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EXECUTIVE SUMMARY 

A Pavement Management System (PMS) is a decision-support tool that aids public 

agencies in planning maintenance activities of their facilities. A complete PMS involves 

the following tasks: inspecting facilities and collecting data, predicting the deterioration 

of facilities through performance models, and optimizing the Maintenance, 

Rehabilitation, and Reconstruction (MR&R) policies over the planning horizon. 

Performance models are a core component of PMS. These models are also used to 

calibrate facility design procedures. 

The main objective of this project was to develop Empirical-Mechanistic (E-M) 

performance models using data from Washington State’s PMS databases. Four models 

were developed from that data: 

1. A model for predicting the initiation of overlay cracking in asphalt concrete 

(AC) pavements 

2. A model for predicting the progression of roughness for AC pavements 

3. A model for predicting the initiation of cracking in portland cement concrete 

(PCC) pavements 

4. A model for predicting the progression of roughness for portland cement 

concrete pavements 

At the start of the project, models using pavement maintenance data from the 

Washington State Department of Transportation (WSDOT) and the Arizona Department 

of Transportation (ADOT) were attempted. The initial reasoning for using PMS data 

from those states is that they have very measured pavement conditions consistently over a 

long period of time, and they have topographic and climate regions similar to parts of 

California. Therefore, Caltrans could use models developed using data from those states 

to manage a subset of California’s pavement infrastructure until the department develops 

the database needed to support model development. However, the research team found 

that the ADOT data were inappropriate for developing the type of performance models 

needed in this project, so only WSDOT pavement data were used. 
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To develop these models, the following tasks were performed: 

1. The WSDOT PMS databases were mined for the most relevant variables, 

including pavement section structure, traffic, surface condition, and 

resurfacing activities. These were augmented with environmental data 

obtained from external data sources. 

2. Appropriate functional forms were selected for the empirical models and 

relevant explanatory variables included. 

3. Appropriate statistical modeling tools were used to calibrate (estimate) the 

parameters of the performance models. 

4. Classical statistical tests were performed on all models to confirm the 

statistical significance of the various parameters and of the models as a whole. 

5. Predictions were performed using the various models to confirm that they 

produced realistic results. 

Conclusions from this research can be summarized as follows: 

1. The performance models for cracking initiation and International Roughness 

Index (IRI) developed using the WSDOT PMS data for AC pavements or 

overlays are satisfactory. 

2. The following explanatory variables were found to be the most relevant 

predictors of the number of Equivalent Single Axle Loads (ESALs) to 

cracking initiation (defined as five percent of the wheelpath cracked) of 

overlays on AC pavements: 

• The overlay thickness 

• The type of AC mix used for the overlay 

• The thickness of the underlying AC layers prior to application of the 

overlay 

• The existing longitudinal and alligator cracking prior to the application of 

the overlay 

• The base thickness and type (whether it was untreated, granular, portland 

cement-treated, or asphalt-treated) 
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• The maximum temperature during the hottest month and the minimum 

temperature during the coldest month (averages taken over the life of the 

overlay) 

• The number of freeze-thaw cycles and the average precipitation 

3. The following explanatory variables were found to be the most relevant 

predictors of the annual increment in IRI for AC pavements and overlays: 

• The IRI in the previous year 

• The number of ESALs in the subject year 

• The cumulative number of ESALs prior to the subject year 

• The base thickness 

• The total thickness of asphalt concrete (AC), including all overlays 

• The number of years since the last overlay or bituminous surface treatment 

• The type of the last MR&R activity applied to the pavement, either AC 

overlay, bituminous surface treatment (BST, equivalent of Caltrans 

aggregate seal coat), or routine maintenance 

• The minimum temperature in the coldest month (average over the life of 

the pavement) 

• The annual precipitation (average over the life of the pavement) 

4. We did not succeed in developing models using the WSDOT PMS data for 

PCC pavements (crack initiation and IRI). The small number of PCC 

observations available in the WSDOT PMS database made it impossible to 

develop adequate models. 

5. This research has also identified a list of variables that are recommended for 

collection by Caltrans. Elements of these variables are currently collected by 

other state departments of transportation. Appendix A lists of the variables. 

6. A numerical integration procedure was developed using macros in Microsoft 

Excel to help with the application of the model used to predict cracking 

initiation for AC overlays. The description of this procedure appears in 

Appendix B. 
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The main recommendations contained in the report are: 

1. To complete the AC pavement performance model suite, a crack progression 

model should be developed. The progression model should be used jointly 

with the crack initiation model developed in this research to predict 

development of cracking beyond five percent of the wheelpath cracked. 

2. The completed AC pavement models (crack initiation and progression, IRI 

progression) should be tested on California PMS data. These data can either 

be collected as part of a pilot project or mined from data in the Caltrans PMS 

database after that database has been populated with information collected 

over consistently segmented sections. If the results of the tests are positive, 

then Caltrans can essentially use these models as temporary AC pavement 

performance models. 

3. Once Caltrans has populated its PMS database with sufficiently extensive 

condition survey data, the models developed in this report can be updated with 

the California data by using statistical fusion procedures, such as Bayesian 

Updating. 

4. The ultimate objective of the development of such models is to use them 

within an integrated Pavement Management System. The models can provide 

predictions to support MR&R planning at both the project and network levels. 

Therefore, to fully reap the benefits of its investment in this research, Caltrans 

should continue its efforts at modernizing its Pavement Management System. 
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1.0 INTRODUCTION 

A Pavement Management System (PMS) is a decision-support tool that aids public 

agencies in planning maintenance activities of their facilities. A complete PMS involves: 

inspecting facilities and collecting data, predicting the deterioration of facilities through 

performance models, and optimizing the Maintenance, Rehabilitation and Reconstruction 

(MR&R) policies over the planning horizon. Performance models are a core component 

of a PMS. These models are also used as an input in project design procedures. 

Several PMSs have been developed and applied to actual pavement networks. For 

example, in the first year that the Arizona Pavement Management System was 

implemented, it was successful in saving an estimated $14 million (fiscal year 1980–

1981), one third of Arizona’s maintenance budget, and $101 million in the first four 

years. The state of California spends an average of $350 million per year on contracted 

pavement maintenance and rehabilitation, and this expenditure may exceed $700 million 

per year in the near future. There is potential for this expense to be reduced if PMS 

improvements are developed and implemented. 

The main objective of this project is to develop a set of Empirical-Mechanistic 

 (E-M) performance models using data from Washington State’s PMS databases. Our 

research team attempted to develop four performance models: 

1. A model for predicting the initiation of overlay cracking in Asphalt Concrete 

(AC) pavements, 

2. A model for predicting the progression of roughness for AC pavements, 

3. A model for predicting the initiation of cracking in portland cement concrete 

(PCC) pavements, and 

4. A model for predicting the progression of roughness for PCC pavements. 

For the purpose of this project, models using pavement maintenance data from the 

Washington State DOT (WSDOT) and the Arizona DOT (ADOT) were attempted. The 

team reasoned that because Washington and Arizona contain topographic and climate 

regions similar to parts of California, as well as a degree of traffic similarity, the models 

developed for those states could be used by Caltrans to better manage a subset of 

California’s pavement infrastructure—until the department develops its own database to 
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support a California-derived model development. However, when the research team 

found that the ADOT data were inappropriate for developing the type of performance 

models needed in this project, a decision was made to use only the WSDOT pavement 

data. 

The research report describes Empirical-Mechanistic (E-M) models, which are 

deductive models. In E-M models, functional form and specification (choice of 

explanatory variables) are based on physical considerations and the model parameters 

(coefficients) are calibrated by using empirical data and statistical estimation procedures. 

This modeling approach is the only feasible one in cases where a mechanistic analysis is 

impossible either because the exact physical process of deterioration is poorly understood 

(e.g., in the case of reflection cracking of AC overlays) or too complex (e.g., roughness 

progression, where roughness is a measure of performance that includes the effects of 

several distresses). 

Unlike Mechanistic-Empirical (M-E) methods, E-M models require knowledge of 

only a small set of variables, many of which are routinely measured in pavement 

condition surveys or are available from maintenance records, traffic counts, and as-built 

records. This makes E-M models especially suitable for network-level pavement 

management systems. For project-level designs, where detailed information can be 

collected, M-E methods are more appropriate. 

This report is organized as follows: Chapter 2 presents the methodology used to 

develop crack initiation models for AC pavements. Chapter 3 presents the crack initiation 

models that were developed for AC pavements and Chapter 4 presents the IRI 

(International Roughness Index) progression models for AC pavements. Chapter 5 

discusses our investigations of deterioration for PCC pavements. Chapter 6 summarizes 

our conclusions and recommendations. Appendix A provides a list of variables that are 

recommended for collection by Caltrans. (Elements of these variables are currently 

collected by other state DOTs.) Appendix B provides the numerical integration procedure 

used for computing both the expected ESALs-to-cracking initiation for overlays placed 

on AC pavements and the predictions performed in Chapter 3. 

 



 4

2.0 REVIEW OF METHOD USED TO DEVELOP CRACK INITIATION 
MODELS 

In this section we will review the statistical background used in the development of 

Asphalt Concrete Overlay Crack Initiation models. 

