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RESEARCH ARTICLE PHYSICS

Controlling the shape and topology of two-component colloidal
membranes
Ayantika Khanraa,1 , Leroy L. Jiab,1 , Noah P. Mitchellc,d , Andrew Balchunase, Robert A. Pelcovitsf, Thomas R. Powersf,g , Zvonimir Dogicd,e,h ,
and Prerna Sharmaa,i,2

Edited by Tom Lubensky, University of Pennsylvania, Philadelphia, PA; received March 13, 2022; accepted June 13, 2022

Changes in the geometry and topology of self-assembled membranes underlie diverse
processes across cellular biology and engineering. Similar to lipid bilayers, monolayer
colloidal membranes have in-plane fluid-like dynamics and out-of-plane bending elas-
ticity. Their open edges and micrometer-length scale provide a tractable system to
study the equilibrium energetics and dynamic pathways of membrane assembly and
reconfiguration. Here, we find that doping colloidal membranes with short miscible
rods transforms disk-shaped membranes into saddle-shaped surfaces with complex
edge structures. The saddle-shaped membranes are well approximated by Enneper’s
minimal surfaces. Theoretical modeling demonstrates that their formation is driven
by increasing the positive Gaussian modulus, which in turn, is controlled by the
fraction of short rods. Further coalescence of saddle-shaped surfaces leads to diverse
topologically distinct structures, including shapes similar to catenoids, trinoids, four-
noids, and higher-order structures. At long timescales, we observe the formation of a
system-spanning, sponge-like phase. The unique features of colloidal membranes reveal
the topological transformations that accompany coalescence pathways in real time.
We enhance the functionality of these membranes by making their shape responsive
to external stimuli. Our results demonstrate a pathway toward control of thin elastic
sheets’ shape and topology—a pathway driven by the emergent elasticity induced by
compositional heterogeneity.

membranes | topological shape transitions | minimal surfaces

Thin sheets can assume diverse geometrical and topological shapes and structures,
which permeate the natural world across length scales. At the cellular level, nanometer-
thick fluid-like lipid membranes can seamlessly transition between distinct topological
structures, a unique feature that is essential for endo- and exocytosis and viral infection
as well as transport of nutrients and signaling molecules (1–11). At organismal scales,
micrometer-thin cellular sheets can transform into complex tubular, coiled, and branched
structures that underlie the morphogenesis of flowers, visceral organs, and the nervous
system (12–17). Designing responsive synthetic materials that can assume the above-
described three-dimensional (3D) shapes and topologies observed in biology remains a
challenge. So far, work has primarily focused on macroscale stimuli-responsive solid-like
elastic sheets that have a finite in-plane shear modulus (18–21). Such materials allow one to
engineer lateral stress patterns that yield targeted 3D architectures. However, solid elastic
sheets cannot easily fuse into nontrivial topologies. In comparison, nanometer-sized fluid
lipid bilayers readily transform between various topologically complex surfaces, but these
transitions occur on timescales and length scales that preclude real-time observation. The
limitations of both the nanoscale fluid bilayers and the macroscale solid elastic sheets reveal
a need for an experimental platform to study formation of topologically complex surfaces.

Motivated by such considerations, we study colloidal membranes, which are
micrometer-thick fluid-like monolayers of aligned rod-like particles. They share many
properties with lipid bilayers but at larger length scales and slower timescales (22).
Introducing a critical fraction of miscible shorter rods destabilizes the flat state, leading
to the formation of diverse geometrically and topologically complex surfaces. The length
scale of the colloidal membranes enables visualization of 3D pathways by which open flat
sheets transform into topologically nontrivial structures. A continuum model describes the
membrane shape transitions by balancing the edge energy, which favors flat disk–shaped
membranes, with the Gaussian curvature modulus, which favors saddle-shaped structures.

Results

Assembly of Colloidal Membranes. Colloidal membranes are one-rod-length-thick fluid
monolayers composed of aligned rods that self-assemble in the presence of depleting

Significance

Three-dimensional shaping of
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polymers (22–24). They form by a robust assembly pathway that
does not require chemical heterogeneity, such as an amphiphilic
nature of the building blocks, but rather, relies on the anisotropy
of the building blocks. Entropic depletion interactions favor align-
ment of the rods along their long axes, which minimizes volume
excluded to the polymer coils (25). The attraction strength is de-
termined both by the length of the rods and by the concentration
of the depleting polymer. Over an intermediate range of depletant
concentrations, such tunable attractions assemble membrane-like
materials, in which there is a complete phase separation between
the rod-rich membrane and a polymer suspension that envelops
the membrane. The density of the rods within a membrane is de-
termined by the osmotic pressure that is exerted by the immiscible
polymers. Similar to lipid bilayers, the out-of-plane deformations
of colloidal membranes are described by the Helfrich Hamiltonian
(26–28). However, unlike lipid bilayers that assemble into edgeless
vesicles, colloidal membranes usually assume flat two-dimensional
(2D) disk-like shapes. Furthermore, being assembled from
1-μm-long particles, colloidal membranes allow for visualization
of various in-plane structures and dynamical pathways that
are not easily studied with nanometer-sized lipid bilayers
(29–33).

