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Abstract 

Automating the Synthesis and Characterization of Inorganic Materials 

by 

Nathan Szymanski 

Doctor of Philosophy in Engineering – Materials Science and Engineering 

University of California, Berkeley 

Professor Gerbrand Ceder, Chair 

 
The development of new inorganic materials largely depends on manual experiments that are 
costly and time intensive. While automation has greatly advanced the computational discovery of 
promising new materials, the rate at which they are experimentally synthesized has fallen behind. 
Bridging this gap requires an improved approach to materials synthesis and characterization, 
whereby automation is used to streamline the experimental realization of predicted compounds. In 
this dissertation, I will summarize my contributions to this area. These include automating the 
collection and analysis of X-ray diffraction patterns, developing theory-driven decision-making 
algorithms to guide experimental solid-state synthesis trials, and implementing these methods in a 
fully autonomous, robotic platform known as the A-Lab. 
 
X-ray diffraction (XRD) is a cornerstone of materials research that is widely used to identify and 
characterize the structures of distinct crystalline phases. Traditional interpretation of XRD patterns 
requires manual analysis, which becomes challenging when dealing with multi-phase samples that 
are often complicated by experimental artifacts such as lattice strain and texture. In Chapter 2, I 
will describe the development and validation of a machine learning (ML) framework that can 
automate the identification of crystalline materials from XRD patterns. This framework leverages 
an ensemble of convolutional neural networks, uniquely trained with physics-informed data 
augmentation to ensure they are robust against common experimental artifacts. A distribution of 
predicted phases is generated for each pattern given to these trained models, from which a measure 
of prediction confidence is evaluated. This method outperforms traditional peak search-match 
algorithms on a variety of experimental samples without requiring manual intervention, making 
autonomous phase identification possible.  
 
Because ML models are fast once trained, they can be integrated with experimental measurements 
to perform analysis in real time. This provides the opportunity to use any information gained from 
preliminary analysis to control the subsequent measurements, improving the efficiency of data 
collection. Such an approach can benefit XRD measurements, which typically require 20-30 min 
of scan time per sample to obtain results that have sufficient quality for post hoc analysis. As 
outlined in Chapter 3, a much shorter scan time of 5-10 min per sample can be achieved by using 
in-line ML analysis to steer the diffractometer toward parts of the XRD pattern that matter most 
for phase identification. This approach is shown to provide more precise detection of impurities 
and short-lived reaction intermediates that are critical to the study of solid-state synthesis. 
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In early attempts to synthesize a new compound, XRD often reveals the formation of unwanted 
byproducts instead of the desired target. Avoiding these byproducts and achieving the target 
requires careful redesign of the experimental procedure. In solid-state synthesis, the most common 
approach used to make bulk inorganic materials, redesigning the experiments generally involves 
choosing alternative precursors or reaction conditions. While conditions like temperature and 
partial pressures are numerical and can therefore be optimizing using well established methods 
like Bayesian optimization, precursor selection requires a different approach. In Chapter 4, I will 
describe an algorithm we developed to optimize the selection of precursors used in solid-state 
synthesis by actively learning from experimental outcomes. It does so by identifying unfavorable 
reactions that lead to unwanted byproducts, and then choosing precursors that it expects to avoid 
these reactions and instead favor the target’s formation. The effectiveness of this approach is 
showcased on three separate targets, for which optimal synthesis recipes are identified while 
requiring few experimental iterations. 
 
The automation of data analysis and decision making, combined with robotics that can perform 
solid-state synthesis experiments, have made autonomous materials development possible. The 
integration of these tools into a platform known as the A-Lab is discussed in Chapter 5. Given a 
set of targeted materials screened using ab-initio computations, this lab can devise initial synthesis 
recipes based on historical data mined from the literature. It tests these recipes using robotics for 
automated powder handling and high-temperature annealing, followed by characterization with 
XRD. The resulting patterns are analyzed by ML models, which then feed into automated decision 
making to improve upon the initial recipes and achieve higher target yield. We demonstrate the 
capabilities of the A-Lab by using it to synthesize 41 materials in just 17 days of closed-loop 
experimentation.  
 
The work reported herein demonstrates the feasibility of autonomous materials development while 
also highlighting areas that require further improvement. Several promising directions for future 
work are highlighted in Chapter 6. These include the development and integration of automated 
characterization to new techniques beyond XRD, the extension of robotic platforms to deal with 
air-sensitive samples and to measure device performance, and the generalization of decision-
making algorithms to deal with experimental issues like melting and volatility. 
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CHAPTER 1   Introduction 
 
 
 
The discussion presented in this chapter is based, often verbatim, on the following publication: 
N. J. Szymanski, Y. Zeng, C. J. Bartel, H. Huo, H. Kim, and G. Ceder, “Toward autonomous 
design and synthesis of novel inorganic materials.” Materials Horizons 2021, 8, 2169-2198. 
 
 
1.1 Background and motivation 
Historically, great innovations in technologies have been driven by the discovery of novel 
materials. Current materials development largely relies on three key steps: (i) identification of a 
new composition and structure of interest, (ii) targeted and scalable synthesis of that compound, 
and (iii) post-processing of the product to carefully optimize its properties1. To accelerate this 
procedure, it is necessary to not only improve the efficacy of each step, but also to integrate all 
three into a closed loop so that they can occur in rapid succession and benefit from optimal 
feedback between them. While the initial identification step has been assisted by large-scale ab 
initio simulations2,3, the latter two generally remain difficult and time-consuming owing to the 
iterative trial-and-error experimental approach required for both synthesis and property 
optimization. A breakthrough to overcome these challenges may be found in autonomous 
experimentation enabled by self-driving laboratories, which aim to aid the human researcher with 
robotic platforms guided by artificial intelligence (AI). 

The automation of experiments has long been a topic of interest, with early examples of 
widespread utilization demonstrated in the pharmaceutical industry4. There, high-throughput 
chemistry platforms have been developed to accelerate drug discovery using combinatorial 
sampling of possible molecules and synthesis conditions, which can be performed in an automated 
and highly parallelized manner to save considerable time and costs5–7. More recently, the advent 
of AI has created a symbiosis between hardware and software, with active learning techniques 
guiding the exploration of design spaces and leading to increased efficiencies relative to 
combinatorial techniques8–10. This has opened the door to more sophisticated applications ranging 
from systematic inspection of retrosynthetic routes in small molecule manufacturing11 to 
performance optimization in organic photovoltaics12. Furthermore, by automating the role of the 
experimenter as opposed to individual instruments, modern systems are flexible and can rapidly 
incorporate improvements in the underlying technology13. 

In contrast to organic chemistry, the development of autonomous experimentation for 
inorganic materials remains in its early stages. Given the challenges associated with handling solid 
powders, the limited availability of methods that can reliably characterize bulk samples, and the 
lack of a rigorous theoretical framework describing the factors influencing synthesizability, most 
of the existing work has demonstrated only partial automation of the experimental process. Within 
the thin film community, for example, HT automation of synthesis and characterization is routinely 
carried out to probe the effects of composition and processing conditions on the properties of 
resulting samples14–16. Similar methods have also been used to study bulk powders but are 
generally more limited with respect to the scope of compounds that can be dealt with17–19. Existing 
workflows are restricted to materials with readily available synthesis recipes, which precludes the 
discovery of novel systems with new and interesting properties. More recently, AI has been 
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incorporated into the automation pipeline to achieve closed-loop optimization of synthetic routes 
for nanoparticles formed in continuous flow reactors20 and nanotubes grown via chemical vapor 
deposition (CVD)21,22. While these platforms can be used to maximize the yield and purity of a 
target phase, they rely on a reasonable initial guess for the choice of precursors and synthesis 
conditions so that a measurable amount of the product is consistently obtained and used to guide 
the optimization. In novel compound synthesis and discovery, however, there is typically 
insufficient information available regarding successful reaction pathways, and consequently, most 
synthesis trials fail to produce any amount of the target phase. A new approach to optimization is 
therefore needed to fully automate the synthesis process. 

Three major aspects that must be automated to reach this goal of autonomy in materials 
synthesis. First, experimental procedures should be carried out by modular, robotic platforms with 
the capability of synthesizing and characterizing the materials of interest. Second, the data obtained 
from characterization should be interpreted by the machine and converted into simple, physically 
meaningful quantities providing insight into the experimental outcome. Last, but certainly not 
least, this information should then be passed to a decision-making algorithm that actively learns 
from previously tabulated data and/or scientific principles to suggest new experimental parameters 
for subsequent tests. Successful design and integration of all three aspects is essential to complete 
the closed-loop workflow illustrated in Figure 1-1. 

Before describing our own contributions to the automation of inorganic materials synthesis 
and characterization, I will outline in the next three sections variety of relevant techniques that are 
currently available. These serve as the foundation from which we have developed methods for the 
robotic execution of solid-state synthesis experiments, machined-learning-enabled interpretation 
of XRD patterns, and physics-informed decision-making algorithms to optimize experimental 
synthesis procedures. 
 
 
 

 
Figure 1-1. A schematic of closed-loop experimentation for inorganic materials synthesis. The 
three components include automated execution of procedures for synthesis and characterization, 
interpretation of the resulting data, and decision making to select new experiments based on this 
data. The integration of these components is necessary to achieve complete autonomy. 
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1.2 Previous efforts to automate solid-state synthesis 
Solid-state synthesis, carried out by mixing powder precursors and firing at high temperatures, is 
a widely used and scalable approach to produce inorganic materials. Automating this process for 
high-throughput or closed-loop experimentation, however, remains challenging due to the 
increased difficulty associated with handling solid powders as opposed to liquids or thin films. 
Working at high temperatures for long periods of time also poses potential problems caused by the 
melting of samples and the degradation of containers. Several recent efforts have made steps to 
automate some key aspects of solid-state synthesis for several classes of materials including PbTe-
based thermoelectrics23, yttrium-doped zirconia24, and Zr-Ti-C-B ceramics25. These existing 
methods increase the rate at which solid-state syntheses are carried out by decomposing the entire 
procedure into modular components, each of which is either automated via robotic systems or 
designed to be conducted in a highly parallelized manner, thereby reducing the time spent by the 
human researcher per synthesized sample.  
 Automated weighing and dispensing of powder precursors have been demonstrated with 
several commercial systems26,27. These instruments use gravity to pass samples through a hollow 
glass or plastic tip and into a container, which is placed on a balance and continuously weighed to 
control the rate of dispensing and produce the targeted precursor amount. When too much powder 
is dispensed, small amounts of the sample can be removed using a glass plunger, allowing the 
automated system to reach a precision on the order of micrograms. Once the precursors have been 
dispensed, mixing is typically carried out using a ball mill, which can be designed to accommodate 
many samples at once such that parallelization is possible25. If mechanochemical synthesis is 
desired, high-energy ball milling is often used to encourage the reaction. If, instead, the goal of 
ball milling is to obtain a well-mixed sample while avoiding any reactions, then low-energy milling 
can instead be used. From the mixed powders, compacting and densification can be parallelized 
by stacking samples on top of one another, separated by an inert material, and loading them 
altogether into a press. Firing of samples is readily parallelized, limited only by the size of the 
reaction vessel. However, unless separate furnaces are employed, all materials must be synthesized 
under the same conditions, which prohibits an efficient exploration of all synthesis parameters 
simultaneously. Ensuing characterization (e.g., by XRD) is usually conducted serially, though their 
operation periods are often short in comparison to the time required for synthesis and are therefore 
unlikely to represent the time-limiting step. 
 Using high-throughput methods, solid-state syntheses can be performed at a rate of more 
than 200 reactions per day17. We stress, however, that previous methods automate individual 
components of the synthesis process while still requiring a substantial amount of manual 
intervention between each step. As a result, human efforts constitute a large fraction of the total 
time allocated for the synthesis and characterization and solid powders. This shortcoming is 
illustrated by the analysis performed in recent work23, which shows that of the total 328 minutes 
necessary to complete a full experimental iteration per sample, 105 minutes are consumed by 
human efforts. Much of this time is spent performing preparative tasks such as sample loading, 
cleaning, and extraction. These processes are difficult to automate for solid powders given that 
their physical properties can vary substantially between different samples, and powders can 
sometimes adhere to container walls. After synthesis, further manual intervention is required to 
transfer samples and prepare them for characterization and subsequent analysis. The automation 
of these aspects and their integration to form a closed-loop workflow for inorganic materials 
synthesis is addressed in Chapter 5. 
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1.3 Interpreting synthesis outcomes with X-ray diffraction 
Following an experimental synthesis procedure, phase identification is needed to determine what 
products were made. For crystalline inorganic materials, this entails the application of XRD and 
comparing the sample’s spectrum (also referred to as a pattern) with reference data from sources 
such as the International Centre for Diffraction Data (ICDD)28. However, this comparison is very 
often complicated by variations that occur between measured and reference patterns due to defects, 
strain, off-stoichiometry, texture, and poor crystallinity. As a result, interpreting XRD patterns can 
be an arduous process that requires domain expertise. Even with state-of-the-art computational 
tools, reliably automating the identification of multi-phase XRD patterns remains a longstanding 
challenge. The most popular techniques used to complete this task are summarized in Figure 1-2 
and discussed below. 

Historically, the analysis of diffraction data has been conducted by decomposing 
continuous spectra into discrete lists of peak positions (d) and intensities (I) which are compared 
with reference data29. Peak search-match algorithms rely on a Figure of Merit (FoM) to quantify 
the degree of similarity between pairs of d-I lists. A widely used metric is the de Wolff FoM, which 
is inversely related to the average discrepancy between observed and calculated d-spacings30. By 
calculating the FoM for all suspected reference phases, the compound with the highest value may 
be chosen for a given XRD pattern. However, the reliability of this method hinges on the ability 
to extract diffraction peaks from the measured pattern, which becomes difficult in the presence of 
peak overlap, low peak intensity, or strong background signal31. These problems are exacerbated 
when a pattern contains many peaks (e.g., in low-symmetry structures or multi-phase mixtures), 
and therefore the peak search-match approach generally produces limited accuracy. In a study 
conducted by Le Meins et al.32, XRD patterns obtained from ten distinct compounds were provided 
to the broader research community with the task of performing phase identification using peak 
search-match algorithms. Based on results collected from 25 participants, only 80% of phases were 
correctly identified on average, even with manual guidance by an expert, thus suggesting the need 
for improved methods if automation is to be attained.  

An alternative to the discrete peak search-match approach is full-profile matching, where 
entire spectra are compared with those of reference phases using a measure of correlation such as 
cosine similarity, Pearson or Spearman coefficients, or dynamic time warping (DTW)33–35. By 
removing the need to explicitly deconvolute individual peaks, analyzing the full profile provides 
a more robust treatment of complex and low-symmetry XRD patterns. Furthermore, this method 
can be combined with non-negative matrix factorization to identify the combination of compounds 
that best matches a measured pattern, enabling classification of multi-phase mixtures36. However, 
the reliability of full-profile matching remains limited when experimental artifacts cause large 
changes in peak positions, widths, and intensities. In a study by Iwasaki et al., an accuracy of 70% 
was achieved with DTW for the classification of multi-phase mixtures comprised of alloys 
spanning the Fe-Co-Ni chemical space37. Misclassifications were largely attributed to variations 
in XRD patterns induced by off-stoichiometry of the samples. To improve upon existing methods 
based on full-profile matching, it is necessary to design an approach that can account for the 
possibility of experimental artifacts.  

Deep learning has more recently been used to automate the interpretation of XRD patterns. 
In the initial study by Park et al., a convolutional neural network (CNN) was trained to categorize 
the crystal symmetry of simulated patterns from 150,000 phases reported in the Inorganic Crystal 
Structure Database (ICSD)38.  With 20% of these patterns reserved for testing, accuracies of 81% 
and 95% were achieved for the classification of space groups and Bravais lattices respectively. 
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Nevertheless, characterization of experimental XRD data is complicated by the prevalence of 
artifacts that cause deviations from simulated reference patterns. In later work by Vecsei et al., a 
neural network was trained on simulated XRD patterns to classify symmetry as described 
previously39. The model was then applied to experimentally measured patterns extracted from the 
RRUFF database, producing a lower accuracy of 54% for space group classification. To resolve 
these shortcomings, simulated patterns in the training set can be augmented to include 
perturbations associated with experimental artifacts. For example, Oviedo et al. demonstrated that 
by stochastically varying peak positions and intensities in simulated data using for training, the 
resulting CNN correctly classified the space group for 80% of patterns measured from metal halide 
thin films40. 
 

 

 

Figure 1-2. Available techniques for automating the interpretation of XRD patterns. (Top left) 
Peak search-match algorithms rely on the identification of peaks and comparison with reference 
data using a Figure of Merit. (Top left) Full-profile methods compare entire spectra measured 
experimentally with reference data, typically simulated, using a correlation metric. (Bottom) Deep 
learning employs neural networks trained on reference spectra to classify measured patterns into 
constituent phases.   
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In addition to symmetry classification, similar techniques based on deep learning and data 
augmentation have also been used to perform phase identification from experimentally obtained 
XRD patterns. For example, Maffettone et al. trained an ensemble CNN using simulated patterns 
augmented with changes to peak widths, intensities, and background signals41. Their model was 
tested on patterns measured from samples in the Ni-Co-Al space, with 76% correctly identified. 
To handle multi-phase mixtures, Lee et al. trained a CNN using multi-phase patterns simulated 
from linear combinations of single-phase patterns for 170 compounds in the Sr-Li-Al-O space42. 
Their model achieved a high accuracy of 98% when classifying experimentally measured patterns 
obtained from mixtures of high-purity powders including SrAl2O4, SrO, Li2O, and Al2O3. However, 
because the training procedure requires many linear combinations of phases with varied weight 
fractions to be sampled (1,785,405 in total), it restricts the inclusion of experimental artifacts 
owing to combinatorial explosion. Therefore, the model may fail when applied to characterize 
arbitrary samples obtained from a synthesis trial, which often contain substantial perturbations in 
their XRD patterns. With these limitations in mind, we introduce our own method to automate the 
classification of multi-phase XRD patterns in Chapter 2 of this dissertation.  
 
1.4 Automated decision making to overcome failed syntheses 
Upon conducting a batch of experiments and interpreting the resulting data (e.g., by performing 
phase identification), the next step in the closed-loop automation process is to use this information 
to make decisions regarding the subsequent experiments to be performed. These decisions are 
usually made with the goal of optimizing some quantity; for example, maximizing the yield of a 
product by modifying its synthetic procedure43 or tuning the properties of a material with respect 
to its structure, composition, or processing conditions44. Alternatively, decisions can be made to 
formulate experimental tests that reveal information regarding a specific process45. In synthesis, 
for example, this may entail exploring various combinations of reactants and conditions followed 
by observation of their products to construct a network of possible reaction pathways in a system 
of interest. Regardless of the underlying motivations, the desired outcome of decision making 
remains the same: reaching a pre-defined optimum while minimizing time and costs. To this end, 
a variety of active learning techniques exist to iteratively learn from and query data in the design 
space. Before reviewing available active learning algorithms, it is first important to understand 
why active learning is necessary by considering the alternative methods listed in Figure 1-3 and 
highlighting their shortcomings.  

A simple and widely used optimization strategy is to perform a brute-force search of the 
design space, thus avoiding decision making altogether. Such is the concept underlying high-
throughpout workflows, where a grid of data points is generated from combinatorial sampling of 
experimental parameters46. From this dataset, analysis may then be conducted ex post facto to 
identify relationships among variables and estimate any optima in the objective of interest. As the 
reliability of these conclusions depends on how well the design space has been sampled, a large 
number of experiments are typically necessary to obtain satisfactory results. Consequently, 
successful applications of high-throughput platforms have been limited to problems for which (a) 
the appropriate experiments are inexpensive, quick, and easily parallelized, or (b) the design space 
of interest is relatively narrow. A sufficiently dense sampling of compositions on thin films 
spanning ternary spaces, for example, can typically be achieved using several hundred samples47. 
In contrast, generating a grid of equal density for quaternary systems requires several thousand 
samples. Additionally, process variables may add extra dimensions to the design space. As the 
number of necessary experiments scales exponentially with the dimension of the design space, 



 7 

combinatorial techniques quickly become intractable when many variables are introduced. These 
problems are sometimes simplified by partitioning the design space and focusing on a much 
smaller subset of interest48; however, this solution is not generalizable because the most interesting 
region of the design space is generally unknown. Therefore, to efficiently explore the entire design 
space, active learning is required. 
 

 
Figure 1-3. An illustration of the three general approaches to optimization. (Left) Combinatorial 
approaches sample many possible combinations of design variables (𝜈! ), sometimes chosen 
uniformly across the design space. (Center) Passive learning employs existing data points (blue 
dots) to form a model of the objective and make predictions regarding the location of its optimum 
(shaded region). (Right) Active learning builds upon this approach by suggesting new points at 
which to evaluate the objective (purple dots), from which the information is used to update the 
initial predictions and once again suggest new points to be queried (red dots), forming an iterative 
loop which is traversed until convergence to the true optimum is reached. 
 

Contrary to high-throughput experimentation, existing data can be used to learn trends and 
predict optima in the objective function without performing any new experiments. As the learner 
simply observes the environment without interacting with it to query new information, this 
technique is sometimes called passive learning to distinguish it from its active counterpart. Enabled 
by the development of ML models and a growing amount of available data, passive learning has 
found widespread use throughout materials science. For a detailed overview of common ML 
algorithms and their application in materials science, we refer the reader to several recent reviews 
on the topic49,50. Here, we narrow our discussion to focus on two key limitations of passive learning 
as applied to optimization. First, the accuracy of the model is heavily reliant on both the volume 
and diversity of training data. In many situations, the design space of interest is sparsely populated. 
For example, applying ML to inorganic synthesis remains difficult because there are often few 
procedures reported to make a given compound, and that information must be extracted from the 
literature as relevant synthesis databases are limited51. Moreover, even in cases where more data 
is available, it tends to be biased toward specific regions of the design space. This bias commonly 
originates from a tendency for researchers to only publish positive results while leaving negative 
results unreported52, or because many studies pursue minor modifications of an already successful 
material/procedure. Such data bias will limit the diversity of the training set and negatively affect 
the performance or applicability of the corresponding model. In addition to the limitations imposed 
by the sparsity of training data, passive learning models are inherently inept at predicting outliers, 
instead relying on the recognition of general trends in the data. While this capability is sufficient 
for many studies, it becomes problematic for optimization problems where the global extrema are 
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of interest. To overcome these limitations, it is necessary to acquire new data so that the model 
can continuously learn and improve its accuracy, thus ensuring correct identification of optima.  

Active learning techniques are gaining traction throughout materials science, with multiple 
applications recently demonstrated in automated experimental workflows53. In situations where 
little is known about the system at hand, the objective function being optimized by active learning 
can be treated as a “black box,” i.e., an opaque function that must be queried at individual points 
through experimentation or simulation. Performing black-box optimization, a topic that has been 
studied extensively and applied throughout many areas of science and technology, requires the 
consideration of two key constraints. First, as no analytical form of the objective function is 
available, optimization must be carried out without the use of exact derivatives. Second, the 
objective landscape may generally be non-convex, requiring global instead of local optimization. 
These properties exclude the application of explicit gradient-based and pure local search methods 
respectively. Moreover, extending black-box optimization specifically to experimentation presents 
an additional challenge: evaluation of the objective is usually expensive and time-consuming, 
stressing the importance of reaching convergence in a minimal number of steps. The high cost of 
data acquisition further excludes algorithms that approximate derivatives via finite differences 
owing to their inefficiency with respect to the number of evaluations required. Instead, a variety 
of efficient and derivative-free techniques have been developed to perform global optimization on 
black-box functions.  

