. Furthermore,

there will now be d - r items to come. Hence, for i > d ~ r + 1,

simply be the above product multiplied by cp Summarizing thesed-i+l,d-r'

results we have:
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f~d) [. n. (1- %~ CPd~i+l d-r ' for i >d-r+l

l J=d-l+l ' (3)

e
(1- :;::)CPr,i-l ' for i <d-r+l

NOif let denote the event of a correct response to item i in a list

of length d. Then

1/4

pr[c~d)] = 1 _ f~d) + f~d)[~] ,
1 1 1 Y.

is the guessing probability and 1- f(d)
l

(4 )

is the probability

that the item is either in the buffer, LTS, or both at the time of test.

The obvious next step would be to solve the various difference equations

and thereby obtain an explicit expression for as a function of

the parameters e, r, and 5. This is a straightforward but extremely

tedious derivation. Rather than do this we have decided to use a computer

to iteratively calculate values of CPij for each set of parameters e, r,

and 5 we wish' to consider.

For purposes of estimating parameters and evaluating the goodness-of-

fit of data to theory, we now define the following chi-square function:

d_l{ I ~ )22 k 1 1·, (d) (d)
X (d) = (d) + (d) f NPr[Ci ] - °i (5)

l= NPr[C. ] N - NPr[C. ]
l l

where is the observed number of correct responses for the i th item

cause

100 for

in a display of size d, and N is the total number of Observations at each

position of the display. (Recall that N was 120 for D = 8, 11, 14, and

d = 3, 4, 5,6,7.) The sum excludes the first item (item d) be

l - Pr[C~d)] is predicted to be zero for all list lengths; this
l

prediction is supported by the data.
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Goodness-of-Fit Results for Model I

It seemed reasonable to estimate the parameter r on the basis of data

from the short lists. The model predicts that no errors will be made until

the display size d exceeds the buffer size. Extremely few errors were made

for d's of 5 and less, and we will assume that these are attributable to

factors extr~neous to the main concern of the experiment. On this basis

r would be 5; this estimate of r will be used in further discussions

of this experiment.

Of course, the minimization cannot be done analyti-procedure.

The estimates of the parameters 5 and e were obtained by using a

X
2minimum

cally for we have not derived an explicit expression for Pr[C~d)], and
~

therefore we will resort to a numerical routine using a computer. The

routine involves selecting tentative values of 5 and e, computing the

associated pr[c~d)] 's and the X
2

(d), repeating the procedure with another
~

set of values for e and 5, and continuing thus until the space of possible

values on e and 5 [0 < e ~ 1, 0 < 5 ~ 1] ha~ been systematically ex-

plored. Next the computer determined 'which pair of values of e and 5

yielded the smallest x2 , and these are used as the estimates. When enough

points in the parameter space are scanned, the method yields a close approxi

*mation to the analytic solution.

The results of the minimization procedure are presented in Fig. 6,

which displays the fits, and gives the parameter estimates and X
2

values.

As noted earlier, the prediction for list lengths less than 6 is perfect

recall at all positions. A measure of the overall fit of this model can

*For a discussion of this procedure see Atkinson, Bower, and Crothers,
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be achieved by summing the X2 , s for each list length. The result is a X2

of 31.8 which is to be evaluated with 38 degrees of freedom. (There are

46 points to be fit and two parameters are estimated for each list length.)

As we can see from an inspection of Fig. 6, the model provides a good

account of the data. Also, note that the estimates of 5 are reasonably

constant as list length varies. Indeed on theoretical grounds there is no

reason to believe that 5 should vary with list length. Note also that

a 5 of about .40 gives a slight S-shape to the recency portion of the

curve; as indicated in Fig. 3, the higher 6 the greater the S-shape effect.

As indicated earlier, the S-shape effect depends directly upon the tendency

for the oldest items in the buffer to be lost first. One might conjecture

that this tendency would depend on factors such as the serial nature of the

task, the makeup of the stimulus material, the instructions, and the subject's

knowledge of when the display list will end. In the present experiment, the

subject knew when the list would end, and was faced with a memory task of

a highly serial nature. For these reasons we would expect an S-shaped

recency effect. It should be possible to change the S-shape to an exponen-

tial by appropriate manipulation of these experimental factors (Atkinson,

Hansen, and Bernbach, 1964),

A notable aspect of the fit is the rapid drop in the e parameter as

list length increases. Furthermore, it is intuitively clear that as list

length inclt!eases, the probability of recall will necessarily tend to a

guessing level for all but the most recent items. Thus, to account for the

effyct with this model, it would be necessary to assume that the e param-

eter goes to zero as list lengths increase, However, because Model I is
A

minimized over two parameters, the drop in e is rrndoubtedly confounded
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with the variations in B. For this reason the X
2

minimization was

carried out using a single value of 5 for all list lengths simultaneously,

and selecting an estimate of e for each list length separately. The fit

was about the same as the one displayed in Fig. 6 so it will not be graphed.

The minimum x2 summed over all list lengths was 39.1 based on 40 degrees

of freedom. The estimate of 5 was .38 and the various estimates of e

were as follows:

List A

Length e

6 .72

7 .61

8 .59
11 .35
14 .24

MODEL II (IMPERFECT RETRIEVAL OF ITFJi~ IN LT§)

From the above results it is clear that e is dropping with list

length. While attempts to explain this drop could be made in terms of

changing motivation or effort as the lists get longer, we dislike such

explanations for several reasons. First of all, experiments in which the

subject does not know when the display list will end show the same effects

(this will be seen in a free recall experiment.to be presented later).

Also, subjects report that~hey try as hard, if not harder, on the longer

lengths. Finally, the magnitude and orderliness of the effect belie efforts

to explain it in such an offhand fashion.

The approach we shall take is that retrieval from the LTS is not per-

fect. In particular, if the subject does not find the item in the buffer,

we assume he engages in a search process of LTS. The probability that this
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search is successful decreases as the number of items in LTS increases.

The next model, Model II, is therefore identical with Model I except that

a retrieval function (that described in Postulate D-3-a) is appended to

determine the probability that an item is recovered from LTS. With the

addition of a retrieval function it is now possible to estimate a single

5 and a single e for all list lengths.

The assumptions are as follows: if at the time of test the sought-

after item is not found in the buffer, then a search of LTS is made. The

search consists of making exactly R picks with replacement from among

the items in LTS, and then stopping. If the item is found, it is reported

out with probability 1; if not, the sUbject guesses.

Mathematical Development of Model II

as

For Model II it is necessary to determine

To do this, define

(d)
s.

l
and as well

~ij probability that an item currently in slot i of a

full buffer is still in t he buffer j items later.

The difference e~uations defining ~ij are straightforward, being functions

solely of the K. :
J

~.. (K l + K2 + ...+ K. l)~' 1 . 1 + (K. 1 + K. 2 + ...+ K )~.. 1l,J 1- 1- ,J- 1+ 1+ r 1,J-

~ 1 .r- ,J (K l + K
2

+...+ K 2)~ . + K ~ 1 . 1r- r-2,J-l r r- ,J-

(6)

~ . ~ (K l + K2 +.••+ K l)~ 1 . 1r,J r- r- ,J-
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The initial conditions are 13. 0 ~ L Incidentally, Fig. 3 is a graph of
l,

135 .
,J

for the

The

o scheme defined earlier.

can now be defined in terms of the

S(d) ~ {l3d- i +l ,d-r
l 13

r,i-l

namely

if i>d-r+l

,if i < d - r+ I

We have already obtained an expression for

be recovered as follows~

f(d), therefore
l

can

(d)
- s. '

l

Now define

probability of finding

of LTS, given that the

the buffer.

the
.th
l

i th item in a single search

item is in LTS, and not in

probability of retrievi.ng the i th item as the result

of a seBrch process in LTS, given that the i
th

item

is in LTS, and not in the buffer.