The initiation of pavement distress is highly variable because distress occurs at 

different times at various locations along a homogeneous piece of road. Therefore, the 

time of failure should be represented by a probability density function rather than by a 

point estimate. For this reason, Duration models (or Hazard Rate models) were used 

instead of Regression models, which only provide point estimates. 

Duration/Hazard Rate models were also better suited here because they predict a 

survival function for the time of failure of an element or system. Moreover, point 

estimate models of the initiation of pavement distress lack the structure, as well as the 

physical significance, offered by Duration models. 

In this section we will discuss the Hazard Rate Model, and then explain the 

different types of censoring that might occur in condition surveys, and the method to 

account for censoring in model estimation. We will also present an overview of two types 

of Duration models, the Weibull Model and the Cox Model, and explain the advantages 

of each. 

 

2.1 Hazard Rate Model 

Define T as the time (or Cumulative ESALs) to cracking of a pavement, where T is a 

random variable that takes values in the interval (0,∞). It has a cumulative distribution 

F(t) and a density function f(t). F(t) is given by: 

∫ ≤==
t

tTobdssftF
0

)(Pr)()(      (1) 

The probability that cracking occurs after time t is given by the survival function:  

)(Pr)(1)( tTobtFtS ≥=−=      (2) 

We define g(t) as the probability that a pavement cracks in the next small interval, 

∆t, given it lasts at least until time t: 

Ttobtg ≤= (Pr)( < t + ∆t | T ≥ t)    (3) 



 5

The instantaneous rate of change of g(t), defined as the Hazard Rate Function, 

h(t), is given by: 

t
tgLimth

t ∆
=

→∆

)()(
0

      (4) 

The hazard rate quantifies the instantaneous risk that the pavement sections crack 

at time t (Madanat and Mishalani 2002). 

2.2 Censoring 

Censoring occurs frequently in condition survey data because in most cases it is 

impossible or impractical to observe the complete lifetimes of all the pavement sections. 

A censored observation occurs when only a bound is known on the time of failure. A 

complete data set is when all failure times are known. A data set is called censored if 

there are one or more censored observations. There are several types of censoring. The 

most frequent type is right censoring. Right censoring occurs when there is one or more 

pavement sections for which only a lower bound is known on the lifetime. There are three 

special cases of right censoring that occur in practice. The first is Type I censoring, or 

time censoring, which corresponds to terminating the study at a particular time (Figure 

1). Therefore, the number of failures is random in Type I censoring. Type II censoring — 

also called order statistic censoring — corresponds to terminating the study upon one of 

the ordered failures. Looking at Figure 2, we notice that it corresponds to a set of n = 5 

items placed on a test that is terminated when r = 3 failures are observed. Thus, in Type II 

censoring the time to complete the test is random. The third type, random censoring, 

occurs when individual items are withdrawn from the test at any time during the study 

(Figure 3). Thus it is assumed in random censoring that the ith lifetime, ti, and the ith 

censoring time, ci, are independent random variables. 

Another form of censoring is left censoring. An example of cases where left 

censoring occurs is in scientific applications where the resolution of the equipment is 

finite (observations whose magnitude is below a certain threshold are missing). Left 

censoring might also occur in long-lived pavements where data collection began after the 

pavements were constructed or when condition survey procedures were changed and new 

variables were collected only for a certain period of time. Data can be both left and right-

censored if the conditions described above for left and right censoring both occur. 
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Moreover, there exists an additional type of censoring called interval censoring, 

which occurs when the lifetime falls into an interval. A case of interval censoring occurs 

when items are checked periodically for failure. The information known about the 

lifetime is thus that its failure time occurred during the interval prior to when failure was 

detected (Leemis 1995). 

 

Figure 1: Type I right-censored data set with n=5 and r=4 

3

5

t0

1
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Figure 2: Type II right-censored data set with n = 5 and r = 3 

 

Figure 3: Type III (randomly) right-censored data set with n = 5 and r = 2 
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Figure 4: Lifetime data set taxonomy 

In this project all our data are either interval censored or right censored. Since 

condition surveys occur annually, we only know that a cracked section i has cracked in an 

interval of one year [(ti – 1), ti] where ti is the time when section i is observed to be 

cracked. Sections that have not cracked by the end of the last condition survey at time C 

are right censored. Thus for each section i, we either know the interval [(ti – 1),ti], if 

ti ≤ C and the section has cracked, or the section has not cracked and we have right 

censoring with ti > C. 

The full likelihood function with n observations in this case is obtained by 

multiplying the product of the differences between the survival functions at time ti and 

 ti – 1 for the interval-censored observations by the product of the survival functions at 

time ti for the right-censored observations: 

ii

ii

ii

n

i
iiii tStStStStStSL δδ

δδ

−

===

−−=−−= ∏∏∏ 1

101

)]([)]1()([)()]1()([  (5) 

where δi is a dummy variable that takes the value 1 if observation i is interval 
censored and 0 if it is right censored. 

 
To estimate the parameters, we maximize the log likelihood function: 

l = L = [ ] ( ) [ ]}{ )(log1)1()(log
1

iiii

n

i
i tStStS δδ −+−−∑

=

   (6) 
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For the model developed in this report, we ignored interval censoring and 

assumed continuous condition surveys. This simplifies the estimation of the parameters 

of the models, though it probably leads to a small loss of precision. The full likelihood 

function for such a case with n observations is given by multiplying the respective 

contributions of values of density function, f, for uncensored observations and values of 

survival function, S, for right-censored observations: 

ii

ii

i

n

i
iii tStftStfL δδ

δδ

−

===
∏∏∏ == 1

101

)]([)]([)()(    (7) 

where δi is a dummy variable that takes the value 1 if observation i is uncensored 
and 0 if it is right censored. 

 
The log likelihood function is (Kalbfleisch and Prentice 2002). 

l = L = [ ] ( ) [ ]}{ )(log1)(log
1

iii

n

i
i tStf δδ −+∑

=

   (8) 

2.3 Weibull Model 

It is more general and realistic to allow the hazard rate to increase or decrease over time 

than to assume it to be constant (Shin 2001). Materials degrade over time and thus are 

more likely to follow a distribution with a strictly increasing failure rate (IFR). The 

Weibull Distribution allows us to model lifetimes having constant, strictly increasing, and 

strictly decreasing hazard functions. The Weibull Hazard Function, with parameters α 

and γ is given by: 
1)( −= γαγtth   t > 0      (9) 

where α and γ are positive constants. For γ < 1 we have a decreasing failure rate 
(DFR), for γ > 1 we have an increasing failure rate (IFR), and for γ 
= 1 we have a constant failure rate (CFR). 

 
The cumulative Weibull Distribution F(t) is given by: 

( )γαtdsshtF
t

−−=







−−= ∫ exp1)(exp1)(

0

 t > 0   (10) 

The density function f(t) is given by: 

( )γγ ααγ tttf −= − exp)( 1  t > 0    (11) 
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The survival function is given by: 

( )γαttFtS −=−= exp)(1)(      (12) 

If a vector of explanatory variables x is observed with the duration data, the 

Weibull Hazard Function is given by: 

( ) 11,, −−−− == γβγγγµ γγβ tetexth
Tx  , t>0    (13) 

where βµ Tx= .       (14) 

In this case the cumulative distribution function, the density function, and the 

survival function are respectively given by: 

( ) ( )γβγβ textF
Tx−−−= exp1,,      (15) 

)exp(),,( 1 γβγγβγ γβ tetextf
TT xx −−− −=     (16) 

( )γβγ tetS
Tx−−= exp)(       (17) 

The parameters of the model, γ and β , can be estimated by maximum likelihood. 

Meeker and Escobar (1998) give the expected time to cracking for a Weibull Model by: 

[ ] 







+Γ=








+Γ=

γγ
βµ 1111

TxeextE     (18) 

The gamma function, )(zΓ , is defined as: 

dwewz wz −
∞

−∫=Γ
0

1)(  for z > 0.     (19) 

 

2.4 The Cox Model 

Parametric models like the Weibull Model have nice properties in that in most cases they 

allow closed form estimation of the survival and hazard functions. Moreover, they can be 

interpreted in a direct and simple manner, and are easier to use for prediction. Parametric 

models however impose more restrictions and structure on the survival and the hazard 

rate functions. Such restrictions might be inappropriate in certain cases when the data is 

more complex and appear to have a less structured distribution. 

 In these cases more general models that impose less structure on the survival 

and the hazard functions are more appropriate. The semiparametric family of models 
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allows this flexibility and the Cox model — also known as the “proportional hazard 

model” or the “relative risk model” — is one of the most flexible and widely used models 

of this type. The Cox model’s analysis requires no assumptions regarding the form of the 

baseline hazard, and this is the main reason for the model’s flexibility. For non-time 

variant covariates, the Cox hazard function is given by: 

)()()( 0 xthth Ψ=       (20) 

where )(0 th  is an arbitrary unspecified baseline hazard function that will be 
estimated, and  

βTxex =Ψ )(       (21) 

where x  is a vector of explanatory variables observed with the duration data 
andβ  is a vector of parameters that will be estimated by maximum 
likelihood. 

