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Deciphering driver regulators of cell fate
decisions from single-cell transcriptomics
data with CEFCON

Peizhuo Wang 1,4, Xiao Wen 2, Han Li 1, Peng Lang1, Shuya Li1,4, Yipin Lei1,
Hantao Shu 1, Lin Gao 3, Dan Zhao 1 & Jianyang Zeng 1,4

Single-cell technologies enable the dynamic analyses of cell fate mapping.
However, capturing the gene regulatory relationships and identifying the
driver factors that control cell fate decisions are still challenging. We present
CEFCON, a network-based framework that first uses a graph neural network
with attention mechanism to infer a cell-lineage-specific gene regulatory net-
work (GRN) from single-cell RNA-sequencing data, and then models cell fate
dynamics through network control theory to identify driver regulators and the
associated gene modules, revealing their critical biological processes related
to cell states. Extensive benchmarking tests consistently demonstrated the
superiority of CEFCON in GRN construction, driver regulator identification,
and gene module identification over baseline methods. When applied to the
mouse hematopoietic stem cell differentiation data, CEFCON successfully
identified driver regulators for three developmental lineages, which offered
useful insights into their differentiation from a network control perspective.
Overall, CEFCON provides a valuable tool for studying the underlying
mechanisms of cell fate decisions from single-cell RNA-seq data.

Cell fate decisions are fundamental biological processes involved in
cell differentiation, reprogramming, and occurrence of diseases1.
Recently, the advent of single-cell RNA-sequencing (scRNA-seq) has
enabled the studies of cell fate decisions at single-cell resolution. By
capturing the transcriptome of individual cells, scRNA-seq allows one
to organize cells in pseudo-temporal order, reconstruct differentiation
trajectories1–4, and dissect transient states5,6. Despite these advance-
ments, comprehending the mechanisms of how cells are controlled to
determine their fates still remains a challenge.

Notably, the state of each cell is affected via an interplay between
internal and external cellular signals that, in turn, perform complex
transcriptional regulation events in a dynamic manner1,7. Therefore,
finding the most critical driver factors, such as driver regulators, is
crucial for understanding the control of cell fate decisions. Over the

past decades, biologists have made significant progress in finding key
transcription factors (TFs) associated with cell differentiation and
reprogramming through experimental screening8,9. For instance, it has
been observed that a small number of specific TFs, such as SOX2,
NANOG, and OCT4 (POU5F1), are sufficient to maintain the identity of
embryonic stem cells and regulate their developments10. Recently, a
number of computational approaches have been proposed to fully
exploit single-cell sequencing data to facilitate the identification of
important genes associatedwith differentiation potentials11,12, dynamic
behaviors5,6, or specific states13. Nonetheless, there still remains a sig-
nificant need for developing the methods that can directly elucidate
the driver roles of these genes in controlling cell fates.

The gene regulatory network (GRN) is vital for controlling gene
expression changes during cell lineage specification. A number of
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computational methods have been developed to identify key TFs (or
master regulators) that play important roles in cellular differentiation
or reprogramming through interactions between TFs and their
downstream target genes from bulk14–18 or single-cell RNA-seq13,19,20

data. However, these methods mainly suffer from two issues. First,
they rely heavily on the inferredGRNs, while current GRN construction
methods only based on scRNA-seq data are still not accurate enough21.
Second,mostmethods focus primarily on gene expression differences
between discrete states of cell types or tissue types, often leaving out
the continuous dynamics of cell fate transitions16–18, thus limiting their
capacity in identifying driver regulators. For the first issue, it is
essential to construct a reliable GRN related to a specific cell fate
lineage. Recent powerful graph neural networks (GNNs)22 have
demonstrated promising performance in deconvoluting node rela-
tionships in graphs, which may provide an effective tool to help
address this issue. For the second issue, the combination of the Wad-
dington landscape23 and control theory24 can actually provide a useful
framework for understanding the dynamics of biological systems. The
Waddington landscape can be used to illustrate the dynamic process
of a developmental system established by gene regulatory relation-
ships. Such dynamic systems can be described using the GRN and
pseudotime information inferred from single-cell sequencing data.
Meanwhile, control theory can be applied to analyze how gene inter-
actions influence the development of a biological system. Through
control theory, the complex systems within cells can be modeled as
GRNs, where driver nodes are defined as those critical genes that drive
the entire system to a desired state through perturbations24. Thus,
control theorymayoffer useful insights into the identification ofdriver
regulators controlling cell fate decisions.

In this work, we develop CEFCON, a computational framework
for deciphering cell fate control from single-cell RNA-seq data.
CEFCON first employs a graph attention neural network under a
contrastive learning framework to construct a cell-lineage-specific
GRN. Then, CEFCON characterizes the cell fate dynamics based on
the network control theory and identifies the driver regulators
through combining the control-based methods with our proposed
influence score, which measures gene importance in the con-
structed GRN. In addition, CEFCON detects the regulon-like gene
modules (RGMs) involving the identified driver regulators. We

performed evaluation analyses on several benchmark datasets and
demonstrated that CEFCON consistently exhibited superior per-
formance in GRN construction, driver regulator identification, and
gene module identification. Furthermore, we applied CEFCON to
study the differentiation of mouse hemopoietic stem cells and
reveal the driver regulators controlling three directions of cell fates.
Overall, we provide a useful tool for systematically understanding
the regulatory mechanisms of cell fate decisions from scRNA-seq
data. CEFCON is implemented in Python as a user-friendly package
and is available at https://github.com/WPZgithub/CEFCON.

Results
Overview of the CEFCON framework
We develop CEFCON, a network-based framework for inferring the
gene regulatory relationships and characterizing their dynamics from
a perspective of network control theory to identify the driver reg-
ulators of cell fate decisions (Fig. 1). Basically, CEFCON takes a prior
gene interaction network and gene expression profiles from scRNA-
seq data as inputs (Fig. 1a) and consists of three main components,
including cell-lineage-specific GRN construction (Fig. 1b), driver reg-
ulator identification (Fig. 1c), and regulon-like gene module identifi-
cation (Fig. 1d).

In our framework, we fully exploit an available global and context-
free gene interaction network25 as prior knowledge, from which we
extract the cell-lineage-specific gene interactions according to the
gene expression profiles derived from scRNA-seq data associated with
a given developmental trajectory.More specifically, based on the prior
gene interaction network, CEFCON first employs a two-layer GNNwith
attention mechanism to aggregate gene expression information from
neighboring genes, and then captures the relationships between genes
by assigning the corresponding weights to individual edges according
to the obtained attention coefficients. In each GNN layer, two parallel
channels are considered, i.e., an in-coming network and an out-going
network, which are defined according to the directions of message-
passing. The resulting feature embeddings from both in-coming and
out-going networks are concatenated and then passed into the sub-
sequent GNN layer (Fig. 2a). Such an operation is biologically mean-
ingful for considering the importance of a gene as a regulatoror target.
Here, CEFCONadopts a cosine attention score26 and takes the absolute
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Fig. 1 | Overview of the CEFCON framework. a CEFCON takes a prior gene inter-
action network and gene expression profiles derived from the scRNA-seq data of a
given cell lineage trajectory as inputs.bAgene regulatory network (GRN) related to
a specific cell lineage is first constructed through contrastive learning on a graph
neural network (GNN) with attention mechanism. CEFCON uses the attention

coefficients to assign weights to individual gene interactions and then selects the
top-weighted interactions to construct the cell-lineage-specific GRN. c CEFCON
uses network control-based methods to identify driver regulators that steer cell
fate decisions along the developmental trajectory. d, CEFCON identifies the
regulon-like gene modules involving the selected driver regulators.
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value considering only the intensity of regulation (Supplementary
Fig. 1 and Methods).