Many of the earliest optimization techniques used in experimental workflows were based 
on genetic algorithms46. In this approach, an initial batch (or generation) of experiments is 
conducted to evaluate the objective function(s). From the results, a new batch of experiments is 
suggested based on three processes: (i) selection dictates which samples are chosen to contribute 
to the next generation of experiments, (ii) crossover determines how the properties of selected 
samples are merged to suggest new experiments, and (iii) mutation applies random variations to 
the properties of suggested experiments. Each process is controlled by a set of hyperparameters 
(e.g., the rate at which mutation is applied) defined by the user. From the corresponding 
modifications, new generations of experiments are iteratively produced until convergence of the 
objective function(s) is reached. Because genetic algorithms impose a bias toward promising 
regions of the design space by selectively sampling experiments where the objective function is 
expected to be optimal, they generally provide increased efficiency relative to combinatorial 
techniques. Genetic algorithms are also well-suited to handle a large number of variables, both 
qualitative and quantitative, and can perform well in multi-modal design spaces assuming that a 
sufficiently high mutation rate is used to escape local optima. 

Another widely used optimization technique is the SNOBFIT (Stable Noisy Optimization 
by Branch and FIT) algorithm54, which combines aspects from local and global search strategies 
to efficiently optimize an objective function. From a given dataset, SNOBFIT employs a branching 
algorithm to partition the design space into unique sub-regions, each containing a single known 
datapoint. Within each region, a local model of the objective function is constructed via least-
squares quadratic fitting of the contained datapoint and its nearest neighbors. These models 
represent the objective function locally but do not necessarily describe it globally – each quadratic 
fitting is performed independently using a subset of known datapoints. The resulting models are 
then used to predict and suggest sampling of new datapoints in regions where the objective 
function is expected to be optimal. At the same time, sampling is also suggested in sparsely 
populated regions to ensure the global optimum is not missed. Although SNOBFIT often improves 
efficiency relative to combinatorial methods and genetic algorithms, it still displays several 
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shortcomings that limit its applicability to certain optimization problems. First, its performance 
deteriorates when applied to problems with high-dimensional parameter spaces55. Second, it is not 
capable of directly handling multi-objective optimization procedures without combining those 
objectives into one composite score56. Last, SNOBFIT operates by establishing a set of individual 
models (e.g., quadratic functions) fit to approximate local regions of the objective function without 
providing a global model for the entire system. This approach limits interpretability and makes it 
difficult to draw conclusions regarding general relationships between the variables and objectives. 

In cases where evaluating the black-box objective function is particularly costly, and 
therefore minimizing the total number of iterations required for to find an optimum is critical, 
Bayesian optimization is often used. This makes it the method of choice for most autonomous 
experimental workflows57. Bayesian optimization is performed by considering a known and 
differentiable surrogate model rather than on the objective function itself. This surrogate model 
approximates the objective function using all available data points (e.g., from previously 
conducted experiments). This approximation is given by a probabilistic distribution of functions 
known as the prior, which is actively updated as new datapoints are sampled to form a posterior 
distribution that more closely resembles the true objective function. Calculating the prior and 
posterior are essentially regression problems that can be solved using several techniques, making 
Bayesian optimization versatile with respect to the types of data it can handle. Two models that 
are most commonly used for regression are Gaussian processes and random forests, which 
typically work well with continuous and discrete search spaces, respectively8. 

While Bayesian optimization provides an effective approach to maximize costly objective 
functions, it still can become inefficient in particularly large search spaces. Such cases warrant the 
use of physics-informed methods that simplify the search space or bias the optimization algorithm 
toward promising regions of it. For example, data fusion has been used to map existing information 
from multiple sources onto an ensemble model, in which all the knowledge is represented using a 
single composite function. This method is commonly used to obtain an optimal balance between 
theory and experiment – the former is cheap to evaluate but prone to inaccuracy, whereas the latter 
is accurate but expensive to carry out. One application of this method is in the optimization of 
materials’ thermodynamic stability by combining density functional theory (DFT) calculations 
with experimental observations of decomposition58. On the other hand, when multiple data sources 
are not available, prior knowledge (e.g., chemical intuition) can instead be leveraged to formulate 
rule-based optimization algorithms – sometimes referred to as hypothetico-deductive modeling. 
King et al. pioneered the automation of this approach in their design and application of a robotic 
scientist named Adam59, which systematically probed metabolic networks for gene identification. 
Though, one notable limitation of the hypothetico-deductive approach to optimization is that it 
generally requires careful redesign to handle each specific problem. In Chapter 4 of this 
dissertation, I will describe our own development of a rule-based algorithms that also incorporates 
elements of data fusion to optimize solid-state synthesis procedures targeting inorganic materials.  
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CHAPTER 2   Automating the interpretation of 
multi-phase XRD patterns with deep learning 
 
 
 
The work presented in this chapter is based, often verbatim, on the following publication: 
N. J. Szymanski, C. J. Bartel., Y. Zeng, Q. Tu, and G. Ceder, “Probabilistic Deep Learning 
Approach to Automate the Interpretation of Multi-phase Diffraction Spectra.” Chemistry of 
Materials 2021, 33 (11), 4204-4215. 
 
 
Autonomous synthesis and characterization of inorganic materials requires the automatic and 
accurate analysis of XRD patterns. For this task, we designed a probabilistic deep learning 
algorithm to identify complex multi-phase mixtures.  At the core of this algorithm lies an ensemble 
of CNNs trained on simulated diffraction patterns, which are systematically augmented with 
physics-informed perturbations to account for artifacts that can arise during experimental sample 
preparation and synthesis. Larger perturbations associated with off-stoichiometry are also captured 
by supplementing the training set with hypothetical solid solutions. Pattern containing mixtures of 
materials are analyzed with a newly developed branching algorithm that utilizes the probabilistic 
nature of the neural network to explore suspected mixtures and identify the set of phases that 
maximize confidence in the prediction. Our model is benchmarked on simulated and 
experimentally measured diffraction patterns, showing exceptional performance with accuracies 
exceeding those given by previously reported methods based on profile matching and deep 
learning. We envision that the algorithm presented here may be integrated in experimental 
workflows to facilitate the high-throughput and autonomous discovery of inorganic materials.  

 
 
2.1 Introduction 
The development of high-throughput and automated experimentation has ignited rapid growth in 
the amount of data available for materials science and chemistry15,60. Unlocking the physical 
implications of resulting datasets, however, requires detailed analyses that are traditionally 
conducted by human experts. In the synthesis of inorganic materials, this often entails the manual 
interpretation of XRD patterns to identify the phases present in each sample. Past attempts to 
automate this procedure using peak indexing29,32 and full profile matching33,37 algorithms have 
been limited by modest accuracy, in large part because measured patterns usually deviate from 
their ideal reference patterns (e.g., due to defects or impurities). Consequently, the analysis of 
XRD patterns widely remains a manual task, impeding rapid materials discovery and design. To 
alleviate this bottleneck, deep learning based on the CNN architecture has recently emerged as a 
potential tool for automating the interpretation of diffraction patterns with improved speed and 
accuracy42,61.  

Previous work has demonstrated that CNNs can be used to perform symmetry 
classification38 and phase identification41 from XRD patterns of single-phase samples. Given the 
lack of well-curated diffraction data obtained experimentally, training is most commonly 
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performed on labeled sets of simulated patterns derived from known crystalline materials, e.g., in 
the ICSD62. However, because many factors can cause differences between observed and 
simulated diffraction peaks, this approach can be problematic for extension to experimentally 
measured data. Vecsei et al. demonstrated that a neural network trained on simulated data produced 
an accuracy of only 54% for the classification of experimentally measured diffraction patterns 
extracted from the RRUFF database39. To overcome this limitation, simulated patterns can be 
augmented with perturbations designed to emulate possible artifacts. For example, Oviedo et al. 
trained a CNN using simulated patterns augmented with random changes in their peak positions 
and intensities, which were chosen to account for texture and epitaxial strain in the thin films being 
studied61. The resulting model correctly classified the space group for 84% of diffraction patterns 
measured from 115 metal halide samples. Based on past work, we propose that generalization of 
deep learning to handle complex XRD patterns requires a more complete data augmentation 
procedure that properly accounts for all the artifacts and complexities that frequently arise during 
sample preparation and synthesis.  
 To extend the application of CNNs to mixtures of materials, Lee et al. constructed a 
training set of multi-phase samples that were simulated using linear combinations of single-phase 
diffraction patterns from 38 phases in the quaternary Sr-Li-Al-O space42. Their model performed 
well in the identification of high-purity samples, with 98% of all phases correctly labeled based on 
100 three-phase patterns. However, the combinatorial nature of their technique requires an 
exceptionally high number of training samples (nearly two million patterns from 38 phases), which 
restricts the inclusion of experimental artifacts via data augmentation. Moreover, because the 
number of training samples increases exponentially with the number of reference phases, the 
breadth of the composition space that can be efficiently considered is limited. Proposing an 
alternative approach, Maffettone et al. designed an ensemble model trained on simulated single-
phase patterns to yield a probability distribution of suspected phases for a given sample41. From 
this distribution, the authors infer that high probabilities suggest that the corresponding phases are 
present in the mixture. While this method avoids combinatorial explosion and thus allows many 
experimental artifacts to be included during training, it sometimes leads to confusion as obtaining 
comparable probabilities for two phases does not necessarily imply that both are present. Rather, 
it may simply mean that the algorithm has difficulty distinguishing between the two phases. An 
improved treatment of multi-phase patterns therefore necessitates an approach that (i) allows 
artifacts to be incorporated across many phases and (ii) distinguishes between probabilities 
associated with mixtures of phases as opposed to similarities between single-phase reference 
patterns. 
 In this work, we introduce a novel deep learning technique to automate the identification 
of inorganic materials from XRD patterns of single- and multi-phase samples. In our approach, 
training patterns are generated with physics-informed data augmentation whereby experimental 
artifacts (strain, texture, and domain size) are used to perturb diffraction peaks. The training set is 
built not only from experimentally reported stoichiometric phases, but also from hypothetical solid 
solutions that account for potential off-stoichiometries. An ensemble CNN is trained to yield a 
distribution of probabilities associated with suspected phases, which is shown to be a surrogate for 
prediction confidence. We extend this probabilistic model to the analysis of multi-phase mixtures 
by developing an intelligent branching algorithm that iterates between phase identification and 
profile subtraction to maximize the probability over all phases in the predicted mixture. As a 
representative example to assess the efficacy of our approach, we trained and tested a model on 
diffraction patterns derived from materials in the broad Li-Mn-Ti-O-F composition space given 
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their structural diversity and technological relevance. By also systematically testing on a dataset 
of experimentally measured XRD patterns designed to sample complexities that often arise during 
synthesis, we show that our model achieves considerably higher accuracy than state-of-the-art 
profile matching techniques as well as previously developed deep learning-based methods. The 
improved performance demonstrated here should be generalizable to any alternative chemical 
space (beyond Li-Mn-Ti-O-F) through application of the same data augmentation and training 
procedures to any given set of phases from the space of interest. 
 
2.2 Methods 
2.2.1 Stoichiometric reference phases 
The identification of inorganic materials from their XRD patterns relies on the availability of 
suitable reference phases that can be compared to samples of interest. In this work, we focus on 
the Li-Mn-Ti-O-F chemical space (and subspaces) and retrieved all 1,216 corresponding entries 
from the ICSD. For the identification of stoichiometric materials, we excluded 386 entries with 
partial occupancies from this set. To remove duplicate structures from the remaining 830 entries, 
all unique structural frameworks were identified using the pymatgen structure matcher63. For each 
set of duplicates, the entry measured most recently at conditions nearest ambient (20 °C and 1 atm) 
were retained. Based on these selection criteria, 140 unique stoichiometric materials were 
tabulated and used as reference phases. The code used to apply these selection criteria and create 
a set of unique reference phases from ICSD entries in any given composition space is available at 
https://github.com/njszym/XRD-AutoAnalyzer. 
 
2.2.2 Non-stoichiometric reference phases 
Although many solid solutions are available in the ICSD, they generally cover a narrow 
composition range while leaving others sparse. We therefore designed an algorithm to extend the 
space of non-stoichiometric reference phases by using empirical rules to construct hypothetical 
solid solutions between the available stoichiometric materials. To determine which phases may be 
soluble with one another, all combinations of the 140 stoichiometric references phases in the Li-
Mn-Ti-O-F space were enumerated and two criteria were considered for each pair. First, solubility 
requires that the two phases adopt similar structural frameworks, which was verified using the 
pymatgen structure matcher. Second, based on the Hume-Rothery rules, the size mismatch 
between any ions being substituted with one another should be ≤ 15%. To estimate the ionic radii 
of all species comprising each phase, oxidation states were assigned using the composition-based 
oxidation state prediction tool in pymatgen63. In cases where mixed oxidation states are present 
(e.g., Mn3+/4+), we chose to focus on the state(s) that minimizes the difference between the radii of 
the ions being substituted and therefore increases the likelihood for solubility. As will be shown 
by our test results, including more reference phases does not lead to a substantial decrease in 
accuracy; hence, it is preferable to overestimate solubility such that more structures are created as 
potential references.  
 Based on the 140 stoichiometric reference phases in the Li-Mn-Ti-O-F space, 43 pairs of 
phases were found to satisfy both solubility criteria described above. The phases in each pair were 
treated as end-members, from which interpolation was used to generate a uniform grid of three 
intermediate solid solution compositions. For example, between spinel LiMn2O4 and LiTi2O4, 
intermediate compositions take the form LiMn2-xTixO4 with 𝑥 ∈ {0.5, 1.0, 1.5} . The lattice 
parameters of hypothetical solid solutions were linearly interpolated between those of the 

https://github.com/njszym/XRD-AutoAnalyzer
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corresponding end-members in accordance with Vegard’s law. Atomic positions and site 
occupancies were similarly obtained by interpolating between equivalent sites in the end-members. 
This procedure gave a total of 129 hypothetical solid solution states from the 43 pairs of soluble 
phases. Excluding 14 duplicates resulted in 115 distinct solid solutions. The code for generating 
hypothetical solid solutions for an arbitrary group of stoichiometric reference phases is available 
at https://github.com/njszym/XRD-AutoAnalyzer. 
 
2.2.3 Data augmentation 
From the reference phases in the Li-Mn-Ti-O-F space, we built an augmented dataset of simulated 
XRD patterns with the goal of accurately representing experimentally measured diffraction data. 
Physics-informed data augmentation was applied to produce XRD patterns that sample various 
changes in peak positions, intensities, and widths. Shifts in peak positions (2𝜃) were derived by 
creating modified unit cells with up to ±4% strain in each lattice parameter. This was done by 
applying strain tensors to the lattice parameter matrix 2𝑎⃗, 𝑏6⃗ , 𝑐	9 that preserve the space group of 
each structure. Internal cell coordinates were left unchanged so that only peak positions were 
affected. Peak widths were broadened by simulating domain sizes ranging from 1 nm (broad) to 
100 nm (narrow) through the Scherrer equation. Peak intensities were varied to mimic preferred 
orientation along preferred crystallographic planes (hereafter referred to as texture). This was done 
by performing scalar products between the peak indices and randomly selected Miller indices 
(ℎ𝑘𝑙), followed by a normalization that scaled peak intensities by as much as ±50% of their initial 
values.  
 The bounds used for each artifact are chosen such that perturbations to the simulated data 
are large enough to capture possible experimental complexities, but not so large that they produce 
patterns that are unlikely to ever arise in experiment. Although it is difficult to rigorously define 
the range of artifacts that may occur, we used our prior experience and physics-based intuition to 
determine the extent of strain, texture, and domain size described in the previous paragraph. We 
note that larger variations may arise when substantial off-stoichiometry is present; however, this 
situation was treated separately by the addition of non-stoichiometric solid solutions as reference 
phases. In Figure 2-1a, we illustrate the effect of each of the three experimental artifacts on the 
XRD pattern of spinel Mn3O4 as an example. Each artifact was applied separately to the simulated 
pattern by taking 50 random samples from a normal distribution (e.g., between −5% and +5%), 
resulting in 150 augmented XRD patterns per reference phase (50 samples for each of the three 
artifacts). Applying this procedure to all 255 references phases, including both experimentally 
reported stoichiometric materials and hypothetical solid solutions, resulted in 38,250 simulated 
diffraction patterns. The code to perform data augmentation for an arbitrary group of reference 
phases is available at https://github.com/njszym/XRD-AutoAnalyzer. Although all patterns used 
here were derived using Cu	K" radiation, any wavelength can be specified by the user. Therefore, 
our model can be applied to diffraction data measured using a variety of in-lab diffractometers or 
synchrotron light sources. 
 

 
 
 

https://github.com/njszym/XRD-AutoAnalyzer
https://github.com/njszym/XRD-AutoAnalyzer
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Figure 2-1. An overview of the method used to automate phase identification from XRD patterns. 
(a) Three examples of the data augmentation procedure designed to sample possible experimental 
artifacts including peak shift associated with cell strain, peak broadening related to small domain 
size, and peak intensity variation caused by texture. (b) A schematic of the deep learning pipeline 
used to map XRD patterns onto a probability distribution of suspected phases.  
 
2.2.4 Convolutional neural network 
The workflow used to classify a given XRD pattern is displayed in Figure 2-1b. Diffraction 
patterns are treated as one-dimensional vectors that contain 4,501 values for intensity as a function 
of 2𝜃. The range of 2𝜃 is set from 10° to 80°, which is commonly used for scans with Cu 𝐾" 
radiation (𝜆 = 1.5406	Å). The intensities (represented as 4,501-valued vectors) serve as input to a 
CNN that consists of six convolutional layers, six pooling layers, and three fully connected layers. 
Training was carried out with five-fold cross-validation using 80% of the simulated diffraction 
patterns, with the remaining 20% reserved for testing (i.e., excluded from training and validation). 
The code used for training CNNs on new reference phases in arbitrary chemical spaces is also 
available at https://github.com/njszym/XRD-AutoAnalyzer. To classify patterns outside of the 
training set, an ensemble approach was used whereby 1,000 individual predictions are made with 
60% of connections between the fully connected layers randomly excluded (using dropout) during 
each iteration. The probability that a given phase represents the pattern is then defined as the 
fraction of the 1,000 iterations where it is predicted by the CNN. The resulting distribution may 
be treated as a ranking of suspected phases in the sample, with corresponding probabilities 
providing measures of confidence.  
 
  

https://github.com/njszym/XRD-AutoAnalyzer
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2.2.5 Intelligent branching algorithm 
Given that the CNN was trained only on single-phase XRD patterns, additional methods were 
developed to automate the identification of materials in multi-phase mixtures. In our workflow, 
we use an iterative procedure where phase identification is followed by profile fitting and 
subtraction. Once a phase is identified by the CNN, its diffraction peaks are simulated and fit to 
the pattern in question using DTW, a well-known technique for correlating features in time series. 
In contrast to Rietveld refinement, which is typically conducted manually using expert intuition 
regarding the structure and composition of each phase, DTW is readily automated as it requires no 
physical input other than a user-specified window in which features can be correlated. For this 
work, we use a window of ∆2𝜃 = 1.5° since larger peak shifts are typically not expected. After 
DTW has been applied to fit the simulated pattern along 2𝜃, its diffraction peaks are scaled to 
minimize the average difference between the simulated and measured intensities. By using an 
average difference rather than focusing only on the largest peaks, we aim to avoid scaling errors 
caused by overlapping peaks between different phases. Following this scaling process, the profile 
of the identified phase is subtracted to produce a modified pattern that is representative of the 
mixture minus the phase that has already been identified. In other words, all known peaks are 
iteratively removed from the pattern. This process is repeated until all significant peaks are 
attributed to a reference phase, i.e., the cycle is halted once all intensities fall below 5% of the 
initially measured maximum intensity. 
 Following the iterative procedure outlined above, one could identify a multi-phase mixture 
by using the collection of most probable phases given by the model at each step. However, because 
the pattern is affected by all prior phases that have been identified, such a method over-prioritizes 
the first iteration of phase identification. In cases where the first phase predicted by the CNN is 
incorrect, the pattern resulting from profile fitting and subtraction will contain diffraction peaks 
that do not accurately represent the remaining phases in the sample. All subsequent analyses will 
therefore be less likely to identify these phases. To improve upon this approach, we developed an 
intelligent branching algorithm that gives equal importance to each iteration of phase 
identification. In Figure 2-2, we illustrate how the algorithm evaluates several possible sets of 
phases to classify a diffraction pattern derived from a mixture of Li2TiO3, Mn3O4, and Li2O. At 
each step, the CNN generates a list of suspected phases along with their associated probabilities. 
As opposed to considering only the most probable phase at each iteration, the branching algorithm 
investigates all phases with non-trivial probabilities (≥ 10%). By following the pattern associated 
with the subtraction of each suspected phase, a “tree” is constructed to describe all combinations 
of phases predicted by the model. Once each route has been fully exhausted, the branch with the 
highest average probability is chosen as the final set of predicted phases (e.g., the green phases 
highlighted in Figure 2-2). In this way, the algorithm maximizes the likelihood that predictions 
are representative of all phases contained in the actual mixture, as opposed to over-prioritizing the 
first iteration of phase identification. We found that this is an essential feature to predict multi-
phase samples correctly. 
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Figure 2-2. A schematic illustrating various pathways enumerated by the branching algorithm for 
multi-phase identification. This method iteratively performs single-phase predictions followed by 
profile-stripping, at each step tabulating the probability associated with each phase. This process 
is repeated until all intensities fall below 5% of the original maximum value. From all branches 
developed, the one with the highest average probability (highlighted green above) across all levels 
is chosen as the most likely set of phases present in the mixture. 
 
