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Large language models (LLMs) are typically trained on millions of annotated samples,

incurring substantial annotation costs and computational resources. While neural scaling laws

demonstrate that test error decreases as a power law with training data volume, we are approach-

ing the limits of feasibly collectible public data. This thesis investigates efficient alternatives

through weak supervision. We explore two kinds of weak supervision: extractive and generative.

Extractive weak supervision curate training data from unsupervised pools of data using weak

supervision sources, while generative weak supervision leverages pre-trained language models to

create synthetic data. We also propose assessing data quality through three key dimensions: di-

versity, difficulty, and correctness. Additionally, we empirically show that the training dynamics
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of LLMs provide valuable insights into data quality.

In the extractive weak supervision domain, we present a contextualized weakly supervised

text classification framework that utilizes contextualized representations and user-provided seed

words to interpret the corpus and derive labeled data. We also demonstrate that metadata can serve

as an additional supervision source in our metadata-empowered weakly supervised classification

framework.

For generative weak supervision, we showcase how language models and publicly-

available question-answering datasets can be leveraged to generate text-classification data.

Additionally, we also discuss our work on generating synthetic tool-usage data from scratch with

minimal human supervision.

Finally, we analyze training dynamics to understand the data quality and investigate

whether quality improvements can reduce quantity requirements. Through the lens of difficulty,

diversity, and noise, we observe that extractive weak supervision tends to produce noisy data

while generative weak supervision creates less challenging data. To address these limitations,

we propose learning-order-based selection to filter noisy data and learning-percentage-based

selection to identify difficult examples. We also empirically observe that smaller language

models are capable of curating training data for larger language models.

Together, this body of work advances our understanding of what constitutes “high-quality”

training data while providing cost-effective solutions for data curation. Our theoretical analyses

and empirical evaluations demonstrate significant performance improvements achieved through

these weak supervision approaches and targeted data selection methods. These approaches not

only reduce resource requirements but also establish a framework for quantifying data quality

metrics across different weak supervision paradigms. By strategically addressing the inherent

limitations of both extractive and generative weak supervision, we provide a comprehensive

methodology for optimizing training data that balances quality considerations with practical

constraints, ultimately creating more efficient pathways for training robust language models.

xxiii



Introduction

Large language models (LLMs) have transformed the artificial intelligence landscape with

their remarkable capabilities. At the heart of these advancements lies a critical factor: training

data. These models achieve their prowess through exposure to vast quantities of annotated

examples — for instance, Llama-3 (Dubey et al., 2024) was instruction-tuned on more than 10

million manually annotated data points. This massive data requirement represents a significant

bottleneck in the development pipeline.

Messi plays 
soccer.

Trump is 
president.

Abortion is legal

Text Label

Messi plays soccer

Trump is president

Abortion is legal

Soccer

Art

Politics

Extractive Weak 
Supervision

Generative Weak 
Supervision

Text Label

Messi plays soccer

Trump is the 47th …

Abortion is legal

Soccer

Politics

Politics

Training Data
Instruction Response

Write a poem on a tree

x + y = 2, x – y = 0, x?

BFS code in python pls

…….

……..

……..

Unlabeled Data

Training Data

High-quality  Training Data

Prompts

Data Selection
(difficulty)

Data Selection
(correctness)

Text Label

Messi plays soccer

Abortion is legal

Soccer

Politics

Instruction Response

Write a poem on a tree

x + y = 2, x – y = 0, x?

…….

……..

- Generate a 
task on poetry.

- Write a 
paragraph 
about politics 
with Trump

ConWea, ACL’20
META, EMNLP’20

LOPS, EMNLP’22

Small2Large, ACL’24

ConDA, EMNLP’22
ToolVerifier, EMNLP’24

Figure 1. Overview of the dissertation. We introduce data curation methods leveraging extractive
and generative weak supervision. Moreover, we also propose data selection works focused on
correctness and difficulty of the data.

Neural scaling laws (Kaplan et al., 2020; Henighan et al., 2020; Gordon et al., 2021)

empirically demonstrate that test error decreases as a power law relative to training data volume.
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However, as we approach the limits of feasibly collectible public data, exploring efficient

alternatives becomes imperative. This dissertation investigates how weak supervision techniques

can address this challenge by enabling the curation of high-quality training data with minimal

human intervention. We introduce cost-effective data curation methods by efficiently leveraging

different forms of weak supervision.

We explore two fundamental types of weak supervision: extractive and generative,

as illustrated in Figure 1. Extractive weak supervision involves curating training data from

unsupervised sources using limited supervision signals such as seed words (Meng et al., 2018,

2019), label names (Meng et al., 2020; Wang et al., 2021), label descriptions (Mekala et al.,

2021), and few labeled samples (Mekala et al., 2022b). This approach is particularly useful for

fine-tuning LLMs on discriminative tasks. In contrast, generative weak supervision employs

pre-trained LLMs (Radford & Narasimhan, 2018; Radford et al., 2019; Brown et al., 2020;

Dubey et al., 2024) to synthesize training data (Kumar et al., 2020; Anaby-Tavor et al., 2020),

making it applicable to both discriminative tasks like text classification and generative tasks such

as instruction-following (Wang et al., 2022a). However, both extractive and generative weak

supervision often produce low-quality training data. To address this limitation, we investigate

what constitutes “high-quality” data through the lens of model training dynamics. Our analysis

examines three critical dimensions: diversity, difficulty, and correctness. We observe that

extractive weak supervision tends to result in noisy data with low correctness, while generative

weak supervision often produces simplistic data with low difficulty (Peng et al., 2024). To

enhance model performance, we propose two data selection methods for improving the data

quality tailored to extractive and generative weak supervision, independently optimizing for

correctness and difficulty. A comparative analysis of these approaches is presented in Table 1.

A common source of extractive weak supervision includes small sets of user-provided

label-indicative seed words for each class. However, the immense volume of text data and the

inherent complexity of natural language create significant challenges. Seed words often have

multiple interpretations depending on context, requiring identification of user-intended meanings
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Table 1. Extractive vs Generative Weak Supervision comparison

Extractive Weak Supervision Generative Weak Supervision

Unlabeled data Necessary No
LLMs for generation No Necessary

Tasks Mainly discriminative Both discriminative & generative
Data Selection Criteria Correctness Difficulty

for accurate classification. Traditional methods generate pseudo-labels through context-free

approaches (such as string matching), overlooking the ambiguous, context-dependent nature

of human language. In our first work, we explore contextualized weak supervision where

we leverage contextualized representations of word occurrences and seed word information

to automatically differentiate multiple interpretations of a word. The “contextualized” aspect

manifests in two ways: in the corpus, where each word occurrence may be interpreted differently

according to its context; and in seed words, where ambiguous terms must be resolved according

to their user-specified class. This approach aims to improve the accuracy of the final text classifier.

Additionally, widely available metadata—including author information, publication date, and

geographic location—represents an untapped, complementary supervision source. Our second

work organizes text and metadata into a text-rich network and employs network motifs to capture

appropriate metadata combinations. This network structure provides a holistic view of the corpus

and enables ranking and selection of useful metadata entities.

Generative weak supervision typically involves priming an LLM with a task description

and relevant contextual information to generate corresponding data. We present work that

reformulates the data generation task as a context generation task for given question-answer

pairs, utilizing publicly-available question-answering datasets to train a data generator. With

this generator, we create text classification datasets that significantly improve classifier perfor-

mance. Additionally, we present our work on generating tool-usage data for training tool-calling

LLMs from scratch with minimal human input. Starting with weak human supervision sig-

nals—consisting only of domain specifications and a few examples—we employ a hierarchical

approach to synthetically generate a comprehensive suite of tools, user instructions, and the
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underlying reasoning processes that guide tool selection.

The data obtained through either extractive or generative weak supervision is rarely

perfect. To overcome these limitations, we introduce our two training dynamics-inspired data

selection methods. These approaches filter out noisy and less challenging samples based on a key

observation: models typically learn clean, easy samples first, followed by difficult samples, with

noisy samples processed last. Our first method introduces learning-order based data selection

for discriminative tasks, empirically demonstrating that learning order reflects the probability of

wrong annotation, thereby eliminating noise by selecting samples learned earlier. We generalize

this approach to generative tasks with learning-percentage based selection, eliminating less chal-

lenging data for instruction-following tasks, which improves training time without compromising

performance.

We explore extractive weak supervision in Chapters 1, 2, 3 and generative weak supervi-

sion in Chapters 4, 5, 6. Chapter 1 introduces contextualized weak supervision (Mekala & Shang,

2020), while Chapter 2 examines the use of metadata as auxiliary weak supervision (Mekala

et al., 2020). Chapter 3 introduces the learning-order inspired data selection method focused on

correctness tailored for extractive weak supervision (Mekala et al., 2022a). Our works leveraging

generative weak supervision begins with Chapter 4 where we explore utilizing QA datasets to

train a data generator for text classification tasks (Mekala et al., 2022b). Chapter 5 investigates

generating tool-selection data to enhance tool generalization (Mekala et al., 2024b). Finally,

Chapter 6 presents the learning-percentage based data selection strategy centered on difficulty of

the data tailored for generative weak supervision (Mekala et al., 2024a).

The ultimate aim of our research is to develop practical data curation methods that enable

the creation of high-quality training datasets with minimal human effort (Nguyen et al., 2024),

thereby advancing the capabilities and accessibility of large language models.
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Open source tools

Our developed methods are made public and has attracted attention from the open-source

community. The list of our open-sourced methods are as follows:

• ConWea: https://github.com/dheeraj7596/ConWea

• META: https://github.com/dheeraj7596/META

• LOPS: https://github.com/dheeraj7596/LOPS

• Conda: https://github.com/dheeraj7596/CONDA

• ToolVerifier:

– Code: https://github.com/facebookresearch/ToolVerifier

– Third-party blogs:

* MarktechPost: Researchers from Meta AI and UCSD Present ToolVerifier

* DailyAI: Meta, UCSD Introduce ToolVerifier

* FavTutor: Meta UCSD ToolVerifier LLM Tool Calls

– Dataset: https://huggingface.co/datasets/facebook/toolverifier

• Small2Large: https://github.com/dheeraj7596/Small2Large

Overall Impact

Our methods on contextualized weak supervision for text classification (ConWea (Mekala

& Shang, 2020)), metadata-empowered weak supervision for text classification (META (Mekala

et al., 2020)), and learning-order based pseudo-label selection (LOPS (Mekala et al., 2022a)) are

being taught in graduate courses, e.g. University of California San Diego (CSE291-Advanced

Data-Driven Text Mining). Our insights from Chapter 6 (Mekala et al., 2024a) and Chapter 5

(Mekala et al., 2024b) are shared & cited in the influential Llama-3 paper (Dubey et al., 2024).
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Chapter 1

Contextualized Weak Supervision for Text
Classification

In this chapter, we present our proposed method ConWea, that contextualizes weak

supervision thereby resolving the interpretation of seed words and performs text classification.

1.1 Motivation & Overview

Weak supervision in text classification has recently attracted much attention from re-

searchers, because it alleviates the burden of human experts on annotating massive documents.

One of the popular forms of weak supervision is a small set of user-provided seed words for each

class. Typical seed-driven methods follow an iterative framework — generate pseudo-labels

using some heuristics, learn the mapping between documents and classes, and expand the seed

set (Agichtein & Gravano, 2000; Riloff et al., 2003; Kuipers et al., 2006; Tao et al., 2015; Meng

et al., 2018).

Most of, if not all, existing methods generate pseudo-labels in a context-free manner,

therefore, the ambiguous, context-dependent nature of human languages has been long over-

looked. Suppose the user gives “penalty” as a seed word for the sports class, as shown in

Figure 1.1. The word “penalty” has at least two different meanings: the penalty in sports-related

documents and the fine or death penalty in law-related documents. If the pseudo-label of a

document is decided based only on the frequency of seed words, some documents about law may
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q Which “penalty” – death penalty or penalty kick?

q Which “court” – Law court or tennis court?

Before Contextualization After Contextualization

q “penalty$1” – penalty kick

q “court$1” – Law court

Figure 1.1. Why contextualization?

User-Provided Seed Words

Messi scored the penalty! …
Judge passed the order of …
The court issued a penalty …

……

Messi scored the penalty$1! …
Judge passed the order of …
The court$1 issued a penalty$0 …

……

Raw Docs

Extended Seed Words

Class Seed Words

Soccer soccer, goal, penalty

Law law, judge, court

… …

Contextualized Docs

Class Seed Words

Soccer soccer, goal$0, goal$1, 
penalty$0, penalty$1, 

Law law, judge, court$0, court$1

… …

Text Classifier

Messi scored the penalty$1! …
Judge passed the order of …
The court$1 issued a penalty$0 …

……

Contextualized Docs with Predictions

Contextualized & Expanded Seed Words

Class Seed Words

Soccer soccer, goal$0, penalty$1, …

Law law, judge, court$1, 
penalty$0, …

… …

Law Soccer

Cosmos Politics

Comparative Ranking

Figure 1.2. Our proposed contextualized weakly supervised method leverages BERT to create a
contextualized corpus. This contextualized corpus is further utilized to resolve interpretations
of seed words, generate pseudo-labels, train a classifier and expand the seed set in an iterative
fashion.

be mislabelled as sports. More importantly, such errors will further introduce wrong seed words,

thus being propagated and amplified over the iterations.

Bearing these challenges in mind, we propose ConWea, a Contextualized Weakly super-

vised text classification framework. This framework introduces contextualized weak supervision

to train a text classifier based on user-provided seed words. The “contextualized” here is re-

flected in two places: the corpus and seed words. Every word occurrence in the corpus may be

interpreted differently according to its context; Every seed word, if ambiguous, must be resolved

according to its user-specified class. In this way, we aim to improve the performance of the final

text classifier.
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As illustrated in Figure 1.2, it leverages contextualized representation learning techniques,

such as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), together with user-provided

seed information to first create a contextualized corpus. This contextualized corpus is further

utilized to train the classifier and expand seed words in an iterative manner. During this process,

contextualized seed words are introduced by expanding and disambiguating the initial seed words.

Specifically, for each word, we develop an unsupervised method to adaptively decide its number

of interpretations, and accordingly, group all its occurrences based on their contextualized

representations. We design a principled comparative ranking method to select highly label-

indicative keywords from the contextualized corpus, leading to contextualized seed words. We

will repeat the iterative classification and seed word expansion process until the convergence.

To the best of our knowledge, this is the first work on contextualized weak supervision

for text classification. It is also worth mentioning that our proposed framework is compatible

with almost any contextualized representation learning models and text classification models.

Our contributions are summarized as follows:

• We propose a novel framework enabling contextualized weak supervision for text classifi-

cation.

• We develop an unsupervised method to automatically group word occurrences of the same

word into an adaptive number of interpretations based on contextualized representations

and user-provided seed information.

• We design a principled ranking mechanism to identify words that are discriminative and

highly label-indicative.

• We have performed experiments on real-world datasets for both coarse- and fine-grained

text classification tasks. The results demonstrate the superiority of using contextualized

weak supervision, especially when the labels are fine-grained.
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1.2 Related Work

In this section, we review the literature about (1) weak supervision for text classification

methods, (2) contextualized representation learning techniques, (3) document classifiers, and (4)

word sense disambiguation.

1.2.1 Weak Supervision for Text Classification

Weak supervision has been studied for building document classifiers in various of forms,

including hundreds of labeled training documents (Tang et al., 2015b; Miyato et al., 2017;

Xu et al., 2017), class/category names (Song & Roth, 2014; Tao et al., 2015; Li et al., 2018),

and user-provided seed words (Meng et al., 2018; Tao et al., 2015). Our method focuses on

user-provided seed words as the source of weak supervision, Along this line, Doc2Cube (Tao

et al., 2015) expands label keywords from label surface names and performs multi-dimensional

document classification by learning dimension-aware embedding; PTE (Tang et al., 2015b)

utilizes both labeled and unlabeled documents to learn text embeddings specifically for a task,

which are later fed to logistic regression classifiers for classification; WeSTClass (Meng et al.,

2018) leverages seed information to generate pseudo documents and introduces a self-training

module that bootstraps on real unlabeled data for model refining. This method is later extended

to handle hierarchical classifications based on a pre-defined label taxonomy (Meng et al., 2019).

However, all these weak supervisions follow a context-free manner. Here, we propose to use

contextualized weak supervision.

1.2.2 Contextualized Word Representations

Contextualized word representation is originated from machine translation (MT). CoVe

(McCann et al., 2017) generates contextualized representations for a word based on pre-trained

MT models, More recently, ELMo (Peters et al., 2018) leverages neural language models

to replace MT models, which removes the dependency on massive parallel texts and takes
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advantages of nearly unlimited raw corpora. Many models leveraging language modeling to

build sentence representations (Howard & Ruder, 2018; Radford & Narasimhan, 2018; Devlin

et al., 2019) emerge almost at the same time. Language models have also been extended to

the character level (Liu et al., 2018; Akbik et al., 2018), which can generate contextualized

representations for character spans.

Our proposed framework is compatible with all the above contextualized representation

techniques. In our implementation, we choose to use BERT to demonstrate the power of using

contextualized supervision.

1.2.3 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is one of the challenging problems in natural lan-

guage processing. Typical WSD models (Lesk, 1986; Zhong & Ng, 2010; Yuan et al., 2016;

Raganato et al., 2017; Le et al., 2018; Tripodi & Navigli, 2019) are trained for a general domain.

Recent works (Li & Jurafsky, 2015; Mekala et al., 2017; Gupta et al., 2019; Li et al., 2021)

also showed that machine-interpretable representations of words considering its senses, improve

document classification. However, if one wants to apply WSD to some specific corpus, additional

annotated training data might be required to meet the similar performance as ours, which defeats

the purpose of a weakly supervised setting.

In contrast, our contextualization, building upon (Devlin et al., 2019), is adaptive to the

input corpus, without requiring any additional human annotations. Therefore, our framework is

more suitable than WSD under the weakly supervised setting. Our experimental results have

verified this reasoning and showed the superiority of our contextualization module over WSD in

weakly supervised document classification tasks.

1.2.4 Document Classifier

Document classification problem has been long studied. In our implementation of the

proposed framework, we used HAN (Yang et al., 2016), which considers the hierarchical structure
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of documents and includes attention mechanisms to find the most important words and sentences

in a document. CNN-based text classifiers(Kim, 2014; Zhang et al., 2015; Lai et al., 2015) are

also popular and can achieve inspiring performance.

Our framework is compatible with all the above text classifiers. We choose HAN just for

a demonstration purpose.

1.3 Preliminaries

In this section, we introduce seed-driven weakly supervised text classification problem

and provide an overview of our proposed framework.

1.3.1 Problem Formulation

The input of our problem contains (1) a collection of n text documents D = {D1,D2, . . . ,

Dn} and (2) m target classes C = {C1,C2, . . . ,Cm} and their seed words S = {S1,S2, . . . ,

Sm}. We aim to build a high-quality document classifier from these inputs, assigning class label

C j ∈ C to each document Di ∈D .

Note that, all these words could be upgraded to phrases if phrase mining techniques (Liu

et al., 2015; Shang et al., 2018) were applied as pre-processing. In this chapter, we stick to the

words.

1.3.2 Framework Overview

We propose a framework, ConWea, enabling contextualized weak supervision. Here,

“contextualized" is reflected in two places: the corpus and seed words. Therefore, we have

developed two novel techniques accordingly to make both contextualizations happen.

First, we leverage contextualized representation learning techniques (Peters et al., 2018;

Devlin et al., 2019) to create a contextualized corpus. We choose BERT (Devlin et al., 2019) as

an example in our implementation to generate a contextualized vector of every word occurrence.

We assume the user-provided seed words are of reasonable quality — the majority of the seed
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words are not ambiguous, and the majority of the occurrences of the seed words are about the

semantics of the user-specified class. Based on these two assumptions, we are able to develop an

unsupervised method to automatically group word occurrences of the same word into an adaptive

number of interpretations, harvesting the contextualized corpus.

Second, we design a principled comparative ranking method to select highly label-

indicative keywords from the contextualized corpus, leading to contextualized seed words.

Specifically, we start with all possible interpretations of seed words and train a neural classifier.

Based on the predictions, we compare and contrast the documents belonging to different classes,

and rank contextualized words based on how label-indicative, frequent, and unusual these words

are. During this process, we eliminate the wrong interpretations of initial seed words and also

add more highly label-indicative contextualized words.

This entire process is visualized in Figure 1.2. We denote the number of iterations

between classifier training and seed word expansion as T , which is the only hyper-parameter in

our framework. We discuss these two novel techniques in detail in the following sections. To

make this chapter self-contained, we will also brief the pseudo-label generation and document

classifiers.

1.4 Document Contextualization

We leverage contextualized representation techniques to create a contextualized corpus.

The key objective of this contextualization is to disambiguate different occurrences of the same

word into several interpretations. We treat every word separately, so in the rest of this section,

we focus on a given word w. Specifically, given a word w, we denote all its occurrences as

w1, . . . ,wn, where n is its total number of occurrences in the corpus.

1.4.1 Contextualized Representation

First, we obtain a contextualized vector representation bwi for each wi. Our proposed

method is compatible with almost any contextualized representation learning model. We choose
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BERT (Devlin et al., 2019) as an example in our implementation to generate a contextualized

vector for each word occurrence. In this contextualized vector space, we use the cosine similarity

to measure the similarity between two vectors. Two word occurrences wi and w j of the same

interpretation are expected to have a high cosine similarity between their vectors bwi and bw j .

For the ease of computation, we normalize all contextualized representations into unit vectors.

1.4.2 Choice of Clustering Methods

We model the word occurrence disambiguation problem as a clustering problem. Specifi-

cally, we propose to use the K-Means algorithm (Jain & Dubes, 1988) to cluster all contextualized

representations bwi into K clusters, where K is the number of interpretations. We prefer K-Means

because (1) the cosine similarity and Euclidean distance are equivalent for unit vectors and (2) it

is fast and we are clustering a significant number of times.

1.4.3 Automated Parameter Setting

We choose the value of K purely based on a similarity threshold τ . τ is introduced to

decide whether two clusters belong to the same interpretation by checking if the cosine similarity

between two cluster center vectors is greater than τ . Intuitively, we should keep increasing K

until there exist no two clusters with the same interpretation. Therefore, we choose K to be the

largest number such that the similarity between any two cluster centers is no more than τ .

K = argmax
K
{cos(ci,c j)< τ ∀ i, j} (1.1)

where ci refers to the i-th cluster center vector after clustering all contextualized representations

into K clusters. In practice, K is usually no more than 10. So we increase K gradually until the

constraint is violated.

We pick τ based on user-provided seed information instead of hand-tuning, As mentioned,

we make two “majority” assumptions: (1) For any seed word, the majority of its occurrences
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(a) Similarity Distribution: Windows (b) Cluster Visualisation: Windows (c) Cluster Visualisation: Penalty

Figure 1.3. Document contextualization examples using word ‘windows’ and ‘penalty’. τ is
decided based on the similarity distributions of all seed word occurrences. Two clusters are
discovered for both words, respectively.

follow the intended interpretation by the user; and (2) The majority of the seed words are not

ambiguous — they only have one interpretation. Therefore, for each seed word s, we take the

median of pairwise cosine similarities between its occurrences.

τ(s) = median({sim(bsi,bs j) | ∀ i, j}) (1.2)

Then, we take the median of these medians over all seed words as τ . Mathematically,

τ = median({τ(s)|∀s}) (1.3)

The nested median solution makes the choice of τ safe and robust to outliers. For example,

consider the word “windows” in the 20Newsgroup corpus. In fact, the word windows has two

interpretations in the 20Newsgroup corpus — one represents an opening in the wall and the other

is an operating system. We first compute the pairwise similarities between all its occurrences and

plot the histogram as shown in Figure 1.3(a). From this plot, we can see that its median value

is about 0.7. We apply the same for all seed words and obtain τ following Equation 1.3. τ is

calculated to be 0.82. Based on this value, we gradually increase K for “windows” and it ends up

with K = 2. We visualize its K-Means clustering results using t-SNE (Maaten & Hinton, 2008)
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Algorithm 1: Corpus Contextualization
Input: Word occurrences w1,w2, . . . ,wn of the word w, Seed words s1,s2, . . . ,sm and

their occurrences si, j.
Output: Contextualized word occurrences ŵ1, ŵ2, . . . , ŵn
Obtain bwi and bsi, j using BERT.
Compute τ follow Equation 1.3.
K← 1
while True do

Run K-Means on {bwi} for (K+1) clusters.
Obtain cluster centers c1,c2, . . . ,cK+1.
if maxi, j cos(ci,cj)> τ then

Break
K← K + 1

Run K-Means on {bwi} for K clusters.
Obtain cluster centers c1,c2, . . . ,cK .
for each occurrence wi do

Compute ŵi following Equation 1.4.
Return ŵi.

in Figure 1.3(b). Similar results can be observed for the word penalty, as shown in Figure 1.3(c).

These examples demonstrate how our document contextualization works for each word.

In practice, to make it more efficient, one can subsample the occurrences instead of

enumerating all pairs in a brute-force manner.

1.4.4 Contextualized Corpus

The interpretation of each occurrence of w is decided by the cluster-ID to which its

contextualized representation belongs. Specifically, given each occurrence wi, the word w is

replaced by ŵi in the corpus as follows:

ŵi =


w if K = 1

w$ j∗ otherwise
(1.4)

where

j∗ = arg
K

max
j=1

cos(bwi,c j)
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Figure 1.4. The HAN classifier used in our ConWea framework. It is trained on our contextual-
ized corpus with the generated pseudo-labels.

By applying this to all words and their occurrences, the corpus is contextualized. The pseudo-

code for corpus contextualization is shown in Algorithm 1.

1.5 Pseudo-Label and Text Classifier

In this section, we discuss pseudo-label generation and text classifier. These two parts

are not the focus of the proposed method. We briefly introduce them to make the chapter

self-contained.

We generate pseudo-labels for unlabeled contextualized documents and train a classifier

based on these pseudo-labels, similar to many other weakly supervised methods (Agichtein &

Gravano, 2000; Riloff et al., 2003; Kuipers et al., 2006; Tao et al., 2015; Meng et al., 2018).
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1.5.1 Pseudo-Label Generation

There are several ways to generate pseudo-labels from seed words. As proof-of-concept,

we employ a simple but effective method based on counting. Each document is assigned a label

whose aggregated term frequency of seed words is maximum. Let tf(ŵ,d) denote term-frequency

of a contextualized word w in the contextualized document d and Sc represents set of seed words

of class c, the document d is assigned a label l(d) as follows:

l(d) = argmax
l
{∑

i
t f (si,d)|∀si ∈Sl} (1.5)

1.5.2 Document Classifier

Our framework is compatible with any text classification model. We use Hierarchical

Attention Networks (HAN) (Yang et al., 2016) as an example in our implementation. HAN

considers the hierarchical structure of documents (document – sentences – words) and includes

an attention mechanism that finds the most important words and sentences in a document while

taking the context into consideration. There are two levels of attention: word-level attention

identifies the important words in a sentence and sentence level attention identifies the important

sentences in a document. The overall architecture of HAN is shown in Figure 1.4. We train a

HAN model on contextualized corpus with the generated pseudo-labels. The predicted labels are

used in seed expansion and disambiguation.

1.6 Seed Expansion and Disambiguation

1.6.1 Seed Expansion

Given contextualized documents and their predicted class labels, we propose to rank

contextualized words and add the top few words into the seed word sets. The core element of

this process is the ranking function. An ideal seed word s of label l, is an unusual word that

appears only in the documents belonging to label l with significant frequency. Hence, for a given
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class C j and a word w, we measure its ranking score based on the following three aspects:

• Label-Indicative. Since our pseudo-label generation follows the presence of seed words

in the document, ideally, the posterior probability of a document belonging to the class

C j after observing the presence of word w (i.e., P(C j|w)) should be very close to 100%.

Therefore, we use P(C j|w) as our label-indicative measure:

LI(C j,w) = P(C j|w) =
fC j,w

fC j

where fC j refers to the total number of documents that are predicted as class C j, and among

them, fC j,w documents contain the word w. All these counts are based on the prediction

results on the input unlabeled documents.

• Frequent. Ideally, a seed word s of label l appears in the documents belonging to label l

with significant frequency. To measure the frequency score, we first compute the average

frequency of seed word s in all the documents belonging to label l. Since average frequency

is unbounded, we apply tanh function to scale it, resulting in the frequency score,

F(C j,w) = tanh
( fC j(w)

fC j

)
Here, different from fC j,w defined earlier, fC j(w) is the frequency of word w in documents

that are predicted as class C j.

• Unusual. We want our highly label-indicative and frequent words to be unusual. To

incorporate this, we consider inverse document frequency (IDF). Let n be the number of

documents in the corpus D and fD ,w represents the document frequency of word w, the

IDF of a word w is computed as follows:

IDF(w) = log
( n

fD ,w

)

18



Similar to previous work (Tao et al., 2015), we combine these three measures using the

geometric mean, resulting in the ranking score R(C j,w) of a word w for a class C j.

R(C j,w) =
(
LI(C j,w)×F(C j,w)× IDF(w)

)1/3

Based on this aggregated score, we add top words to expand the seed word set of the class C j.

1.6.2 Seed Disambiguation

While the majority of user-provided seed words are nice and clean, some of them may

have multiple interpretations in the given corpus. We propose to disambiguate them based on

the ranking. We first consider all possible interpretations of an initial seed word, generate the

pseudo-labels, and train a classifier. Using the classified documents and the ranking function, we

rank all possible interpretations of the same initial seed word. Because the majority occurrences

of a seed word are assumed to belong to the user-specified class, the intended interpretation shall

be ranked the highest. Therefore, we retain only the top-ranked interpretation of this seed word.

After this step, we have fully contextualized our weak supervision, including the initial

user-provided seeds.

1.7 Experiments

In this section, we evaluate our framework and many compared methods on coarse- and

fine-grained text classification tasks under the weakly supervised setting.

