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Time-Domain Green’s Function for
an Infinite Sequentially Excited
Periodic Line Array of Dipoles

Leopold B. FelsenLife Fellow, IEEEand Filippo CapolinpMember, IEEE

Abstract—Green's functions based on truncated periodicity domain (TD) [1]-[3] . We have begun a systematic investiga-
play an important role in the efficient analysis of radiation from,  tion of the TD behavior of dipole-excited Green’s functions that
or scattering by, phased-array antennas, frequency selective ¢ ralevant for the characterization of truncated planar periodic

surfaces and related applications. Such Green'’s functions exploit . . .
the equivalence between summation over the contributions from 2rfays. with emphasis on the TD Floquet waves (FW) in the

individual elements in an array and their collective treatment Propagatingandevanescent parameter regimes. Such waves on
via Poisson summation in terms of an infinite series of Floquet semi-infinite and finite rectangular arrays of dipoles have been
waves (FW). While numerous explorations have been carried and are being studied in the FD [4]-[7] and furnish the models
out in the frequency domain (FD), much less has been done for ¢, the explorationsin the TD. The truncated array Green’s func-
transient excitation. In order to gain understanding of the FW . - o L .
critical parameters and phenomenalogies governing time-domain tions lead to efficient parameter!zatlon of realistic arrays .Wlt.h
(TD) periodicity, we consider the simple canonical problem of Slot elements, as demonstrated in [8] and [9]. Our initial aim is
radiation from an infinite periodic line array of sequentially to understand the dispersive TD wave physics on simple canon-
pulsed axial dipoles. This problem can be solved in closed form jcal geometries, utilizing various methods that synthesize the
and also by a variety of alternative representations, which include solution from different perspectives. This paper deals with the

inversion from the FD, spectral decomposition into TD plane first h fi fi infinit iodi f axial dinol
waves, the complex space—time analytic signal formulation, and Irstsuch configuration, aninhinité periodic array or axial dipole

the Cagniard—de Hoop method. These alternatives, some of which fadiators arranged along theaxis of a rectangular or cylin-
apply traditionally only for nondispersive TD events, are shown drical coordinate system (Fig. 1), excited impulsively with in-
to still work here because of the special character of the FW terelement delay. The rules learned from this canonical problem
dispersion. Particular attention is given to evanescent TD-FW's i impact subsequent studies of phased line dipole array trun-
and their transition through cutoff. Asymptotic techniques grant . . -
insight into the TD-FW behavior by identifying their instan- Cfat'ons and of rectangular m_‘mclatte_’d arrays with d'ﬁerem l(?n'
taneous frequencies, wavenumbers, and other physics-basedditudinal and transverse periodicities as well as different in-
parameterizations. A basic question concerns the definition of terelement phasings. The prototype problem is simple enough to
what constitutes a physically “observable” (causal, etc.) TD-FW. admit of closed form exact solutions, which can be obtained via
The proposed answer is based on consistency among models;jiernative routes as outlined in the Abstract. The phenomenolo-
arrived at by alternative routes. . . . . .
gies associated with the driven dipole arrays are also relevant for
~Index Terms—Periodic arrays, spectral analysis and synthesis, obliqueplane wave scatteringy corresponding arrays of short
time-domain Green’s functions. wire elements, with the interelement phasing (time delay) de-
termined by the obliquity, with respect to the array plane, of the
l. INTRODUCTION incident field.
. . The problem to be studied is defined in Section Il and is
PER.IODIC arrays Qf radiating or scattering elements pla«%(xpressed there in terms of the FD and TD radiation from the
an important role in phased-qrra_y antennas, frequency ividual dipole elements (local formulation). Alternatively
lective surfaces, and related apphlcatlons. Performance'of sg)g total wavefields can be expressed in terms of the period-
structures has been well explored in the frequency domain (F t

but onl v h h studies b rended to the ti -induced Floquet waves (global formulation). For better
ut only recently have such studies been extended to the 1l erstanding of the basic wave physics, we retain simulta-

neous awareness of the local-global alternatives, which are
quantified by the Poisson summation formulas in Section lll. In
Manuscript received February 5, 1999; revised March 17, 2000. The workSection 1V, in the FD, we demonstrate the equivalence between
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p=-/x* +3,7 P P=(p,2) where a caretdenotes a time-dependent function. Boldface
w7 symbols define vector quantities. It will be convenient to
introduce the nondimensional parameter

RN,y
_ zZ = cy. = ¢/v?) (2)
sl > n V= Crvz
z'=nd
n-th element excitation. which plays a fundamental role in the analysis. Herge,=
Frequency domain (exp(jo?)): exp(-jknnd) 1/4%") denotes the interelement phase gradientfitlis the

Time domain: 5(—nnd/c) impressed phase speed along the array, which can be greater or

maller than the ambient propagation speed
Fig. 1. Infinite periodic line array of electric current dipoles. Physica? propag P

configuration, coordinates, and definitiong: = interelement spacing; The phased array FD and TD dipole Curre‘ﬁ(?’) andJ(t),
k = w/c = free space wavenumber;= ambient wavespeedn = wy. = respectively, are then related via (1) and are given by
interelement phasingy. = n/c = 1/0v® = interelement “slowness”

(normalized wavenumben{?) = ¢/n = phase speed along

- > ] P S

n=—oo

phenomenologies associated with these phased T&Ve ()

objects are investigated in detail and tied to physical mode{ere/ is the ambient wavenumber. In thedependent ele-
obeying causality, realvaluedness, etc., in fixed as well @fent current amplitudes multiplying the delta function in (3),
moving coordinate frames. The TD-Fydre found to reveal a the FD portionknd accounts for an assumed (linear) phase dif-
curiosity: though causal, they are complex. Pairing (summinfrence between adjacent elements. The TD portion identifies

the (+¢) and (~¢) complexTD-FW's, however, generateseal  sequentially pulsed dipole elements, with the element at
wavefield. To explain this behavior, we have utilized in Seg;q turned on at time,, = nnd/c.

tion V-B the instantaneous Fy¥requencies and spatial spectral

Wave_numberskq, which are related via the FyvVdispersion 1. POISSONSUMMATION

relationk., = wn/c+ (2rg/d), ¢ = 0, £1, £2, ... where ) S

n/c and d are the interelement phase gradient and spacing,The Poisson sumformulalls giveninits most elementary form
o0 ! g o0 K /

respectively. For different perspectives, in Sections V-C a D = —co ‘5(_2 —nd)=d Zqz__?o_exp(—_ﬂqu /d) [15,