2.2.6 Experimental measurements 
To further validate our model, we built an experimental dataset from a series of measurements 
designed to sample complexities that often arise during synthesis. Ten materials were chosen to 
span a range of structures and compositions in the Li-Mn-Ti-O-F space. For a benchmark on 
pristine single-phase XRD patterns with no intended artifacts, we conducted precise diffraction 
measurements on each of the ten materials using carefully prepared, high-purity samples. The 
following modifications were then separately introduced such that each batch of samples contained 
one anticipated artifact: (i) samples were overlaid with Kapton tape during characterization to 
produce a diffuse background signal with a magnitude as large as 200% of the highest diffraction 
peak intensity; (ii) rapid scan rates (30°/minute) were used to generate noisy baseline signals with 
magnitudes reaching 5% of the maximum diffraction peak intensity; (iii) peak shifts as large as 
0.4° were imposed by preparing thick pellets such that specimens were leveled slightly above the 
sample holder; (iv) broad peaks with full widths at half maxima as large as 1.5° were obtained by 
ball milling. Several additional materials were also made to sample changes in composition and 
site occupancy. Six samples of spinel LiMnTiO4 were synthesized at temperatures of 900 °C, 950 
°C, and 1000 °C followed by quenching or slow cooling based on previous reports64. These 
samples were intended to contain differences in relative diffraction peak intensities owing to varied 
distributions of cation site occupancies. Non-stoichiometry was studied using four disordered 
rocksalt phases, each with a different composition made via solid-state synthesis. For the 
classification of multi-phase XRD patterns, ten two- and three-phase mixtures were prepared from 
combinations of materials in the Li-Mn-Ti-O-F space that were chosen to include patterns with a 
substantial amount of peak overlap. The mixtures contained equal weight fractions of all 
constituent phases. To isolate the effects of multiple phases, these measurements were conducted 
on samples for which no experimental artifacts were purposefully incorporated. 
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2.3 Results 
2.3.1 Identification of stoichiometric phases 
As a first test case, we evaluated the performance of our model on simulated single-phase XRD 
patterns derived from the 140 stoichiometric reference phases in the Li-Mn-Ti-O-F space. 
Accordingly, the CNN was trained on 80% of the 21,000 generated patterns (140 materials × 150 
augmentations) that were augmented to include physics-informed perturbations to their diffraction 
peak positions, widths, and intensities. The remaining 4,200 patterns were reserved for testing. To 
assess the ability of the CNN to handle artifacts not considered during training, the test set was 
also supplemented with patterns that have diffuse and noisy background signals. A diffuse 
background was simulated by adding an XRD pattern measured from amorphous silica to the 
diffraction peaks of the stoichiometric materials. Ten patterns were created for each phase (1,400 
in total), with the maximum intensity produced by silica ranging from 100-300% of the maximum 
peak intensity of the reference phase. Another 1,400 patterns were simulated by adding Gaussian 
noise with magnitudes ranging from 1-5% of the maximum diffraction peak intensity. Before being 
passed to the CNN, these 2,800 patterns were pre-processed using the baseline correction and noise 
filtering algorithms. This procedure is designed to replicate artifacts formed when imperfect 
corrections are made during pre-processing, which occasionally leads to the disappearance of 
minor peaks or leaves behind residual intensities related to amorphous impurities. Previous work 
has dealt with diffuse and noisy background signals by training on patterns with added baseline 
functions (e.g., polynomials)41. However, because these functions are randomly selected rather 
than derived from possible impurities or defects, they are unlikely to accurately represent 
experimental measurements. With this in mind, our current approach relies only on physics-
informed data augmentation to improve the match between simulated and experimentally 
measured data.  

The performance of our model is compared to a known standard, the JADE software 
package from MDI65. JADE is a widely used program that can automate phase identification with 
conventional profile matching techniques. During testing, JADE was employed without any 
manual intervention to ensure a consistent comparison with the CNN, as we are assessing the 
capability of our approach to perform phase identification as part of an autonomous platform. We 
emphasize that our model is not designed to replace manual techniques such as Rietveld 
refinement, but rather to provide more rapid and reliable predictions regarding phase identities. 
For this task, we applied both the trained CNN and JADE to the test set of simulated diffraction 
patterns that sample possible experimental artifacts separately as discussed in the Methods. In 
Figure 2-3a, we compare the resulting accuracy of each method quantified as the fraction of phases 
correctly identified. Across the simulated test patterns, the CNN achieves a high accuracy of 94%. 
In contrast, JADE correctly identifies only 78% of phases when applied to the same set of data. To 
further verify the effectiveness of the CNN, an additional 1,400 patterns were simulated with mixed 
artifacts such that each pattern contains all aforementioned perturbations to its diffraction peaks 
(shifting, broadening, and texture) as well as a diffuse and noisy background signal. This 
incorporates an additional level of complexity not included in the training set, where each pattern 
contained just one type of perturbation. When applied to the new test set with mixed artifacts, the 
accuracy of the CNN decreases only 2% (from 94% to 92%), whereas the accuracy of JADE 
decreases 10% (from 78% to 68%).  
 The tests show promising results for the CNN, though its performance is not without error. 
We look to the underlying causes of the occasional misclassifications that occur by dividing the 
simulated test patterns into four major categories: those augmented via the individual application 
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of peak shifts, peak broadening, peak intensity change, and background effects (including diffuse 
and noisy baselines). The training set remains unchanged from the previous paragraph. In Figure 
2-3b, we show the fraction of misclassifications that arise from each perturbation category. Of the 
7,000 total test patterns, 418 are misclassified by the CNN. The largest portion (48%) of 
misclassifications occur for samples containing peak shifts, which we attribute to the overlapping 
of diffraction peaks between similar phases. This most commonly occurs between isomorphic 
phases and, as a result, the CNN gives a higher accuracy for the identification of structure (96%) 
as opposed to composition (92%). We investigated the effects of increasing the bounds on strain 
that were used during training (beyond ±4%); however, a decrease in accuracy was observed as 
larger strains were incorporated. For example, training on patterns derived from structures with 
strain as large as ±6% led to a lower accuracy of 86% when applied to the test set containing 
samples with as much as ±4% strain. Relative to peak shifts caused by strain, patterns with broad 
peaks lead to fewer misclassifications, comprising 27% of errors. For this effect, misclassification 
occurs more frequently in low-symmetry structures as they contain many diffraction peaks that 
tend to overlap with one another upon broadening. Of the 113 samples that are incorrectly 
classified by the CNN due to peak broadening, 82 are from phases with monoclinic or triclinic 
symmetry. The remaining artifacts, including texture and background effects, show a relatively 
weak influence on the accuracy of the CNN. Because both of these artifacts cause changes in 
relative peak intensities, the distribution of misclassifications suggest that peak intensities have a 
more subtle role in single-phase identification. 
 
 

 
Figure 2-3. Test results from the automated identification of single-phase XRD patterns. (a) 
Accuracies of the CNN and JADE when applied to simulated patterns with individual or mixed 
artifacts. (b) Sources of error in the CNN are illustrated by the fraction of misclassifications that 
occur for patterns with each separate artifact. (c) Distributions of probabilities given by the CNN 
when correct and incorrect classification are made during testing on data containing mixed 
artifacts. Violins plots illustrate the density of probabilities, whereas embedded boxes extend from 
the lower to upper quartiles. Black dots are used to denote the average probability in each case. 
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 To assess the reliability of predictions made by our model, we examined the probability 
distributions given by the ensemble CNN. In Figure 2-3c, we compare the probabilities of correct 
and incorrect classifications made when the CNN is applied to simulated patterns containing mixed 
artifacts. All correct classifications are accompanied by a probability greater than 70%, with an 
average of 93%, whereas incorrect classifications show a wide range of probabilities with a much 
lower average of 46%. This dichotomy suggests that probabilities are akin to confidence in the 
prediction and may be used as a reliable metric to gauge the likelihood that a classification is 
correct. If, for example, predictions are constrained to those with a probability above 70% (which 
comprise 84% of all patterns in the test set), then the accuracy increases from 92% to 96%. On the 
other hand, when the probability is lower than 70%, we propose that the model should raise a “red 
flag,” signifying that manual intervention is needed to clarify the identity of the underlying phase. 
Interestingly, even when an incorrect classification is made regarding the most probable phase, the 
correct phase is present within the top three suspected phases for 99% of all test data. Therefore, 
though manual intervention may occasionally be required to handle complex patterns, the problem 
is greatly simplified by allowing the user to choose from a small set of probable phases. 
 

2.3.2 Incorporating non-stoichiometry 
To determine whether the accuracy of our model extends to non-stoichiometric materials, we built 
a test set of XRD patterns simulated from 20 experimentally reported solid solutions in the Li-Mn-
Ti-O-F chemical space. These materials were manually selected from the ICSD to ensure that their 
compositions are different (greater than 0.05 mole fraction) than those of the stoichiometric phases 
already considered in the previous section. To isolate the effects of non-stoichiometry, diffraction 
patterns were simulated without including any experimental artifacts. We first restricted the 
training set to include only diffraction patterns derived from stoichiometric materials to illustrate 
the necessity of including additional reference phases with non-stoichiometry (i.e., from 
hypothetical solid solutions). Similarly, JADE was applied to the new test set containing solid 
solutions while restricting its reference database to contain only stoichiometric phases. In doing 
so, neither method can be used to predict the exact compositions of the solid solutions. Instead, 
their prediction accuracy can be resolved into two components: (i) Is the predicted structure 
isomorphic to the true structure? (ii) How similar are the predicted and true compositions? 
Isomorphism was verified using the pymatgen structure matcher. Differences in compositions 
were quantified using the mole fraction distance between the barycentric coordinates of each phase 
in the Li-Mn-Ti-O-F chemical space (i.e., with each constituent element representing a vertex). 
For example, the compositional difference between LiMnO2 and LiMn0.5Ti0.5O2 is quantified as 
0.125 mole fraction since 0.5 out of 4 elements are interchanged in the formula unit.  
 In Figure 2-4a, we show the fraction of non-stoichiometric materials with structures 
correctly identified by the CNN and JADE when only stoichiometric reference patterns are used 
for training or profile matching. This case is labeled “Without NS” where NS denotes non-
stoichiometry. The CNN correctly classifies the structures of 11/20 patterns, whereas JADE gives 
only 7/20 correct structural classifications. For the same set of data, we illustrate the differences 
between true compositions and those predicted by the CNN in Figure 2-4b. Errors in the predicted 
compositions range from 0.05 to 0.82 mole fraction, with an average value of 0.38. Therefore, 
when only stoichiometric reference phases are used, neither the deep learning algorithm nor 
conventional profile matching techniques can be utilized to reliably predict the structure or 
composition of non-stoichiometric materials from their diffraction patterns. This conclusion 
supports our initial expectations given that substantial off-stoichiometry is known to cause large 
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changes in the positions and intensities of diffraction peaks. Although data augmentation is useful 
(and necessary) to account for relatively weak deviations from ideality, it is not capable of 
extrapolating to larger changes well beyond those included in the training set. 
 

 
Figure 2-4. Test results from the automated identification of non-stoichiometric phases. (a) For a 
set of diffraction patterns derived from 20 solid solutions, the fractions of structures correctly 
identified by the CNN and JADE are shown in two cases: (i) when the training set includes only 
stoichiometric reference phases (Without NS), and (ii) when the training set is augmented with 
hypothetical solid solutions (With NS). (b) For the same set of patterns, differences between true 
compositions and those predicted by the CNN are quantified by their mole fraction difference. 
Violin plots illustrate the full distribution of errors, whereas embedded boxes range from lower to 
upper quartiles. Black dots are used to denote the average probability given in each case. 
 

A proper treatment of non-stoichiometry necessitates additional reference phases with 
compositions that more closely match experimentally observed solid solutions. To this end, we 
introduced XRD patterns simulated from hypothetical solid solutions spanning the Li-Mn-Ti-O-F 
space into the training set. In addition to the 21,000 patterns obtained from the 140 stoichiometric 
materials, 17,250 new patterns were derived from 115 hypothetical solid solutions (115 materials 
× 150 augmentations). Perturbations were applied via the data augmentation procedure described 
in the Methods, and 80% of the resulting data was used to re-train the CNN. For comparison, the 
same set of hypothetical solid solutions were also added to the reference database used by JADE. 
Both updated models were then applied to the test set containing 20 diffraction patterns simulated 
from the experimentally reported non-stoichiometric materials. The fraction of structures correctly 
identified by each method is displayed in Figure 2-4a, labeled “With NS”. In contrast to earlier 
results, the CNN and JADE achieve much higher accuracies of 95% and 70%, respectively. These 
improvements in performance are realized without sacrificing much accuracy in the classification 
of stoichiometric materials – our updated model correctly identifies 89% of phases across the test 
set containing simulated diffraction patterns with mixed artifacts, a decrease of only 3% compared 
to the CNN trained only on stoichiometric phases. In Figure 2-4b, we present the updated 
distribution of errors in compositions given by the CNN trained with non-stoichiometric phases. 
Differences between the predicted and true compositions now range from 0.02 to 0.54 mole 
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fraction, with an average value of 0.18. Hence, these results highlight the advantages of including 
non-stoichiometric reference phases, which nearly doubles the number of correctly identified 
structures and reduces compositional errors by ~50% when classifying experimentally reported 
solid solutions. 
 

2.3.3 Multi-phase classification 
Extending the CNN to characterize mixtures of materials, we constructed three new test sets, each 
containing 1,000 simulated multi-phase diffraction patterns. These tests were designed to mimic 
samples with multiple phases by creating linear combinations of single-phase diffraction peaks 
derived from 140 stoichiometric reference phases in the Li-Mn-Ti-O-F chemical space. The first 
two sets consider mixtures generated from randomly selected two- and three-phase combinations 
with equal weight fractions of the reference phases. In the last set, we probe the effects of impurity 
phases by simulating two-phase patterns where the weight fractions of the majority and minority 
phases are randomly set to constitute 70-90% and 10-30% of the mixture, respectively. In all three 
test cases, data augmentation is applied using mixed artifacts (peak shifting, broadening, and 
texture as well as a diffuse and noisy background signal) so that the resulting patterns provide an 
realistic representation of experimental measurements. 
 In addition to our newly developed branching algorithm (denoted B-CNN hereafter), multi-
phase identification was performed using three other techniques for comparison: (i) based on the 
work of Maffettone et al.41, a “single-shot” approach (S-CNN) was employed such that the two or 
three materials with the highest probabilities are chosen for each two- or three-phase mixture, 
respectively; (ii) by training the CNN explicitly on simulated multi-phase patterns (M-CNN) as 
described in the work of Lee et al.42, entire mixtures of phases are directly predicted as opposed to 
separately identifying individual phases; (iii) using JADE to obtain a list of suspected phases for 
each mixture based on profile matching, the two or three highest-ranked materials are chosen for 
two- and three-phase patterns, respectively. Given that method (ii) requires many possible linear 
combinations of single-phase patterns to produce sufficient data for training, only ideal diffraction 
patterns were used without applying any data augmentation. 
 In Figure 2-5a, we show the fraction of phases correctly identified by each of the four 
methods when tested on two- and three-phase mixtures with equally distributed weight fractions. 
Among all of the techniques considered here, our newly developed B-CNN algorithm achieves by 
far the highest accuracy, correctly identifying 87% and 78% of all materials from two- and three-
phase patterns, respectively. This outperforms the previous methods based on deep learning, with 
the S-CNN and M-CNN giving accuracies of 70% (54%) and 65% (58%) in the classification of 
two-phase (three-phase) mixtures. Despite their similarity in performance, these two approaches 
highlight separate limitations. Recall that the M-CNN does not utilize data augmentation to expand 
the diversity of its training set, and therefore often fails when applied to diffraction patterns 
containing large perturbations arising from experimental artifacts. In contrast, the S-CNN accounts 
for possible artifacts through physics-informed augmentation (as in our approach) and 
consequently is more robust against changes in the diffraction patterns. However, since the S-CNN 
identifies all phases in a “single shot” without subtracting known diffraction peaks, it leads to 
misclassifications when similar reference phases produce comparable probabilities for a given 
pattern. The B-CNN improves upon both shortcomings using an iterative process of single-phase 
identification and profile subtraction to achieve higher accuracy. Furthermore, by maximizing the 
probability over all phases in the predicted mixture, the B-CNN ensures that the first iteration of 
phase identification is not over-prioritized. If only the most probable phase is evaluated at each 
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step without maximizing probability over the entire mixture, lower accuracies of 78% and 69% 
are given across two- and three-phase mixtures, respectively. 
 

 
Figure 2-5. Test results from the automate identification of multi-phase XRD patterns. (a) The 
fractions of phases correctly identified by the B-CNN (*introduced in this work) when applied to 
simulated patterns of two- and three-phase mixtures with equally distributed weight fractions. For 
comparison, accuracies obtained using two existing methods (S-CNN13 and M-CNN8)  are shown, 
in addition to results from JADE. (b) These same techniques are applied to diffraction patterns of 
two-phase mixtures with unequally distributed weight fractions of 10-30% and 70-90%. 
Accuracies are divided into the identification of majority and minority phases. 
 
 In Figure 2-5b, we compare the accuracy of each approach for the classification of 
majority/minority two-phase mixtures. The B-CNN again outperforms all other evaluated 
approaches. However, the reliability of our model varies substantially in the identification of 
majority versus minority phases. The B-CNN correctly classifies 92% of all majority phases, 
matching its performance across single-phase patterns and therefore suggesting the presence of 
impurity phases has little to no effect on majority phase identification. Identifying minority phases, 
on the other hand, presents a greater challenge, as reflected by a lower accuracy of 64% given by 
the B-CNN. We note that most misclassifications occur due to imperfect applications of profile 
subtraction that occasionally leave behind residual intensities or subtract some diffraction peaks 
associated with the minority phase of interest. Despite this limitation in the identification of 
minority phases, the model generally performs reliably in their detection. Recall that the number 
of phases in a mixture is determined by halting the B-CNN when all diffraction intensities fall 
below 5% of the initially measured maximum intensity. With this cutoff, the B-CNN correctly 
reports the presence of a second phase in 93% of the two-phase mixtures with unequally distributed 
weight fractions. For comparison, when the B-CNN is applied to simulated single-phase patterns 
with mixed artifacts using the same cutoff intensity of 5%, the number of phases is overestimated 
in only 9% of the samples. The key component enabling a reliable prediction for the number of 
phases is the approach to profile subtraction. Here, known diffraction peaks are fit to the pattern 
through DTW so that their subtraction yields a new pattern that accurately represents the mixture 
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minus the phase(s) that has already been identified. This capability is particularly useful in the 
optimization of synthesis procedures, where it is of interest to know whether the formation of a 
targeted product is accompanied by some impurity phase. 
 
2.3.4 Application to experimental patterns 
As a final demonstration of the generalizability of our approach, the B-CNN was applied to 
experimentally measured XRD patterns in the Li-Mn-Ti-O-F chemical space. In Table 2-1, we list 
the fraction of phases correctly identified by the CNN versus JADE, with results categorized by 
the artifacts and number of phases included for each class of samples. For the classification of 
pristine diffraction patterns, the CNN correctly identifies all ten phases considered. Interestingly, 
JADE incorrectly classifies one material (Li2TiO3) from this category. Upon further inspection, 
the error is attributed to large deviations in the relative peak intensities between the measured and 
ideal patterns of Li2TiO3, possibly caused by stacking faults in the sample. In the analysis of data 
with diffuse and noisy background signals, the CNN correctly identifies all but one material 
(anatase TiO2), likely due to the fact that it exhibits significant diffraction peaks at low values of 
2𝜃 where the amorphous background is strong. JADE is found to be more sensitive to background 
effects as it yields five misclassifications across these 20 patterns. These misclassifications occur 
because JADE fails to index peaks that blend in with the background signal and have low 
intensities or broad widths after a baseline correction is applied. The CNN is more robust against 
these perturbations since it is trained on patterns that have diffraction peaks with varied intensities 
and widths.  
 For patterns containing peak shifts, the CNN correctly identifies five out of six phases. In 
contrast, JADE struggles to handle changes in peak positions, identifying only two phases from 
this category. This highlights a key weakness of profile matching techniques, which fail when 
there is weak overlap between measured and simulated diffraction peaks owing to a shift in 2𝜃. 
Fortunately, because the CNN can handle these changes through data augmentation, its 
performance remains reliable in the classification of patterns with peak shifts. When diffraction 
peaks are broadened, the CNN and JADE correctly identify five and four phases, respectively, 
from the five measured patterns. The single misclassification from JADE occurs for Li2MnO3 
owing to a strong overlapping of its neighboring diffraction peaks, an effect which is accounted 
for by the CNN during training. For the six patterns with changes in their peak intensities, the CNN 
correctly classifies five phases while JADE identifies four. The misclassification made by the CNN 
occurs because the varied peak intensities closely resemble those of a hypothetical solid solution 
(Li0.5Mn1.5TiO4) that is isomorphic to the true phase (LiMnTiO4). Across non-stoichiometric 
materials, the CNN correctly predicts all four materials to adopt the rocksalt structure, whereas 
JADE finds only three phases to be rocksalt. For both methods, the predictions are facilitated by 
the introduction of hypothetical solids solutions; without including these additional reference 
phases, neither the CNN nor JADE predicts any of the four samples to be rocksalt-structured. 
 For the classification of multi-phase mixtures, JADE provides limited accuracy. Only 7/10 
and 9/15 phases are correctly identified from two- and three-phase patterns, respectively. Such 
limitations in accuracy can be attributed to the inability of profile matching techniques to 
distinguish between diffraction peaks produced by several phases, which often overlap with one 
another. The B-CNN adeptly overcomes these limitations and correctly identifies 10/10 and 13/15 
phases in the two- and three-phase mixtures, respectively. Hence, the benefits provided by deep 
learning are highlighted by the noticeable disparity between the performance of the CNN versus 
JADE, especially when applied to multi-phase samples. This advantage is vital to assist in targeted 
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synthesis, considering that attempts to produce novel inorganic materials are frequently impeded 
by the appearance of multiple impurity phases. Our deep learning approach can therefore be used 
to identify not only desired products, but also impurity phases, which provide insight into why a 
given synthesis procedure failed and inform future attempts.  
 The results from testing the CNN on experimentally measured XRD patterns (Table 2-1) 
closely match the performance on simulated data. For example, in cases where we include a single 
type of artifact, the CNN correctly identifies 94% of the phases from both simulated and 
experimentally measured single-phase patterns. This lends credence to the simulation-based test 
cases that are rich in data (e.g., a total of 4,200 single-phase test patterns were derived from 
stoichiometric materials) and suggests that the simulated data used for training and testing provide 
a realistic representation of experimental measurements.  
 

Table 2-1. Fractions of materials correctly identified by the CNN and JADE when applied to 
experimental XRD patterns designed to sample possible artifacts arising during sample preparation 
and synthesis. For patterns of non-stoichiometric materials, a classification is considered correct 
if the predicted structure is isomorphic to the true structure. 