Short Rods Destabilize Flat Colloidal Membranes. We studied
binary colloidal membranes assembled from two chiral filamen-
tous viruses with the same handedness, 1,200-nm-long M13KO7
and 880-nm-long M13-wt (34–36). In the presence of the non-
adsorbing polymer dextran, both virus types coassembled into 2D
colloidal membranes. We first changed the number fraction of
short rods, nshort, within the membrane while keeping the dextran
concentration fixed. The common chirality of the rods increased
the miscibility of the two species when compared with rods of
opposite chirality (31, 37). At low number fractions of short
M13-wt rods (nshort < 0.15), we observed assembly of flat col-
loidal membranes. Labeling both rod types revealed uniformly
mixed membranes (Fig. 1 A, Top, B, Top, and C, Top). At inter-
mediate volume fractions (0.2< nshort < 0.35), the membranes
assumed 3D saddle-like surfaces with negative Gaussian curvature
(Fig. 1 A, Middle, B, Middle, and C, Middle). Labeling both
virus types revealed that saddle membranes remained uniformly

mixed for nshort < 0.25. Beyond this fraction, we observed that
short rods started phase separating at the membrane’s edge, but
the interior remained uniformly mixed. Increasing the number
fraction of short rods even further (nshort > 0.35) yielded another
transition from saddle surfaces back to flat membranes. This was
accompanied by an in-plane phase separation into two phases that
were enriched in the long and short rods, respectively (Fig. 1 A,
Bottom, B, Bottom, and C, Bottom).

We mapped the phase diagram as a function of nshort and
dextran concentrations (Fig. 1D). Liquid crystalline tactoids and
disordered smectic-like stacks formed at low and high dextran
concentrations, respectively (38). Colloidal membranes formed
at intermediate dextran concentrations (22). For a fixed inter-
mediate dextran concentration, we found that increasing the
fraction of short rods first led to flat and miscible membranes,
then led to saddle-shaped miscible membranes, and finally, led to
phase-separated flat membranes. At the transition points, flat and
saddle-shaped membranes coexisted. Notably, the saddle-shaped
membranes existed in a regime of binary colloidal membranes
where the length difference between the two rods was not too
pronounced and the rods had the same chirality. Both effects
enhanced the miscibility of the rods, generating spatially mixed
membranes. This is in contrast to previous studies, which ex-
plored the strong phase separation regime of colloidal membranes
composed of rods with opposite chirality and/or larger length
differences (31–33, 37, 39).

Next, we studied the coalescence kinetics of saddle-shaped
membranes. Observing the sample over time elucidates how in-
creasing the membrane area affects its 3D shape. Immediately
upon preparation, all rods condensed into small colloidal mem-
branes, with lateral size of a few micrometers. Over time, their size
increased as the membranes laterally coalesced with each other.
Initially, the samples contained colloidal membranes that were
mostly saddle shaped (Fig. 2 A–E). These saddle-like surfaces
can be classified according to their order, which characterizes
the number of minima and maxima encountered as one moves
along the membrane perimeter. Intriguingly, the saddle-shaped
membranes exhibit asymmetric distortions along their perimeter,
which might be due to the chiral nature of the constituent rods.
Even for flat membranes, chirality induces asymmetric rippled
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Fig. 1. Phase diagram of binary colloidal membranes. (A) Two-component colloidal membranes composed of long (red) and short (gray) rods. Increasing the
number fraction of short rods, nshort, causes uniformly mixed flat membranes to transform into saddle shapes. At higher nshort, phase separation between
the two types of rods occurs, and the membranes revert to flat shapes. Dextran concentration is 50 mg/mL. (Scale bars, 2 μm.) (B and C) Schematics of
the rod positions and orientations within membranes at different nshort. (D) Phase diagram of long and short rod mixtures. Disordered aggregates form
above ∼68 mg/mL dextran concentration (filled stars) and tactoids form below ∼35 mg/mL dextran concentration (filled circles). At intermediate dextran
concentrations, the following types of colloidal membranes are observed: flat and phase separated (half-filled diamonds), flat and uniformly mixed (open
diamonds), and membranes with negative Gaussian curvatures (open squares). Filled triangles correspond to the coexistence of flat membranes and saddles.
Yellow-, cyan-, and green-filled circles correspond to the assembly conditions of the membranes shown in A.
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Fig. 2. Saddle-shaped colloidal membranes mimic Enneper surfaces. (A–D) Confocal images of saddle-shaped colloidal membranes with increasing order
number m = 1, 2, 3, and 4. (E) 3D-rendered images of deconvolved wide-field z stacks of an m = 6-order saddle surface. Dextran concentration is 50 mg/mL,
and nshort = 0.2. (Scale bar, 2 μm.) (F) Enneper surfaces of orders m = 1, 2, and 3. Color indicates the Gaussian curvature. The area increases with the surface
order m, a trend observed in the experiments. (Scale bar, 2 μm.)

edge fluctuations (28). We observed up to sixth-order saddle
membranes (Fig. 2E and SI Appendix, Fig. S1).