V-D, we then treat the problem via the complex time, positiveP- 117] and it becomes for the infinite series of phased-

frequency onlyanalytic signalformulation [10]-[12] and via dexed FD and TD elements in (3)

a generalization of the (nondispersive) Cagniard—de Hoop oo _iknnd

method [13], [14], respectively. For an individual TD-EW Z { ¢ }5(2’ — nd)

each of the alternatives in Sections V-A-V-D addresses pe- Wi, L6 —mmd/c)

riodic phased-array phenomenology from a distinct vantage 1 &= o—ik=q?

point. Each has its own nonphysical anomaly which can, how- =3 Z { C_jaqué(t —— (4)
ever, be removed viaHg), (—¢) pairing to produce the same g==00

unique causal physically observable wavefield. We believe t\r)v%e
special role of the {q), (—g) FW pair to be a new finding

with relevance also for subsequent studies of truncated line and 27q

planar phased arrays. Conclusions are presented in Section (W) = kntay,  ag=—7, ¢=0,£1, £2,---. (5)

rek.,(w) represents a Floquet-type dispersion relation

Thus, in the FD, Poisson summation converts the effect of the
[l. STATEMENT OF THE PROBLEM infinite periodic array ofindividual phasedr-indexeddipole

. . . radiators collectively into an infinite superposition of linearl
The geometry of the linear array of dipoles oriented alo y Perp y

I ) ; ) hly ph -index ivaleritn rcedistribution
the z direction and excited by transient currents in free-space ] oothly phasegrindexed equivaleritne sourcedistributions

- ; L : ; a?ong the axis of the dipole array. The equivalent smoothly
shown In F'.g' 1, with definition of b.Oth Cartesian and qylm'phased-line sources furnish the initial conditions that charac-
drical coordinate systems. The period of the array.i§his

. . LY terize propagating and evanescent Floquet-type wave behavior,
simple array geometry generates-airected electric field, which we shall refer to as PFW and EFW, respectively. In the

i . : %D, the n-indexed sequentially pulsed dipoles are converted
over, thek, field component is simply related to tiedirected collectively into smoothly phaseg;indexed impulsive source

magnetic scqlar potential, which shall be use_d t_hroughout.distributions that travel with the phase sp B o/n S0
The FD fxp(jwt) dependence] and TD potential fields are re; . : p . y

. . that their location at’ corresponds to the timg, = #nz'/c.
lated by the Fourier transform pair

This suggests referencing time to a moving coordinate frame
viar(z) =t —nz/c.

Alr, w) = / Alr, t)e 7= dt,

ade o)

IV. FLOQUET WAVES: FREQUENCY DOMAIN

1 /°° To obtain for the potential fieldst, (r, w) radiated by the
27

A _ - jwt
Alr, 1) = Alr, W)™ dw (1) linearly phased dipole array element currents an equivalent sum

— o0
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of FW potentialsA} ¥ (r, w) radiated by the smoothly phased
FW-modulated line sources, we multiply the FD portion of (4)
by the FD element Green'’s function

4 e~ IkR(z")
(r, 7, w) = 4rR(2") .,
R(') =/ + (2 = #)? (6) FD-EFW P,
i L
and perform the integratior}f_C><> dz' to generated, = evanescent |\ ;
A(r, nd, w)exp(—jknnd), with + = (p, z), on the left decay \
side of (4). On the right side of (4), this yields the collective z

FW-phased line source Green’s functions
Fig. 2. FDgth Floguet-type equivalent continuous line source distributions.

— 1 [ g—ikR(Z) b o (@) |k=q| < |K]. (B) |k2q| > |k|. The FD FW, rays are parallel, with direction
AN, w) = / e dy determined byk., = k sin 3,. The ray to the observer originateszt , for
d J_oo 47R(2) positive and negative frequencies. The radiation afgley = £1, £2,
e —jkzqz 9 [see (10)] is different, while, is the same for positive and negative frequencies.
=~Zid Hé )(kpqp) (7)  In(b), when|k.,| > |k|, the field is evanescent along thedirection.
]

The closed-form result in (7) follows from a known Fourieglongp. The condition|k.,| = |k|, i.e., k,, = 0, is the cutoff
transform [16, pp. 493]. The radial F)Mvavenumberk,, is condition for thegth FW where the propagating-to-evanescent

given in terms of the-domain wavenumbek.,, by transition occurs [4], [5] for botky20 [cf. (29)]. Owing to the

exponential attenuation of EF\\along p, the EFW portion of
kpg(w) = \/k? — K2, E=wl/e. (8) Y.< .. A;" converges rapidly away from the array axis and

a few terms may suffice for an adequate approximation of the
The square-root function in (8) is defined so thatk,, < 0on total radiated field.
the top Riemann sheet, consistent with the radiation condition
at p = oo. FurthermoreRek,, > 0 or < 0 forw > 0 or V. FLOQUET WAVES: TIME DOMAIN
< 0, respectively, in order to satisfy the radiation condition foA
positive and negative real frequencies (see Appendix B for moré
details). Since the FDr series has summands

In (7), Floquet waves witk--domain propagation constantsd. = A(r, nd, w)exp(—jwnnd/c) composed of two

k.| < |k| characterize radially propagating FW’s (PFW)w-dependent functions [see text after (6)], the m(r, 1)
while those with|k.,| > |k| characterize radially evanes-involves a convolution. First, from (6) and (1), one finds that
cent FW's (EFW). This follows from the properties of thed(r, 2/, t) = &(t — R(#')/c)/(4mR(2')). When this function
Hankel function in (7). Using the asymptotic approximatioff time-convolved Wlth the TD portion on the left side of
H(Q)( kpgp) ~ /2] (ki pqp) exp(j(r /4 — kpqp)) leads to 4), ie, [T dtA(r, 2t — t)é(t: — nnd/c), followed

by f_oo z’, one obtains the fieldd,,(r, t) excited by the

FW e ”/4\/_ —i(kpapthieg?) impulsiventh dipole current in (3)
AV (r, w) ~ T Fpahizq 9)

NGO A, py— = mdfe— Rind) )
The phase term can be written @gy(—jkL " - ), with r = o 4m R(nd)

pi, + 2, denoting the position VeCtOpr%?dlz denotlng unit which represents a spherical impulsive wavefront radiated by
vectors along andz, respectively, an&, ™ = ki, + k:42.  the dipole atz’ = nd, with R(2’) taken from (6). The same

denoting the total F\Y/ propagation vector. The propagatingperations applied to the right-hand side of (4) or direct FD
characteristics of the PFW and EFW for positive and negati®/ersion of (7) yields the TD-FW

frequencies are schematized in Fig. 2. By phase matching along o
2, each PFW contributes at the observation peint (p, 2)  irw(, 4 _ L <t _nZ R(Z')> 4.