To train the GNN encoder employed in CEFCON, we adopt the
deep graph infomax (DGI)27, which relies on maximizing the mutual
information (MI) between the node feature representations and cor-
responding graph-level representations (i.e., the summary vector of all
the node feature representations), and contrastively learns the hidden
feature representations by randomly shuffling the order of the input
node featureswhile keeping the network topology unchanged (i.e., the
corruption operation). Based on DGI, CEFCON can learn the gene
feature representations in an unsupervised manner by understanding
which genes should or should not be linked. In addition, CEFCON
considers the differential expression levels of genes along the devel-
opmental trajectory, guiding the attention to focus more on those
genes with significant changes (Fig. 2b and Methods). Finally, the
attention coefficients are scaled according to the degree of each

central node and used to construct the cell-lineage-specific GRN
(Methods). Note that compared to most GRN inference
methods13,21,28–30, CEFCON constructs GRNs through focusing on tran-
scriptional regulation and signal transduction from both TFs and non-
TFs, thus making the inferred GRNs more comprehensive.

Subsequently, we use strategies based on the network control
theory with nonlinear dynamics to model the cell fate dynamics at the
gene level, following the assumption of the Waddington landscape31,
stating that eachcell fate acts as anattractor, inwhich thedynamics are
mainly determined by the ‘roll downhill’ process on a landscape and
the structure is mainly dictated by the gene interactions23. Here,
inspired by the concept of steady attractor control32–34, which con-
siders the naturally occurring steady states as the desirable final states,
the key nodes (i.e., driver nodes) for controlling the dynamics of a
network canbe identified from the network structure alone (Fig. 2c). In
this paper, we use two network control-based methods, i.e., minimum
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Fig. 2 | The gene regulatory network (GRN) constructionmodule and the driver
regulator identification module. a A two-layer graph neural network (GNN) with
multi-head attention mechanism is used for GRN construction in CEFCON. In each
layer, the network is divided into in-coming and out-going networks based on the
directions of message-passing, which are used as two parallel channels to consider
the importance of genes as regulators and targets, respectively. The outputs of
both directional networks are then concatenated together.bA contrastive learning
model used to train the GNN encoder by maximizing the mutual information (MI)
between the gene embeddings and their corresponding summary. The corruption
operation produces the negative samples by randomly shuffling the node features.
The differential gene expression level (log2 fold change) is additionally considered

as a learnable scalar encoding. After convergence, the attention coefficients are
then used to construct the cell-lineage-specific GRN. c The cell fate dynamics
characterized by a GRN from a control theory point of view. We use two network
control-based methods, i.e., minimum feedback vertex set (MFVS) and minimum
dominating set (MDS), to identify the driver gene candidates on the constructed
GRN. d The most crucial driver regulators (shaded areas in the Venn diagram) are
selected among the driver gene candidates according to the influence scores for
further analyses. The influence scores are defined based on the attention coeffi-
cients derived from the GRN constructer to measure the importance of each
potential regulator. More details can be found in Methods.
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feedback vertex sets (MFVS)32 and minimum dominating sets (MDS)34,
to obtain the driver gene candidates (Fig. 2c and Methods). Since
controlling a whole network usually requires a number of driver
nodes24, we further propose an influence score, which is defined
according to the attention coefficients derived from the GRN con-
structor, to measure the importance of individual driver gene candi-
dates (Methods). The top-ranked genes according to the influence
scores among the driver gene candidates obtained from the two net-
work control methods are regarded as the driver regulators for further
analyses (Fig. 2d).

Furthermore, the regulatory dynamics is generally not driven
merely by the independent actions of a few regulators but rather by
regulatory sub-networks involving these regulators, such as
regulons13,18. Here, CEFCON also extends the generally defined TF-
target regulons13,18 and detects all the gene modules of the identified
driver regulators (i.e., including those non-TF genes).We refer to these
gene modules as the regulon-like gene modules (RGMs), including
both out-degree and in-degree types according to the regulatory roles
of the corresponding driver regulators (Fig. 1d and Methods).

CEFCON effectively constructs the cell-lineage-specific gene
regulatory networks
We first assessed the quality of the cell-lineage-specific GRNs inferred
by CEFCON on five benchmark single-cell RNA-seq datasets from the
BEELINE framework21, which involved seven cell lineages. These data-
sets included human embryonic stem cells (hESC)35, human mature
hepatocytes (hHep)36, mouse dendritic cells (mDC)37, mouse embryo-
nic stem cells (mESC)38, and three lineages of mouse hematopoietic
stem cells (mHSC)2, namely erythroid (mHSC-E), granulocyte-
monocyte (mHSC-GM) and lymphoid (mHSC-L). For each lineage, we
used the corresponding available ChIP-seq data as the ground-truth
networks to evaluate individual constructed GRNs. For the mESC
dataset, we additionally considered the loss-of-function/gain-of-func-
tion (lof/gof) data from the ESCAPE database39 and the induced
expression of TFs collected from ref. 40 for a more comprehensive
assessment. For each single-cell RNA-seq dataset, we considered the
top 1000 highly variable genes for evaluation.

We used the area under the precision-recall curve (AUPRC) and
the early precision ratio (EPR)21 to evaluate the performance of dif-
ferent GRN construction methods. Here, the AUPRC is used because it
is generally more sensitive and has been considered a better metric
than the receiver operator characteristic curve (AUROC)41 when deal-
ing with heavily unbalanced labeled data. The EPR is defined as the
fraction of true positives among the top-k predicted edges compared
to a random predictor, where k is the number of edges in the ground-
truth network. We compared CEFCON with SCINET42, NetREX30, and
CellOracle43, three context-specific network construction methods
that require prior networks, GRNBoost229 which uses gradient boost-
ing to construct GRNs only based on gene expression data21, and
DeepSEM28, a deep learning based method for GRN reconstruction
from scRNA-seq data (Supplementary Note A.2). We also reported the
results through randomly selecting edges from the prior gene inter-
action network (denoted by Random_NicheNet).

Overall, CEFCON achieved superior performances on all the
benchmark datasets in terms of AUPRC (Fig. 3a), with 64% improve-
ment compared with the second-bestmethod (i.e., DeepSEM) and 92%
improvement compared with another prior network-based method
(i.e., NetREX) (Supplementary Fig. 2). In addition, CEFCON performed
well in termsof EPR, achieving thebest on themDC,mESCandmHSC-E
datasets and equally well with the second-best method on the other
datasets (Fig. 3b). Note that the EPR values of CEFCON and NetREX
were comparable to the random case (i.e., Random_NicheNet) on the
ground-truth networks of both mESC and mHSC datasets. This was
probably because the EPR is constrainedbynetworkdensities21 and the
densities of these ground-truth networks are equal or even higher than

those of the corresponding input prior gene interaction networks
(Supplementary Tables 2 and 3). Nevertheless, CEFCON still showed a
clear advantage over the baselinemethods in terms of AUPRCon these
datasets. Moreover, we found that the methods depending on a prior
interaction network (i.e., NetREX, CellOracle, Random_NicheNet, and
CEFCON) performed better than those non-prior-based methods in
most cases, suggesting that the input prior interaction network can
provide favorable information for GRN construction. In fact, even
randomly selecting edges from theprior gene interactionnetwork (i.e.,
Random_NicheNet) can still obtain certain reliable results. Thus, it was
reasonable to speculate that probably the high-quality and context-
free prior gene interaction network was able to make up for the pro-
blems caused by the sparsity and high noise of single-cell data. Fur-
thermore, CEFCON was robust to low levels of edge perturbation of
the prior gene interaction network. For instance,when 20%edgeswere
randomly shuffled, the AUPRC of CEFCON dropped only ~10% on
average (Supplementary Fig. 3).