1.7.1 Datasets

Following previous work (Tao et al., 2015), (Meng et al., 2018), we use two news

datasets in our experiments. The dataset statistics are provided in Table 1.1. Here are some

details.

• The New York Times (NYT): The NYT dataset contains news articles written and
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Table 1.1. Dataset statistics.

Dataset # Docs # Coarse # Fine Avg Doc Len

NYT 13,081 5 25 778
20News 18,846 6 20 400

published by The New York Times. These articles are classified into 5 wide genres (e.g.,

arts, sports) and 25 fine-grained categories (e.g., dance, music, hockey, basketball).

• The 20 Newsgroups (20News): The 20News dataset1 is a collection of newsgroup

documents partitioned widely into 6 groups (e.g., recreation, computers) and 20 fine-

grained classes (e.g., graphics, windows, baseball, hockey).

We perform coarse- and fine-grained classifications on the NYT and 20News datasets.

NYT dataset is imbalanced in both fine-grained and coarse-grained classifications. 20News is

nearly balanced in fine-grained classification but imbalanced in coarse-grained classification.

Being aware of these facts, we adopt micro- and macro-F1 scores as evaluation metrics.

1.7.2 Compared Methods

We compare our framework with a wide range of methods described below:

• IR-TF-IDF treats the seed word set for each class as a query. The relevance of a document

to a label is computed by aggregated TF-IDF values of its respective seed words. The label

with the highest relevance is assigned to each document.

• Dataless (Chang et al., 2008) uses only label surface names as supervision and leverages

Wikipedia to derive vector representations of labels and documents. Each document is

labeled based on the document-label similarity.

• Word2Vec first learns word vector representations (Mikolov et al., 2013a) for all terms

in the corpus and derive label representations by aggregating the vectors of its respective

1http://qwone.com/~jason/20Newsgroups/
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seed words. Finally, each document is labeled with the most similar label based on cosine

similarity.

• Doc2Cube (Tao et al., 2015) considers label surface names as seed set and performs

multi-dimensional document classification by learning dimension-aware embedding.

• WeSTClass (Meng et al., 2018) leverages seed information to generate pseudo documents

and refines the model through a self-training module that bootstraps on real unlabeled

documents.

We denote our framework as ConWea, which includes contextualizing corpus, disam-

biguating seed words, and iterative classification & key words expansion. Besides, we have

three ablated versions. ConWea-NoCon refers to the variant of ConWea trained without the

contextualization of corpus. ConWea-NoSeedExp is the variant of ConWea without the seed

expansion module. ConWea-WSD refers to the variant of ConWea, with the contextualization

module replaced by Lesk algorithm (Lesk, 1986), a classic Word-sense disambiguation algorithm

(WSD).

We also present the results of HAN-Supervised under the supervised setting for reference.

We use 80-10-10 for train-validation-test splitting and report the test set results for it. All weakly

supervised methods are evaluated on the entire datasets.

1.7.3 Experiment Settings

We use pre-trained BERT-base-uncased2 to obtain contextualized word representations.

We follow (Devlin et al., 2019) and concatenate the averaged word-piece vectors of the last four

layers.

The seed words are obtained as follows: we asked 5 human experts to nominate 5 seed

words per class, and then considered the majority words (i.e., > 3 nominations) as our final set

of seed words. For every class, we mainly use the label surface name as seed words. For some

2https://github.com/google-research/bert
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Table 1.2. Evaluation Results for All Methods on Fine-Grained and Coarse-Grained Labels.
Both micro-F1(mic-F1) and macro-F1(mac-F1) scores are presented. Ablation and supervised
results are also included.

NYT 20 Newsgroup

5-Class (Coarse) 25-Class (Fine) 6-Class (Coarse) 20-Class (Fine)
Methods Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1 Mic-F1 Mac-F1

IR-TF-IDF 0.65 0.58 0.56 0.54 0.49 0.48 0.53 0.52
Dataless 0.71 0.48 0.59 0.37 0.50 0.47 0.61 0.53

Word2Vec 0.92 0.83 0.69 0.47 0.51 0.45 0.33 0.33
Doc2Cube 0.71 0.38 0.67 0.34 0.40 0.35 0.23 0.23
WeSTClass 0.91 0.84 0.50 0.36 0.53 0.43 0.49 0.46

ConWea 0.95 0.89 0.91 0.79 0.62 0.57 0.65 0.64

ConWea-NoCon 0.91 0.83 0.89 0.74 0.53 0.50 0.58 0.57
ConWea-NoExpan 0.92 0.85 0.76 0.66 0.58 0.53 0.58 0.57

ConWea-WSD 0.83 0.78 0.72 0.64 0.52 0.46 0.49 0.47

HAN-Supervised 0.96 0.92 0.94 0.82 0.90 0.88 0.83 0.83

multi-word class labels (e.g., “international business”), we have multiple seed words, but never

exceeds four per each class. The same seed words are utilized for all compared methods for fair

comparisons.

For ConWea, we set T = 10. For any method using word embedding, we set its dimension

to be 100. We use the public implementations of WeSTClass3 and Dataless4 with the hyper-

parameters mentioned in their original papers.

1.7.4 Performance Comparison

We summarize the evaluation results of all methods in Table 1.2. As one can observe

that our proposed framework achieves the best performance among all the compared weakly

supervised methods. We discuss the effectiveness of ConWea as follows:

• Our proposed framework ConWea outperforms all the other methods with significant

margins. By contextualizing the corpus and resolving the interpretation of seed words,

ConWea achieves inspiring performance, demonstrating the necessity and the importance

3https://github.com/yumeng5/WeSTClass
4https://cogcomp.org/page/software_view/Descartes
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of using contextualized weak supervision.

• We observe that in the fine-grained classification, the advantages of ConWea over other

methods are even more significant. This can be attributed to the contextualization of corpus

and seed words. Once the corpus is contextualized properly, the subtle ambiguity between

words is a drawback to other methods, whereas ConWea can distinguish them and predict

them correctly.

• The comparison between ConWea and the ablation method ConWea-NoExpan demon-

strates the effectiveness of our Seed Expansion. For example, for fine-grained labels on

the 20News dataset, the seed expansion improves the micro-F1 score from 0.58 to 0.65.

• The comparison between ConWea and the two ablation methods ConWea-NoCon and

ConWea-WSD demonstrates the effectiveness of our Contextualization. Our contextualiza-

tion, building upon (Devlin et al., 2019), is adaptive to the input corpus, without requiring

any additional human annotations. However, WSD methods(e.g., (Lesk, 1986)) are typi-

cally trained for a general domain. If one wants to apply WSD to some specific corpus,

additional annotated training data might be required to meet the similar performance as

ours, which defeats the purpose of a weakly supervised setting. Therefore, we believe that

our contextualization module has its unique advantages. Our experimental results further

confirm the above reasoning empirically. For example, for coarse-grained labels on the

20News dataset, the contextualization improves the micro-F1 score from 0.53 to 0.62.

• We observe that ConWea performs quite close to supervised methods, for example, on the

NYT dataset. This demonstrates that ConWea is quite effective in closing the performance

gap between the weakly supervised and supervised settings.
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(a) NYT Coarse (b) NYT Fine (c) 20News Coarse (d) 20News Fine

Figure 1.5. Micro- and Macro-F1 scores w.r.t. the number of iterations.

(a) NYT Coarse (b) NYT Fine (c) 20News Coarse (d) 20News Fine

Figure 1.6. Micro- and Macro-F1 scores w.r.t. the number of seed words.

1.7.5 Parameter Study

The only hyper-parameter in our algorithm is T , the number of iterations of iterative

expansion & classification. We conduct experiments to study the effect of the number of

iterations on the performance. The plot of performance w.r.t. the number of iterations is shown in

Figure 1.5. We observe that the performance increases initially and gradually converges after 4 or

5 iterations. We observe that after the convergence point, the expanded seed words have become

almost unchanged. While there is some fluctuation, a reasonably large T , such as T = 10, is a

good choice.

1.7.6 Number of Seed Words

We vary the number of seed words per class and plot the F1 score in Figure 1.6. One

can observe that in general, the performance increases as the number of seed words increase.

There is a slightly different pattern on the 20News dataset when the labels are fine-grained. We

conjecture that it is caused by the subtlety of seed words in fine-grained cases – additional seed

words may bring some noise. Overall, three seed words per class are enough for reasonable

performance.
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Table 1.3. Case Study: Seed word expansion of the For Sale class in context-free and contex-
tualized corpora. The For Sale class contains documents advertising goods for sale. Blue bold
words are potentially wrong seeds.

Seed Words for For Sale class

Iter Plain Corpus Contextualized Corpus

1 sale, offer, forsale sale, offer, forsale

2 space, price, shipping, sale, offer shipping, forsale, offer$0, condition$0, sale

3
space, price, shipping, sale, nasa, price, shipping, sale, forsale, condition$0,
offer, package, email offer$0, package, email

4
space, price, moon, shipping, sale, nasa, price, shipping, sale, forsale, condition$0,
offer, shuttle, package, email offer$0, package, email, offers$0, obo$0

1.7.7 Case Study

We present a case study to showcase the power of contextualized weak supervision.

Specifically, we investigate the differences between the expanded seed words in the plain corpus

and contextualized corpus over iterations. Table 1.3 shows a column-by-column comparison for

the class For Sale on the 20News dataset. The class For Sale refers to documents advertising

goods for sale. Starting with the same seed sets in both types of corpora, from Table 1.3, in

the second iteration, we observe that “space” becomes a part of expanded seed set in the plain

corpus. Here “space” has two interpretations, one stands for the physical universe beyond the

Earth and the other is for an area of land. This error gets propagated and amplified over the

iterations, further introducing wrong seed words like “nasa”, “shuttle” and “moon”, related to its

first interpretation. The seed set for contextualized corpus addresses this problem and adds only

the words with appropriate interpretations. Also, one can see that the initial seed word “offer”

has been disambiguated as “offer$0”.

1.8 Summary

In this chapter, we proposed ConWea, a novel contextualized weakly supervised classifi-

cation framework. Our method leverages contextualized representation techniques and initial

user-provided seed words to contextualize the corpus. This contextualized corpus is further
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used to resolve the interpretation of seed words through iterative seed word expansion and docu-

ment classifier training. Experimental results demonstrate that our model outperforms previous

methods significantly, thereby signifying the superiority of contextualized weak supervision,

especially when labels are fine-grained.

In the future, we are interested in generalizing contextualized weak supervision to hierar-

chical text classification problems. Currently, we perform coarse- and fine-grained classifications

separately. There should be more useful information embedded in the tree-structure of the

label hierarchy. Also, extending our method for other types of textual data, such as short texts,

multi-lingual data, and code-switched data is a potential direction.

Chapter 1, in full, is a reprint of the material as it appears in Mekala, Dheeraj; Shang,

Jingbo. “Contextualized weak supervision for text classification,” in Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pp. 323–333, 2020. The

dissertation/thesis author was the primary investigator and author of this paper.
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Chapter 2

META: Metadata-Empowered Weak Su-
pervision for Text Classification

In this chapter, we present our proposed method META, that leverages metadata infor-

mation as an additional source of weak supervision and incorporates it into the classification

framework.

2.1 Motivation & Overview

Weakly supervised text classification has recently gained much attention from the re-

searchers because it reduces the burden of annotating the data. So far, the major source of weak

supervision lies in text data itself (Agichtein & Gravano, 2000; Kuipers et al., 2006; Riloff et al.,

2003; Tao et al., 2015; Meng et al., 2018; Mekala & Shang, 2020). These methods typically

require a few user-provided seed words for each class as weak supervision. They expand seed

words with generated pseudo labels and improve their text classifier in an iterative fashion.

Metadata information (e.g., author, published year) in addition to textual information, is

widely available across various domains (e.g., news articles, social media posts, and scientific

papers) and it could serve as a strong, complementary weak supervision source. Take a look at

the research papers in Figure 2.1(a) as an example. It shall be learned in a data-driven manner

that G. Hinton is a highly-reputed machine learning researcher, thus his presence is a strong

indicator of a paper belonging to the Machine Learning category.
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Paper Authors Year Category

P1 G. Hinton, S. Osindero, YW. Teh 2006 ML
P2 G. Hinton, O. Vinyals, J. Dean 2015 ML
P3 J. Dean, S.Ghemawat 2008 Sys

(a) Examples of research papers with metadata.

O. Vinyals

G. Hinton

2016

neural
system

data
learning

J. Dean Doc

Author 2Author 1

P2

G. HintonO. Vinyals

P2P1

……

…

(b) A text-rich network view of 
the papers.

(c) A motif pattern and 
a motif instance.

(b) A text-rich network view of the papers.

O. Vinyals

G. Hinton

2016

neural
system

data
learning

J. Dean Doc

Author 2Author 1

P2

G. HintonO. Vinyals

P2P1

……

…

(b) A text-rich network view of 
the papers.

(c) A motif pattern and 
a motif instance.

(c) A motif pattern and a motif
instance

Figure 2.1. Text corpus, text-rich network, and motif.

Distilling effective metadata for weak supervision faces several major challenges. Meta-

data is often multi-typed, each type and the type combinations could have very different semantics

and may not be equally important. Moreover, even entities within a single metadata type could

be noisy. Continuing our example in Figure 2.1(a), we shall notice that year is less helpful than

an author to do classification. Among the authors, J. Dean might be an important figure but has

research interests spanning across different domains. However, if we join the author with year,

it carries more accurate semantics, and we may discover J. Dean has more interest in machine

learning in recent years, thus becoming highly label-indicative.

Bearing the challenges in mind, we propose META, a principled framework for metadata-

empowered weakly-supervised text classification. As illustrated in Figure 2.1 and Figure 2.2,

we first organize the text data and metadata together into a text-rich network. The network

structure gives us a holistic view of the corpus and enables us to rank and select useful metadata

entities. We leverage motif patterns (Benson et al., 2016; Milo et al., 2002; Shang et al., 2020) to

model typed metadata as well as their combinations. A motif pattern is a subgraph pattern at
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m1,1 .95 .01 .04
m1,2 .32 .30 .38

Text Classifier
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Figure 2.2. Our META framework. In each iteration, we generate pseudo labels for documents,
train the text classifier, and rank all words and motif instances in a unified ranking framework.
We then expand seed sets until an automatic cutoff is reached.

the meta-level that captures higher-order connections and the semantics represented by these

connections. It serves as a useful tool to model typed edges, typed paths (a.k.a. meta-paths) (Sun

et al., 2011), and higher-order structures in the network. With little effort, users can specify

a few possibly useful motif patterns as input to our model. We develop a unified, principled

ranking mechanism to select label-indicative motif instances and words, forming expanded weak

supervision. Note that, such instance-level selection process also implicitly refines the motif

patterns, ensuring the robust performance of META even when irrelevant motif patterns exist in

input. It is worth a mention that META is compatible with any text classifiers.

Our contributions are summarized as follows:

• We explore to incorporate metadata information as an additional source of weak supervision

for text classification along with seed words.

• We propose a novel framework META, which introduces motif patterns to capture the

high-order combinations among different types of metadata and conducts a unified ranking

and selection of label-indicative motif instances and words.

• We conduct experiments on two real-world datasets. The results and case studies demon-

strate the superiority of incorporating metadata as parts of weak supervision and verify the

effectiveness of META.
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2.2 Related Work

In this section, we review the literature about (1) weakly supervised text classification

methods, (2) text classification with metadata, and (3) document classifiers.

2.2.1 Weakly Supervised Text Classification

Due to the training data bottleneck in supervised classification, weakly supervised

classification has recently attracted much attention from researchers. The majority of weakly

supervised classification techniques require seeds in various forms, including label surface

names (Li et al., 2018; Song & Roth, 2014; Tao et al., 2015), label-indicative words (Chang et al.,

2008; Meng et al., 2018; Tao et al., 2015; Mekala & Shang, 2020), and labeled-documents (Tang

et al., 2015b; Xu et al., 2017; Miyato et al., 2017; Meng et al., 2018).

Dataless (Song & Roth, 2014) considers label surface names as seeds and classifies

documents by embedding both labels and documents in a semantic space and computing semantic

similarity between a document and a potential label; Along similar lines, Doc2Cube (Tao et al.,

2015) expands label-indicative words using label surface names and performs multi-dimensional

document classification by learning dimension-aware embedding; WeSTClass (Meng et al., 2018)

considers both word-level and document level supervision sources. It first generates bag-of-words

pseudo documents for neural model pre-training, then bootstraps the model on unlabeled data.

This method is later extended to a hierarchical setting with a pre-defined hierarchy (Meng et al.,

2019); ConWea (Mekala & Shang, 2020) leverages contextualized representation techniques to

provide contextualized weak supervision for text classification.

However, all these techniques consider only the text data and don’t leverage metadata

information for classification. In this chapter, we focus on user-provided seed words and mine

label-indicative words and metadata in an iterative manner.
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2.2.2 Text Classification with Metadata

Previous studies try to incorporate metadata information to improve the performance

of the classifier. (Tang et al., 2015a) and (Chen et al., 2016) consider the user and product

information as metadata for document-level sentiment classification; (Rosen-Zvi et al., 2012)

use author information for paper classification; (Zhang et al., 2017) employ user biography data

for tweet localization. However, all these frameworks are in a supervised setting and use fixed

metadata types for each task whereas our method is generalized for different metadata types and

multiple metadata combinations.

Another way to leverage metadata for text understanding is to organize the corpus

into a heterogeneous information network. A straightforward approach is to obtain document

representations using their respective meta-path guided node embeddings (Dong et al., 2017;

Shang et al., 2016) and train a classifier. However, higher-order connectivity cannot be captured

by meta-paths and this approach can’t handle new documents directly without re-training the

embeddings. Recently, (Zhang et al., 2020b) proposed a minimally supervised framework to

categorize text with metadata. However, they require labeled documents as supervision and

they only consider typed edges in the model. Network motifs (Milo et al., 2002) can capture

higher-order connectivity and have been proved fundamental in complex real-word networks

across various domains (Benson et al., 2016). (Shang et al., 2020) leveraged motifs for topic

taxonomy construction in an unsupervised setting. Our proposed method mines highly label-

indicative metadata information with a unified motif and word ranking framework, and effectively

expands weak supervision to improve document classification. (Wang et al., 2023) introduced a

benchmark on weakly supervised text classification.

2.2.3 Document classifier

Document classification has been a long-studied problem in Natural Language Processing.

CNN-based classifiers (Kim, 2014; Johnson & Zhang, 2014; Lai et al., 2015), RNN-based
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classifiers (Socher et al., 2013) achieve competitive performance. (Yang et al., 2016) proposed

Hierarchical Attention Network (HAN) for document classification that performs attention first

on the sentences in the document, and on the words in the sentence to find the most important

sentences and words in a document. Though our framework uses HAN as the document classifier,

it is also compatible with all the above-mentioned text classifiers. We choose HAN for the

demonstration purpose.

2.3 Preliminaries

In this section, we briefly discuss the concepts that are essential to understand our

framework such as Text-rich network, motif pattern and motif instances. In the end, we formally

formulate the problem and provide a brief description of our proposed framework.

2.3.1 Documents as Text-rich Network

Given a collection of n text documents D = {D1,D2, . . . ,Dn}, and their corresponding

metadata, we propose to organize them into a text-rich network, as illustrated in Figure 2.1(b). A

text-rich network is a heterogeneous network with documents, words, different types of metadata

as nodes, and their associations as edges. For example, our text-rich network for research

papers has papers, words, authors, and publication years as nodes. Each paper is connected

to its associated words and metadata nodes. Such a network provides a holistic and structured

representation of the input.

2.3.2 Seed Words and Motif Patterns

Users are asked to provide a few seed words S = {S w
1 ,S w

2 , . . . ,S w
l } for each of l

classes (i.e., C1,C2, . . . ,Cl) in our classification problem, as well as k motif patterns {M1,M2,

. . . ,Mk}. Motif patterns are sub-graph patterns at the meta-level (i.e., every node is abstracted

by its type). They are able to capture semantics and higher-order inter-connections among nodes.

A motif instance is a sub-graph instance in the graph that follows a motif pattern. Figure 2.1(c)
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presents an example of a motif pattern that captures co-authorship and a motif instance following

this motif pattern. In this framework, we discover seed motif instances for each class label,

denoted as {S m
1 ,S m

2 , . . . ,S m
l }.

2.3.3 Problem Formulation

Given the text-rich network and user-provided seed words and motif patterns as input,

we aim to build a document classifier, assigning a class label C j to each document Di.

2.3.4 Framework Overview

As shown in Figure 2.2, META is an iterative framework, generating pseudo labels and

training the text classifier alternatively, similar to many other weakly supervised text classification

methods (Kuipers et al., 2006; Tao et al., 2015; Meng et al., 2018). One iteration in META

consists of the following steps:

• Generate pseudo labels based on the seeds.

• Train a text classifier based on pseudo labels.

• Rank and select words and motif instances to expand the seeds.

We repeat these steps iteratively. We denote the number of iterations as T , which is the only

hyper-parameter in our framework.

The novelty of META mainly lies in integrating two sources of weak supervisions, seed

motif instances, and seed words. Given each motif instance m or each word w, for each label l, we

estimate a ranking score Rm,l or Rw,l ranging between 0 and 1, measuring how label-indicative

it is to the particular label l. Such ranking scores are utilized to select new seed motif instances

and seed words. Note that, while this selection is conducted at the instance level, it also selects

motif patterns implicitly and therefore ensures robust performance when users provide some

irrelevant motif patterns.
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2.4 Pseudo Labels and Text Classifier

In this section, we discuss pseudo-label generation and text classifier. Based on seed

words, seed motif instances, and their respective ranking scores for each class, we generate

pseudo labels for unlabeled text documents and train a classifier based on these pseudo labels. In

the first iteration, we have no seed motif instances and the ranking score is 1 for all seed words.

2.4.1 Pseudo-Label Generation

Suppose we have seed word sets S w
1..l and seed motif instance sets S m

1..l for all l labels,

we generate pseudo labels using a simple yet effective count-based technique. Specifically, given

a document Di, the probability that it belongs to the class l is proportional to the aggregated

ranking scores of its respective seed words and seed motif instances.

P(l|Di) ∝ ∑
w∈Di∩S w

l

fDi,w ·Rw,l + ∑
m∈Di∩S m

l

Rm,l

where fDi,w is the term frequency of the word w in document Di. The pseudo label of document

Di is then assigned as follows:

l(Di) = argmax
l

P(l|Di)

2.4.2 Document Classifier

Our framework is compatible with any text classification model as a classifier. We use

Hierarchical Attention Networks (HAN) (Yang et al., 2016) as the classifier. HAN is designed to

capture the hierarchical document structure i.e. words – sentences – documents. As illustrated in

Figure 2.3, HAN performs attention first on the sentences in the document to find the important

sentence in a document and on the words in the sentence to identify important words in a

sentence. We train a HAN model on unlabeled documents with the generated pseudo-labels. For
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Figure 2.3. HAN Classifier used in our META.

the document Di, it estimates the probability Ŷi,l for each class l. Such predicted distributions

are used in the expansion of seed words and motifs.

2.5 Unified Seed Ranking and Expansion

In this section, we describe the ranking score and seed expansion technique. Once the

text classifier is trained, we rank words and motif instances together for each class. Then, we

expand the seed sets by adding top-ranked words and motif instances. This improves the quality

of the weak supervision over iterations, thereby improving the text classifier. We present our

design of the unified ranking and expansion as follows.

2.5.1 Ranking Score Design

An ideal seed word or motif instance for a particular class should be highly relevant

and highly exclusive to this class. So an effective ranking score must quantify relevance and

exclusiveness. Such a ranking score for words alone has been explored by previous studies (Tao

et al., 2015; Mekala & Shang, 2020), typically based on similarity and frequency-based metrics.

In this framework design, we have motif instances in addition to words, therefore, we build upon
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Figure 2.4. Using motif patterns, we construct bipartite graphs from the text-rich network linking
documents to their respective motif instances.

the text-rich network to unify the ranking process.

Given k user-provided motif patterns M1, . . ., Mk and the text-rich network G , we

construct k bipartite graphs G B
1 , . . ., G B

k , one for each motif pattern (see Figure 2.4). In the i-th

bipartite graph G B
i , the node set contains two parts: (1) all documents and (2) all motif instances

following the motif pattern Mi in the text-rich network G ; The edges in the graph G B
i connect

the documents to the motif instances which are subsets of the metadata associated with the

documents.

For the sake of simplicity, we introduce one more motif pattern, document–word. It

makes words a special case of motif instances, and one can easily construct a similar bipartite

graph for words. Therefore, in the rest of this section, we use motif instances to explain our

ranking score design.

For each motif pattern M , we conduct one personalized random walk on its correspond-

ing bipartite graph G B for each label l. Specifically, we normalize each column of the adjacency

matrix of the bipartite graph G B by the degree of its respective node, resulting in the transition

matrix W. Suppose pl,u represents the personalized PageRank (PPR) score of each node u for

each label l, we initialize the PPR score of each document node to Ŷi,l and PPR score of each

motif instance node to 0. This initialization ensures that a random walk starts from a document

node and since G B is bipartite, it ends at a motif instance node. We iteratively update the PPR
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scores as follows:

p(t+1)
l ←Wp(t)

l

Since each document node is initialized with probabilities corresponding to l and the random

walk starts from a document node and ends at a motif instance node, this can be viewed as a label

propagation problem. Based on the previous work in label propagation (Hensley et al., 2015),

similar nodes are more likely to form edges and the PPR score is used to measure the similarity.

Therefore, we believe that pl,m reflects the relevance of a motif instance m to the particular class

label l.

Though the absolute values of PPR scores are quite small, their relative magnitude con-

veys their affinity towards a label. Therefore, we normalize these PPR scores into a distribution,

resulting in the ranking scores. Mathematically, for a label l, the ranking score of a motif instance

m is:

Rm,l =
pl,m

∑l′∈C pl′,m

If a motif instance has similar relevance to multiple labels, the ranking score distribution becomes

flat irrespective of the magnitude of its respective PPR scores. From this, we realize that our

ranking score also quantifies exclusiveness, which is an essential characteristic of a highly

label-indicative term.

Based on this ranking score, we rank words and motif instances in a unified manner and

expand the seed word set and seed motifs set.

2.5.2 Expansion

Given the ranking scores of all words and motif instances for every label, we expand the

seed words and seed motifs simultaneously for all labels. Intuitively, a highly label-indicative

motif instance would not belong to the seed sets of multiple labels. Therefore, when any motif

instance is expanded to seed sets of multiple classes, we stop the expansion of motif instances of

the corresponding motif pattern. Also, we set a hard threshold of 1
|C | , where |C | is the number of
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Table 2.1. Dataset statistics.

Dataset # Docs # Classes Avg Doc Len

DBLP 38,128 9 893
Book Graph 33,594 8 620

classes, on ranking scores for those added motif instances. In this way, the number of new seed

words and seed motif instances is decided by the method automatically. It is worth mentioning

that our expansion here is adaptive and every label may have a different number of seeds. Note

that, in the first iteration, pseudo labels are generated using only seed words but ranking scores

are obtained for all words and motif instances. The highly ranked motif instances and words are

used as seeds in further iterations.

After expanding the seed sets for every label, we generate pseudo labels and train the

classifier. This process is repeated iteratively for T iterations.

2.6 Experiments

In this section, we evaluate META and compare it with existing techniques on two

real-world datasets in a weakly supervised classification setting.

2.6.1 Datasets

We conduct experiments on the DBLP dataset (Tang et al., 2008) and the Book Graph

dataset (Wan & McAuley, 2018; Wan et al., 2019). The dataset statistics are shown in Table 2.1.

The details of the datasets are mentioned below.

• DBLP dataset: The DBLP dataset contains a comprehensive set of research papers in

computer science. We select 38,128 papers published in flagship venues. In addition

to text data, it has information about authors, published year, and venue for each paper.

There are 9,300 distinct authors and 42 distinct years. For each paper, we annotate its

research area largely based on its venue as the classification objective1. Therefore, in our

1Classes in DBLP: (1) computer vision, (2) computational linguistics, (3) biomedical engineering, (4) software
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experiments, we drop the venue information to ensure a fair comparison.

• Book Graph dataset: The Book Graph dataset is a collection of the description of books,

user-book interactions, and users’ book reviews collected from a popular online book

review website named Goodreads2. We select books belonging to eight popular genres3.

The genre of a book is viewed as the label to be predicted. The total number of books

selected is 33,594. We use the title and description of a book as text data and author,

publisher, and year as metadata. In total, there are 22,145 distinct authors, 5,186 distinct

publishers, and 136 distinct years.

2.6.2 Motif Patterns

The motif patterns we used as metadata information for DBLP and Book Graph datasets

are shown in Figure 2.5.

2.6.3 Seed Words

The seed words are obtained as follows: we asked 5 human experts to recommend 5

seed words for each class and selected the final seed words based on majority voting i.e. (> 3

recommendations).

2.6.4 Evaluation Metrics

Both datasets are imbalanced with respect to the label distribution. Being aware of this

fact, we adopt micro- and macro-F1 scores as evaluation metrics.

2.6.5 Implementation Details

To make the model robust to multi-word phrases as supervision, we extract phrases using

Autophrase (Liu et al., 2015; Shang et al., 2018). We set the word vector dimension to be 100

engineering, (5) graphics, (6) data mining, (7) security and cryptography, (8) signal processing, (9) robotics, and
(10) theory.

2https://www.goodreads.com/
3Classes in Book Graph: (1) children, (2) graphic comics, (3) paranormal fantasy, (4) history & biography, (5)

crime, mystery thriller, (6) poetry, (7) romance, and (8) young adult.
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Figure 2.5. Motif Patterns used in Experiments.

for all the methods that use word embeddings. We set the number of iterations parameter for

META to 9.

2.6.6 Compared Methods

We compare our proposed method with a wide range of methods described below:

• IR-TF-IDF treats seed words as a query. It computes the relevance of a document to a

class by aggregating the TF-IDF values of its seed words. Each document is assigned the

label which is the most relevant to this document.