The cumulative distribution function, the density function, and the survival 

function are respectively given by (Crowder et al 1991): 
)(

0 )]([1)( xtStF Ψ−=      (22) 

1)(
00 )]()[()()( −ΨΨ= xtSxtftf      (23) 

)(
0 )]([)( xtStS Ψ=       (24) 

where S0 and f0 are the baseline survival and density functions respectively, and 
are equal to S(t) and f(t) respectively when 1)( =Ψ x ,( x = 0) 

 
The baseline hazard function is: 

)(
)(

)(
0

0
0 tS

tf
th =       (25) 

 

3.0 CRACK INITIATION MODEL OF ASPHALT CONCRETE OVERLAY  

The PMS database provided by WSDOT (Washington State Department of 

Transportation) for use in this research included data for the years 1983 through 1999. 

The research team used the data to develop the crack initiation model of the AC (asphalt 

concrete) overlay. No new flexible pavements were included in the data set used for the 

model development. All observations used were of AC overlays of existing AC 

pavements. 
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3.1 Measurements and Characterization of Cracking 

Alligator cracking and longitudinal cracking were the main types of overlay cracking of 

concern in this project. Below are the WSDOT definitions of each type of cracking and 

the agency’s the measurement and recording methods (Kay et al 1992). 

3.1.1 Alligator cracking 

Definition: 

Alligator cracking is associated with loads and is usually limited to areas of 

repeated traffic loading. Most load related cracking of this type begins as a single 

longitudinal, discontinuous crack within the wheel path that progresses with time and 

loads to a more branched pattern that begins to interconnect. The stage at which several 

discontinuous longitudinal cracks begin to interconnect is defined by WSDOT as 

alligator cracking. Eventually the cracks interconnect sufficiently to form many pieces, 

resembling the pattern of an alligator’s hide. 

Extent: 

The extent of alligator cracking is related to the length of the wheel paths. A 100-

foot segment has 200 feet of wheel path. WSDOT measures and records cracking as a 

percentage of wheel path length. The lengths along the surveyed lane of alligator cracking 

in both wheel paths are accumulated then divided by twice the length of the segment (two 

wheel paths per lane) then multiplied by 100 to get a percentage. 

Example: 

Segment length: 1/10 mile = 528 feet (1,056 feet of wheel paths). 

Cracking in left wheel path   Cracking in right wheel path  

 Segment Total 

  125 ft     100 ft   

  225 ft (21%) 



 13

3.1.2 Longitudinal Cracking 

Definition: 

Longitudinal cracks run roughly parallel to the roadway centerline. Longitudinal 

cracks associated with the beginning of alligator cracking are generally discontinuous, 

broken, and occur in the wheel path. However, any longitudinal crack that is clearly 

within the traveled lane is rated even if outside the wheel path. 

Extent:  

The extent of longitudinal cracking is recorded as a percentage of the length of the 

surveyed segment. The lengths along the surveyed lane of longitudinal cracking are 

accumulated then divided by the length of the segment and multiplied by 100 to get a 

percentage. 

Example: 

Segment length: 1/10 mile = 528 feet 

Recorded: 75 feet or 14% 

Note: Since many longitudinal cracks might appear in parallel on the same lane, 

the recorded cracking according to the WSDOT method can exceed 100%. 

In this project, we have set the threshold for overlay crack initiation at 5%. A 

pavement with 5% longitudinal or alligator cracking is considered to have cracked. 

3.2 Washington PMS Data Description 

The WSDOT has performed pavement condition surveys annually since 1983. The 

condition surveys covered most of the state highways. The surveys segmented the 

highways into 1/10-mile sections and measured variables such as pavement cracking and 

maintenance activity. This allowed the identification of different pavement types 

(concrete, asphalt, or composite) and the types of cracking (alligator, longitudinal, and 

transverse). Our research team also compiled traffic information and climate data for the 

different sections. 
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Following is a description of the relevant variables found in the Washington PMS 

database that were used in the model. The variables’ names are those used in the model 

and are not necessarily WSDOT names. 
• E_Long and E_Alli: Existing longitudinal cracking and alligator cracking, 

before rehabilitation. These variables represent the last measured cracking 

before the last rehabilitation activity was performed. They represent the 

distress level of the pavement before the overlay. These are important 

variables in modeling overlay cracking because overlay cracking is partly due 

to reflection cracking, which requires cracks in the previous pavement surface 

layer and their propagation through the overlay. 

• Long and Alli: Overlay longitudinal cracking and alligator cracking. Each of 

these overlay cracks is reported on a yearly basis until the end of the 

experiment, which is defined by either the occurrence of further maintenance 

activity or the absence of more surveys. 

• CUM_ESAL: Cumulative ESALs to initiation. CUM_ESAL is the sum of the 

ESAL from the year of the last overlay to the year when crack initiation 

occurs. If cracking does not occur by the end of the experiment then 

CUM_ESAL is the sum of the ESAL from the last overlay to the end of the 

experiment. 

• SURFTHK: Layer thickness of the last overlay (in ft.) 

• ULT: Sum of the thickness of the underlying asphalt concrete pavement layers 

(in ft.) 

• Untrthick: the thickness of the non-treated base (in ft.) 

• Actbthick: the thickness of asphalt concrete-treated base (in ft.) 

• Pctbthick: the thickness of portland cement-treated base (in ft.) 

• BA, AA: Dummy variables that take the value 1 if the material type of the 

overlay is “BA” or “AA,” and 0 otherwise. The Washington PMS defines 

material types “BA” and “AA” as Asphalt Concrete Cements (ACP) that have 

the same binder type (AR4000W) and different mix classes. “BA,” a class B 

mix, is described as a standard mix, with a maximum aggregate size of 5/8 in. 

“AA” is a Type A mix that also has a maximum aggregate size of 5/8 in., but 
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it uses a higher grade aggregate with more fractured rocks. A comparison of 

WSDOT and Caltrans specifications showed that the WSDOT Type A mix 

specification is very similar to the Caltrans specification for Type A dense-

graded asphalt concrete; the largest aggregates in the gradation constitutes the 

primary difference between the two mixes. The WSDOT Type B mix falls in 

between the Caltrans Type A and Type B mixes: the WSDOT Type B mixes 

require more fractured faces than the Caltrans Type B mixes. 

• Tmax: Average monthly maximum temperature of the hottest month (July, in 
oC) In hot climates, day and night temperature changes cause repeated thermal 

stresses in the surfacing that, in conjunction with stresses produced by traffic, 

contribute to reflection cracking.  

• Tmin: Average monthly minimum temperature of the coldest month 

(December, in oC). Low temperatures contribute to cracking because cracks in 

the underlying asphalt open due to thermal contraction. This causes tensile 

strains in the overlay above the cracks. Moreover, cold temperatures make the 

AC overlay less viscous, which increases the rate of crack propagation 

because the unbound layers can not relax stresses. 

• Prep: Annual precipitation (in mm). Precipitation and moisture in asphalt 

pavements can cause significant loss of strength of the underlying granular 

layers and the subgrade, thus weakening support for the asphalt concrete 

layers. In addition rainfall can also weaken the asphalt. All these factors will 

result in higher cracking.  

• FTCycle: Annual number of Freeze-Thaw Cycles (number per year): Number 

of times that the air temperature trend crosses the freezing point, per year. 

• FTprep: Product of FTCycle and Prep: Water that accumulates in the voids 

and cracks of the pavement freezes and increases in volume, creating more 

stresses and cracking. Water may also increase loss of cohesion in the asphalt 

mix. To reflect this in the model, the variable FTprep was created as the 

product of FTCycle and Prep. 
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• Prob_ba, Prob_aa, Prob_other: The probability of choosing material types BA, 

AA, or some other type, respectively. These variables are further explained in 

Section 3.3. 

• Newoverlay1: Instrumented overlay thickness (in ft.). This variable is further 

explained in Section 3.3. 

Table 1 shows the minimum, mean, and maximum values of each explanatory 

variable in the sample. The mean thickness of the overlay is relatively low (0.15 ft.), as 

are the mean values of the existing longitudinal and alligator cracking (29.4% and 4.98%, 

respectively). This suggests that WSDOT’s overlaying strategy is to apply thin overlays 

on a frequent basis. The climate variables reflect the relatively cold (Tmin, -1.45°C; 

Tmax, 25.4°C) and rainy (Prep, 757 mm) weather of Washington State. 

 

Table 1: The minimum, mean, and maximum of each explanatory variable in the 

sample 

Variable Minimum Mean Maximum
E_Alli (%) 0.00E+00 4.98E+00 8.00E+01 
E_long (%) 0.00E+00 2.94E+01 2.55E+02 

actbthick (ft.) 0.00E+00 3.90E-01 6.50E-01 
pctbthick (ft.) 0.00E+00 5.00E-01 7.50E-01 
untrthick (ft.) 0.00E+00 8.00E-01 2.83E+00 

ULT (ft.) 6.00E-02 4.60E-01 1.90E+00 
Tmax (°C) 1.40E+01 2.54E+01 3.80E+01 
Tmin (°C) -1.10E+01 -1.45E+00 4.00E+00 
Prep (mm) 1.00E+02 7.57E+02 2.70E+03 

Ftcycles (Numb.) 2.00E+00 8.60E+01 2.75E+02 
SURFTHK (ft.) 3.00E-02 1.50E-01 6.00E-01 

 

3.3 Model Specification 

A Cox model was developed using approximately 7,000 observations (about one-third of 

the population data) from the Washington data source described earlier. Observations 

were chosen based on systematic sampling by picking the first observation from every set 
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of three observations. This sampling technique was used in order to reduce the risk of 

serial correlation in the data since the WSDOT database records are contiguous sections. 