We found that the inferred GRNs displayed a scale-free property,
i.e., their degree distributions followed a power law (Fig. 3c, d and
Supplementary Fig. 4), which is the characteristic of most biological
networks44. Notably, the average clustering coefficients of the inferred
GRNs were significantly larger than those of sub-networks randomly
derived from the prior gene interaction networks (Fig. 3c), which was
consistent with the previous findings that the large clustering coeffi-
cients are an intrinsic feature of biological networks44. Moreover, we
observed that individual TFs exhibited a higher number of interactions
compared to non-TFs within the CEFCON inferred GRNs (Supple-
mentary Table 4), which was consistent with the well-established
knowledge in the field that TFs play critical roles in cell fate decisions
and tend to have extensive regulatory interactions8. In brief, CEFCON
can construct reliable cell-lineage-specific GRNs, which can thus pro-
vide a trustworthy basis for the downstream driver regulator identifi-
cation task.

CEFCON is able to identify the driver regulators of cell fate
decisions
Wenext assessed the performance of CEFCON in identifying the driver
regulators mainly on the mESC and hESC datasets, which contained
relatively more information that can be used as ground-truth data for
evaluation. More specifically, for the ground-truth data, we first used
three gene sets that are associatedwith cell fates and ESCdevelopment
from the Gene Ontology (GO) resource45, namely the ‘cell fate com-
mitment (GO:0045165)’, the ‘stem cell population maintenance
(GO:0019827)’ and the ‘endoderm development (GO:0007492)’. The
last two gene sets were selected because they describe the primary
features of stem cells regarding their self-renewal and pluripotency,
and both mESC and hESC datasets are about the ESC differentiation
into endoderm cells. In addition to these GO gene sets, we also col-
lected a set of experimentally validated genes curated from two
refs. 46,47. We used the precision of the top-k predictions to quantify
the accuracy, and benchmarked CEFCON against five baselines,
including VIPER18, ANANSE17, which both predict the master regulators
frombulk RNA-seq data, SCENIC13, which discovers the key TFs and the
related regulons from single-cell RNA-seq data, CellRouter48 and
CellOracle43, which both find key TFs based on their own constructed
GRNs (Supplementary Note A.2).

Our comparison results showed that CEFCON achieved superior
performance on driver regulator identification over other existing
methods, especially for the highest-ranked genes, which were almost
perfectly identified for all the ground-truth gene sets (Fig. 4a–h).
Although CEFCON did not yield the best rankings with certain k values
on some ground-truth gene sets, such as themESC case for endoderm
development (Fig. 4c), the gaps between its performance and the best
one were quite marginal. In addition, we found that ANANSE failed to
find the regulators for the ‘stem cell population maintenance
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(GO:0019827)’ set and SCENIC performedpoorly on themESCdataset,
although they both performed well in the other cases. On the other
hand, CEFCON consistently showed satisfactory performance for all
the ground-truth gene sets. In fact, the ‘stem cell population main-
tenance (GO:0019827)’ and the ‘endoderm development
(GO:0007492)’ sets describe the start and end states of the differ-
entiation lineage from ESCs to endoderm cells, respectively. Thus, the
consistently excellent performance of CEFCON on these two gene sets
implied that it can effectively discover the driver regulators along the
developmental trajectory. Moreover, we found that the top-ranked
genes based only on the derived influence scores had a large overlap
with the driver genes obtained using the two network control-based
methods (Fig. 4i), indicating that our proposed influence scores can
reliably reflect the importance of driver genes in the GRNs. Further-
more, the scheme employed by CEFCON in identifying driver genes

outperformed the traditional node centrality metrics, such as degree
centrality and betweenness centrality (Supplementary Fig. 5). In addi-
tion, overall CEFCON demonstrated more accurate and more robust
performance in identifying driver regulators on its own constructed
GRNs compared with those constructed by other methods (Supple-
mentary Fig. 6).

We further examined the top-20 driver regulators identified by
CEFCON in hESC and found that more than half of them were con-
sistent with the ground-truth gene sets (Fig. 4j). Their gene expression
trends showed significant correlations with developmental pseudo-
time (Supplementary Fig. 7). Besides, many genes were uniquely
identified or given high rankings by CEFCON compared with those
detected from other methods (Supplementary Figs. 8 and 9). In par-
ticular, three TFs of the identified driver regulators, namely NANOG,
SOX2, and POU5F1 (OCT3/4), which are well-known pluripotency
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Fig. 3 | Performance evaluation on cell-lineage-specific GRN construction. The
performance of GRN construction on different benchmark scRNA-seq datasets,
measured in terms of AUPRC (a) and EPR (b), respectively. Five baselines were
considered for comparison, including SCINET42, GRNBoost229, DeepSEM28,
NetREX30, CellOracle43 and Random_NicheNet (i.e., randomly selecting edges from
the prior gene interaction network). Bars and error bars signify mean± s.d. over
n = 20 independent experiments. c The comparison between the CEFCON con-
structed GRN and the randomized GRN derived from the prior gene interaction
network, in termsofR2 values and clustering coefficients. TheR2 is the coefficient of
determination for the linear regressionmodel tomeasurehowclose the data points
are with respect to the fitted linear line. Each dot represents one of the seven
datasets. Box plots show the medians (central lines) and interquartile ranges, and

the whiskers represent 1.5 × interquartile ranges. Statistical significance was calcu-
lated using the one-sided Wilcoxon signed-rank test. d Degree distribution and
major topological properties of the GRNs constructed by CEFCON on the hESC
dataset. The x-axis represents the network degree (denoted as k) and y-axis
represents the frequency of the networkdegree k (denoted as P(k)). Both k and P(k)
are log-transformed. The major network topological properties, including the
number of genes, the number of edges, the slope and the R2 of the degree dis-
tribution, and the averageclustering coefficient, are listed in theupper right corner.
The inset in the bottom left corner provides the degree distribution (also with the
slope, R2 and average clustering coefficient) of the randomized GRN derived from
the prior gene interaction network. Source data are provided as a Source Data file.
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factors for human and mouse ESC development10, were among the
high rankings yielded by CEFCON (rank 1/20, 2/20, and 5/20 for
NANOG, SOX2, and POU5F1, respectively). It had been previously
reported that these TFs were mutually regulated by one another,
forming cross-regulated feedforward loops49. In addition, another two
regulators, GATA4 and GATA6, which had been previously shown to
induce highly selective differentiation to primitive endoderm50, were

also identified by CEFCON with high rankings (Fig. 4j). In fact, all these
TFs are pioneer factors that have been previously shown to initiate
gene transcription51 and balance the promotion or inhibition of the
differentiation from ESCs to primitive endoderm cells10,50. Moreover,
we analyzed the predicted gene interactions between NANOG, GATA6,
CDH1, and GATA4 based on additional ChIP-seq and epigenetic data
(Supplementary Fig. 10). The results provided strong and orthogonal
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evidence to support the interactions predicted by CEFCON between
these driver regulators.

Notably, in addition to TFs, CEFCON also identified critical non-
TFs as the driver regulators (Fig. 4j and Supplementary Fig. 8). In
particular, among the top-20 driver regulators identified by CEFCON,
CYP26A1, CDH1, ESRP1, EPCAM, and ERBB4 were not TFs, but they had
also been reported to play key roles in ESC differentiation52–56. For
example, the protein encoded by the ERBB4gene is a receptor tyrosine
kinase, which had been known to regulate cell proliferation and
differentiation56. In fact, as the initial responders of intracellular sig-
naling pathways, receptor kinases can function as the upstream of TFs
and thus play driver roles in cell fate decisions57. Unlike most existing
methods, such as the comparedmethods in Fig. 4, which are limited to
finding theTFs asmaster regulators, CEFCONcanextend the identified
driver regulators to a wider range of genes.