Saddle-Shaped Membranes Are Enneper-Like Minimal Sur-
faces. Saddle-shaped colloidal membranes (Fig. 3A) have
negative Gaussian curvature and small mean curvature. To
quantify their shape, we extracted the membrane midplane from
3D confocal images and computed the spatial maps of both

their Gaussian curvature K and mean curvature H (SI Appendix,
SI Text). The median value of the Gaussian curvature was negative
(〈K 〉=−0.063 μm−2), while the median mean curvature was
much smaller when compared with the square root of the Gaussian
curvature (〈H 〉= 0.010 μm−1 �

√
|〈K 〉|). Both curvatures

had small-scale heterogeneity due to measurement noise (Fig. 3 B
and C ). These results suggest that saddle membranes are well
approximated by minimal surfaces.
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Fig. 3. Saddle-shaped membranes are nearly Enneper minimal surfaces. (A) Top and side views of a saddle membrane, rendered from confocal z stacks. (B and
C) Top and side views of the midsurface of the saddle membrane. Color indicates the local mean and Gaussian curvature in B and C, respectively. The membranes
have predominantly negative Gaussian curvature and nearly zero mean curvature. (D) Top and side view comparison between an experimental midsurface and
the numerical model. Color indicates deviation between the best-fit Enneper surface (size parameter, R = 6.47 μm) and the membrane along the z axis. D, i–iv
show height profiles of the midsurface (gray dots) and the best-fit Enneper surface (black curves). (Scale bars, 2 μm.) (E) The r–φ parameterization of the edge of
the saddle shown in B. Black dots are experimental measurements, and the black curve is a theoretical prediction in which the Gaussian and chirality moduli are
set to 1,000 and 100 kBT , respectively. (F) In theoretical predictions, increasing the chirality modulus elongates the saddle in diametrically opposite directions,
resulting in two peaks in the r–φ plot of the saddle’s edge.
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Inspection of different minimal surface families revealed a
resemblance between saddle membranes and Enneper minimal
surfaces (Fig. 2F ) (40). The Enneper minimal surfaces have the
parameterization

x

R
= r cosφ− r2m+1

2m + 1
cos[(2m + 1)φ] [1]

y

R
= r sinφ+

r2m+1

2m + 1
sin[(2m + 1)φ] [2]

z

R
=

2rm+1

m + 1
cos[(m + 1)φ], [3]

where r is a dimensionless radial coordinate, φ is the angular
coordinate, m ≥ 1 is the order, and R is a positive parame-
ter (40). Note that r ranges from zero to redge(φ), where the
function redge(φ) describes the shape of the edge. The edge of
the experimental surface did not extend the same distance in all
directions. For instance, the surface extended much farther along
one diagonal when compared with the other one (Fig. 3 D, lines ii
and iv). We take the surface area to beA= πR2

0 . WhenR is much
greater than R0, the saddle is gently curved and has a disk-like
shape. As R decreases toward R0, the surface curvature increases,
and the surface self-intersects if R becomes sufficiently small. By
adjusting the R parameter, we found Enneper surfaces that well
approximate the shapes of representative saddle membranes, with
some discrepancies being observed close to the membrane’s edge
(Fig. 3D). The fits for the higher-order experimental surfaces were
also less accurate due to the appearance of a central bulge and the
chiral structure of the edge (Fig. 2 E, Upper).

Theoretically Determining the Shape of the Membrane Edge.
We introduce a theoretical model to determine the shape of the
membrane edge, which is given by redge(φ). Since the tilt of the
rods within a saddle membrane is small everywhere except near
the edge, we use a continuum model with an effective edge energy
to account for the liquid crystalline degrees of freedom close to
the edge. This model accounts for the membrane composition
implicitly through the assumption that changing the fraction
of long and short rods primarily affects the values of the elastic
moduli.

The conformation of a colloidal membrane is described by an
energy that accounts for a resistance to bending (26, 41), a fixed
area, a free edge with an edge tension, a resistance to edge bending,
and a preference for a twist due to the chiral constituents (28, 42):

E =
κ

2

∫
dA(2H )2 + κ̄

∫
dAK + μ

∫
dA

+ γ

∫
dl +

B

2

∫
dlk2 +

B ′

2

∫
dl(τg − τ∗g )

2, [4]

where κ is the bending modulus, κ̄ is the Gaussian curvature
modulus, dA is the element of area of the membrane midsurface,
μ is a Lagrange multiplier enforcing area conservation, γ is
the edge tension, dl is the element of arclength of the edge, k
is the curvature of the edge, τg is the geodesic torsion (43), τ∗g is
the spontaneous geodesic torsion (proportional to the desired rate
of twist), and B and B ′ are the elastic moduli associated with the
edge. It is convenient to work in terms of the chirality modulus
c∗ =−B ′τ∗g .

We can independently estimate the magnitude of the
phenomenological parameters in Eq. 4. Measurements of the
fluctuations of the edge of a disk-like membrane (nshort = 0.1)
reveal that B ≈ 150 kBT μm and γeff ≈ 620 kBT/μm
(SI Appendix, Fig. S2) (29). There is a chiral contribution to

the line tension γc = (c∗)2/(2B ′), so that the effective total
line tension is γeff = γ + γc (29). We also assume that B ′ = B .
Furthermore, colloidal membranes’ area compressibility implies
a large value of the bending modulus, κ≈ 15, 000 kBT (24).
Membranes with a positive Gaussian modulus decrease their
energy by adopting negative Gaussian curvature, and the Gaussian
moduli of both single-component fd-wt and mixed fd-wt/
fd-Y21M membranes have a magnitude of ∼200 kBT and are
positive (27, 28). Thus, we expect κ� κ̄, which provides an
additional rationale for modeling saddles as Enneper minimal
surfaces (Fig. 2F ).