But the number of items in LTS and not in the buffer is the sum of the

Further, since we select ra.ndomly from this set it follows that

(8 )

where j ranges from 1 to d.' (An alternative conception is that the

If this were the case then we would have a smaller

search takes place among all the items in LTS, whether or not

the buffer.

they are in

h~d) .
l

We have decided to present the above scheme, however, since the two schemes

give little different results in practice. This occurs because the smaller

*E~mation 8 is actually an approximation, but it greatly simplifies

calculations and the error introduced is negligible.
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of the second scheme can be compensated for by a higher estimate of

We now define p~d) in terms of h~d); namely
l l

R. )

since, to miss an item entirely, it must be missed in R consecutive picks.

Hence

(10)

We next define

(n)

where X
2

(d) was given in Eq. 5. To apply Model II to our data, we min

imized the above x2
function over the parameters e, 5, and R. As before,

r was set equal to 5. The parameter estimates were as follows:

A

e ~ .72
A

R 3.15

The predicted cUrves are given in Fig. 7. The fit of Model II is remarkably

good; simultaneously fitting five list lengths, the minimum X
2

is only

46.2 based on 43 degrees of freedom (i.e" there are 46 points to be fit,

but three parameters were estimated in minimizing X
2
). The fit is very

nearly as good as that of Model I where each list length was fit separately

using 10 parameter estimates. As pointed out earlier, however, there are

many possible retrieval schemes which could be suggested. Is it possible

on the basis ofaX
2

criterion to distinguish among these? By way of

answering this question, we shall consider a second, very different re-

trieval procedure, to be called Model III.
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MODEL III (IMPERFECT RETRIEVAL OF ITEMS !l!. LTS)

This model is identical to Model II except for the retrieval process.

The proposal is that mentioned in Postulate D-3-b. Searches in the LTS are

made randomly with replacement. Each unsuccessful search disrupts the

looked-for item with probability R'. If the item is ever disrupted during

the search process, then when the item is finally retrieved the stored in"

formation will be such that the subject will not be able to recall at better

than the chance level. Figure 8 shows the branching tree for this process,

where h~d)
l

this process

is the probability of finding the item on each search. For

The same method for estimating parameters used for Model II was also

used here. The obtained minimum X
2

was 55.0 (43 degrees of freedom),

and the parameter estimates were as follows:

A

5 ~ .38

e ~ .80
A

R' .25.

The predicted curves are shown in Fig. 9. The fit is not quite as good

as for Model II, but the difference is not great enough to meaningfully

distinguish between the two models. Notwithstanding this fact, we shall

+ .....

go on and develop a somehat more sophisticated retrieval model for use later
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STRENGTH MODELS FOR LTS

Models I, II, and III are all marked by the same assumption concerning

what is stored in LTS. In all these models, an item can be stored only

once in an all-or-none fashion. We now will develop some of the techniques

necessary to deal with more complicated models. There are several reasons

that motivate the development: first, the single-copy model gives no

reasonable method to deal with confidence ratings; second, there is no

particularly good way of dealing with the confusion errors found in certain

types of experiments (see Conrad, 1964); and third, the single-copy model

does not lend itself well to postulates concerning what happens when items

are repeatedly presented as in a paired-associate learning task.

Consider for a moment the problem of confidence ratings. In the

Phillips and Atkinson experiment described earlier, subjects were asked

to give the confidence rating 1, 2, 3, or 4 depending on their estimate

of the number of alternatives from which they were choosing. If they could

actually follow these directions, their probabilities of being correct for

each confidence rating would be 1.0, 0.50, 0.33, and 0.25, respectively.

The results are shown in Fig. 10. What is graphed is the probability of

a correct response, given that confidence rating i was made against the

inverse of the confidence rating. Since the inverse of the confidence rating

is the value the subjects should approximate if they were able to obey the

instructions accurately, the points should all fallon a straight line wi ih

slope 1.

The fact that the observed response probabilities are quite close to

the values predicted on the basis of confidence ratings, indicates that a

useful alternative to the "signal detectability theory" view of confidence
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ratings can be found (De Finetti, 1965; Egan, 1958). In any case it is

not unreasonable to assume that the subject does actually choose from

among either 1, 2, 3, or 4 alternatives at different times, and that one

of the picked-from alternatives is the correct response. We will not try

in this paper to present a model capable of explaining these results.

Nevertheless it is clear that a model of greater sophistication than the

all-or-none, single-copy model is needed. For these and related reasons

we would like to analyze some of the implications of buffer models postu-

lating a memory strength in LTS.

Two aspects of the earlier models, the transfer assumptions and the

long-term storage ssumptions, will now be re-examined. The basic premise

to be considered is that whatever is stored in LTS (the number of copies,

a strength measure, etc.) is a function of the time spent by an item in

the buffer. At this stage, therefore, some statistics relevant to an

item's duration in the buffer are developed.

Define

Then

Sij = probability that an item currently in slot i

buffer is knocked out of the buffer when the

item is presented.

( ) j-l
f' = 1 - K

l
K

l'1 .,J

of a full
.th d'J succee lng

f'.. (Kl + K
2

+ ..•+ K. l)C 1 . 1 + (K. 1 + K'+2 + ..•+ K )S'l,J l- l- ,J- l+ l r i,j-l

(K
l

+ K
2

+... + K ) S . + K S '
r-2 r-2,J-l r r-l,J-l

(K + K + ..•+ K )S
1 2 r-l r-l,j-l

39

(13)



An important function may now be~ ~ K .•i,l l

defined in terms of the ~ij's. Namely,

The initial conditions are

stays in the buffer exactly

(d)
w..
lJ

probability that the .th
l item in a list of length d

j units of time (where a

hme unH is the presentati.on period per Hem).

Then

0 , if i < j

j~i-l

1
\' (d) (d)

if i j- ~Wij s. ,l
(d) J~

w..
(14 )lJ

~rj , if i > j and i < d-r+l

~ d-i+l,j-hd-r+l , if i > j, i >d-r+l and j > i-d+r-l

0 , if i > j, i >d-r+l and j < i-d+r- 1 .

The convention is used here that if item i is still in the buffer at the

time of test, the number of time units it is said to have been present in

the buffer is i.

Our assumptions for the present model go back to the suggestions made

in Postulates C and D. Consideration of each item as made up of a large

number of bits of information (used here in a loose sense--not necessarily

binary bits) lends credence to the postulate that an item's strength in

LTS can build up in a gradual continuous fashion as a function of time

spent in the buffer. In particular, the assumption is made here that what

*is stored in LTS is represented by a strength measure. For example, the

*This assumption is actually ~uite similar to the mUltiple-copy

assumptions, and it would be extremely difficult to differentiate the two

on the basis of data. More will be said about this later.
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strength could represent the number of bits of information stored. This

strength measure will be defined for a list of length d as follows:

in the buffer exactly j units of time.

I\(d) =
lJ

strength of the .th
1 item in LTS, given that it was

In order to define a transfer function to LTS, we use the notation

introduced earlier. However, the e. ," s
lJ

are no longer a probability that

an item will be transferred. Instead they represent a weighting factor on

the time spent in the buffer. For example, an item is weighted more for

each time unit it spends in the buffer alone, than when it shares the

buffer with several other items. One way of looking at this is to think

of the amount of "attention" received by an item in one unit of time; if

all items in the buffer are at tended to for an eq.ual share of the avai lab le

time, then an item alone in the buffer for one second would be attended

to for the full second, whereas an item sharing the buffer with four others

would be attended for only 1/5 second.,. In this case, then, the item

alone would be weighted five times as heavily as the item which shares the

buffer with four others.

doAs before we will make the simplifying assumption that the e.. 's
lJ

not depend on i, the buffer position; hence the first subscript is super~

fluous and will be dropped leaving e.
J

as the weighting function. Thus

e. represents how much each item is to be weighted, if there are currently
J

j items in the buffer. We can now compute the strength that an item

accumulates during its stay in the buffer. To do this simply consider the

number of time units an item is in the buffer; multiply each unit by the

To state this

mathematically, let denote the weighted time that item

appropriate e.
J

and also by the length of the time unit.

(d)
I"ij i accumulates
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in the buffer, if it remains in the buffer j time 1mits. Then

9 jt , for i < d - r+ 1r

(d)

~,(j " J (l5)
f.li,j

~

i~'dS:i t
- i + d - r + l.) + fo:c i , d- r + 1, -- ,

where t denotes the length of a time unit (i.e., ';he presentation time

per item).