To further demonstrate the reasonableness of the driver reg-
ulators identified by CEFCON, we also used UMAP58 to visualize the
gene embeddings derived fromCEFCON and clustered them using the
Leiden method59 on the hESC dataset. We found that most of the top-
ranked driver regulators identified by CEFCON were distributed
together (Fig. 4k).More specifically, our analysis revealed that 13 out of
the top-20 driver regulators belonged to one cluster (i.e., cluster 1 in
Fig. 4k), which can be further clustered into several sub-clusters,
including clusters 7, 8, and 9 as shown in Fig. 4k. Notably, the three
core TFs involved in the preservation of pluripotency and self-renewal
of ESCs, i.e., NANOG, SOX2, and POU5F1, were clustered together (i.e.,
cluster 7). In addition, the top significant enrichment terms from the
GO biological processes related to these clusters were mainly about
endodermal cell fate specification, anatomical structure morphogen-
esis, and tissue development (Fig. 4l). All these analysis results sug-
gested that CEFCON can provide biologically meaningful feature
representations and thus imply useful information for accurately
identifying the driver regulators determining cell fates.

The regulon-like gene modules identified by CEFCON reveal
relevant cell states during differentiation
We next used CEFCON to identify the regulon-like gene modules
(RGMs) of the obtained driver regulators to further learn more about
their regulatory roles. Here, we divided the RGMs into two types, i.e.,
the out-degree type and the in-degree type (Fig. 5a and Methods). In
particular, we identified RGMs from the scRNA-seq datasets with
annotated cell types or cell states, involving hESC, mESC, and three
lineages of mHSC, as in the previous sections. To evaluate the per-
formance in RGM identification, we benchmarked CEFCON against
SCENIC13, which constructs regulons to identify stable cell states from
scRNA-seq data, from two aspects, i.e., functional enrichment analysis
and cell state clustering.

We first assessed if the identified RGMs were biologically mean-
ingful by performing their functional enrichment analyses on GO45

gene sets and KEGG60 pathways. We employed the precision score,
which was calculated as the percentage of gene sets with at least one
significantly enriched function term, to evaluate the biological
importance of the RGMs (Fig. 5b, c). We also conducted a more rig-
orous assessment that considered the precision of gene sets with at

least 50 enriched GO terms and five enriched KEGG pathways (Sup-
plementary Fig. 11). Overall, CEFCON substantially outperformed
SCENIC on all the five tested datasets, indicating that CEFCON can
capture more biologically reasonable and meaningful gene modules.

We then investigated whether the identified RGMs were able to
guide the identification of cell states, aswas done in the SCENICwork13.
More specifically, we first measured the activities of RGMs on indivi-
dual cells using AUCell13 and then employed hierarchical clustering on
the activity matrix of RGMs for each dataset. The normalized mutual
information (NMI) was used to quantify the clustering results accord-
ing to the reference labels. The comparison results showed that the
RGMs derived by CEFCON were significantly better than those
obtained by SCENIC (Benjamini-Hochberg adjusted p-value < 0.001)
among three out of five datasets and had a comparable performance
on the remaining two datasets (Fig. 5d). Moreover, as a case study, the
activity heatmaps of both out-degree and in-degree types of the
identified RGMs for the hESC dataset showed that the RGMs can
obviously capture the relevant cell states during differentiation (Fig. 5e
and Supplementary Fig. 12). In addition, we observed that although
several RGMs of the top-ranked driver regulators (e.g., CDH1, NOG,
GATA4, PRDM1, SOX2, and JUND) did not clearly behave as state-spe-
cific, most of them had been previously demonstrated to play persis-
tent and vital roles during the whole differentiation process (Fig. 5e,
bottom block). For instance, the transcriptional repressor PRDM1 (also
known as BLIMP1) has been reported to play a versatile role in con-
trolling cell fate decisions in developing embryos and adult tissues61.
Our results showed that PRDM1 regulated 98 target genes (37 were
repressed and61wereactivated, determined according to thenegative
or positive correlations of the Pearson correlation coefficient of their
gene expression with that of PRDM1) and had high activities in both
early and late states (Fig. 5f), indicating that its repressive and activate
regulatory effects were highly related to the early and late states of the
development, respectively. Overall, these results demonstrated that
CEFCON can effectively identify the regulatory gene modules that
correspond to relevant cell states during differentiation.

CEFCON illustrates the important landmarks of cell fate deci-
sions in mouse hemopoietic stem cell differentiation
To further demonstrate the application potential of CEFCON in deci-
phering cell fate decisions, we reprocessed the scRNA-seq data of
mouse hemopoietic stem cells2 and selected the 3000 most highly
variable genes for in-depth analyses (Methods). As shown in Fig. 6a, b,
the fates of hemopoietic stem cells (HSCs) progress through several
important cell states or cell types mainly in three directions, i.e., ery-
throid lineage, granulocyte-monocyte lineage, and lymphoid lineage.
We thus applied CEFCON to study the three lineages separately to
identify the driver regulators controlling their corresponding fate
trajectories.

We first selected the top-20 identified driver regulators for each
cell lineage for detailed analyses (Fig. 6c and Supplementary Fig. 13).
The results were reproducible across the replicates with different
random seeds (Supplementary Fig. 14). We found that six genes (i.e.,
Meis1, Gata2, Jun, Fos,Mycn, and Dusp1), which had similar expression
trends along the pseudotime, were commondriver regulators in all the

Fig. 4 | Performance evaluation on driver regulator identification. a–h The
performanceon themESC (a–d) and hESC (e–h) datasets,measured in terms of the
precision of the top-k predicted genes among all known genes in the four ground-
truth gene sets. All the results with k ranking from 1 to 20 were reported. The
shaded area represents the variation (mean ± s.d.) of precision over 20 repeats.
i Venn diagrams about the MDS-derived driver genes, MFVS-derived driver genes,
and the top-ranked genes according to the influence scores derived by CEFCON.
j The top-20 predicted driver regulators on the hESC dataset sorted in descending
order according to their influence scores. The genes belonging to each ground-
truth gene set are presented below the bar chart. k UMAP visualization of the gene

embeddings output by CEFCON on the hESC dataset. Gene embeddings were
clustered by the Leiden method59 with a low resolution. The top-ranked driver
regulators were mainly in cluster 1, marked with a black circle. Cluster 1 is further
zoomed in with a higher resolution, and the genes belonging to the top-20 driver
regulators in individual sub-clusters are also marked. l The top enriched GO terms
of the genes in sub-clusters 7 (yellow), 8 (green), and 9 (blue) in k, respectively. The
p-values were measured by one-sided Fisher’s exact test, adjusted for multiple
hypothesis testing using the Benjamini-Hochberg false discovery rate
method. Source data are provided as a Source Data file.
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three directions of cell fate commitment (Fig. 6c, d and Supplementary
Fig. 15). The expression levels of these genes were high in HSCs and
decreased along the differentiation process. In particular, among the
six common driver regulators, Dusp1 was the only non-TF regulator,
which is a well-known proliferation-associated gene62. In addition, the
granulocyte-monocyte lineage and lymphoid lineage shared more
driver regulators (Fig. 6c), which was consistent with the classical
model of hematopoietic differentiation that the lymphoidmultipotent
progenitors (LMPPs) may also differentiate into the granulocyte-

monocyte progenitors (GMPs)2. Moreover, the specific driver reg-
ulators of each lineage showed their ability to steer cell fates in parti-
cular directions, such as Klf1 for erythroid, Mpo for granulocyte-
monocyte, and Mef2c for lymphoid (Fig. 6e).