        
    

Experimental procedure Anticipated artifact CNN JADE 

Single-phase    
    Pristine samples None 10/10 9/10 
    Kapton tape overlaid Diffuse baseline 9/10 8/10 
    Rapid XRD scan Noisy baseline 10/10 7/10 
    Thick samples Shifts in 2θ 5/6 2/6 
    Ball milled Broadening 5/5 4/5 
    Partially disordered Intensity variation 5/6 4/6 
    Solid solutions Non-stoichiometry 4/4 3/4 

    

Multi-phase    
    Two-phase mixtures None 10/10 7/10 
    Three-phase mixtures None 13/15 9/15 

    
 Overall accuracy: 71/76 (93.4%) 53/76 (71.4%) 

        

    
2.4 Discussion 
In summary, we developed an improved deep learning technique that can reliably automate the 
identification of inorganic materials from XRD patterns. A key advantage of our approach is the 
physics-informed data augmentation procedure that accounts for several experimental artifacts 
commonly observed after sample preparation and synthesis. Conventional profile matching 
techniques often fail when materials variations cause large differences between observed and 
simulated diffraction peaks, requiring manual intervention to analyze any irregularities and 
identify the samples of interest. In contrast, our CNN learns these differences during training, and 
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therefore can autonomously perform phase identification from complex patterns. These benefits 
are highlighted by the test results presented in this work, which show that the performance of 
profile matching quickly deteriorates as larger perturbations are applied to the diffraction patterns, 
whereas the CNN remains reliable in the presence of such perturbations. Furthermore, even though 
our model is trained only on patterns that account for three types of artifacts (strain, texture, and 
domain size), it is demonstrated to successfully generalize to patterns outside of the training set. 
For example, our algorithm achieves a high accuracy for the identification of samples with diffuse 
and noisy baseline signals, as well as for samples containing unexpected artifacts (e.g., possible 
stacking faults in Li2TiO3). 
 Of the artifacts considered in our work, changes in peak positions are shown to be the most 
challenging to deal with, comprising nearly half of all misclassifications made by the CNN when 
applied to the simulated diffraction patterns of single-phase stoichiometric materials. Because peak 
positions are derived from the spacings between crystallographic planes, and therefore the lattice 
parameters of the material, it is difficult to distinguish between isomorphic phases when their 
structures have a significant degree of strain. We find that our model provides an optimal treatment 
of changes in peak positions by including samples with as much as ±4% strain in the training set, 
which is unlikely to be exceeded in experiment unless the materials contain substantial off-
stoichiometry. Indeed, tests involving an increased magnitude of strain in the training set led to 
decreased accuracy during testing owing to degeneracies between the diffraction patterns of 
similar phases. In general, the bounds used for data augmentation should reflect the experimental 
system at hand; for example, larger perturbations may be beneficial in cases where certain artifacts 
are expected to dominate (e.g., epitaxial strain in thin films). When using the approach supplied in 
our repository (https://github.com/njszym/XRD-AutoAnalyzer), these bounds can be manually 
specified for any given set of reference phases. To avoid degeneracy of patterns in the training set, 
the number of reference phases should be constrained to include only those that are expected to 
arise in experiment – for synthesis, these can be chosen to reflect the composition space spanned 
by the precursors used and the possibility of reactions with oxygen, water, or CO2 in air. 
 The importance of peak positions is further highlighted by our tests involving non-
stoichiometric materials. Varying the composition of a material typically leads to changes in its 
lattice parameters, which in turn shifts the positions of its diffraction peaks. As a result, when the 
CNN is trained only with stoichiometric reference phases, it frequently fails to identify the 
structures of non-stoichiometric materials. Because the model is trained to identify individual 
phases, rather than their symmetry, it does not necessarily learn the subtle relationships between 
peak positions imposed by the space group of each structure. Instead, it considers the positions of 
all peaks and makes a comparison with known phases in the training set. Therefore, when non-
stoichiometry causes large shifts in the positions of diffraction peaks, the CNN will struggle if it 
has no reference phase available with comparable peak positions. With this in mind, we improved 
the treatment of non-stoichiometric materials by building a library of hypothetical solid solutions 
following Vegard’s law. After adding their diffraction patterns to the training set, the CNN 
correctly identifies the structures for 95% of the non-stoichiometric materials considered during 
testing. We note that this approach is successful because the lattice parameters of most solid 
solutions follow Vegard’s law with only minor deviations. When deviations do occur, data 
augmentation ensures that the match between hypothetical and experimentally observed phases 
need not be exact for the model to maintain a high level of accuracy for the identification of the 
material’s structure.  

https://github.com/njszym/XRD-AutoAnalyzer
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Despite the improved prediction of structure enabled by introducing hypothetical solid 
solutions to the training set, predicting the compositions of non-stoichiometric materials remains 
challenging. This limitation can be understood by considering the effects of non-stoichiometry on 
diffraction peak intensities, which are influenced by the structure’s internal cell coordinates and 
site occupancies. Given the similarity of structural frameworks between materials forming solid 
solutions, changes in cell coordinates are usually small and therefore do not contribute 
significantly to differences in peak intensities. Changes in site occupancies, however, strongly 
influence peak intensities owing to the distinct scattering factors of substituted species. As opposed 
to changes in lattice parameters that can be described by Vegard’s law, an automatic prediction of 
site occupancy is more difficult to achieve because site occupancies can redistribute in solid 
solutions. For example, partial inversion (i.e., swapping Wyckoff positions) between lithium and 
transition metal ions has been observed in spinel LiMn2-xTixO466. Such differences give rise to 
errors in predicted compositions, not structures, because site occupancies control peak intensities 
while leaving peak positions relatively unaffected. Hence, we reiterate that our approach is not 
designed to give precise refinements of composition, but rather to provide a reliable prediction of 
structure and an estimate of composition.  

Beyond the scope of this work, future efforts may be conducted to design a more accurate 
prediction of site occupancies so that refinement can be carried out autonomously. A recent report 
by Mattei et al. has shown some progress toward this end, providing an approach to enumerate 
many possible distributions of site occupancies with the goal of identifying the best match with 
experimental measurements67. As their approach requires that the structural framework of the 
suspected phase be known prior to refinement, our model may prove useful in coordination with 
their algorithm. The results from our CNN may also provide a useful starting point for manual 
Rietveld refinement as they contain necessary information regarding the composition and structure 
of each phase identified in a pattern. An estimation of the lattice parameters can be given for these 
phases based on their corresponding entries in the ICSD. Furthermore, because DTW measures 
the shift in 2𝜃 between experimental and simulated diffraction peaks, it is possible that our model 
can provide a more precise estimation of the lattice parameters by relating peak shifts with strain 
parameters through Bragg’s law. Demonstrating this capability is outside the scope of the current 
report but may be considered in future work. 

When samples contain more than one material, new challenges arise as diffraction peaks 
often overlap and can be difficult to distinguish. To handle multi-phase samples, we designed a 
branching algorithm that iterates between phase identification and profile subtraction to identify 
the combination of phases that maximizes the average probability given by the CNN. This 
approach yields exceptionally high accuracy across simulated and experimentally measured multi-
phase XRD patterns, exceeding the performance of profile matching techniques and recently 
published methods based on deep learning. The advantages of our branching algorithm can be 
summarized by two main points. First, by training only on single-phase patterns, we avoid the 
combinatorial explosion of training samples that would arise if multi-phase patterns were instead 
used. Because the number of pristine reference patterns is kept low, many experimental artifacts 
can be included through physics-informed data augmentation, which ensures the model is robust 
against perturbations caused by defects or impurities. Second, our algorithm avoids confusion 
between phases with similar reference patterns by identifying phases in a one-by-one manner and 
iteratively subtracting their diffraction peaks from the pattern until all non-negligible intensities 
have been accounted for. The removal of known peaks prevents the algorithm from overestimating 
the number of phases in a sample, which would otherwise occur if the probability distribution 
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given by the CNN was assumed to represent a mixture of phases (e.g., assuming all phases with a 
probability ≥ 50% exist in a given sample).  
 
2.5 Conclusion 
We have demonstrated that a deep learning algorithm based on a CNN can be trained to identify 
inorganic materials from complex diffraction patterns. Physics-informed data augmentation was 
shown to accurately account possible experimental artifacts in measured diffraction patterns, 
therefore improving the generalizability of the CNN. Simulated patterns derived from hypothetical 
solid solutions were also added to the training set, which improves the performance of the model 
when dealing with off-stoichiometric samples. For samples containing multiple phases, an iterative 
process of phase identification and profile subtraction was designed to maximize the probability 
given by the CNN over all phases in the predicted mixture, which performs well when applied to 
multi-phase samples. The proposed accuracy of our deep learning approach was validated with 
respect to simulated and experimentally measured diffraction patterns.  

Although our current tests focus on materials in the Li-Mn-Ti-O-F space, the algorithm 
developed here can be applied to any arbitrary composition space given a set of reference phases, 
which can be extracted from existing crystallographic databases. Based on the 255 reference 
phases considered in this work, the entire process of pattern simulation, data augmentation, and 
model training was completed in 20 hours on a single compute node with 16 CPUs. Because the 
number of training samples required by our method scales linearly with the number of reference 
phases, new models can be created on much broader composition spaces without requiring 
excessive amounts time or computational resources. The compositions included during training 
should be chosen to reflect anticipated elements in the samples being characterized, and therefore 
it is generally not necessary to include all compositions in a single model. Once a model is trained 
for a given chemical space, it can be applied rapidly and automatically to each experimental XRD 
pattern to predict what phases are in the sample. Additionally, new reference phases can be 
introduced to the model at any time without requiring the regeneration of training data for existing 
phases. Given the efficiency of our approach and the promising results illustrated throughout this 
work, we suggest that the algorithm developed here may be used to effectively accelerate materials 
discovery by incorporating automatic phase identification to support high-throughput and 
autonomous experimental workflows. 
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CHAPTER 3   Leveraging in-line phase analysis to 
adaptively steer XRD measurement in real time 
 
 
 
The work presented in this chapter is based, often verbatim, on the following publication: 
N. J. Szymanski, C. J. Bartel., Y. Zeng, M. Diallo, H. Kim, and G. Ceder, “Adaptively driven         
X-ray diffraction guided by machine learning for autonomous phase identification.” npj 
Computational Materials 2023, 9, 31. 
 
 
ML is increasingly being used to assist and improve materials characterization, enabling automated 
interpretation of experimental results with techniques such as XRD and electron microscopy. 
Because ML models are fast once trained, there is a key opportunity to bring interpretation in-line 
with experiments and make on-the-fly decisions to achieve optimal measurement effectiveness, 
which creates broad opportunities for rapid learning and information extraction from experiments. 
Here, we demonstrate such a capability with the development of autonomous and adaptive XRD. 
By coupling an ML algorithm with a physical diffractometer, this method integrates diffraction 
and analysis such that early experimental information is leveraged to steer measurements toward 
features that improve the confidence of a model trained to identify crystalline phases. We validate 
the effectiveness of an adaptive approach by showing that ML-driven XRD can accurately detect 
trace amounts of materials in multi-phase mixtures with short measurement times. The improved 
speed of phase detection also enables in situ identification of short-lived intermediate phases 
formed during solid-state reactions using a standard in-house diffractometer. Our findings 
showcase the advantages of in-line ML for materials characterization and point to the possibility 
of more general approaches for adaptive experimentation.  

 
 
3.1 Introduction 
Efficient materials characterization is critical to the design of improved technologies. Microscopic 
and spectroscopic techniques produce large amounts of data that traditionally require time-
consuming analysis by an expert, which limits the rate of materials development and precludes 
their use in automated workflows68. Recently, ML has been applied to interpret characterization 
data more rapidly69. For example, autoencoders have been developed to segment images from 
electron microscopy and identify distinct atoms70, defects71, and microstructures72. Deep learning 
has also found use in spectroscopy, where CNNs can be trained to identify crystalline phases from 
XRD patterns41,61 or chemical species from Raman spectra73. While such methods effectively 
automate the analysis step of materials characterization, an opportunity exists to fundamentally 
rethink the measurement step by leveraging in-line ML to interpret experimental output as it 
becomes available and using this information to modify measurements within a closed-loop 
process that we call adaptive characterization. As will be demonstrated in this work, adaptive 
characterization can be applied to steer an experiment along the most efficient path toward precise 
decision making, circumventing the need for iterative experimentation.  
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 There are several notable examples of adaptive characterization techniques developed in 
recent years. Bayesian optimization has been applied to raster objects in scattering74 and electron 
or probe microscopy75, leading to reduced measurement time relative to grid-based sampling. Such 
methods have also been used to guide measurements toward the verification of scientific 
hypotheses by designing surrogate models with built-in physical constraints76. Alternatively, 
decisions can be made with reinforcement learning, e.g., to regulate the time spent scanning 
samples at a beamline depending on their scattering strength77. While much of the past work has 
applied adaptive characterization to fixed samples with unchanging properties, we show in this 
paper that the use of in-line ML analysis can also enable improved monitoring of dynamic 
processes where rapid measurements are required to capture transient states.  
 For structural characterization, XRD is a prime example of a technique that requires fast 
and precise measurements when applied in-line with experiments. In situ XRD is widely used to 
monitor reactions and detect the formation of short-lived intermediate phases that often influence 
the final reaction products78. Similarly, operando XRD is used to track phase transformations in 
battery materials during cycling, thus providing mechanistic insight into their performance79. For 
either application, XRD scans must be performed quickly enough to capture short-lived 
intermediate states while also producing high-resolution data that can be analyzed reliably post 
hoc. These two requirements compete with one another as short scans typically lead to noisy XRD 
patterns, complicating phase identification. High-brilliance radiation from a synchrotron light 
source may be used to generate high-resolution patterns with short measurement times, though 
access to such facilities is limited to a select number of users and experiments each year. 
Alternatively, we propose that ML can be used to adaptively develop high resolution around 
features that matter most for phase identification, even on standard in-house diffractometers. Such 
highly efficient data collection can be accomplished only by closing the loop between experiments 
and ML-enabled analysis, such that rapid and mathematically optimized decisions are made 
autonomously and on-the-fly to acquire signal in areas that provide maximal information to 
confirm the presence (or absence) of certain phases.  
 Here we formulate an adaptively steered XRD technique for autonomous phase 
identification, driven by an ML algorithm based on a CNN. Uncertainty quantification is used to 
decide when additional measurements are needed, while class activation map analysis dictates 
where those measurements are performed. This approach is validated it on three test cases with 
increasing complexity based on materials from the Li-La-Zr-O and Li-Ti-P-O chemical spaces. 
These tests reveal that adaptive XRD consistently outperforms conventional methods on both 
simulated and experimentally acquired patterns, providing more precise detection of impurity 
phases while requiring shorter measurement times. We further demonstrate that our ML approach 
can effectively guide XRD measurements for improved in situ characterization of solid-state 
reactions, with the synthesis of Li7La3Zr2O12 (LLZO) considered as an example. The use of 
adaptive scans to monitor LLZO synthesis led to the successful identification of a short-lived 
intermediate phase that would otherwise be missed by conventional measurements. These findings 
provide a clear proof of concept for adaptive characterization of dynamic processes, highlighting 
the opportunity for autonomous experiments driven by ML.  
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Figure 3-1. A schematic of adaptively driven XRD measurements, outlining the interactions 
between a physical X-ray diffractometer and a pre-trained ML model that performs automated 
phase identification. 
 
3.2 Results 
3.2.1 Adaptive XRD approach 
Figure 3-1 shows the coupling between XRD and the ML algorithm that performs phase 
identification and controls the diffractometer. Each adaptive measurement begins with a rapid scan 
over a narrow range of 2θ = [10°, 60°], which was optimized to conserve scan time while still 
including enough peaks to make a preliminary prediction regarding which phases are most likely 
present in the sample. Starting from lower angles (10-50°) leads to notably reduced accuracy, while 
starting from higher angles (10-70°) requires longer scans but does not lead to more accurate phase 
identification. After performing an initial scan over 10-60°, the pattern is fed to our previously 
developed deep learning algorithm, XRD-AutoAnalyzer80. This algorithm not only predicts a set 
of phases for a given sample, but also assesses its own level of certainty such that each phase has 
an associated confidence ranging from 0% to 100%. Because higher confidence is correlated with 
more reliable predictions, we use it as a metric to decide when a pattern has sufficient resolution 
to accurately identify all phases in a sample. A confidence cutoff of 50% is found to provide a 
good balance between measurement speed and prediction accuracy. In cases where the prediction 
confidence is less than 50%, the ML algorithm can request additional data from the diffractometer 
in one of two ways: 

1) Resampling a subset of 2θ ⊆ [10°, 60°] with increased resolution (slower scan rate) to 
clarify specific peaks that lead to maximal confidence improvement, 

2) Expanding 2θ#$% > 60° with a fast scan rate to detect additional peaks. 
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To select which 2θ should be scanned with increased resolution, we make use of Class 
Activation Maps (CAMs) designed to highlight features that contribute most to the classification(s) 
made by a deep learning model81. The CAM for a given XRD pattern is calculated as a function 
of 2θ and is expected to be large in regions containing important peaks for phase identification61. 
As a result, CAMs tend to be maximal around the most intense peaks in each pattern. However, 
sampling such features with increased resolution usually reveals little new information as the most 
prominent peaks can already be detected with low-resolution measurements. Therefore, we instead 
prioritize resampling in areas of 2θ where the difference between the CAMs of the two most 
probable phases (proposed by XRD-AutoAnalyzer) exceeds a user-defined threshold. This 
approach ensures that high-resolution scans are used to clarify peaks that distinguish phases with 
similar XRD patterns.  

In cases where there is significant peak overlap between different phases at low 2θ, the 
scan range can be expanded to reveal additional peaks that assist in disentangling them. However, 
because measurements carried out at higher 2θ often produce increasingly broad peaks with lower 
signal-to-noise ratios, they may not always lead to more accurate phase identification. To 
understand which parts of an XRD pattern provide the most useful information, we use the 
prediction confidence associated with each phase proposed by XRD-AutoAnalyzer based on 2θ =
[10°, 60° + 𝑛10°] for 𝑛 between zero (2θ#$% = 60°) and eight (2θ#$% = 140°). The predicted 
phases from each subset of 2θ are aggregated into an ensemble (𝑃&'( ), where the prediction 
confidence is used to form a weighted average as follows:  

𝑃#$% =
∑ '!(!
"#!
$%
)*+

            (1) 

In this equation, 𝑃!  represents each prediction over [10, 2θ!] , 𝑐!  is the confidence of that 
prediction, and 𝑛 + 1 gives the total number of 2θ-ranges included in the ensemble. In contrast to 
the typical analysis technique whereby an individual prediction is made based on a given XRD 
pattern, the ensemble approach decomposes the pattern into several distinct but overlapping 
regions from which separate predictions are made and subsequently aggregated using the 
confidence-weighted sum described in Eqn. 1. 
 The adaptive XRD approach presented here integrates resampling and expansion of 2θ into 
one single workflow (Figure 3-1). Based on early data obtained from a rapid initial scan over 
2θ = [10°, 60°], XRD-AutoAnalyzer makes a preliminary prediction regarding which phases are 
most likely in the corresponding sample. If the confidence associated with this prediction is less 
than 50%, a selective rescan is performed over regions of 2θ where the difference between the 
CAMs of the two most probable phases exceeds a threshold of 25%. An updated prediction is 
made based on the resampled pattern and the confidence is assessed. If it remains less than 50%, 
higher angles are scanned (+10° at each step) to detect additional peaks. This iterative process of 
phase identification, resampling, and expansion is repeated until the prediction confidence exceeds 
50% or until a maximum angle of 140° is reached. The requirement of 50% confidence is applied 
to all suspected phases in the mixture, not only the two most probable. In cases where multiple 
phases have high uncertainty, more than one round of resampling may be performed at each 
iteration, thus ensuring that the algorithm remains robust on multi-phase samples. 
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3.2.2 Evaluation of adaptive XRD on simulated patterns 
We first evaluated the performance of the adaptive XRD approach in a simulated environment. 
XRD-AutoAnalyzer was separately trained in two chemical spaces, Li-La-Zr-O and Li-Ti-P-O, 
which each contain a rich variety of compositions and structures with applications in solid-state 
batteries. The algorithm requires a list of previously reported phases to be trained on, and as such, 
all unique materials occupying these chemical spaces were extracted from the ICSD. This included 
28 and 45 stoichiometric phases in the Li-La-Zr-O and Li-Ti-P-O spaces, respectively, from which 
a total of 8000 patterns were simulated including 1400 single-phase, 2400 two-phase, and 4200 
three-phase samples. While XRD-AutoAnalyzer is trained only on single-phase patterns, it readily 
interprets multi-phase samples by iterating between phase identification and peak subtraction 
following the procedure described in previous work80. In the samples containing more than one 
phase, weight fractions were randomly sampled between 20% and 80%. To mimic the limitations 
of data acquired experimentally, all simulated patterns were stochastically modified based on 
artifacts including background noise, strain, texture, and small particle size (Methods section). 
These are commonly observed in real samples and can alter the positions, intensities, and widths 
of the corresponding diffraction peaks. The signal-to-noise ratio (𝑠/𝑛) is related to the scan time 
(𝑡) as follows: 

𝑠/𝑛 = 𝐶√𝑡         (2) 
Where 𝐶 is a scaling constant, which for this work was fit to experimental data obtained from XRD 
scans XRD scans on a sample of Li2CO3 (Sigma Aldrich) using a Bruker D8 Advance 
diffractometer. The signal-to-noise ratio used in our simulated tests, in addition to the sampling 
density of 2θ, dictates the total effective scan time of each pattern. A shorter scan time is more 
efficient but will generally lead to less accurate phase analysis. To probe this relation, we 
duplicated all 8000 simulated patterns into 10 distinct datasets with varied sampling density (0.02°-
0.04°) and signal-to-noise ratio (20-60), corresponding to an effective scan time ranging from 5 to 
30 min.  
 The effectiveness of adaptive XRD in the simulated environment was first tested by 
limiting the algorithm to only perform resampling in a fixed range of 2θ = [10°, 60°]. Starting 
from patterns with minimal resolution (effective scan time of 5 min), XRD-AutoAnalyzer made 
initial predictions regarding which phases were present in each sample. When the prediction 
confidence was less than 50%, high-resolution data (effective scan time of 30 min) was added in 
regions of 2θ where the CAM differences between suspected phases exceeded 25%, and the total 
effective scan time was proportionally increased. Figure 3-2a shows (in blue) the F1-score as a 
function of scan time for phase identification performed by the adaptive algorithm in the Li-La-
Zr-O (top panel) and Li-Ti-P-O (bottom panel) spaces. For comparison, we also show the F1-score 
associated with phase identification based on conventional scans with uniform resolution and 
iteratively longer measurement time (in black). With either sampling technique, more phases are 
accurately identified from patterns with higher resolution (longer effective scan time); however, 
adaptive XRD reaches convergence more rapidly than its conventional counterpart. The F1-score 
achieved with adaptive sampling exceeds 0.88 in 10-15 min of effective scan time for each pattern, 
whereas conventional sampling requires 25-30 min per pattern to reach the same level of accuracy. 
The rapid convergence of adaptive XRD demonstrates that it leverages low-resolution 
measurement data to effectively build a probability density for the likely phases in each sample, 
from which it identifies the optimal regions of 2θ that should be prioritized to distinguish these 
phases. The upper limit of the F1-score observed for both adaptive and conventional sampling can 
be attributed to the presence of simulated artifacts (e.g., strain and texture) as well as peak overlap 
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between different phases over the current range of 2θ ∈ [10°, 60°]. Since these issues are not 
resolved by reducing background noise, the use of longer scan times (> 30 min) leads to only 
marginal improvement in the F1-scores of conventional and adaptive analyses. 
 

 
Figure 3-2. F1-scores achieved by XRD-AutoAnalyzer when applied to XRD patterns generated 
in a conventional or adaptive manner. (a) Conventional results (black squares) were obtained on 
patterns with incrementally improved resolution over 2θ = [10°, 60°], whereas adaptive results 
(blue circles) were found by resampling a subset of 2θ ⊆ [10°, 60°] with high resolution. (b) 
Individual results (black squares) were calculated by analyzing patterns with distinct maxima 
(2θ#$%), which were aggregated in a confidence-weighted sum to form the ensemble predictions 
(green circles). Adaptive results (blue star) were obtained by halting expansion of 2θ#$% when the 
prediction confidence exceeded 50%.  
 