Direct Inversion from the Frequency Domain

11)

a ray asymptotic field originating at a pois} on the z-axis. 1 4rd o R(Z) ¢ ¢
The rays emanating from the poigf lie on the ray cone with o o (12)
semi-angle The argument of the delta function in (12) identifies the integral
as a Radon slant-stack projection transform [17] (normalized to
By = cos™ (k.q /k) (10) the unit cell widthd). The integrand in (12) contributes only for

those real’-values in Appendix A which satisfy, in the moving
which definition applies to positive or negative frequencies. Hgordinate frame

then follows from (5) and (10), as shown in Fig. 2(a), thatfet , ,

0,w > 0 andw < 0 give rise to two different F\y propagation 4+ nz=2) R _
angles. Wherk,, approachestk, the cone anglg, tends to ¢ ¢

zero orr, respectively. Beyond that limit, wheh.,| > |k|, the The radiating case is described|py < 1, the nonradiating case
cone angle becomes complex and the field becomes evanesbgry| > 1 and the transition between the two gy = 1. The

, T=t—nz/c (13)
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TD-EFW
Wavefront

zZ, C z'=tem 2z (D) EXG z'=tem
z,(t)=2,(¢,) <

Fig. 3. TDgth Floquet-type equivalent continuous line source distribution. (a), (b) (Radidting) 1. (c) (Nonradiating)s| > 1. (a) At turn-ont = #4(p, z),

all TD-FW, arrive from a direction, independent of and the current impulse is located=At= ¢,c/. The first signal arrival at the observer originates at the
earlier pointz/. (b) Fort > t, z{(t), andz}(t) are the two real (propagating) solutions of the TD-FW dispersion equation (13). Two distinct contributions arrive
at the observer simultaneously from #péndependent directions, () and32(¢). (c) One real solution of (13)1 () whenn > 0 or z45(¢) whenn < 0 for all ¢.

Field at the observer at timeoriginates from the point; (t) whenn > 0.

“nonradiating” case is characterized by the absence of a watkee resultin (16) follows. First, in the moving coordinate frame,
front (i.e., turn-on time) and is discussed further in Sections V-8ach AW = const. sincer = const. and#(t) = const.
and V-B.We now explore the various solutions that can be assbere. However, for a stationary observerrateach of the =
ciated with the FW indeXg|. 1 ori = 2 PFW contributions in (16) is shown in Fig. 3(a)
1) Radiating Case}n| < 1: Fundamental solutionfFor the and (b). Although the = 1 andi = 2 TD-FW, waves are
radiating casén| < 1, with 7 > 0, (13) has the two solutions distinct, we treat them together in Fig. 3(a) and (b) to contrast
#(t) andz;(t) (see Appendix A) their individual behavior. At the turn-on time= 7y, when the
wavefront reacheg®’ in Fig. 3(a), the current impulse is located
¢ . <T77 F(=1)iy /2 - 73) . i=1,2 aty =toe/n = tev'?, where the wavefront originates. At the
1=mn (14) earlier timet’ = ¢ — R(z})/c, the current impulse was located
on the top sheet of the compleplane defined bjteR(>') > 0 2t the pointz, "j‘”dR(zé)/C is the time required for the field
(Fig. 6). In (14) Iau_nched fromz, to reach the observer. '!'he_ angfe_ is herg
defined aswos 3y = (2 — 2(,)/R(z{) and coincides with that in
o= \/1_—772p/c =ty —nz/c (15) (10)forg=0(i.e.,a = 0). Thisimplies thatatthe turn-ontime
to pertaining to the fixed observation poift, the wavefront
where (13) is used for the second equality in (15). Herarrives from a direction coincident with that of the FD-FW wave
Rey/1—n? > 0andSm/1 —n? < 0; this is in accord with vectork§ " in the text after (9).
(8) sincey/k2(1 —n?) = k,4lq=0- Note thatz(t) doesnot  Attimesr > 7o, the wavefront moves beyon# to the lo-
depend ong; moreover,z;(t) — z = const. in the moving cation shown in Fig. 3(b), which is tagged on theaxis by
coordinate frame = const. The two real solutions of (13) for » = ¢c/n = t%. The observer now receives two distinct
7 > 79 (i.€.,t > to) coincide atr = 7o (i.e.,t = tp), which contributions that arrive simultaneously but are launched from
represents the causal turn-on time= nz/c + /1 —n*p/c  pointsz.(t),i = 1, 2 attimest, = t — R(z.())/c, respectively,
with launch pointz, = 2(t9) = #5(to), as in Fig. 3(a); in accord with the moving current impulse on the right side of

Zi(t) =2 —

70 = /1 —n?p/cis the causal turn-on time when the wave4). The two angles; (t) depicted in Fig. 3(b) defined as
front arrives at the observer. In the moving coordinate system,
7o represents the wavefront arrival delay that the moving cos 3; = (2 — 2L(£))/ R(Z/(¢)), i=1,2 (17)

observer encounters with respect to the exciting impulse

current located at’ = tc/n [Fig. 3(a) and (b)]. The point are given explicitly via substitution from (13) and (14) by
z, coincides withzj in Fig. 2 (not shown), from which the

q = 0 FD-FW is launched toward the observer. For- g, (_1)i sin? By /1 _ (7’_0)2 4 cos fo (E)g
these solutions separate according to (14) and move toward . Bit) = T T

21 (t) — 4oo and z5(t) — —oo Fig. 3(b). Forr < 7, i.e., sin? fo + cos? fo (T_0>2

t < to, the two solutions are conjugate complex and do not lie (18)

on the mtegratl_on path; thus the |r_1tegral |n_(12_) vanishes f\(/)vrherei — 1,2andfy = cos— (). For theq = 0 mode

T < 79 (causality). The twacausalfield contributions corre- (v, = 0), APFW — APEW  APEW i 16) agrees exactly with
sponding toz, (#) and z(#) are determined by recalling thatthé real fiel?i radiatec(iJ’l; an ir‘?f 2uIsiveI excited smooth infinite
8[f(2')] = 8(x — )\df /d='|* when f(z/) = 0. Substituting yanimp y

; e ? line source with axial phasing specified hyc [16, pp. 495].
for B(z(t)) from (13) and (14) and simplifying, one_obtalns]-he result in (16) represents the most elementary form of the
what we shall refer to as the causahdamental solutiorfior