Next, we analyzed the RGM of Gata2, which was one of the most
significant common driver regulators in the three lineages (Fig. 6f–h).
We found that the identified out-degree type of RGMs had relatively
large sizes in all the three lineages, in which Gata2 regulated or inter-
acted with over 1500 genes (Fig. 6f–h, right panels), thus implying its
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Fig. 5 | Evaluation of the regulon-like gene modules identified by CEFCON.
a Illustration of two types of RGMs identified from the in-coming and out-going
networks, respectively. b, c The precision of the identified RGMs which were sig-
nificantly enriched (BH-adjusted p-value ≤0.05) in GO biological process (GO_BP)
terms (b) and KEGG pathways (c) on the five tested datasets, respectively. Bars and
error bars signify mean± s.d. in all panels. d The performance of cell clustering in
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by its involving driver regulator and the number of its regulated genes is given in
parentheses. Genes in bold indicate the top-20 driver regulators associated with
Fig. 4j. f The identified out-degree type of RGM involving PRDM1. The repressive
and activate regulatory relations are shown in blue and red, respectively (bottom
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development, respectively. For b–d n = 20 independent computational experi-
ments were conducted, and statistical significance was calculated using the
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Benjamin-Hochberg. Source data are provided as a Source Data file.
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Fig. 6 | Application of CEFCON to study the mechanisms underlying cell fate
decisions in the differentiation of mouse hematopoietic stem cells. a The
classical model of the hematopoietic differentiation landscape and the force-
directed (FA) visualization of three developmental trajectories derived from the
scRNA-seq data. The cell type annotations were obtained from ref. 2. HSC hema-
topoietic stem cell, MPP multipotent progenitor, LMPP lymphoid multipotent
progenitor, CMP common myeloid progenitor, MEP megakaryocyte-erythrocyte
progenitor, GMP granulocyte-monocyte progenitor, CLP common lymphoid pro-
genitor.bThepseudotime information and the representation of cells belonging to
each cell lineage. c Venn diagram about the top-20 predicted driver regulators of
each cell lineage. d Gene expression trends of three common driver regulators
along pseudotime in the three cell lineages. The shaded area representsmean± s.d.

eGene expression trendsof three top-ranked lineage-specific driver regulators, i.e.,
Klf1 for erythroid, Mpo for granulocyte-monocyte, and Mef2c for lymphoid. The
shaded area represents mean ± s.d. f, h UMAP visualization of the cell types, gene
expression levels of Gata2, and the activities of its out-degree type of RGMs in the
erythroid lineage (f), granulocyte-monocyte lineage (g), and lymphoid lineage (h).
The number of target genes is given in parentheses behind each RGM. i, Network
controllability assessment for the three lineages, measured in terms of controll-
ability scores of MDS- and MFVS-derived driver genes, the Jaccard index between
them, and the coverage of driver regulators. j The transition time of mHSC dif-
ferentiation according to ref. 63. Meg megakaryocyte, Ery erythrocyte, Mon
monocyte, Neu neutrophil. Source data are provided as a Source Data file.
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crucial roles in regulation during HSC differentiation. Moreover,
although the expression of Gata2 fluctuated along pseudotime, its
RGM activity changed gradually during the development of each
lineage and was strongly specific to the HSC state (Fig. 6f–h), thus
indicating its important roles in stem cell maintenance.

We further analyzed the differentiation of the three cell lineages
from the perspective of network controllability. More specifically, we
calculated three metrics, i.e., the controllability score of the MFVS- or
MDS-derived driver genes, the Jaccard index between the driver gene
sets obtained from the two control methods, and the coverage of the
identified driver regulators among all the driver gene candidates
(Methods). Basically, from the perspective of control theory, the larger
values of these metrics generally means that it is relatively easier and
thus more efficient to control the state changes of a system. For cell
development, the efficiency of controlling a system can be related to
the time required to reach the corresponding cell fate changes, that is,
the higher values of these metrics may indicate less time required for
differentiation. As shown in Fig. 6i and Supplementary Fig. 16, the
percentage of driver genes controlling the differentiation from HSCs
to MEPs was lower than that of the other two lineages, that is, it was
more efficient to control the state changes from HSCs to MEPs, which
was consistent with a previous study revealing that the time cost of
differentiation from HSCs to MEPs (38.5 hours on average) was sig-
nificantly less than that required from HSCs to GMPs (209.5 hours on
average) under the same environmental condition63 (Fig. 6j). In addi-
tion, according to a previous study64, the erythroid lineage differ-
entiates earlier than the granulocyte-monocyte lineage, whereas the
lymphoid lineage differentiates later than both the erythroid and
granulocyte-monocyte lineages. Such a result was also consistent with
the trend of network controllability revealed in our analysis (Fig. 6i).
Taken together, these results suggested that our network control-
based strategy may provide new insights into the underlying
mechanisms of cell fate decisions.

Discussion
We have presented CEFCON, a network-based framework for deci-
phering the driver regulators of cell fate decisions from scRNA-seq
data. Unlike existing algorithms for cell trajectory inference or cell fate
mapping11,12, CEFCON is a gene-level approach that fully exploits
available cell lineage information to in-depth mine the key regulatory
factors related to cell fate decisions.

CEFCON makes three major contributions in elucidating cell fate
decisions. First, CEFCON constructs a cell-lineage-specific GRN by
extracting the regulatory relationships associated with gene expres-
sion profiles from a global and context-free gene interaction network.
The GRN constructor is mainly based on a graph attention neural
network and a contrastive learning strategy. The graph attention
neural network captures the intrinsic relationships across a global
gene-gene interaction graph through propagating and aggregating the
gene attributes (i.e., gene expression profiles). The contrastive learn-
ing model (i.e., DGI27) employed in CEFCON captures the underlying
network topological structure and further enhances the interpret-
ability of the graph attention mechanism. Second, CEFCON identifies
the driver regulators that control cell fate decisions based on the
constructed cell-lineage-specific GRN from a perspective of control
theory. Here, the network control theory can be used formodeling the
GRN dynamics that characterize cell fates, thus explaining the driver
roles of the identified regulators. Third, CEFCON further detects the
gene regulatorymodules of the driver regulators to better reveal their
roles in determining the relevant cell states during cell development.

Our benchmark tests showed that CEFCON consistently out-
performed the baseline methods in all the above three aspects. In
particular, CEFCON exhibited accurate and robust results in GRN
construction on various scRNA-seq datasets, and accurately identified
the driver regulators that control the pluripotency of stem cells and

their differentiation into endoderm cells in both human and mouse
ESC datasets. In addition, CEFCON was relatively time-efficient com-
pared to the baseline methods (Supplementary Fig. 17). Furthermore,
when applied to the mouse hemopoietic stem cells, CEFCON effec-
tively identified the driver regulators that steer cell fate changes in
three directions, further elucidating their differences from a control
theory perspective.

Considering the significance of discovering critical genes from
GRNs, and the fact that traditional GRN construction methods from
scRNA-seq data inevitably encounter the limitations of the sparse and
noisynatureof single-cell data, we believe that leveraging reliable prior
information can effectively help address this problem. In our study, we
thoroughly explored the impact of different background networks as
input prior gene interaction networks on the results. Our findings
highlighted that the completeness of a prior network can affect the
results of GRN construction (Supplementary Fig. 18) and driver reg-
ulator identification (Supplementary Fig. 19). Moreover, as an alter-
native way to the incorporation of prior information, supervised
learning frameworks, such as GENELink65, may yield superior results,
but the label datasets serving as ground-truths are often lacking,
especially for specific cell types or lineages.