The dependent variable is the number of Cumulative ESALs to failure, where 

failure is defined as 5% alligator cracking or 5% longitudinal cracking, whichever occurs 

first. Several specifications that are linear in the parameters were tried using different 

combinations of the explanatory variables. 
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The function βTxex =Ψ )(  that gives the best model is of the form  

=Ψ )(x Exp (β1E_Alli + β2E_Long+ β3 actbthick + β4 pctbthick + β5 untrthick+ β6ULT + 

β7Tmax + β8Tmin + β9FTprep+ β10Prob_ba + β11 Prob_aa + β12 newoverlay1)            (26) 

The variables E_Alli, E_Long, actbthick, pctbthick, untrthick, ULT, Tmax, Tmin, 

and FTprep are defined in Section 3.2. The variables newoverlay1, Prob_ba, and Prob_aa 

are the instrumented variables for SURFTHK, BA, and AA, respectively. In fact, the 

choice of the overlay thickness as well as the material type depends on the projected 

yearly ESALs, the previous conditions (existing cracking, etc.), and the previous 

structural strength. In order to correct for the endogeneity of the thickness of the AC 

overlay, the variable SURFTHK was regressed on projected yearly ESAL (1999 ESAL), 

structural variables (base thickness, thickness of previous AC layers), existing cracking, 

and climate variables. Based on this regression, a corrected or instrumented AC overlay 

thickness was created (newoverlay1) and later used in the Duration Model. In order to 

correct for the endogeneity of the material type, a multinomial logistic regression was 

performed on some of the same variables above as well as the instrumented AC overlay 

thickness (newoverlay1). This regression allowed the computation of the probability of 

choosing a certain material type (Prob_ba, Prob_aa, and Prob_other). 

 

3.4 Model Results and Analysis 

Our expectations of the effects of explanatory variables on the overlay life are as follows: 

we expect that better structural conditions increase the overlay life. Accordingly an 

increase in the thickness of the overlay, an increase of the untreated or treated base, and 

an increase in the thickness of underlying asphalt concrete layers, would increase the 

overlay life (Cumulative ESALs to failure) by increasing the strength of the pavement. 

An increase in the existing cracking before rehabilitation is expected to decrease the life 

of the overlay. If existing cracking before rehabilitation is a significant explanatory 

variable, this would support our hypothesis that overlay cracking is at least partly due to 

reflection cracking. We would also expect that as the minimum temperature increases, the 

occurrence of low temperature cracking in the asphalt overlay decreases, which increases 

the life of the overlay. Precipitation is expected to decrease the life of the overlay and to 
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accelerate cracking because water infiltrates to the granular layers and the subgrade, and 

makes them softer, which weakens support for the asphalt layers and renders them more 

susceptible to cracking. Moreover precipitation can weaken the asphalt overlay. freeze-

thaw cycles, in the presence of water from precipitation, also tend to decrease the life of 

the overlay because they lead to an increase in volume, which widens existing cracks. 

Higher maximum temperatures were expected to soften the asphalt, reducing the support 

of underlying asphalt layers, increasing the strains in the overlays, and shortening lives. 

Table 2 shows the results of the estimation of the parameters of Equation (26). 

These results confirmed our expectations of the correctness of the signs. Furthermore, the 

t-statistics show that each variable is a significant explanatory variable of crack initiation 

at the five percent significance level. Moreover, we learn from the models that the AA 

material type is better than the BA material type, but that both are worse than the average 

material type in the sample. In addition, treated base appears to be significantly better (by 

one order of magnitude) in extending the life of the overlay than the non-treated base, and 

asphalt-treated base appears to be slightly better than portland cement-treated base. 

In order to test the prediction power of the Cox model, the estimated survival and 

hazard functions (Figures 7 and 8, respectively) were plotted and compared to the 

nonparametric estimates of the survival and hazard functions plotted using the sample 

data (Figures 5 and 6, respectively). It is clear comparing Figure 7 to Figure 5, and Figure 

8 to Figure 6, that the new model has good predictive power. (Note: The model 

estimations and predictions were made using the Stata 8 software and manuals developed 

by the Stata Corporation, 2003.) 
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Table 2: Cox Model Coefficients Estimates. (Note: Positive coefficients indicate 

negative effect on the the cumulative ESALs to 5% cracking) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 
observations 7132 

 

The survival function estimates indicate that around 15% of the sections survive 

past 500,000 cumulative ESALs, and that less than 5% survive past 1,000,000 cumulative 

ESALs. Figures 6 and 8 show a hazard rate that decreases initially for cumulative ESALs 

less than 500,000 then starts an increasing trend past this value. The hazard rate shoots 

high after reaching 1,000,000 cumulative ESALs. This hazard rate trend suggests that 

weak overlays fail early, and that overlays that live long enough have a lower probability 

of failure until they reach a certain point. After that point they deteriorate rapidly, which 

leads to a rapid increase of their probability of failure. This hazard rate shape is often 

Variable Coefficient t-statistic 

E_Alli  2.79E-02  1.38E+01 

E_long  6.40E-03  1.13E+02 

actbthick -2.44E+00 -1.17E+01 

pctbthick -7.91E-01 -8.57E+00 

untrthick -5.37E-01 -1.33E+01 

ULT -5.50E-01 -7.99E+00 

Tmax -5.63E-02 -1.21E+01 

Tmin -1.88E-01 -2.43E+01 

Ftprep  6.62E-05  2.01E+01 

newoverlay1 -3.31E+01 -1.08E+01 

Prob_aa  8.73E+00  1.33E+01 

Prob_ba  1.11E+01  1.64E+01 
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observed in natural phenomena (e.g., the hazard function depicting human life with a 

high infant mortality that is followed by a low death rate, which in turn followed by a 

death-rate increase due to old age) and is referred to as a “bathtub hazard function.” 

Another explanation for this hazard function’s behavior is this: sections that live long 

enough receive routine maintenance that further extends their life and reduces their 

hazard rate. When these sections pass a certain life (500,000 cumulative ESALs) they 

start deteriorating rapidly and routine maintenance becomes ineffective. Neither of these 

explanations has been investigated. 
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Figure 5: Non-parametric plot of the survival function 
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Figure 6: Non-parametric plot of the hazard function 
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Figure 7: Model prediction of the survival function 
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Figure 8: Model prediction of the hazard function 

3.5 Model Predictions and Sensitivity 

In this section we will perform a parametric study to illustrate the importance of 

performance models on infrastructure maintenance policies. 

We compute the expected ESALs to 5% cracking for each variable at its Mean 

sample value, at the mean +/- one standard deviation (S), and at mean +/- 3S (Table 3), 

while keeping all other explanatory variables fixed at their mean values. For all the 

graphs produced, we also varied the overlay material type (AA, and BA). It should be 

noted that for some variables, the Mean-S, or Mean-3S fell outside a meaningful range 

(such as a negative value for the overlay thickness) and were omitted from the graphs. 

The results presented in Figure 9 show that an overlay’s thickness has the largest 

effect on its life. The overlay material type is another important variable; choosing a 

different material type can more than triple the life of an overlay. The thickness of the 

underlying layers (Figure 10) and the thickness and type of the base also appear to be 

important (Figures 11, 12, and 13). These findings are particularly important since 

surface thickness, material type, and thickness of the underlying layers are among the 
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main variables considered in maintenance policies. The decrease of the overlay life with 

an increasing percentage of existing alligator and longitudinal cracking (Figures 14 and 

15) confirms the hypothesis that overlay cracking is at least partly due to reflection 

cracking. Consideration of climate variables, such as the average minimum temperature 

of the coldest month (Figure 16), the average maximum temperature of the hottest month 

(Figure 17), and the product of freeze-thaw cycles and annual precipitation (Figure 18), is  

also important in determining the life of the overlay, but less so than that of the main 

structure variables. Figures 19 through 21 compare the relative effect of each explanatory 

variable on the life of the overlay. . However, it should be noted that the Mean-S, the 

Mean, and the Mean+S values differ for each explanatory variable, and this should be 

considered when making comparisons. 