N gth TD Floguet wave parameterized by its point of emergence
the g, i) indexed TD-FW, Zl(t), i = 1, 2, onthe array. Although obtained by conventional
. o JagZ (1) Fourier inversion from the FD, fog| > 0 (a, # 0), the re-
AV )= ———=U(r—m), =12 (16) sultin (16)is complex. This behavior can be attributed to the
dmdy/7= =7 fact that the FD-FWA!™Y (r, w) in (7) does not satisfy the rela-
wherer = (p, 2), andU(r—7) = U(t—to), with U(r) = 1or tion A;W(r, —w) = [A;V(r, w)]* (* denotes complex conju-
0if 7 > 0 or 7 < 0, respectively. The physical interpretation ofjate) which would guarantee a real TD functié)f]w(r, t) (see
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Appendix B). Furthermore, we note that also the instantaneous Observable .P_ Observable
PFW, ; frequenciesy, ;(t), defined by(d/dt)[—a,2i(t)], are =2 . %N] ey
not such that the complex conjugate relat@-w) = Q*(w) . A g/ !

is satisfied. Details are discussed in Section V-B, which is de- o L
voted to the asymptotic evaluation of the Fourier inversion in-
tegral in (1). To obtain a physical (i.e., real causal) field from
(16), we take

( /( )) Fig. 4. Physical TD-FW observables synthesized by ) and (q) pairing
ADFW cos{ v, 22 (¢ (radiating casén| < 1). Each arrow also represents the group velocity vector
§R6Aq,i ("'a t) = % U(T - TO) (19) vf‘j}z ofthe pulsed g, i) wavefield, which arrives from differentindependent
drdy/T% — 7§ directions3;(t) for i = 1 andi = 2, respectively.

with ¢ = 1, 2. The fundamentalsolution in (16), with (19),
can be used to synthesize various combination$0f" fields
which all contribute at thesameinstantt to the field atr =
(p, ). Note that this solution is the same for{) and (¢)
sincea_, = —ay.

Combining: = 1 and¢ = 2. This gives

in general to wavefields with complex spectra, the above desig-
nation of (23) or (45) as the observable field is persuasive. The
asymptotic instantaneous wavenumbers and frequencies, which
parameterize thfaundamentaﬁiﬂw wavefield in (16) are iden-
tified in Section V-B (for instantaneous wavenumber and fre-
quency extraction by TD wave processing, see [18]).

ReANTW = ReATTW 4 ReATEW. (20) 2) Nonradiating Caseln| > 1: For the nonradiating case

’ ’ 7] > 1 we have from (15) that/1 — 72 = —j/n% — 1 and

Combining(+¢) and(—g). Adding the ¢-g) and (~q) contribu-  thusr, = —j|ry|. Now, as shown in Appendix A, (13) has only
tions fori =1 or 2 from (16)directly yields thereal field a single real solutior/(t), which is valid forr > 0 andr < 0
provided that = 1 for » > 0 and: = 2 for n < 0. Thus, the

A1gPFW _ IPFW | APFW APEW
A = ALy F AL = 2Red (21)  EFw solution corresponding to (16) is
with ¢ = 1, 2. This result implies that{¢) and (-¢) pairing re- R =i Z(t) 1 >0
.. . ) EFW _ P 7
stores the positive—negative frequency relation obeyecbiy A () = PRI R Rk =99 <0
; : . L L 4drwd\/7% + | 70| v 1M
ventionalFourier synthesis, thereby assigning a speatigkical (24)

significanceto the -g), (—¢g) sumof complex TD-FW, ; (s€€ oy gl 7. This evanescent FW field exists in all of space at all

Fig. 4) foreither: = 1 orz = 2. To the best of our knowledge, {mes and there is no wavefront [see Fig. 3(c)]. The resultin (24)

this property has not been observed previously. is complex. To obtain the physical (i.e., real) field from (24),
Combining(+g) and¢ = 1, 2: the observable TD-FW o take theReAEFW — cos(ag 2 (t)) /[And(r? + 7o 2)1/7],

Since the = 1, 2 superposition is independent of the sigyof |, nich is valid foqr both ¢-¢) and Z(_q)_ Adding the ¢-¢) and

implementing the-{¢q), (—¢) superposition in addition merely (—q) contributionsdirectly from (24) yields aeal field
doubles the result in (20), i.e.,

R R R R AldlEFW — AEFVV+A§FVV _ 2§R6AEFW7 |q| > 0. (25)
§RCA|(1|PFVV _ §RC(A£FVV + AEEVV) _ 2§RCA£FVV. (22) q q q
This result implies that{¢) and (~¢) pairing restores the
The same result is obtained when adding#he 1 andi = 2 positive—negative frequency relation obeyed by the conven-
contributions in (21), using (19). In summate Al = tional Fourier synthesis not only for the radiating case (see
AlIPEW ATTW 4 APEW = ATEW ALV it Appendix B) but also for the evanescent case. Both the radiating
, , and evanescent regimes are accommodated together by the
AlIPFW cos(ayz1 (1)) + cos(ay5(t)) U(r — ). (23) analytic signal formulation in Section V-C.
2rd\/7% — 7§ 3) Moving Particle Analogy:The results in (20) and (24)
dPFW  PEW . ADFW have an interesting physical interpretation based on wavefield
The fact that thé+q), (—g) paired4,,, ~ = = A, "™ + A7 ™ golutions generated by a moving particle. For the FW with
isrealis demonstrate_ﬂpriori i_n Appendix B._ Ther? itis shown ¢ = 0, both the radiating and nonradiating wavefields in (20)
that FD(+¢), (—¢) pairing satisfies the relation; ™ (r, ~w)+ and (24) are identical with the fields produced by a static
ALY (r, —w) = [A(};W(Tv W)TAEZV(Tv w)]*, which guarantees point charge moving with speed > ¢/,/&, andv < c//e,
areal TD functionA} "™ + APFW, respectively, inside a nondispersive dielectric medium with
We regardflﬁ':FW as theobservable fieldassociated with relative permittivitye,. provided that is replaced byzip) and
the |g[th TD-FW at the locationr = (p, z) at the instant. It the normalization factot /d is included [16, pp. 495]. The
is synthesized by the four{g), ¢ = 1, 2, fundamental contri- parameter regimes > ¢/,/¢,. andv < ¢/,/¢, correspond to
butions, all of which arrivesimultaneouslat the stationary ob- supersonic and subsonic motion, respectively, with respect to
server. This observable field turns out to be consistent with ttiee ambient medium. The former leads to a causal progressive
one derived in (45) via the analytic signal formulation which rezonical wavefront disturbance perpendicular to rays with
stricts the (real) frequencies to> 0 only, with time extended Wavevectorkgw, which defines the ray cong, in (10); the
into the complex domain. As shown in (45), the result in (22)atter yields a quasi-static field which occupies all of space
(23) is theonly onethat agrees with the causal field extractedt all times, as schematized in Fig. 3(c). In the FW analog,
via analytic signals. Since the analytic signal algorithm appli¢élse supersonic or subsonic speeds in vacuum are those of the
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coordinate frame moving with the periodicity-induced phase 2
speedvip) = ¢/n. Forg # 0, the moving source carries
with it a phase given by the numerators in (16) and (24) for
the supersonic and subsonic cases, respectively. This phase
produces the dynamic modulations associated with the moving
center along the-axis (-(z) = t — nz/c), which appears in