We used the simulated XRD dataset to quantify the extent to which the F1-score can be 
improved by including information from higher 2θ in the analysis. Only high-resolution patterns 
(effective scan time of 30 min) were considered to isolate the effects of the scan range. XRD-
AutoAnalyzer was applied to each individual range of 2θ = [10°, 60° + 𝑛10°] for 𝑛 between 
zero (2θ#$% = 60°) and eight (2θ#$% = 140°). These are treated separately and referred to as 
individual predictions hereafter. In comparison, ensemble predictions were formulated by 
aggregating the phases identified from all patterns available up to 2θ#$% , as described in the 
previous section (Eqn. 1).  

Figure 3-2b illustrates how the F1-score varies with increasing scan range for patterns in 
the Li-La-Zr-O (top panel) and Li-Ti-P-O (bottom panel) spaces. Black (green) datapoints 
represent individual (ensemble) predictions on patterns with 2θ#$% denoted by the x-axis. The 
ensemble predictions show a monotonic increase in the F1-score as higher angles are included, 
consistently outperforming the individual predictions. By aggregating all phases identified up to 
2θ#$% = 140°, exceptionally high F1-scores of 0.98 and 0.95 are achieved. In contrast, scanning 
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higher 2θ does not necessarily lead to better performance for individual predictions, which show 
a maximal F1-score of 0.91 at 2θ#$% = 120°, followed by a decreasing score from 120° to 140°. 
This trend arises from two effects: (1) signal-to-noise ratios decrease at higher 2θ as peaks become 
less intense, and (2) artifacts related to strain and small particle size cause larger changes to the 
positions and widths of peaks at higher 2θ . Because the ensemble approach weights each 
prediction by its associated confidence, it effectively ignores regions where background noise 
and/or artifacts mask the diffraction peaks, instead giving greater weight to regions where such 
peaks are more clearly distinguishable. 

To keep the total measurement time minimal, higher 2θ should be scanned only when the 
prediction confidence from XRD-AutoAnalyzer is low. We demonstrate this policy by iteratively 
expanding 2θ = [10°, 60° + 𝑛10°] until the prediction confidence exceeds 50% or until 2θ#$% 
reaches 140°. The corresponding results are shown as blue stars in Figure 3-2b. With adaptive 
expansion of 2θ, high F1-scores of 0.98 and 0.95 were obtained on patterns from the Li-La-Zr-O 
and Li-Ti-P-O datasets, respectively. These match the best F1-scores obtained on a full scan range 
(2θ#$% = 140°), while also conserving measurement time as only angles up to 106° were sampled 
on average, therefore showing that the adaptive algorithm can effectively decide when higher 
angles are needed distinguish suspected phases. 
 
3.2.3 Performance of adaptive XRD on experimental mixtures 
As a more challenging test, the effectiveness of adaptive XRD as applied to impurity detection 
was evaluated on 240 two-phase mixtures prepared using different physical combinations of eight 
compounds from the Li-Ti-P-O and Li-La-Zr-O chemical spaces. All compounds were purchased 
in the form of solid powders and manually mixed such that the weight fraction of the minority 
phase was varied between 2% and 20% (Methods). For each compound, a reference phase from 
the ICSD was included during the training of XRD-AutoAnalyzer. We compare the effectiveness 
of determining these minority phases by using: (1) conventional measurements that sampled 2θ =
[10°, 80°] in 10 min, followed by automated phase identification with XRD-AutoAnalyzer applied 
post hoc; or (2) adaptive measurements with in-line phase identification and guided sampling, 
following the workflow outlined in Figure 3-1. Both scan techniques were applied with an Aeris 
X-ray diffractometer from Panalytical. Their relative performance is assessed using the impurity 
detection rate, defined as the percentage of phases correctly identified at a given weight fraction.  
 Figure 3-3 displays the detection rates for minority phases in the (a) Li-La-Zr-O and  (b) 
Li-Ti-P-O spaces. When XRD-AutoAnalyzer is applied in-line with adaptive measurements, it 
successfully identifies ≥ 75% of the minority phases at weight fractions ≥ 6%, even at short scan 
rates. In contrast, a much greater weight fraction of 15% is required to reach a detection rate of 
75% using a conventional approach. The increased sensitivity of adaptive XRD holds true for all 
mixtures tested here, as it consistently detects smaller amounts of the minority phases when 
compared to conventional scans. Furthermore, it does so while using less scan time. As shown by 
the distributions of scan times in Figure 3-3c, adaptive measurements are completed more rapidly 
than conventional (10 min) ones, requiring an average scan time of only 6 min per pattern. The 
improved speed and accuracy of in-line, adaptive XRD is derived from two key advantages: (1) It 
automatically decides whether additional measurements are needed after a rapid initial scan, and 
if so, focuses high-resolution scans on regions of 2θ  that are most likely to contain peaks 
associated with the suspected minority phases; and (2) it determines when higher 2θ should be 
scanned to detect additional peaks that help distinguish phases with similar patterns at 2θ < 60°.  
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Figure 3-3. The percentage of minority phases correctly identified by XRD-AutoAnalyzer when 
applied to multi-phase mixtures scanned in a conventional or adaptive manner. These were 
collected from the (a) Li-La-Zr-O and (b) Li-Ti-P-O chemical spaces. Results are plotted 
separately for predictions based on conventional and adaptive measurements. (c) The distributions 
of scan times required by adaptive measurements in each space. For comparison, the conventional 
scan time (10 min) is represented by the dashed line. 
 
3.2.4 Adaptive XRD for in situ characterization 
We demonstrate below that the optimized effectiveness by which adaptive XRD collects data can 
lead to new experimental capabilities. To this end, a solid-state synthesis procedure targeting 
Li7La3Zr2O12 (LLZO) was designed and carried out82. During the corresponding synthesis 
experiments, in situ measurements on a Bruker D8 Advance diffractometer were integrated with 
XRD-AutoAnalyzer to characterize the reaction pathway via the identification of precursors, 
intermediate phases, and final products. Such in situ measurements are particularly demanding 
with respect to the tradeoff between acquisition time and data resolution, as fast reactions and 
transient intermediate phases can easily be missed when a long acquisition time is used. A 
precursor powder mixture of La(OH)3, Li2CO3, and ZrO2 was placed in an Anton Paar HTK 1200N 
oven chamber and heated to 1100 °C at a rate of 20 °C/min, followed by a 1 hour hold at this final 
temperature. During heating, XRD scans were performed at the onset of a 10 min hold every 100 
°C. Three syntheses were separately carried out using distinct measurement techniques (Methods): 

1) Fast, non-adaptive scans that sampled 10-80° in 1 min. 
2) Slow, non-adaptive scans that sampled 10-80° in 10 min. 
3) Adaptive scans with varied 2θ#$% and measurement times.  

Whereas ten patterns can be obtained at each hold when using fast scans (case 1), only one slow 
scan is performed (case 2). The number of patterns measured with adaptive scans (case 3) varied 
with temperature, as longer scan times were automatically allocated to samples where phase 
identification was complicated by a poor signal-to-noise ratio. 
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Figure 3-4. The weight fractions for all phases detected during the synthesis of LLZO. Three 
separate measurement campaigns were performed using (a) fast 1 min scans, (b) slow 10 min 
scans, and (c) adaptive scans. A short-lived intermediate phase, LaOOH, is detected only with 
adaptive measurements. Panels d-f illustrate XRD patterns obtained from the blue highlighted 
regions in panels a-c, which each should contain LaOOH. d, A fast scan misses low-2θ peaks from 
this phase owing to a poor signal-to-noise ratio. e, A slow scan misses high-2θ peaks as LaOOH 
transforms before the measurement is complete. f, An adaptive scan successfully detects all peaks 
from this phase by performing a rapid scan over [10°, 60°], followed by resampling of [14°, 27°] 
to clarify the smaller peaks. 
 

Figure 3-4 shows the weight fractions for all phases identified by XRD-AutoAnalyzer 
during the synthesis of LLZO when using different scan techniques. These results show several 
limitations of conventional XRD. With fast scans, Li2CO3 is not detected as its peaks are difficult 
to resolve from the background noise. The low resolution from fast scanning also precludes the 
identification of LaOOH, which appears as an intermediate phase between La(OH)3 and La2O383. 
As shown in Figure 3-4d, the poor signal-to-noise ratio resulting from a short scan obscures 
several peaks associated with LaOOH, making it difficult to resolve this phase from others (e.g., 
La2O3). While a longer scan time of 10 min enables the detection of Li2CO3 by reducing noise in 
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the corresponding pattern (Figure 3-4b), LaOOH is still missed. Interestingly, the 10 min scans 
do clarify several low-2θ peaks associated with LaOOH but fail to detect many of its peaks at 
higher 2θ (Figure 3-4e), suggesting that LaOOH transformed before the full range of 2θ was 
sampled. These findings highlight two competing factors that dictate the accuracy of in situ XRD 
measurements: (1) fast scans yield patterns with low signal-to-noise ratios, complicating the 
identification of small peaks that blend in with the background noise; (2) slows scans suffer from 
pattern changes as the measurements are performed, making it difficult to identify short-lived 
intermediate phases that transform before all their peaks can be detected.  

Adaptive XRD overcomes the challenges described in the previous paragraph by achieving 
an optimal balance between speed and accuracy. As shown in Figure 3-4c, Li2CO3 is successfully 
identified with a short scan time of ~3 min as the adaptive algorithm leverages early data to focus 
high-resolution measurements on a subset of 2θ = [18°, 32°]  that contains the major peaks 
associated with this phase. Note that the algorithm is given no prior information regarding the 
presence of Li2CO3, but it quickly detects some signal above the noise in the relevant area and 
accordingly requests additional scanning to better resolve that signal. Adaptive XRD also leads to 
the successful detection of LaOOH, appearing briefly as an intermediate phase at 400 °C. In 
Figure 3-4f, we show how the diffractometer was steered toward 2θ = [14°, 27°]  at this 
temperature, revealing several LaOOH peaks that would otherwise be difficult to resolve from the 
background noise. Furthermore, because the total measurement time was kept short (~4 min), the 
full range of 2θ = [10°, 60°] was sampled before LaOOH transformed into La2O3. We stress that 
no human intervention was needed to redirect the diffractometer as the ML algorithm 
autonomously decides which parts of a pattern are most important for phase identification and 
accordingly steers measurements toward those regions. In doing so, adaptive XRD enables the 
identification of short-lived intermediate phases that otherwise would be missed by conventional 
XRD scans. Knowledge regarding such intermediate phases is often key to understanding and 
tailoring reaction pathways for inorganic materials synthesis84.  
 
3.3 Discussion 
We believe that the integration of ML-assisted analysis tools can rapidly transform how 
experimental research is done. In contrast to traditional experimentation, where data is only 
analyzed after the fact, adaptive methods leverage all available data in real time to make optimal 
decisions regarding where the experimental measurements should be steered, and as such minimize 
the time required to obtain all relevant information. These autonomous and adaptive methods 
require (a) the development of rapid analysis tools that can make predictions, quantify uncertainty, 
and identify high-value measurement regimes, all on the timescale of the experiment; and (b) the 
ability to bring this analysis in-line with experiments and control the instruments needed for 
characterization. Modern ML techniques, while often requiring significant time for training 
performed off-line, can usually be evaluated within seconds and are therefore ideal decision-
making agents to be integrated with experimental hardware. 

We demonstrate in this work specifically, that ML-driven adaptive control over XRD 
measurements enables rapid and autonomous identification of crystalline materials in multi-phase 
samples, consistently detecting and categorizing phases more quickly and with higher accuracy 
than conventional XRD scans. By reducing the measurement time while maintaining high 
precision, adaptive XRD provides an effective method to monitor solid-state reactions in situ and 
identify short-lived intermediate phases using an in-house diffractometer. Although such 
instrumentation provides reduced intensity relative to a synchrotron light source, adaptive 
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measurements make efficient use of the available radiation by rationally allocating scan time to 
resolve peaks with the highest leverage for phase identification. This approach is generalizable 
and may be extended to alternative diffraction techniques based on neutron or electron scattering. 
With future developments, we envision that many spectroscopic and microscopic techniques are 
likely to benefit from ML guidance and interpretation, enabling optimized selection and refinement 
of critical features in spectra and images. Increased automation of experimental measurements will 
not only reduce time and labor spent by human researchers, but also give unprecedented access to 
the characterization of short-lived processes in materials science and chemistry. 
 
3.4 Methods 
3.4.1 Automated phase identification 
To automatically identify phases from XRD patterns, we used the XRD-AutoAnalyzer algorithm 
developed in previous work80 (https://github.com/njszy/XRD-AutoAnalyzer). This approach is 
based on a CNN with six convolutional layers, six pooling layers, and three fully connected layers. 
A dropout rate of 60% was used between the fully connected layers. As input to the CNN, each 
XRD pattern is treated as a one-dimensional vector with 4501 intensities distributed uniformly 
over 2θ. The output layer contains 𝑁 neurons, where 𝑁 is equal to the number of phases in the 
training set. Here we trained two separate models to analyze data from the Li-La-Zr-O and Li-Ti-
P-O chemical spaces, which included 28 and 45 unique phases, respectively. For each phase, 150 
XRD patterns with stochastically varied peak positions, widths, and intensities were simulated and 
used to train the CNN. Training was carried out for 50 epochs. At inference, we divided the trained 
CNN into an ensemble of 1000 individual models whereby each utilized different connections 
between its fully connected layers (i.e., with 60% dropout). The result is a probabilistic distribution 
of predicted phases for a given pattern, where the confidence of each phase is defined as the 
fraction (%) of models in the ensemble that identify it as the most likely phase. Additional details 
on the phase identification algorithm are given in our previous work.  
 
3.4.2 Class activation maps 
CAMs were originally designed to highlight areas in an image that have the greatest influence on 
a CNN’s output81. This can be accomplished by mapping the trained weights of a global average 
pooling layer, placed after all the convolutional layers in a CNN, onto the final image such that 
important convolution features have high values in the CAM. Here we use a generalized version 
known as Grad-CAM85, which has capabilities similar to the traditional CAM approach but does 
not require a global average pooling layer in the CNN. Using this technique, we calculated the 
CAM associated with the classification of an ideal (simulated) XRD pattern for each reference 
phase in the training sets. All CAMs were normalized between 0 and 100 to ensure consistent 
comparison between different phases. In cases where XRD-AutoAnalyzer failed to identify a phase 
with a confidence greater than 50%, the absolute difference between the CAMs of the two most 
probable phases was calculated and resampling was proposed in areas where the difference 
exceeds some threshold defined by the user. A threshold of 25% was used during all experimental 
tests described in the main text, where the % is calculated relative to the maximum value of the 
CAM (i.e., 100). 
 
  

https://github.com/njszy/XRD-AutoAnalyzer
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3.4.3 Simulated test patterns 
A total of 1400 single-phase, 2400 two-phase, and 4200 three-phase patterns were simulated to 
test the adaptive XRD approach in high-throughput. These patterns were based on 28 and 45 
unique crystalline phases from the Li-La-Zr-O and Li-Ti-P-O spaces, respectively. All structures 
were extracted from the ICSD. Multi-phase patterns were constructed via linear combinations of 
single-phase peaks, where the weight fraction of each individual phase was randomly sampled 
between 20% and 80%. To mimic data acquired experimentally, all patterns were stochastically 
augmented with three different artifacts. Peak shifts caused by strain were implemented with up to 
±3% changes in the lattice parameters of each phase. Peak intensities were varied by as much as 
±50%  according to preferred crystallographic orientation (texture) along randomly sampled 
Miller indices ( [ℎ𝑘𝑙]  where 0 ≤ ℎ, 𝑘, 𝑙 ≤ 2 ). Different peak widths were sampled using the 
Scherrer equation based on grain sizes ranging from 5 nm (broad) to 50 nm (narrow). A gaussian 
shape was assumed for all peaks.   
 All 8000 simulated patterns were duplicated to form 10 different datasets with varied 
sampling density and signal-to-noise ratio. The former was set by the number of datapoints 
contained in each pattern while the former was treated by adding Gaussian noise with a standard 
deviation reflecting the effective measurement time (see Eqn. 2). The patterns with minimal 
resolution contained 3250 datapoints spanning 10°-140° (∆2θ = 0.04°), and Gaussian noise was 
added with a standard deviation of 5% (in terms of the maximum peak intensity). In contrast, the 
highest resolution patterns contained 6500 datapoints (∆2θ = 0.02°) spanning the same range, in 
addition to Gaussian noise with a standard deviation of only 2%. To mimic experimental 
resampling with increased resolution, which would be performed by adaptive XRD, we start from 
the low-resolution pattern and splice in data from the corresponding high-resolution pattern in 
regions of 2θ where artificial resampling is performed. 
 XRD-AutoAnalyzer was used to perform phase identification on the simulated XRD 
patterns described in the previous paragraph. To quantify the performance of this algorithm when 
applied autonomously to each dataset, we used the F1-score: 

F1-score = ,-
,-*$"(/-*/0)

																																																						(3) 

Where TP is the number of true positives (correctly identified phases), FP is the number of false 
positives (phases incorrectly identified), and FN is the number of false negatives (missed phases). 
A high F1-score (close to 1) is desired to successfully identify all phases in a sample without 
incorrectly identifying phases that are not present. 
 
3.4.4 Two-phase mixture preparation 
Mixtures were prepared based on materials in two chemical spaces: Li-La-Zr-O and Li-Ti-P-O. 
These included Li2CO3 (Sigma-Aldrich, 99.9%), LiOH (Sigma-Aldrich, 98%), La(OH)3 (Sigma-
Aldrich, 99.9%), ZrO2 (Sigma-Aldrich, 99.6%), TiO2 (Alfa Aesar, 99.9%), Li2TiO3 (Sigma-
Aldrich, 99.9%), and Li3PO4 (Sigma-Aldrich, 99.9%). There are 12 possible two-phase 
majority|minority permutations of the materials in each chemical space (e.g., TiO2|Li2CO3 and 
Li2CO3|TiO2), where the first phase to appear is the majority phase and the second is the minority 
phase. For each of these two-phase pairs, 10 mixtures were prepared with iteratively larger 
amounts of the minority phase. This included weight fractions of 2%, 4%, 6%, 8%, 10%, 12%, 
14%, 16%, 18%, and 20% for the minority phase in each permutation. All mixtures were shaker 



 40 

milled for 10 min with a SPEX 800 mixer, followed by characterization with an Aeris X-ray 
diffractometer from Panalytical. 
 
3.4.5 In situ characterization of Li7La3Zr2O12 synthesis 
To synthesize Li7La3Zr2O12 (LLZO), we used a precursor powder mixture containing Li2CO3 
(Sigma-Aldrich, 99.9%), La(OH)3 (Sigma-Aldrich, 99.9%), ZrO2 (Sigma-Aldrich, 99.6%). In 
addition to the stoichiometric amounts of these precursors needed to make LLZO, 10% excess 
weight of Li2CO3 was included to compensate for suspected volatility at high temperature. These 
precursors were mixed with ethanol and milled for 10 min using a SPEX 800 mixer, followed by 
drying at 70 °C in an oven for one hour. The dried sample was loaded into the Anton Paar HTK 
1200N oven chamber of a Bruker D8 Advance X-ray diffractometer, which was heated to 1000 °C 
at a rate of 20 °C/min in air. A hold time of one hour was used at 1000 °C, followed by a natural 
cool to room temperature. During the heating ramp, a 10 min temperature hold was imposed every 
100 °C such that XRD scans could be performed on the sample. 

Three different syntheses were carried out, each with a distinct measurement type. First, 
slow and non-adaptive measurements were employed whereby a single 10 min scan was performed 
at each 100 °C hold. Second, fast and non-adaptive measurement were applied such that 10 one 
min scans were performed at each 100 °C hold. Third, adaptive measurements were used with 
varied scan time and number of scans applied to each 100 °C hold. On average, adaptive scans 
required ~3 min per pattern. For both types of non-adaptive measurements, the scan range was 
kept fixed at 2𝜃 = [10°, 80°]. In contrast, adaptive scans kept a fixed minimum angle of 10°, but 
varied the maximum angle between 60° and 140° following the workflow described in the main 
text and illustrated. All patterns were analyzed in an automated fashion using XRD-AutoAnalyzer. 
The corresponding model was trained on 28 phases in the Li-La-Zr-O chemical space. 
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CHAPTER 4   Learning to optimize the selection of 
precursors for solid-state synthesis 
 
 
 
The work presented in this chapter is based, often verbatim, on the following publication: 
N. J. Szymanski, P. Nevatia, C. J. Bartel, Y. Zeng, and G. Ceder, “Autonomous and dynamic 
precursor selection for solid-state materials synthesis.” Nature Communications 2023, 14, 6956. 
 
 
Solid-state synthesis plays an important role in the development of new materials and technologies. 
While in situ characterization and ab-initio computations have advanced our understanding of 
materials synthesis, experiments targeting new compounds often still require many different 
precursors and conditions to be tested. Here we introduce an algorithm (ARROWS) designed to 
automate the selection of optimal precursors for solid-state materials synthesis. This algorithm 
actively learns from experimental outcomes to determine which precursors lead to unfavorable 
reactions that form highly stable intermediates, preventing the target material’s formation. Based 
on this information, ARROWS proposes new experiments using precursors it predicts to avoid 
such intermediates, thereby retaining a larger thermodynamic driving force to form the target. We 
validate this approach on three experimental datasets, containing results from over 200 synthesis 
procedures. In comparison to black-box optimization, ARROWS identifies effective precursor sets 
for each target while requiring substantially fewer experimental iterations. These findings 
highlight the importance of domain knowledge in optimization algorithms for materials synthesis, 
which are critical for the development of fully autonomous research platforms. 
 
 
4.1 Introduction 
Conventional high temperature synthesis based on solid-state reactions has long been used for the 
preparation of inorganic materials86. This method involves the mixing and subsequent heating of 
solid powders to facilitate reactions between them. Despite its apparent simplicity, the outcomes 
of solid-state synthesis experiments are often difficult to predict78,87. While DFT calculations can 
be used to assess thermodynamic stability88, even materials that are stable can sometimes be 
difficult to synthesize owing to the formation of inert byproducts that compete with the target and 
reduce its yield84,89–91. Further complicating matters is the prevalence of metastable materials92 
used in countless technologies including photovoltaics93 and structural alloys94. Metastable 
materials are typically prepared using low-temperature synthesis routes, where kinetic control can 
be used to avoid the formation of equilibrium phases95, though recent work has shown that 
metastable phases can also appear as intermediates during high temperature experiments96–98. To 
optimize the purity of a desired product, whether it be stable or only metastable, requires careful 
selection of precursors and reaction conditions. This selection process traditionally relies on 
domain expertise, reference to previously reported procedures for similar targets (if any exist)99,100, 
and the use of heuristics such as Tamman’s rule101. However, there is no clear roadmap to optimize 
the solid-state synthesis of novel inorganic materials, which can lead to many experimental 
iterations with no guarantee of success. 
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A new opportunity exists to accelerate inorganic materials development by leveraging 
computer-aided optimization to plan solid-state synthesis experiments, learn from their outcomes, 
and make improved decisions regarding the selection of precursors and conditions that enable the 
formation of desired phases. Such an approach has found success in organic chemistry, where 
reactions can often be described by the breaking and formation of individual bonds102,103. This 
enables the use of retrosynthetic methods, which start from the target and work backward through 
stepwise reactions until a set of available starting materials is reached104. As many different 
reaction paths can lead to a given target, computer-aided optimization techniques based on Monte 
Carlo tree search and reinforcement learning have been successfully used to rapidly screen for 
promising synthesis routes105–107. In contrast, inorganic materials synthesis has yet to benefit from 
the widespread use of algorithms that can optimize experimental procedures. Their development 
is hindered by the difficulty of modeling solid-state reactions, where the corresponding phase 
transformations involve concerted displacements and interactions among many species over 
extended distances78. Some progress has been made in simplifying the analysis of solid-state 
reaction pathways by decomposing them into step-by-step transformations that take place between 
two phases at a time, hereafter referred to as pairwise reactions84,98. However, it remains difficult 
to predict the temperature at which a given pairwise reaction will occur, as well as what phase(s) 
will form as a result of that reaction. 