The central assumption, now, is that the strength built up in LTS

is a line~ fQnction of the weighted time accumulated. Namely

where y is a dummy parameter. The introduction of y permits us to

convert to a rate measure; specifically the variable of interest is

the rate at which strength accumUlates, defined here as y9 .•
J

Obviously

9j could have been defined directly as a rate parameter; however, we

preferred to have 9 .
.J

bounded between a and 1 in order to keep its usage

in line with earli.er developments ~ What.. this means, of course, is that in

any application of the strength model the quantity 9l can be arbitrarily

set equal to L To make this point entirely clear ~ Dote that can

be rewritten as foll.ows:

(Y9r )jt , for i < d - r + 1

A.~~) [,o)(j ,'II"+lJ
- i + d - r + 1) for i >, d-r+l.

l~d-r+l

The strength schema outlined above is somewhat analogous to what has been

labeled in the literature a "consolidation process." One view of the
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consolidation hypothesis holds that a short-term decaying trace lays down

a permanent structnral change in the nervous system; in turn, OlIT model

postulates that a strength measure is laid down in permanent memory during

the period that an item remains in the buffer. Whether or not there is

anything significant to this similarity, the analogy will not be pursued

further in this paper.

An important property of this model is now presented: regardless of

any conditionalities, the total strength in LTS of all items in a display

of size d is a constant. This total strength will be denoted as S(d),

and is as follows:

(16)

Thus for the retrieval schemes discussed earlier, the probability of finding

item i in a single search, given that the item had been in the buffer for

j time units is as follows:

(d)
h~d) f.ij

lJ ~ S(d)

which simply says that the probability of picking the i tb item is its

relative strength.

In terms of our earlier analyses, it seems reasonable to assmne that

from LTS, given that

time units,j

whatever the retrieval procedure, the probability of recall will be a

function of h(~). ThUS, if
lJ

(d)
Pij ~ probability of retrieving item

it was in the buffer exactly

will be some as-yet-unspecified function ofthen
(d)

Pij

next step yields an expression for namely

Taking the
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where non-retrievals are interpreted as generating correct responses at

guessing probability of 1/4.

The stage has now been reached where it is necessary to specify a

*retrieval process in order to complete the model and apply it to data.

Many processes come to mind, and we have tried several on the Phillips and

Atkinson data. However, as one might expect, the data from that experiment

do not permit us to distinguish among them. Consequently it will be nec-

essary to analyze other experiments; in particular certainffipecially con-

trived studies involving free verbal recall. Before turning to the free

verbal recall experiments, howeve~ it will be helpful to examine a paired-

associate learning experiment for indications of how to proceed. We do

this because a central question not yet considered is how to handle re-

peated presentations of the same item.

PAIRED-ASSOCIATE LEARNING

Our analysis of learning will be primarily within the framework of a

paired-associate model proposed by Atkinson and Crothers (1964) and Calfee

and Atkinson (1965). This model postulates a distinction between short-

*We still have not considered the problem of confidence ratings, but

we have reached a point where suggestions can be made for dealing with them.

For example, cut-off points can be defined along the strength dimension,

and the retrieval process modified to handle this elaboration.
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term and long-term memory and has been labeled the trial-dependent-for

getting (TDF) model because the recall process changes over time. With

c~rtain minor amendments the TDF model can be viewed as a special case of

the buffer model presented in this paper. Our approach in this section will

be to analyze some paired-associates data in terms of the TDF model, with

the goal of determining what modifications need to be made in the buffer

model to make it a viable theory of learning. To start, let us considyr

the experimental task.

A Paired-Associate Experiment Manipulating List Length

Three groups of 25 college students were used as subjects. Each

subject learned a paired-associate list in which the stimulus members

consisted of two_digit numbers, and the response members were one of three

nonsense syllables. For group 21 a set of 21 stimulus items was selected

on the basis of low inter-item association value. For groups 9 and 15 the

experimental lists consisted of a selection of 9 or 15 items, respectively,

from this set, a different subset being selected randomly for each subject.

Each of the three responses was assigned as the correct alternative e~ually

often for each subject. After instructions and a short practice list, the

experiment began. As each stimulus item was presented the subject was re

~uired to choose one of the three responses, following which he was informed

of the correct response. In order to reduce primacy effects, the first

three stimulus-response pairs shown to the subject were two digit numbers

that were not in the set of 21 experimental items; these three items did

not reoccur on later trials, Then, without interruption, the experimental

list (arranged in- a random order) was presented. After the entire list had

been presented, the second trial then proceeded without interruption in the
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same manner with the items arranged in a new random order. Thus, the pro-

cedure involved continuous presentation of items with no breaks between

*trials.

Figure II presents the mean learning curves for the three experimental

groups. The curves are ordered on the list length variable, with the

longer lists producing a slower rate of learning. It should be clear that

this effect is a direct consequence of the buffer model, since for the

longer lists a smaller proportion of the items is retrieved via the buffer.

Figure l2 presents the conditional error curves, Pr(e II e ), which alson+ n

are ordered according to list length. Note that the conditional probability

is definitely decreasing over trials. Without going into details now, it

is clear that a buffer model will also predict this effect because the

probability of retrieval would increase with repeated presentations.

Trial-Dependent-Forgetting Model

As noted earlier the TDF model assumes that paired-associate learning

is a two-stage process in which a given stimulus item may be viewed as

initially moving from an unconditioned state to an intermediate short-

term state. In the intermediate state an item may either move back to the

unconditioned state or move to an absorbing state. This intermediate

state can be viewed as a counterpart of the buffer in our buffer model, and

the absorbing state the counterpart of LTS.

To develop the TDF model mathematically, the following notions need

to be introduced. Each item in a list of paired-associates is assumed to

be in one of three states: (a) state U is an unlearned state in which

*See Calfee and Atkinson (l965) for a detailed account of this experiment.
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the subject guesses at random from the set of response alternatives, (b)

state S is a short-term-memory state, and (c) state L is a long-term state.

The subject will always give a correct response to an item if it is in

either state S or state L. However, it is possible for an item in state

S to return to the unconditioned state (i.e., be forgotten); whereas, once

an item moves to state L it is learned, in the sense that it will remain in

*state L for the remainder of the experiment. The probability of a return

from state S to state U is postulated to be a fUIlction of the number of

other items that remain to be learned on any given trial. In terms of the

buffer model, this is similar to the statement that the probability of

being knocked out of the buffer is related to the number of items still

to be presented.

Two types of events are assumed to produce transitions from one state

to another in the TDF model: (a) the occurrence of a reinforcement, i.e.,

the paired presentation of the stimulus item together with the correct

response alternative and (b) the presentation of an unlearned stimulus-

response pair (an item not in state L) between successive occurrences of

a particular item. The associative effect of a reinforcement is described

*In order to make the TDF model parallel the buffer model, the reader

should assume that U refers to the state in the buffer model where an

item is neither in the buffer nor in LTS; that S refers to the state

where an item is solely in the buffer and not in LTS; and that L refers

to any item which has entered LTS, whether in the buffer or not. Furthermore

the recall assumptions imply that a very elementary retrieval scheme is

being put forth: any item in LTS is recalled with probability 1.
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by matrix A below:
L S U

L 1 0

~A = S a I-a (18)

U b I-b ~

Thus if an item is in state U and the correct response is shown to the sub,

ject, then the item moves to state L with probability b, or to state S with

probability 1- b. Starting in S it moves to L with probability a or

remains in S with probability 1- a. In either case, if the item were to

be presented again immediately following a reinforcement, this model, like

the buffer model, makes the plausible prediction that a correct response

would be certain to occur.

The effect of the presentation of a single unlearned stimulus-response

pair on the state of a particular item is described by matrix F:

L S U

L 1 0 0

F S 0 I-f f (19)

U 0 0 1

If a given item is in state S and some other unlearned stimUlus-response

pair is presented, then the interference produced by the lLn.learned pair

results in forgetting of the item (i.e., transition to state U) with proba-

bility f, and otherwise there is no change in state. Furthermore, it is

assumed that when a learned stimulus-response pair is presented there is

*no change in state. Again drawing a parallel to the buffer model, we should

-j(.