Assuming that the nonflat membranes are described by mth-
order Enneper surfaces, we determine the boundary contour
by solving the in-plane force balance equation for the edge,
redge(φ), subject to the constraints of the fixed area and period-
icity in φ (SI Appendix, Eq. 3). The minimal surface assumption
(κ̄� κ) implies that the other equilibrium conditions for out-
of-plane force balance (SI Appendix, Eq. 2) and moment balance
(SI Appendix, Eq. 4) at the membrane’s edge are trivially satisfied
since the terms proportional to κH or κ∇H can take whatever
values are necessary to satisfy these equations when κ→∞ and
H → 0.

The numerical model correctly captures the (m + 1)-fold di-
hedral symmetry of the Enneper surface. Generically, we find
that a one-mode approximation redge(φ)≈ r0 + r1 cos[(m + 1)
(φ− φ0)], for constants r0, r1, and φ0, is sufficient to describe
the solutions to Eq. 3 (SI Appendix). Notably, the amplitude r1
depends weakly on κ̄ but strongly on c∗ (Fig. 3F ). However,
increasing c∗ or κ̄ decreases the value of R that minimizes the
energy E since these changes cause the surface to prefer additional
curvature.

We determine κ̄ and c∗ by fitting the edge profiles of the
saddle surfaces. During the fitting process, γ and B are fixed at
the values mentioned above, and R is fixed at the value obtained
from fits of the midsurface. For the saddle shown in Fig. 3 A–D
(R = 6.47 μm), κ̄≈ 1,000 kBT , and c∗ ≈ 100 kBT (Fig. 3E).
Fitting of the edge profiles of other saddles of various orders yields
similar results. We note that the magnitude of the chiral modulus
is comparable with previous estimates (28, 42), while κ̄ is nearly an
order of magnitude greater than the value for single-component
membranes. Also, recall that the Gauss–Bonnet theorem shows
that the Gaussian curvature energy is effectively an edge energy,
despite the fact that it is written as an integral over the entire
surface in Eq. 4.

Continuum Model Estimates the Stability of Saddle-Shaped
Membranes. Using our continuum model, we estimate the
stability of Enneper-like surfaces. Our focus is on the transition
between flat disks and Enneper surfaces and between Enneper
surfaces of different orders. We use the above-described parameter
values to minimize Eq. 4. For a given area, we calculate the
energies of the 11 lowest-order saddles using the numerical
procedure outlined above as functions of R, which is determined
numerically through minimization. While driving R to zero
almost always results in an absolute minimum, local minima
where ∂E/∂R = 0 and ∂2E/∂R2 > 0 also occur for certain
parameter combinations. Fig. 4A shows a range of areas R0 =√
A/π and the values ofm for which Enneper surfaces have lower

energy than a flat disk of equivalent area. The effects of a larger or
smaller κ̄ were also explored (SI Appendix, SI Text and Fig. S3).

For the smallest membrane sizes, only the lowest-order sad-
dles are stable since higher-order Enneper surfaces have more
Gaussian curvature. As R0 increases, the theoretical range of
allowable saddles broadens, with the energy-minimizing saddle
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For most areas, this happens at the maximum allowable m. Energies were
computed for a membrane with γ = 622 kBT/μm, B = B′ = 155 kBT μm,
c∗ = 100 kBT , and κ̄ = 1,000 kBT . As area increases, the lower-order saddles
become less energetically favorable compared with the disk, while the higher-
order saddles become more energetically favorable. Saddles of order up to
and including m = 11 were compared in this plot. (B) Ranges of experimentally
observed saddle sizes and corresponding saddle orders. Membrane z stacks
were taken from a combination of confocal and deconvolution microscopy;
the smallest membranes (R0 < 2 μm) were not processed. While the theory
tends to overestimate m, the general trend of m linearly increasing as R0
increases is clearly visible.

having the highest allowable m . There is one exception at R0 =
3.5μm, which is possibly due to the existence of multiple-solution
branches (SI Appendix). At the largest areas, the lowest-order sad-
dles are no longer favorable compared with the disk since the edge
cost at smallm is larger than the Gaussian curvature energy gained
by curving it into a saddle. None of the local minima exhibit self-
intersection. The emergence of energy-minimizing saddles as area
is increased appears to be a first-order transition.

This phase diagram is in qualitative agreement with the ex-
perimental result that low-order saddles are observed for small
area membranes and that increasing the area leads to higher-order
saddles, with a dependence that appears almost linear (Fig. 4B).
The theory tends to overestimate the order of saddles at higher
areas. It is reasonable to expect our simple theory to become less

accurate at higher areas since our theory does not account for the
sag that occurs for larger membranes or for the interaction of the
sagging region with the coverslip.