Table 3: The Mean, Mean +/-S, and Mean +/- 3Ss of Each Explanatory Variable in 

the Sample 

 

Variable Mean-3S Mean-S Mean Mean+S Mean+3S 

E_Alli N/A N/A 4.98 12.33 27.02 

E_long N/A 5.58 29.39 53.19 100.81 

actbthick 0.05 0.28 0.39 0.50 0.72 

pctbthick 0.42 0.47 0.50 0.52 0.57 

untrthick -0.40 0.40 0.80 1.20 2.00 

ULT -0.19 0.24 0.46 0.67 1.10 

Tmax 14.55 21.81 25.44 29.08 36.34 

Tmin -11.29 -4.73 -1.45 1.83 8.39 

Ftprep N/A N/A 22,192.30 45,277.68 91,448.44 

newoverlay1 N/A 0.09 0.15 0.21 0.33 
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Figure 9: The effect of AC overlay thickness on overlay life 
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Figure 10: The effect of the thickness of previous AC layers on overlay life 
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Figure 11: The effect of the thickness of AC-treated base on overlay life 
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Figure 12: The effect of the thickness of PC treated base on overlay life 
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Figure 13: The effect of the thickness of untreated base on overlay life 
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Figure 14: The effect of the percentage of existing alligator cracking on overlay life 
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Figure 15: The effect of the percentage of existing longitudinal cracking on overlay 

life
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Figure 16: The effect of the average minimum temperature of the coldest month on 

overlay life 
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Figure 17: The effect of the average maximum temperature of the hottest month on 

overlay life 

0

100,000

200,000

300,000

400,000

500,000

600,000

0 22,192 45,278 68,363 91,448

Product of freeze thaw cycles and precipitation

E
xp

ec
te

d 
C

um
ul

at
iv

e 
ES

AL
s 

to
 5

%
 

cr
ac

ki
ng

 

ba
aa

 

Figure 18: The effect of the product of freeze-thaw cycles and precipitation on 

overlay life 
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Figure 19: Comparison of the effect of existing alligator cracking, existing 

longitudinal cracking, thickness of previous layers, and overlay thickness on life of 

the overlay 
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Figure 20: Comparison of the effect of the average maximum temperature of the 

hottest month, the average minimum temperature of the coldest month, and the 

product of precipitation and freeze-thaw cycles on the life of the overlay 
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Figure 21: Comparison of the effect of the AC-treated base, PC-treated base, and 

none treated base on the life of the overlay 
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4.0 ASPHALT CONCRETE ROUGHNESS PROGRESSION MODEL 

4.1 Review of Linear Regression 

Linear regression is used to develop a model that predicts incremental roughness 

progression based on the Washington State Pavement Management System (WSPMS) 

database. Initially, Ordinary Least Squares (OLS) regression is employed to find a model 

that is both statistically significant and valid in the sense that the explanatory variables 

are causally linked to roughness progression. Once a reasonable model is obtained using 

OLS, a second one is estimated using the Random Effects Model approach to account for 

unobserved heterogeneity. 

OLS regression is performed to estimate a linear model that helps explain the 

effects on a dependent variable resulting from shifts in specified explanatory variables. 

Equation 27 exhibits the general form of the linear regression model where y represents 

the dependent variable and Kx  is the explanatory variable value with an estimated 

coefficient of Kβ  for each variable denoted by the value of subscript K. 0β  is the 

estimated constant, ε  is the random error term, and the subscript i denotes each 

observation in the dataset. 

iiKKiii xxxy εββββ +++++= K22110     (27) 

The following assumptions are made when employing OLS (Pindyck and 

Rubinfeld 1981). 

• Equation 27 gives the model specification. 

• The x’s are nonstochastic. In addition, no exact linear relationship exists 

between two or more of the independent variables. 

• The error term has 0 expected value and constant variance for all 

observations. 

• Errors corresponding to different observations are uncorrelated.  

• The error variable is normally distributed. 

The coefficients of the linear model are estimated by minimizing the sum of the 

squared deviations of the observed dependent variable values from the fitted line. This 

concept is restated formally in Equation 28, where i denotes each observation, iY is the 
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observed value of Y, the dependent variable, and iŶ  is the estimated value of Y that lies on 

the fitted line. 

∑ − 2)ˆ( Minimize ii YY       (28) 

The use of matrix notation provides a concise solution to the estimation of 

coefficients based on the objective described by Equation 28. Equation 29 shows the 

solution, where β̂  = k*1, a dimensioned column vector of estimated coefficients 

including the constant, Y = N*1 column vector of dependent variable observations, and X 

= N*k matrix of explanatory variable observations. N is the number of observations in 

the dataset, and k is the number of explanatory variables including the constant which 

takes on the value 1 for all observations. The derivation of this result involves the use of 

calculus and can be found in standard econometrics literature (Pindyck and Rubinfeld 

1981).  

=β̂  (X’X)-1(X’Y)      (29) 

After finding a valid model through OLS, further refinement can be made by 

accounting for the fact that the observations take the form of a panel dataset. This 

refinement requires considering each observation to be a measurement of the 

characteristics of a length of pavement section at a particular point in time (which is why 

it comprises a panel dataset.) Further calibration is necessary because panel datasets often 

have some unobserved heterogeneity, or cross-sectional variation, which persists through 

time. Therefore, a second error term is added that captures this variation; this approach is 

known as a Random Effects Model. It accounts for the panel dataset by including error 

terms for both observations and sections. Equation 30 shows the form of the model 

equation; in it the coefficients and explanatory variables described for Equation 28 

reappear. 

 jjtjtKKjtjtjt xxxy νεββββ ++++++= K22110    (30) 

The aforementioned assumptions for OLS apply to the Random Effects Model as 

well, except that Equation 30 now gives the model specification, the variance for the 

error term across observations is not assumed to be constant, and the errors for different 

observations may be correlated. The two error terms are also assumed to be uncorrelated 
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with one another, errors for different sections are assumed to be uncorrelated, and the 

expected value for the new error term is equal to 0. 

For the Random Effects model, a two-step Generalized Least-Squares (GLS) is 

applied. GLS can be applied to cases in which serial correlation and heteroscedasticity 

are present. In the first step, the variance components are estimated by using the residuals 

from OLS regression. In the second step, feasible GLS estimates are computed using the 

estimated variances. Equation 31 presents the resulting formula used to estimate the 

coefficients using the Random Effects approach. The matrices used to estimate the slopes 

for OLS are again used for the Random Effects Model. In addition, V represents a 

consistently estimated N*N-dimensioned matrix of correlation coefficients for the error 

term values. The derivation of this result can be found in standard econometrics literature 

(Greene 1993). 

  =β̂ (X’V-1X)-1(X’V-1Y)     (31) 

4.2 Dataset 

The WSPMS database uses the value International Roughness Index (IRI) to represent 

the extent of roughness on pavement sections. IRI, which is measured in the 

dimensionless unit cm/km, represents the results of simulation of a quarter of a passenger 

car responding to the vertical deviations in a pavement surface per length of roadway in 

terms of the vertical movement of the car body and therefore the passenger. This model 

uses the change in IRI (∆IRI) divided by the number of years between observations as its 

dependent variable. 

The model also contains eleven explanatory variables, which are listed in Table 4 

with their estimated coefficients and t-statistics. The first variable is the previous year’s 

IRI because it indicates how great the rate of IRI progression is affected by the extent of 

previously recorded roughness. Accordingly, the previous IRI variable contributes to 

indicating the curvature for the IRI curve as a function of time. 

The length of time that has passed since the last AC or bituminous surface 

treatment (BST) overlay also affects the curvature of the IRI function because it provides 

a representation of how long has passed since the last major repair activity. 
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The final variable affecting the curvature is the cumulative ESALs variable, 

which accounts for the effect of total traffic loading since the most recent AC overlay.  

Recognizing that many of the valid observations in the dataset actually exhibit a 

decrease in IRI, three independent variables have been incorporated into the model to 

capture the effects of maintenance and rehabilitation. The maintenance dummy is set 

equal to 1 for observations that do not occur during a recorded AC or BST overlay year, 

but do have a negative ∆IRI. On the other hand the AC overlay dummy is set equal to 1 

for observations made during an AC overlay year and exhibit a negative ∆IRI; the BST 

dummy is set equal to one in the case of a BST overlay year and a negative ∆IRI. 

Observations that have a positive ∆IRI are assigned values of 0 for all three dummy 

variables.  

These variables allow four different intercept parameters to be computed for the 

cases of maintenance, AC overlay, BST overlay, and deterioration only. The intercepts 

are calculated by the addition of the estimated constant and the appropriate dummy 

coefficient in the case of repair, and only by the constant in the case of no repair. 

Two variables are included to represent the strength of the pavement structure. 

The first variable is the total thickness of the asphalt surface layers, which is directly 

impacted by traffic and is also the layer on which roughness is measured. The base 

thickness is included to represent the strength of the underlying layers. The base layer 

provides support for the surface layers. 

The model also captures the effects of yearly traffic and the environment through 

three variables. The ∆ESALs variable provides a representation of traffic loading, which 

has impacted the pavement during the observation year, because heavy traffic can 

significantly increase the deterioration rate. Two final variables incorporated capture the 

effects of the environment on pavement deterioration. Because water can significantly 

damage pavements; an annual precipitation variable has been included. Finally, the 

model includes a variable for minimum yearly air temperature because low temperatures 

can severely weaken pavements by causing them to become very brittle. 

Certain observations are omitted from the dataset. These include observations for 

in which valid measurements are not available for the explanatory or dependent variables. 

They are also omitted because the concept of pavement management had not begun 
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implementation until around 1980. Accordingly, observations made of pavement sections 

where overlay was applied before 1980 have been removed because it is assumed that 

measurements at that time were inaccurate. After these data were removed, only half of 

the pavement sections were used to estimate the model. The predictive capability of the 

model was tested on the remaining sections. 