See Brown and Battig (1966) for experimental work in support of

this notion.
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note' that the above transition matrices require that an item move to

LTS only when it is presented.' However, the parameters a and b can be

interpreted as a rough approximation of the average probability of transfer

during an item's stay in the buffer. Parame'';er a, of course, refers

to a process that has not heretofore been considered in the buffer model:

a repeated presentation of an item. Similarly, the assumption that the

presentation of a learned item will not effect a change in state has not

been previously considered. It is clear, however, that assumptions of this

nature will have to be proposed in extensions of the buffer model. More

will be said about this shortly.

Continuing, however, let Tn be the matrix of the ~ransition proba-

bilities between states for a particular item from its th
n to its

presentations, and suppose , is the number of other unlearned items'n

that intervene between these two presentations of the given item. Then T
n

is found by postmultiplying A by the th
Sn power of F; matrix A rep-

resents the thn reinforced presentation of the item, and the interference

matrix F is applied once for each of the intervening unlearned pairs.

Performing the multiplication yields:

Ln+l S U
n+ln+l

L 1 0 0n

T S a (l-a) (l-F ) (l-a\F (20 )n n n ' n

U b (l-b) (l-F ) (l-b)Fn n n

Unfortunately there is no way of determining from the data the exact

value of S . However, an approximation can be used. Let X denote the
n
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number of items in the paired-associate list and remember that a trial

consists of a random ordering of these items. Between the
th

n and the

(n+ l)
st presentations of a given item (j + k) interpolated pairil .. (IP)

may intervene; j on trial nand k on trial n + 1 (where j ,k = 0,

1, •.. X-l). The probability of j IF's on trial n is the probability

that the item is in position X- j, which is l/X; whereas the probability

of k IF's on trial n+ 1 is the likelihood that the item is in position

k+ 1, which also is l/X. Thus for each combination of j and k, the

probability of the combination occurring is 1/X
2

• For each of these com-

binations the average value of • will becn j(l- £ ) + k(l- £ 1)' wheren n+

£ is the probability of being in state L on trial n. Using this average
n

as an approximatipn~

F
n

X-l X-l

=1- 1
2

I I(l_f)[j(l-£n)+k(l-£n+l)]

X j=O k=O

During the early trials of an experiment, £ will be small (all
n

items are assumed to be in state U initially, and so £1 is 0); hence

F , the probability of forgetting while in state S, will be relatively
n

large. As n increases, approaches 1 and so F
n

goes to O. As a

consequence of the decrease in F
n

over trials, the model predicts a non-

stationary learning process. For example, consider the probability of an

error on the n+ 1st presentation of an item conditional on an error on

its
th

n presentation. The error on trial n indicates that the item is

in state U, so the probability of an error on the next trial isthe joint
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probability of (a) no learning, (b) forgetting, and (c) an incorrect

response by chance; namely

Pr (e 11 e ) ~ (1 - b) F (1- g) ,n+ n n

where g denotes the probability of a correct response by guessing. In

other words, Pr(en+ll en) is predicted to decrease over trials, a finding

reported by several investigators.

Goodness~of-FitResults

We are now in a position to analyze the paired-associate experiment

described earlier.

Parameter estimates for the TDF models were obtained by applying the chi-

square minimization method described by Atkinson, Bowe~ and Crothers (1965).

The data used in parameter estimation were the sequences of successes and

errors from trials 2 through 5 and trials 6 through 9. The 16 possible

combinations of correct responses (c) and errors (e) for a four-trial

blo~k are listed in Table 1 together with the observed frequencies of

each combination for the three experimental groups. Thus, the sequence

consisting of four errors (eeee) on trials 2 through 5 was observed in

6 of 225 item protocols in group 9, in 30 out of 375 protocols in group

15, and in 55 out of the 525 protocols in group 21, The sequences for

trials 6 to 9 are listed in Table 2. In all of the theoretical analyses

g was set equal to 1/3, the reciprocal of the number of response alterna-

tives.

The theoretical expressions for the probability of a four-trial

sequence was obtained. Following the notation of Atkinson and Crothers

(1964) , let 0.. be the i th four-tuple in Table 1 for group j
1,J,D
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TABLE 1

OBSERVED AND PREDICTED FREQUENCIES FOR RESPONSE SEQUENCES FROM TRIALS 2 TRROUGH 5

9 Items 15 Items 21 Items

Trial Obs. TDF Linear One- Obs. TDF Linear One- Obs. TDF Linear One-
2345 element element element

ecce 83 77. 2 59·0 88.4 98 90·7 39·9 103·7 97 107·5 45.4 112.6
ecce 3 4.2 9·5 1.3 10 6.7 17.8 3.8 11 9·0 24.2 6.8
ccec 10 8.0 15·2 3·0 13 11.1 23·9 6.6 14 13.7 31.5 10.3
ccee 4 3·7 2.4 2·7 10 9·2 10·7 7.6 12 14.5 16.8 13·5
cecc 18 17·2 25·7 10.4 25 22·7 33.1 17.3 35 27.3 42.2 23·0
cece 2 4.4 4.1 2·7 4 9·9 14.8 7.6 14 15·1 22.5 13·5
ceec 10 8.5 6.6 6.1 7 16.5 19.8 13.3 17 23.3 29·3 20·7
ceee 3 3·9 1.1 5·3 12 13.6 8.9 15.2 20 24.5 15.6 27·1
ecce 40 39·5 48·3 41.9 58 54.6 48.7 57·3 78 67.6 59.4 67.6
ecce 3 4.9 7.8 2·7 6 10·5 21.8 7.6 15 15.6 31.7 13.5

Vl ecec 12 9·4 12·5 6.1 16 17.4 29.2 13.3 22 24.0 41.2 20·7
+ ecee 2 4.4 2.0 5.3 12 14.3 13.0 15·2 30 25·3 22.0 27·1

eecc 14 20.2 21.1 20.8 31 35·4 40.5 34.6 47 47.6 55.2 46.0
eece 2 5·1 3.4 5·3 11 15·5 18.1 15.2 16 26.5 29·5 27·1
eeec 13 9·9 5.4 12.2 32 25·7 24.2 26.5 42 40.6 38.3 41.4
eeee 6 4.6 0·9 10·7 30 21.2 10.8 30.3 55 42.8 20.4 54.1

2 11.0 73·5 42.5 21. 7 173.2 30.3 17·0 180.5 21.8X



'I'ABLE 2

OBSERVED AND PREDIC'IED FREQUENCIES FOR RESPONSE SEQUENCES FROM TRIALS 6 'l'lffiOUGH 9

9 I'IEMS 15 It-emB 21 Items

Trial
Obs, TDF Linear

One-
Obs.

One~ One-
6789 element

'I'DF Linear
element

Obs. TDF Linear
element

ecce 205 197,2 177,7 192,2 271 260.3 156.3 263.9 319 317·1 178,1 309·7
ecce 0 1.1 5.3 0.3 6 3,3 26.1 1.6 8 5,2 39·5 3·5
ccec 0 2.6 7·9 0·7 8 6.6 32.8 2.7 13 9·2 48.4 5.4
ccee 0 0.3 0,2 0.6 2 2.6 5.5 3,1 4 6.1 10.7 7.1
cecc 12 6.4 5·0 2.5 13 14.4 41.6 7·1 27 1902 59.8 12.0
cece 0 0.5 0.4 0,6 1 3.1 6.9 3.1 6 6.8 13.3 7·1
ceec 1 1.2 0.5 1.5 2 6.2 8.7 5.4 11 12.1 16.3 10.8
ceee 0 0.2 0.0 1.3 5 2.4 1.5 6.2 10 8.0 3.6 14.1