Despite the advantages of CEFCON, there are still certain limita-
tions. First, CEFCON can only handle one cell lineage at a time. Since
cell developmental trajectories often have complex structures, such as
bifurcations, it will be natural to extend the current framework to
processmultiple fate trajectories simultaneously. In addition, cell fates
are mainly determined by the actions of various intrinsic and extrinsic
cellular factors. However, our current work only focuses on intracel-
lular factors. Future extensions can consider more extrinsic factors,
such as cell–cell communication66 and cell spatial location67. Further-
more, as another essential factor controlling cell fate decisions, epi-
genetics can also provide deep insights into understanding the
complex processes associated with cell fates. By taking into account
these gene-level features beyond RNA-seq data, we believe that CEF-
CON can also be extended to analyze single-cell data from other
modalities, such as the spatial transcriptome and chromatin accessi-
bility. Moreover, single-cell multi-omics data inherently possesses the
potential to provide a more comprehensive understanding of gene
regulation68,69, representing a promising avenue for deciphering cell
fate decisions.

Overall, CEFCON shows great application potential in unraveling
cell fate decisions during cell differentiation and can also provide a
valuable tool for analyzing other cell development processes, such as
reprogramming and diseases.

Methods
Cell-lineage-specific GRN construction
In CEFCON, the cell-lineage-specific GRN construction process is
mainly performed through a graph neural network (GNN) with atten-
tion mechanism. In addition to learning the representative embed-
dings of gene nodes, which is often the primary task of a GNN, here we
focus more on the interpretability of the attention mechanism and
make full use of it to infer the regulatory interactions for a given cell
lineage.

The graph neural network with attention mechanism. In our GRN
construction strategy, the input prior gene interaction network is
represented as a directed graph G with a node set V = {v1, v2,⋯ , vN},
where vi represents a gene andN stands for the total number of nodes.
We denote the adjacency matrix of the graph G as A∈ {0, 1}N×N with
Aij = 1 for an existing edge from vi to vj and Aij =0 otherwise. The node
features (i.e., gene expression profiles) are represented as
h = [h1,h2,⋯ ,hN], where hi 2 RF stands for the features of vi and F
stands for the dimension of node features. Given a node vi, the
attention-based model first learns the importance of its neighbors’
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contributions to its feature representation by scoring the relationships
between node features. Through applying the self-attention
mechanism70, we can calculate the attention coefficient between
node vi and node vj as:

eij = attðWahi,WbhjÞ, ð1Þ

where att stands for an attention scoring function measuring the
relevance of vi to vj, Wa 2 RF 0 × F and Wb 2 RF 0 × F stand for the learn-
able weight matrics associated with the source and target nodes,
respectively, and F 0 stands for the dimension of latent feature repre-
sentations in hidden layers. The attention coefficients between vi and
its 1-hop neighbors are then normalized through a softmax function,
denoted as αij:

αij = softmaxjðeijÞ=
expðeij=τÞP

r2N i

S
fvig expðeir=τÞ

, ð2Þ

whereN i stands for a 1-hopneighborhoodof node vi, and τ stands for a
temperature parameter. Here, the softmax normalized attention
coefficients can be represented as the probabilities of considering
the corresponding neighboring nodes as regulators or regulated
targets. The temperature parameter τ, where τ < 1, in the softmax
function is used to force the probability distribution to be sharper,
which can help the attention focus more on a relatively small number
of relevant neighbors. We followed a previous study71 and empirically
set τ =0.25 in our framework.

The output features of every node are then defined as a linear
combination of its neighbors’ features according to the attention
coefficients. In addition, we use the multi-head attention mechanism70

to jointly capture more views of different feature representations,
followed by an activation layer. Thus, the output features of node vi at
each layer can be written as:

h0
i = k

K

k = 1
σ αk

iiW
k
ahi +

X

j2N i

αk
ijW

k
ahj

0

@

1

A, ð3Þ

where σ stands for a nonlinear activation function, K stands for the
total number of heads, ∥ stands for the concatenation operation, and
αij stands for the attention coefficient as defined in equation (2).

To enhance the interpretability of the attention and make it bio-
logically meaningful, the employed background network (i.e., the
input prior gene interaction network) is further divided into an in-
coming network and an out-going network for considering different
message-passing directions. Such an operation can help understand
the importance of genes as regulators or regulated targets. Then the
final output feature embeddings of each node are defined as the
concatenation of the outputs from the two separate directional net-
works, that is:

h0
i = concatðh0

i,in,h
0
i,outÞ, ð4Þ

where h0
i,in and h0

i,out stand for the outputs of the in-coming and out-
going networks, respectively. The complete module of GRN construc-
tion contains a two-layer GNNmentioned above. In addition, we apply
batch normalization before each GNN layer and a feedforward neural
network after each GNN layer. More details about the GRN construc-
tion module can be found in Supplementary Fig. 1.

The attention scoring function. CEFCON uses a cosine attention
scoring function26 tomeasure the regulatory relationship between two
genes. Specifically, we use the absolute value of the cosine function to
consider the strength of regulation, while ignoring whether the reg-
ulatory relationship is activated or repressed. In addition, to

emphasize the significance of those highly perturbed genes during cell
development, we take into account the differential expression levels in
the attentionmodule as scaling factors.More specifically, the attention
scoring function employed in CEFCON is defined as:

attðWahi,WbhjÞ=Dj �
ðWahiÞT ðWbhjÞ
jWahij � jWbhjj

�
����

�
����
, ð5Þ

where �j j stands for the Euclidean norm, T stands for the matrix
transpose operation, and Dj∈ (0, 1) stands for the encoding of the
differential expression level of gene vj (see the next subsection for
more details).

We also discussed the performanceof GRN construction based on
another twowell-known attention techniques, including the scaled-dot
product attention70 and the additive attention based on a single-layer
feedforward neural network72, and provided these schemes as addi-
tional options in our package (Supplementary Note A.1 and Supple-
mentary Fig. 20).

Encoding the differential expression levels of genes. To encode the
differential expression levels of genes, those genes whose expressions
were significantly perturbed between the start and all the following
states along the developmental trajectory were identified using
MAST73. The p-values were adjusted for multiple testing using the
Benjamin-Hochberg method74, with a false discovery rate cutoff of
0.01. Here, the developmental states were simply annotated by equally
dividing cells into K parts along the pseudotime trajectory. For gene vj,
we use the absolute values of log2 fold changes to measure its differ-
ential expression levels between the start and all the subsequent states
and then take their average across all the developmental states,
denoted as lj = ð

PK
k = 2 jlog2foldchangejj,kÞ=ðK � 1Þ, which is then

encoded as a learnable scalar through a sigmoid function, that is:

Dj = sigmoid c � lj +d
� �

=
1

1 + e �c�lj�dð Þ ,
ð6Þ

where c and d stand for the trainable scalar parameters shared across
all the GNN layers. With this encoding scheme, each gene can amplify
or diminish its impact on all its neighboring genes according to the
corresponding differential expression levels. We discussed the impact
of incorporating differential gene expression information on GRN
construction using various benchmark datasets, and the results indi-
cated that considering this information can improve the performance
of GRN construction (Supplementary Fig. 21).