4.3 Estimation Results 

Table 4 displays the estimated Random Effects Model for roughness progression. 

Table 4: Estimated Roughness Progression Model 

Explanatory Variable Coefficient t-statistic 

Constant 52.0918 89.276 

IRI in previous year (cm/km) -0.171 -111.615 

∆ESALs in year of observation (millions of ESALs) 3.371 2.949 

Cumulative ESALs (millions of ESALs) -1.713 -10.075 

Base Thickness (ft.) -1.868 -8.166 

Total Thickness of AC Overlays (ft.) -5.661 -15.151 

Time since last AC or BST overlay (yrs.)  0.826 24.668 

AC Overlay Dummy  -64.196 -120.851 

BST Overlay Dummy -50.512 -25.323 

Maintenance Dummy -50.603 -262.981 

Minimum Air Temperature (°C) -0.174 -10.066 

Yearly Precipitation (in.) 0.026 5.963 

Number of Observations = 109,107 Number of Sections = 16,659 

R-squared = .526 Dependent Variable: ∆IRI (cm/km) 

 

The magnitude of the error terms indicates that the variation across sections does 

not have a large effect relative to the variation across observations, since εjt is an order of 
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magnitude greater than νj The t-statistics indicate that all coefficients have a level of 

significance greater than 99.5%, since the lowest is 2.949. This shows that all the 

explanatory variables along with their coefficients have significant effects on roughness 

progression. Also, the R-squared value is reasonably high considering that the model is 

predicted using field data. The value indicates that 52.6% of the total variation in the 

dependent variable is explained by the model. 

The signs for the coefficients are generally as expected with the layer thicknesses, 

minimum air temperature, and dummies having negative signs, indicating that thicker 

pavements, higher minimum air temperatures, and repair activities reduce roughness 

progression. In addition, the positive signs on the yearly traffic loading and precipitation 

coefficients correspond with the increase in ∆IRI caused by these variables. The sign for 

the time since the last overlay indicates that the rate of roughness progression increases 

with age; however, the signs of the previous IRI and cumulative ESALs coefficients are 

negative, suggesting that ∆IRI decreases with increases in the previously recorded IRI 

and total traffic loading, contrary to expectation. This is a somewhat counterintuitive 

result; however, the data has some measurement error and certain assumptions have been 

made in its structuring. For instance the many negative values for the ∆IRI found in the 

dataset are a significant concern, since the roughness should be generally increasing. In 

addition, the overlay years do not necessarily match the significant decreases in IRI, and 

information regarding the timing of surveys in relation to those for overlays is not 

provided. These problems may also be exhibited in the magnitudes of the dummy 

coefficients, since the maintenance dummy coefficient is nearly equal to the BST dummy 

coefficient and the two are fairly close to the magnitude of the AC dummy coefficient. 

One would expect a contrary result with the AC dummy coefficient far more negative 

than the other two, and the BST dummy more negative than the maintenance dummy. 

4.4 Prediction Results 

Figures 22 through 24 display the observed versus predicted ∆IRI on different axes 

scales. The predicted ∆IRI values are calculated using the estimated roughness model on 

the second half of the pavement sections, which were separated prior to model 

estimation. As can be inferred from Figure 23, the model generally does not tend to 
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underestimate or overestimate the ∆IRI when the observed value is between about -70 to 

-15 cm/km, and between 5 to 40 cm/km, since the data spreads evenly above and below 

the 45-degree line. This line represents cases in which the predicted value equals the 

observed value. For observed values of ∆IRI between about -15 and 5 cm/km, the model 

does tend to overestimate the magnitude of ∆IRI as can be seen in Figure 24. In this 

range, many of the data points lie above the line for observed ∆IRI values greater then 0, 

and for observed values below 0, the predicted ∆IRI often lies below the line. On the 

other hand, for cases in which the observed ∆IRI has a high magnitude, above 40 cm/km 

or below -70 cm/km, the model tends to underestimate the dependent variable. To some 

extent, this result can be expected because of the presence of outliers. Figure 25 indicates 

that over 85% of the observations have observed ∆IRI values between -70 cm/km and 

40 cm/km. Therefore, only a small percentage of the observations have been 

underestimated. On the other hand a larger percentage – about 30% – of the observed 

∆IRI values is close to 0, in which case the magnitudes are sometimes overestimated. 

Figures 26 through 30 display deterioration predictions for roughness progression 

based on the mean values for the half of the dataset on which the model has been 

estimated. Also, the ∆ESALs, base thickness, asphalt surface thickness, minimum 

temperature, and yearly precipitation values are varied by one and two standard 

deviations from the Mean, producing multiple curves in the figures. This provides an 

indication of the shift in roughness progression resulting from variation in the 

explanatory variable values. As displayed in Figure 28, variations in the asphalt surface 

layer thickness value causes significant shifts in the resulting IRI curve. Variations in 

base thickness, minimum temperature, and yearly temperature cause some shift in the IRI 

curve and nearly no change occurs due to variations in ∆ESALs. 

The differences in the curves are a result of two factors. The first is the magnitude 

of the effect that a variable multiplied by its coefficient has in comparison to the other 

terms in the model. The second factor is the variation for each variable within the dataset, 

i.e., the size of the standard deviation. Accordingly, a larger standard deviation causes 

greater variation in the curves. 
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Figure 22: Observed vs. Predicted ∆IRI with outliers 

 

Figure 23: Observed vs. Predicted ∆IRI capturing the range in which the model 

does not underestimate or overestimate the dependent variable 
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Figure 24: Observed vs. Predicted ∆IRI for the range where the model sometimes 

overestimates magnitude of the dependent variable 

 

Figure 25: Cumulative Distribution Function for Observed ∆IRI for the half of the 

dataset that had been removed prior to model estimation and used in predictions 
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Figure 26: IRI deterioration curves with ∆ESALs varied 
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Figure 27: IRI deterioration curves with base thickness varied 
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Figure 28: IRI deterioration curves with asphalt surface thickness varied 
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Figure 29: IRI deterioration curves with minimum temperature varied 
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Figure 30: IRI deterioration curves with yearly precipitation varied 
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5.0 PORTLAND CEMENT CONCRETE PAVEMENT DETERIORATION 

In contrast to the large data sets and rich information available for AC pavements, the 

WSPMS database contains only a small number of observations on PCC pavements. 

Furthermore the number of useful observations of them is even smaller they are 

“censored” observations: a large fraction consist of pavements for which the initiation of 

the distress of interest was not observed. As explained in Section 2.2, a censored 

observation occurs when only a bound is known on the time of failure. There are several 

types of censoring. Right censoring occurs when there is one or more pavement sections 

for which only a lower bound is known on the lifetime. Another form of censoring is left 

censoring. An example of left censoring is when a pavement section’s failure occurs 

before the beginning of an observation period. Data can be both left- and right-censored 

if the conditions described above for the two types occur. In the WSPMS database, a 

large fraction of the condition data for PCC pavements is either left censored or right 

censored. 

Given the small sample sizes and the prevalence of censoring in the PCC 

pavement condition data, it was not possible to develop statistically significant models of 

PCC pavement cracking initiation for either longitudinal or transverse cracking. 

Similarly, it was not possible to develop a meaningful model of IRI progression for PCC 

pavements. 

Distributional analysis was performed using data in the WSPMS database for the 

Mean Time to Failure (MTTF), where failure was defined as the initiation of longitudinal 

and transverse cracking in portland cement concrete (PCC) pavements. Here, cracking 

initiation is defined as greater than zero percent of slabs cracked. In the longitudinal 

cracking analysis, 74 pavement sections are used, 38 of which are censored. For the data 

analysis of the transverse cracking data analysis, the number of pavement sections is 75 

sections, 45 of which are censored. 

Data summaries are given in Table 5 for the longitudinal cracking distribution. 
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Table 5: Characteristics of the Longitudinal Cracking Distribution 

 Estimate Standard Error

Mean (MTTF) (yrs.) 2.601 0.190 

Standard Deviation 1.464 0.070 

Median 2.4 0.201 

It can be seen that the MTTF is unrealistically small. This is so because more than 

a third of the initiation times of longitudinal cracking for the PCC pavement sections (30 

out of 74) are left-censored, and, as such, the MTTF for these sections appears to be zero, 

which biases the results reported in Table 5. 

A similar distributional analysis of the transverse cracking data produced the 

results shown in Table 6. 

Table 6: Characteristics of the Transverse Cracking Distribution 

 Estimate Standard Error 

Mean (MTTF) (yrs.) 3.032 0.294 

Standard Deviation 1.440 0.0656

Median 2.904 0.310 

It should be noted that in most of the sections, cracking had occurred at the time 

of first observation or it did not appear at all over the set of observations, so a large 

fraction of the data is either left- or right-censored. The observed transverse cracking was 

never of great severity. 

6.0 CONCLUSIONS 

The major conclusions of this research can be summarized as follows. 

1. The two performance models developed using the WSDOT PMS data for AC 

pavements or overlays (cracking initiation and IRI) are satisfactory. 
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2. The following explanatory variables were found to be the most relevant 

predictors of the number of ESALs-to-cracking initiation of overlays on AC 

pavements. 