• Word2Vec learns word vector representations (Mikolov et al., 2013b) for all words in the

corpus. It computes label representations by aggregating the word vectors of all its seed

words. Each document is assigned the label whose cosine similarity with this document is

maximum.

• Doc2Cube (Tao et al., 2015) considers label surface names as seed set and performs

multi-dimensional document classification by learning dimension-aware embedding.

• WeSTClass (Meng et al., 2018) leverages seed words to generate bag-of-words pseudo

documents for neural model pre-training and then bootstraps the model on unlabeled data.

Specifically, we compare with WeSTClass-CNN which is the best configuration under
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our setting. We use the public implementations of WeSTClass4 with the hyperparameters

mentioned in the paper.

• Metapath2Vec (Dong et al., 2017) learns node representations in the text-rich network

using meta-path-guided random walks by capturing the structural and semantic correlations

of differently typed nodes. We use the first two motif patterns in Figure 2.5(a) and the first

three motif patterns in Figure 2.5(b) as meta-paths because the rest cannot be represented as

meta-paths. We generate pseudo-labels using the seed words and train a logistic regression

classifier with document nodes representations as input to predict the labels.

We denote our framework with HAN classifier as META, with CNN classifier as META-CNN,

and with BERT(bert-base-uncased) classifier as META-BERT. We also compare with their

respective ablated versions META-NoMeta, META-CNN-NoMeta, META-BERT-NoMeta

where metadata information is not expanded and not considered while generating pseudo labels.

For a fair comparison, we also present results of all the baselines on the metadata-

augmented datasets, where a token for every relevant motif instance is appended to the text

data of a document. This is denoted by ++ in Table 2.2, e.g., WeSTClass++ represents the

performance of WeSTClass on metadata-augmented datasets.

We also present the performance of HAN in a supervised setting which is denoted as

HAN-Sup. The results of HAN-Sup reported are on the test set which follows an 80-10-10

train-dev-test split.

2.6.7 Performance Comparison

The evaluation results of all methods are summarized in Table 2.2. We can observe that

our proposed framework outperforms all the compared weakly supervised methods. We discuss

the effectiveness of our proposed META as follows:

• META achieves the best performance among all the compared weakly supervised methods

4https://github.com/yumeng5/WeSTClass
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Table 2.2. Evaluation Results on Two Datasets. ++ represents that the input is metadata-
augmented.

DBLP Books Graph

Methods Mi-F1 Ma-F1 Mi-F1 Ma-F1

IR-TF-IDF 0.19 0.20 0.24 0.29
Word2Vec 0.23 0.22 0.28 0.26
Doc2Cube 0.37 0.36 0.33 0.31
WeSTClass 0.58 0.53 0.42 0.41

Metapath2Vec 0.64 0.61 0.47 0.48

IR-TF-IDF++ 0.19 0.20 0.24 0.29
Word2Vec++ 0.24 0.21 0.26 0.25
Doc2Cube++ 0.40 0.38 0.36 0.33
WeSTClass++ 0.60 0.55 0.47 0.43

META 0.66 0.63 0.62 0.63
META-CNN 0.61 0.58 0.54 0.55
META-BERT 0.64 0.61 0.63 0.63

META-NoMeta 0.61 0.58 0.58 0.58
META-CNN-NoMeta 0.56 0.53 0.53 0.53
META-BERT-NoMeta 0.58 0.57 0.60 0.60

HAN-Sup 0.75 0.72 0.77 0.76
HAN-Sup++ 0.79 0.77 0.81 0.81

with significant margins. By extracting the highly label-indicative motif instances along

with words and using them together in pseudo label generation, META successfully

leverages metadata information and achieves superior performance.

• We observe that the performance of META is better than all the compared weakly super-

vised models on metadata-augmented datasets. By comparing those ++ methods with their

text-only counterparts, one can easily observe that adding metadata in text classification

is indeed helpful. However, META does not restrict to single metadata types and goes

beyond by employing motif patterns to capture the metadata information. It is successful in

identifying the appropriate label-indicative metadata combinations and therefore achieves

even better performance.

• The comparison between META and Metapath2Vec demonstrates the advantages of motif

patterns over the meta-paths. For example, on the Book Graph dataset, the last three motif
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Figure 2.6. Micro- and Macro-F1 scores w.r.t. the number of iterations.

patterns in Figure 2.5(b) cannot be represented through meta-paths and this significantly

affects the performance. It’s also worth mentioning that Metapath2Vec cannot handle new

documents directly without re-training the embedding whereas our framework can directly

predict without any additional effort.

• The comparison between META and the ablation method META-NoMeta demonstrates

the effectiveness of our motif instance expansion. For example, on the Book Graph dataset,

the motif instance expansion improves the micro-F1 score from 0.58 to 0.62 and macro-F1

score from 0.58 to 0.63, which are quite significant.

• The comparison between META-CNN, META-BERT, and their respective ablated versions

META-CNN-NoMeta, META-BERT-NoMeta demonstrate that our proposed approach pro-

vides significant additive gains to different classifiers and thereby showing the effectiveness

of leveraging metadata information as an additional source of weak supervision.

• The comparison between META and HAN-Sup demonstrates that META is effective in

decreasing the gap between the performance of the weakly supervised and supervised

settings.

2.6.8 Parameter Study

The only hyper-parameter in our framework META is T , the number of iterations. We

experiment on both datasets to study the effect of the number of iterations on the performance.
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Figure 2.7. Micro- and Macro-F1 scores w.r.t. the number of seed words.

The plots of micro-F1 score and macro-F1 score with respect to the number of iterations are

shown in Figure 2.6. We observe that the performance increases initially and gets gradually

converged by 6 or 7 iterations. We also observe that the expanded seed words and seed motifs

have become almost unchanged. While there is some fluctuation, a reasonably large T , such as

T = 9 or T = 10, is recommended.

2.6.9 Number of Seed Words

We vary the number of seed words per class and plot the performance in Figure 2.7. We

observe that the performance increases as the number of seed words increase, which is generally

intuitive. For reasonable performance, we observe that three seed words are sufficient.

2.6.10 Case Studies

We present case studies to showcase the effectiveness of our framework in addressing the

challenges of leveraging metadata.

Leveraging Metadata Combinations

Table 2.3 shows a few samples of expanded motif instances. First, let’s take a look at

motif instances related to authors and publishers. We can observe that strong label-indicative

authors and publishers are mined accurately. For example, Marvel, a widely known comics

publisher, is present in the expanded publishers for comics genre; A classic American poet E.
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Table 2.3. Case Study: Expanded motif instances.
Expanded motif instances of Book Graph dataset

Class Author Publisher Author-Publisher Year Author-Year

children Z. Fraillon, Brighter Child, (N. Gaiman, Bloomsbury UK) N/A (N. Gaiman, 2004)
K. Argent HarperCollins Children’s Books (M. Fox, Penguin Australia) (S. Blackall, 2010)

comics F. Teran, Marvel, (N. Gaiman, Marvel) N/A (T. Hairsine, 2013)
B. Kane Titan Books Ltd (T. McFarlane, Marvel Comics) (A. Sinclair, 2009)

fantasy J. Barne, DAW Books, Inc., (W. King, Titan Books Ltd) N/A (G.J. Grant, 2012)
S. Dubbin Edge Publishing (G.J. Grant, Prime Books) (M. Lingen, 2012)

poetry B. Guest, Shearsman Books, (N. Gaiman, MagicPress) 1692, (E. Dickinson, 1959)
E. Dickinson Souvenir Press (R. Browning, Wordsworth Editions) 1914 (J. McCrae, 1929)

Dickinson is successfully identified as label-indicative for poetry genre.

Note that, the author N. Gaiman (in blue) who has written books in multiple genres

including comic books, graphic novels, etc., is not a label-indicative author for any of these

categories, because he is not exclusive to any one category, which is accurately captured by

our framework. However, his works in various genres together with their respective publisher

information form a unique label-indicative pattern which is reflected by the “Author-Publisher"

motif pattern.

Now, adding year metadata into the loop, although “Year-Document" is a user-provided

motif pattern, META identifies that year information alone is not much helpful in classification.

This demonstrates the robustness of our framework when users provide some irrelevant motif

patterns. However, if we combine author information with year, it then carries more accurate

semantics, and we may discover that N.Gaiman had authored more children’s books in early

2000, thus becoming highly label-indicative.

Eliminating Noise in Metadata

Table 2.4 presents the percentage of motif instances expanded out of the total motif

instances following a motif pattern, for every label. One can observe that META actually prunes

out many motif instances, as the final selection ratio is far less than 100%.

For the “Year-Document" motif pattern, we observe that its motif instances are only

expanded for a few genres, which is generally intuitive. For example, one can see that a significant
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Table 2.4. Case Study: Percentage of motif instances expanded for Book Graph dataset. A
stands for author, P for publisher and Y for year.

Percentage of motif instances expanded

Label A P Y A-P P-Y A-Y

children 5.12 9.42 0 9.21 12.73 9.68

comics 4.91 1.33 0 9.52 1.48 14.11

fantasy 6.2 2.8 0 13.1 2.95 10.97

history 4.31 10.5 6.12 8.1 11.8 7.94

mystery 4.11 8.6 3.67 9.8 11.04 9.59

poetry 6.8 9.2 15.4 10 8.17 9.11

romance 5.6 13.5 1.47 9.6 12.28 9.19

y. adult 3.52 13.7 2.2 9.1 15.04 9.32

Table 2.5. Expanded seed words of comics, history, and mystery classes in Books dataset.

Expanded seed words

Label Seed words

comics batman, superman, marvel, mary-jane, general zod

history history, world war, world war ii, political science

mystery serial killer, sherlock holmes, inspector lestrade

percentage of “Year-Document" motif instances expanded for history and poetry. After a closer

inspection, we find that the expanded years were concentrated between the late 1800 and early

1900, thus developing an affinity for this time period.

One can also observe that the percentage of motif instances following the “Publisher-

Document” motif pattern expanded varies for different labels, ranging from 1 to 13.5. This

illustrates that our expansion is adaptive.

Seed words Expansion

Figure 2.8 shows the number of seed words expanded after each iteration for comics,

hystory, and mystery classes in Books dataset. We observe that the number varies for each label

because of our data-driven, adaptive thresholds, which is different for each label.
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Figure 2.8. Number of seed words w.r.t. the number of iterations

One can also observe that the the number increases over iterations and gets almost

stagnated at the end, indicating that the seed sets are getting refined and converged. A few

examples of expanded seed words are shown in Table 2.5.

2.7 Summary

In this chapter, we propose META, a novel framework that leverages metadata infor-

mation as an additional source of weak supervision and incorporates it into the classification

framework. Our method organizes the text data and metadata together into a text-rich network

and employs motif patterns to capture appropriate metadata combinations. Using the initial

user-provided seed words and motif patterns, our method generates pseudo labels, trains classifier,

and ranks and filters highly label-indicative words, motifs in a unified manner and adds them

to their respective seed set. Experimental results and case studies demonstrate that our model

outperforms previous methods significantly, thereby signifying the advantages of leveraging

metadata as weak supervision.

In the future, we are interested in effectively integrating different forms of supervision

including annotated documents. Also, we only consider positively label-indicative metadata

combinations currently. There should be negatively label-indicative combinations as well which
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can eliminate some classes from potential labels. This is another potential direction for the

extension of our method.

Chapter 2, in full, is a reprint of the material as it appears in Mekala, Dheeraj; Zhang,

Xinyang; Shang, Jingbo. “Meta: Metadata-empowered weak supervision for text classification,”

in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pp. 8351–8361, 2020. The dissertation/thesis author was the primary investigator and

author of this paper.
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Chapter 3

Learning Order Inspired Pseudo-Label
Selection for Weakly Supervised Text
Classification

3.1 Introduction

Weakly supervised text classification methods (Agichtein & Gravano, 2000; Riloff et al.,

2003; Tao et al., 2015; Meng et al., 2018; Mekala & Shang, 2020; Mekala et al., 2020, 2021)

typically start with generating pseudo-labels, and train a deep neural classifier to learn the

mapping between documents and classes. There is no doubt that the quality of pseudo-labels

plays a fundamental role in the final classification accuracy, however, they are inevitably noisy

due to their heuristic nature. Pseudo-labels are typically generated by some heuristic, for example,

through string matching between the documents and user-provided seed words (Mekala & Shang,

2020). Deep neural networks (DNNs) trained on such noisy labels have a high risk of making

erroneous predictions. More importantly, when self-training is employed, such error can be

further amplified upon boostrapping.

To address this problem, in this paper, we study the pseudo-label selection in weakly

supervised text classification, aiming to select a high quality subset of the pseudo-labeled

documents (in every iteration when using self-training) that can potentially achieve a higher

classification accuracy.
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Figure 3.1. Distributions of correct and wrong instances using different pseudo-label selection
strategies on the NYT-Coarse dataset for its initial pseudo-labels. The base classifier is BERT.
(a) is based on the softmax probability of samples’ pseudo-labels and (b) is based on the earliest
epochs at which samples are learnt.

A straightforward solution is to first train a deep neural classifier based on the pseudo-

labeled documents and then threshold the documents by the predicted probability scores corre-

sponding to their pseudo-labels. However, DNNs usually have a poor calibration and generate

overconfident predicted probability scores (Guo et al., 2017). For example, on New York

Times (NYT) coarse-grained dataset, as shown in Figure 3.1(a), 60% of wrong instances in the

pseudo-labeled documents have a predicted probability by BERT greater than 0.9 for their wrong

pseudo-labels.

Recent studies on the memorization effects of DNNs show that they memorize easy and

clean instances first, and gradually learn hard instances and eventually memorize the wrong

annotations (Arpit et al., 2017; Geifman et al., 2019; Zhang et al., 2021). We have confirmed

this in our experiments for different classifiers. For example, as shown in Figure 3.1(b), BERT

classifier learns most of the clean instances in the first epoch and learns wrong instances across

all epochs. Although it also learns good number of wrong instances in the first epoch, it is

significantly less than the probability-based selection in Figure 3.1(a). Therefore, we define

the learning order of a pseudo-labeled document as the epoch when it is learnt during training

i.e. when the training model’s prediction is the same as its given pseudo-label. Since correct
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Figure 3.2. An overview of our proposed LOPS and how it plugs into self-training frameworks
to replace the conventional training step. Given pseudo-labeled samples, LOPS trains a probing
classifier to obtain their learning order and we stop the training when at least τ% of samples
corresponding to each class are learnt and select the learnt samples. The numbers shown are
learnt epochs and the samples in the shaded part are selected. A text classifier is trained on
selected pseudo-labeled documents that is further used for inference and bootstrapping.

samples are learnt first, we hypothesize that learning order-based selection will be able to filter

out wrongly labeled samples.

Inspired by our observation, we propose a novel learning order inspired pseudo-label

selection method LOPS, as shown in Figure 3.2. Specifically, LOPS involves training a probing

classifier on pseudo-labeled data and tracking the learning order of samples. We define a

sample is learnt if and only if the classifier trained on pseudo-labels gives the same argmax

prediction as its pseudo-label at the end of an epoch. We stop the training when at least τ% of

samples corresponding to each class are learnt and select all the learnt samples. Then, we train

a text classifier on these selected pseudo-labeled documents that is further used for inference.

We empirically show that LOPS can boost the accuracy of various weakly supervised text

classification methods and it is much more effective and stable than probability score-based

selections.

Our contributions are summarized as follows:

• We propose a novel pseudo-label selection method LOPS that takes learning order of samples

into consideration.
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• We show that selection based on learning order is much stable and effective than selection

based on probability scores.

• Extensive experiments and case studies on real-world datasets with different classifiers and

weakly supervised text classification methods demonstrate significant performance gains upon

using LOPS. It can be viewed as a solid performance-boost plug-in for weak supervision.

Reproducibility. We release the code and datasets on Github1.

3.2 Related Work

Pseudo-Labels in Weakly Supervised Text Classification. Since the weakly supervised text

classification methods lack gold annotations, pseudo-labeling has been a common phenomenon

to generate initial supervision. Pseudo-labeling depends on the type of weak supervision. Mekala

& Shang (2020) and Mekala et al. (2020) have a few label-indicative seed words as supervision

and they generate pseudo-labels using string-matching where a document is assigned a label

whose aggregated term frequency of seed words is maximum. (Meng et al., 2018) generates

pseudo-documents using the seed information corresponding to a label. (Wang et al., 2021)

takes only label names as supervision and generates class-oriented document representations,

and cluster them to create a pseudo-training set. Under the same scenario, (Mekala et al.,

2021) consider samples that exclusively contain the label surface name as its respective weak

supervision. In (Karamanolakis et al., 2021), pseudo-labels are created from the predictions of a

trained neural network. (Arachie & Huang, 2021) combines different weak signals to produce

soft labels.

Label Selection. There are different lines of work aiming to select true-labeled examples from

a noisy training set. One line of work involves training multiple networks to guide the learning

process. Along this direction, (Malach & Shalev-Shwartz, 2017) maintains two DNNs and

update them based on their disagreement. (Jiang et al., 2018b) learns another neural network

that provides data-driven curriculum. (Han et al., 2018; Yu et al., 2019) use co-training where
1https://github.com/dheeraj7596/LOPS
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Table 3.1. Noise ratios of different pseudo-label heuristics on NYT-Fine dataset.

Pseudo-label Heuristic Noise Ratio

vMF distribution modeling (Meng et al., 2018) 46.17%
String-Match (Mekala et al., 2020) 31.80%
Contextualized String-Match (Mekala & Shang, 2020) 31.24%
Exclusive String-Match (Mekala et al., 2021) 52.13%
Clustering (Wang et al., 2021) 15.64%

they select instances based on small loss criteria and cross-train two networks simultaneously.

(Huang et al., 2019a) considers the training loss as the metric to filter out noise. (Swayamdipta

et al., 2020) uses model’s confidence and its variability across epochs to identify wrongly labeled

samples. Another line of work learns weights for the training data. Along this line, (Ren et al.,

2018) propose a meta-learning algorithm that learns weights corresponding to training examples

based on their gradient directions. (Fang et al., 2020) learns dynamic importance weighting that

iterates between weight estimation and weighted classification. Recently, (Rizve et al., 2021)

propose utilizing uncertainty to perform label selection.

Training dynamics. In deep learning regime, models with large capacity are typically more

robust to outliers. Nevertheless, data examples can still exhibit diverse levels of difficulties.

Arpit et al. (2017) finds that data examples are not learned equally when injecting noisy data

into training. Easy examples are often learned first. Hacohen et al. (2020) further shows such

order of learning examples is shared by different random initializations and neural architectures.

Toneva et al. (2019) shows that certain examples are forgotten frequently during training, which

means that they can be first classified correctly, then incorrectly. Model performance can be

largely maintained when removing those least forgettable examples from training.

3.3 Problem and Motivation

Weakly supervised classification refers to the problem with inputs (1) a set of unlabeled text

documents S = {x}, where x ∈X . (2) and M target labels C = {1, . . . ,M}. Our goal is to find

a labeling function f : X →C that maps every document x to its true label. Here we denote y∗ as
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the unknown true label of a document x. To cold start the classification of unlabeled documents,

a source of weak supervision has to be introduced, which can come from various sources such

as label surface names (Wang et al., 2021), label-indicative seed words (Mekala & Shang,

2020), or rules (Karamanolakis et al., 2021). Given a “weak” labeling function w : X → C ,

pseudo-labels are then generated on a subset of the unlabeled documents, which yields a labeled

subset D = {(x,w(x))}. For convenience, we denote D [ j] to be the set of all documents that are

pseudo-labeled as class j in D , namely D [ j] = {(x,w(x)) ∈D |w(x) = j}.

Pseudo-labels are noisy due to their heuristic nature. For example, on the NYT fine-grained

dataset, we generate pseudo-labels using five different strategies (Meng et al., 2018; Mekala &

Shang, 2020; Mekala et al., 2020, 2021; Wang et al., 2021) and compute their noise ratios. As

expected, no strategy is perfect and all of them generate noisy labels, ranging from 15% to 50%

(see Table 3.1).

When a classifier is trained on such noisy training data, it can make some high confident

erroneous predictions. And, upon bootstrapping the classifier on unlabeled data, it has a snowball

effect where such high confident erroneous predictions are added to the training data, and

thus corrupting it more. As this process repeats for a few iterations, it adds more noise and

significantly affects the final performance. Therefore, identifying and selecting the correctly

labeled samples is necessary and has a huge potential for a boost in performance. Note that, if

the labels are not selected carefully, it could instead hurt the performance.

Our pseudo-label selection problem. The weak supervision is likely to generate a noisy

labeled set, which means w(x) ̸= y∗ for some documents x. We denote D✓ as the set of

correctly labeled documents and D× = D \D✓ as the set of wrongly labeled documents, where

D✓ = {(x,w(x))|w(x) = y∗}. The problem of pseudo-label selection is thus to identify D✓.

Note that pseudo-label selection is conceptually related to failure prediction (Hecker et al.,

2018; Jiang et al., 2018a; Corbière et al., 2019) and out-of-distribution detection (Hendrycks &

Gimpel, 2017; Devries & Taylor, 2018; Liang et al., 2018; Lee et al., 2018). However, the major

difference here is for pseudo-label selection we have to detect wrong annotations in the training
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phase instead of inference phase.

3.4 Our LOPS Framework

In this section, we explain our framework LOPS in detail. First, we give an overview of

confidence function-based pseudo-label selection and discuss probability score as confidence

function. Then, we explain learning order as confidence function. Finally, we show our algorithm

that performs selection based on learning order.

3.4.1 Overview: Confidence function-based Pseudo-label Selection

In this section, we briefly introduce confidence function and discuss commonly-used

probability score as confidence function.

Confidence function κ : X ×C → [0,1], assigns a value to each labeled document, which

represents our confidence of its pseudo-label being correct. Then, we can perform the selection

by choosing a threshold γ on confidence function. We denote the set of labeled documents

selected based on κ and γ as D̂✓(κ,γ), namely

D̂✓(κ,γ) = {(x,w(x)) ∈D | κ(x,w(x))> γ}

An optimal confidence function κ∗ should be able to perfectly distinguish the correctly labeled

documents from wrongly labeled ones, namely there exists a threshold γ∗ such that D̂✓(κ
∗,γ∗) =

D✓.

Probability score as confidence function. One commonly-used intuitive confidence function

for pseudo-label selection is the model’s prediction probability scores corresponding to the

pseudo-labels. Probability scores have been used as confidence functions to select samples for

bootstrapping (Meng et al., 2018, 2019; Mekala & Shang, 2020). Specifically, let f : X →

[0,1]|C | be a probabilistic classifier trained on pseudo-labeled documents and f(x)[ j] represents

the predicted probability of document x belonging to class j, f(x)[w(x)] is used as the confidence
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function. However, due to the poor calibration of DNNs (Guo et al., 2017), probability scores

of wrongly labeled documents are usually high. As a result, it might be difficult to distinguish

correctly- and wrongly-labeled documents based on probability scores.

3.4.2 LOPS: Learning Order as Confidence Function

Learning order. Learning order of a pseudo-labeled document is the epoch when it is learnt

during training, or more specifically when its label predicted by the model matches its given

pseudo-label. Recent studies show that a DNN learns clean samples first and then gradually

memorizes the noisy samples (Arpit et al., 2017). We thus hypothesize that learning order can

reflect the probability of wrong pseudo-label in terms of ranking.

We now utilize learning order to define a confidence function. Specifically, let ft(·) be

the classifier being trained at epoch t, and T as the total number of epochs, the learning order of

document x can be defined as

η(x,w(x)) =1− 1
T

min{t | argmax
j

ft(x)[ j] = w(x)}, (3.1)

where t ∈ {1, . . . ,T}. Here we have negated and scaled the learning order to be complied with

the convention of confidence function i.e. higher confidence implies higher probability of a

correct label. We calculate the learning order at the granularity of epoch because the model

would have seen all the training data by the end of an epoch, and hence, the learning order

computed would be fair for all documents. In case when the epoch number is not sufficient to

distinguish the documents, one can increase the granularity of the learning order, for example,

the batch number at which the document is learnt. Granularity higher than the epoch incurs extra

training cost as a document will be examined more than once in each epoch.
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Algorithm 2: LOPS Method
Input: A set of documents D pseudo-labeled by w, Probing Classifier f.
Output: Selected documents D̂✓

for epoch t = 1,2, . . . ,T do
Train f on D
for (x,w(x)) ∈D do

if argmax j f(x)[ j] = w(x) then
if |D̂✓[w(x)]|/|D [w(x)]|< τ% then

D̂✓ = D̂✓∪{(x,w(x))}
if |D̂✓[ j]|/|D [ j]| ≥ τ% for all j then

Break
Return D̂✓

Algorithm 3: Self-training with LOPS
Input: Unlabeled data D , Classifier C, Weak Supervision w.
Output: Prediction labels predLabs
D̂ = Generate Pseudo-labels for D , w
for iteration it = 1,2, . . . ,nits do

Dsel = LOPS (D̂ , C)
Train C on Dsel
predLabs, predProbs = Predict(C, D)
D̂ = D̂ ∪ {x | predProbs(x)> δ}

Return predLabs

3.4.3 LOPS: Putting it all together

Motivated by previous analyses, we utilize learning order to select pseudo-labels. We

train a probing classifier on all pseudo-labeled documents and track their first learnt epoch during

training. The confidence function can then be calculated based on Equation (3.1). Finally, we

rank the documents based on their confidence and select the top-τ% for each label independently.

To maximize the efficiency of LOPS, we utilize the fact that the top-ranked documents are

learned earlier, and conduct the confidence calculation and pseudo-label selection simultaneously

during training. Specifically, for each label, a document is selected once it is learnt, until the

fraction of selected documents exceeds τ% in this label. Whenever the fractions of selected

documents exceeds τ% for all labels, we stop the training. The pseudo-code is shown in

Algorithm 2. Note that LOPS can be plugged to any self-training based weakly-supervised

classification framework as shown in Algorithm 3.
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Table 3.2. Dataset statistics.

Dataset # Docs # labels Noise Ratio(%)

NYT-Coarse 13,081 5 11.47
NYT-Fine 13,081 26 31.80

20News-Coarse 17,871 5 12.50
20News-Fine 17,871 17 25.67

AGNews 120,000 4 16.26
Books 33,594 8 37.32

3.5 Experiments

We evaluate our label selection method based on end-to-end classification performance

using different state-of-the-art classifiers and weakly supervised text classification frameworks.

And also, we evaluate learning order as a confidence function and provide a comparison with

probability score as confidence function.

3.5.1 Datasets

We experiment on four datasets: New York Times (NYT), 20 Newsgroups (20News),

AGNews (Zhang et al., 2015), Books (Wan & McAuley, 2018; Wan et al., 2019). NYT and

20News datasets also have fine-grained labels which are also used for evaluation. Initial pseudo-

labels are generated using String-Match (Mekala & Shang, 2020). The dataset statistics and

corresponding noise ratios of initial pseudo-labels are provided in Table 3.2 and more details are

provided in Appendix A.1.

3.5.2 Compared Methods

We compare with several label selection methods mentioned below:

• O2U-Net: (Huang et al., 2019a) trains a classifier cyclically to make its status transfer from

overfitting to underfitting and records losses of each sample. They consider the normalized

loss as the metric to filter out the noise.

• MC-Dropout: (Mukherjee & Awadallah, 2020) performs pseudo-label selection based on

uncertainty estimates computed using probability scores.
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Table 3.3. Evaluation results on six datasets using different combinations of classifiers and
pseudo-label selection methods. Initial pseudo-labels are generated using String-Match. Micro-
and Macro-F1 scores are used as evaluation metrics. Each experiment is repeated with three
random seeds, mean and their respective standard deviations are presented in percentages. For
a fair comparison, we consider the same number of samples for all baselines as LOPS in each
iteration. Abnormally high standard deviations are highlighted in blue and low performances are
highlighted in red. LOPS outperforming Standard is made bold and baselines performing better
than our method are made bold. Statistical significance results are in Appendix A.5.