To determine which reaction outcomes are most plausible for a given set of precursors and 
conditions, much of the existing work on computer-aided planning for solid-state synthesis has 
relied on the analysis of thermochemical data based on DFT calculations68,108. For example, 
McDermott et al. introduced a graph-based approach that ranks various reaction pathways by a 
cost function designed to account for changes in the Gibbs free energy of reaction along each 
path109. A related approach developed by Aykol et al. parameterizes reactions by two axes – one 
that approximates the nucleation barrier of the targeted phase and another that accounts for its 
competition with possible byproducts – from which optimal reactants can be identified along the 
Pareto front110. Alternatively, ML models can be trained on synthesis data from the literature and 
applied to suggest effective precursors and conditions for a given target by considering its 
similarity with previously reported materials99,100. While these methods have been successfully 
applied in some cases, their use remains limited as they only provide a fixed ranking of synthesis 
routes for a given material, which is not readily updated should the initial experiments fail.  

In the place of fixed ranking schemes, active learning algorithms have also been used for 
the optimization of synthesis procedures53,111. These algorithms can adapt from failed experiments 
and decide which parameters should be tested in later iterations. Bayesian optimization and genetic 
algorithms have found success when coupled with synthesis techniques based on flow chemistry112 
and thin film deposition21. However, these black-box approaches are often restricted to handling 
continuous variables such as temperature and time, while categorical variables are more difficult 
to optimize. For example, choosing which precursors to use for the synthesis of a novel material 
is particularly challenging as it involves discrete selections from a vast range of chemical 
compositions and structures, instead of simply fine-tuning parameters on a continuous scale. 
Recent work has made progress on this front by combining parallel synthesis experiments with 
tensor decomposition analysis, which can be used to predict the most effective starting materials 
and processing conditions from just a subset of their possible combinations113. 
 In this work, we build upon existing methods to optimize solid-state synthesis procedures 
by incorporating physical domain knowledge based on thermodynamics and pairwise reaction 
analysis. This is accomplished using Autonomous Reaction Route Optimization with Solid-State 
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Synthesis (ARROWS), an algorithm designed to guide the selection of precursors for the targeted 
synthesis of inorganic materials. Given a desired structure and composition, ARROWS uses 
existing thermochemical data in the Materials Project to form an initial ranking of precursor sets 
based on their DFT-calculated reaction energies2,114. Highly ranked precursors are suggested for 
experimental validation throughout a range of temperatures, which are iteratively probed and 
analyzed using ML algorithms to identify the intermediates that form along each precursor set’s 
reaction pathway. When such experiments fail to produce the desired phase, ARROWS learns 
from their outcomes and updates its ranking to avoid pairwise reactions that consume much of the 
available free energy and therefore inhibit formation of the targeted phase. To benchmark the 
performance of ARROWS, we conducted 188 synthesis experiments targeting YBa2Cu3O6.5, 
forming a comprehensive reaction dataset that critically includes both positive and negative results. 
Our approach is shown to identify all the effective synthesis routes from this dataset while 
requiring fewer experimental iterations than Bayesian optimization or genetic algorithms. We 
further demonstrate that ARROWS can be applied in-line with experiments to guide the selection 
of precursors for two metastable targets, Na2Te3Mo3O16 and LiTiOPO4, each of which were 
successfully prepared with high purity.  
 
4.2 Results 
4.2.1 Design of ARROWS 
The logical flow of ARROWS is summarized in Figure 4-1 and detailed in the Methods section. 
Given a target material specified by the user, ARROWS forms a list of precursor sets that can be 
stoichiometrically balanced to yield the target’s composition. In the absence of previous 
experimental data, these precursor sets are initially ranked by their calculated thermodynamic 
driving force (∆G) to form the target (Figure 4-1a). While many factors influence the rates at 
which solid-state reactions proceed115, those with the largest (most negative) ∆G tend to occur 
most rapidly98,99,116. However, such reactions may also be slowed by the formation of intermediates 
that consume much of the initial driving force90. To address this, ARROWS proposes that each 
precursor set be tested at several temperatures, thereby providing snapshots of the corresponding 
reaction pathway (Figure 4-1b). The intermediates formed at each step in the reaction pathway 
are identified using XRD with machine-learned analysis80. ARROWS then determines which 
pairwise reactions led to the formation of each observed intermediate phase (Figure 4-1c), and it 
leverages this information to predict the intermediates that will form in precursor sets that have 
not yet been tested (Figure 4-1d). In subsequent experiments, ARROWS prioritizes sets of 
precursors that are expected to maintain a large driving force at the target-forming step (∆G′), i.e., 
even after intermediates have formed (Figure 4-1e). This process is repeated until the target is 
successfully obtained with sufficiently high yield, as specified by the user, or until all the available 
precursor sets have been exhausted. 

To validate the effectiveness of ARROWS, new experimental synthesis data is needed. 
Existing results from the literature tend to be heavily biased toward positive results, which 
precludes the development of models that can learn from failed experiments52. We therefore built 
a solid-state synthesis dataset for YBa2Cu3O6.5 (YBCO) by testing 47 different combinations of 
commonly available precursors in the Y-Ba-Cu-O chemical space, which were mixed and heated 
at four synthesis temperatures ranging from 600-900 °C. Importantly, this dataset includes both 
positive and negative outcomes, i.e., reactions that do and do not yield sufficiently pure YBCO. 
As such, it can be used as a benchmark on which to test ARROWS and compare its efficacy with 
alternative optimization algorithms. Two additional chemical spaces are also considered, where 
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we use ARROWS to actively guide the experiments. The first set of experiments targeted 
Na2Te3Mo3O16 (NTMO), which is metastable with respect to decomposition into Na2Mo2O7, 
MoTe2O7, and TeO2 according to DFT calculations117. The second set of experiments targeted a 
triclinic polymorph of LiTiOPO4 (t-LTOPO), which has a tendency to undergo a phase transition 
into a lower-energy orthorhombic structure (o-LTOPO) with the same composition118. The 
features of each space tested are summarized in Table 4-1. Further details regarding the 
corresponding experiments are provided in the Methods. 

 

 
 
Figure 4-1. A schematic illustrating how ARROWS guides precursor selection. (a) Reactions 
based on different precursor sets (R1, R2, and R3) are initially ranked by their driving force (∆G) 
to form the target, which is obtained from DFT calculations. (b) Experiments are performed at 
iteratively higher temperatures to identify reaction intermediates. The chemical formulae listed in 
this panel represent the phases identified from XRD measurements. (c) Pairwise reaction 
temperatures (Trxn) and products are gleaned from the experimental data. (d) Using the identified 
pairwise reactions, intermediates are predicted for other precursor sets and their remaining driving 
forces (∆G′) are updated accordingly. (e) The precursor ranking is updated based on the newly 
calculated ∆G′. All chemical formulae shown are placeholders for arbitrary compounds, and in 
general there is no restriction on the compositions where ARROWS is applicable. 
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Table 4-1. Information regarding three search spaces on which ARROWS was tested. 
𝑁(&)( and 𝑁&%*( represent the number of precursor sets and experiments, respectively. 
 

    

Target 
 
  

𝑵𝐬𝐞𝐭𝐬  Temperatures (°C) 
 
  

𝑵𝐞𝐱𝐩 
    

YBa2Cu3O6+x 47 600, 700, 800, 900  
 

188 

Na2Te3Mo3O16 23 300, 400 
 

46 

t-LiTiOPO4 30 400, 500, 600, 700 
 

120 
       
    

 

4.2.2 YBCO 
Before discussing the optimization of YBCO synthesis using ARROWS, we first summarize the 
outcomes from all 188 experiments to give context regarding the difficulty of obtaining high-purity 
YBCO while using a hold time of 4 h. Such a short hold time was used specifically to make the 
optimization task more challenging, as longer heating durations with intermittent regrinding are 
typically required to form highly pure YBCO samples119. Indeed, only 10 of the 188 experiments 
performed in the current work led to the formation of pure YBCO without any prominent impurity 
phases that could be detected by XRD-AutoAnalyzer80. Another 83 experiments gave partial yield 
of YBCO, in addition to several unwanted byproducts. Figure 4-2a shows the distribution of 
YBCO yield (wt. %) at each synthesis temperature sampled in this work. Generally, the use of 
higher temperature leads to increased yield of YBCO, likely due to enhanced reaction kinetics. 
Precursor selection also has a marked effect on the target’s yield. Figure 4-2b shows the success 
rate of each precursor, which we define as the percentage of sets where that compound was 
included and resulted in the formation of YBCO without any detectable impurities. This plot 
suggests that the less commonly used binary precursors tend to outperform their standard 
counterparts. For example, BaO and BaO2 have moderately high success rates of 46% and 22%, 
respectively, whereas sets with BaCO3 always produce impure samples (0% success rate). 
Precursor sets including Y2Cu2O5 and Ba2Cu3O6 also have comparably high success rates of 33% 
and 31%, respectively. We will later show that these ternary phases enable the direct formation of 
YBCO while circumventing inert byproducts such as Y2BaCuO5.  

Figure 4-2c displays a pie chart containing the four most common impurity phases that 
coexist with YBCO, or prevent its formation entirely, at 900 °C. Each slice in the pie chart 
represents the fraction of experiments where the specified impurity phase appears. Most of the 
impure samples (28/44) contain BaCuO2 or Y2BaCuO5, which are known to be relatively inert 
during the synthesis of YBCO, requiring intermittent grinding to improve the sample’s 
purity119,120. CuO is another frequent impurity, though it only ever appears with at least one other 
byproduct that is Cu deficient. When such phases do not form, CuO contributes to the formation 
of YBCO, as evidenced by its success rate of 20%. The fourth most common impurity is BaCO3, 
which is likely slow to react owing to its high decomposition temperature in air (1000 °C)121,122. 
We note that such information could in principle be leveraged when designing the search space, 
e.g., by removing BaCO3 from the list of precursors since the proposed temperature range lies 
below its known decomposition temperature. Indeed, doing so reduces the number of experiments 
required to identify all optimal synthesis routes from 87 to 70. 
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Figure 4-2. A summary of outcomes from the syntheses targeting YBCO. (a) Distributions of 
YBCO yield (wt. %) at different synthesis temperatures represented using violin and box plots, 
where each box extends from the lower to upper quartiles. (b) The success rate of each precursor, 
defined as the percentage of sets where that compound is included and forms YBCO without any 
impurities. (c) Common impurity phases that prevent YBCO formation are shown by a pie chart, 
where each slice represents the relative number of occurrences for each compound at 900 °C. The 
small gray sliver includes two less commonly observed impurities, YBaCu3O7 and YBa4Cu3O9. 
 
 To determine whether ARROWS can effectively distinguish between successful and failed 
synthesis routes, we assessed how many iterations are required to identify all 10 optimal 
experiments that result in the formation of YBCO without any detectable impurities. While in 
practice it would be sufficient to identify just one optimal synthesis procedure for a given target, 
tasking the algorithm with identifying all optimal procedures for YBCO allows us to showcase its 
ability to learn over many experimental iterations. It also reduces the likelihood that ARROWS 
discovers an optimal synthesis route by chance, thereby increasing our confidence in the 
performance of the algorithm. 
 As a baseline with which to compare the performance of ARROWS on the YBCO dataset, 
we applied D-optimal design with progressively larger sets of proposed experiments. This 
approach aims to select the experiments whose outcomes will be maximally informative123 to a 
model that maps the input variables (precursors and temperature) onto the output (YBCO yield). 
Here we assume a linear relationship between the two. We also applied two active learning 
algorithms, Bayesian optimization (BO) and a genetic algorithm (GA), to the same task by using 
a one-hot representation of each precursor. These algorithms are known to perform well on 
numerical inputs such as temperature124,125; however, their effectiveness with respect to categorical 
inputs is less well proven. To specifically probe the latter case, we constrained BO and GA to 
optimize the selection of precursors while sampling all temperatures for each precursor set. Both 
black-box algorithms have stochastic elements and were therefore applied to the YBCO dataset 
100 times, each with a random starting seed, and their results were averaged. Because ARROWS 
and D-optimal design are both deterministic algorithms, only a single run was performed to 
validate each on the YBCO dataset. 
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Figure 4-3. Optimization results on the YBCO synthesis dataset. (a) Number of optimal synthesis 
routes identified as a function of the experimental iterations required by ARROWS, Bayesian 
Optimization (BO), a Genetic Algorithm (GA), and D-Optimal design (D-Opt). The dashed line 
represents the total number of optimal synthesis routes in the dataset. (b) Pairwise reactions 
discovered by ARROWS with respect to the number of experiments queried. 

 
Figure 4-3a shows the number of optimal synthesis routes (those yielding pure YBCO) 

discovered with respect to the number of experiments queried by each algorithm. ARROWS 
successfully identified all 10 optimal routes from 87 experiments, which account for just 46% of 
the entire design space (spanning 188 experiments). D-optimal design, on the other hand, required 
165 experiments to accomplish the same task. Though, it is worth noting that D-optimal design 
was quick to identify three optimal synthesis routes in the first 12 experiments. ARROWS, 
although slower to identify optimal routes in the early stages of optimization, eventually surpassed 
D-optimal design once it gathered sufficient information regarding the reactivity of various phases 
in the Y-Ba-Cu-O chemical space.  

Both active learning algorithms performed poorly on the YBCO dataset, with BO and GA 
requiring on average 164 and 167 experiments to identify all ten optimal synthesis routes. We 
suspect the ineffectiveness of these algorithms is related to their use of one-hot representations for 
the precursors, which treat each compound independently and contain no physical information 
regarding their composition or structure. In contrast, ARROWS encodes compositional and 
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thermodynamic information in its optimization through its ranking by ∆G. It also learns from failed 
experiments to avoid pairwise reactions that form inert byproducts such as BaCuO2 and 
Y2BaCuO5, instead prioritizing sets of precursors expected to retain a strong driving force (∆G′) 
to form YBCO. 

Figure 4-3b displays the number of pairwise reactions learned by ARROWS with respect 
to the number of experiments that were queried. This plot includes pairs of phases that react within 
the temperature range considered (≤ 900 °C), denoted reactive pairs, as well as the phases that do 
not react within that range, denoted inert pairs. From 87 experiments, ARROWS gained 
information regarding 34 pairwise interactions, including 24 reactive and 10 inert pairs. We find 
that the identification of new successful synthesis routes is often preceded by the discovery of new 
pairwise reactions. For example, ARROWS learned from experiments 30-34 that BaO reacts with 
CuO to form BaCuO2 at 800 °C, which subsequently reacts with Y2O3 at 900 °C to form 
Y2BaCuO5. Because these pairwise reactions consume much of the driving force that remains to 
form YBCO, the algorithm decides to prioritize sets of precursors that do not contain such reactive 
pairs (BaO|CuO or BaCuO2|Y2O3). This decision leads to the successful discovery of three new 
synthesis routes that produce YBCO without any detectable impurities, as shown by the steep rise 
of the green curve in Figure 4-3a between experiments 38-43. While previous work has shown 
that BaCuO2 can effectively contribute to YBCO formation when it melts in combination with 
CuO84, there was no evidence of melting in our samples owing to the use of low synthesis 
temperatures (≤ 900 °C) that ensured all products could be easily extracted. 

In addition to learning which pairwise reactions should be avoided, ARROWS also learns 
which reactions are beneficial to achieve high target yield. During the optimization of YBCO 
synthesis, it learned from experiments 72-80 that BaO2 reacts with CuO to 700 °C to form 
Ba2Cu3O6, which upon further heating to 900 °C reacts with Y2O3 to form YBCO. Accordingly, 
subsequent experimental iterations are chosen based on precursor sets that either include Ba2Cu3O6 
or are expected to form it as an intermediate phase. As shown in Figure 4-3a, this leads to the 
rapid identification of all remaining experiments that successfully form YBCO shortly after the 
80th experimental iteration. 

To showcase the pairwise reactions learned by ARROWS, we present in Figure 4-4 a 
heatmap where each square represents a pair of phases. If any information was learned regarding 
the reactivity of that pair, the square is colored a light shade of blue according to the temperature 
at which a reaction proceeds. If a pair was instead found to be inert at all temperatures ≤ 900 °C, 
a dark shade of blue is used. We also denote reactions that produce YBCO (yellow star) or its 
competing phases, BaCuO2 (orange circle) and Y2BaCuO5 (red cross). This heatmap reveals that 
YBCO forms at 900 °C when Ba2Cu3O6 reacts with Y2O3 or Y2(CO3)3. It is separately observed 
that Ba2Cu3O6 reacts with Y2Cu2O5 when both are present at 800 °C, resulting in a mixture of 
YBCO and CuO. The direct formation of YBCO from Ba2Cu3O6 and Y2Cu2O5 provides an 
explanation as to why both phases have high success rates when used as precursors (Figure 4-2b). 
In contrast, the 0% success rates associated with BaCO3 and BaCuO2 can be traced to the limited 
reactivity of each phase with many of the precursors tested here. This is illustrated in Figure 4-4 
by the dark blue shading that signifies inert reactions pairs in the rows corresponding to BaCO3 
and BaCuO2. Even when BaCO3 does react, it often produces BaCuO2 or Y2BaCuO5, which are 
both common impurity phases that preclude the formation of YBCO. The presence of Y2BaCuO5 
is particularly detrimental to the synthesis of YBCO as it does not react with any precursor in the 
allotted hold time of 4 h, which ARROWS learns over the course of the 87 experiments we 
performed. 
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Figure 4-4. A heatmap representing the pairwise reactions learned by ARROWS in the YBCO 
chemical space. The color of each square represents the temperature (°C) at which a reaction is 
observed. Inert pairs correspond to phases that do not react within the temperature range 
considered. White squares (unshaded) represent pairs of phases whose reactivity was not learned 
by ARROWS. Yellow stars denote pairs that react to produce YBa2Cu3O6.5 (YBCO). Orange 
circles and red crosses denote pairs that form impurities, Y2BaCuO5 and BaCuO2, respectively. 

 
 There also exist some pairs of compounds whose reactivity was not learned by ARROWS 
during its optimization of YBCO synthesis. These 23 pairs are denoted by the white (unshaded) 
squares in Figure 4-4. We observe two factors that prevent ARROWS from learning pairwise 
reaction information. First, when two phases (e.g., A|B) react in a three-phase set (A, B, and C), 
the algorithm is unable to learn how the remaining phase (C) interacts with the already reacted 
compounds (A and B). Separate experiments based on the individual pairs (A|C and B|C) would 
be required to determine their reactivity. Second, when multiple pairwise reactions take place 
within the specified temperature interval (Δ𝑇  = 100 °C), the algorithm cannot determine the 
precise reaction sequence between the lower and upper temperatures (e.g., between 600 and 700 
°C). In principle, the second limitation can be overcome by using a smaller temperature interval; 
however, doing so would also require more experiments. 

The results presented in Figure 4-3 and Figure 4-4 were obtained by querying experiments 
in a serial (one-by-one) fashion. This allowed ARROWS to continually learn from each 
experimental outcome and update its ranking of precursor sets accordingly. However, traditional 
experiments are often parallelized. For example, multiple sets of precursors with a shared synthesis 
temperature may be tested simultaneously by loading them into one furnace113. Such an approach 
is also compatible with ARROWS, for which a batch size can be specified to control how many 
experiments are suggested at each iteration. The use of a larger batch size reduces the number of 
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iterations (i.e., batches) required to identify all the optimal synthesis routes for YBCO. This also 
leads to shorter hold times required in the furnace. However, because a larger batch size limits the 
opportunities where ARROWS can learn and update its ranking, it also leads to a larger number 
of individual samples that must be queried to identify the optimal routes. The efficiency with which 
samples are queried becomes particularly affected at later stages in the experiments, where the 
algorithm has sufficient knowledge of the chemical space to make frequent updates to its ranking 
of different precursor sets. Hence, there exists a tradeoff between the number of batches and 
individual samples required to complete the optimization process, and the batch size acts as a 
hyperparameter to adjust this tradeoff depending on the user’s objectives and experimental setup.  
 
4.2.3 NTMO 
ARROWS was next tasked with optimizing the yield Na2Te3Mo3O16 (NTMO) by choosing from 
23 different precursor sets and two synthesis temperatures (300 and 400 °C), which were kept low 
to avoid melting of the samples126. In the top panel of Figure 4-5a, we show the weight fraction 
of NTMO obtained at 400 °C for each precursor set that was tested. The solid dots represent 
experimentally observed weight fractions, whereas the hollow dots represent predictions made 
based on the intermediates formed at 300 °C. As detailed in the Methods section, a precursor set 
occasionally produces identical intermediates phases to a previously explored set. In this case, 
higher temperatures do not require sampling since their outcomes can already be predicted based 
on previous synthesis outcomes. 

None of the four initial precursor sets, which were selected based on their DFT-calculated 
reaction energies (∆G), produced any detectable amount of the target. Their failures can be 
attributed to the formation of an intermediate phase, Na2Mo2O7, that consumes much of the 
available free energy and precludes the formation of NTMO. This is confirmed by the 
thermodynamic unfavorable (positive) driving force associated with NTMO formation based on 
the hypothetical reaction between Na2Mo2O7 and two commonly used precursors, TeO2 and MoO3: 

Na2Mo2O7 + 3 TeO2 + MoO3 → Na2Te3Mo3O16 (∆G′ = +13 meV/atom) 
To further illustrate the limiting effect that Na2Mo2O7 has on the formation of NTMO, we plot in 
the bottom panel of Figure 4-5a the weight fraction of Na2Mo2O7 obtained at 300 °C for each 
precursor set, revealing a tradeoff between the yield of this phase and that of the target at 400 °C. 

From the six initial experiments targeting NTMO, ARROWS acquired knowledge 
regarding four different pairwise reactions (involving MoO2 and various Na precursors) that led to 
the formation of Na2Mo2O7 at 300 °C. To maintain a strong thermodynamic driving force to form 
the target, the algorithm selected all remaining experiments based on precursor sets expected to 
avoid pairwise reactions that formed Na2Mo2O7 and therefore reduced ∆G′. This change in priority 
from ∆G (based on the precursors) to ∆G′ (based on the predicted intermediates) is highlighted by 
the vertical dashed line in Figure 4-5a. The updated prioritization based on ∆G′ led to a clear 
increase in the yield of NTMO, as all experiments after the sixth iteration gave ≥ 30% yield of 
NTMO. This improvement is largely attributed to reduced Na2Mo2O7 formation when more stable 
Na precursors such as Na2CO3 or Na2TeO3 are used.  
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Figure 4-5. Optimization of Na2Te3Mo3O16 (NTMO) synthesis using ARROWS. (a) The top panel 
shows the weight fraction of NTMO obtained from each precursor set when tested at 400 °C. The 
bottom panel displays the weight fraction of a competing phase, Na2Mo2O7, obtained at 300 °C. 
Solid (hollow) dots represent experimental (predicted) values. (b) XRD pattern measured from the 
product of the optimized precursor set, Na2O + TeO2 + MoO3 after an 8 h hold at 400 °C. For 
comparison, a reference pattern is shown for NTMO (ICSD #171758). 