Topological Transitions. Flat disk–like membranes grow in size
through lateral coalescence events (44). In comparison, saddle-
like surfaces exhibit two distinct coalescence pathways. Lateral
coalescence events lead to Enneper-like surfaces of greater area,
sometimes of the same order and sometimes of a higher order.
However, we also observed a distinct coalescence pathway that
changes the topology of the membrane. A 2D section of two
saddle-shaped membranes undergoing coalescence via this path-
way is not very revealing (Fig. 5A and Movie S1). To gain insight,
we used the unique features of colloidal membranes that allowed
for visualizing the coarsening pathways with unprecedented detail.
First, micrometer-sized colloidal membranes in combination with
fast z scanning and 3D deconvolution microscopy enabled visual-
ization of complex 3D surfaces. Second, the large size of colloidal
membranes slowed the coalescence dynamics, thus enabling real-
time visualization. Leveraging these features revealed that the
two coalescing saddle-shaped surfaces transition into topologically
distinct catenoid-like shapes (Fig. 5B and Movie S2) with nonzero
mean curvature (SI Appendix, Fig. S5).

Multiple observations suggest that the assembly pathway for
the catenoid-like shape is robust. Two saddle surfaces approached
each other at an almost right angle and fused at a specific location
away from the edge of either membrane. Therefore, the point of
initial contact was in the interior of both membranes where the
rods are normal to the surface. Following this event, a fusion pore
nucleated in the vicinity of the initial contact point. This pore grew
to a well-defined size along with the continuous transformation of
the object into a catenoid-like shape. In comparison, the edge-to-
edge lateral coalescence of two saddle-shaped membranes yielded
larger or higher-order saddles (Movies S1 and S3).

Catenoid-like membranes were intermediate structures. In the
next step, such shapes merged with a saddle surface to transition
into a topologically distinct surface with three openings (Fig. 6 A,
Middle). These were similar to three-noids, which are minimal
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72.2 s 74.7 s 99.6 s
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20.2 s

21.2 s

101.2 s

A

Fig. 5. Saddle-shaped surfaces coalesce to form catenoid-like membranes. (A) Coalescence of two saddle-shaped membranes, observed with differential
interference contrast (DIC) microscopy. (B) Time-lapse 3D false-colored images of the intermediate steps of the coalescence process. These images are
obtained by deconvolving z stacks captured using fluorescence microscopy of saddles containing fluorescently labeled long rods. The event is shown from
two orientations, with coordinate axes specified in Top Left. Dextran concentration is 50 mg/mL; nshort = 0.2. The arrows indicate the singularity associated with
the formation of a hole. (Scale bars, 2 μm.)
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Fig. 6. Topologically complex membranes of a different genus. The topology is characterized by the genus g and the number of boundaries (edges) b.
(A) A catenoid-like membrane and its derivatives, which have the topology of a three-noid and a four-noid. (B) Membrane shapes with the topology of a
saddle with a handle, a catenoid with a handle, and a three-noid with a handle. (C and D) Two complex surfaces of a genus of two with b = 2 and 4, respectively.
Dextran concentration is 50 mg/mL; nshort = 0.2. (Scale bars, 2 μm.)

surfaces having saddle-splay curvature in the form of a catenoid
with three openings. The transition from the catenoid-like shape
to the shape with three openings involved nucleation and growth
of a fusion pore away from the catenoid edge (Movie S4).
Subsequent coalescence events generated surfaces of increasing
complexity (Fig. 6 and Movie S5). Besides catenoid-like and
three-noid-like shapes, we also observed membranes with the
topology of four-noids (Fig. 6A). Well-equilibrated samples
showed larger and more complex structures with many handles
(Fig. 6 B–D). The size of the structures and their topological
complexity were limited by the slowing coalescence kinetics.
Eventually, Brownian motion of large assemblages slowed down,
which reduced further coalescence events. To overcome this
limitation, we tilted the sample. Subsequently, intermediate
structures slowly sedimented, accumulating at the bottom. There,
they came in close contact, coalescing further. Such conditions
generated macroscale structures, which resembled sponge phases
of amphiphilic molecules (Fig. 7A and SI Appendix, Fig. S4).
Confocal microscopy revealed the internal structures of such
large-scale assemblages. Regions with quasiperiodicity were found,
wherein three-way open tunnels in each layer rotate by 60◦ with
respect to the consecutive layer (Fig. 7B and Movie S6).

1 2

3 43
2
1

4

B

A

Fig. 7. Colloidal sponge-like phases. (A) Three different 3D false-colored
views of a network-like structure with a genus of 41. (B) Representative
planes within this structure are marked as 1, 2, 3, and 4. Gray-scale images
are 2D cross-sections of the planes. Rod concentration is 2 mg/mL, dextran
concentration is 50 mg/mL, and nshort = 0.2. (Scale bars, 2 μm.)

We characterized the topology of the above-described struc-
tures using the number of edges or boundaries b and the genus g of
the membrane midsurface. The genus of the midsurface is equal to
the number of doughnut holes in that surface or equivalently, the
minimal number of closed cuts that leave the remaining surface
in one piece. Thus, the saddle has one boundary and a genus of
zero (Fig. 3A). The catenoid-like membrane also has a genus of
zero but two boundaries; adding edges to get the analogs of the
three- and four-noid leaves g unchanged but increases b (Fig. 6A).
The membranes in Fig. 6B all have a genus of one, and they have
topologies of a saddle with a handle (Fig. 6 B, Left), a catenoid
with a handle (Fig. 6 B, Center), and a trinoid with a handle
(Fig. 6 B, Right), respectively. Fig. 6 C and D shows structures
with higher genus and more boundaries. The sample spanning
structures are more meaningfully characterized by a genus density
of one hole every 390 μm3, instead of the absolute value of genus.