V1 ecce 13 15.4 18.3 10.1 24 33·7 53,5 23·5 55 45.8 74.8 35.3
V1

ecce 0 0.6 0·5 0.6 2 3,6 8.9 3.1 10 7·5 16.6 7·1
ecec 0 1.5 0,8 1.5 11 7·2 11.2 5.4 5 13.2 20.3 10.8
ecee 0 0.2 0.0 1.3 1 2,8 1.9 6.2 3 8.8 4.5 14.1
eecc 1 3·7 1.2 5.0 15 15.8 14.2 14.2 17 27.4 25.1 2l~. 0
eece 0 0.3 0.0 1.3 5 3.4 2.4 6,2 7 9.8 5,6 14.1
eeec 0 0·7 0.1 2·9 5 6.8 3,0 10·9 11 17·3 6.8 21.6
eeee 0 0.1 0,0 2.6 4 2·7 0.5 12.4 19 11.5 1.5 28.3

l: 15.8 25,5 21.3 18,9210.0 52.0 3102 428.9 76.0



(j ~ 9, 15, 21) where the sequence begins at trial

the observed frequency of this four-tuple, and let

n. Let ito. . ) be
~,J,n

Pr(O. . ;p) be thel,J,n

predicted probability for a particular choice of the parameters p of the

model. The expected frequency may be obtained by taking the product of

Pr(O, . ;p) with T, the total number of item protocols in group j. Wel,J,n

then define the function

2 [N(O, . ;p) - N(O,. )]2
X .. ~ __..:l:.;,,,J,;;,,,,n(T7::-_'__=,)..:.l",,,,J,,,,,,,n,--_

l,J,n NO. . ;p
1.,J,n

(22 )

A measure of the discrepancy between a model and the data from group j

is found by summing Eq. 22 over the sixteen possible sequences for both of

the four-trial blocks; i.e;,

16

L2+ X
i ,j ,6

i~l

Equation 23 was also used to obtain estimates of c and e for the one-

element and linear models, respectively, for each of the three experimental

groups (these models are described in the book by Atkinson, Bower, and

Crothers) .

The TDF formulation takes list length into account in the structure of

the model, and so presumably the parameters a, b, and f should remain

invariant over the three experimental groups. Thus, the estimation pro-

cedure was carried out simultaneously over all three groups, so that

parameters a, b, and f were found that minimized the function

X
2 __ X2

9
+X2 +X2

15 21
(24 )

The minimization was carried out byare defined in Eq. 23.where the X
2
j

using a digital computer to sea~ch a grid on the parameter space, yielding
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procedure as a true

parameter values accurate to three decimal places.

The x2
value obtained by minimizing Eq. 24 does not have a chi-

square distribution, since the frequencies in the two 4-trial sets are

not independent. However, if one interprets the value obtained from this

'2X , it can be shown that in general the statistical

test will be conservative; Le., it will have a higher probability of

rejecting the model than is implied by the confidence level (for a dis-

cussion of this problem, see Atkinson, Bower, and Crothers, 1965). In

evaluating the minbrrwu x2
, each set of 16 sequences yields 15 degrees of

freedom, since the predicted frequencies are constrained to add to the

total number of protocols. Further, it is necessary to subtract one degree

of fre~dom for each parameter estimate. ThUS, there are 87 degrees of

freedom over the three groups for the TDF model.

Tables 1 and 2 present the predicted frequencies of each response

sequence for the TDF model using the minimum x2 parameter estimation

procedure. Table 3 presents the minimum x2 values and the parameter

estimates. For comparison purposes, the results for the one-element and

linear models also are presented. It can be seen that the TDF model is

a marked improvement over both the linear and the one-element models. In fact,

the X
2

of 115.5 (for 87 degrees of freedom) is remarkably low, consider-

ing that the parameters are simUltaneously estimated for all three experi-

mental groups. The theoretical curves drawn in Figs. 11 and 12 are those

derived from the TDF model using the parameter values given in Table 3.

An interesting feature of the fit is that the estimate of the param-

eter b is about one-fourth as large as the estimate of a. To the extent

that these values are accurate, the model predicts that the greatest increase
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TABLE 3

Parameter Estimates and X2 Values

2
9 15 21 X Values

Model Parameter Items Items Items Trials Trials Total
2 - 5 6 - 9

a 0.42
TDF b 0.11 49.6 65.9 115.5

f 0.19

Linear e 0.32 0.17 0.15 427.2 664.4 1091.6

One-element c 0.30 0.20 0.15 94.6 149.3 243.9
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in the probability of recall from one trial to the next will occur if the

number of intervening items is as small as possible (since each intervening

item helps to return an item to state U where the probability of transition

to state L is smallest). A paired-associate experiment reported by Greeno

(1964) yielded results contradicting this prediction. Experimental items

presented twice in succession on each trial took the same number of trials

to reach criterion (i.e., twice the number of stimu.lus presentations) as

control items presented once per trial, indicating that little or no learn

ing took place durL~g the second presentation on each trial, when an item

would almost certainly be in state S.

It should be noted that the buffer model would not necessarily make

the same prediction here. This is so because, as pointed out earlier,

the parameters a and b Df the TDF model provide only a rough approximation

to the buffer-transfer process which takes place over an extended period

of time. The approximation is convenient for the typical paired-associates

experiment, but when items are repeated in juxtaposition more specificity

is required. On the other hand, until a set of postulates is added con

cerning the successive presentation of items, one CaD-Dot say precisely

what the buffer model will predict. Nevertheless, it seems likely that a

buffer model would not predict that the maximum advantage would be gained

by repeating an item twice in succession. In order to give more meaning

to this statement, let us see what possible postulates could be appended

to the buffer schema in light of the paired-associate analyses just pre

sented.
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Suggested Postulates Concerning Repeated Items

The buffer model has not yet been made applicable to situations where

an item is presented more than once. For example, we have not considered

the problem of what takes place when an item currently in the buffer is

again presented. Several possibilities exist: (a) the incoming item could

be shunted aside and the buffer left untoQched, (b) the incoming item could

occupy position r in the buffer and the old copy of that item could be

the item bumped out, or (c) the incoming item could take the thr position

function, there-in the buffer and the item lost could be chosen by the K.
J

by making it possible for an item to be represented several times in the

buffer. Further questions now arise: if an item can be represented more

than once in the buffer, does the probability of transfer to LTS proceed

independently for each copy; or in the case of the strength model, is the

strength built up as a function of the total time spent by both copies in

the buffer? Similarly, several possibilities exist for other contingencies

that can occur when an item is repeated. For example, if an item is pre-

sented which is not in the buffer but is in LTS, does the item get shunted

aside and miss the buffer if its long-term copy is retrieved, or does the

item get placed in the buffer regardless? Picking among these alternatives

requires further experimentation, and is beyond the scope of this paper.

There is, however, one area in which the range of alternatives may be

narrowed; namely with regard to retrieval schemes applicable to learning

experiments. In our earlier discussion of short-term memory experiments

it was necessary to postulate a retrieval process that permitted less

than perfect recall for items in LTS. Obviously, for most learning
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experiments the subject will in time learn to perform perfectly; thus the

retrieval process will have to be capable of generating perfect recall as

the number of trials increases. One method of defining the retrieval

function that would eventually permit perfect retrieval lets the probability

of retrieving the .th
l item depend not only on the relative strength of

*the item, but also on its absolute strength. With an assumption of this

nature, the probability of recall can go to uni.ty with repeated presenta-

tions even though the retrieval process generates imperfect performance

on early trials. In our initial discussion of the strength model a retrieval

process was not defined, and the reason was that we wanted it to have the

property just mentioned. In the next section a retrieval function of this

kind will be appended to the strength model and applied to experiments on

free verbal recall.

There are other considerations which also lead to a retrieval scheme

that can undergo change from trial to trial. Consider, for example, an

experiment by Tulving (1962) on free verbal recall. A list of 16 words

was read in a random order over and over again until the subject had learned

all the words in the list. After each reading of the list the subject

would write down all the words he could remember. Each reading of the

list was in a new random order; nevertheless the subjects tended to organ-

ize their recall in a similar fashion from trial to trial. This clearly

contradicts the hypothesis that the subject searches through memory in a

random fashion after each reading. The very first recall of the list could

* .ThlS notion will be generalized to multiple-copy models in a later

section.
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be a random search process of the type described earlier in this paper, but

later recalls are clearly not a simple reiterating of this random search.