the TD observables in (23) and in (25).

B. Asymptotics

fpi = ©g;/2n (GHz)
o
n

1) Local Frequencies and Wavenumbewsdditional infor-
mation about thed!W(r, ¢) behavior can be extracted from -2
the high-frequency asymptotic evaluation of thg" (r, ¢) in-
version integral in (1), using the asymptotic approximation (9)
for the FW in order to extract the instantaneous frequency apg 5 | ocal frequencies of oscillatiofy, ; = w,.:/(27) of the TD-FW's

wavenumber dependence versusr = t—nz/e. Atturn-onr = 7, (t = t,), f,,; — oo forallq. Thef,. .
o are real in the causal domain> 7, increase with mode indey decrease with
N LN time 7 and approach the-dependent cutoff frequency in (29) when— oo.
W
Aq ("'a t) ~ / F(w)e ) gy (26) Only f,, ; with positiveq are shown; the-{¢) values are obtained bf.,,,; =
o .

_fqvi-

whereF(w) = exp(—jn/4)(8nd)~*\/2/(nk,.p) accounts for

the slowly varying amplitude terms in the integrand and tgfinite at _the turn-on time =70 and decrea:?‘es for > 7o.
phase is Frequencies for PF\Wwith negativeq are obtained from (28)

by the relationv, ; = —w_, ;. The asymmetry between pos-
z/}(w) = ko2 + kpgp — wit (27) itive and negative frequencies is due to the interelement phase
gradientr/c # 0. In fact,n = 0in (28) leads tav, 1 = —wy 2
with k.,(w) andk,,(w) given in (5) and (8), respectively. Theand thus to symmetric frequency constituents. This was the case
dominant contributions to the integral in the high-frequenayeated in [2] and [3]. It is seen that fgr> 0, FW withi = 1
range arise from the stationary (saddle) poinf=of 1(«w), de- are more densely packed than those with 2 (vice versa for
fined by (di/dw)|.., = 0. Forq = 0, the FW is nondispersive 5, < 0). Accordingly, a band-limited pulsed signal will excite a
and is therefore not reduceable by saddle-point approximati@iiger number of radiating PFY\, modes than PF\V» modes
since dz/)/dw is then w independent. In the radiating cas&vheny > 0, but vice versa when < 0. If 5 increases in the
(Inl < 1), for g # 0, the real solutions yield (see Appendix C) ranger < 1, (1 —7?) decreases [see (15)] and, thus, from (28),

; the frequency interval betweenindexedi = 2 positive fre-
(r, t) = Qg€ + (=1)'7 quencies increases, while those wita 1 do not change signif-
w(Ll T, 1 2 U B D) ’ . . ..
-n T2 — 7§ icantly. Near the transitiopy| = 1 between the radiating and the

i=1,27>m9 (28) nonradiating cases, we ha(e— 7*) — 0 and, thus|w,, 1(¢)|

Or |wq, 2(t)] — oo for everyg andt for n — —1orn — 1, re-
with 7 ando defined in (13) and (15), respectively. The samgpectively. However, these are trends only since the asymptotics
expression can also be derived independently from the time gigits whenk,,qp — 0. For the nonradiating casg| > 1 every
pendent phase in (16) by performing the operatign(t) = TD-EFW is characterized by only one contribution in (24), cor-
(d/dt)[—aqz](t)]. The two solutions in (28) represelotal in-  responding to the single real solution (@k)/dw)l.., = 0 (see
stantaneousfrequenmes of oscillation of the TD PEWat a Appendix C).
given pointr and a given instarit Thew,, ; are realinthe causal  The instantaneous saddle point frequencigs(t) charac-
domainT > 7, they increase with mode indgxbut decrease terize corresponding instantaneous wavenumbers pertaining to
with time ¢ and approach their cutoff frequency wher- oo the observer located atat timet. For specified-, one obtains

_ cutoff —_ Oé,IC g — Wy 4 t Wy, 4
Wy, ,(t OO) w —(_1)z — 77, 4 1, 2 (29) kq,i(t) — 'I,C( )’ kzq77‘,(t) =7 'I,C( ) + ay (30)
The cutoff frequenciesi (= 1, 2), which satisfy the cutoff con g i(8) = K2 ,(£) — /%‘fq,i(t) _ ) agp (31)

dition |k.,| = |k| [see (10)], are independent of the location of
the observer.

- 2 _ 2
/T 74

Toillustrate the behavior of the local instantaneous oscillati(WPere the radial Wavenum.bE);,m(t) is calculated using (53).
frequencies in (28), we present a specific example. Fig. 5 sho om (10), the corresponding local PFW propagatlt_)n angles de-
a plot of the frequencief, ; = w, ;/(27) forg = 1, ...8 and noted for specified by 3, 1(t) and 3, (t), respectively, be-
¢ = 1, 2 in the range—2, +2) GHz versus the movmg—centercOme
time reference =t — nz/c. The array spacing i$ = 1 m and c08 By i(t) = kug.i(t) /g, i() i=1,2 (32)
the observer is located at the radial distapce 1 m from the ' '
array. The pointing anglg, = 60° corresponds tey = 1/2. whichimplies via (28) that, /w, ;(t) and, therefore, the angles
One observes that the frequency of each RRW= 1, 2) is 3, ,(t) = /(t) do not depend on the FW index Using the
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ray cone angled, = cos~*(n) in (10), (32) becomes equal toThus, all instantaneouégf}’(r, t) fields propagate toward the
theexactexpression in (18), which is defined directly in the TDobserver along;(¢) with group velocityc. For schematization
Thus, the asymptotic result obtained from the FD inversion turn§ the (space—time)-(wavenumber—frequency) interelations via