Coarse-grained Datasets Fine-grained Datasets

NYT-Coarse 20News-Coarse AGNews Books NYT-Fine 20News-Fine

Classifier Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

BERT

Standard 90.1(0.17) 80.3(0.91) 77.3(0.27) 76.4(0.76) 75.4(0.64) 75.4(0.47) 55.7(0.54) 57.9(0.82) 77.2(0.36) 71.6(0.43) 70.0(0.30) 69.6(0.25)
LOPS 94.6(0.36) 88.4(0.50) 81.7(1.00) 80.7(0.43) 79.5(0.86) 79.5(0.58) 57.7(0.87) 59.5(0.46) 84.3(0.54) 81.6(0.34) 73.8(0.61) 72.7(1.00)

MC-Dropout 89.3(0.41) 79.3(0.45) 80.7(0.17) 77.7(0.24) 75.8(0.34) 75.0(0.41) 55.1(0.15) 56.7(0.61) 72.1(0.74) 69.0(0.41) 68.0(0.21) 68.7(0.26)
Entropy 91.2(0.41) 83.1(0.47) 80.4(0.23) 78.0(0.54) 80.4(0.47) 80.0(0.42) 55.2(0.74) 56.7(0.42) 43.4(9.84) 18.1(6.98) 64.3(0.74) 63.6(0.83)

O2U-Net 92.9(0.41) 85.9(0.69) 80.9(0.28) 78.5(0.19) 79.8(0.47) 79.8(0.53) 55.8(0.27) 56.8(0.36) 14.7(10.24) 8.70(7.31) 71.1(0.36) 71.2(0.75)
Random 90.3(0.47) 80.9(0.47) 79.0(1.00) 76.8(1.50) 76.3(0.35) 76.3(0.65) 56.1(0.18) 58.2(0.35) 78.4(0.94) 71.7(0.47) 71.4(0.50) 70.6(1.00)

Probability 92.3(1.50) 85.1(2.00) 78.6(2.50) 77.5(3.00) 77.4(1.25) 77.6(1.34) 54.3(1.12) 56.5(1.43) 46.6(2.50) 22.3(0.50) 47.8(23.50) 47.9(23.50)
Stability 93.3(0.50) 86.5(0.50) 76.7(5.00) 75.4(5.00) 79.3(0.75) 79.5(0.35) 55.0(0.43) 57.0(0.19) 48.1(29.50) 35.5(33.50) 73.5(0.50) 72.5(1.00)

OptimalFilter 98.3(0.27) 96.4(0.37) 94.7(0.37) 94.9(0.61) 89.4(0.46) 89.3(0.76) 76.2(0.21) 76.7(0.19) 97.4(0.71) 92.2(0.62) 87.6(0.37) 86.5(0.36)

XLNet

Standard 89.2(0.74) 80.1(0.64) 77.6(0.39) 75.4(0.68) 72.7(0.97) 72.4(0.53) 57.6(0.31) 58.7(0.46) 77.4(0.34) 71.3(0.75) 60.7(0.74) 66.5(0.61)
LOPS 89.5(0.17) 81.4(0.90) 82.5(0.50) 81.2(0.20) 77.7(0.57) 77.7(0.54) 58.5(0.65) 59.4(0.67) 80.7(0.22) 77.4(0.83) 70.6(0.31) 70.4(0.27)

MC-Dropout 88.5(0.41) 80.4(0.38) 77.1(0.28) 73.2(0.53) 74.7(0.71) 73.2(0.36) 56.4(0.41) 58.0(0.74) 74.9(0.96) 68.9(0.84) 66.9(0.45) 68.5(0.62)
Entropy 92.4(0.42) 85.4(0.51) 78.2(0.36) 74.4(0.45) 72.9(0.67) 72.0(0.51) 54.5(0.74) 56.6(0.65) 77.9(0.67) 70.7(0.38) 68.8(0.65) 69.5(0.74)

O2U-Net 92.2(0.37) 84.6(0.24) 80.5(0.93) 77.4(0.57) 71.6(0.69) 68.8(0.61) 58.1(0.17) 59.9(0.52) 79.6(0.47) 76.8(0.59) 67.2(0.64) 69.0(0.26)
Random 90.7(0.03) 80.5(0.51) 78.6(0.50) 75.4(1.00) 67.5(0.22) 67.4(0.63) 57.5(0.43) 58.3(0.45) 76.6(0.94) 72.7(0.70) 67.3(0.49) 67.2(0.32)

Probability 91.3(0.29) 83.4(0.50) 77.4(1.00) 75.2(0.30) 70.1(1.09) 70.4(1.14) 54.6(1.42) 56.3(1.26) 38.2(6.50) 36.5(1.00) 69.5(0.82) 69.2(0.12)
Stability 91.4(1.00) 82.3(1.50) 79.7(1.50) 77.6(1.50) 74.3(1.10) 74.5(0.87) 56.3(0.88) 58.1(0.97) 79.5(0.50) 76.3(1.10) 68.5(0.49) 68.4(1.00)

OptimalFilter 98.3(0.12) 96.5(0.21) 94.5(0.23) 94.4(0.29) 89.3(0.28) 89.7(0.39) 76.4(0.44) 76.3(0.43) 97.4(0.32) 93.6(0.38) 86.6(0.43) 86.4(0.35)

GPT-2

Standard 91.1(0.24) 82.3(0.28) 78.4(0.26) 76.3(0.38) 61.3(0.28) 61.2(0.43) 51.6(0.41) 53.3(0.37) 76.2(0.41) 69.5(0.38) 70.5(0.46) 70.4(0.38)
LOPS 95.2(0.49) 89.1(0.51) 82.5(0.57) 80.3(0.63) 75.7(0.52) 75.3(0.31) 56.8(0.89) 58.6(0.63) 80.4(0.09) 76.3(0.21) 70.6(0.76) 70.5(0.48)

MC-Dropout 89.2(0.14) 79.8(0.51) 80.2(0.63) 77.1(0.57) 65.5(0.34) 65.1(0.94) 49.5(0.74) 51.5(0.54) 74.1(0.62) 68.2(0.21) 70.4(0.47) 70.8(0.65)
Entropy 93.1(0.32) 85.9(0.36) 80.8(0.65) 77.9(0.84) 65.4(0.85) 65.3(0.54) 54.3(0.32) 55.5(0.47) 77.4(0.42) 75.3(0.65) 69.1(0.62) 69.6(0.21)

O2U-Net 93.8(0.89) 87.5(0.24) 81.2(0.76) 77.9(0.37) 72.0(0.38) 70.7(0.75) 55.1(0.27) 57.2(0.67) 80.2(0.41) 79.4(0.58) 70.3(0.24) 71.4(0.16)
Random 90.2(0.42) 80.2(0.56) 79.7(0.46) 78.4(0.32) 68.2(0.18) 68.1(0.19) 53.4(0.46) 55.3(0.42) 77.5(0.52) 70.4(1.02) 69.4(0.21) 69.3(0.29)

Probability 93.3(1.04) 85.5(1.13) 80.4(1.49) 78.5(1.50) 66.2(0.69) 66.6(0.89) 51.7(1.11) 54.5(1.09) 76.7(0.57) 71.3(0.69) 69.4(1.21) 69.3(1.18)
Stability 94.4(0.56) 88.6(0.59) 81.4(1.02) 78.6(1.50) 72.4(0.58) 72.3(0.53) 53.6(1.02) 55.3(1.13) 79.4(0.62) 75.3(0.65) 70.6(0.68) 70.4(0.63)

OptimalFilter 98.3(0.24) 96.2(0.21) 94.2(0.23) 93.3(0.27) 88.7(0.26) 88.4(0.28) 72.3(0.19) 73.7(0.22) 97.3(0.18) 92.4(0.19) 86.1(0.35) 85.5(0.38)

• Entropy: is similar to MC-Dropout, however uses entropy to compute uncertainty scores.

• Probability: We sort the prediction probabilities corresponding to pseudo-labels in descending

order and select the same number of samples as LOPS in each iteration of bootstrapping.

• Random: We randomly select the same number of samples as LOPS in each iteration of

bootstrapping. To avoid skewed selection, we sample in a stratified fashion based on class

labels.

• Learning Stability (stability): (Dong et al., 2021) introduced a metric to measure the data

quality based on the frequency of events that an example is predicted correctly throughout the
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Table 3.4. Evaluation results of weakly supervised text classification frameworks with LOPS.
This demonstrates that LOPS can be easily plugged in and improves the performance.

NYT-Coarse NYT-Fine 20News-Coarse 20News-Fine AGNews Books

Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

ConWea

Standard 93.1 87.2 87.4 77.4 74.3 74.6 68.7 68.7 73.4 73.4 52.3 52.6
LOPS 94.2 90.1 87.5 78.6 79.7 78.4 70.4 70.6 79.2 79.2 57.5 58.7

X-Class

Standard 96.3 93.3 86.6 74.7 58.2 61.1 70.4 70.4 82.4 82.3 53.6 54.2
LOPS 96.2 93.3 86.8 73.8 60.7 62.3 71.2 71.2 83.6 82.7 54.2 56.3

WeSTClass

Standard 92.3 86.0 67.1 60.4 53.2 49.4 54.9 54.9 80.4 80.1 49.7 48.1
LOPS 93.4 88.1 68.4 63.8 53.3 51.5 61.1 60.5 81.4 81.3 51.2 49.8

LOTClass

Standard 70.1 30.3 5.3 4.1 47.0 35.0 12.3 10.6 84.9 84.7 19.9 16.1
LOPS 70.1 30.3 3.5 2.9 45.7 32.6 7.8 4.1 86.2 86.1 15.8 10.3

training. We sort the samples based on learning stability in descending order i.e. most stable to

least stable and select the same number of samples as LOPS in each iteration of bootstrapping.

To perform controlled experiments with a fair comparison, we consider the same number of

samples as LOPS in each iteration for all above baselines because we cannot tune individual

thresholds for each dataset since there is no human-annotated data under the weakly super-

vised setting and one fixed threshold for all datasets doesn’t work as distribution of prediction

probability varies across datasets.

We also present experimental results without any label selection in addition to the

probability threshold δ while bootstrapping (denoted by Standard) as lower bound and with all

the wrongly annotated samples removed as OptimalFilter.

3.5.3 Experimental Settings

For all our experiments, we consider seed words used in (Mekala & Shang, 2020; Wang

et al., 2021) as weak supervision and generate initial pseudo-labels using String-Match (Mekala
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et al., 2020) unless specified. The average number of seeds are 4 per class. We experiment

on three state-of-the-art text classifiers: (1) BERT (bert-base-uncased) (Devlin et al., 2019),

(2) XLNet (xlnet-base-cased) (Yang et al., 2019), and (3) GPT-2 (Radford et al., 2019).

We follow the same self-training method for all classifiers that starts with generating pseudo-

labels, training a classifier on pseudo-labeled data, and bootstrap it on unlabelled data by adding

samples whose prediction probabilities are greater than δ . Following (Mekala & Shang, 2020),

we assume that weak supervision W is of reasonable quality i.e. majority of pseudo-labels are

good. Therefore, we set τ to 50%. While training the classifiers, we fine-tune BERT, XLNet,

GPT-2 for 4 epochs. We bootstrap all the classifiers for 5 iterations with the probability threshold

δ as 0.6. We also experiment on state-of-the-art weakly supervised text classification methods:

ConWea (Mekala & Shang, 2020), X-Class (Wang et al., 2021), WeSTClass (Meng et al., 2018),

and LOTClass (Meng et al., 2020). Three of them are self-training-based methods and more

details are mentioned in Appendix A.2.

3.5.4 End-to-End Classification Performance

Results: Different Classifiers

We summarize the evaluation results with different combinations of classifiers and

selection methods in Table 3.3. All experiments are run on three random seeds and mean,

standard deviations are reported.

As shown in Table 3.3, upon plugging our proposed method LOPS, we observe a

significant boost in performance consistently over Standard with all the classifiers. We observe

that LOPS always outperforms random selection which shows that the selection in LOPS is

strategic and principled. LOPS performs better than probability and stability based selection

methods in most of the cases. This shows that LOPS is very effective in removing wrongly labeled

and preserving correctly labeled samples. LOPS also performs better than O2U-Net (Huang et al.,

2019a) and MC-Dropout (Mukherjee & Awadallah, 2020) in most of the datasets demonstrating

the effectiveness of learning order as confidence function.
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We also observe a significant boost in performance over Standard with all the classifiers

in the case of fine-grained datasets as well. In some cases like BERT on NYT-Fine, the

improvement is as high as 7 points on micro-f1 and 10 points on macro-f1. We observe

abnormally low performances of probability and stability based selection methods in some

scenarios (highlighted in red). This is because the number of noisy labels are more in fine-

grained datasets and gets amplified with self-training and resulting in high noise. Moreover, we

also observe that probability and stability based selections are biased towards majority labels and

select wrong majority labels over correct minority labels. For example, the precision of pseudo-

labels belonging to minority classes like cosmos, gun control, and abortion in NYT-Fine before

selection is 100% and it selected almost none of these whereas it selected 700 wrong documents

belonging to a majority labels like, international business. Although stratified selection can be

employed to address this problem, this ends up having a same threshold and selecting a fixed

ratio of samples for every dataset, which might not be optimal for every dataset.

We have to note unusually high standard deviation for probability and stability in some

cases (highlighted in blue). This demonstrates that these selection methods are unstable. LOPS

is comparatively more stable and its effectiveness is largely due to its invariance. Although

these methods outperform LOPS in a few cases, their unstable nature makes them unreliable.

Therefore, we believe LOPS is superior than compared methods.

Results: Different Weakly-Supervised Text Classification Methods

We summarize the evaluation results with different weakly supervised methods in Ta-

ble 3.4. The results demonstrate that LOPS improves the performance of ConWea and WeST-

Class significantly on all datasets and X-Class sometimes. Note that, X-Class sets a confidence

threshold and selects only top-50% instances, which provides a hidden advantage and LOPS

improves the performance on top of it for some datasets. We have to note the significantly low

performance of LOTClass. It is observed that LOTClass requires a wide variety of contexts

of label surface names from the input corpus to generate high quality category vocabulary,
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Figure 3.3. NC-curves of learning order and probability score with BERT as the classifier.
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Figure 3.4. Macro-F1 vs Coverage on NYT-Coarse & 20News-Fine using BERT with LOPS
and Probability score based selection.

which plays a key role in performance (Wang et al., 2021). The performance is comparitively

worse in fine-grained classes than coarse-grained classes because LOTClass assumes that the

replacements of label surface names are indicative of its respective label. However, this might

not be a valid assumption for fine-grained classes (Mekala et al., 2021). Among the datasets we

experimented on, these requirements are satisfied only by AGNews dataset where there are many

documents(120000) classified broadly into 4 categories and we observe a performance boost

using LOPS on this dataset. Due to poor quality of pseudo-labels for other datasets, there is no

increment in performance with LOPS.
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3.5.5 Learning Order vs Probability Score: Evaluating Confidence
Functions

In this section, we define evaluating a confidence function and compare learning order

and probability score as confidence functions.

Evaluation of a confidence function. Ideally, there exists a threshold for a given confidence

function that perfectly distinguishes correctly and wrongly labeled samples. However, in practice,

confidence functions may not suffice such ideal condition. There always exists a trade-off

between noise ε(κ,γ) and coverage φ(κ,γ), defined as:

ε(κ,γ) =
|D̂✓(κ,γ)∩D×|
|D̂✓(κ,γ)|

, φ(κ,γ) =
|D̂✓(κ,γ)|
|D | .

The coverage is the fraction of labeled documents being selected and the noise is the fraction of

wrongly labeled documents within selected documents. A small threshold leads to high coverage

i.e. most labeled documents will be selected, thus being more noisy. And a high threshold leads to

an opposite situation. Therefore, to evaluate a confidence function, we plot noise and coverage at

various thresholds, which we refer as the noise-coverage curve (NC-curve) and compute the area

under the noise-coverage curve (AUNC). As shown in figure 3.3, an optimal confidence function

selects wrongly labeled documents only after selecting all the correctly labeled documents, hence

generates a NC-curve in the shape of a rectifier, namely ε = max(0,φ −|D✓|/|D |). A random

confidence function always selects the same fraction of wrongly labeled documents, hence an

NC-curve with a constant value. An ideal confidence function should minimize AUNC.

Learning Order vs Probability Score. We plot NC-curves of learning order and probability

scores in Figure 3.3 with BERT classifier on NYT-Coarse, 20News-Fine datasets. To isolate

them from the effects of bootstrapping, we don’t perform any bootstrapping. We also plot the

end-to-end performance vs coverage in Figure 3.4. From Figure 3.3, we observe that learning

order has significantly smaller AUNC compared to the probability score. In some datasets such

as NYT-Coarse, it even approaches optimal confidence function. In fine-grained datasets like
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Figure 3.5. Macro-F1 vs τ on 20News-Coarse & Books using GPT2 and BERT with LOPS. The
dashed lines represent performance with no label selection.
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Figure 3.6. Macro-F1 vs iteration on 20News-Fine & Books using BERT, XLNet, GPT2 with
LOPS.

20News-Fine, the calibration is so poor that the probability score is even worse than random,

which explains poor empirical results of Probability-based selection on fine-grained datasets.

From Figure 3.4, we observe that the performance with LOPS is significantly better and more

stable than Probability.

3.5.6 Performance vs τ

To study the effect of τ on performance, we plot macro-f1 vs τ on 20News-coarse and

Books datasets using GPT2 and BERT classifiers, shown in Figure 3.5. We observe that the

performance increases initially and gradually drops down at higher τ values. The lower τ values
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imply being highly selective and thus the few number of selected samples are not enough for the

model to generalize. The higher τ values imply poor selection with many noisy labels, making

the performance to drop. From the plot, we can observe that the performance is robust for middle

τ values i.e. 50−70%.

3.5.7 Performance vs iteration

The plot of performance vs the number of iteration of bootstrapping is shown in Figure 3.6.

We observe that the macro f1 increases initially and gradually converges at the later iterations.

3.6 Limitations

Since we select 50% of the samples based on learning order, our method requires the

absolute number of pseudo-labeled samples to be high enough so that the final classifier has

significant number of selected samples to learn and generalize on. For example, we experimented

on a subset of 2613 samples from 20news-fine dataset with noise rate 20%. With LOPS, the

macro f1 is 68.3% and without any selection the macro-f1 is 70.1%. We attribute this performance

drop to the lack of generalization using the few selected samples from LOPS. Since in real-life

scenario, obtaining noisy annotations is cheaper, we believe this limitation can be addressed

comfortably.

3.7 Summary

In this chapter, we proposed LOPS, a novel learning order inspired pseudo-label selection

method. Our method is inspired from recent studies on memorization effects that showed that

clean samples are learnt first and then wrong samples are memorized. Experimental results

demonstrate that our method is effective, stable and can act as a performance boost plugin on

many text classifiers and weakly supervised text classification methods. In the future, we are

interested in automatically identifying the right granularity to measure learning order for a given
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dataset. Moreover, we are also interested in analyzing the learning order in classification tasks in

image and speech domains.

Chapter 3, in full, is a reprint of the material as it appears in Dheeraj Mekala, Chengyu

Dong, and Jingbo Shang. 2022. "LOPS: Learning Order Inspired Pseudo-Label Selection

for Weakly Supervised Text Classification", in Findings of the Association for Computational

Linguistics: EMNLP 2022, pages 4894–4908, Association for Computational Linguistics. The

dissertation/thesis author was the primary investigator and author of this paper.
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Chapter 4

Leveraging QA Datasets to Improve Gen-
erative Data Augmentation

4.1 Introduction

Recent advances in NLP have substantially improved the capability of pretrained language

models to generate high-quality text (Radford & Narasimhan, 2018; Radford et al., 2019; Lewis

et al., 2020; Brown et al., 2020). Various approaches (Kumar et al., 2020; Anaby-Tavor et al.,

2020; Mekala et al., 2021) leverage this capability for generative data augmentation. This

process usually involves first fine-tuning the GLM on training samples prepended with their

target label and then generating synthetic data by prompting the GLM with a given target label.

However, it is not evident that the model parameters learnt during pretraining or fine-tuning

should support data generation using such unintuitive formulations with label tokens as prompts:

In low data regimes, fine-tuning can be unstable (Devlin et al., 2019) and relies on the pretrained

parameters to be reasonably well-suited for the target task (Phang et al., 2018). Therefore, for

target domains that are different from the pretraining domain, such formulations may result in

poor quality generation (Feng et al., 2020).

To address this challenge, we propose CONDA, an approach to leverage existing QA

datasets for training Context generators to improve generative Data Augmentation. We propose

to use a question answering (QA) formulation as a consistent format to prompt GLMs for

synthetic data: We use QA datasets for training GLMs to be context generators for a given
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Text Label 
(topic/sentiment)

hockey is a great game sports 

this is the worst movie negative

Question Answer Context

what is the document about? sports hockey is a great game

Is the movie good or bad? negative this is the worst movie.

General text classification format Question-Answer-Context format

Figure 4.1. Examples of converting topic classification and sentiment analysis data into question-
answer-context format.
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question: where did lee go? 
answer: school 
context: lee lives in san diego 
and he went to school. 

. 

. 

. 

General Context 
Generator (GQ)

Generate

Synthetic Training 
Data

Train

Train

QA Dataset Target Dataset

Text Label

the movie is bad Negative

great acting Positive

worst movie ever Negative

deserves an oscar! Positive

Text Label

lee went to bad movie Negative

school dramas are great Positive

movie “diego” is awful. Negative

Synthetic Training Data

Figure 4.2. Overview of CONDA. We propose to use QA datasets for transforming pre-trained
generative language models into high-quality target task data generators. We view QA datasets in
question-answer-context format and fine-tune a pre-trained GLM (G) to obtain a general context
generator (GQ). Then, we adapt it to the target domain by training it further on few-shot target
dataset supervision, resulting in GT . Finally, using GT , we generate synthetic training data for
the target task, use it to augment the few-shot target dataset and train the target task model on the
augmented data.

question and answer.

As illustrated in Figure 4.2, our method consists of two steps. The first step is QAC

fine-tuning, where we fine-tune a pretrained language model on a QA dataset to obtain a general

context generator that is capable of generating contexts for given questions and answers. To

this end, we view the QA dataset in question-answer-context format instead of the context-

question-answer format used to solve QA tasks (Radford & Narasimhan, 2018; Radford et al.,

2019; Raffel et al., 2020). Then, we adapt the general context generator to the target domain

by further training it on available few-shot data, resulting in a target-domain context generator.

Inspired from recent work in converting several NLP tasks into a common format (McCann
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et al., 2018; Raffel et al., 2020), we format the target tasks into a question-answer schema. For

example, as shown in Figure 4.1, topic classification and sentiment analysis data can be cast into

the question-answer-context format with its respective label as answer, and text as context. We

adapt the context generator to the target task domain by further training on target task few-shot

supervision, resulting in target task context generator. Finally, we generate synthetic training data

for the target task by generating contexts for questions and answers pertaining to the respective

dataset. Then, we add the generated samples to the few-shot supervision and train a target task

model on the augmented data.

We perform extensive experiments on multiple sentiment analysis and topic classification

datasets with several abstractive, extractive, and common-sense reasoning QA datasets. Through

rigorous experiments and thorough analysis, we observe that QA datasets that require high-level

reasoning abilities such as abstractive and common-sense QA datasets suit the best for generating

high-quality data.

Our contributions are summarized as follows:

• We propose to use QA datasets for training generative language models to be context generators

for a given question and answer.

• We formulate various classification tasks into a QA format and model synthetic training data

generation for these tasks as context generation.

• We perform experiments on multiple sentiment analysis and topic classification datasets to

demonstrate the effectiveness of our method in zero- and few-shot settings.

• We release the code on Github1.

4.2 Related Work

Data Augmentation

Wei & Zou (2019) propose a simple data augmentation method using synonym replace-

ment, random insertion, random swap, and random deletion. Sennrich et al. (2016) augment

1https://github.com/dheeraj7596/CONDA
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samples by translating them into foreign language and then back to English. Du et al. (2021)

compute task-specific query embeddings to retrieve sentences from unlabeled documents from

the Internet. After a rise in pretrained generative language models, the generation capabilities

of these models have been explored to generate synthetic data. Anaby-Tavor et al. (2020);

Kumar et al. (2020); Schick & Schütze (2021b); Mekala et al. (2021) generate labeled docu-

ments using the GLMs and (Yang et al., 2020) do so specifically for common-sense reasoning.

Puri et al. (2020) use GLMs to synthesize questions and answers and improve performance on

question answering. Vu et al. (2021) generate data for NLI tasks. Li et al. (2023a) introduce data

augmentation for in-context learning via self-paraphrase.

Few-shot Learning

Our work is closely related to few-shot learning as we take a few annotated samples as

supervision. The idea of formulating classification as a prompting task is getting increasingly

popular. Brown et al. (2020) introduce a new paradigm called in-context learning to infer from

large language models using few annotated samples. Schick & Schütze (2021a) formulate input

samples as cloze-style phrases and assign pseudo-labels that are used for training the classifier

and Tam et al. (2021) improves their approach further without using any task-specific unlabeled

data. (McCann et al., 2018; Raffel et al., 2020) format several NLP tasks into a question-answer

and text-to-text schema. Lin et al. (2022) train multilingual autoregressive language models to

enable few-shot learning in multiple languages. Gao et al. (2021) propose to generate prompts

and convert smaller pretrained language models to few-shot learners. Other work proposes to

pre-train prompts by adding soft prompts into the pre-training stage (Gu et al., 2022; Vu et al.,

2022b,a).

Language Model Fine-Tuning

Pre-trained language models are applied to downstream tasks by fine-tuning them using

task-specific objectives (Howard & Ruder, 2018). However, this process requires significant

annotated downstream task data (Yogatama et al., 2019). Many methods have been proposed
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to address this challenge. Gururangan et al. (2020) propose to continue training on unlabeled

data from the target task domain. Aghajanyan et al. (2021) propose pre-finetuning, a large-scale

multi-task learning stage between language model pre-training and fine-tuning. Phang et al.

(2018) introduce intermediate task fine-tuning which involves fine-tuning a language model on

an auxiliary task before continuously training on the target task. Pruksachatkun et al. (2020)

observe that the tasks requiring high-level inference and reasoning abilities are the best choice as

intermediate tasks. Vu et al. (2020) identify the best auxiliary tasks for high performance on

downstream tasks. Vu et al. (2021) use NLI as auxiliary task to generate synthetic NLI data for

intermediate fine-tuning. Our method differs from (Phang et al., 2018) in two fronts: (1) we use

QA datasets for training context generators instead of answering the question , and (2) we use the

fine-tuned GLM to generate synthetic data instead of training directly for the downstream tasks.

It also differs from (Vu et al., 2021) in terms of the generated data, where they consider NLI as

an auxiliary task and generate synthetic samples in target-domain for the NLI task irrespective

of the target task and perform intermediate task fine-tuning. CONDA formats target tasks into

question-answer format and directly generates samples relevant for target task.

4.3 CONDA: QA Datasets for Generative Data Augmenta-
tion

In this section, we describe the problem statement, and explain our method including

QAC fine-tuning, target-domain adaptation, and synthetic training data generation.

4.3.1 Problem Formulation

For a given task T , the input in a few-shot setting contains a very small labeled dataset

LT = {(D1, l1),(D2, l2), . . . ,(D|LT |, l|LT |)} and m target classes C = {C1,C2, . . . ,Cm}. Our

method requires users to provide a question per dataset that is representative of the task to be

solved. Our aim is to build a model for the task T that assigns a label C j ∈ C to each document

D .
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4.3.2 QAC Fine-tuning

We consider question-answering datasets Q containing triplets (q,a,c) of a question q,

the corresponding answer a, and a context c required to derive the correct answer. Question-

answering datasets can roughly be divided into extractive (Rajpurkar et al., 2016; Trischler et al.,

2017; Joshi et al., 2017; Reddy et al., 2019) and abstractive datasets (Kočiský et al., 2018; Huang

et al., 2019b; Xiong et al., 2019; Sap et al., 2019). For extractive QA datasets, the answer can be

found as a contiguous span in the context, whereas in abstractive QA datasets, the answer needs

to be generated in natural language without being able to rely on the vocabulary of the question

or context.

We transform the QA dataset Q into training data DQAC for fine-tuning GLM. To this

end, each triplet (q, a, c) is converted into a single text by prepending “question:”, “answer:”

and “context:”, respectively, and concatenating q, a and c separated by newlines. For example, a

preprocessed training document in DQAC from an extractive QA dataset might look as follows:

question: when did battle of plassey happen?

answer: 23 june 1757

context: the battle of plassey was a decisive victory of the british east india company over

the nawab of bengal and his french allies on 23 june 1757.

We fine-tune a pretrained GLM G on DQAC to obtain a general context generator GQ

using a language modeling objective to maximize the log-likelihood of the (q, a, c) triplet. The

general context generator GQ is capable of generating contexts for given questions and answers.

4.3.3 Domain Adaptation and Synthetic Training Data Generation

We adopt GQ to the target domain by fine-tuning it further on available few-shot data. To

preserve its context generating ability, we perform QAC fine-tuning instead of regular language

model fine-tuning. This is enabled by transforming the few-shot supervision into our question-

answer-context format. First, we manually design one question per dataset that is representative
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of the task and the dataset. Furthermore, following Schick & Schütze (2021a), we define a

verbalizer as a mapping v: C → V that maps each label in C to a word from GQ’s vocabulary

V . Finally, for every document Di and its respective label li in our few-shot data, we consider

the verbalizer mapping of the label, v(li), as answer and the text Di as context. For example, a

negative review “I hate this movie” from the IMDb dataset (Maas et al., 2011) is transformed as

follows:

question: is the movie good or bad?

answer: bad

context: i hate this movie.

We fine-tune GQ on the converted few-shot data to obtain a target task context generator

GT .

Synthetic Training Data Generation

Recall that our method requires a question q for every dataset that is representative of

the task to be solved. To obtain synthetic training data, for every distinct label C j, we create a

question-answer prompt with q as question, v(C j) as answer and let GT generate the context

cgen. The generated context cgen and label C j are considered as a synthetic training sample. We

repeat this process multiple times to generate n samples that we collect in a synthetic training

dataset denoted by Dgen.

As a final step, we train the target task model on the combination of Dgen and our original

few-shot dataset LT . We use this trained target-task model for inference.

4.4 Experiments

In this section, we evaluate our method against several data augmentation and few-shot

methods on sentiment analysis and text classification tasks.
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Table 4.1. Relevant statistics of the QA dataset used in our experiments.

Dataset Type # Samples Training Context

SQuAD Extractive 87,600 Wikipedia
NewsQA Extractive 76,560 News
TweetQA Abstractive 10,692 News Tweets
SocialIQA Commonsense 33,410 Crowdsourcing
CosmosQA Commonsense 21,448 Blogs

4.4.1 QA Datasets

We consider several extractive, abstractive, and common-sense QA datasets. Common-

sense QA datasets are also abstractive datasets that require common-sense reasoning to answer

the questions. The QA dataset statistics are provided in Table 4.1. The details of these datasets

are as follows:

• SQuAD (Rajpurkar et al., 2016, 2018) is a collection of questions and answers based on

Wikipedia articles.

• NewsQA (Trischler et al., 2017) is a challenging QA dataset in the News domain where

crowdworkers were shown a news article’s headline and summary, and asked to formulate a

question about the article without accessing its content.

• TweetQA (Xiong et al., 2019) is a QA dataset made from a collection of tweets sampled from

two major news websites (CNN and NBC).

• SocialIQA (Sap et al., 2019) is a QA dataset that tests social common-sense intelligence. The

data is made of common phrases from stories and books.