For this reason another feature must be added to the retrieval process in

experiments where items are repeated: namely, the items may be restructured

(or rearranged) in LTS from trial to trial in such a way as to facilitate

recall. Another way of saying this is that the retrieval process changes

from trial to triaL For example, a subject might start out by searching

LTS randomly with replacement. On later trials, however, the subject

might restructure his LTS alphabetically, and now make an ordered alphabetic

search without replacement. Further speculation on this point is beyond

the scope of this paper. For now it should be noted that changes in the

retrieval process from trial to trial are likely to be a very important

feature of experiments with repeated items.

FREE VERBAL RECALL

The typical free verbal recall experiment involves reading a list of

high frequency English words to the subject (Deese and Kaufman, 1957;

Murdock, 1962). Following the reading the subject is required to recall

as many of the words from the list as possible. Quite often list length

has been a variable, and occasionally the time per item has "been varied.

Deese and Kaufman, for example, used lists of 10 and 32 items at one second

per item. Murdock ran groups of 10, 15, and 20 items at two seconds per

item, and groups of 20, 30, and 40 items at one second per item. The

results are typically presented in the form of serial position curves:

the probability of recall plotted against the item;' s position in the list.

Examples of such curves have already been presented in Fig. 4.
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It should be clear that this experimental situation can be analyzed

within the framework of the buffer model. As the list is read to the SUbject,

each item is postulated to enter the buffer and leave it in the usual

fashion; and transfer to LT8 is assumed to occur wnile the item is LD the

buffer. The type of retrieval scheme ~hat must be postulated will be, in

general, quite similar to the search processes already presented. However,

there is one import~~t difference. At the end of each trial the subject

makes multiple responses (he reports out many different items) and the

effect of these responses upon other items in memory has not previously

been discussed. This problem is particularly acute in the case of items

in the buffer, since it is a virtual certainty that making a response will

disturb other items in the buffer. This statement is particularly relevant

if one holds the kind of view proposed by Broadbent (1963) that the buffer

acts as the input-·output channel for the subject's interactions with the

environment. In fact, Waugh and Norman (1965) have proposed that each

response output has the same disrupting tendency upon other items in the

buffer as the arrival of a new item.

On the other hand, it is not clear whether an emitted response dis

rupts items in LT8. At the very least, the act of recalling an item from

LT8 could be expected to raise that item's strength in LT8., or to increase

the number of copies of that item in LT8. This paper is not the place

for further speculations of this sort. The approach that will be followed

here will be to assume that the retrieval of an item from LT8 has no effect

upon the store. Furthermore, the studies to be considered next incorporate

an experimental procedure to clear out the buffer before the recall responses

are requested, hence eliminating the need to examine effects related to the

buffer.
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FREE VERBAL RECALL EXPERIMENTS

Within the framework of the free verbal recall task described above,

several experiments have used an arithmetic task interpolated between the

end of the list and the test in order to eliminate recency effects. In an

experiment by Postman and Phillips (1965) the interpolated task was count

ing backwards by three's and four's, a procedure originated by Peterson

and Peterson (1959). In an unpublished experiment by Shiffrin the inter

polated task consisted of serial addition; this experiment will now be

presented in some detail.

Stimulus items were common English words. Lists of 6, 11, and 17

words were presented to the subjects at rates of either one or two seconds

per word. Four conditions were run: (1) no interpolated arithmetic and

immediate recall of the list; (2) 45 seconds of interpolated arithmetic

and then recall; (3) no interpolated arithmetic, but a 45-second wait

before recall; (4) 45 seconds of interpolated arithmetic, followed by a

45-second wait, followed by recall. In a two-hour session each subject was

run twice under each of the conditions (rates of presentation and list

length). Thus, 48 lists were given in a randomly mixed order. The only

conditions of interest for this paper are those using interpolated arith

metic . The stimulus items were presented sequentially via a slide projector,

but the arithmetic task was conducted aurally in the following manner:

the slide following the last slide in the list presented a three-digit

number and was removed. The experimenter then read a list of random digits

from the set 1 to 9, one every three seconds. The subject was required to

cumulatively add these to the original three-digit number, and report the

total before recalling the words of the list. The fact that the 50 subjects
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were run in groups of about 12 each, plUS the large number of different

experimental conditions, tended to make the data somewhat variable, but

for the rough analysis that will be presented here, they will be adequate.

The data is shown in Fig. 13. For this experiment it is important to

remember that the first item presented (the oldest) is labeled nUmber 1

*and is graphed to the far left. ThQS the upswing to the left represents

a primacy effect; the recency effect, which would be to the right, has

been eliminated.

These results are supported by the experiment of Postman and Phillips

(1965). In that experiment the intervening task was counting backwards by

three-'s or four's. In the condition of interest, the intervening task

took 30 seconds. A control group had no intervening task. Three list

lengths were used: 10, 20, and 30, The presentation time per item was

al,rays one second. Figure 14 shows the serial position curves for the

control group and the arithmetic group.

The data, viewed from the vantage of the buffer model, make it clear

that the arithmetic manipulation has achieved the effect of eliminating

recall from the buffer. Thus, the primacy effect remains unchanged (because,

for all but very short lists, the first items presented are recalled solely

from LTS) , but the last items presented are removed from the buffer by the

intervening arithmetic and therefore can be retrieved only from LTS o

An eXPlanation need be given here for the level asymptote that extends

to the right-hand side of the graphs. The buffer model as stated in Models

*This is reversed from the numbering scheme used to describe the

Phillips and Atkinson study.

65



0\
0\

6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
SERIAL POSITION OF RECALLED ITEM

Fig. 13. Serial position curves ror a rree verbal recall task
with interpolated aritbmetic.



20

90

../ o sec. P
I

70 ...x I

:i ~

\ X" I

r/
50 ···lI. .x I. Ien "'x"'x I...J

...J f<l: 30(,)
uJ
a:
IJ..
0 10

~ 0z
w

30 sec.=> 60
0
w
a:
IJ..

40

3 6 9 12 15 18 21

SERIAL POSITION

24 27 30

Fig. 14,_ Serial. position curves for a free verbal recall task
with interpolated arithmetic (after Postman and
Phillips, 1965).



I, II, and III would predict that the probability of recall would go to

zero for the last item input since that item could not be in LTS. That

formulation, however, assumed that the test occurs immediately following

presentation of the list. The assumption we will make concerning inter-

vening arithmetic is that it clears the buffer in the same fashion and at

the same rate as new incoming stimulus items.* Thus the last item presented

could be expected to stay in the buffer for the same mean time as any other

item which is input to a full buffer. This assumption will be formally

stated in the theory to follow.

It should be noted that in Shiffrin's experiment the subjects did

not know when a list would end. For this reason the observed drop in

probability of recall from list length 6 to list length 17 cannot be ex-

plained by changes in the subjects' motivation from one list length to

another. Furthermore, the fact that the subject does not know when the

list will end is an indication that the 5 parameter should be quite small.

Hence, we shall let 0 ~O, which means that we have one less parameter to

estimate.

The model to be applied here is essentially the strength model dis-

cussed earlier with a few minor changes to accommodate the new experimental

situation. As noted earlier the intervening arithmetic task is assumed to

knock out items from the buffer at the same rate and in the same manner

as additional new items. Thus the quantities and S(d) presented

is no longer cut off at the end of the listation. First of all,

in Eqs. 14 and 16 must be modified to take this extra factor into consider-

(d)
w..
lJ

proper as it was earlier. It is therefore defined for all j. (For all

.)(-

For evidence on this point, see Waugh and Norman (1965).
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will be essentiallyfor large j,
(d)

wij

zero and it is not important to consider the cutoff which occurs at the

practical purposes this is true:

end of the intervening arithmetic.) Hence

~r ,j if i < d - r+ 1 (25)

(d)
= ~ d-i+l, j-i+d+l-r if i > d-r+land j >i-d+r-lw..

lJ

0 , if i > d - r+ 1 and j < i- d+ r- 1.