• The overlay thickness 

• The type of AC mix used for the overlay 

• The thickness of the underlying AC layers prior to application of the 

overlay 

• The existing longitudinal and alligator cracking prior to application of the 

overlay 

• The base thickness and type (whether it was untreated, granular material, 

PC-treated, or AC-treated) 

• The maximum temperature during the hottest month and the minimum 

temperature during the coldest month (averages taken over the life of the 

overlay) 

• The number of freeze-thaw cycles and the average precipitation 

3. The following explanatory variables were found to be the most relevant 

predictors of the annual increment in IRI for AC pavements and overlays. 

• The IRI in the previous year 

• The number of ESALs in the subject year 

• The cumulative number of ESALs prior to the subject year 

• The base thickness 

• The total thickness of AC (including all overlays) 

• The number of years since the last overlay or bituminous surface treatment 

• The type of the last MR&R activity applied to the pavement (overlay, BST 

or routine maintenance) 

• The minimum temperature in the coldest month (the average over the life 

of the pavement) 

• The annual precipitation (the average over the life of the pavement) 

4. We were not successful in developing models using the WSDOT PMS data 

for PCC pavements (crack initiation and IRI). The main reason for this was 



 

 

50

the small number of PCC observations available in the WSDOT PMS 

database. 

5. This research has identified a list of variables recommended for collection by 

Caltrans. Other state DOTs currently collect elements of these variables. 

Appendix A provides a list of these variables. 

6. To assist in making predictions using the model of cracking initiation for AC 

overlays, the research team developed a numerical integration procedure using 

Macros in Microsoft Excel. The description of this procedure appears in 

Appendix B. 

Our main recommendations are: 

1. To complete the AC Pavement Performance Model suite, a crack progression 

model should be developed. The progression model should be used jointly 

with the crack initiation model developed in this research. 

2. The completed AC pavement models (crack initiation and progression, IRI 

progression) should be tested on California PMS data. These data can either 

be collected as part of a pilot project or drawn from the extant Caltrans’ PMS 

database. (If the latter source is chosen, that database will need to populated 

with consistent information before testing the model.) If the results of the tests 

are positive, then Caltrans can essentially use these as temporary AC 

Pavement Performance models. 

3. Once Caltrans has populated its PMS database with sufficiently extensive 

condition survey data, the models developed in this report can be updated with 

the California data by using statistical fusion procedures such as Bayesian 

Updating. 

4. The ultimate objective of the development of such models is to use them 

within an integrated Pavement Management System. The models can provide 

predictions to support MR&R planning at both the project and network levels. 

Therefore, to fully reap the benefits of its investment in this research, Caltrans 

should continue its efforts at modernizing its Pavement Management System. 
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8.0 APPENDIX A: LIST OF VARIABLES REQUIRED FOR THE CALTRANS 
PMS 

The purpose of this chapter is to recommend variables that are important for modeling 

that should be included in the Caltrans PMS. These variables are divided into two parts: 

variables that are essential and variables that are useful, though not critical. 

A.1.  FIRST LEVEL OF PRIORITY: ESSENTIAL FOR MODELING 

A.1.1.   Condition Data for Rigid Pavements 

Type: Faulting 

Severity: Difference in elevation at the joint (mm). Extract from profilometer data. 

Extent: Collect the sample of fault height within the section, either the entire section 

when collected with the profilometer or from a representative subsection of random 

sampling if not collected automatically. Report the average and standard deviation of 

fault heights within the section. 

 

Type: Transverse Cracking 

Severity: Cracked or not cracked (per slab) 

Extent: Percentage of slabs cracked  

 

Type: Longitudinal cracking 

Severity: No cracks, one crack, or two cracks per slab 

Extent: Percentage of slabs that have one crack in wheel path, percentage of slabs that 

have two cracks in wheel path; percentage of slabs that have one crack in centerline, 

percentage of slabs that have two cracks in centerline 
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Type: Corner cracking 

Severity: 0, 1, 2, 3, 4 cracks per slab 

Extent: Percentage of slabs with one, two, three, or four cracks 

A.1.2.  Condition Data for Flexible Pavements 

Type: Alligator cracking   

Severity: Combination of crack width and a qualitative measure 

• Low: Branched, longitudinal, discontinuous thin cracks are beginning to 

interconnect and form the typical alligator pattern. There is no spalling along the 

cracks. A single, continuous crack may appear, usually along the wheel path, with 

frequent, intermittent smaller cracks running at angles to the primary crack. 

• Medium: Cracking is completely interconnected and has fully developed an 

alligator pattern. Spalling appears at the edges of cracks. The predominant pieces 

formed by the cracking may be large ones (12 in. or more in the longest 

dimension). The cracks may be greater than 1/4 in. wide, but the pavement pieces 

are still in place. 

• High: The pattern of cracking is well developed with small pieces (less than 12 in. 

in the longest length) predominating. Spalling is very apparent at the crack. 

Individual pieces may be loosened and may rock under traffic. Pieces may be 

missing. Pumping of fines up through the cracks may be evident. 

Extent: Separate the alligator cracking measurements into the three severity types. Add 

together the lengths for each type in both wheel paths of the surveyed lane. Divide the 

accumulated lengths by twice the length of the segment (two wheel paths per lane). 

 

Type: Longitudinal cracking 

Severity: Width of the crack 

Extent: The extent of longitudinal cracking is recorded as a percentage of the length of 

the surveyed segment. Separate the measurements for each type of crack severity, then 
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add together the length data for the surveyed lane. Divide the accumulated lengths by the 

length of the segment. 

Note: The result for this measure may be greater than 100% if there are many 

parallel cracks. 

 

Type: Thermal cracking 

Severity: Width of crack 

Extent: Percentage of section length with no cracking, and percentage of section length 

with cracking plus the distribution of crack spacing 

 

Type: Rutting 

Severity: N/A 

Extent: Record the average rut depth in the wheel path and the standard deviation of the 

rut depths for the segment. This can be done automatically with vehicles using laser 

sensors. At least five sensors are needed: two outside of wheel paths, two in wheel paths, 

and one between wheel paths. 

 

Type: Reflection cracking for AC/AC 

Note: Flexible pavement crack types previously defined.  

Type: Reflection cracking for AC/PCC or CTB (cement treated base) 

 Transverse Longitudinal  Corner 

Severity: Width Width Width 

Extent: Cracks per 100 m Length Cracks per 100 m 
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Type: Roughness 

Severity: N/A 

Extent: Measured and reported in units of IRI 

A.1.3.  Climate Data 

• Rainfall: Total annual rainfall in mm 

• Temperatures: Annual temperature distribution and daily air temperature 

change distribution 

A.1.4.  Traffic Data 

• Monthly truck axle load distribution 

• Monthly truck type distribution 

A.1.5.  Pavement Structures 

• Subgrade soil type by Unified Classification System 

• Total thickness of granular layer 

• Total thickness of cemented soils 

• Total thickness of portland cement concrete 

• Total thickness of asphalt layers 

• Thickness of overlay 

• Visible maintenance activity type (qualitative description) 
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A.2.  Second Level of Priority: Useful but Not Critical for Modeling 

A.2.1.  Condition Data for Rigid Pavements 

Type: Joint spalling 

Severity: The severity of joint spalling is quantified by the size of the spalls in the joints 

that are spalled. 

• Low: 1/8-in. to 1-in. spalls  

• Medium: 1-in. to 3-in. spalls 

• High: Greater than 3-in. spalls 

Example: A segment can have 20% low spalls, 15% medium spalls and 10% high spalls. 

Extent: The extent of the joint spalling is quantified as the percentage of spalled joints out 

of the total number of joints in the segment. 

 

Type: Crack Spalling 

Severity: The severity of the crack spalling is quantified by the size of the spalls in the 

cracks that are spalled: 

• Low 1/8-in. to 1-in. spalls  

• Medium 1-in. to 3-in. spalls 

• High Greater than 3-in. spalls 

Example: a segment can have 20% low spalls, 15% medium spalls and 10% high spalls. 

Extent: The extent of the crack spalling is quantified as the percentage of spalled cracks 

out of the total number of cracks in the segment. 

 

Type: Pumping 

Severity: Qualitative measure 

• Low: Slight shoulder depression evident, little or no staining 
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• Medium: Moderate shoulder depression with obvious staining 

• High: Severe shoulder depression and/or significant staining 

Extent: The extent is quantified by the percentage of the number of joints and cracks in 

the segment that exhibit pumping. 

 

Type: Patching 

Severity: The severity of patching is quantified by a representative percentage of area of 

patch within a typical patched panel.  

Extent: The extent of patching is quantified by the percentage of panels in a segment that 

have patches. 

 

Type: Raveling or scaling 

Severity: The severity of raveling or scaling is determined from personal judgment on the 

basis of the following descriptions. 

• Slight: The aggregate or binder has started to wear away but has not progressed 

significantly. The pavement only appears slightly aged and slightly rough. 

• Moderate: The aggregate or binder has worn away and the surface texture is 

moderately rough and pitted. Loose particles may be present, and fine aggregate is 

partially missing from the surface. 