While genus characterizes the global topology of the self-
assembled shapes, spatial maps of mean and Gaussian curvature
serve as metrics of local topology. All assemblages had negative
Gaussian curvature over large parts of their surface (Fig. 3C
and SI Appendix, Fig. S5). Except for the lowest-order saddles,
all other complex membranes had finite mean curvature whose
spatial variation was connected to the topology (SI Appendix,
Fig. S5). For example, mean curvature varied along the symmetry
axis of the catenoid-like membrane (SI Appendix, Fig. S5D). The
saddle with a handle had opposite mean curvature in the two
tunnels (SI Appendix, Fig. S5G). The more complex assemblages,
such as three- and four-noid, had predominantly negative Gaus-
sian curvature throughout, except for a well-defined region near
the midsection (SI Appendix, Fig. S5 E and F ).

Microscopic Membrane Structure. Next, we investigate how
membrane curvature couples to the orientation of the constituent
rods with respect to the surface normal (45). We imaged catenoid-
like membranes that were sparsely doped with fluorescently
labeled viruses (Fig. 8 C and D and Movie S7). Similar to
flat membranes (29, 30), rods twisted at the exposed edges
of the catenoid-like membranes. In comparison, close to the
catenoid midsection the rods point along the surface normal,
generating a radial arrangement (Fig. 8D). For our analysis, the
catenoid symmetry axis points along the z axis, while the circular
midsection lies in the x–y plane (Fig. 8D). We quantified the
edge-induced twisting by plotting the angular deviation of the
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Fig. 8. Orientation of rods in a catenoid-like membrane. (A) Schematic show-
ing x–y (gray) and y–z (violet) planes. (B) Schematic depicting variables that
characterize rod orientation. (C) Fluorescence images of individual long rods
imaged in the x = 0 plane, with the virus-solvent interface outline shown in
red. (D) Individual long rods imaged at x–y planes corresponding to different z
values, showing a twist in rod orientation. (E) Twist angle ϕ, the angle by which
the rods tilt away from the y–z plane, as a function of the distance from the
edge is shown. L is the length of the long rods. An exponential fit (black line)
to this plot gives a twist penetration depth of 700 nm. (F) Variation of θ, the
absolute value of the angle between the y–z plane projection of rods, r̂yz, and
the surface normal of membrane, n̂, with the distance from midplane (z = 0).
The angle θ is zero for flat membranes, but for catenoid-like membranes, we
find a significant deviation from zero. Dextran concentration is 50 mg/mL, and
nshort = 0.2. (Scale bars, 2 μm.)

rod axis with respect to the y–z plane (Fig. 8B), also known as
the twist angle. Twist angle decayed exponentially from ∼90◦ to
zero with distance from the edge, with a decay constant of 700
nm (Fig. 8E), comparable with the twist penetration depth in
flat membranes (30). An anomalous behavior is seen when rod
orientation in a catenoid-like membrane is observed in the y–z
midplane; the projection of rods deviates up to 25◦ from the local
surface normal (Fig. 8F ). This deviation of the rod axis from the
local surface normal leads to an additional free energy cost, which
might be reduced by the bump that appears in the midsection
of large catenoid-like membranes (SI Appendix, Fig. S6A). Rod
orientation in saddles of order m = 1 is nearly along the local

surface normal everywhere except near the edges (SI Appendix,
Fig. S7).

In principle, short rods could preferentially reside next to the
inner or outer membrane surface or close to the membrane mid-
plane (37). By labeling both rods types, we determined the center
of mass of both short rods and long rods (SI Appendix, Fig. S8).
Such efforts demonstrate that the center of mass of short rods is
preferentially located at the membrane midplane.

Stimuli-Induced Membrane Folding. The phase diagram shows
that the disk to saddle transition occurs with increasing dextran
concentration or equivalently, the osmotic pressure (Fig. 1D).
Instead of dextran, we assembled membranes with poly(ethylene
glycol) (PEG), a polymer whose osmotic pressure exhibits sig-
nificant temperature dependence (46). The saddle to disk tran-
sition could be induced by changing the sample temperature.
We assembled saddle-shaped membranes at room temperature.
Elevating the sample temperature to 60 ◦C in situ decreased the
osmotic pressure of the enveloping polymer and concentration of
the rods within the membrane. In response, the saddle membrane
transformed into a flat disk. The saddle to disk transition was
reversible (Movie S8). On decreasing the temperature, curved
regions nucleated near the edge of the flat membrane, and even-
tually, a saddle formed (Fig. 9A and Movie S9).

Topology influenced the stability of curved surfaces. At 60 ◦C,
most saddle surfaces transformed into flat disk–shaped mem-
branes. In comparison, the catenoid-like membranes showed al-
most no shape change, except for a slight increase in the neck
radius. Increasing the temperature further to ∼ 70 ◦C destabilized
these membranes; they transitioned into disks by a specific kinetic
pathway. In the first step, one of the two exposed edges started
decreasing in radius and finally, closed. Subsequently, the curved
surface transformed into a flat membrane (Fig. 9B). The transition
from the catenoid-like shape to the disk was irreversible.