• CosmosQA (Huang et al., 2019b) is a commonsense-based reading comprehension task

formulated as multiple-choice questions. Answering questions requires reasoning not only

based on the exact text spans in the context, but also abstractive commonsense reasoning.
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Table 4.2. Questions and Verbalized labels of the target task datasets considered in our experi-
ments.

Dataset Question Verbalized Labels

Sentiment

IMDb is this movie good or bad? good, bad

Yelp how is the service?
awful, bad, fine,
good, excellent

SST-2 is this sentence positive or negative? positive, negative

Topic

Yahoo what is this document about?
sports, society, science, health,
politics, education, computer,

business, entertainment, relationship

NYT what is this document about?
arts, business,
politics, sports

AGNews what is this document about?
sports, business,

technology, politics

4.4.2 Target Task Datasets

We evaluate our method on six English text classification datasets. In particular, we

consider the three sentiment analysis datasets: IMDb reviews (Maas et al., 2011), Yelp2, and SST-

2 (Socher et al., 2013), as well as three topic classification datasets: Yahoo (Zhang et al., 2015),

The New York Times3 (NYT), and AGNews (Zhang et al., 2015). The dataset-representative

questions, and their respective verbalized labels of target task datasets are mentioned in Table 4.2.

We follow and adapt McCann et al. (2018) for questions in sentiment analysis datasets. The

question for topic classification is intuitive and straightforward. More details about the datasets

can be found in Appendix B.1.

4.4.3 Compared Methods

We compare with a wide range of data augmentation and intermediate-task fine-tuning

(ITFT) methods described below:

• BERT-FT trains the BERT-base-uncased classifier (Devlin et al., 2019) on the few-shot
2https://www.yelp.com/dataset/
3http://developer.nytimes.com/
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supervision.

• ITFT-X (Phang et al., 2018) first trains a model on dataset X and fine-tunes it further on the

target task. We compare with ITFT-MNLI and ITFT-SQuAD fine-tuned intermediately on

MNLI (Williams et al., 2018) and SQuAD datasets respectively.

• BackTranslation (Sennrich et al., 2016) augments samples by translating them into a non-

English language and translating them back to English. We translate them to French, Spanish,

and Portuguese thereby augmenting three synthetic samples for every sample.

• PEGASUS (Zhang et al., 2020a) is a state-of-the-art paraphrasing model. We paraphrase the

input text and consider it as a synthetic sample and augment it to the training set.

• EDA (Wei & Zou, 2019) generates synthetic samples by synonym replacement, random

insertion, random swap, and random deletion and augment them to the training set.

• LAMBADA (Anaby-Tavor et al., 2020) fine-tunes a GLM on few-shot supervision prepended

with their target labels and then generates synthetic data by prompting the GLM with a given

target label.

We denote our method as CONDA, which includes QAC fine-tuning, domain adaptation,

synthetic samples generation, and training the target task classifier. CONDA-X represents that

the QAC fine-tuning of GLM is performed on QA dataset X . We also compare with CONDA\QA

where we perform no QAC fine-tuning and directly fine-tune the GLM on target dataset.

4.4.4 Experiment Settings

We consider two low-data regimes: few-shot and zero-shot. We consider 8 annotated

samples per label in the few-shot setting. In the zero-shot setting, we skip the domain adaptation

step and use GQ directly for synthetic training data generation and train the target task model

only on the generated synthetic training data. We use GPT2-Medium (Radford et al., 2019) as

our GLM and fine-tune it for 3 epochs in QAC-fine-tuning and domain adaptation steps. While

generating synthetic training samples, we use top-k sampling with k = 20, a maximum length of

200 tokens, and generate n = 450 synthetic samples per label. We use BERT-base-uncased (De-
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Table 4.3. Few-Shot Evaluation Results. Micro- and Macro-F1 are used as evaluation metrics.
All experiments are repeated with three random seeds. Mean and standard deviation (in the
subscript) are reported. The best baseline for each dataset is underlined and all results of CONDA
that outperform the best baseline are in bold.

Sentiment Topic

IMDb Yelp SST-2 NYT Yahoo AGNews
Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

BERT-FT 69.14.9 69.14.9 39.82.3 38.93.4 62.04.7 61.84.8 94.41.1 88.11.6 55.42.1 55.21.6 78.41.8 78.31.8
ITFT-MNLI 73.94.6 73.54.8 40.42.6 40.02.9 66.56.9 65.56.9 90.11.2 80.81.1 38.75.8 37.65.2 71.11.1 70.61.1
ITFT-SQuAD 65.54.4 64.64.3 38.42.5 36.82.5 61.92.2 61.52.2 93.00.5 85.31.3 45.33.4 45.03.0 72.01.9 71.42.1
BackTranslation 68.04.6 67.15.2 41.62.4 40.33.0 60.64.5 60.04.9 95.40.6 90.01.3 57.41.4 57.11.2 80.02.2 79.82.3
PEGASUS 66.85.0 65.95.6 35.93.7 34.43.1 61.15.3 60.95.3 93.20.5 87.20.6 58.11.9 57.21.7 81.11.9 80.92.1
EDA 63.61.4 62.11.6 39.11.9 37.92.0 57.44.0 52.97.4 95.80.8 90.91.7 56.11.7 55.81.8 80.03.0 79.83.0
LAMBADA 50.30.7 42.35.4 20.81.06 11.16.3 49.61.3 45.83.3 60.319.7 45.917.4 25.74.7 22.63.2 49.39.9 46.910.3
CONDA\QA 72.26.9 71.38.0 36.80.6 23.91.7 50.60.5 35.10.5 93.50.8 85.71.2 58.50.3 57.30.4 79.41.6 78.81.8

CONDA-SQuAD 53.91.9 45.96.2 37.90.7 31.13.2 51.51.6 39.87.6 93.20.8 86.01.7 56.90.5 55.40.5 81.60.8 81.30.9
CONDA-NewsQA 57.93.7 55.55.4 36.41.1 31.62.0 56.06.2 50.510.3 91.50.3 81.10.6 58.30.7 57.20.8 80.03.3 79.63.6
CONDA-TweetQA 75.12.3 74.52.5 42.91.1 42.01.8 67.74.8 67.54.9 94.10.6 86.61.3 59.40.4 58.10.3 83.00.9 82.90.9
CONDA-SocialIQA 79.51.9 79.51.9 39.41.5 32.22.8 75.41.4 75.21.6 93.23.4 85.81.3 61.90.5 61.10.6 81.90.2 81.70.2
CONDA-CosmosQA 77.03.2 76.43.7 42.30.1 37.51.0 67.40.6 66.91.2 94.30.4 87.71.1 63.80.6 63.30.4 82.80.8 82.50.8

vlin et al., 2019) as target task classifier. We feed [CLS] representation into the classification

head and train all the parameters on the downstream target tasks. Following (Devlin et al.,

2019), we fix the number of epochs of target task BERT classifier training to 4 unless mentioned

otherwise. We perform 3 random restarts and report the mean and standard deviation.4 We use

the Transformers library (Wolf et al., 2020) and NVIDIA RTX A6000 GPUs for our experiments.

To enable a fair comparison, we generate the same number of samples per label as

CONDA (i.e., 450) for all data augmentation baselines. We use BERT-base-uncased as the

target task classifier for all baselines. CONDA\QA for zero-shot setting implies a pre-trained

GPT2. While training the target task classifier, since the number of training samples for baselines

like BERT-FT, ITFT are different than data augmentation baselines and our method CONDA,

we set the number of epochs for all baselines such that the number of update steps remain the

same for a fair comparison.

4For each restart, we resample the few-shot training set.
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Table 4.4. Zero-Shot Evaluation Results. Mean and standard deviation (in the subscript) are
reported.

Sentiment Topic

IMDb Yelp SST-2 NYT Yahoo AGNews
Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

CONDA\QA 70.93.7 70.03.8 32.43.7 19.82.0 52.93.6 41.89.9 90.70.9 80.01.8 57.90.3 57.10.7 77.01.5 76.21.6
CONDA-SQuAD 53.32.4 42.77.1 30.24.5 21.44.6 52.42.6 47.35.9 85.73.8 74.33.1 56.51.5 54.91.7 79.30.1 78.90.2
CONDA-NewsQA 53.42.6 47.410.0 32.81.0 23.13.6 51.61.7 46.23.6 89.80.2 77.11.1 55.91.1 54.60.8 76.83.0 75.73.5
CONDA-TweetQA 72.45.0 70.66.1 38.02.4 37.62.3 61.23.9 56.56.4 90.31.9 78.54.7 54.00.4 52.40.2 76.41.7 76.22.0
CONDA-SocialIQA 78.34.3 77.65.1 36.92.2 31.71.1 76.21.2 76.11.2 87.03.0 77.62.9 56.11.6 55.22.1 79.61.9 79.42.2
CONDA-CosmosQA 75.92.3 75.52.8 37.41.5 35.11.7 66.26.4 66.06.5 92.80.3 84.51.3 63.40.5 62.90.3 81.81.6 81.51.4

4.4.5 Results and Discussion

Results for few- and zero-shot settings are shown in Table 4.3 and Table 4.4, respectively,

using Micro- and Macro-F1 as evaluation metrics. We discuss the effectiveness of our method

below.

CONDA vs Baselines. In the few-shot setting, CONDA with abstractive and common-sense

based datasets outperforms all baselines for most of the datasets, beating the best baseline in

five out of six cases. CONDA performs better than BERT-FT on all datasets, achieving up to

14% improvement on SST-2. Although ITFT performs better than vanilla fine-tuning, CONDA

demonstrates better performance than ITFT on all datasets. For example, CONDA-TweetQA

shows 11% improvement over ITFT-SQuAD on AG-News. CONDA demonstrates higher

performance than data-augmentation baselines on all datasets except NYT. The comparison

between CONDA and LAMBADA shows that our QA formulation prompt is more intuitive

and informative than just the target label. We attribute the superior performance of CONDA to

the context-generating ability acquired during QAC fine-tuning that is efficiently leveraged by

generating synthetic samples, which are added to the training set.

Abstractive vs Extractive QA Datasets. We observe that the performance of CONDA with

abstractive QA datasets is significantly better than CONDA with extractive QA datasets in both

few-shot and zero-shot settings. For example, CONDA-TweetQA has an improvement of more

than 20% over CONDA-SQuAD on IMDb in few-shot setting. We surmise that this is because
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of the intrinsic nature of extractive QA datasets (i.e., the answer always being present in the

context as a contiguous span). We observe that GLMs fine-tuned on an extractive QA dataset

retain the ability to generate contexts that encompass the answer. Note that, while generating

synthetic training samples, the answer in the prompt is its respective topic. For example, out of

500 generated samples by CONDA-SQuAD for Yelp dataset, 213 samples contain at least one

occurrence of its corresponding verbalized label whereas it is only 73 for CONDA-CosmosQA.

Thus, many synthetic samples generated contain their corresponding label in text. Therefore,

a classifier trained on synthetic samples that have their corresponding labels in the text, easily

overfits on the label tokens and does not generalize well to unseen test data.

Comparison with CONDA\QA. CONDA with abstractive QA datasets perform better than

CONDA\QA in both few-shot and zero-shot settings, attaining improvements up to 40% and

35% respectively in macro-F1 on SST-2. This demonstrates that the context generating abilities

are learnt and reinforced during the QAC fine-tuning on QA datasets which is efficiently utilized

by generating synthetic samples.

Zero-shot Performance. The zero-shot performance of CONDA follows a similar trend as

few-shot performance: abstractive and common-sense reasoning QA datasets lead to better

performance than extractive datasets and no QAC fine-tuning.

4.4.6 Ablation Study

To understand the impact of domain adaptation and few-shot samples, we compare

CONDA with two ablated versions in Table 4.5: (1) CONDA-DA represents our method with-

out domain adaptation (i.e., generating synthetic data using GQ and training the classifier on

combined few-shot supervision and synthetic data generated by GQ), (2) CONDA-Few Shot

represents the classifier trained only on the samples generated by GT . We also present the results

of our complete pipeline for reference. CONDA performs better than CONDA-Few shot in most

cases, demonstrating the importance of including few-shot samples in the training set for the

classifier. The comparison between CONDA and CONDA-DA suggests that fine-tuning the
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Table 4.5. Ablation Study. Macro-F1 is used as evaluation metric.

Sentiment Topic

QA Dataset Setting IMDb Yelp SST-2 NYT Yahoo AGNews

SQuAD
CONDA 45.96.2 31.13.2 39.87.6 86.01.7 55.40.5 81.30.9

- DA 51.312.7 28.20.5 33.40.1 87.11.0 55.01.7 82.50.6
- Few Shot 49.49.5 25.93.4 43.74.0 75.04.0 47.40.4 77.93.0

NewsQA
CONDA 55.55.4 31.62.0 50.510.3 81.10.6 57.20.8 79.63.6

- DA 60.99.6 32.03.6 46.28.5 79.80.4 56.41.1 79.23.5
- Few Shot 50.94.8 23.41.9 46.07.0 77.22.1 54.30.7 76.04.1

TweetQA
CONDA 74.52.5 42.01.8 67.54.9 86.61.3 58.10.3 82.90.9

- DA 80.53.5 42.10.2 63.27.5 85.32.1 57.11.1 81.11.6
- Few Shot 74.02.7 40.60.7 59.312.4 77.34.8 53.80.3 77.41.5

SocialIQA
CONDA 79.51.9 32.22.8 75.21.6 85.81.3 61.10.6 81.70.2

- DA 81.01.9 35.30.8 76.10.6 87.61.3 60.70.8 82.41.2
- Few Shot 77.74.0 31.43.0 75.21.0 76.51.7 55.81.2 78.21.4

CosmosQA
CONDA 76.43.7 37.51.0 66.91.2 87.71.1 63.30.4 82.50.8

- DA 76.32.4 36.82.3 51.89.3 87.11.0 62.90.3 82.60.6
- Few Shot 74.91.0 35.81.4 64.49.1 82.90.7 60.10.2 80.31.4

language model further on the target dataset helps in some scenarios but does not always improve

performance. This is in line with previous research findings (Du et al., 2021; Vu et al., 2021;

Pryzant et al., 2022). We conjecture that domain adaptation is important when the structure of

the target task dataset is very different from the QA dataset. For example, domain adaptation

helps most of the QA datasets on SST-2 dataset because the text in SST-2 is a single sentence,

whereas most of the QA datasets have paragraphs as context. Moreover, it also depends on the

number of samples the language model is fine-tuned on during domain adaptation. We observe

that the higher the number of samples, the more positive their impact. For example, the number

of few-shot samples is the highest in Yahoo compared to other datasets and domain adaptation

positively contributes to the performance on Yahoo for all QA datasets.

4.4.7 Larger Generative Language Models

Experimental results with GPT2-Large as the GLM are shown in Table 4.6. We observe

that the relative performance trend remains the same as GPT2-Medium i.e. CONDA with

abstractive datasets performs better than CONDA with extractive datasets and CONDA\QA-L.
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Table 4.6. Few-Shot Evaluation Results with GPT2-Large as GLM (-L denotes GPT2-Large).
Macro-F1 is used as evaluation metric. All results of CONDA-L that perform better than
CONDA\QA-L are in bold.

Sentiment Topic

Method IMDb Yelp SST-2 NYT Yahoo AGNews

CONDA\QA-L 79.72.1 43.24.4 67.68.2 84.81.3 60.30.8 77.72.2

CONDA-L-SQuAD 70.015.2 38.91.5 64.37.2 84.32.9 60.31.3 81.11.7
CONDA-L-NewsQA 72.49.4 38.30.3 58.16.2 85.52.4 61.41.1 82.21.2
CONDA-L-TweetQA 76.45.7 45.01.3 74.62.3 84.40.1 61.60.1 79.73.1
CONDA-L-SocialIQA 81.62.4 43.93.4 77.51.3 89.00.4 62.00.5 80.92.2
CONDA-L-CosmosQA 83.40.6 43.22.2 77.21.7 86.52.4 61.00.6 79.53.9
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Figure 4.3. Macro-F1 scores of CONDA-TweetQA and CONDA-SocialIQA w.r.t. number of
generated samples per class. We fix the few-shot supervision size to 8 samples per label. Each
experiment is repeated with three different seeds and the mean performance is plotted.

This indicates that QAC fine-tuning improves the performance of generative data augmentation

with larger GLMs as well.

4.4.8 Performance vs No. of Generated Samples

We fix the few-shot supervision size to 8 samples per label and vary the number of

generated samples per label and plot the performance of CONDA-TweetQA, CONDA-SocialIQA,

and baselines such as LAMBADA and EDA on AGNews and IMDb datasets, shown in Figure 4.3.

We repeat each setting with three different seeds and plot the mean performance. We observe that

the performance increases and it plateaus after a while. This shows that synthetic training data
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Figure 4.4. Macro-F1 scores of CONDA-CosmosQA and CONDA-SocialIQA w.r.t. number of
few-shot annotated samples per class. Each experiment is repeated with three different seeds and
mean performance is plotted.

can give a substantial boost to the few-shot training data, minimizing the human effort in manual

annotations; however, it cannot replace the original training data completely as it requires more

human annotated data to improve beyond some limit.

4.4.9 Performance vs Few-shot supervision Size

We fix the number of generated samples to 450 per label and vary the number of annotated

samples and plot the performance of CONDA-CosmosQA and CONDA-SocialIQA on SST-2

and Yahoo datasets in Figure 4.4. We also plot the performance of baselines such as BERT-FT,

EDA, BackTranslation for comparison. We repeat each experiment with three random seeds and

plot the mean performance. We observe that the performance of CONDA increases with the size

of supervision and the improvement over baselines in the low-data regime is substantial. For

example, with only 4 annotated samples per label in Yahoo dataset, the macro F1 of CONDA-

CosmosQA outperforms BERT-FT by 22% and EDA by 15%. However, we also observe that

the performance gap between CONDA and baselines decreases with increase in supervision size

and gets stagnated after a while. As the size of supervision increases, the supervision by itself is

sufficient for high performance, thus reducing the performance boost due to synthetic training

data.
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Table 4.7. Few-Shot Evaluation comparison between language model pre-training on unlabeled
data (LMPT) and CONDA. Macro-F1 is used as evaluation metric. All results of CONDA that
perform better than LMPT are in bold.

Method IMDb SST-2 Yahoo AGNews

LMPT 64.83.6 57.52.1 49.91.2 79.21.7

CONDA-TweetQA 74.52.5 67.54.9 58.10.3 82.90.9
CONDA-SocialIQA 79.51.9 75.21.6 61.10.6 81.70.2
CONDA-CosmosQA 76.43.7 66.91.2 63.30.4 82.50.8

Table 4.8. Self-Training experiment results with Macro-F1 as evaluation metric. + ST denotes
with self-training. Self-training improves the performance of both CONDA and CONDA-L
significantly. All results where self-training improved the performance are in bold.

QA Dataset Setting SST-2 NYT AGNews

TweetQA

CONDA 67.54.9 86.61.3 82.90.9
CONDA + ST 69.21.3 88.21.0 82.41.7

CONDA-L 74.62.3 84.40.1 79.73.1
CONDA-L + ST 76.91.1 87.42.4 80.93.4

SocialQA

CONDA 75.21.6 85.81.3 81.70.2
CONDA + ST 79.80.8 90.31.9 83.91.5

CONDA-L 77.51.3 89.00.4 80.92.2
CONDA-L + ST 78.60.6 92.10.8 81.11.8

CosmosQA

CONDA 66.91.2 87.71.1 82.50.8
CONDA + ST 71.66.9 87.22.3 83.60.6

CONDA-L 77.21.7 86.52.4 79.53.9
CONDA-L + ST 79.21.3 87.24.0 80.73.6

4.4.10 Self-Training

We perform an experiment to demonstrate that the performance can be further improved

through self-training when in-domain unlabeled samples are provided. In-domain unlabeled

samples are often easily available in real-world scenarios. Self-training is a commonly-used

approach to bootstrap the classifier on unlabeled samples (Mekala & Shang, 2020; Mekala et al.,

2020; Vu et al., 2021). Following Vu et al. (2021), we obtain pseudo-labels by predicting on

unlabeled samples using the trained classifier and train the classifier further on the available
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labeled and pseudo-labeled data. We consider the training set without ground truth labels as

unlabeled data and experiment on SST-2, NYT, and AGNews datasets. We repeat this process for

3 iterations without any filtering of pseudo-labels. From the results in Table 4.8, we can observe

a significant performance improvement up to 4 points with self-training. It is noteworthy that

this improvement is consistent for both GPT2-Medium and Large models respectively.

4.4.11 Synthetic Data Adds Value

Unsupervised language model pre-training(LMPT) on target-task unlabeled data can

improve performance (Gururangan et al., 2020). We consider training set without ground truth

labels as unlabeled data for LMPT and present a comparison in few-shot setting in Table 4.7.

We observe CONDA performs better than LMPT demonstrating the quality and importance of

generated synthetic data.

4.4.12 Case study: Evaluating Context Generator

We hypothesize that our method results in high-quality context generators that are capable

of generating context for a given question and answer. To validate this hypothesis in in-domain

and out-of-domain settings, we perform two experiments on QA task.

In-domain Analysis. In this experiment, we validate whether the context generator is capable of

generating context for question, answer pairs belonging to the same domain as QA dataset used

for QAC fine-tuning. We consider SQuAD dataset and partition it into training set with 1000

(question, answer, context) triplets, dev set of size 1700 with only (question, answer) pairs and a

test set of size 6570. First, we consider GPT2-Medium as GLM and perform QAC fine-tuning

on the training set. Then, we generate contexts for the dev set and augment the (question, answer,

generated context) triplets to the training set. Finally, we train a BERT-base-uncased QA model

on the augmented data. We compare it with the BERT model trained only on the original training

set. We report F1 scores on test set in Table 4.9. We observe a boost of 4% using our synthetic

training data, validating our hypothesis in the in-domain setting.
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Table 4.9. Case Study: We evaluate our context generators in in-domain and out-of-domain
settings. In both cases, we observe substantial improvement in the performance demonstrating
the effectiveness of our method.

Setting Model F1 score

In-domain
BERT 32.11

CONDA 36.74

Out-of-domain
BERT 14.96

CONDA 25.31

Out-of-domain Analysis. In this experiment, we validate our hypothesis in the out-of-domain

setting i.e. the domain of target dataset is different than the QA dataset used for QAC fine-tuning.

We follow our proposed pipeline and consider SQuAD as the QA dataset for QAC fine-tuning

and NewsQA as the target dataset. We partition NewsQA dataset into 1000 (question, answer,

context) triplets for domain adaptation, 17000 (question, answer) pairs for context generation,

and test on 10000 samples. We fine-tune GPT2-medium on SQuAD to obtain general context

generator and adapt to the NewsQA domain by training it further on 1000 question, answer,

context triplets from NewsQA. Using the target task context generator, we generate contexts

for 17000 question, answer pairs, augment it to the training set, and train BERT-base-uncased

QA model on the augmented data. From F1 scores reported in Table 4.9, we can observe

more than 10% improvement in the performance, demonstrating the efficiency of our method in

out-of-domain setting.

4.5 Summary

In this chapter, we propose to train generative language models to be context generators

for a given question and answer. To facilitate this, we use question answer as a format and utilize

QA datasets for training generative language models into context generators. We view sentiment

and topic classification tasks in question-answer form and generate contexts using our fine-tuned

generative language models. These generated contexts are used as synthetic training data to

augment existing few-shot data for training a classifier. Extensive experiments on multiple
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sentiment and topic classification datasets demonstrate strong performance of our method in

few-shot and zero-shot settings.

Chapter 4, in full, is a reprint of the material as it appears in Dheeraj Mekala, Tu

Vu, Timo Schick, and Jingbo Shang. 2022. Leveraging QA Datasets to Improve Generative

Data Augmentation, in Proceedings of the 2022 Conference on Empirical Methods in Natural

Language Processing, pages 9737–9750, Association for Computational Linguistics. The

dissertation/thesis author was the primary investigator and author of this paper.
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Chapter 5

TOOLVERIFIER: Generalization to New
Tools via Self-Verification

5.1 Introduction

Incorporating external tools into large language models (LLMs) enhances their real-world

applicability (Schick et al., 2023; Shen et al., 2023; Song et al., 2023). Many tools exist in the

form of APIs (Xu et al., 2023b; Tang et al., 2023; Hsieh et al., 2023; Schick et al., 2023; Qin et al.,

2024), machine learning models (Shen et al., 2023; Patil et al., 2024), and other functions (Gou

et al., 2024). Nevertheless, the evolving landscape of existing tools and APIs, marked by frequent

parameter updates and the daily introduction of new tools, poses a challenge for generalization.

LLMs must quickly adapt to these changes and generalize to previously unseen tools without

additional fine-tuning or extensive human input.

Several recent studies enable tool usage by fine-tuning LLMs on real (Schick et al.,

2023; Qin et al., 2024; Patil et al., 2024) or synthetic tools (Tang et al., 2023), equipping them

to effectively utilize tools present in the training data with a high success rate. Currently, the

integration of unseen tools into LLMs relies on providing them with few-shot demonstrations

that contain examples of user instructions and corresponding tool calls (Patil et al., 2024; Tang

et al., 2023). However, these prompting-based approaches still struggle to accurately generate a

complete tool call from a set of unseen tools.

To address these challenges, we propose TOOLVERIFIER, a self-verification method
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Figure 5.1. Overview of TOOLVERIFIER. Starting with a candidate tool list and a user in-
struction, TOOLVERIFIER initially identifies the top two tools. Subsequently, it generates a
verification question by contrasting the selected tools and answers it. Finally, this information is
appended to the context, leading to the final tool choice. The parameter generation follows a
similar pipeline, wherein two candidate values are obtained for each parameter (latitude in the
above figure). Subsequently, the verification question is used to finalize the parameter value.

tailored for tool-use scenarios, capable of discerning between candidate tools and their respective

parameters through verification questions. To achieve this, we decompose the tool call generation

task into two distinct sub-tasks: (1) tool selection, given a user instruction, the most suitable tool

is selected from a library of options, and (2) parameter generation, the appropriate parameters

for the selected tool are then generated. Crucially, we propose verification for each sub-task, to

both improve sensitivity and to curb error propagation. Figure 5.1 shows an overview of each

sub-task.

In the tool selection stage, our model must choose one tool among multiple options,

given only the description of the tool. To facilitate learning how to choose the appropriate

tool, we curate a high-quality, model-generated, synthetic training dataset containing tools,

their descriptions, and user instructions.1 This dataset comprises 173 synthetic tools with

corresponding descriptions, 555 samples, each involving reasoning about the tool’s usage. We

1The dataset is available at https://github.com/facebookresearch/ToolVerifier
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then use this dataset to fine-tune a Llama-2 70B model (Touvron et al., 2023b) to select the

correct tool for an instruction given only a set of tool names and their descriptions, allowing

the model at test time to select from tools never seen during training. After the tool is selected,

parameters are generated for the selected tool call, which is achieved through few-shot prompting

with demonstrations corresponding to the chosen tool.

Self-verification is used at each step to reduce error propagation and enhance overall

performance. As shown in Figure 5.1, for tool selection verification, we extract the top two

predictions from the fine-tuned model. A verification question is then generated contrasting

the two options via 0-shot prompting, enabling the model to focus on a fine-grained decision

where the answer aids in selecting one tool from the top two predictions. The model answers the

question, and the context is updated by appending this answer to the user instruction, to guide

tool selection. A similar approach is adopted for verifying the parameter generation.

We evaluate our approach on 4 tasks from the publicly available ToolBench benchmark

which tests generalization to 17 unseen real-life APIs. TOOLVERIFIER demonstrates a note-

worthy 22% improvement over few-shot prompting baselines. The proposed self-verification

mechanism contributes an improvement of 8%, underscoring its pivotal role in boosting overall

performance.

5.2 Related Work

Self-Verification

Iterative improvement of LLMs typically involves prompting an LLM to provide feed-

back on given generated facts or answers and subsequently refining their outputs (Madaan et al.,

2023; Shridhar et al., 2023; Lu et al., 2023) which has also been shown to reduce hallucina-

tion (Dhuliawala et al., 2024). Additionally, some studies involve the fine-tuning of custom

LLMs to better accommodate feedback (Yu et al., 2024; Shridhar et al., 2024; Zhang et al.,

2023), aiming to enhance reasoning in chain-of-thought prompting for improved downstream

performance. In this paper, we focus on tool usage, whereas previous works typically focus on
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generation. Our approach contrasts the choice between selecting options, whereas previous work

typically verifies single facts or answers in responses.

Enabling Tool Use in LLMs

Many approaches have emerged for enabling tool usage in LLMs, involving techniques

such as few-shot prompting with tool-use demonstrations across diverse tool categories, includ-

ing APIs (Qin et al., 2024; Chen et al., 2023b), machine learning models (Shen et al., 2023;

Patil et al., 2024), and code interpreters (Gao et al., 2023; Chen et al., 2023a). Additionally,

several approaches advocate for fine-tuning LLMs on custom-generated datasets tailored for tool

usage (Schick et al., 2023; Tang et al., 2023; Parisi et al., 2022; Xu et al., 2023b; Patil et al., 2024;

Srinivasan et al., 2023; Yang et al., 2023). Recent works introduce tool documentation (Hsieh

et al., 2023) and tool tokens (Hao et al., 2023) to facilitate tool usage. Despite the plethora of

works focused on enabling tool usage in LLMs, to the best of our knowledge none has explored

verification methods for this purpose. This paper aims to fill this gap by introducing multi-step

contrastive verification.

LLMs for Data Generation

LMs have been used for generating training data for various tasks including classifica-

tion (Mekala et al., 2021, 2022b), semantic similarity (Schick & Schütze, 2021b), and instruction

tuning (Wang et al., 2022a; Honovich et al., 2023; Xu et al., 2023a; Taori et al., 2023). Several

works (Tang et al., 2023; Qin et al., 2024; Tang et al., 2023; Schick et al., 2023; Patil et al., 2024;

Srinivasan et al., 2023) have employed LLMs to generate synthetic tools or tool use data.