out to be exact. space—time rays and dispersion surfaces (see [19]).
The asymptotic evaluation of tligh TD-FW integral in (26) o _
is carried out via the formula [16, pp. 382] C. Analytic Signal Formulation
X Inversion from the FD to the TD via the conventional Fourier
AFW e ¥ (@, (1) transform pair in (1) often poses delicate problems because of
AFW(r £) ~ Z Flw,, ;) U(r — 19). :
q vt j(d2/dw2)z/3|wq1i the different roles played by the > 0 andw < 0 frequency

ranges. Such problems may be alleviated with analytic trans-

(33) forms which deal only wi iti i
I - ‘ _ , y with real positive frequencies> 0 by
SquSt't;'t'[‘g the vaIu;as 20@/’(”(1:1“)) brai aqz(t) and o tending the transient field into the complex TD. The analytic
(d*/dw?) i, . = —pag/(ck,,, (1)) we obtain transform relations for a real space—time functigr, ¢) are
) (see [20], for example)
AW )~ ST AP (¢ 34 00 .
q ("'a ) ; q,1 ("'a ) ( ) ‘/4(,r7 UJ) — / ‘4(,,_7 t)@*]wt dt (36)

. L APwW . . . . + 1 [ e

inwhich A7™Y (r, t) is the same as in (16). The unit step function Alr, t) == / Alr, )t dw, Imt >0 (37)
U(r—10) = U(t—to) in the expressions fodl W (r, ) occurs T Jo

because the saddle point frequencigs; are real forr > 7. where the"™ symbol identifies the analytic continuation to com-

Forr < 7o, thew,,; are complex: do not I|e_ on the integratio lex time. As defined in (37)A(r, ¢) is analytic in the upper
path and therefore do not contribute dominantly to the sad 81f of the complex-plane, with its limit on the real-time axis
point approximation. Because the asymptotic and exact res e by '

agree, all interpretations relating to (16)—(23) apply as well. The
fact thatall TD-FW propagate simultaneously toward the ob- + g -
server is in accord with the instantaneous wavenumbers in (31). Alr, t) = Alr, £) — JH{A(r, 1)}, treal  (38)
The asymptotic frequencies;,i(t) are such thafk.,,:(t)] < whereH stands for the Hilbert transform
|kq,+(t)| whence, after turn-om > 7o, k,q, ;(t) in (31) is real. -
At the turn-on timer = 7y, we have|k., (to)] = anrfl H{A(t)) = P/ A(t') dt’, treal  (39)
|kpq,i(to)| = 00. FOrT — oo we havew, i(t — oo) = wi® oo Tt =)
[see (29)]; thus the wavenumbeéis, ;(t — oo)| = |k, i(t — ] ] o ] ] .
o0)|, With |k, i(t — o0)| = 0, as in the text after (10). The with P denoting principal value integration. The real fields,
solution in (34) can also be obtained byeactinverse Fourier therefore, obtained by taking
transform for any; = 0, +1, 2, ... (see [19]). R +

In the nonradiating case, the solution(@f)/dw)|.,, = 0 is A(r, t) = ReA(r, t),  treal (40)
given byw, ; whenyn > 0 and byw, » wheny < 0, for all times
—o0 < T < o0, as shown in Appendix C. The saddle-poin
evaluation of (26) for theth TD-FW is carried out via the ex-

il'he results in (38)—(40) imply that the analytic (complex) TD
can be accessdlirectly from the real TD through the definition

pression in (33), with the summation ah@function omitted + 00 A(T #)

because, ;(t) is now real for all-oco < 7 < oo, subject to Alr, t) = j/ (t — 7 dt’,  Smt>0 (41)
the conditon{ = 1,7 > 0)and ¢ = 2, n < 0). Substi- e

tuting the vaIues/S(wqji(t)) = g,z (t) and(dQ/de)z/ﬂww = which avoids the FD entirely. For both formulations [in (37)
—Pag/(CQkiq,i(t)) we obtain forjlgw(r’ t) the same value as With (36) and in (41), respectively], the real-time limit is recov-
in (24). ered via (40).

2) Group Velocity: The group velocity, which specifies The Fw expansion forj{l is given by Z(T, H =
the direction and propagation speed of theergy fluxof oo + ew ) ) - tew
> A % (r, t) in which the gth analytic A;™ (r, ¢)

the ATW wave field, is defined awgg)i = (vfyi) i vifq’)i), 0 1q=—o00 _ W .
@ _ (g (i )0k, @ _ 7(8 (o I 7)/8k )|’ ~field is the analytic transform (37) of the Fﬂ)g (r, w)in (7).
Upg,i = (Ow(k,, ke plla,is Vzg, i = \OWARp, Bz =/1:  Using the synthesis afif ™V (r, w) in (7) in terms of spatially

H _ 2 2N\1/2 —
with w(k,, k.) = c(k + k2)*/2. Thus,dw 0k, = ck,/k and  gisripyted point-source radiators, interchanging the orders of
Ow/dk. = ck./k. Inserting the instantaneous wavenumbegieqration (allowed because of the convergence introduced by
from (30) and (31) and using the instantaneous propagati§f,; -, ) and performing the. integration in closed form
angle;(t) in (32) yields

yields
Ul) = clip sin Gi(t) +icos Bi(0), =12 B8 Arw /°° i oy
1 ’ ar2d J__, Ry n?  R(Z)\
Since the angleg;(t) [see (18)] do not depend on the index () |t = e ¢

q, the group velocity of each TD-FW does not dependqgon (42)
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The correspondence between (42) and (12) is established via the fjm(Z)‘ :;l C
o U

analytic delta functio%(t) = j/(wt), Smt > 0, which follows
from (41) on settingi(r, t) = &(¢). Note that the result in (42)
could have been obtained directly in the TD via the analytic ' ,"‘ z ,
extension in (41) ofAF W (r, t) in (12). <9 b+ z,'(t)
The integral in (42) is now evaluated by deforming the il bl >

integration path into the complex’-plane and calculating ;’(f) ""'-. 9%(2’)
the residues at the poles intercepted during the deformation. 2

Since R(>") [see (6)] has been defined in Appendix A such
that ReR(z') > 0 on the top Riemann sheet of the complex C
Z'-plane, the two branch cuts in accord with this condition 141 L
extend as shown in Fig. 6. The integrand in (42) has poles 11
defined via (13) and located at(t) In (14)' The loci of these Fig. 6. Top Riemann sheet of the complexplane, defined biRe R(=") > 0.