 
ARROWS further discovered from the outcome of the 16th experiment that it is even more 

effective to use precursors (Na2O, MoO3, and TeO2) that avoid Na2Mo2O7 entirely by instead 
forming Na2MoO4. This was the only precursor set for which Na2Mo2O7 was not detected at any 
temperature, and as a result, it successfully produced a sample containing 62% NTMO by weight. 
It did so by forming Na2MoO4, which retains a favorable (negative) driving force to react with the 
remaining precursors and form the target: 

Na2MoO4 + 3 TeO2 + 2 MoO3 → Na2Te3Mo3O16 (∆G′ = -8 meV/atom) 
Given that the updated reaction energy is relatively small, we suspect that longer hold times could 
be used to improve the purity of the synthesis product. To confirm this, we prepared a new sample 
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containing the same precursors (Na2O, MoO3, and TeO2) and held them at the optimized synthesis 
temperature 400 °C for a longer hold time of 8 h. The XRD pattern of the resulting product is 
shown in Figure 4-5b, revealing that the use of a longer hold time led to substantially improved 
purity. The sample contained 94% NTMO by weight, in addition to a 6% TeO2 impurity. For 
comparison, we carried out an identical synthesis procedure using a precursor mixture where 
MoO3 was replaced with MoO2, for which the resulting product did not contain any detectable 
amount of NTMO. This contrasting result highlights the importance of precursor selection and its 
effect on the reaction pathways that proceed during synthesis. By replacing a single precursor and 
thus altering which intermediate phase forms first (Na2Mo2O7 or Na2MoO4), the target yield can 
vary from 0% to > 90%. 
 
4.2.4 LTOPO 
As a final demonstration, ARROWS was used to direct a series of experiments targeting the 
triclinic polymorph of LiTiOPO4 (t-LTOPO) based on a search space consisting of 30 different 
precursor sets and two synthesis temperatures (400, 500, 600, 700 °C). To achieve this target, the 
algorithm must learn to avoid the formation of a lower-energy polymorph that exists at the same 
composition but adopts an orthorhombic structure (o-LTOPO)118.  In the top panel of Figure 4-
6a, we plot the weight fraction obtained for each polymorph with respect to the number of 
precursor sets that were sampled by ARROWS during its optimization of the synthesis process. 
These weight fractions are taken from experimental outcomes at 700 °C, which is the only 
temperature where either polymorph of LTOPO formed. The solid dots in Figure 4-6a represent 
observed weight fractions, whereas the hollow dots represent predictions made based on the 
intermediates formed at 400 °C. A total of eight precursor sets were tested before identifying an 
optimal synthesis route for t-LTOPO, though many of these sets produced identical intermediates 
and therefore did not require sampling of temperatures > 400 °C. 
 A key distinguishing feature between the precursor sets tested by ARROWS is the amount 
of LiTi2(PO4)3 formed as an intermediate in each case. The weight fraction of this phase contained 
in each sample made at 400 °C is plotted in the bottom panel of Figure 4-6a. Precursor sets 1-2 
both formed > 40% wt. of LiTi2(PO4)3, consuming much of the driving force left to form the target. 
This effect is illustrated by the chemical reactions below, representing the phases contained in 
precursor set 1 before and after annealing at 400 °C: 

Before: LiOH + TiO2 + (NH4)2HPO4 → LiTiOPO4 + 2 NH3 + 2 H2O (∆G = -58 meV/atom) 
After: Li4P2O7 + 3 TiO2 + LiTi2(PO4)3 → 5 LiTiOPO4 (∆G′ = -6 meV/atom) 

As outlined in recent work127, preferential nucleation of o-LTOPO tends to occur when preceded 
by reactions with small changes in the Gibbs free energy. This is confirmed by the synthesis 
outcome of precursor set 1 annealed at 700 °C, which produces a sample containing 35% o-
LTOPO and only 17% t-LTOPO, in addition to leftover LiTi2(PO4)3 and TiO2 impurities. 

To avoid the reactions that form LiTi2(PO4)3 and thereby retain larger ∆G′ to form the 
target, ARROWS suggests precursors where such reactions have not yet been observed. As shown 
by the data to the right of the dividing line in Figure 4-6a, which separates experiments selected 
using ∆G from those selected using ∆G′, this decision successfully reduced LiTi2(PO4)3 formation 
and led to increased yield of t-LTOPO. The plateau in the amount of each phase formed with 
precursor sets 3-7 is associated with the use of less reactive Li sources – including Li2CO3, Li2TiO3, 
and Li4Ti5O12 – which tend to persist until higher temperature and reduce the amount of 
LiTi2(PO4)3 that forms as an intermediate. While this led to increased yield of the target, o-LTOPO 



 53 

still accompanied its formation at 700 °C. In contrast, the eighth precursor set proposed by 
ARROWS (Li2O, TiO2, and P2O5) resulted in 54% target yield and no detectable amount of o-
LTOPO. Notably, this was also the only precursor set that did not form any LiTi2(PO4)3 at 400 °C. 
It instead formed a set of intermediates that maintained a stronger driving force to form the target 
as shown by the chemical reaction below: 

Li3PO4 + 2 TiO2 + TiP2O7 → 3 LiTiOPO4 (∆G′ = -24 meV/atom) 
 

 
Figure 4-6. Optimization of triclinic LiTiOPO4 (t-LTOPO) synthesis using ARROWS. (a) The 
top panel shows the weight fractions obtained for the target as well as its competing polymorph 
(o-LTOPO) based on each precursor set that was tested at 700 °C. The bottom panel displays the 
weight fraction of a common impurity phase, LiTi2(PO4)3, obtained at 400 °C. Solid (hollow) dots 
represent experimental (predicted) values. (b) XRD pattern measured from the synthesis product 
of the optimized precursor set, Li2O + TiO2 + P2O5, which was ball milled and subsequently heated 
to 700 °C for 4 h. For comparison, a reference pattern for t-LTOPO (ICSD #39761) is also shown. 
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Because ARROWS identified a synthesis route that gave 54% yield for t-LTOPO, 

exceeding our pre-defined objective of 50%, the optimization process was complete. Nevertheless, 
to verify that the target could made with higher purity using these optimized precursors, we 
separately performed a synthesis procedure where Li2O, TiO2, and P2O5 were ball milled prior to 
heating the mixture at 700 °C for 4 h. The XRD pattern of the resulting product is shown in Figure 
4-6b, revealing the formation of t-LTOPO without any detectable impurity phases. For 
comparison, the same procedure was also applied to a precursor mixture of LiOH, TiO2, and P2O5. 
The resulting synthesis product contained LiTi2(PO4)3 and o-LTOPO impurities, which limited the 
yield of t-LTOPO to 46% when using these non-optimized precursors. 

Although t-LTOPO was successfully optimized, we advise careful application of 
ARROWS for synthesizing metastable polymorphs. Our algorithm worked effectively with 
LTOPO, as its desired (metastable) polymorph is favored at large reaction energies, primarily due 
to its stable surface energy at small particle size127. This makes it well-suited for ARROWS, which 
learns to prioritize synthesis pathways with large reaction energy at the target-forming step. 
However, if the stable polymorph instead had low surface energy, its formation would be enhanced 
by the recommended precursor sets. Therefore, our general recommendation is to use ARROWS 
for the following cases: 1) targets that are inherently stable; 2) targets that are metastable with 
respect to phase separation; and 3) targets that are metastable with respect to polymorphic 
transition but have lower surface energies than the ground states.  
 
4.3 Discussion 
Precursor selection often has a marked effect on the outcomes of solid-state synthesis experiments, 
dictating whether they form desired products or unwanted impurities84,90. The importance of 
choosing optimal precursors is demonstrated by our syntheses targeting YBCO, for which only 10 
precursor sets (out of 47 total) are successful in forming YBCO without any detectable impurity 
phases. Similarly, both NTMO and LTOPO were found to require the use of specific precursor 
sets that circumvent the formation of competing phases that otherwise limit the yield of the 
metastable targets. Changing just one precursor can lead to a completely different synthesis 
outcome, as shown by the 94% wt. increase observed in the yield of NTMO when MoO2 is replaced 
by MoO3. Understanding the origin of such large changes requires a detailed inspection of their 
associated reaction pathways. While this would typically be accomplished by using in situ 
characterization techniques, we have shown that information regarding the intermediate phases 
formed during solid-state synthesis can be gathered by probing different annealing temperatures 
with fixed hold times. For example, the low-temperature (400 °C) synthesis experiments targeting 
LTOPO reveal whether LiTi2(PO4)3 forms as an intermediate, which subsequently controls the 
yield of the metastable polymorph at higher temperature (700 °C).  
 ARROWS effectively uses intermediate phase information gleaned from low-temperature 
experiments to determine where a given reaction pathway goes wrong. It does so by rationalizing 
each set of experimental outcomes using pairwise reaction analysis, which assumes that a mixture 
of solid precursors reacts two phases at a time. This assumption is justified by several previous 
studies84,98,128, where in situ XRD was used to verify that solid-state reactions often proceed in 
pairs owing to the limited diffusion lengths of species in the solid medium. In the current work, 
systematic pairwise reaction analysis is used to identify which precursors react to consume much 
of the available free energy, thereby reducing the driving force (∆G′) that remains to form the 
target. Once this information is known, ARROWS prioritizes experiments based on precursor sets 
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that are expected to avoid such unfavorable pairwise reactions. Our tests on the YBCO dataset 
showed this to be an effective approach for the rapid identification of optimal synthesis routes, as 
ARROWS identified all 10 of the best experimental procedures while sampling less than half of 
the entire search space. Similarly, it identified successful procedures for the synthesis of two 
metastable phases, NTMO and LTOPO, while requiring only 35% and 14% of their search spaces 
to be sampled, respectively.  

Efficient data collection in vast experimental domains is a longstanding challenge. 
Traditional approaches based on design of experiments129,130, including the D-optimal design 
algorithm tested here, can aid in the selection of experiments that are most informative to model a 
quantity such as target yield. However, these methods can fall short when dealing with a 
particularly large search space or when the quantity of interest is sparsely valued. Both challenges 
exist in solid-state synthesis, where many precursor combinations are often available for a given 
target, most of which fail to produce that target in any measurable amount. This warrants the use 
of active learning algorithms that can efficiently navigate the search space by adapting from failed 
experiments. Here we evaluated the performance of two such methods, Bayesian optimization and 
genetic algorithms, when applied to optimize the synthesis of YBCO. While each is known to 
perform well on continuous variables such as time or temperature131,132, our tests show that they 
fail on the discrete task of precursor selection. We suspect their ineffectiveness is caused by using 
one-hot encodings to represent each precursor set, which fails to capture the similarities and 
differences between various chemical compounds. Recent work on organic synthesis has shown 
that black-box optimization techniques can perform well in the selection of molecular precursors 
when they are represented using physical descriptors such as SMILES strings131; however, no such 
universal representation exists for crystalline materials. Further complicating matters is the fact 
that precursor sets used in solid-state synthesis often have varied lengths – i.e., some sets contain 
more precursors than others – which make them difficult to represent using a fixed-length input 
vector for optimization. 
 ARROWS systematically explores the search space associated with solid-state synthesis 
by actively learning from failed experiments. To overcome the limitations outlined in the previous 
paragraph, ARROWS relies on a single metric (the remaining reaction energy) that can be updated 
is it reconstructs the path a given synthesis procedure takes. Previous work has demonstrated that 
reaction energies (∆G) often dictate the selectivity of competing phases in solid-state synthesis84,98, 
and reactions with larger ∆G tend to occur more rapidly99,116. Initially, when no intermediates are 
known, the available reaction energy corresponds to the free energy difference between the target 
and precursors, thus motivating our choice to first prioritize experiments based on precursor sets 
with the largest reaction energies. Once intermediates become known, ARROWS re-ranks 
precursor sets based on their updated reaction energies (∆G′) remaining to form the target. Using 
this approach, the algorithm can discard reaction pathways that become trapped in metastable 
states close in energy to the target. 

Notably, a unique feature of ARROWS is that it becomes more efficient at identifying 
optimal experiments as it builds the size of its pairwise reaction database. This was demonstrated 
by the correlation between the frequency at which optimal synthesis routes were discovered on the 
YBCO dataset and the number of pairwise reactions that were collected (Figure 4-3b). Further 
improving the utility of the pairwise reactions learned by ARROWS is their transferability across 
materials in related chemical spaces. For example, our analysis of the YBCO experiments revealed 
34 unique pairwise reactions involving common precursors for Y, Ba, and Cu. Should any of these 
compounds be used for the synthesis of a new material, ARROWS would operate more effectively 
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by predicting their reaction outcomes a priori. Predictions of this nature will in general become 
more abundant as the overlap between chemical spaces increases, specifically when considering 
target materials with two or more shared elements. As the decisions made by ARROWS require 
minimal human input, the algorithm is well suited to act as the brain behind autonomous platforms 
that are currently being developed68. With years of continuous and autonomous experimentation, 
such platforms could lead to the development of a standardized pairwise reaction database that 
covers much of the periodic table, enabling accurate predictions regarding optimal synthesis routes 
for new materials without requiring additional experiments. Researchers across the field of solid-
state chemistry could also contribute to this database and refer to it for their own synthesis design. 

There exist several opportunities to further improve the efficiency and interpretability of 
ARROWS. The algorithm currently relies on thermodynamic arguments to optimize a target’s 
yield, specifically by assuming that synthesis reactions with large driving force will be most 
effective. Future work may additionally consider the influence of kinetic factors such as diffusion 
and nucleation rates, though these are currently challenging to assess in a quantitative fashion due 
to both computational limitations and a lack of clarity on the relevant conditions under which each 
process should be evaluated. Related efforts have developed approximate models for nucleation 
rates that consider the structural similarity between precursor and target materials, in addition to 
their associated reaction energy110. Such factors could be incorporated into ARROWS and its 
precursor ranking scheme by using structural descriptors based on matminer statistics133 or graph-
based representations134–136. Descriptors related to particle morphology and sample density could 
also be included in the optimization process, as both have been reported to affect synthesis 
outcomes137,138. 
 Beyond the selection of optimal precursors, synthesis planning often requires the heating 
profile to be carefully designed. Previous work has addressed this challenge by using standard 
optimization techniques132, which perform well as the heating profile can be described in terms of 
continuous variables (e.g., temperature and time). However, our findings show that a more 
physics-informed approach may also be viable. For the synthesis of each target material studied in 
this work, ARROWS used a short hold time (4 h) to identify the precursors and temperature that 
give maximal target yield. If necessary, manual decisions were made to increase the hold time if 
1) the target yield was lower than desired, and 2) the leftover reactions needed to grow the target 
were thermodynamically favorable. In doing so, > 90% yield was obtained for all three target 
materials we considered. Moreover, it was shown that such high yield was possible only for the 
precursor sets optimized by ARROWS at short hold time, thereby demonstrating that long hold 
times need not be used when testing various precursors. Decisions regarding when to extend the 
hold time after identifying an optimal set of precursors could later be incorporated into ARROWS, 
enabling further progress toward complete autonomy in solid-state synthesis.  
 While we have shown that ARROWS performs well on three benchmarks, there may still 
be room for improvement. To aid in the development of new algorithms for decision making in 
solid-state synthesis, all data reported in this work is made publicly available. In particular, the 
YBCO dataset contains experimental outcomes from all the available precursor combinations. This 
critically includes both positive (successful) and negative (failed) synthesis outcomes, and as such, 
can be used to train and validate algorithms that require both types of data. We anticipate that such 
algorithms will not only facilitate a more systematic approach to the planning of synthesis 
experiments performed by human researchers, but also enable the development of fully 
autonomous platforms for materials development68. An additional benefit of ARROWS 
specifically, when applied in conjunction with automated synthesis platforms, is that multiple 



 57 

successful synthesis routes can be learned for a given target. Such information on alternate 
experimental procedures will be valuable when more practical considerations become important, 
such as the optimization of morphology, synthesis cost, or the ability to industrially scale up the 
synthesis of a novel compound.  
 
4.4 Methods 
4.4.1 Formulation of the search space 
Targeted materials synthesis can be framed as an optimization problem for which the objective is 
to maximize the yield of a desired phase with respect to several experimental variables including 
the choice of precursors, synthesis temperature, hold time, and atmospheric conditions. Here we 
assume a fixed hold time and set of atmospheric conditions (e.g.,	𝑝0! and 𝑝10!) which are supplied 
by the user for a given target, hence constraining the search space to account only for the selection 
of precursors and synthesis temperature. To define this search space, ARROWS requires that the 
user provide a list of compounds that are available to be used as precursors. From this list, all 
unique precursor combinations are enumerated and those that can be stoichiometrically balanced 
with the target are recorded as possible precursor sets for it. The number of precursors included in 
each set is limited to the number of elements in each target. For example, only sets containing ≤ 4 
precursors will be considered for the synthesis of a quaternary oxide containing three cations. 
Because carbonates, hydroxides, and high-valent oxides are often used as precursors in solid-state 
synthesis, ARROWS accounts for the possibility of CO2, H2O, and O2 byproducts when balancing 
each chemical reaction. Additional byproducts can be specified when necessary. To determine 
which synthesis temperatures may be tested, ARROWS requires that the user supply bounds 
(𝑇#2' ,	𝑇#$%) and a sampling interval (∆𝑇). In combination with the total number of balanced 
precursor sets (𝑁(&)(), this information defines the search space containing 𝑁&%* points over which 
optimization is performed for a given target: 

𝑁!"# = 𝑁$!%$ #
&!"#'&!$%

∆&
+ 1&         (1) 

Any prior knowledge regarding the chemical system should be used when designing the 
search space. For example, the lower temperature bound (𝑇#2') may be chosen to exceed the 
known decomposition temperatures of all carbonates and hydroxides being considered as 
precursors. Similarly, the upper temperature bound (𝑇#$%) may be chosen below the melting points 
of the precursors if the user wishes to retain a product consisting of solid powder. With respect to 
precursor selection, it may often be beneficial to exclude compounds that are known to be inert in 
the temperature ranged being considered; however, this can also be learned by ARROWS through 
experimentation. The algorithm’s self-learning capabilities become critical in chemical systems 
where the precursor properties are largely unknown. 
 
4.4.2 Initial ranking by ∆G 
The thermodynamic driving force behind a chemical reaction is set by the change in the Gibbs free 
energy (∆G) between its products and reactants. Under constant temperature and pressure, 
reactions can occur spontaneously only if they reduce the Gibbs free energy (∆G < 0) of the system. 
ARROWS initially ranks all the available precursor sets in order of their reaction energies (∆G) to 
form the target. Those with the largest (most negative) ∆G are prioritized, whereas those with ∆G 
≥ 0 are excluded from consideration. For each set, ∆G of the solid compounds is determined using 
DFT-calculated 0 K formation energies from the Materials Project2, along with temperature-
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dependent free energies approximated using the machine-learned descriptor developed by Bartel 
et al.114 In cases where a novel phase (not available in the Materials Project) is considered, we use 
the DFT-calculated energy of the convex hull at that phase’s composition. For gaseous phases, ∆G 
is obtained from the experimental NIST database139. All reaction energies are normalized per atom 
of the product phase(s) formed to ensure a consistent comparison between different precursor sets. 

The initial ranking by ∆G is intended to prioritize sets of precursors that are expected to 
react under short timescales; however, such precursors are not necessarily the most effective at 
forming the target. In addition to having a strong thermodynamic driving force to form the target, 
precursor sets with large ∆G often have similarly large driving forces to form unwanted impurity 
phases90. We have therefore designed ARROWS to learn from the outcomes of failed experiments 
by determining which reactions led to the formation of such impurity phases. Details on this 
process are given in the next two sections.  

Our consideration of ∆G is a simplification of the factors that dictate solid-state synthesis. 
In addition to selecting optimal precursors, the particle morphology and heating rate can also have 
a substantial influence on reaction outcomes137,138. Furthermore, certain compounds may react with 
the atmosphere prior to heating, e.g., to form carbonates or hydroxides. Such factors are currently 
not accounted for but could in principle be included by studying the evolution of each individual 
precursor as a function of temperature and time. Because this information is not generally available 
for all compounds and precursor powders, the current implementation of ARROWS focuses only 
on ∆G, which is more readily calculated using the methods described in the previous few 
paragraphs. Future work may consider incorporating additional properties into the algorithm’s 
ranking scheme, and further details on this possibility are provided in the Discussion section of the 
main text. 
 
4.4.3 Temperature selection for intermediate identification 
To pinpoint the origin of any impurity phases that caused a synthesis procedure to fail, it is 
necessary to identify the intermediate phases that formed while heating. Previous work has 
demonstrated that precursors used in solid-state synthesis typically do not transform directly to the 
final products, but instead proceed through a series of pairwise reactions that form transient 
intermediate phases and incrementally reduce the free energy of the sample84,98. Characterizing 
these intermediates would traditionally require the use of in situ XRD; however, we propose that 
similar information can be obtained by testing a range of synthesis temperatures for a given 
precursor set. Assuming that a fixed hold time is used at each temperature, the XRD patterns 
gathered from the resulting samples provide discrete snapshots of the reaction pathway, from 
which intermediate phases can be identified in a high-throughput and automated fashion using 
recently developed ML algorithms80. 
 By inspecting the temperature-dependent synthesis outcomes for a given precursor set, 
ARROWS determines which pairwise reactions occurred while heating. To this end, we assume 
that any phases detected at a specific temperature (𝑇) may act as reactants that lead to the formation 
of new phases at the next highest temperature (𝑇 + ∆𝑇). Accordingly, when XRD measurements 
reveal a new phase that is not present in the associated precursor set nor identified as an 
intermediate phase at lower temperature, ARROWS is tasked with identifying the precise 
combination of phases responsible for its formation. If a new phase is detected at 𝑇#2' , the 
algorithm evaluates which two-phase combination(s) from the precursor set have the appropriate 
compositions (i.e., can be stoichiometrically balanced) to produce that phase. In cases where there 
exists only one such possible combination, it is recorded as an observed pairwise reaction with an 
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onset temperature less than 𝑇#2'. A similar procedure is followed when new phases are detected 
at 𝑇 > 𝑇#2', except that ARROWS considers the intermediate phases detected at the next lowest 
temperature (𝑇 − ∆𝑇) as possible reactants. 
 Oftentimes, different sets of precursors can react to form identical sets of intermediates at 
low temperature, which subsequently result in the same products upon further heating140. To avoid 
testing all temperatures for such redundant synthesis routes, ARROWS suggests that experiments 
first be performed at 𝑇#2' for each precursor set. It then checks whether the observed products and 
their associated weight fractions differ from those obtained using other precursors sets that were 
previously tested at 𝑇#2'. Differences as large as 10% are allowed between two sets of products 
while still considering them to be identical as there is often limited precision in the refinements 
performed using XRD patterns from multi-phase mixtures. If the observed products for a precursor 
set are indeed unique, the next highest temperature (𝑇 + ∆𝑇) is proposed for that set. This process 
is repeated until the target is successfully obtained with sufficiently high yield, as specified by the 
user, or until 𝑇#$% is reached for the specified precursor set. 
 By default, ARROWS operates under the assumption that a linear heating ramp is used to 
reach the specified hold temperature (𝑇). In practice, however, a preheating step is occasionally 
used to decompose certain precursors at a temperature lower than the specified hold. For example, 
nitrate precursors such as LiNO3 and NaNO3 are often preheated to avoid rapid evolution of gases 
at higher temperature141. To handle such cases, expected decomposition temperatures and products 
can be incorporated into the pairwise reaction database prior to running ARROWS. Without the 
user providing this information, the algorithm will still identify the decomposition product except 
in cases where that product reacts with another phase prior to XRD measurements, which would 
otherwise preclude its detection. 
 