5.3 TOOLVERIFIER

TOOLVERIFIER chooses and calls a tool given a user instruction. It consists of the

following steps:

1. Tool selection & verification – selecting the tool from a library of tools.
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2. Parameter generation & verification – generating the parameters for the tool call.

For step (1) we generate synthetic data consisting of a library of tools, (instruction, tool)

pairs, and reasoning notes explaining the correct choice of tool, see Figure 5.2. Fine-tuning on

this data provides improved tool selection performance, even on new sets of tools. The selection

process is then refined by verifying the choice between the top two competing choices by asking

and answering contrastive verification questions, see Figure 5.3.

For step (2) we use few-shot prompting given demonstrations of the actual tool. We again

verify two competing likely generations.

5.3.1 Tool Selection Dataset Generation

Our first goal is to train a language model capable of selecting an appropriate tool for a

given user instruction by reasoning about a candidate list of tools solely based on their names

and descriptions. We intentionally exclude demonstrations for tool selection in our approach to

handle a larger set of tools in one go, using only their names and descriptions. In this section,

we elaborate on the process of creating the training dataset for training such a tool selection

language model.

Since the primary objective in this step is to select the correct tool (but not execute the

tool call), synthetically generated tools and their corresponding descriptions can easily be used

in this setting, as we do not require their actual inner workings (in order to execute them). In our

generated dataset, each training sample is thus composed of a user instruction, a candidate set of

tools that includes the ground truth tool, and a reasoning note elucidating the correct choice of

tool. An illustrative training sample is given in Figure 5.2.

Synthetic Tool Library Generation

Generation Procedure

We generate a set of synthetic tools along with their corresponding descriptions, which

are used to build the training examples. We start by first manually annotating a “seed set” of
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User: While I was coming back home from the office, I saw a kid in Audi Q7. Where can I buy this car
within 10 miles?

Tool Choices:
• CarLocator: Lists car dealers given price range.
• BankAccount: Creates a bank account in a bank.
• CarFinder: Finds dealers given car model and radius.
• CurrentWeatherCity: Current weather given city.
• . . . [more choices] . . .

Thought: Since I need to find the car within 10 miles, “Car Finder” tool seems to be the right choice here. I
need to use this tool.

Act: CALLTOOL[CarFinder()]

Figure 5.2. Illustrative training example from our synthetically constructed tool selection dataset
ToolSelect. Given a user instruction and a set of tools to choose from, the output consists of
reasoning notes (“Thought”) and the final tool selection (“Act”).

eight tools and their descriptions. Subsequently, we employ the Llama-65B (Touvron et al.,

2023a) model to generate additional tools using few-shot prompting with the manually annotated

tools (specified in Appendix C.4.1). This process then involves multiple iterations of prompting

with different random seeds, where the tools generated in each iteration are integrated into the

prompt for subsequent iterations to generate more diverse tools. Specifically, in each iteration,

for every newly introduced tool, we identify the most similar tool in the prompt based on cosine

similarity using RoBERTa sentence similarity (Reimers & Gurevych, 2019). We replace the

most similar tool in the prompt with the new addition, ensuring a balanced diversity of tools in

the prompt. Using this iterative approach, we generate a total of 60 tools.2 It is noteworthy to

highlight that this process yields a diverse set of tools from various domains including travel,

banking, and calendar, with almost no manual effort.

Generating Challenging Tool Sets

In generating these synthetic tools, we endeavor to have a tool set that is diverse, but also

sufficiently challenging. An overly simplistic training set would contain only easy choices (e.g.,

a weather tool versus an email tool) and this would impede the model’s ability to generalize to

2These tools were manually reviewed, and 7 duplicates were removed.
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I am confused to choose one of these two classes. Here are their names and descriptions:

a CarLocator - Lists car dealers given price range.
b CarFinder: Finds dealers given car model and radius.

A contrastive question is a question that upon asking would resolve such confusion. Generate a contrastive
question that I can ask myself whose answer would help me make the right choice.

Verification Question: What is the primary purpose of the class I need? Is it to find a car dealership based
on a specific car model and location (CarFinder), or is it to list car dealerships within a given price range
(CarLocator)?

Figure 5.3. Verification method for tool selection: a constrastive question is generated that can
then be answered to help discern among the top two predicted tools.

challenging instances during test time. To address this, we generate two related tools for each of

our previously generated 60 tools. Related tools are defined as tools closely resembling a given

tool but differing in either functionality or parameters. For instance, “Bank account for a person

name ” and “Bank account for an account number” are related tools. We use only the tool names,

and not the descriptions, for generating related tools. After manually annotating related tools for

our seed set of eight tools, we generate two related tools for each of the remaining tools with

few-shot prompting with these examples, as indicated in Appendix C.4.3.

Finally, after manual inspection and curation, our dataset contains a total of 173 tools.

Generating Training Examples

Using the generated tool library, we can now generate training examples for our tool

selection dataset. This requires generating inputs (instructions), curating candidate lists of tools,

and generating outputs (reasoning notes that explain which tools should be selected, and actions

to call those tools).

Generating Instructions

We first manually annotate three instructions per tool for the seed set of eight tools.

Using these examples, we generate three instructions per tool for all remaining tools by few-shot

prompting Llama-2 70B.
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Curating Candidate List of Tools

For each generated instruction, a candidate list of tools is created by randomly selecting

7 tools and adding the original ground truth tool for which we generated the instruction. To

introduce complexity, for a subset of the training set, we deliberately create challenging samples

by restricting the candidate set to include only the ground truth tool and its related tools. This

deliberate selection aims to increase the difficulty level, as distinguishing among these options is

inherently more challenging than with randomly selected tools from the entire set.

Generating Target Outputs

After generating the set of instructions along with their respective ground truth tool and

a candidate list of tools, we create a reasoning note for each sample elucidating the rationale

behind the selection of the ground truth tool, which becomes the target output for that training

example (see Figure 5.2). Such reasoning notes have been observed to enhance reasoning

abilities (Wei et al., 2022b; Yao et al., 2023; Lanchantin et al., 2023). Reasoning note generation

is accomplished by prompting Llama-2-Chat-70B with the instruction, list of tools, and the

ground truth tool, and asking the model why the tool was chosen. The exact prompt used is

provided in Appendix C.4.2.

Our final dataset, called ToolSelect, thus contains 555 samples for our 173 tools, of

which 75 samples are hard examples, featuring candidate tool sets that contain only the ground

truth tool and its related tools.3 The average number of candidate tools per instruction is 7.34

with minimum and maximum number of candidate tools being 2 and 8. The average length of a

reasoning note is 1054 characters.

The goal of this dataset is to enable generalization capabilities to a wide range of possible

tools and tool libraries, and thus to demonstrate effectiveness across diverse scenarios. During

training, the user instruction and tool list in each sample have masked labels, and hence, they do

not contribute to the loss and are not learned.
3The data was manually reviewed, and 56 noisy and duplicate samples were removed.
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5.3.2 Tool Selection Verification

Despite our model being fine-tuned on the above dataset, tool selection mistakes can

still happen, particularly for related tools that are hard to differentiate. Crucially, we observe

that those tool selection predictions typically appear as the top few predictions – but selection

between them is challenging.

At inference time, we thus perform the following procedure. Given an instruction:

• First, we use the fine-tuned tool selection model to zero-shot select a tool.

• We then remove the initially selected tool from the candidate set of tools, and generate a second

prediction.

• We construct a verification question to make a fine-grained decision between the model’s top

two selections.

We employ Llama-2-Chat-70B to generate a contrastive verification question, where the

prompt asks the model to ask a question that emphasizes the distinctions between candidate

tools given their names and descriptions (see Appendix C.4.4 for the exact prompt used and

Figure 5.3 for an instantiation of it). Self-asking the model regarding its predictions has been

noted to reduce hallucinations (Press et al., 2023; Dhuliawala et al., 2024), suggesting that posing

such verification questions could assist the model in validating its predictions. Since only names

and descriptions are used for generating contrastive questions, they can be generated offline and

utilized as needed to make the method more efficient. The answers to these contrastive questions

are obtained by further prompting Llama-2-Chat-70B, and these are appended to the context.

Finally, we select the tool by using our fine-tuned Llama-2 70B model, with the top-two tools as

candidates. As the verification answer to the question is in the context this can help it select the

right tool.
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5.3.3 Parameter Generation & Verification

Parameter Generation

Following tool selection, we generate parameters for the selected tool through few-shot

prompting with Llama-2 70B, utilizing demonstrations specific to the selected tool, which are

assumed to be provided. Note that we do not use our synthetic tool selection dataset for parameter

generation since the dataset does not contain this subtask. This procedure is only done with real

tools at inference time, without prior finetuning.

Parameter Verification

The generated parameters are then subjected to verification before finalizing the set,

resulting in the final tool call. To validate the generated parameters, we obtain a second set of

parameter predictions. These can be acquired using sampling or an alternative model for diverse

options; in our experiments, we employ ReAct-style prompting (Yao et al., 2023) with Llama-

2 70B to obtain them. Then, for each individual parameter, we formulate a multiple-choice

question to contrast the two predictions and further prime Llama-2-Chat-70B to make a definitive

choice between them, providing the parameter description and user instruction as indicated in

Appendix C.4.5. The final parameter predictions are then aggregated to construct the tool call by

few-shot prompting Llama-2 70B as in Appendix C.4.7.

5.4 Experiments

In our experiments, we assess the effectiveness of our method using publicly available

real-life tools.

5.4.1 Tasks

We evaluate our proposed method on four tool-calling tasks: Weather, Cat, Home and

Booking from ToolBench (Xu et al., 2023b) that involve using the REST APIs. The Weather,

Home, and Cat tasks each comprise 100 evaluation samples, while the Booking task contains
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120 samples. Each task includes API documentation, parameter descriptions, user instructions,

and the corresponding ground truth API call pairs.

For each task, there are multiple tools available, where the entire benchmark consists

of a total of 17 tools. However, instead of evaluating each task individually, we make it more

challenging by pooling together all available tools. In other words, for each user instruction, the

model is provided a candidate list of 17 tools. The ToolBench benchmark with 17 tools presents

an ideal balance between maximizing the number of tools that could be accommodated within

the context window without requiring the use of a retriever. By eliminating the dependency on a

retriever, we could independently evaluate the impact of self-verification on performance. We

follow the evaluation protocol set by the benchmark and use success rate as the metric, where the

success rate of a predicted tool call is 1 if its API response exactly matches the response from

the ground truth API call.

5.4.2 Baselines

We conduct a comparison with various tool-augmented LLMs and prompting baselines

using Llama-2 70B and Llama-2-Chat-70B. Specifically, for tool-augmented LLMs, we compare

with ToolLLM 7B (Qin et al., 2024), NexusRaven-V2 13B4, and Qwen1.5-Chat-72B (Bai et al.,

2023)5. ToolLLM, NexusRaven-V2, and Qwen1.5 utilize API documentation to generate tool

calls corresponding to a given instruction.

For prompting baselines, we try two distinct approaches: (1) Single-step, where the

model is prompted directly for an API call with a single demonstration per tool; and (2) Two-step,

where we decompose the process into tool selection and parameter generation, prompting the

model individually for each step, as in TOOLVERIFIER.

The Single-step method uses 1-shot single demonstrations of each of the (17) tools to

accommodate the prompt within the context size.

4https://nexusflow.ai/blogs/ravenv2
5We attempted comparing with ToolAlpaca (Tang et al., 2023), however, it led to context overflow.
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For the Two-step method, we consider two variants for the tool selection stage:

• 0-shot: We use a 0-shot prompt that asks to select from the list of tools, without any demon-

strations for tool selection. See C.4.6 for the exact prompt.

• 1-shot: We show one demonstration per tool: a user instruction and corresponding tool name.

For parameter generation in the Two-Step method, we use three demonstrations for the selected

tool.

5.4.3 TOOLVERIFIER Details and Ablations

Our model is denoted as TOOLVERIFIER. For tool selection it uses 0-shot prompting with

Llama-2 70B fine-tuned on our synthetic ToolSelect dataset to select two tools and finalize one

through our proposed contrastive-question-based tool verification. Subsequently, we generate

two sets of parameters by employing standard few-shot and ReAct-style prompting Llama-2

70B with three demonstrations, and finalize the parameter set using our proposed parameter

verification.

We additionally compare against ablated versions of our method: with tool selection

verification only (but not parameter verification), with parameter selection verification only (but

not tool verification), and without verification (in either stage).

5.4.4 Experimental Results

Tool Call (Selection + Parameters)

The complete tool call performance results are presented in Table 5.1. Our approach,

TOOLVERIFIER, outperforms all baselines both on average and individually across all tasks.

TOOLVERIFIER outperforms all compared tool-augmented LLMs by a significant margin. Com-

paring TOOLVERIFIER with Single-Step 1-shot highlights the challenges in generating complete

tool calls at once, emphasizing the efficacy of the two-step decomposition. It also surpasses

Single-Step 1-shot and Two-Step 1-shot tool baselines by a substantial margin of more than 50

points on the challenging Booking task.
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Table 5.1. Tool call (tool selection + parameter generation) results. We report percentage (%)
success rate for each task. Our fine-tuned Llama-2 70B model TOOLVERIFIER, even without
verification, results in higher performance compared to the baselines. Our proposed verification
mechanism further improves the success rate by 8 points – with both types of verification, for
tool and parameter selection, each giving a separate boost in performance.

Method Weather Booking Home Cat Average

Tool-Augmented LLMs
ToolLLM 7B 18.00 0.00 0.00 11.00 6.90
NexusRaven-V2 13B 55.00 27.50 43.00 82 50.71
Qwen1.5-Chat-72B 74.00 55.00 52.00 89 66.90

Prompting Baselines
Single-Step Llama-2 70B (1-shot) 70.00 7.50 85.00 83.00 58.81
Two-Step Llama-2 70B (1-shot tool selection) 80.00 34.17 85.00 78.00 67.62
Two-Step Llama-2-Chat-70B (0-shot tool selection) 77.00 64.17 84.00 83.00 76.43

TOOLVERIFIER (without verification) 76.00 82.50 85.00 82.00 81.43
TOOLVERIFIER (tool selection verification only) 84.00 82.50 85.00 83.00 83.57
TOOLVERIFIER (param selection verification only) 81.00 84.17 88.00 96.00 87.14
TOOLVERIFIER (tool verification+param verification) 90.00 84.17 88.00 97.00 89.52

A comparative analysis between TOOLVERIFIER with and without parameter verification

illustrates that parameter verification significantly enhances performance, showing improvements

of up to 14 points in the Cat task and 6 points in the Weather task, leading to an average

improvement of 6 points across all tasks. Similarly, the comparison between TOOLVERIFIER

with and without tool verification demonstrates that tool verification contributes significantly to

the performance, such as up to 8 points in the Weather task. Notably, both types of verification

help, each giving a separate boost, as shown by comparing the without verification results to

tool selection verification only and tool+parameter verification. These results underscore the

significance of verification in both steps for the tool call success.

Tool Selection Only

We report the performance of tool selection (choosing the tool correctly, but without

generating parameters) in Table 5.2. TOOLVERIFIER outperforms all baselines on average

and individually across the majority of tasks as well. TOOLVERIFIER performs better than

almost all compared tool-augmented LLMs, demonstrating its superior performance. While
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Table 5.2. Tool selection results. We report accuracy in percentage (%) for each task. Our
fine-tuned Llama-2 70B model TOOLVERIFIER, even without verification, demonstrates supe-
rior performance compared to prompting-based baselines, with a higher average performance.
Our proposed tool selection verification mechanism contributes another 2.5% improvement in
accuracy on average.

Method Weather Booking Home Cat Average

Tool-Augmented LLMs
ToolLLM 7B 27.00 22.00 84.00 26.00 38.90
NexusRaven-V2 13B 84.00 93.33 100.00 98.00 93.81
Qwen1.5-Chat-72B 93.00 95.00 99.00 96.00 95.71

Prompting Baselines
Single-Step Llama-2 70B (1-shot) 79.00 43.30 100.00 98.00 78.32
Two-Step Llama-2 70B (1-shot tool selection) 86.00 45.00 100.00 92.00 79.05
Two-Step Llama-2-Chat-70B (0-shot tool selection) 83.00 75.80 99.00 97.00 88.09

TOOLVERIFIER (without verification) 82.00 98.33 100.00 96.00 94.28
TOOLVERIFIER (tool selection verification) 91.00 98.33 100.00 97.00 96.67

Qwen1.5 performs well at selecting the right tool, it struggles to generate parameters correctly.

In contrast, our method’s focus on parameter generation, facilitated by the two-step approach,

yields improved overall performance as shown in Table 5.1. A comparative analysis between

TOOLVERIFIER with tool selection verification and without underscores the substantial enhance-

ment in performance achieved through the verification process. Specifically, in tasks such as

Weather and Home, we observe that the verification procedure not only improves performance in

specific examples of lower baseline performance, but also does not adversely affect cases where

verification may be unnecessary.

TOOLVERIFIER (both with and without verification) shows that our zero-shot Llama-

2 70B fine-tuned on our synthetically generated dataset performs better than other baselines,

including a 0-shot Llama-2-Chat-70B, with an improvement of up to 6 points. The average

number of candidate tools per instruction in the generated training data for tool selection is

7.34 which is notably smaller than the 17 tools encountered during test time. This difference

underscores the generalization capability of our method, demonstrating its effectiveness across

diverse scenarios. The performance of 1-shot baselines reveals the difficulty in selecting the
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Table 5.3. Tool verification and parameter verification improve tool call success rate for
tool-augmented LLMs. We report percentage (%) success rate for each task. Our proposed
verification mechanism significantly improves the success rate of all tool-augmented LLMs.

Method Weather Booking Home Cat Average

ToolLLM 7B 18.00 0.00 0.00 11.00 6.90
ToolLLM 7B + Tool, Param Verification 23.00 7.50 9.00 15.00 13.33

NexusRaven-V2 13B 55.00 27.50 43.00 82.00 50.70
NexusRaven-V2 13B + Tool, Param Verification 78.00 34.17 46.00 84.00 59.29

Qwen1.5-Chat-72B 74.00 55.00 52.00 89.00 66.90
Qwen1.5-Chat-72B + Tool, Param Verification 76.00 57.50 59.00 91.00 70.24

appropriate tool from an unseen set using prompting-based approaches. In contrast, fine-tuning

the model on our synthetically generated dataset with examples of using a diverse set of tools

significantly improves tool selection accuracy. Moreover, the verification procedure further

improves tool selection performance by an additional 2.4 points on average.

5.5 Analysis

5.5.1 Self-verification improves tool-augmented LLMs

Our proposed self-verification method does not require any specific training process.

To demonstrate its effectiveness on tool-augmented LLMs, we experiment with ToolLLM

7B, NexusRaven-V2 13B, and Qwen1.5-Chat-72B. We obtain two sets of predictions as in

TOOLVERIFIER, where the first predicted tool is removed from the set of tools to obtain the

second prediction. After tool verification, we identify the final selected tool. We obtain two

parameter predictions using two different sampling parameters while generation. We then

perform parameter verification to finalize the parameters and construct the tool call. The complete

tool call success rate comparison, with and without self-verification, is presented in Table 5.3.

We observe a significant improvement in average performance: 6 points for ToolLLM-7B, 9

points for NexusRaven-V2 13B, and 4 points for Qwen1.5-Chat-72B. In certain tasks, such as the

Weather task, the success rate of NexusRaven-V2 improved by 23 points through self-verification.

This demonstrates that self-verification can be effectively applied to tool-augmented LLMs,
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enhancing their performance. The tool selection results are in Appendix C.1, where we also note

significant improvements in performance post tool verification.

5.5.2 Verification Question Analysis

Qualitative Analysis

Verification questions should ideally reference the distinguishing characteristics between

two given tools in order to best help the model consider the differences between the two choices.

This capability is particularly crucial for closely related tools. For instance, the tools "Forecast

Air Pollution" and "Current Air Pollution" both provide air pollution data, but for future and

current times, respectively. Verification question generation by Llama-2-Chat-70B identifies this

nuanced difference and articulates it in the verification question: Are you looking for data on the

current air pollution levels in a specific location, or do you need to forecast the air pollution

levels for a future date in that location? Responses to such questions precisely address the

identified distinction. An example response is: "It appears that the user is looking for current

air pollution data for a specific location with latitude -24.7 and longitude -57.3. Therefore, the

answer is: A. Retrieve current air pollution data for a specific location." Inserting this response

into the context improves tool selection accuracy, guiding the model towards the correct choice.

For more distinct tools, the model captures higher level differences. For example, for "Forecast

Air Pollution" and "Get favorite cat images", the generated question is: Which aspect are you

more interested in: predicting environmental air quality or exploring feline visuals?

Significance of Contrastive Questions

To demonstrate the significance of contrastive-question-based verification, we conduct an

experiment by zero-shot prompting Llama-2-Chat-70B to choose one tool from the top-2 without

employing a verification question. Instead, we present the names and descriptions of the top-2

tools and frame it as a multiple-choice question, asking Llama-2-Chat-70B to make a selection.

We experiment on the Weather task and the accuracy of Llama-2-Chat-70B is 70% whereas the

accuracy of contrastive question-based verification is 91 %. This significant enhancement over
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straightforward prompting illustrates effectiveness of contrastive questions.

Instruction-Conditioned Verification

In our proposed approach we generate verification questions using solely the names and

descriptions of the top-2 selected tools, see Figure 5.3. We compare this to conditioning on

the user instruction as well, by adding it to the prompt. Conditioning on the instruction during

verification still shows improvement over the no-verification baseline (89 versus 82), however,

slightly decreases performance compared to the non-user-conditioned verification, dropping

accuracy from 91 to 89, perhaps because the decision is biased to be more similar to the original

top choice being verified, which was also based on the instruction. Note that, using only names

and descriptions has the benefit that the questions can be precomputed and cached.

5.5.3 Parameter Verification Error Analysis

In the parameter verification step, we identify a consistent pattern in errors while answer-

ing the verification questions, predominantly involving common sense errors where the model

tends to hallucinate values instead of adhering to the user instruction, which is also observed in

Mekala et al. (2023). A notable example of such errors occurs with the min-price parameter in

Booking tool, which signifies the minimum price the user is willing to pay for a booking. In 5

instances out of 19 wrong predictions for the Booking task, when the user specifies only their

maximum budget, the model generates the maximum value for the min-price parameter rather

than 0. Similar errors are observed with the min-area parameter in the Home task. In 4 instances

out of 12 mistakes, when the user expresses the desire for a home given only a maximum area,

the model incorrectly predicts the mentioned value as the minimum, instead of using 0.

5.5.4 Synthetic Training Data Analysis

We analyze our synthetic ToolSelect training data through various ablations, with

results on tool selection for the Weather task given in Figure 5.4.
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Figure 5.4. We analyze various aspects of our synthetic ToolSelect training data including
the ordering of the candidate tool list (“No Shuffle”), difficulty level (”No Hard Data”), and the
length of reasoning notes (“Short Reasoning”). We find samples with longer reasoning notes,
difficult samples, and randomly ordered candidate tool lists contribute to high performance (“Full
Data”).

Challenging training samples (samples that have a candidate tool list containing related

tools to the ground truth tool, see subsubsection 5.3.1) are found to improve generalization. To

assess the impact of these challenging samples, we remove them and train a model solely with

easier samples (“No Hard Data”). The results indicate a notable 6-point drop in performance

after excluding the hard samples, highlighting their significance.

Next, we experiment by reducing the maximum reasoning note length from 480 tokens to

200 tokens (“Short Reasoning”) and observe a significant drop in performance, up to 19 points.

Shorter reasoning texts are significantly less helpful in guiding appropriate tool selection.

Lastly, we compare performance with different orderings of the candidate tool list. In

the “No Shuffle” scenario, the ground truth tool in the training data is always positioned first.

Implementing this ordering strategy results in a 5-point drop in performance, underscoring the

significance of randomly shuffling the candidate tool list in the training data.

More studies regarding parameter generation-only performance, and prompts are detailed

in Appendix C.2, C.4 respectively.
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5.6 Summary

In this chapter, we present a self-verification method for enhancing the performance of

tool calls for LLMs. This involves decomposing the tool call generation task into tool selection

and parameter generation, where we apply verification at each step. Additionally, we open-source

a synthetic dataset for improved reasoning and generalization to unseen tools. Experimental

results on four tasks from the ToolBench benchmark demonstrate substantial improvements

using our approach.

Chapter 5, in full, is a reprint of the material as it appears in Dheeraj Mekala, Jason E

Weston, Jack Lanchantin, Roberta Raileanu, Maria Lomeli, Jingbo Shang, and Jane Dwivedi-Yu.

2024. TOOLVERIFIER: Generalization to New Tools via Self-Verification, in Findings of the

Association for Computational Linguistics: EMNLP 2024, pages 5026–5041, Association for

Computational Linguistics. The dissertation/thesis author was the primary investigator and

author of this paper.
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Chapter 6

Smaller Language Models are capable
of selecting Instruction-Tuning Training
Data for Larger Language Models

6.1 Introduction

Instruction tuning empowers large language models (LLMs) to generalize to novel tasks

and instills an instruction-following characteristic, marking the initial stride towards aligning

them for general use (Sanh et al., 2022; Chung et al., 2024; Wei et al., 2022a). This process

involves fine-tuning language models with extensive sets of real (Mishra et al., 2021; Wang et al.,

2022b) and/or synthetic instructions (Wang et al., 2022a; Honovich et al., 2023). Given that these

datasets are typically vast, encompassing thousands of samples, the training costs associated

with this approach are notably high.

Past research into the memorization effects of deep neural networks have revealed

a tendency to memorize easy instances first and gradually learn more challenging instances

towards the end (Arpit et al., 2017; Geifman et al., 2019; Zhang et al., 2021; Mekala et al., 2022a).

Additionally, (Swayamdipta et al., 2020) show that ambiguous and hard samples in training data

are sufficient for achieving good generalization. The process of data selection, wherein subsets

are chosen from extensive training data to achieve superior performance, has attracted significant

attention among researchers recently. Earlier studies involved manual feature engineering of
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Figure 6.1. The win rate of OPT-13B model trained on 10% data sub-sampled by smaller OPT
models (350M, 1.3B, 2.7B) from Alpaca Data, is compared against the OPT-13B model trained
on the full dataset. All win rates exceed 50, indicating even a smaller 350M dataset can curate
high-quality data for a larger 13B model.

various indicators from the data (Cao et al., 2024), training large custom models (Li et al., 2024),

or employing closed LLMs like GPT-3.5 (Chen et al., 2024) for data selection.

In this paper, we delve into the measurement of sample difficulty from the model’s

perspective. Drawing inspiration from the learning order metric in (Mekala et al., 2022a), we

propose a novel data selection method that utilizes the learning percentage as a difficulty metric

that the model can use to self-rank its training data. Essentially, the more learning that occurs

in earlier epochs, the easier the sample is considered. We then select the most difficult sample

subsets based on this ranking and instruction-tune a language model. Our experiments involve

two instruction-tuning datasets, Alpaca-Data (Taori et al., 2023), and Dolly (Conover et al.,

2023), with performance measured using automated metrics such as AlpacaEval (Li et al., 2023b)

and human evaluation.

Our main findings indicate that language models can autonomously select training data,

achieving performance equal to or better than training on the entire dataset. Furthermore, this

characteristic scales across different model sizes, ranging from smaller ones (1B) to larger ones

(13B)1 in parameters. As the size of the language model increases, we observe a consistent

1Due to limitations in our compute, the largest size we were able to train is 13B.
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reduction in the minimum amount of data needed to surpass the performance of a model trained

on the entire dataset. Interestingly, we observe that the data hardness also transfers across

models, meaning samples considered difficult by smaller models are similarly challenging for

larger models. Moreover, we note that this transferability improves with the size of the smaller

model, eventually achieving comparable quality, beyond a size threshold, to that attained by

self-selection conducted by larger models. Our study employs open-sourced models such as

OPT (Zhang et al., 2022) and Llama-2 (Touvron et al., 2023b) to support these findings.

The remainder of the paper is structured as follows: initially, we describe the experimental

setup encompassing the language models, the datasets employed, and the evaluation metrics

utilized (section 6.3). Subsequently, we present our learning percentage-based difficulty metric

and analyze it in detail (section 6.4). Following this, we optimize the proposed metric and

introduce an equally effective, approximate, and faster metric (section 6.5). Ultimately, we

analyze the challenging data identified through this metric (section 6.6).

We publicly release the code here2.

6.2 Related Work

6.2.1 Instruction Tuning

Instruction tuning involves training LLMs to follow instructions (Sanh et al., 2022;

Wei et al., 2022a; Chung et al., 2024). Numerous datasets have been curated for this purpose,

comprising a multitude of samples (Mishra et al., 2021; Wang et al., 2022b). Notably, there

is a recent surge in the emergence of synthetic instructions and datasets (Wang et al., 2022a;

Honovich et al., 2023), each containing a substantial number of samples. As the datasets increase,

we need to rethink data handling strategies from an efficiency standpoint (Sorscher et al., 2022),

which we address in this paper.

2https://github.com/dheeraj7596/Small2Large
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6.2.2 Data Selection

Prior data selection works in pre-training include (Tirumala et al., 2023), emphasizing

the importance of diversity in sub-sampled data and advocating for the selection of prototypes

from each cluster. (Abbas et al., 2023) extend this by removing semantic deduplicates in the

training data. In the domain of instruction-tuning, (Cao et al., 2024) evaluate various indicators

and apply a regression model for data selection. (Chen et al., 2024) leverage GPT-3.5 to derive

difficulty ratings for individual data samples. (Li et al., 2024) propose an instruction-following

difficulty metric for selection.

6.3 Experiment Setup

We design controlled experiments to empirically validate our assertions. Our experimen-

tal setup encompasses language models spanning various families and sizes, alongside multiple

datasets, the specifics of which are detailed below.