poles vary with timet (which has been assigned a smakranch points are at,. = = =+ jp. The dotted loci track the roots (¢) and
positive imaginary part) as shown in Fig. 6. To understarsd(t) in (14). Foryz/c < t < tq, the two roots are complex conjugate; for
and classify the pole singularites in the complekplane, .- f 1/t . e oot ae e The aouson e bt pont v the
we again distinguish between the nondimensional parameter

ranges|n| < 1 and|n > 1 in (2). For the radiating case

|n| < 1 the two solutiong/ () andz,(t), given by the analytic for A_, to the expression on the right side of (43), exceptéhat
version of (14), lie on the top Riemann sheet for> 0, as z}(t), andCy, are replaced by—q), 21 (t) andCy, respectively.
shown in Fig. 6. Forr < O_the two solut|ons. lie on the.bOttomThe real fieldsjliflv(r, t) are obtained by taking the real parts
Riemann sheet. If " 0, L€, g > 0, the integrand in (42) of (43) and its counterpart ferq. It can be shown (see [19]) that
converges exponentially in the lower half of theplane, and

. LT . .
the integration path can be deformed into the p@th The theintegralalon@’y in ATy (r, t) is the complex conjugate of

converse holds fog < 0. Forg > 0, only the pole aky(t) is e integral along’;, in EFW(T’ £). Thus
captured forr > 0 (i.e.,t > nz/c). Forr < 0 no poles are cap- !

tured because they lie on the bottom sheet. Using the relation
+
R(Z(t)) = re+n(z — 2/(t)) in (13), theA} W (r, t) wavefield

~ +
Aiflv('r, t) :%GAQIV(T, t)

in (42) for g > 0 can be represented as th&(t)-residue - GM U(r) + N SIm
contribution plus the branch cut integral alofigy 2rdy\/12 — 7§ dm2d
. , —jaqz'
N iz (® j . < dx' (44)
ATV (. 1) = UT+—/ 2 R( ?
o (1) 2rd\/T2 — 78 ™ dr?d Jo, “r R(#) <t _nE ﬁ)
. ’ C C
e—jaqz ,
: 7 7 dz ’ q> 0 . AFW TFW . .
R (t- n?  R(') wherei = 1, 2 for AT and ALY, respectively, withy > 0
T c c (ag > 0). From the last expression in (44), it is noted that we

(43) can distinguish between the twiey TD-FW's as defined here.
_ ) - ) Each is noncausal and, therefore, nonphysical. But when we
The analytic TD FW includes one explicit term in closedym the two real FW'sii" (r, t) and A™Y (r, ) in (44), the

in closed form has the same form as the one in (16)i(fer2)  \ayefield, which is identical with that in (23)

but differs by a factor of 2; in fact, the analytic signal is defined
as twice the integral taken over the positive frequencies [see the 2 q|FW _ W Trw
factor 2 in the denominator in (1) and note that it is not presentin obs (72 1) = edy ey = (23), (45)

(37_)]. The cIos_ed—form term also qwfer.s by the a_rgumept of thehe causal step functidti(r — 7o) [see (23)] follows from (44)
unit step function. The real wavefield |rlthe TD is obtained by, 4,se the noncausal closed-form terms vanish, when added.
taking the real part of the analytic signaj ™ (r, t). The term for 0 < 7 < 7. For7 in this interval, the square roots in (44)
in closed form includes a precausal contribution becdlige are complex conjugate| (t) = (z5(¢))* [see (14)] and, thus,

is different from zero also fdd < 7 < g (i.e.,nz/c <t < tg). Re(j exp(Jogz(t)))+Re(j exp(—ja,25(t))) = 0. Theresult
The analytic FW is thusoncausakince the branch cut integralin (45) for the observable Fy/wvavefield, which was obtained
does not cancel the precausal closed-form term and, in fact, difa an entirely different parameterization of the problem than
fers from zero also for < 0 (t < nz/c). The analytic(—¢) that leading to (23), thereby confirms the importance-gf)

FW (with ¢ > 0), can be treated in a similar manner, with al(—¢) pairing when defining physical causal Floquet wavefields.
analytic operations and contour deformations performed in tfie analytic signal formulation in the complek plane gives
upper half plane because_, = —a«,. The contribution from fresh insights into the role played by complex source paif)t (
the pole at/ (¢) now has to be accounted for in the deformatiodistributions which are known to generate beam-like fields with
of the integration path around the upper branch(¢ytleading evanescent spectra [21].
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D. The Cagniard—de Hoop Method is the TD counterpart of a linearly phased line dipole array in

Finally, the TD-FW, potential fie|dAgW is synthesized using t_he FD. By Poisson summation, the locally parameterized wave-

the Cagniard—de Hoop method [13], [14], which applies convelfield representation extending over the ipdividual dipole_rgdia—
tionally to nondispersive wave processes. Because the TD-F#'S has been restructured collectively into a superposition of
is dispersive, we shall not apply the method in its standard forRE"iodicity-induced FW. Exact closed-form expressions in the
which departs from an FD spectral integral representation thafj @nd TD have been derived as well as a variety of alterna-
manipulated into a Laplace integral for inversion by inspectiofV€ SPectral representations with different phenomenological
Instead, we express the FD field in terms of tymtial inte- interpretations. Coupled to relevant asymptotics, these studies

gration in (7) which is then converted into a standard Laplaf@Ve furnished detailed understanding of, and physical insight
transform. For simplicity, details are shown only for the radint©: the impulse-source-excited TD behavior of FW disper-
ating casér| < 1. Introducings = jw into (7) yields sion. As enumerated in the introduction, we have been able to