Secondly, Sed) represents the total strength in LTS which is now greater

than before (see Eq. 16) because some items are in the buffer longer. The

new value for S (d) is as follows:

{c('-
jr I

,c«- 'I',}"Sed) = r)e + IkCiei)1 (26)
r

i l= I,- ~

where the last term in the brackets denotes the mean extra time items stay

in the buffer. This means that Sed) is now an expectation rather than a

fixed value, but the variance of the last term in the brackets is quite

small compared to the magnitude of Sed) so that the approximation is

fairly accurate. Thirdly, the probability of a hit is the same as before:

It is now time to propose a retrieval scheme to apply to the present ex-

periment. The first requirement this scheme should satisfy is that the

probability of retrieval depends at least in part upon the absolute strength

of an item in LTS. The postulate that will be used here is as follows:

if a search of LTS is made and the i th item is found, then the probability
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that the i th item will be correctly reported is

For this equation, the probability of recall will go to 1 as

large, and will be zero for
(d)

1\.. ~ O.
lJ

I\(~)
lJ

becomes

The final retrieval postulate holds that R searches are made into

LTS, and on each search the probability of picking the
.th
l item is

capable of reporting it is

Each time the .th. .
l ltem lS

1 -

and, from Eq. 17,

since it is assumed that the guessing probability is zero.

It has already been stated that we will set K. ~ l/r
l

for all

that is, 5 is assumed to be arbitrarily close to zero. Further, to

simplify the analysis, we will assume that all of the e. j s
J

are equal.

This assumption means that the primacy effect is not due to a faster rate

of transfer of the early items in the list, but due solely to the longer

time spent by these items in the buffer. A fuller discussion of this

problem will come later, but it is obvious that the assumptions concerning

the 8.'s and the assumptions concerning retrieval are interrelated; it
J

should be kept in mind that a retrieval function which works well given

the equal 8.
J

assumption may be quite different from the best retrieval
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function for an unequal e.
J

assumption.

Under the above simplifying assumptions, the mathematics of this model

becomes quite simple. The results are as follows:

, for i < d - r + 1

j-i+d-r
l(r - 1) ,for i > d _ r + 1 and j > i - d + r - 1
r r

o for i > d - r + 1 and j < i - d + r - 1

and

joy

[dr + ~r(r+ 1)] ty

j

Thus we have the probability of reporting item i as a function of three

parameters: r, y, and R. The parameter r will be estimated again by

independent means; in most of the serial position curves shown, the primacy

effect extends over three or four items. Hence r is set equal to 4. The

number of searches, R, also must have certain restrictions placed upon it.

For example, although the mean number of items reported out per list is

generally quite small, occasionally subjects will report a very large number

of items. Since the number of items reported cannot be greater than the

number of searches made, the latter number must be fairly large. We
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therefore set R e~ual to 30; this value was selected arbitrarily but as

we shall see, it yields good fits. Finally, the parameter 1 was estimated

on the basis of a best fit to the 17 -i tem list in the Shiffrin experiment.

The estimate of I, .05, was then used to calculate theoretical serial

position curves for all the conditions in the Shiffrin study and the first

portions of the longer Murdock curves. It should be clear that for Murdock's

30 and 40 word lists, performance on the middle items is that which would

be found even if arithmetic was given at the end, since there is very little

likelihood that the first 15 or so items are still in the buffer at the

finish of the list. The results are shown in Fig, 15, where the observed

*points are the same as the ones presented in Figs. 4 and 13.

The fitting procedure used here is ~uite crude. Several assumptions

were made solely to simplify the mathematics; two of the three parameters

were set somewhat arbitrarily, and the final parameter was picked on the

basis of a fit to only a single curve. Nevertheless, the fit (which is

surely not optimal) provides a rather good descripti.on of the data. Table

4 gives the predicted and observed values for the first point in the list

and the asymptote for each of the lists considered. The asymptotic value

was obtained by averaging all points beyond list position three. The

points for Murdock's 30 and 40 list lengths were recovered from Fig. 15b,

and may be slightly inaccurate. It can be seen that, whatever the

*Postman's curves were not received in time to calculate theoretical

curves for them but it can be seen that they fall approximately where
,

they would be expected to lie on the basis of our fits to similarly sized

lists.
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TABLE: 4

Fit of the Strength Model to the Data of Shiffrin and

Murdock (the condition is specified by the triple:

experimenter, list length, and exposure time)

First Position Asymptote

Condition Observed Expected Observed Expected

S-6-1 .72 .77 .42 .42

S-6-2 .82 .89 .61 .53

S-ll-l .48 .62 .38 .32

S-1l-2 ·73 .77 .45 .43

S-17-1 .55 .51 .24 .25

S-17 -2 .67 .66 .42 .36

M-30-1 .39 .37 .19 .18

M-40-1 .30 .30 .13 .14
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inadequacies of the fitting procedure, the results are quite good and the

viability of two principal features of the model has been demonstrated.

First, the assumption that the storage process is a function of the time

spent in the buffer has proved to be quite reasonable in fitting lists in

which the presentation time per item was varied. Secondly, while the precise

retrieval scheme 'used undoubtedly depends upon the assumption made con-

cerning the e. 's, the assumption that the retrieval from LIS depends not
J

only on relative strength but also on absolute strength has proved to be

workable. A generalization of the model and a further discussion of re-

trieval schemes dealing with this question will be presented in the next

section.

SOME GENERALIZATIONS

STRENGTH VS. ~ULTIPLE-COPIES

Iwo proposals were made in the first part of this paper concerning

what is stored in LIS: strength, or multiple copies. A model embodying

the first proposal has already been presented. We would now like to show

that the multiple copy proposal is an exact counterpart of the strength

notion. First recall Model I where in each unit of time an item had a

probability ej of being copied in LTS, but once in LTS no additional

copies could be made. The multiple-copy correlate of this would let the

item be copied in LTS during one unit of time with probability e
j

, but

more than one copy could be made in successive units of time. Thus if the

items were presented at a one-second rate and item i stayed in the buffer

for ten seconds, then the number of copies made would be integrally dis-

tributed with a minimum of 0 copies to a maximum of 10. What would happen,



however, if the items were presented at two seconds per item? Can one copy

be made each second of the item's stay in the buffer or can one copy be

made during each two-second interval? Considerations like these suggest

that a more general conception of the multiple-copy notion is that in each

small unit of time one copy can be made with some small probability.

This statement, however, is no more than a definition of the Poisson

distribution. For this reason the assumption is made that the number of

copies made of item i is a Poisson function of the weighted time that

the i th item spends in the buffer. In the terminology already introduced,

(d)
et ij is the weighted time spent in the buffer by the

.th
1 item in a list

of length d, given that the i th item stayed in the buffer for j units

of time (et(~) is defined in Eq. 15). Thus the probability that k copies
lJ

are made of the i th item in a list of length d, given that this item

stayed in the buffer j units of time, is:

[
(d )Jk

let ij

k;

where I is the same rate parameter introduced earlier.

This process is now an exact counterpart, though discontinuous, of

the strength process. If the weighted time an item spends in the buffer

is doubled, the strength is doubled and alternately, so too is the expected

number of copies. Similarly, just as the probability of picking item i

in one search is the ratio of the strength of item i to the total strength,

so the probability of picking item i in terms of the Multiple-copy process

is the ratio of the number of copies of item i to the total number of

copies. The final indication of the similarity between the two approaches

77



is the fact that the expected number of copies made of item i

which is the same quantity that defines the strength process.

The reason for developing the strength process rather than the multiple-

copy process can now be seen; the multiple-copy process is mathematically

more complex, having an extra distribution, the Poisson. There is a

reasonable alternative to both these processes, however, as will be seen

in the next section.

WHAT IS STORED?

If an item is considered as an array of pieces of information, an

alternative to the above schemes suggests itself. For example, the multiple-

copy proposal may be set forth in the following manner o ·Suppose item i

consists of bits (in the loose sense) of information. It may then be

assumed that each copy is a random sample of m of these bits. Each of

these partial copies, of course, may overlap others that have already been

stored. For this reason, the amount of new information contributed by each

new copy is a decreasing function. Now in the multiple-copy scheme defined

above, a search into LTS is made by picking a single copy; this means that

the probability of picking a copy of the .th
l item is the ratio of the

number of copies of the i
th

item to the total number of copies in LTS.

The information model, on the other hand, could be postulated to act as

follows: what is stored in LTS is bits of information rather than copies;

these bits are stored no more than once each. A search into LTS is then

made by picking randomly one bit of information from the store. The

probability of choosing a bit of information relevant to item i would

then be the ratio of the number of stored bits making up item i to the

total number of stored bits.