Estimating Gaussian Curvature Modulus. Stability of saddles
suggested that the Gaussian modulus of two-component mem-
branes is κ̄≈ 1,000 kBT . A simple model explains this finding.
We first note that several independent measurements suggest that
single-component colloidal membranes have a κ̄≈ 200 kBT
(27, 28, 42). This value can be explained by the increase in the
volume available to the depleting polymers when the membrane
assumes a saddle-like negative Gaussian curvature, which leads to a
positive contribution κ̄p to the Gaussian curvature modulus,
κ̄p = (D + d)3nkBT/12, where D is the thickness of the col-
loidal membrane, d is the diameter of the depleting polymer, and
n is the number density of the polymers (27). The membrane
itself contributes a negative contribution κ̄m, which is given by

0 s 63 s 88 s 109 s 169 s 

60∘C 50∘C 40∘C 30∘C 20∘CA

B

Fig. 9. Stimuli-responsive colloidal membranes change geometry and topology. (A) A flat membrane transforms into a twisted saddle or a helicoid upon
decreasing temperature, which increases the strength of the depletion attraction. (B) A catenoid-like shape transforms into a flat membrane after elevating
temperature to 70 ◦C. Time-lapse images show deconvolved z stacks that were 3D rendered in false color. The samples were self-assembled at room
temperature with nshort = 0.23 and 15.6 mg/mL of PEG 35K as depletant dissolved in 175 mM NaCl and 20 mM Tris, pH 8 buffer. (Scale bars, 2 μm.)
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the second moment of the in-plane lateral stress σ of the flat state,
κ̄m =

∫
σz 2dz , where z measures distance across the membrane

thickness, measured from the midplane (47, 48).
For membranes containing a small number fraction α of short

rods of length Ds among long rods of length Dl, we estimate the
second moment of the in-plane stress as
∫

σz 2dz = α

∫ Ds/2

−Ds/2

σsz
2dz + (1− α)

∫ Dl/2

−Dl/2

σlz
2dz , [5]

where σs,l =−nkBT (Ds,l + d)/Ds,l is the compressive stress
due to the osmotic forces of the polymers that arises in a flat
membrane composed of short rods only or long rods only.

Assuming at small volume fraction α, the short rods do not
affect the polymeric contribution κ̄p and that Ds,l � d , we find
that

κ̄= κ̄p + κ̄m =
1

6
nkBTD

2
l d +

α

12
nkBT (D3

l −D3
s ). [6]

The Gaussian curvature modulus κ̄ increases linearly with the
number fraction of short rods at small number fraction because
increasing the number of short rods decreases the magnitude of
the negative contribution κ̄m. For dextran polymers with d = 30
nm, a molecular weight of 500,000 g/mol, and a concentration
of 50 mg/mL, we estimate the Gaussian modulus to be κ̄l ≈
400 kBT for a membrane composed of long rods only and κ̄s ≈
200 kBT for a membrane composed of short rods only. At a short
rod fraction of α= 0.2, the correction is αnkBT (D3

l −D3
s )/

12≈ 1,000 kBT . We need to mention a caveat in order not to
overinterpret our simplified model. Specifically, the validity of
applying this formula to membranes composed of heterogeneous
molecules, such as lipids, has been called into question (49).

Discussion and Conclusions

We described the diverse 3D shapes observed in two-component
miscible colloidal membranes. Increasing the fraction of short rods
destabilized flat disk–like membranes, leading to the assembly
of saddle-shaped Enneper-like surfaces. These intermediate struc-
tures continued coalescing with each other to form topologically
more complex structures. The micrometer-length scale of colloidal
membranes enabled visualization of the multistep coalescence
pathway in real time.

Theoretical analysis suggests that the stability of disk-like mem-
branes is controlled by the Gaussian modulus. Our proposed
model is too crude to quantitatively predict the boundaries of the
disk to saddle transition, but it suggests the following qualitative
explanation. The edge tension favors flat disk–like membranes. At
low volume fraction of short rods, the intrinsic Gaussian curvature
modulus is not high enough to overcome the desire of the edge
tension to keep the membrane flat. Increasing the fraction of short
rods favored the formation of saddle surfaces. In the saddle regime,
the Gaussian modulus is large and positive; thus, saddle-shaped
surfaces decrease the membrane deformation energy, compensat-
ing for the excess edge that is associated with the formation of a
nonflat surface. This strongly suggests that increasing the fraction
of short rods increases the magnitude of the Gaussian modulus. A
simple geometrical argument based on excluded volume explains
how the fraction of short rods controls the Gaussian curvature
modulus. Finally, increasing the fraction of short rods even further
induces lateral phase separation. Thus, the Gaussian curvature
modulus drops abruptly, and one recovers flat disk–shaped phase-
separated membranes. Previous studies have observed different
surfaces with negative Gaussian curvature, namely twisted ribbons

(29, 42). Those studies used a virus, which had significantly lower
edge tension. Extended twisted ribbons have excess edge energy
when compared with the compact structures studied here.