Contrastive learning based on the deep graph infomax technique.
To train the above graph attention neural network, we use the deep
graph infomax (DGI) technique27, a flexible unsupervised, and con-
trastive learning approach that maximizes the mutual information
between the node representations and the global representation of the
entire graph. More specifically, the loss function of DGI is defined as a
binary cross entropy loss:

L=
1
2N

XN

i= 1

E X,Að Þ logσ hi
TMs

� �h i
+
XN

j = 1

E
ðeX,eAÞ log 1� σ ehj

T
Ms

� �� �� � !

,

ð7Þ
where hi and ehj denote the real and corrupted feature representations
generated by the GNN encoder, respectively, s= σð1n

PN
i = 1 hiÞ repre-

sents the global graph-level summary,M 2 RF × F stands for a trainable
scoring matrix, and σ stands for the sigmoid function. Here, (X,A)
represents the pair of real node features and network structure, while
ðeX,eAÞ stands for the pair of corrupted features and network structure
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by randomly permuting node features. More specifically, we randomly
assign the gene expression profile of a gene to a different gene while
keeping the network topology unchanged.

The scaled attention coefficients for weighting the regulatory
relationships. In our CEFCON framework, when the proposed graph
attention neural network converges, the attention coefficients are
adopted to measure the strength of relationships between genes. To
make the attention coefficients comparable globally, we scale the
attention coefficientsαijbymultiplying themwith the in-degree or out-
degree of the central node in the in-coming network or out-going
network, respectively. The final interaction weight, denoted as βij, is
the average of the scaled attention coefficients on both directional
networks, that is:

βin
ij =α

in
ij

XN

j = 1
Aij ,

βout
ij =αout

ij

XN

i = 1
Aij ,

βij =
βin
ij +β

out
ij

2
,

ð8Þ

where A stands for the adjacency matrix of the input graph G, βin
ij and

βout
ij stand for the scaled attention coefficients obtained from the in-

coming and out-going networks, respectively.
We use the scaled attention coefficients as weights to rank the

edges of the prior gene interaction network, and then select the top-
ranked edges to construct the cell-lineage-specific GRN. Since a two-
layer GNN is used in this work, we combine the scaled attention
coefficients of the first layer (i.e., βð1Þ

ij ) and the second layer (i.e., βð2Þ
ij ) via

μβð1Þ
ij + ð1� μÞβð2Þ

ij , where μ∈ [0, 1] stands for a tunable parameter.

Edge selection for cell-lineage-specific GRN construction. We
choose at most kdN edges according to their final scaled attention
coefficients to derive the cell-lineage-specific GRN, where kd stands for
the average degree of the constructed GRN and N stands for the total
number of genes. We analyzed the effect of the parameter kd on the
performance of driver regulator identification, and then set kd = 8 for
all the computational experiments to ensure good performances while
maintaining reasonablenetwork sizes (Supplementary Figs. 22 and 23).

Statistics and reproducibility. Our GRN construction takes the log-
transformed and scaled gene expression profiles as the input gene
features. For each scRNA-seq dataset, to take into account the dataset-
specific gene relationships75, we first supplemented the prior gene
interaction network by adding the top 1% of gene co-expression
associations (Spearman’s correlation coefficients > 0.6). The encoder
of GRN construction consists of a two-layer graph attention neural
network with four heads and hidden sizes of 128 for all the GNN layers,
GELU nonlinear activation76, batch normalization before each GNN
layer, and a feedforward neural network after each GNN layer (Sup-
plementary Fig. 1). The size of output feature embeddings is set to 64.
We optimized themodel using an Adamoptimizer with a learning rate
of 1e-4 and a weight decay of 5e-4. The parameter μ for balancing the
attention coefficients between the first and second layers of GNN is set
to 0.5. Our further analysis showed that this parameter was relatively
stable for different settings (Supplementary Fig. 20). The number of
training epochs is set to 350 by default and all the results were aver-
aged over 20 repeats to avoid the effect of randomness.

Driver regulator identification based on network control with
nonlinear dynamics
The dynamics of activity xi(t) for gene vi evolving over time in a GRN
can be written as a system of ordinary differential equations (ODEs),

that is:

_xi = Fi xð Þ,i= 1,2, � � � ,N, ð9Þ

where Fi stands for a nonlinear function depending on the regulatory
relationships33 and N stands for the total number of genes in the GRN.
Mochizuki et al.33,77 have proved that if the nonlinear function Fi
satisfies only a few conditions (e.g., continuous differentiability, dis-
sipative and decaying), the dynamics of the system can be solely
dependent on the network topology. In fact, these conditions can be
easily met in most biological systems with naturally occurring end
states, which correspond to cell fates32,33,77. Using only the network
structure, our goal is to find a minimum set of driver variables (i.e.,
driver genes) that can fully control the dynamics of a system repre-
sented by the GRN. In this paper, we employ two classical network
control-based methods, i.e., the minimum feedback vertex set (MFVS)
and the minimum dominating set (MDS), to find the driver genes.
Below we will describe more details about these two approaches.

The minimum feedback vertex set method for driver gene identi-
fication. The first network control-based method for driver gene
identification is based on the feedback vertex set (FVS)33,77 with non-
linearities:

_xi = Fi xð Þ= Fi xi,xIi

� �
, i= 1,2, � � � ,N,

s:t:
∂Fi xi ,xIi

	 


∂xi
<0,

ð10Þ

where Ii stands for the set of predecessor nodes of gene node vi (i.e.,
the genes that regulate the gene vi) and the constraint is a decay
condition.

According to the FVS-basedmethod proposed byMochizuki et al.33

and Fiedler et al.77, controlling all the nodes in the FVS is sufficient to
drive the system to any of its attractors (i.e., cell states). Here, we used
the extended FVS-based method proposed by Zañudo et al. [32], which
control all the source nodes (i.e., the nodes with in degree 0) and the
nodes in the FVS. In graph theory, the FVS problem aims to find a subset
of nodes in the graph such that the removal of these nodes leaves the
graph without feedback loops. The FVS is suitable for modeling GRNs
since natural biological circuits frequently contain many positive or
negative feedback loops. Here, we aim to find the minimum feedback
vertex set (MFVS), which can be formalized as the following 0–1 integer
linear programming (ILP) optimization problem:

min
PN

i= 1
yi,

s:t: zi � zj +Nyi ≥ 1,8Aij = 1,

zi 2 f1,2, � � � ,Ng,8vi 2 V ,

and yi 2 f0,1g,

ð11Þ

where A stands for the adjacency matrix of the corresponding graph
(i.e., the constructed GRN), zi and zj are auxiliary variables for vi and vj,
respectively, and the solution yi = 1 if the node vibelongs to the optimal
feedback vertex set and yi =0 otherwise.

Equation (11) is an NP-hard problem that is unlikely to be solved
efficiently by a polynomial algorithm. In this work, we first applied a
graph contraction strategy proposed by Lin and Jou78 and then solved
the resulting ILP problem on the simplified graph using the Gurobi
optimizer (https://www.gurobi.com/).

Theminimumdominating setmethod for driver gene identification.
The second network control-based method for driver gene identifi-
cation is based on the minimum dominating set (MDS) approach34,
which aims to construct the smallest subset of nodes in a graph, i.e.,
the dominating set, such that every node in the graph either belongs to
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the dominating set or is a neighbor of any member in the dominating
set. Although the MDS-based control method is initially used for
undirected networks, it canbe easily adapted for a directednetwork by
assuming that each node in the MDS only controls all of its successor
neighbors. TheMDS problem for directed networks can be formalized
as the following 0–1 ILP model:

min
PN

i= 1
yi

s:t: yi +
P

j2N i

yj ≥ 1, 8vi 2 V ,yi 2 f0,1g,
ð12Þ

whereN i stands for the predecessor neighbors of node vi, the solution
yi = 1 if vi belongs to the optimal dominating set and yi =0 otherwise.