This "information" model has a different mathematical form than the

earlier models. For example, if each copy contains a proportion p of

the total number of bits making up an item, then the proportion of bits

left to be stored after n copies have been made is (1- p)n. Thus the

proportion already stored is 1- (;1. _p)n. This can be rewritten

1 - exp[n log(l - p)]. Consider n to be the mean number of copies made

in j units of time. Since the Poisson mean is a linear function of the

weighted time the item spends in the bUffer,
(d)

n ~ all ij . Now let

a[ log(l- p).J ~ -y and we can rewrite the proportion of bits already stored

as 1 - exp[-y~~~)] ~ 1 - exp[-~~~)], which is the expression used earlier

in the strength model for the probability of a recall, given that item i

is picked. In terms of these remarks it is now clear that one interpreta-

tion of our earlier assumption is that the probability of recall is a direct

function of the proportion of information stored about the item in question.

This information model, remember, differs from the earlier one not in the

probability that an item will be recalled once it is picked, but in the

probability of picking the item in the first place. To illustrate this

point, note that for the strength model is

d

\' H ~d)
L lJ
i~l

whereas, for the information model is
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While still considering the information model, we will examine a

retrieval asswnption that has been mentioned several times without explana

tion. The asswnption holds that an item can be picked during a search of

LTS, but not necessarily reported. This notion is given support if one

imagines that a small portion of the information making up any item can be

picked on a single search. On anyone search this information may be

insufficient to actually report the correct answer with assurance. On the

other hand the idea of a small portion of information being available gives

a natural explanation for the difference between recall and recognition

measures of retention: the smaller the choice set the subject is given,

the more likely that his partIal informati.on will be enough to allow him

to choose the correct answer.

Before the information model can be further elaborated, it will be

necessary to specify the function relating the number of information bits

to the probability of recall. This question once again returns us to the

problem of the retrieval process. The next section will consider the problem

in a general fashipn and examine some of the assumptions which have been

used in earlier parts of the paper.

THE RETRIEVAL PROCESS

In the course of the paper two retrieval processes have been suggested:

an active disruption of LTS caused by the ongoing search, and an imperfect

search in which items, about which some information is present in LTS, are

not reported. The first of these is conceptually clear and does not need

additional discussion here. The second process, hDwever, requires clarifi

cation.
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The first problem to consider is how successive lists are kept separate

from each other by the subject. In free recall, for example, different

lists of words are presented from trial to trial, and the subject is re

quired to output all the items he can recall after each list. The items

in each list supposedly are copied in LTS, but in our analysis the subject

searches only through the items of the very last list. It does not strike

the authors as particularly desirable to assume that LTS is also nothing

more than a buffer which is wiped clean after each trial. In addition to

the complexities that this would add to the model, this view gives no easy

explanation of insertions in recall of items from previous lists. Rather

it is our view that a random search process is a fictional ideal which is

only approximated by any given subject. The subject undoubtedly makes a

non-random search of LTS, but along a dimension unk-no'wu in anyone case

to the experimenter. The most likely dimension is a temporal one; thus the

subjects ~uld search among those bits of information which tell him how

long ago the item was presented. Furthermore, the subject would have to

make a selective search along the temporal dimension in order to search only

through the most recent items, and this observation would suggest that LTS

is arranged in a fashion akin to an efficient cross-indexing system. Various

such systems could probably be proposed in terms of the information input

characterizing each item, but this will not be done here. The notion that

the sUbject is always making ordered searches of memory along one or several

dimension(s) is similar to the proposals made earlier concerning changes in

the retrieval process over repeated trials. Further consideration along

these lines is unfortunately beyond the scope of this paper. In any event,

the earlier assumptions regarding random searches should be taken as an
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ap~oximation which may be accurate, possibly, only on the very first trial

in experiments with repeated items.

There is one other feature of the retrieval process that requires some

elaboration; namely, the assumptions regarding the probability of correctly

recalling the item, given that information relevant to it is found in

a search of LTS. The following proposal is made: when an item is picked

a portion p of the total stored information on that item becomes available

for consideration. This proportion p determines the independence of

successive searches for an item. Thus if p = 1, all of the stored informa~

tion about item i becomes available the first time item i is picked.

If item i is not reported after this first pick then it will not be re-

ported on any successive pick. On the other hand, if p approaches 0

successive picks will be almost independent of each other and the probamility

of recalling the item will not change from pick to pick. This second assump-

tion is the one used in the strength model applied to the free verbal recall

data, where the probability of retrieval was

if R picks, or searches, were made. If the first assumption was used,

however, the probability of retrieval would be

1 - - [1 -

The last problem to consider is when to terrrinate the search process.

Many possibilities come to mind: stop after R picks; stop only after

finding item i', stop after the response time runs out;
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successive searches uncover items already previously picked. It seems

likely that the stopping rule would be highly dependent on the experimental

situation; the amount of time given for responding, the motivating instruc

tions given the subject, the rewards for correct and incorrect answers,

and so on o These same comments apply to a destructive search, where each

search disr¥pts LTS in some manner.

CONCLUDING REMARKS

The similarities of the model presented here to other theories of

memory should be briefly mentionedo Interference theory is represented

in our model in three separate processes: the buffer, in which succeeding

items knock out previous items; the destructive search process, where items

in LTS can be modified by the search operation; and the imperfect retrieval

process, which can produce interference-type effects, Decay theory, on

the other hand,is not represented in the model as stated. The evidence for

a decay process accumulated by Brown, Conrad and Peterson, among others, is

not necessarily explainable by the model in its present form. Nevertheless,

there is no reason why a decay process cannot be added to the buffer postu

lates. If this were done it would be assumed that rehearsal or attention

is the mechanism by which a certain number, r, of items may be kept at one

time in the buffer with none decaying 0 When another item enters, however,

the buffer becomes overloaded and the rehearsal or attention factor cannot

keep all the items from decaying. One item then decays and the buffer re

turns to its equilibrium state. A theory of this sort would incorporate

the decay notion into the buffer postulates without changing the present

form of the modelo
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One final area of research which has not been mentioned expLlcitly is

the "chunk" hypothesis proposed by Miller (1956) and others. The chunk

hypothesis generally takes t,ro forms. The first, the reorganizing of

material into successive chunks; and the second, chunJ.\: constancy J! referr:Ln[f,

to [\ CODl3tancy in the rQte of trarl.';mission of information over mRny cxperi-

ments. IHthout going into details it can be said that the clmni, hJTllothesis

is related to the informati.on structure in the buffer, and the organization

of this information in LTS. Although this paper does not make explicit

'use of information-theoretic concepts, nevertheless they underly much of

the development of the model. For example, the hypothesis that the buffer

is of constant size in terms of inforlnation content, and the proposals that

the search scheme changes and LTS is reorganized from trial to trial J arc

related to the chunk hypothesis.

The model in this paper was not applied to several areas where it

might prove fruitful. For example, latency data can be given a natural

interpretation in terms of the processing time re~uired before outputting

a response. The assumption would be that an item in the buffer at the time

of test would have a latency distributed with a mean which was ~uite small,

whereas any other item would have a latency determined by the search time.

Thus, the latencies should be smallest for the most recent items and longest

for the oldest items, irrespective of the seri.al position curve. This pre

diction has been borne out in a recent study by Atkinson, Hansen, and

Bernbach (1964).

There are other areas in which the mode 1 would be applicable with the

addition of a few specific hypotheses. Confidence ratings are an example

that has a1ready been mentioned. Another example is prediction of error
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types and intrusions, such as those examined by Conrad (1964), Predictions

of this sort would re~uire further delineation of the retrieval process,

just as would confidence ratings.

Finally, it should be pointed out that of all the assumptions and

variations which have been introduced, three are crucial to the theory.

First is the set of buffer assumptions; i.e., constant size, push-down

list, and so on. Second is the assumption that items can be in the buffer

and LTS simultaneously. Third is what was called the retrieval process-

the h~~othesis that the decrement in recall caused by increasing the list

length occurs as the result of an imperfect search of LTS at the time of

test. Within this framework, we feel that a number of the results in

memory and learning can be described in ~uantitative detail.
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