• Severe: The aggregate and/or binder have worn away significantly, and the 

surface texture is deeply pitted and very rough. Fine aggregate is essentially 

missing from the surface, and pitting extends to a depth approaching one half the 

size of the coarse aggregate. 

Extent: The extent of raveling or scaling is the percentage of the surface area of the 

pavement that is raveled or scaled. 
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Type: Blowups 

Severity: N/A 

Extent: The number of occurrences in the segment are counted and recorded. 

 

Type: Wear 

Severity: N/A 

Extent:  Record the average wear (rut) depth in the wheel path and the standard deviation 

of the wear depths for the segment or for a sample. This can be done automatically with 

vehicles using laser sensors. At least five sensors are needed: two outside of wheel paths, 

two in wheel paths, and one between wheel paths. 

A.2.2.  Condition Data for Flexible Pavements 
Type: Flushing, bleeding 

Severity: Qualitative measure 

• Low: Minor amounts of the aggregate have been covered by excess asphalt, 

but the condition has not progressed significantly. 

• Medium: Significant quantities of the surface aggregate have been covered 

with asphalt. However, much of the coarse surface aggregate is exposed, even 

in areas that show flushing. 

• High: Most of the aggregate is covered by asphalt in the affected area. The 

area appears wet and is sticky in hot weather. 

Extent: Percentage of wheel path 

 

Type: Raveling 

Severity: Qualitative measure 

• Low: The aggregate or binder has started to wear away but has not progressed 

significantly. The pavement only appears slightly aged and slightly rough. 
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• Medium: The aggregate or binder has worn away and the surface texture is 

moderately rough and pitted. Loose particles may be present, and fine 

aggregate is partially missing from the surface. 

• High: The aggregate and/or binder have worn away significantly, and the 

surface texture is deeply pitted and very rough. Fine aggregate is essentially 

missing from the surface, and pitting extends to a depth approaching one half 

the size of the coarse aggregate. 

Extent: The extent of raveling is estimated and expressed as a percentage of the surface 

area of the segment.  

 

Type: Patching 

Severity: N/A 

Extent: Percentage of area of segment 

 

Type: Pavement edge 

Severity: Pavement edge is further broken down into three categories: 

• Edge raveling: This occurs when the pavement edge breaks away from 

roadways without curbs or paved shoulders. 

• Edge patching: Edge conditions can still occur with paved shoulders, and edge 

patching is the repair of this condition. 

• Lane less than 10 feet: This indicates that the edge raveling has progressed to 

the point where pavement width from the center line to the outer edge of 

roadway has been reduced to less than 10 feet. 

Extent: Percentage of lane length 
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Type: Block cracking 

Severity: The severity of block cracking is defined by the average size of the blocks and 

the average width of the cracks that separate them. 

Block size: 

• Low: 12-ft. x 12-ft. blocks (9x9 and larger) 

• Medium: 6-ft. x 6-ft. blocks (5x5 to 8x8) 

• High: 3-ft. x 3-ft. blocks (2x2 to 4x4) 

Crack size: 

• Low: Less than 1/4 inch 

• Medium: Over 1/4 inch 

• High: Spalled 

Extent: Percentage of area of segment 

 

Type: Corrugations 

Severity: Qualitative measure 

• Low: Caused some vehicle vibration, which creates no discomfort 

• Medium: Causes significant vehicle vibration, which creates some discomfort 

• High: Causes excessive vehicle vibration, which creates substantial 

discomfort and/or vehicle damage requiring a reduction in speed 

Extent: Percentage of extent of segment length 

 

Type: Delamination 

Severity: N/A 

Extent: Record the number and locations in a segment 
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Type: Potholes 

Severity: Pothole area and pothole depth (average in segment): 

• Small: Less than 1.0 ft. (0.30 m) square 

• Medium: Between 1.0 ft. (0.30 m) and 3.0-ft (0.91-m) square 

• Large: Greater than 3.0-ft. (0.91 m) square 

Extent: Report number of potholes in a segment. 

 

Type: Shoving (slippage) 

Severity:  N/A 

Extent:  Note the size of the area in a segment. 

A.2.3.  Climate Data 

• Wind: Wind speed distribution 

• Clouds: Cloud cover distribution 

• Humidity: Relative humidity 

A.2.4. Traffic Data 

• AADT (Average Annual Daily Traffic) 

• Daily truck axle load distribution 

• Daily truck type distribution 

• Speed (daily speed distribution) 
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A.2.5.  Pavement Structures 

• Material type of overlay 

• Maintenance surfacing type: 

· Fog seal 

· Slurry seal 

· Chip seal 

· Sand seal 

· Microsurfacing 

• Geometric (distribution of vertical grade): check if possible to collect it by 

profilometer. 

• Construction quality: If dense graded asphalt, measure percentage air void of 

overlay (distribution). 

A.2.6.  Additional Pavement Structure Data for PCC Pavements 

• Check for dowels or no dowels 

• Check if it is CRC (continuously reinforced). 

 Note: Additional condition survey procedures should be developed for CRC. 

• Check if tied concrete shoulder, AC shoulder, or wide truck lane. 
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9.0 APPENDIX B: NUMERICAL COMPUTATION OF THE EXPECTED 
CUMULATIVE ESALS-TO-CRACKING INITIATION 

 
This appendix describes the numerical integration procedure used to predict the expected 

number of ESALs-to-cracking initiation of AC overlays placed on AC pavements. This 

numerical procedure can be used in conjunction with the model described in Chapter 3. 

As explained in Chapter 3, the stochastic Duration Model for predicting ESALs to 

overlay cracking initiation is a semi-parametric (Cox) model. In a Cox Model, the 

baseline hazard function is a not a parametric distribution but an entirely empirical one. 

Therefore, unlike a parametric model such as the Weibull Model, the Hazard Rate 

Function does not have a closed-form expression that can be integrated in order to 

compute the expected ESALs-to-cracking. Instead, we developed a numerical integration 

procedure that is described herein. 

The data includes n observations, so we have n rows in Excel. For every 

observation, we have values for the cumulative ESALs to failure , t, and values for the 

different explanatory variables x (Tmin, Tmax, overlay thickness, etc.). Assume for 

simplicity that we have one explanatory variable, x. 

Let column A include all the values of t (n rows) and Column B include all the 

values of x (n rows, as well). 

After estimation of the model, the econometric software Stata 8 gives us a value 

of S0 for every value of t. Thus we have an extra column C that includes the values of S0 

(n rows, as well). 

For every value of x, we have a distribution of the cumulative ESALs to failure t. 

So given x, the expected cumulative ESALs to failure is given by: 
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where t is the cumulative ESALs to failure, S0 is the base survival function, 
and xex β=Ψ )( . 
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For every x, there is one value of Ψ(x), let column D include the n values of Ψ(x). 

The upper bound of the expected value of t given x is calculated using the equation: 
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where i=1 corresponds to the first row of the data, t0 = 0, S0,0 = 1, and ]/[ xtE  is 
the upper bound of the expected value of t given x. 

 
The lower bound of the expected value of t given x is calculated using the 

equation: 
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where i=1 corresponds to the first row of the data, t0 = 0, S0,0 = 1,  and ]/[ xtE  is 
the lower bound of the expected value of t given x. 

The expected value of t given x is thus the arithmetic mean of the results of 

equations B.2 and B.3 and is given by: 
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Note: The observations that are right censored are excluded form the sample for 

prediction. (They are only used for the estimation of the parameters of the model). 

Equations B.2 and B.3 are simple to compute and one does not need a computer 

program to calculate them. However, in order to calculate the expected value for every 

value of x in the data, two Excel macros were written to compute equations B.2 and B.3. 

The two programs are very similar; the differences are the underlined parts of the 

programs below. 



 

 

65

9.1 Program for equation B.2 
Number of first row = 1 
Number of last row = n 
Number of first row of x = 1 
Number of last row of x = n 
Column A = 1 
Column C = 3 
Output Column E =5 
 
For j = Number of first row of x  To Number of last row of x 
s = t1 ….Note: this corresponds to the value of equation 2 for i=0 
    For i = Number of first row To number of last row 
s = s + (Cells(i+1, Column A) - Cells(i , Column A)) * (Cells(i, ColumnC)) ^     
(Cells(number of first row of x, Column D)) 
         Next i 
Cells(j, Output Column E) = s 
Next j 
End  

The output of this program will be the upper bound of the expected value of t for 

every value of x, and will appear in a column E. 

9.2 Program for equation B.3: 
Number of first row = 1 
Number of last row = n 
Number of first row of x = 1 
Number of last row of x = n 
Column A = 1 
Column C = 3 
Output Column F =6 
For j = Number of first row of x  To Number of last row of x 
s = t1 ….Note: this corresponds to the value of equation 2 for i=0 
    For i = Number of first row To number of last row 
s = s + (Cells(i+1, Column A) - Cells(i , Column A)) * (Cells(i+1, ColumnC)) ^ 
(Cells(number of first row of x, Column D)) 
         Next i 
Cells(j, Output Column F) = s 
Next j 
End 

The output of this program will be the lower bound of the expected value of t for 

every value of x, and will appear in a column F. 

  