6.3.1 Language Models & Evaluation

We use OPT (1.3B, 2.7B, 6.7B, 13B) and Llama-2 (7B, 13B) for experiments. We

fine-tune all models for three epochs on three NVIDIA A100 GPUs. For the comparison of

language models, we employ AlpacaEval—an automated evaluator that tasks a larger language

model with selecting the superior response from two LMs. AlpacaEval offers an evaluation

set comprising 805 samples, designed to assess general instruction-following capabilities by

combining data from various sources, including self-instruct (Wang et al., 2022a), anthropic

helpfulness3, open assistant (Kopf et al., 2023), Koala4, and Vicuna (Chiang et al., 2023)

evaluation sets. While AlpacaEval provides various options for the judge language model, we

opt for GPT-3.5 (gpt-3.5-turbo-16k-0613) (OpenAI, 2023) due to its cost-effectiveness.

3https://huggingface.co/datasets/Anthropic/hh-rlhf/viewer/Anthropic--hh-rlhf/test
4https://github.com/arnav-gudibande/koala-test-set
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(a) Dolly dataset
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(b) Alpaca-Data

Figure 6.2. We partition datasets into three equal-sized buckets based on their L P(1) scores.
We train a model per bucket and report its win rate against the one trained on the complete
dataset. The model used to compute L P(1) scores and trained is depicted on the X-axis and
the win rate on the Y-axis. We observe the model trained on the lowest L P(1) values (33%
Low L P(1)) exhibits superior performance compared to the others.

6.3.2 Data

We experiment on Alpaca-Data (Taori et al., 2023) and Dolly (Conover et al., 2023)

datasets. Alpaca-Data comprises 52,000 samples generated through the self-instruct method by

prompting text-davinci-003 with 175 human-written seed instruction-output pairs (Wang et al.,

2022a). Dolly, on the other hand, consists of 15,000 human-generated samples.
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6.4 L P Learning Percentage as a Difficulty Metric

The concept of learning order (Dong et al., 2021; Mekala et al., 2022a) is designed to as-

sess the quality of a sample in the context of a weakly-supervised classification problem (Mekala

et al., 2022b; Mekala & Shang, 2020). The learning order of a data point is defined as the epoch

at which it is learned during training, precisely when the model’s predicted label aligns with the

given ground truth. To adapt this concept to the text generation problem, we introduce the notion

of learning percentage.

For a data point after epoch-i, the learning percentage is defined as the percentage drop

in perplexity during epoch-i compared to the total drop in perplexity by the end of training.

Assuming a language model is fine-tuned for n epochs, with Pi denoting the perplexity of a

sample at the end of epoch-i and P0 indicating its perplexity at the beginning of training, the

learning percentage L P(i) at the end of epoch-i is mathematically defined as follows:

L P(i) =
Pi−1−Pi

P0−Pn
(6.1)

A higher learning percentage at earlier epochs indicates that majority of the learning

occurs during the initial epochs. Given the deep neural models typically learn easier samples

initially and progress to more challenging samples later (Arpit et al., 2017; Geifman et al., 2019;

Zhang et al., 2021; Mekala et al., 2022a), a higher learning percentage in the early epochs implies

easy-to-learn samples. Since language models are known to learn most of the information in

just one epoch (Komatsuzaki, 2019; Hoffmann et al., 2022; Zhang et al., 2022; Touvron et al.,

2023b), we consider L P(1) to rank the training data.

The diversity of training data is a pivotal attribute for achieving high quality and optimal

performance (Sorscher et al., 2022; Tirumala et al., 2023). To enhance this diversity, we employ

k-means clustering on the sentence embeddings generated by the all-MiniLM-L6-v2 model5 on

5https://www.sbert.net
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the entire training dataset, ensuring that each cluster contains a minimum average of 50 samples.

As a result, the Alpaca-Data yields 1000 clusters with an average of 52 samples per cluster, while

the Dolly dataset yields 300 clusters with an average of 50 samples per cluster. Subsequently, we

rank the training data using L P(1) in ascending order and select the top-k% of samples from

each cluster, i.e., the samples that are learned the least in the first epoch.
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Figure 6.3. We partition Alpaca-Data into three equal-sized buckets based on their L P(1)
scores. The model used to compute L P(1) scores and trained is on the X-axis and the win rate
on the Y-axis. We observe the model trained on the lowest L P(1) values (33% Low L P(1))
exhibits superior performance.

6.4.1 L P(1)based Data Selection

We calculate the L P(1) scores of the training dataset and organize it in ascending order

according to these scores. Subsequently, we partition the dataset into three equal buckets. To

enhance the diversity, this partitioning is done per cluster. The bucket characterized by the lowest

L P(1) values (33% Low L P(1)) represents the most challenging data in each cluster, while

the bucket with the highest values corresponds to the least challenging data (33% High L P(1))

in each cluster.

We train one model per bucket and calculate the win rate against the model trained on the

complete training dataset. We also present the performance of the model trained on randomly

selected 33% data from each cluster (33% Clust Rand) for reference. The AlpacaEval win
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rate scores of the Llama-2 7B and 13B models trained on individual buckets in Alpaca-Data

are plotted in Figure 6.3. Similarly, the win rate scores of OPT 1.3B, 2.7B, 6.7B, and Llama-2

7B models on the Dolly dataset are shown in Figure 6.2(a). We observe that models trained on

the bucket associated with the lowest L P(1) scores (33% Low L P(1)) consistently achieve

scores exceeding 50, indicating that training on challenging samples alone is adequate for a

robust instruction-tuning model. Furthermore, our analysis reveals that the model trained on

the lowest L P(1) scores (33% Low L P(1)) consistently outperforms those trained on mid

and high buckets by a significant margin. For example, in Figure 6.2(a), OPT 2.7B trained on

the low bucket outperforms the mid bucket by 10 points and the high bucket by 23 points. This

underscores a compelling argument that leveraging difficult data yields more favorable outcomes

compared to training on easier datasets. The 33% High bucket results in worse performance than

random selection for all models, highlighting that easy samples alone are insufficient.

Performance vs Scale

To investigate the variation of this trait with scale, we plot the win rate scores of OPT

(1.3B, 2.7B, 6.7B, 13B) models trained on each bucket within the Alpaca-Data in Figure 6.2(b).

Remarkably, all models trained on the low bucket consistently achieve win rates exceeding

50, surpassing those of the corresponding mid and high buckets. This consistent trend across

different model scales underscores the robustness of the observed pattern.
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Figure 6.4. We consider Alpaca-Data, vary the percentage of data selected, and plot the win rate
of OPT models, trained on the selected data in comparison to models trained on the complete
dataset. The minimum percentage of data necessary for each model to surpass the 50% threshold
is highlighted with .

Larger models need fewer samples

To further analyze the required amount of difficult data necessary for training high-quality

instruction-tuned models of varying sizes, we analyze OPT (1.3B, 2.7B, 6.7B, 13B) models

by varying the percentage of selected data in Alpaca-Data and plot their win rates against the

corresponding models trained on the complete dataset in Figure 6.4. Strikingly, we observe

a downward trend in the minimum percentage of difficult data required (denoted by ) for

achieving a win rate of at least 50 with an increase in the model’s size. For example, the

OPT-13B model outperforms its full dataset counterpart with only 3% of the training data. This

suggests that as the model’s size increases, the amount of challenging data required decreases,

albeit the necessity for such difficult data persists. This finding provides additional insight into

the exceptional performance exhibited by the Llama-65B model when trained with 1000 difficult

samples in (Zhou et al., 2023).
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(b) Dolly dataset, Llama models
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(d) Dolly dataset, OPT models

Figure 6.5. We vary the percentage of selected data to train 13B model and conduct a comparison
of win rates obtained when data is self-selected by the 13B model vs selected by smaller models.
The smaller model used is mentioned on the X-axis and the win rate is on the Y-axis. We observe
that the data hardness transfers from smaller models to 13B, leading to improved or comparable
performance compared to 13B model trained on the self-selected data.

6.4.2 Is Data Hardness transferable?

In the previous section, we observed challenging training data yields high-performing

instruction-tuned models. In this section, we investigate transferability of data hardness, specif-
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ically whether samples deemed difficult by a smaller model are also considered difficult by a

larger model.

To assess this, we consider a smaller and a larger model. We obtain L P(1) scores using

the smaller model, following which we select the top-k% (in ascending order) of training data

based on these scores. Subsequently, we train the larger model using this selected dataset. For

each experimental configuration, we calculate the win rate of the larger model trained on the

selected data against it when trained on the complete dataset.

We consider Llama-2 7B as the smaller model and Llama-2 13B as the larger model. We

vary the percentage data selected, and plot the win rate of Llama-2 13B trained on selected data

in comparison to the one fine-tuned on the entire Alpaca-Data dataset in Figure 6.5(a) and for

Dolly dataset in Figure 6.5(b) respectively. We find that the ranking of the Llama-2 7B model

transfers effectively to the 13B model, resulting in a model of comparable or even improved

quality in some instances. For example, in Figure 6.5(a), the win rate of the Llama-2-13B model

trained on 10% of the Alpaca-Data, selected by the 7B model, outperforms the self-ranking of

the 13B model by 4 points.

Similarly, we consider OPT (350M, 1.3B, 2.7B, 6.7B) models as smaller models and OPT

13B as the larger model and plot the performance for the Alpaca-Data dataset in Figure 6.5(c)

and for the Dolly dataset in Figure 6.5(d) respectively. From Figure 6.5(c), 6.5(d), we observe

that the performance of the 13B model increases with the size of the smaller model up to 2.7B

and further plateaus where it eventually matches the self-selection performance of 13B model.

With only a 1.4-point drop in average win rate, even a small 350M model can be leveraged for

curating training data for a large 13B model. This demonstrates that the data hardness transfers

efficiently from a smaller model to a larger one, improving with the size of the smaller model

and eventually matching self-selection performance beyond a specific size threshold (2.7B).
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Figure 6.6. IOU scores of Alpaca-Data data points selected by smaller OPT models (350M,
1.3B, 2.7B, 6.7B) with OPT 13B model for varying percentages.

L P(1) Ranking Analysis - Kendall-Tau scores:

We conduct a comparative analysis of rankings between smaller and larger models to gain

deeper insights into the transferability of data hardness. We derive L P(1) scores from multiple

smaller models and a larger model, followed by the computation of Kendall-tau correlation

coefficients between rankings based on their respective scores. The Kendall-tau score ranges

from -1 to +1, with a higher positive score indicating a stronger correlation. The Kendall-tau

scores of L P(1) derived from OPT-models (350M, 1.3B, 2.7B, 6.7B) against OPT 13B on both

Alpaca-Data and Dolly datasets are presented in Table 6.1. We note that all scores are positive,

indicating a positive correlation. Notably, we observe a consistent increase in correlation with

the increase in size of the ranking source model. Furthermore, we also compute the Kendall-tau

scores between rankings from the Llama-2 7B and 13B models. For Alpaca-Data, the score is

0.782, and for Dolly, it is 0.775, respectively. These scores underscore the effective transferability

of rankings from smaller models to larger ones.

L P(1) Ranking Analysis - Intersection over union scores:

We additionally calculate the intersection-over-union (IOU) of data samples selected by

both smaller and larger models. We vary the selected percentage of data and compute the IOU
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Figure 6.7. Intersection-over-union scores of Alpaca-Data data points selected by Llama-2 7B
with Llama-2 13B model for varying percentages.

Table 6.1. Kendall-Tau scores of rankings from different smaller-sized OPT models(350M, 1.3B,
2.7B, 6.7B) against the ranking from large OPT-13B model.

Dataset 350M 1.3B 2.7B 6.7B
Alpaca-Data 0.52 0.61 0.65 0.69
Dolly 0.52 0.61 0.67 0.75

of subsets chosen by the smaller OPT models (350M, 1.3B, 2.7B, 6.7B) with the larger OPT

13B model on Alpaca-Data, presenting the results in Figure 6.6. Similarly, we plot the IOU of

Llama-2 7B with the Llama-2 13B model on the Alpaca-Data in Figure 6.7. From Figure 6.6,

for a given percentage of data selected, we observe a consistent rise in IOU score with the

increasing size of the model until 2.7B, followed by a plateau, aligning with the performance

trend depicted in Figure 6.5(c). Moreover, for a fixed model size in Figures 6.6 and 6.7, the IOU

score consistently increases with the rise in the selected data percentage. This finding suggests

that for selecting a larger percentage of data, a smaller 350M model suffices. However, as the

selected data percentage decreases, it is advisable to employ a larger model i.e. ≥ 2.7B.
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Table 6.2. We compare L Papp and L P on Alpaca-Data. We present the win rates of the
model trained on different percentages of selected data using both L Papp and L P against the
one trained on the complete dataset.

Model 3% Low 10% Low 33% Low
L Papp L P L Papp L P L Papp L P

OPT 2.7B 49.4 47.1 53.7 50.4 52.9 54.9
OPT 6.7B 50.0 48.9 52.6 52.1 52.7 51.1
Llama-2 7B 59.7 57.6 57.9 56.7 55.7 56.5
Llama-2 13B 56.5 56.4 54.0 54.3 55.3 54.8

6.5 L Papp A Faster & Approximate Learning Percentage
Metric

It is worth noting that to compute L P(1), the model needs to be trained twice—first to

obtain the perplexity scores and rank the data, and then to select the data and train the model

again. Recognizing this computational inefficiency, we present an approximate version of the

learning percentage, denoted as L Papp that is faster and equally effective as L P .

Language models are known to typically learn in 3 epochs and tend to memorize the

data (Tirumala et al., 2022). As a result, we assume that the perplexity at the end of training Pn

is constant for all samples. Mathematically, L Papp is defined as:

L Papp(i) =
Pi−1−Pi

P0
(6.2)

To compute L Papp(1), we only need to train the model once for 1 epoch, making it

more efficient.

6.5.1 L Papp(1) vs L P(1): A Comparison

We conduct a comparative analysis between L Papp and L P metrics on the Alpaca-

Data. We consider different-sized models including OPT 2.7B, 6.7B, as well as Llama-2 7B and

13B. The training data is ranked using L Papp and L P metrics, respectively, and data selection

is performed for varying percentages of data. The win rate of the model trained on selected data
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Table 6.3. Kendall-Tau scores between L P and L Papp. We observe high positive scores
indicating a positive correlation.

Dataset OPT Llama-2
1.3B 2.7B 6.7B 13B 7B 13B

Alpaca-Data 0.53 0.55 0.60 0.61 0.64 0.62
Dolly 0.59 0.59 0.61 0.64 0.60 0.58

against the model trained on the complete dataset is computed and presented in Table 6.2. Notably,

we observe that the model trained on data selected via L Papp outperforms its counterpart trained

on data selected via L P across the majority of models and various percentages. This finding

underscores the efficacy of L Papp as a data selection metric, demonstrating its comparable or

even superior performance compared to L P .

We calculate kendall-tau correlation scores between L Papp and L P on both Alpaca-

Data and Dolly datasets, shown in Table 6.3. We observe high positive scores, signifying

a positive correlation between the two metrics, highlighting the effectiveness of L Papp in

accurately approximating L P .

6.5.2 Comparison with Baselines

In this section, we compare L Papp with two baselines. The first baseline, denoted as

Clust Rand, randomly samples the same number of samples as our method from each cluster of

the training set. Notably, this preserves the diversity of the subset while removing the difficulty-

aware ranking. We also compare with Alpagasus (Alpa) (Chen et al., 2024), which prompts

GPT-3.5 to assign a difficulty rating and selects training instances deemed difficult. We select

10% of the training data using each method and consider OPT 1.3B, 2.7B, 6.7B, and Llama-2 7B

models. These models are then trained on the selected data using each method. Subsequently, we

compare the performance of the instruction-tuned models using AlpacaEval and present the win

rates of our model over the compared baselines. The win rates post-training on the Alpaca-Data

and Dolly are presented in Table 6.4. Notably, we observe win rates exceeding 50 for all models

trained on both datasets, indicating the superior quality of training data subsampled using our
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Table 6.4. The win rates of models trained on data subsampled from Alpaca-Data and Dolly
datasets based on L Papp are compared against other baselines (Clust Rand & Alpagasus). We
observe that all win rates exceed 50, indicating superior performance and high-quality selection
by our method.

Model Alpaca-Data Dolly
Clust Rand Alpa Clust Rand Alpa

OPT 1.3B 53.91 51.74 53.79 54.10
OPT 2.7B 56.89 52.11 56.21 52.61
OPT 6.7B 59.13 54.47 57.27 55.09
Llama-2 7B 55.60 53.17 58.76 54.66

method. The superior performance of smaller OPT 1.3B and 2.7B models trained on self-selected

data over Alpagasus, where the data is selected by a much larger GPT-3.5 model, underscores

the effectiveness of our method.

Additionally, we conduct another evaluation wherein a smaller model is employed to

curate training data for a larger model utilizing the L Papp(1) metric. Subsequently, we train

the larger model on the selected data and compare its performance with that of the same model

trained on data selected using Alpagasus. The win rates of OPT 6.7B model trained on 10% data

selected by OPT 350M, 1.3B and 2.7B models are 50.25, 51.24, and 52.30 respectively. The

win rates exceed 50% across all scenarios, indicating that a smaller model can effectively curate

training data using our proposed L Papp metric.

6.5.3 Human Evaluation

We compare the model trained on data selected using our method with the model trained

on complete dataset. Specifically, we consider Llama-2 7B model and Alpaca-Data, and sub-

sample 5% of data using L Papp(1) scores and train it. Additionally, we train another Llama-2

7B model on full Alpaca-Data. In this human evaluation, participants are asked to provide an

instruction, after which both models generate a response. Participants are then prompted to

choose the better response, or if both responses were perceived as equal. Importantly, the models

were hidden from the participants, ensuring they were unaware of which model corresponded

to which response. We recruited 10 students with minimal prior knowledge of the project for
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this evaluation. In total, we collected 151 evaluations. Of these, 42 evaluations resulted in a tie.

In 50 evaluations, the model trained on the full dataset was preferred, while in 58 evaluations,

participants found the model trained on 5% data selected using our method to be better. This

indicates that responses from the model trained on 5% of the data were either better or of equal

quality compared to those from the model trained on the complete dataset in 66.2% of instances.

This outcome provides another validation for the superior performance of our method.

6.6 Dissecting the Difficult Data

In this section, we analyze the characteristics of samples identified as challenging by the

L P metric. We manually examine 250 samples selected from the 1% subset characterized by

low L P(1) scores within the Alpaca-Data corpus, obtained using Llama-2 7B.

We observe that these difficult samples are longer than the average, maintaining coherence

throughout. Specifically, the average response length within the 1% Low L P(1) subset of

Alpaca-Data is 547 characters, contrasting with the dataset’s average of 270. This observation

aligns with intuition, suggesting that models encounter difficulty in generating longer and

coherent text, thus deeming such instances as challenging.

We also found six noisy samples, shown in Table D.1, i.e. a noise rate of 2.4%. Notably,

this proportion is significantly higher compared to the prevalence observed across the entire

dataset. AlpacaDataCleaned6, a human-cleaned Alpaca-Data has eliminated 0.47% of noisy

samples from the original dataset. This underscores that the subset of most challenging samples

identified by L P(1) encompasses noisy instances as well. Addressing this issue requires future

investigation.

6https://github.com/gururise/AlpacaDataCleaned
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Figure 6.8. We compare models on different skills from the Vicuna split of the Alpaca-eval test
set.

6.7 Skill-Chart Analysis

In this study, we consider the Vicuna-split of the Alpaca-eval dataset, which is categorized

into nine distinct skill categories, and compare model performances within each skill. The

Alpaca-Data is used as the training dataset for this evaluation.

Firstly, we compare the performance of the Llama-2 13B model trained on 3% of the data

self-selected using our proposed L P(1) metric against the same model trained on the complete

dataset, as illustrated in Figure 6.8(a). Our findings indicate that performance either improves or

remains constant in the math, writing, generic, roleplay, commonsense, and fermi skills when

using the 3% self-selected dataset. However, the model trained on the full dataset outperforms

in coding, knowledge, and counterfactual skills. This suggests that the data selected using the

L P(1) metric is effective and high quality, although certain skills may benefit from a larger

data volume.

Secondly, we examine the performance of a larger model trained on data selected by a

smaller model compared to the larger model trained on the full dataset, as shown in Figure 6.8(b).

In this scenario, we use OPT-2.7B as the smaller model to select 25% data and OPT-13B as the
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larger model, plotting the win percentage per skill. We notice similar performance trends as

previously where the performance either improves or is stable in math, writing, generic, roleplay,

and fermi skills with the smaller model’s data selection. Conversely, the larger model trained on

the complete dataset performs better in coding, knowledge, counterfactual, and commonsense

skills. This demonstrates that the smaller model can effectively select data for most skills similar

to the larger model.

Finally, we compare the data selected using the Alpagasus with data selected using our

proposed approximated L Papp(1) metric in Figure 6.8(c). We use the OPT-6.7B model and

select 10% of the data using both methods. The results show a uniform improvement across all

skills with our proposed method, highlighting its superior performance.

6.8 Summary

In this chapter, we introduce a learning percentage-based metric for assessing the dif-

ficulty of samples. We demonstrate that LMs ranging from 1B to 13B sizes can self-select

high-quality training data by employing this metric. Additionally, we empirically validate the

transferability of data hardness across different model sizes, showcasing the efficient curation of

high-quality training data by smaller models. Furthermore, we propose an optimized version of

the metric that offers increased speed while maintaining equal efficacy.

Chapter 6, in full, is a reprint of the material as it appears in Dheeraj Mekala, Alex Nguyen,

and Jingbo Shang. 2024. Smaller Language Models are capable of selecting Instruction-Tuning

Training Data for Larger Language Models, in Findings of the Association for Computational

Linguistics: ACL 2024, pages 10456–10470, Association for Computational Linguistics. The

dissertation/thesis author was the primary investigator and author of this paper.
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Chapter 7

Conclusion and Future works

7.1 Summary of Contributions

This thesis has investigated how weak supervision techniques can alleviate the annotation

bottleneck. We explored two types of weak supervision, specifically extractive & generative weak

supervision. We empirically demonstrated that the training dynamics of LLMs provide valuable

insights into the nature and quality of the data they are trained on. To evaluate data quality, we

proposed analyzing it along three key dimensions: diversity, difficulty, and correctness. High-

quality data is achieved by maximizing diversity and difficulty while maintaining the correctness.

We developed cost-effective data curation methods that effectively utilize these approaches to

enhance the performance.

In the realm of extractive weak supervision, we first addressed a major limitation of seed-

word-based supervision: contextual ambiguity. To resolve this, we proposed a contextualized

weak supervision approach that leverages pre-trained LLMs to accurately interpret the intended

meaning of a seed word for a given class.

While extractive weak supervision provides valuable pseudo-labels, its coverage is

inherently limited. To expand the scope of weak supervision, we explored metadata as an

auxiliary supervision signal. Despite being widely available, it is often underutilized due to

its diverse formats (e.g., strings, integers) and the complex dependencies between metadata

attributes. To address these challenges, we modeled text and metadata as a text-rich network,
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employing motif-patterns and motif-instances to extract meaningful signals, ultimately generating

additional pseudo-labeled data.

Finally, to improve the correctness of pseudo-labeled data, we proposed a learning

order-based data selection method. We observe that deep neural networks tend to learn clean

samples earlier in training, while noisier samples are memorized later. Leveraging this insight,

we introduced a filtering strategy that discards samples learned in the final training epochs,

thereby improving the data quality.

Next, we explored generative weak supervision. Firstly, we explored synthetically

generating text classification datasets. We reframed text classification as a context generation

task for a given question-answer pair. To facilitate this, we fine-tuned an LLM using publicly-

available QA datasets, transforming it into a context generator capable of producing synthetic

data for text classification tasks.

We then proposed a tool selection dataset generation framework for LLMs, specifically

for single-tool usage tasks. We synthetically generated tools, instructions, reasoning steps, and

final tool selection data. We observed that the difficulty of a training sample increases when

similar yet distinct tools are included in the candidate set. Inspired by this insight, we adopted

a hierarchical generation strategy, starting with a diverse seed set from different domains to

ensure diversity in resulting tools. As we go deeper, along a domain, we generate similar tools

belonging to that domain. During the sample curation, we selectively subsample tools from the

generated tools, ensuring that the candidate tool list includes sibling tools of the ground truth

tool. To further enhance performance, we introduced a self-verification mechanism, where LLMs

prompt themselves with targeted questions to clarify ambiguities and reduce confusion in tool

selection.

Finally, we observed that synthetically generated data often lacks sufficient difficulty. To

address this, we proposed a data selection strategy that prioritizes harder training samples. We

introduced a learning percentage-based metric, selecting samples learned in the later training

epochs to identify more challenging data. Additionally, we empirically demonstrated that data
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hardness transfers from smaller to larger language models, showing that smaller models can

effectively curate high-quality, difficult training data for larger models.

7.2 Broader Implications

This dissertation has several important implications for the future of training data curation

for language models:

Guidelines for dataset generation. Various approaches leveraging different sources of weak

supervision offer a general guidelines for dataset generation. We recommend first defining what

constitutes high-quality data for the specific task. Next, it is important to consider the factors that

contribute to sample difficulty and diversity. Finally, ensuring high correctness in the generated

data is essential. These guidelines provide a robust foundation for effective dataset curation

across different tasks.

Quality vs Quantity. The success of our approaches indicates that improving model performance

does not necessarily require ever-larger datasets. Our findings demonstrate that carefully curated

high-quality training data can achieve strong performance with fewer samples. In other words,

enhancing data quality reduces the need for large quantities of data while maintaining high

performance.

Training dynamics offer important insights. The improvements achieved through training

dynamics-based techniques, such as learning-order and learning-percentage-based selection,

highlight their effectiveness in assessing training data quality. These insights can be leveraged

to better understand the data used for training. In other words, if a model already possesses

knowledge of certain data, it can be identified and removed, optimizing the training process.

7.3 Future Directions

Our work opens several promising directions for future research:

Agents Data Curation. Agents are poised to shape the future of artificial intelligence, and
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training them requires high-quality data. But what defines high-quality data for an agent?

Defining a high-quality trace for an agent is still an open problem. Ideally, it would consist

of long, meaningful traces. However, manually curating such traces is highly challenging. To

address this, we need efficient and scalable data generation strategies tailored for agent training.

Unified Data Curation. An interesting avenue for future research is developing data curation

methods that integrate multiple data types by combining extractive and generative weak super-

vision. Leveraging data from diverse sources would enable us to harness the strengths of both

approaches while minimizing their respective limitations.

Prompts for Generative Weak Supervision. Generative weak supervision relies on user-

provided prompts to guide language models in generating data. However, ensuring that these

prompts are diverse so that they produce sufficiently diverse data is a time-consuming task for

humans. Developing efficient methods for curating prompts (Jafari et al., 2024) is a promising

future direction that could enhance the quality and variability of generated data while reducing

manual effort.

Dynamic Data Generation Strategies. Future research could investigate dynamic data gen-

eration strategies, where the process dynamically adjusts based on the target model’s learning

progress. This approach could enhance training efficiency and effectiveness by continuously

optimizing the quality and relevance of generated data.

Application to Other Domains. Although our work has primarily focused on language models,

the principles we have developed could also be applied to other domains experiencing similar

data scarcity challenges, such as computer vision and speech recognition.

7.4 Concluding Remarks

The challenge of curating high-quality training data will likely remain a central concern

for language models and agents in the coming years. This thesis has shown that by focusing on

high-quality data, we can reduce the overall quantity needed, thus making more efficient use of
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resources, thereby advancing the capabilities and accessibility of large language models.

Looking ahead, the approaches presented in this work suggest that the future may not

require the indiscriminate accumulation of data, but rather the focused collection of high-quality

data. By further refining our understanding of how models learn from data, we can develop more

efficient and effective training methods that maximize the potential of available resources.
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Appendix A

Learning Order Inspired Pseudo-Label
Selection for Weakly Supervised Text
Classification

A.1 Datasets

The details of datasets are provided below:

• The New York Times (NYT): The NYT dataset is a collection of news articles published by

The New York Times. They are classified into 5 coarse-grained genres (e.g., science, sports)

and 25 fine-grained categories (e.g., music, football, dance, basketball).

• The 20 Newsgroups (20News): The 20News dataset1 is a collection of newsgroup documents

partitioned widely into 6 groups (e.g., recreation, computers) and 20 fine-grained classes (e.g.,

graphics, windows, baseball, hockey). Following (Wang et al., 2021), coarse- and fine-grained

miscellaneous labels are ignored.

• AGNews (Zhang et al., 2015) is a huge collection of news articles categorized into four

coarse-grained topics such as business, politics, sports, and technology.

• Books (Wan & McAuley, 2018; Wan et al., 2019) is a dataset containing description of books,

user-book interactions, and users’ book reviews collected from a popular online book review

website Goodreads2. Following (Mekala et al., 2020), we select books belonging to eight

1http://qwone.com/~jason/20Newsgroups/
2https://www.goodreads.com/
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popular genres. Using the title and description as text, we aim to predict the genre of a book.

A.2 Compared Weakly Supervised Text Classification
Methods

We compared with following state-of-the-art weakly supervised text classification meth-

ods described below3:

• ConWea (Mekala & Shang, 2020) is a seed-word driven iterative framework that uses pre-

trained language models to contextualize the weak supervision.

• X-Class (Wang et al., 2021) takes only label surface names as supervision and learns class-

oriented document representations. These document representations are aligned to classes,

computing pseudo labels for training a classifier.

• WeSTClass (Meng et al., 2018) generates pseudo documents using seed information and

refines the model through a self-training module that bootstraps on unlabeled documents.

• LOTClass (Meng et al., 2020) queries replacements of class names using BERT (Devlin et al.,

2019) and constructs a category vocabulary for each class. This is used to pseudo-label the

documents via string matching. A classifier is trained on this pseudo-labeled data with further

self-training.