Colloidal membranes and conventional lipid bilayers are de-
scribed by the same continuum energy (26). Thus, besides demon-
strating a robust method for shaping colloidal membranes, our
results also advance the understanding of all membrane-based
materials. The Gaussian modulus is a key physical quantity that
governs phenomena involving membrane curvature generation
and modulation, such as endocytosis and exocytosis, cell differ-
entiation, and cell motility (50–55). Conventional lipid bilayer
vesicles do not permit easy understanding of how the Gaussian
modulus affects their morphology, as the Gauss–Bonnet theorem
requires that the Gaussian curvature energy integrates to a system-
independent constant value (6, 56, 57). Consequently, measure-
ment and control of the Gaussian modulus in lipid bilayers is
challenging (58–60). Open edges of colloidal membranes enabled
our study of how the Gaussian modulus influences the stability of
flat disk–shaped membranes. Our method of tuning the Gaussian
modulus by doping membranes with miscible short rods reveals a
microscopic mechanism that cells could use for curvature genera-
tion and maintenance.

Ranging from simple crystals and liquid crystals to more exotic
polymers, glasses, alloys, and diamond-like structures, colloids can
form analogs of diverse atomic materials (61–64). Colloidal length
scale provides a unique opportunity to visualize the real space
structure and dynamics that are inaccessible in atomic materials.
The structures we observed at the end stages of the coalescence
are reminiscent of finite-sized cubosomes and gyroid-like phases
observed in conventional amphiphilic systems (65–68). The col-
loidal length scale of our system allowed for detailed real-time
imaging of the molecular assembly pathways. For example, we
have observed how two saddle-shaped surfaces come together to
form a topologically distinct catenoid-like structure. Intriguingly,
this coalescence proceeds when two surfaces come together at a
very specific orientation and is accompanied by the formation of
a fusion pore and its subsequent enlargement. A detailed under-
standing of this robust dynamical pathway warrants future studies.

More broadly, many dynamical processes, such as the breakup
of fluid droplets, exhibit shape transformations that are charac-
terized by the appearance of singularities (69, 70). Membrane-
based processes, such as infection of membrane-enveloped viruses,
also exhibit singularities as they undergo fission and fusion trans-
formations. However, the molecular length scale of lipid bilayers
prevents visualizing the dynamics of these singularities. Our ex-
periments at micrometer-length scales reveal that fusion of saddle-
shaped membranes into a catenoid-like shape has an intriguing
singularity, involving the creation of a fusion pore and its growth.

Finally, our work provides a mechanism for topological shaping
of thin elastic membrane-like sheets by controlling their Gaussian
modulus. This complements the usual technique of folding sheets
through mechanical instabilities induced by in-plane differential
swelling/shrinkage or application of external confining forces (20,
21, 71). We foresee that spatial control of the Gaussian modulus
of colloidal membranes would lead to an even richer landscape of
topologically complex surfaces.

Materials and Methods

M13KO7 and M13-wt viruses were grown using the host Escherichia coli strain
ER2738 following standard biological protocols (72). Gel electrophoresis re-
vealed that the purified M13-wt virus had a significant amount of end-to-end
multimers, which prevents defect-free membrane formation. The multimers were
removed using isotropic–nematic phase separation (22). All viruses were sus-
pended in 100 mM NaCl and 20 mM Tris HCl (pH = 8.0) media.
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Viruses were labeled with either DyLight 550 or DyLight 488 (Thermo Fisher
Scientific) amine reactive dye for the purpose of fluorescence imaging. There are
∼3,600 and ∼2,700 labeling sites on M13KO7 and M13-wt rods, respectively.
Ten percent of the sites were labeled for experiments that image the motion and
orientation of individual rods. One percent of the sites were labeled for all other
experiments.

The number density of viruses in a given suspension was measured with
an ultraviolet-visible spectrophotometer (Multiscan GO; Thermo Fisher Scien-
tific). The two kinds of viruses were mixed at the desired stoichiometric ratio,
and dextran (500 kDa molecular weight; Sigma-Aldrich) was added. Coverslips
were coated with a polyacrylamide brush before sample preparation to prevent
membranes from adhering to coverslips. Sample chambers were made from
coated coverslips and cleaned slides, using parafilm as a spacer. The suspension
was injected into the chamber, and the chamber was sealed with optical glue
(Norland).

Samples were observed using an inverted wide-field microscope (Olympus
IX83) equipped with a 100 × oil immersion phase and differential interference
contrast (DIC) objectives (UPLanFLN-100X/1.30 Oil Ph3, UPLanFLN-100X/1.30
Oil), motorized z drive, and CCD (charge-coupled device) and EMCCD (electron
multiplying charge-coupled device) cameras (Photometrics CoolSNAP HQ2 and
Andor iXon Ultra 888). A Peltier stage (PE120; Linkam) was used to vary sample
temperature. Z stacks were captured using this microscope in fluorescence mode,
followed by deconvolution to represent the structures in 3D qualitatively. A
confocal microscope (Zeiss LSM 880 Airyscan equipped with a Plan Apo 63× 1.4

numerical aperture oil objective) was used for capturing z stacks for quantitative
analysis.

Data Availability. All study data are included in the article and/or supporting
information.
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