The above MDS problem is also an NP-hard one. Similar to the
strategy used for solving the MFVS problem, we first used an efficient
graph reduction method proposed by Ishitsuka et al.79 for simplifying
the graph and then solved the resulting ILP problem using the Gurobi
optimizer.

The above two methods obtain the driver genes from different
views, which are both related to topologically important nodes in the
network. In this work, we use the union of driver genes obtained by
these two methods as a candidate set of driver regulators.

The gene influence scores for ranking the driver gene candidates.
As controlling an entire network usually requires a number of driver
nodes24, we also define an influence score to directly measure the
importance of individual driver genes from a constructed cell-lineage-
specific GRN. Since the derived attention coefficients can well reflect
the likelihood of a gene being selected as a regulator in the in-coming
network or as a target in the out-going network, we define the influ-
ence score of a gene as the log-transformed sum of the scaled atten-
tion coefficients of the gene’s neighbors. More specifically, we first
calculate the influence scores Sini and Souti for gene vi on the out-going
and in-coming networks, respectively, and then calculate the final
influence score (i.e., Si) through their linear combination as follows:

Sini = lnð1 +
X

j2N p
i

βout
ji Þ,

Souti = lnð1 +
X

j2N s
i
βin
ij Þ,

Si = λS
out
i + ð1� λÞSini ,

ð13Þ

where N p
i and N s

i stand for the sets of predecessor and successor
neighbors of node vi, respectively, and λ∈ [0, 1] stands for a parameter
balancing these two terms. We also analyzed the impact of this para-
meter (Supplementary Fig. 24), and empirically set λ = 0.8 to consider
more significant influence from Souti because the important regulators
(e.g., TFs) typically have large out-degrees in a GRN16,17. In our CEFCON
framework, the top 100 genes ranked according to the influence
scores are first selected, and their overlap with the driver gene
candidates obtained from the two network control-based methods is
chosen as the final list of driver regulators for further analyses.

Regulon-like gene module identification
As we divide the input prior gene interaction network into in-coming
and out-going networks based on the directions ofmessage-passing in
the employed GNN, two kinds of gene modules can be identified: (i) a
genemodule consisting of a regulator and its target genes, referred to
as an out-degree type of RGM (e.g., TF-target regulon13,18), and (ii) a
genemodule consisting of a target and other genes that co-regulate it,
referred to as an in-degree type of RGM. In this work, these two types
of RGMs associated with the identified driver regulators were detec-
ted. In addition, we only kept the significantly differentially expressed
genes and removed those RGMswith sizes less than ten. In the end, the

activity of an individual RGM in each cell was measured by AUCell13

using the pySCENIC package80.

Assessment metrics for network controllability analyses
The following metrics, including controllability score, Jaccard index,
and driver regulator coverage, are used to measure the difficulty level
of controlling a network:

Controllability Score= 1� Dx

�� ��

Vk k , ð14Þ

Jaccard Index =
DMFV S

T
DMDS

�� ��

DMFV S
S
DMDS

�� �� , ð15Þ

Driver RegulatorCoverage =

���R
���

DMFV S
S
DMDS

�� �� ,
ð16Þ

where Dx∈ {DMFV S,DMDS}, DMFV S and DMDS stand for the driver gene
sets identified using the MFVS and MDS methods, respectively, V
stands for the set of all genes in the network, and R stands for the final
list of driver regulators identified by CEFCON. Basically, the higher
these metrics are, the greater the likelihood of cell fate change. More
specifically, a higher controllability score means that a fewer number
of driver genes are required to control the network, a higher Jaccard
index represents higher consistency between the driver gene sets
obtained from different methods, and a higher driver regulator cov-
erage indicates that the list of the identified regulators covers more
driver gene candidates.

The prior gene interaction network
We adopted a highly comprehensive gene interaction network pro-
posed in NicheNet25 as our prior network. The original network from
NicheNet provides a collection of ligand-receptor, intracellular sig-
naling, and gene regulatory interactions from over 50 public data
sources of mouse and human. In this paper, the ligand-receptor
interactions between cells were removed because we only focused on
the gene interactions within individual cells. We directly used the
unweighted version of the integrated network and processed it to be
directed by simply treating the undirected edges as bidirectional
edges. The original NicheNet gene interaction network was given in
human gene symbols. Toobtain a gene interaction network formouse,
we mapped the gene symbols using the one-to-one orthologs from
ENSEMBL81 and excluded those ambiguous genes. Finally, we obtained
a prior gene interaction network with 25,332 genes and 5,290,993
edges for human, and 18,579 genes and 5,029,532 edges for mouse.
Additionally, we selected four global and context-free gene interaction
networks, including Harmonizome82, InWeb_InBioMap83,
PathwayCommons84, and Omnipath85, as the alternatives for the input
prior gene interaction networks (Supplementary Note A.3 and Sup-
plementary Table 1).

scRNA-seq data preprocessing and lineage inference
For the in-depth analyses of mouse hematopoietic stem cell differ-
entiation, the scRNA-seq data were preprocessed using the SCANPY
package86. The cells with more than 200 zero expressed genes were
deleted and the genes expressed on fewer than 5 cells were removed.
The top 3000 highly variable genes were selected using the ‘cell_ran-
ger’ method in the SCANPY86. Finally, the expression values were log-
normalized. The lineages and pseudotime informationwere calculated
using Slingshot87. The plots of the gene expression trends along the
pseudotime were obtained using Palantir11, which fitted the data into a
general additive (GAM) model for each lineage.
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The GO and KEGG pathway enrichment analyses
TheGOandKEGGpathwayenrichment analyseswereperformedusing
gProfiler88. The GO terms were restricted to the categories of “biolo-
gical processes". Only the significantly enriched terms that covered at
least 20% genes in the gene set were considered for evaluation and
further analysis. The enrichment results with false discovery rates less
than 0.05 based on the Benjamin-Hochberg test74 were considered
significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the datasets analyzed in this study are publicly available. The prior
gene interaction network was from NicheNet25, which can be down-
loaded from https://github.com/saeyslab/nichenetr. The scRNA-seq
datasets are available in the Gene Expression Omnibus (GEO) under
accession codes: GSE75748 [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE75748] (hESC), GSE81252 [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE81252] (hHep), GSE98664 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98664] (mESC),
GSE48968 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE48968] (mDC) and GSE81682 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE81682] (mHSC). The ChIP-seq and loss-of-
function/gain-of-function (lofgof) data for validating the constructed
GRN were obtained from BEELINE21. The gene expression response
data after the forced induction of TFs in mESCs for validating the
constructed GRN are available in the GEO database under accession
codeGSE31381 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE31381]. The TF lists of human and mouse for GRN evaluation and
analyses are available at the GitHub of pySCENIC (https://github.com/
aertslab/pySCENIC/tree/master/resources). The three GO gene sets,
including GO:0045165 [https://www.informatics.jax.org/go/term/GO:
0045165], GO:0019827 [https://www.informatics.jax.org/go/term/GO:
0019827] and GO:0007492 [https://www.informatics.jax.org/go/term/
GO:0007492], for evaluating the identified driver regulators are
available at http://www.informatics.jax.org/vocab/gene_ontology. The
lists of the literature-curated key regulators about ESC were directly
obtained fromrefs. 46, 47 forbothhumanandmouse. All thedata used
in this study are available at Zenodo (https://doi.org/10.5281/zenodo.
7564872). Source data are provided with this paper.

Code availability
The CEFCON algorithm is implemented in Python. The source code of
CEFCON is available at https://github.com/WPZgithub/CEFCON89.
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