We use the public implementations of these methods and modify them to plug-in our

filter. Specifically, in WeSTClass and LOTClass, we add our filter after generating the pseudo

documents; in ConWea, we add our filter before training the text classifier; and for X-Class, we

plug-in our filter after learning the document-class alignment.

A.3 Experimental Settings

Train-Test sets. We remove the labels in the whole dataset and our task is to assign labels to

these unlabeled samples. We measure our performance on the whole dataset by comparing it

3We also considered experimenting on ASTRA, however the instructions to run on custom datasets were not
made public yet.
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Table A.1. Evaluation results on six datasets using RoBERTa classifier and pseudo-label selection
methods. Initial pseudo-labels are generated using String-Match. Micro- and Macro-F1 scores
and their respective standard deviations are presented in percentages. For a fair comparison, we
consider the same number of samples for all baselines as LOPS in each iteration. Abnormally
high standard deviations are highlighted in blue and low performances are highlighted in red.
Baselines performing better than our method are made bold.

Coarse-grained Datasets Fine-grained Datasets

NYT-Coarse 20News-Coarse AGNews Books NYT-Fine 20News-Fine

Classifier Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

RoBERTa

Standard 90.2(0.41) 82.1(0.24) 76.5(0.41) 75.7(0.58) 74.4(0.44) 74.2(0.71) 57.6(0.29) 58.6(0.53) 79.4(0.65) 76.6(0.54) 67.4(0.67) 67.3(0.87)
LOPS 92.4(2.99) 85.6(3.00) 77.5(2.00) 75.8(2.00) 75.6(0.22) 75.5(0.27) 59.7(0.41) 60.5(0.45) 81.8(0.90) 80.7(0.50) 70.7(0.68) 70.8(0.34)

O2U-Net 93.1(0.14) 86.3(0.26) 76.5(0.19) 73.4(1.47) 77.6(0.36) 77.1(0.54) 58.5(0.64) 59.9(0.32) 79.2(0.28) 77.5(1.17) 68.4(0.47) 68.3(0.15)
Random 92.3(0.21) 84.4(0.82) 76.5(1.00) 74.5(1.00) 74.6(0.32) 74.2(0.27) 56.4(0.57) 58.7(0.32) 76.6(1.25) 74.8(0.34) 68.4(0.23) 68.5(0.23)

Probability 93.4(0.48) 87.5(1.00) 76.7(0.50) 75.4(1.00) 76.2(0.89) 76.3(1.12) 56.2(1.28) 57.4(1.85) 26.6(23.00) 14.4(11.50) 46.2(23.00) 45.3(23.50)
Stability 90.5(1.09) 83.3(0.50) 78.5(1.00) 76.0(1.50) 76.5(0.48) 76.5(0.64) 58.5(1.18) 59.5(1.06) 21.5(12.50) 9.2(5.00) 70.3(1.00) 70.6(1.00)

OptimalFilter 98.2(0.17) 96.1(0.16) 94.3(0.74) 94.5(0.35) 89.7(0.17) 89.3(0.28) 76.5(0.29) 77.7(0.22) 97.4(0.34) 92.8(0.26) 85.3(0.32) 85.5(0.65)

with their respective gold labels.

Computation Infrastructure. We performed our experiments on NVIDIA RTX A6000 GPU.

The batch size for training BERT is 32, RoBERTa is 32, GPT2 is 4, XLNet is 1. The running

time for BERT and RoBERTa took 3 hrs, GPT2 took 6 hours, and XLNet took 12 hrs.

A.4 Additional Experiments

We also compare with RoBERTa (roberta-base) (Liu et al., 2019) as text classifier.

We fine-tune it for 3 epochs. The results are shown in Table A.1.

A.5 Statistical Significance Tests

We perform a paired t-test between LOPS and each of the other baseline filtering tech-

niques for all classifiers and on all datasets. The results are showed in Table A.2. From these

p-values, we can conclude that the performance improvement over baselines is significant.

A.6 Example samples

A few incorrectly pseudo-labeled samples from NYT-Fine dataset that are selected by

probability-based selection by BERT are shown in Table A.3 We observe a high probability
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Table A.2. Statistical significance results.

Classifier Method NYT-Coarse NYT-Fine 20News-Coarse 20News-Fine AGNews Books

BERT

Standard 1.93 × 10−112 1.92 × 10−105 7.08 × 10−80 9.37 × 10−79 1.05 × 10−74 7.15 × 10−96

Random 1.58 × 10−115 2.01 × 10−105 5.98 × 10−94 7.32 × 10−39 4.26 × 10−81 3.25 × 10−100

Probability 1.69 × 10−112 6.25 × 10−189 4.19 × 10−120 6.71 × 10−136 5.13 × 10−71 8.72 × 10−123

Stability 2.63 × 10−33 2.41 × 10−194 2.78 × 10−58 4.07 × 10−9 1.36 × 10−45 1.24 × 10−97

RoBERTa

Standard 6.06 × 10−100 1.82 × 10−63 5.4 × 10−3 3.09 × 10−109 2.13 × 10−57 1.15 × 10−22

Random 8.38 × 10−94 3.55 × 10−71 3.26 × 10−39 5.20 × 10−101 5.12 × 10−72 1.75 × 10−61

Probability 5.27 × 10−62 9.18 × 10−193 1.39 × 10−71 1.13 × 10−85 4.03 × 10−24 2.16 × 10−72

Stability 1.46 × 10−86 3.39 × 10−188 6.28 × 10−5 8.71 × 10−107 1.17 × 10−76 1.81 × 10−65

XLNet

Standard 3.14 × 10−79 4.68 × 10−139 5.42 × 10−112 4.17 × 10−103 1.69 × 10−114 5.63 × 10−107

Random 3.26 × 10−71 2.97 × 10−48 2.56 × 10−77 5.32 × 10−75 6.38 × 10−32 4.38 × 10−48

Probability 4.12 × 10−29 1.36 × 10−63 7.25 × 10−19 6.27 × 10−47 1.57 × 10−31 6.23 × 10−32

Stability 6.17 × 10−29 4.27 × 10−44 1.47 × 10−73 3.57 × 10−41 1.79 × 10−28 3.48 × 10−56

GPT-2

Standard 6.09 × 10−50 1.10 × 10−98 2.05 × 10−57 1.22 × 10−5 4.68 × 10−91 1.56 × 10−65

Random 2.54 × 10−22 6.97 × 10−81 4.25 × 10−91 9.89 × 10−38 6.39 × 10−77 8.70 × 10−63

Probability 5.52 × 10−49 2.37 × 10−89 7.02 × 10−85 1.05 × 10−83 1.99 × 10−63 3.44 × 10−49

Stability 6.15 × 10−110 3.88 × 10−31 3.40 × 10−66 6.27 × 10−78 2.21 × 10−47 2.36 × 10−41

assigned to each incorrect pseudo-label whereas these are learnt by the classifier at later epochs.

These wrongly annotated samples induce error that gets propagated and amplified over the

iterations. By not selecting these wrong instances, LOPS curbs this and boosts the performance.

A.7 Learning Order vs Probability Score: Threshold Analy-
sis

Ideally, there exists a threshold for a given confidence function that perfectly distinguishes

the correctly and wrongly labeled samples. However, in practice, confidence functions may not

be possible to suffice such ideal condition. For a given confidence function, one wishes to select

pseudo-labels based on a threshold such that the noise is low and the coverage is high. We define

ratio between noise and coverage as NC-ratio, namely r(κ,γ) = ε(κ,γ)
φ(κ,γ) . An optimal threshold

has the lowest NC-ratio. Therefore, we evaluate confidence function by plotting NC-ratio at

different thresholds.

We plot NC-ratios of learning order and probability scores with BERT classifier in

Figure A.2 on NYT-Coarse, 20News-Fine datasets. To isolate them from the effects of boot-

strapping, we don’t perform any bootstrapping. As shown in Figure A.2, when selecting the

optimal threshold, learning order has significantly lower NC-ratios for all datasets compared
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Table A.3. Incorrectly pseudo-labeled samples selected by probability-based selection are shown
below. These samples are learnt at later epochs, thus LOPS avoids selecting them.

Document Pseudo-label

Corinthians have received offer from tottenham hotspur for brazil’s paulinho although the
midfielder said on saturday he would not decide his future until after the confederations
cup ."there is an official offer from tottenham to corinthians but, as i did when there
was an inter milan offer, i’ll sit and decide with my family before i make any decision,"
paulinho told reporters.

Football
Softmax Prob: 0.96

Learnt Epoch: 2

Brittney griner and elena delle donne were poised to make history as the first pair of
rookies from same class to start wnba all-star game. Now, neither will be playing as both
are sidelined with injuries. It’s a tough blow for the league, which has been marketing
the two budding stars.

Baseball
Softmax Prob: 0.96

Learnt Epoch: 2

Denmark central defender simon kjaer has joined french side lille from vfl wolfsburg
on a four-year deal. Lille paid two million euros. 72 million pounds for the 24-year-old
kjaer, who has won 35 caps for his country. He joined wolfsburg from palermo for 12
million euros.

Intl. Business
Softmax Prob: 0.94

Learnt Epoch: 2

Fiorentina striker giuseppe rossi is quickly making up for lost time after suffering
successive knee ligament injuries which kept him out of action for the best part of two
years.

Football
Softmax Prob: 0.95

Learnt Epoch: 2

to probability score. Furthermore, the optimal thresholds of learning order for all datasets are

almost the same. In contrast, the optimal thresholds of probability score vary greatly across

different datasets due to the poor calibration of DNNs. Finally, we also observe that the NC-ratio

for probability score often changes greatly around the optimal threshold, which poses difficulty

in locating the optimal threshold. In contrast, since there are only few possible thresholds for

learning order, it is easier to find the optimal threshold. From the performance vs threshold plot

in Figure A.3, we can observe that learning order performs better than Probability score across

multiple thresholds. Therefore, in terms of both performance and robustness, learning order is a

more effective confidence function than probability score.
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Figure A.1. Distributions of correctly and wrongly labeled pseudo-labels using different selection
strategies on all datasets for its initial pseudo-labels. The base classifier is BERT. Each row
represents a dataset. Figure (a), (b) represents NYT-Fine, (c), (d) represents 20News-Coarse, (e),
(f) represents 20News-Fine, (g), (h) represents Books, and (i), (j) represents AGNews datasets
respectively. Left column is based on the softmax probability of samples’ pseudo-labels and
right column is based on the earliest epochs at which samples are learnt.
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Figure A.2. NC-ratios of learning order and probability score with BERT as the classifier.
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Figure A.3. Macro-F1 scores vs Threshold on NYT-Coarse & 20News-Fine datasets using BERT
classifier with LOPS and Probability score based selection.
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Appendix B

Leveraging QA Datasets to Improve Gen-
erative Data Augmentation

B.1 Target Task Datasets

The details of target task datasets are as follows:

• IMDb: (Maas et al., 2011) is a movie review dataset with positive and negative as sentiments.

• Yelp:1 is a collection of reviews written by Yelp users with five fine-grained sentiment ratings.

• SST-2: (Socher et al., 2013) is a binary sentiment classification dataset with single sentence

texts.

• Yahoo: (Zhang et al., 2015) is a topic classification dataset with question and answer pairs.

Using these pairs, the task is to predict their corresponding topic.

• The New York Times (NYT): : contains news articles written and published by The New

York Times that are classified into 5 wide genres.

• AGNews: (Zhang et al., 2015) is a topic categorization dataset in news domain from AG’s

corpus.

The size of test sets is mentioned in Table B.1.
1https://www.yelp.com/dataset/
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Table B.1. Dataset statistics.

Dataset # Test Examples

IMDb 25000
Yelp 50000

SST-2 2211
Yahoo 60000
NYT 10582

AGNews 114000
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Figure B.1. Macro-F1 scores of CONDA-SocialIQA w.r.t. k. Each experiment is repeated with
three different seeds and mean performance is plotted.

B.2 Performance vs k

We vary k in top-k sampling and plot the performance of CONDA-SocialIQA on IMDb,

SST-2, AGNews, and Yahoo datasets in Figure B.1. We fix the few-shot supervision size to 8

samples per label and generate 450 samples per label. We repeat each experiment thrice and plot

the mean performance. Upon manual inspection, We observe that the samples generated with

k=20 are more diverse than k=10, however, the influence of k on performance is not significant.

139



Table B.2. Evaluation Results with validation set.
Sentiment Topic

IMDb Yelp SST-2 NYT Yahoo AGNews
Method Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

BERT-FT 68.73.6 68.53.6 38.15.2 36.35.2 57.51.4 55.82.3 88.75.5 83.94.6 54.41.8 53.91.2 74.65.6 74.75.3
ITFT-MNLI 66.23.3 64.64.2 35.33.7 33.33.5 60.81.8 58.71.6 78.02.9 63.16.2 28.24.5 27.24.2 52.93.2 51.44.5

ITFT-SQuAD 61.12.0 59.72.6 34.02.3 31.63.6 56.51.4 56.01.5 88.92.2 75.84.6 36.24.0 35.34.4 58.25.5 56.26.6
BackTranslation 67.42.0 66.92.0 38.73.6 36.44.4 61.04.3 60.45.0 93.71.4 88.70.3 56.81.4 56.21.2 80.32.0 80.32.0

PEGASUS 66.23.8 65.33.9 32.87.0 29.58.0 61.93.9 60.63.9 93.90.6 87.31.7 57.73.0 56.31.0 79.71.6 79.91.6
EDA 63.34.2 61.64.4 32.56.7 30.68.2 58.82.9 58.13.4 95.70.7 90.62.0 55.71.1 56.31.0 79.80.7 79.90.4

CONDA\QA 71.84.5 71.14.9 38.00.3 36.00.5 60.14.7 58.06.2 92.30.5 84.20.5 53.80.9 52.80.7 80.01.6 79.61.7

CONDA-SQuAD 58.52.5 56.51.7 37.61.6 36.40.5 56.32.2 55.81.9 93.40.5 86.60.9 56.11.7 54.81.8 82.10.2 82.10.2
CONDA-NewsQA 61.56.7 60.18.1 34.80.9 32.32.5 57.15.8 56.26.2 92.50.8 83.81.5 55.32.5 54.82.8 80.63.7 80.33.9
CONDA-TweetQA 78.32.8 78.13.0 41.30.5 37.73.5 71.64.8 70.95.3 93.11.5 85.53.0 58.81.6 57.92.4 81.21.9 81.11.9
CONDA-SocialIQA 78.32.2 78.11.5 41.50.8 39.01.8 74.43.9 74.34.0 92.30.7 84.71.3 58.52.0 58.02.3 82.41.6 82.21.6
CONDA-CosmosQA 74.14.9 73.65.5 38.92.1 31.34.3 64.52.3 63.33.1 93.61.1 86.22.2 59.40.6 59.30.1 82.71.3 82.51.4

B.3 Experiments with a validation set

We perform experiments with a validation set. Since large validation sets are impractical

in few-shot settings (Oliver et al., 2018), we consider the validation set to be of same size as the

few-shot training set i.e. 8 annotated samples per label. In the experiments with validation set,

we perform early stopping based on validation set performance. We present experimental results

on few-shot setting with validation set in Table B.2. We seldom observe significant improvement

upon introducing the validation set. This is because a small validation set which is of same size

as few-shot supervision is not large enough to tune the hyperparameters.

B.4 Examples of Generated Training Data

Table B.3 shows a few examples of synthetic training data corresponding to IMDb and

AGNews datasets generated by our method with all QA datasets.
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Table B.3. Example generated texts using our method with all QA datasets

Dataset Label QA Dataset Generated Text

IMDb good

SQuAD
the film was first screened in the united kingdom and ireland in june 1985,

where it received generally favourable reviews.

NewsQA
i love that "babylon 5" has a story in the form of an

animated television show. when the first "babylon" appeared on the vhs channel, i was a kid.

TweetQA
this is a fantastic film, and i loved the trailer. you may know me

and you may also know a friend of mine, so i can totally see

SocialIQA skylar went to the movies and saw a good movie.

CosmosQA
this is one of my favorite movies of all time because the movie was made way back

in the 80s and the dialogue is pretty hilarious.

AGNews sports

SQuAD
this document is about sports, and details the general aspects of the sport. it lays out the sport’s rules,

and sets out the objectives and common grounds upon which the sport is based.

NewsQA
(cnn) – when the cincinnati bengals and new england patriots

played at a stadium on friday night, an audience of about

2 million people was in tow. and those people weren’t the only ones enjoying the game.

TweetQA
it’s a football document and i want to make sure all our fans know. #fcbtampa.

thanks for the #baltimorebluhnnnnnnnnnt

SocialIQA carson got the ball in their possession after scoring a goal in the soccer match.

CosmosQA
we just played a nice game, and i thought we ’d be better off if they could

come up with a good plan to do it. we did have a little time,

however, and we ’d have a chance to score and give the ball back, but it just never worked out
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Appendix C

TOOLVERIFIER: Generalization to New
Tools via Self-Verification

C.1 Self-verification improves tool selection of Tool-
Augmented LLMs

We apply our proposed self-verification on tool-augmented LLMs, and present their

performance on tool selection alone in Table C.1. We note significant improvements in tool

selection accuracy, post tool verification. For instance, the average accuracy of ToolLLM 7B

increases by 9 points, NexusRaven-V2 13B by 5 points, and Qwen1.5-Chat-72B by 4 points.

This demonstrates that the tool verification enhances the performance of tool-augmented LLMs.

C.2 Parameter Generation Only Comparison

We additionally compare TOOLVERIFIER in the tool selection upperbound scenario,

where the groundtruth tool selection is provided, and a model is only required to generate

parameters through three-shot prompting. Results are given in Table C.2. TOOLVERIFIER

outperforms Llama-2-Chat-70B by 16 points as well as both Llama-2 70B and GPT-3.5-Turbo

by an average of 6 points on a majority of the tasks, with an improvement of up to 14 points

compared to Llama-2 70B in the Cat task and 8 points in the Home task compared to GPT-3.5-

Turbo. TOOLVERIFIER also demonstrates superior performance compared to GPT-4 on Weather

and Cat tasks by 6 and 4 points, respectively. This shows that our proposed method outperforms
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Table C.1. Tool verification improves tool-augmented LLMs on tool selection. We report
accuracy in percentage (%) for each task. The tool verification improves ToolLLM 7B by
8 points, NexusRaven-V2 13B by 5 points, and Qwen1.5-Chat-72B by 4 points on average
respectively.

Method Weather Booking Home Cat Average

ToolLLM 7B 27 22 84 26 38.90
ToolLLM 7B + Tool Verification 34 30 95 33 47.14

NexusRaven-V2 13B 84 93.33 100 98 93.81
NexusRaven-V2 13B + Tool Verification 93 100 100 99 98.10

Qwen1.5-Chat-72B 93 95 99 96 95.71
Qwen1.5-Chat-72B + Tool Verification 97 100 100 99 99.05

Table C.2. Parameter generation results. We report success rates (%) in the upperbound setting
where the model is provided the ground truth tool selection, and must only generate parameters.
We observe our fine-tuned Llama-2 70B model TOOLVERIFIER outperforms Llama-2 70B and
GPT-3.5-Turbo models in the majority of tasks and on average in this setting. Results with ∗ are
taken from the Toolbench Leaderboard (Xu et al., 2023c,b).

Method Weather Booking Home Cat Average

GPT-4* 93 96.70 97 96 95.72
GPT-3.5-Turbo* 90 85.80 80 92 86.90
Llama-2 70B 93 84.17 85 86 86.91
Llama-2-Chat-70B 89 45 91 88 76.67

TOOLVERIFIER 99 85.80 88 100 92.85

few-shot prompting approaches, even compared to stronger base models.

C.3 Self-Verification vs Self-Consistency

Our self-verification approach entails three separate LLM inferences: one for each model,

Llama-2 70B and Llama-2-Chat-70B, followed by another to answer the verification question.

To evaluate the performances of self-consistency and self-verification, we use the same number

of inference calls for both methods and present a comparison in Table C.3. The results indicate

that self-verification achieves significantly greater improvements than self-consistency.
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Table C.3. Self-consistency vs Self-verification We consider the same model and same number
of inference calls (i.e. 3), and compare self-consistency and self-verificaiton. We report the
percentage (%) success rate for each task. We notice that self-verification performs significantly
better than self-consistency.

Method Weather Booking Home Cat Average

Llama-2 70B + Self-Consistency@3 84.00 80.83 85.00 83.00 83.09
TOOLVERIFIER (tool verification+param verification) 90.00 84.17 88.00 97.00 89.52

C.4 Prompts & Configurations

We use top-p sampling while generating with a temperature set to 0.7.

C.4.1 Tool Generation

The prompt for tool generation using few-shot prompting LLaMa-65B is:
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Name: Humidity

Description: Computes humidity at a location on a date

Name: Trip Booking

Description: Makes a travel booking

Name: Currency Conversion

Description: Converts an amount from one currency to another.

Name: Age Calculator

Description: Calculates the age based on a given birthdate and the current date.

Name: Search Engine

Description: Searches online about a query

Name: Restaurant Finder

Description: The Restaurant Finder tool finds the restaurants based on its location, cuisine and the

number of people.

Name: Movie Review

Description: The Movie Review tool gets top-rated movie reviews for a particular movie.

Name: Pizza Order

Description: The Pizza Order tool orders a pizza with provided toppings and size.

Name:
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C.4.2 Reasoning Note Generation

The prompt for reasoning note generation using Llama-2-Chat-70B is:

[INST] «SYS»

You are a helpful assistant.

«/SYS»

Here are the list of available tools:

{Candidate tool list}

A user said, "{instruction}".

To answer this, you found Tool "{name}" to be the most suitable than other tools. Why?[/INST]

In the above prompt “{instruction}” denotes the user instruction and “{name}” denotes

the ground truth tool. “{Candidate tool list}” contains names and descriptions of each tool.

C.4.3 Related Tools Generation

The prompt for related tool generation using few-shot prompted Llama-2 70B is:

146



Name1: Humidity

Name2: Humidity at timezone

Name3: Humidity Altitude Location date

Name1: Book Review

Name2: Book Review By Date

Name3: Book Review By Day

Name1: Car Rental

Name2: Car Rental with insurance

Name3: Car Rental with driver

Name1: {name}

Name2:

In the above prompt {name} denotes the name of the tool whose related tools are being generated.

While generating multiple related tools per original tool, we generate one related tool after

another with different seeds, to improve the diversity of the related tools.
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C.4.4 Contrastive Question Generation

[INST] «SYS»

You are a helpful assistant.

«/SYS»

I am confused to choose one of these two classes. Here are their names and descriptions:

a. {name1} - {description1}

b. {name2} - {description2}

A contrastive question is a question that upon asking would resolve such confusion. Generate

a contrastive question that I can ask myself whose answer would help me make the right

choice.[/INST]

In the above prompt “{name1}”, “{description1}” and “{name2}”, “{description2}” are names

and descriptions of two selected tools respectively.
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C.4.5 Parameter Verification

[INST] «SYS»

You are a helpful assistant.

«/SYS»

A user said, "{instruction}"

parameter definition

For the above user instruction, I am confused about choosing one of these two for "{parameter

name}".

a. {prediction 1}

b. {prediction 2}

What is the answer? Answer the following question strictly based on what the user said above. If

there is no mention, respond with "None". If there is, select the answer from the given options and

respond with the chosen option only in square brackets []. [/INST]

In the above prompt “{instruction}” denotes the user instruction. “{parameter name}” represents

the parameter name under verification. Additionally, “{prediction 1}”, “{prediction 2}” signify

two parameter predictions obtained from Llama-2 70B and Llama-2-Chat-70B, respectively.
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C.4.6 0-shot Chat LLaMa-70B

[INST] «SYS»

You are a helpful assistant.

«/SYS»

Here are the list of available tools:

{Candidate tool list}

A user said, "{instruction}"

What tool to use for the above instruction? Respond with just the name of the tool[/INST]

In the above prompt “{instruction}” denotes the user instruction and “{Candidate tool

list}” contains names and descriptions of each tool.
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C.4.7 Tool Call Construction

INS: A user says, "Please retrieve the temperature, humidity, wind, and visibility data at place with

latitude = -37.3, longitute = 1.9."

lat: -37.3

lon: 1.9

units: none

mode: none

lang: none

API: curl -X GET ’https://api.openweathermap.org/data/2.5/weather?lat=-

37.3&lon=1.9&appid=API_KEY&units=none&

mode=none&lang=none’

INS: A user says, "Give me a current weather report for place where longitute is 174.4 and latitude

is -19.0."

lat: -19.0

lon: 174.4

units: none

mode: none

lang: none

API: curl -X GET ’https://api.openweathermap.org/data/2.5/weather?lat=-

19.0&lon=174.4&appid=API_KEY&units=none

&mode=none&lang=none’

INS: A user says, "{instruction}"

{param_str}

API:

In the above prompt “{instruction}” denotes the user instruction and “{param_str}”

contains parameters and their predicted values.
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C.4.8 Significance of Contrastive Questions

An example prompt is provided below.

[INST] «SYS»

You are a helpful assistant.

«/SYS»

A user says, "Please retrieve the temperature, humidity, wind, and visibility data for next week with

latitude = -37.3, longitute = 1.9."

To address the above instruction which one of the below tools is the most suitable? Select the

answer from the given options and respond with the chosen option ONLY in square brackets [].

A. Forecast Air Pollution = Get the future air pollution data in location with latitude={lat},

longitude={lon}

B. Forecast Weather Latitude Longitude = Get the weather data for future in location with

latitude={lat}, longitude={lon}[/INST]

C.5 Hyperparameters for Llama-2 70B Fine-tuning

We fine-tune Llama-2 70B for 3 epochs with a learning rate of 1e-5 with warm up. The

effective batch size is 8 and the weight decay is 0.1. We train it on 16 A100 GPUs.

C.6 Frequently Asked Questions

Why did you use LLaMa-65B for tool generation instead of Llama-2 70B?

The 70B model was not released by the time we generated tools. Hence, we used the

available 65B model.
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Why only 4 tasks were chosen from ToolBench benchmark?

Our framework is currently designed for single-tool-usage tasks. Therefore, we experi-

ment on all single-turn tool calling tasks in the ToolBench dataset that can be completed with a

single tool call without requiring additional actions and skills. In contrast, VirtualHome involves

generating and executing a sequence of actions in a single step, which is outside our current

scope. The Google Sheets task requires additional python coding skill, making it an unsuitable

fit for our experiments. As a result, we have excluded these two tasks from our evaluation.

Why is it not evaluated on a benchmark with thousands of tools?

To accurately assess the efficacy of our proposed self-verification and fine-tuning ap-

proach, we evaluate our methods on a benchmark that would not require any retrieval. By

eliminating the dependency on a retriever, we could isolate the impact of our techniques and

demonstrate a clear performance improvement. The ToolBench benchmark, comprising 17

diverse tools, presented an ideal balance between maximizing the number of tools that could be

accommodated within the context window without requiring the use of a retriever. To make our

method work for thousands of tools a standard approach would be to combine it with a retrieval

system and then our method to do the final selection step from the top retrieved tools, which is

an experiment that is beyond the scope of the paper.

The proposed framework prompts the model to select tools (or parameters) from two
candidates. Why the candidate number is set to 2?

We observed that the ground truth tool was typically in the top two tool selections. Further,

asking contrastive verification questions is most natural/makes most sense as a comparison

between two choices. Therefore, we choose two candidates. This gives a significant performance

improvement.
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C.7 API Details

The four APIs pertaining to ToolBench are the Weather, Booking, Home, and Cat APIs.

To execute the API calls, we registered for access to the Weather and Cat API, whereas for Home

and Booking we ensured correct syntax, as proposed in the benchmark (Xu et al., 2023c).
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Appendix D

Smaller Language Models are capable
of selecting Instruction-Tuning Training
Data for Larger Language Models
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Figure D.1. We consider Alpaca-Data, vary the percentage of data selected, and plot the win rate
of Llama-2 models, trained on the selected data in comparison to models trained on the complete
dataset.

D.1 Win rate of different size subsets against full Alpaca-
Data dataset

In Figure D.1, we illustrate the win rates of Llama-2 7B and 13B models trained on

subsets of varying sizes from the Alpaca-data corpus, contrasting them with the performance

of models trained on the complete dataset. Remarkably, our analysis reveals that using subsets
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comprising as little as 1% of the data is adequate to attain performance levels comparable to

those achieved with the entire dataset.

D.2 Human Evaluation Interface

Figure D.2. We built a simple human evaluation interface that allows the user to generate
responses from two models with an input prompt and choose their preference.
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Table D.1. We present the noisy samples found as well as the reason we found them noisy.

Instruction Input Output Reason
Create a fea-
ture vector
for the fol-
lowing sen-
tence:

"Today marks a special mile-
stone for us."

[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0]

Output
doesn’t make
sense.

Calculate
the value of
sin(8)

sin(8) = -
0.132351750097773

Computation
is incorrect.

Given a
paragraph,
summarize
it in three
sentences.

The year 2020 has been
an incredibly difficult one
for many people around the
world. With an unprece-
dented global pandemic up-
ending daily life, people have
had to adapt to a new nor-
mal. Businesses, schools,
and even the way we inter-
act with family and friends
have all changed.

Output is
missing.

Post a funny
meme about
cats.

![Image of funny cats
meme](https://i.imgflip.com/
1vyhr.jpg)

Output con-
tains a link
which has
nothing to
do with the
prompt.

Multiply
the follow-
ing two
complex
numbers

(3 + 2i) * (2 + 4i) (3 + 2i) * (2 + 4i) = 4 + 14i +
8iˆ2 = 4 - 6i.

Computation
is incorrect.

Categorize
the follow-
ing objects
into two
different
groups, and
explain why
you chose
them.

A computer, a car, a shoe, a
chair

I would categorize the ob-
jects into two groups: man-
made objects and natural ob-
jects. The computer, car,
shoe, and chair are all man-
made objects, items that have
been created, designed, and
assembled by people. On the
other hand, a natural object
would be something that is
found in nature and has no
human intervention.

Instruction
implies that
each group
should have
at least one
item.
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