explain and clarify TD-FW behavior and anomalies from var-
ious perspectives both in the propagating (radiating) and non-
APV, —js) :/ & oms/eRGEDE] g (46) propagating (evanescent) regimes, generalizing previous studies
! oo AmdR(2") [1]-[3] performed under more restrictive conditions. They)
and(—g) paired TD-FW wavefield observables are, to the best
A Laplace transform is obtained by analytically continuing thef our knowledge, new findings that are likely to have broad im-
imaginary parametes to the positive real axis. First, note thafplications. The perspectives gained from this highly idealized
(46) is defined for everytes > 0 since[R(%’) + nz'] > 0 for canonical problem are expected to facilitate application to more
large realz’ (in fact, R(z') ~ |2/| for large realz’ and[1 + realistic TD periodic array configurations, as demonstrated in
7] > 0 in the radiating case). The canonical mappiRgz") + [8], [9] for slot arrays. This will be the subject of future in-
n7']/c = t, t real, onto the Laplace exponesip(—st) then vestigations, as is the TD generalization of the FD results for
specifies the deformed integration path, on which the inversiemooth line source arrays on slabs and truncated ground planes
is effected by inspection. This equation can be solvedfdo in [22], [23]. Especially promising is the analytic signal formu-
yield the two rootsz{ (t) and z5(t) in (14), which are tracked lation which can address TD spectral (especially evanescent)
along the real axis in Fig. 6 for real > ¢,. [in Section V-C, subtleties in a fundamental manner.
it has already been established that the vakiés) and z5(¢)
are complex fot < ¢y, i.e., before the causal turn-on timg. APPENDIX A
The indexi = 1, 2 takes into account the multivaluedness of DETAILS PERTAINING TO (14)

the ' solution that arises from the branch pointtat t, = , ) )
nz/c + 7o (or equivalently atr = 7 = /1 — 72p/c) in (15). We look for thez’ solutions of (13) on the top Riemann sheet

The pathsP, = (), oc) and P, = (—oo, 7)) in Fig. 6 are defined byReR(=’) > 0. Obtained by squaring, rearranging and
both mapped into the pattio, o) in thet plane (except for a solving the re_sulting quad_ratip equation, th_e solution; in (14)
minus sign fotP) and the required contour deformations can &€ also used in the analytic signal formulation of Section V-C.

effected directly without crossing any singularities. Empbymél'he/refore, we look, in addition, at them(t or 7) — 07 limit
the mapping derivative of 2/(¢) solutions. In order to determine under what conditions

bothi = 1, 2 solve the original equation (13), we insert (14) in
(13), leading to

. I
o0 pmiagz

/ {1\t /
7] ZCUHRED (47)
dt | p, g
¢ _1)¢ 2 _ 2\ _ !
_ _ 7 <T+( D/ 7'0> = R(z}). (49)
in (46) yields
2 oo gmjagil(t) For the radiating caspy| < 1, we havel + (—1)‘n > 0, for
ATV (r, —js) = / ﬁ(z—“ dt  (48) i = 1,2. For 720, one haske [left side of (49)] 20, while
i=1 7t STAVTT 70 the right side ha&e(R(z')) > 0 on the top Riemann sheet of

the 2’-plane. Thus, there are no reg(t) solutions of (13) for
which can be inverted by inspection. Siré¢t —to) = U(7 — 7 < 0, but two solutions; ,(¢) on the top Riemann sheet for
7o), the result agrees witd} ¥ in (20). The transformation ~ > 0. For the nonradiating cagg| > 1, we havel — 7> < 0,

of the Kirchhoff integral in (7) into a directly invertible Laplacer, = —j|o|, and (49) becomes

integral is another interesting outcome from this study. While

applied here to the quasi-nondispersive FW, the transformation c ; 5 5 ,

stays intact, of course, for the nondispersjve 0 FW. =2 (T + (=)' T+ ol ) = R(z)-  (50)

VI. CONCLUSION The left and right sides are real for all realandReR(z.(¢)) >

In this paper, we have examined the simple canonical probl@rSince|r| < /72 + | 7|2, (50) implies that sgi{— 1)) < 0,
of radiation from an infinite periodic line array of dipoles extherefore, the only solution of (13) on the top Riemann sheet is
cited impulsively with prescribed interelement time delay. This| (¢) whenyn > 0 andz5(¢) whenn < 0, for all 7.
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APPENDIX B
w-SYMMETRY PROPERTIES FOR-D-FWs

To ensure that a wave functiad(r, ¢) is real, its Fourier
transform A(r, w) in (1) has to satisfy the well known
property A(r, —w) [A(r, w)]*. We show here that
the FD-FW AFW(r, w) in (7) does not satisfy this prop-
erty but that (+¢) and (—¢) pairing does. Concerning
AW(r, w) given by the integral in (7), it is noted that
F(—UJ) exp(—j(—w)R/c - jkzq(_w)z) # [F(UJ)]*,
since from (5),k.q(—w) # —k.q(w). Thus, fora, # 0,
APV(r, —w)  #  [AV(r, w)]". However, k. (—w)
—k, _4(w), sincea_, = —a, thereby establishing that
APV (r, —w) = [AEWV(r, w)]*. Accordingly, AW (r, —w) +
AP (e ) = [ATY (. w) + AT (r, W), Q.E.D.

APPENDIX C
DETAILS PERTAINING TO (28)

Recalling (27), the saddle-point conditidd/dw =0is

k - nkzq

nz/c+ :

p/lc—t=0. (51)

Pq

Note thatRe(k,,) > 0 or < 0 for w > 0 or < 0, respectively,
in order to satisfy the radiation condition at= oo for all w.
Squaring and rearranging yields, using (8)

w1 —n?)A - 2wnaged — (a0)*(A+ (p/c)*) =0 (52)

with the twos-indexed solutions in (28). Herel = (72 — 7).
To sort out the correct combinationsbf, +«,, £7, we substi-

(1]

[2

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

(11]

(12]

(23]

tute (28) into the original equation (51) [recalling (5)] to obtain [14)

(_1)iaq _ Kpq,i

i=1,2. (53)

2 _ 2 ?
c\/T 73 P

For the radiating caspy| < 1, we havereal values ofw,_ ;
in (28) only for || > |mo|. Since,(r? — 72)}/? < |7], the

sign ofw, ; depends ori through the sign of the second term

inside the brackets in (28), i.e., sgn. ;) = (—1)'sgna,7).
Since sgfiek,,) sgrw), we have sgfitek,, ;)

(15]

[16]

(17]

(18]

(19]

(—1)*sgn(a, 7). Thus, both the left and right sides of (53) have [20]

the same sign for > 7o and opposite sign for < —rg, for
i = 1, 2. This means that for > 7y bothw,  andw, » are

real solutions of (51) while neither of them is a solution for

negativer < —o.

For the nonradiating casg| > 1,1—n% < 0, (12—72)Y/2 =
(T2 +]70|%)Y% > |7], and thus in (28) sdi,, i) = SO —an).
It follows that sgitk,.4, ;) = sgn—a,n) whence, to satisfy (53),
(=1)’sgn(ct,) = sgn(—a,n) or (—1)* = sgr(—7). Thus, there
is only one solution of (51)v, 1 whenn > 0 andw,, » when
n < 0.

[21]

[22]

(23]
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