4.4.4 Updated ranking by ∆G′ 
ARROWS learns from previously identified pairwise reactions to make informed decisions 
regarding optimal synthesis routes. It does so by predicting which intermediates will form upon 
heating precursor sets that have not yet been tested. An example of this process is given below for 
an arbitrary target (𝐴𝐵3𝐶): 

Precursor set not yet tested: 𝐴 + 2𝐵 + 𝐶	(∆G2'2)2$4) 
Previously identified pairwise reaction: 𝐴 + 2𝐵 → 𝐴𝐵3		(∆G2')&5#) 

Reaction using anticipated intermediates: 𝐴𝐵3 + 𝐶		(∆G6 = ∆G2'2)2$4 − ∆G2')&5#) 
In this example, the anticipated intermediate phases were determined based on previous synthesis 
outcomes that involved a reaction between 𝐴 and 𝐵. The updated reaction energy (∆G′) to form 
the target (𝐴𝐵3𝐶) is then calculated based on the intermediates (𝐴𝐵3 + 𝐶) that result from this 
pairwise reaction. Similar analysis is applied to all precursor sets that have not yet been tested and 
their reaction energies are updated accordingly. In cases where no intermediates can be predicted, 
the reaction energy remains unchanged (∆G6 = ∆G). Following these changes, precursor sets are 
ranked to prioritize reactions with the most negative ∆G6 , i.e., those with the largest 
thermodynamic driving force at the presumed target-forming step. ARROWS uses the updated 
ranking to continually suggest new precursor sets until an experiment is found that gives 
sufficiently high yield of the target phase (as specified by the user) or until all precursor sets have 
been tested.  
 We acknowledge that it is generally difficult to ascertain whether a given reaction energy 
is large enough for the associated transformation to occur within a reasonably short timeframe. 
The reaction rate is determined not only by the energy change, but also by several factors related 
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to diffusion and nucleation These rates are highly non-trivial to predict and strongly dependent on 
the specific chemistry being considered. Given these considerations, ARROWS is designed to rank 
various precursor sets based on their relative reaction energies to form a target phase, whether from 
the initial precursors (∆G) or from the intermediates that form during synthesis (∆G6). While this 
affects the order in which different precursor sets are tested, none are excluded for having a low 
reaction energy. Instead, such precursors will be tested at a later stage in the optimization process, 
if necessary. 
 
4.4.5 YBCO synthesis 
The synthesis of YBCO is most commonly performed using Y2O3, CuO, and BaCO3119. This 
combination of precursors requires > 12 h of annealing at 950 °C, in addition to intermittent 
regrinding, to eliminate the unwanted impurity phases that often appear. In contrast, recent work 
has shown that by replacing BaCO3 with BaO2, YBCO can be obtained with high purity while 
using a shorter anneal time of 30 min84,120. These findings highlight the importance of precursor 
selection and its effect on the yield of YBCO under limited hold time, making it a suitable test 
case for ARROWS. To this end, we considered 11 common precursors from the Y-Ba-Cu-O space: 
Y2O3, Y2(CO3)3, BaO, BaCO3, BaO2, CuO, CuCO3, Cu2O, BaCuO2, Ba2Cu3O6, and Y2Cu2O5. 
These compounds were combined to form 47 different precursor sets that were each tested at four 
synthesis temperatures (600, 700, 800, and 900 °C) using a fixed hold time of 4 h. 

All binary phases listed in the above paragraph (including the carbonates) were purchased 
from Sigma Aldrich, whereas the ternaries (Y2Cu2O5, BaCuO2, and Ba2Cu3O6) were synthesized 
in-house. For each ternary phase, stoichiometric amounts of the starting materials were mixed in 
ethanol with six 10 mm stainless steel balls using a high-energy SPEX mill (SPEX SamplePrep 
8000 M) for 9 min. The resulting slurry was dispensed into a crucible and dried at 80 °C, following 
by a high temperature anneal at the specified synthesis temperature for each sample. Y2Cu2O5 was 
made from Y2O3 and CuCO3 using a 12 h hold at 1050 °C. BaCuO2 was synthesized from BaCO3 
and CuO using a 24 h hold at 910 °C. Ba2Cu3O6 was prepared from BaO2 and CuO using a 24 h 
hold at 600 °C. The corresponding XRD patterns point to successful synthesis outcomes as each 
sample contains the desired ternary phase with minimal impurities. 

To assess the phase purity for each synthesis product, XRD measurements were performed 
with an Aeris diffractometer from Panalytical. We used XRD-AutoAnalyzer80 to analyze the 
resulting XRD patterns and identify any crystalline phases present. This algorithm relies on a CNN 
to map each pattern onto a set of constituent phases. Here we trained the network on all phases 
reported in the ICSD within the space of Y-Ba-Cu-O chemistries. After identifying the phases in 
each pattern using XRD-AutoAnalyzer, their weight fractions were evaluated through analysis of 
relative peak intensities. A more careful approach based on Rietveld refinement, which accounts 
for properties such as grain size and texture, would be required to obtain precise weight fractions. 
However, this work only requires that we compare relative weight fractions between different 
experiments, enabling ARROWS to identify the most effective synthesis route for a given target. 
For YBCO specifically, all experiments were performed prior to optimization, and therefore it was 
used to evaluate the performance of several algorithms including ARROWS, Bayesian 
optimization, genetic algorithms, and D-optima design. 
 
4.4.6 NTMO synthesis 
The initial discovery of NTMO was enabled by the use of a hydrothermal synthesis procedure 
whereby an aqueous solution of Na2TeO3, TeO2, and MoO3 was held at 220 °C for 48 h117. More 
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recently, a solid-state synthesis route was also reported: Na2CO3, TeO2, and MoO3 were mixed 
and held at 430 °C for 48 h with intermittent regrinding126. We suspect that ARROWS can handle 
the synthesis of phases such as NTMO, which are metastable with respect to decomposition, as it 
should learn to avoid the formation of any competing phases that result in an unfavorable driving 
force (∆G > 0) to form the target. For the experimental campaign targeting NTMO, eleven 
precursors were purchased from Sigma Aldrich: Na2O, Na2CO3, NaOH, Na2O2, MoO2, MoO3, 
TeO2, Na2TeO3, Na2MoO4, Na2Mo2O7, and (NH4)2MoO4. A total of 23 precursor sets were 
considered, for which synthesis temperatures of 300 and 400 °C were tested at a fixed hold time 
of 4 h. We avoided the use of higher temperatures as melting is expected to occur near 450 °C, 
making the product difficult to extract117. In contrast to the YBCO campaign, where all possible 
experiments were performed and ARROWS was only applied post hoc, the LTOPO experiments 
were carried out under the guidance of ARROWS until NTMO was obtained with a weight fraction 
exceeding 50%. No black-box optimization techniques were used to explore this dataset as only 
part of the design space was sampled by ARROWS. 
 
4.4.7 LTOPO synthesis 
The tendency for LTOPO to crystallize in its triclinic polymorph, as opposed to its orthorhombic 
ground state, is highly sensitive to the choice of precursors and synthesis temperature118,142. Recent 
work has proposed that the t-LTOPO nucleates first owing to its more stable surface energy, which 
dictates the relative nucleation rate of each polymorph when ∆G is large127. Therefore, although 
ARROWS encodes no structural information and is not designed for the synthesis of metastable 
polymorphs in general, we believe it is well-suited for t-LTOPO (and similarly stabilized 
metastable polymorphs) since it aims to identify reaction pathways that maintain large ∆G. Ten 
commercially available phases were purchased from Sigma Aldrich and used as precursors: Li2O, 
Li2CO3, LiOH, TiO2, P2O5, NH4H2PO4, (NH4)2HPO4, Li3PO4, Li2TiO3, and Li4Ti5O12. A total of 
30 precursor sets were considered. Four synthesis temperatures (400, 500, 600, and 700 °C) were 
sampled for each set at fixed a hold time of 4 h. Synthesis experiments were performed under the 
guidance of ARROWS until t-LTOPO was obtained with a weight fraction exceeding 50%. No 
black-box optimization techniques were applied.  
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CHAPTER 5   An autonomous laboratory for the 
accelerated synthesis of inorganic materials 
 
 
 
The work presented in this chapter is based, often verbatim, on the following publication: 
N. J. Szymanski, B. Rendy, Y. Fei, R. E. Kumar, T. He, D. Milsted, M. J. McDermott, M. Gallant, 
E. D. Cubuk, A. Merchant, H. Kim, A. Jain, C. J. Bartel, K. Persson, Y. Zeng, and G. Ceder, “An 
autonomous laboratory for the accelerated synthesis of novel materials.” Nature 2023, 624, 86-
91. 
 
 
To close the gap between the rates of computational screening and experimental realization of 
novel materials143,144, we introduce the A-Lab, an autonomous laboratory for the solid-state 
synthesis of inorganic powders. This platform leverages computations, historical data from the 
literature, ML, and active learning to plan and interpret the outcomes of experiments performed 
using robotics. Over 17 days of continuous operation, the A-Lab realized 41 compounds from a 
set of 58 targets including a variety of oxides and phosphates that were identified using large-scale 
ab-initio phase stability data from the Materials Project and Google Brain. Synthesis recipes were 
proposed by natural language models trained on the literature and optimized using an active 
learning approach grounded in thermodynamics. Analysis of the failed syntheses provide direct 
and actionable suggestions to improve current techniques for materials screening and synthesis 
design. The high success rate demonstrates the effectiveness of AI-driven platforms for 
autonomous materials discovery and motivates further integration of computations, historical 
knowledge, and robotics. 
 
 
5.1 Introduction 
While promising new materials can be identified at scale using high-throughput computations, 
their experimental realization is often challenging and time-consuming. Accelerating the 
experimental segment of materials discovery requires not only automation, but autonomy – the 
ability of an experimental agent to interpret data and make decisions based on it. Pioneering efforts 
have demonstrated autonomy in several aspects of materials research including robotic and 
Bayesian-driven optimization of carbon nanotube yield21,22, photovoltaic performance12, and 
photocatalysis activity13. In contrast to conventional ML algorithms used for optimization, human 
researchers benefit from a wealth of background knowledge that informs their decision making, 
and it is increasingly recognized15,58,145 that autonomy will require a fusion of encoded domain 
knowledge, access to diverse data sources, and active learning. 

Here we present the A-Lab, an autonomous laboratory that integrates robotics with the use 
of ab-initio databases, ML-driven data interpretation, synthesis heuristics learned from text-mined 
literature data, and active learning to optimize the synthesis of novel inorganic materials in powder 
form. While autonomous workflows based on liquid handling have been demonstrated in organic 
chemistry146–148, the A-Lab addresses the unique challenges of handling and characterizing solid 
inorganic powders. These often require milling to ensure good reactivity between precursors, 
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which can have a wide range of physical properties related to differences in their density, flow 
behavior, particle size, hardness, and compressibility. The use of solid powders is well suited for 
manufacturing and technological scale-up, and the A-Lab’s approach to synthesis produces multi-
gram sample quantities that facilitate device-level testing. 

Given a set of air-stable target materials (i.e., desired synthesis products whose yield we 
aim to maximize) screened using the Materials Project2, the A-Lab generates synthesis recipes 
using ML models trained on historical data from the literature, then executes these recipes with 
robotics. The synthesis products are characterized by XRD, with two ML models working in 
unison to analyze their patterns. When synthesis recipes fail to produce a high target yield, active 
learning closes the loop by proposing improved follow-up recipes. Over 17 days of operation, the 
A-Lab successfully synthesized 41 of 58 target materials which span 33 elements and 41 structural 
prototypes. Inspection of the 17 unobtained targets revealed synthetic as well as computational 
failure modes, several of which could be overcome through minor adjustments to the lab’s decision 
making. With its high success rate in validating predicted materials, the A-Lab showcases the 
collective power of ab-initio computations, ML algorithms, accumulated historical knowledge, 
and automation in experimental research.  
 
5.2 Results 
5.2.1 Autonomous materials discovery platform 
The materials discovery pipeline followed by the A-Lab is schematically shown in Figure 5-1. All 
target materials considered in this work are new to the lab, i.e., not present in the training data for 
the algorithms it uses to propose synthesis recipes. The experiments reported in this study represent 
the first attempts by the A-Lab to synthesize any of these targets. Each target is predicted to be on 
or very near (< 10 meV/atom) the convex hull formed by stable phases taken from the Materials 
Project and cross-referenced with an analogous database from Google Brain. Because the A-Lab 
handles samples in open air, we only considered targets that are predicted not to react with O2, 
CO2, and H2O (Methods). 
 For each compound proposed to the A-Lab, up to five initial synthesis recipes are generated 
by an ML model that has learned to assess target “similarity” through natural language processing 
of a large database of syntheses extracted from the literature100, mimicking a human’s approach to 
base an initial synthesis attempt on analogy to known related materials. A synthesis temperature 
is then proposed by a second ML model trained on heating data from the literature (Methods)99. If 
these literature-inspired recipes fail to produce > 50% yield for their desired targets, the A-Lab 
continues to experiment using ARROWS, an active learning algorithm that integrates ab-initio 
computed reaction energies with observed synthesis outcomes to predict solid-state reaction 
pathways149. Experiments are performed under the guidance of this algorithm until the target is 
obtained as the majority phase, or all synthesis recipes available to the A-Lab are exhausted. 

The A-Lab carries out experiments using three integrated stations for sample preparation, 
heating, and characterization with robotic arms transferring samples and labware between them. 
The first station dispenses and mixes precursor powders before transferring them into alumina 
crucibles. A robotic arm from the second station loads these crucibles into one of four available 
box furnaces to be heated (Methods). After allowing the samples to cool, another robotic arm 
transfers them to the third station where they are ground into a fine powder and measured by XRD. 
The lab’s operations are controlled through an Application Programming Interface (API), which 
enables on-the-fly job submission from human researchers or decision-making agents. 
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 The phase and weight fractions of the synthesis products are extracted from their XRD 
patterns by probabilistic ML models trained on experimental structures from the ICSD following 
methodology outlined in previous work80,150. Because the target materials considered in this work 
have no experimental reports, their diffraction patterns are simulated from computed structures 
available in the Materials Project and corrected to reduce DFT errors. For each sample, the phases 
identified by ML are confirmed with automated Rietveld refinement (Methods) and the resulting 
weight fractions are reported to the A-Lab’s management server to inform subsequent 
experimental iterations, if necessary, in search of an optimal recipe with high target yield. 

 
 
 

 
Figure 5-1. The autonomous materials discovery workflow employed by the A-Lab. Air-stable 
unreported targets are identified using DFT-calculated convex hulls consisting of ground states 
from the Materials Project and Google Brain. Synthesis recipes for each target are proposed using 
ML models trained on synthesis data from the literature. These recipes are tested using a robotic 
laboratory that automates 1) powder dosing, 2) sample heating, and 3) product characterization 
with XRD. All sample transfer between these stations is performed using robotic arms, forming a 
fully automated sequence from chemical input to characterization. Phase purity is assessed from 
XRD, which is analyzed by ML models trained on structures from the Materials Project and the 
ICSD, and confirmed with automated Rietveld refinement. In cases where high (> 50%) target 
yield is not obtained, new synthesis recipes are proposed by an active learning algorithm that 
identifies reaction pathways with maximal driving force to form the target. 
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Figure 5-2. Outcomes from the A-Lab’s targeted syntheses of DFT-predicted materials. Result 
summary from the syntheses targeting 58 compounds, plotted against their decomposition energies 
(log-scale). Arrows indicate values near zero. A total of 41 targets were successfully synthesized 
(blue bars), while the remaining 17 could not be obtained by the A-Lab (red bars). Targets 
optimized in the active learning stage of the A-Lab are marked by diagonal lines; all other targets 
were only attempted using recipes proposed by ML algorithms trained on literature data. The 
scatter points above each bar represent the outcomes of attempted recipes for each target, ordered 
from top to bottom in the sequence they were performed. The inset pie charts show the fraction of 
successful targets (left) and recipes (right). Analyses performed after the fact suggest that the 
calculated decomposition energies for three targets, marked with stars, may be suspect due to 
computational errors (see text). 
 
5.2.2 Experimental synthesis outcomes 
Using the described workflow, the A-Lab synthesized 41 of the 58 target compounds over 17 days 
of continuous experimentation, representing a 71% success rate. We show in the next section that 
this success rate could be improved to 74% with only minor modifications to the lab’s decision-
making algorithm, and further to 78% if the computational techniques were also improved. The 
high success rate demonstrates that comprehensive ab-initio calculations can be used to effectively 
identify new, stable, and synthesizable materials. The outcome for all 58 compounds is plotted in 
Figure 5-2 against their decomposition energies (on a log scale), a common thermodynamic metric 
that describes the driving force to form a compound from its neighbors on the phase diagram88. A 
negative (positive) decomposition energy indicates that a material is stable (metastable) at 0 K. Of 
the targets considered in this work, 50 are predicted to be stable, while the remaining 8 are 
metastable but lie near the convex hull. Over the range of decomposition energies considered, we 
do not observe a clear correlation between decomposition energy and whether a material was 
successfully synthesized. 
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 In total, 35 of the 41 materials synthesized by the A-Lab were obtained using recipes 
proposed by ML models trained on synthesis data from the literature. These literature-inspired 
recipes were more likely to succeed when the reference materials are highly similar to our targets, 
confirming that target “similarity” is a useful metric to select effective precursors151. At the same 
time, precursor selection remains a highly nontrivial task, even for thermodynamically stable 
materials. Despite 71% of targets eventually being obtained, only 37% of the 355 synthesis recipes 
tested by the A-Lab produced their targets.  This finding echoes previous work that has established 
the strong influence of precursor selection on the synthesis path, ultimately deciding whether it 
forms the target or becomes trapped in a metastable state98,110. 

 

 
Figure 5-3. An outline of the active learning cycle that drives the A-Lab’s targeted syntheses. (a) 
From a failed synthesis attempt, the A-Lab determines which pairwise reactions occurred. (b) New 
precursors are recommended by substituting at least one precursor involved in the unfavorable 
pairwise reaction. In cases where the new precursor set leads to identical intermediates as a 
previously tested set, it is not explored at any higher temperatures. (c) The successful precursor set 
avoids all the unfavorable pairwise reactions. (d) The free energy at each step in the reaction 
pathway, calculated using data from the Materials Project, which shows that the successful 
pathway maintains a large driving force at the target-forming step. € Following this approach, the 
scatter plot shows the number of experiments required to exhaust all unique reaction paths for each 
target (red), or to identify an optimal path with high yield (blue), plotted with respect to the total 
size of each experimental search space.  
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The A-Lab’s active learning cycle identified synthesis routes with improved yield for nine 
targets, of which six had zero yield from the initial literature-inspired recipes. Targets optimized 
with active learning are indicated by the bars containing diagonal lines in Figure 5-2. In this 
framework, improved synthesis routes are designed using two hypotheses: 1) solid-state reactions 
tend to occur between two phases at a time (i.e., pairwise)84; and 2) intermediate phases that leave 
only a small driving force to form the target material should be avoided, as they often require long 
reaction time and high temperature89,90.  

The A-Lab continuously builds a database of pairwise reactions observed in its experiments 
– 88 unique pairwise reactions were identified from the synthesis experiments performed in this 
work. This database allows the products of some recipes to be inferred (Figure 5-3), precluding 
their testing; a recipe that yields an observed set of intermediates (already present in the lab’s 
database) need not be pursued at higher temperatures, as the remaining reaction pathway is already 
known. This can reduce the search space of possible synthesis recipes by up to 80% when many 
precursor sets react to form the same intermediates (Figure 5-3e). Furthermore, knowledge of 
reaction pathways can be used to prioritize intermediates with a large driving force to form the 
target, computed using formation energies available in the Materials Project. For example, the 
synthesis of CaFe2P2O9 was optimized by avoiding the formation of FePO4 and Ca3(PO4)2, which 
have a small driving force (8 meV/atom) to form the target. This led to the identification of an 
alternative synthesis route that forms CaFe3P3O13 as an intermediate, from which there remains a 
much larger driving force (77 meV/atom) to react with CaO and form CaFe2P2O9, causing a ~70% 
increase in the target’s yield. 
 
5.2.3 Barriers to synthesis 
Seventeen of the 58 targets evaluated by the A-Lab were not obtained even after its active learning 
cycle. We identify slow reaction kinetics, precursor volatility, amorphization, and computational 
inaccuracy as four broad categories of “failure modes” that prevented the synthesis of these targets. 
The prevalence of each failure mode is shown in Figure 5-4, accompanied by their affected targets. 
 Sluggish reaction kinetics hindered 11 of the 17 failed targets, each containing reaction 
steps with low driving forces (< 50 meV/atom). In principle, these targets can be made accessible 
by using a higher synthesis temperature, longer heating time, improved precursor mixing, or 
intermittent regrinding – standard procedures that are currently outside the domain of the A-Lab’s 
active learning algorithm. As such, we manually reground the original synthesis products 
generated by the A-Lab and heated them to higher temperatures, which led to the successful 
formation of two additional targets, Y3Ga3In2O12 and Mg3NiO4, bringing our total success rate to 
74%. One could also use more reactive precursors to provide a greater driving force to form the 
target; though, our experiments were constrained to air-stable binary precursors that sometimes 
restricted the A-Lab’s choice of synthesis routes to those forming highly stable intermediates. 
System modifications to enable multi-step heating, intermediate regrinding, and expanded 
precursor selection should improve the lab’s ability to adapt and overcome failed synthesis 
attempts. 
 Precursor volatility disrupted all synthesis experiments targeting CaCr2P2O9, causing a 
change in the net stoichiometry of its samples. This can be attributed to the use of ammonium 
phosphate precursors, NH4H2PO4 and (NH4)2HPO4, which proceed through a series of 
decomposition reactions and ultimately evaporate above 450 °C152. Still, recipes based on these 
precursors can succeed if the ammonium phosphate reacts with another precursor prior to its 
evaporation temperature, effectively locking the phosphate ions in the solid state. For example, 
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volatility does not appear to be an issue for the Mn-containing phosphates targeted in this work, 
as each Mn oxides precursor reacts with the ammonium phosphates at low temperature (< 500 °C) 
to form Mn2(PO4)3 as an intermediate. This precursor behavior can in principle be learned when 
sufficient pairwise reaction data has been collected, after which the A-Lab may favor the selection 
of precursors that trap in phosphate ions at low temperature and therefore preclude unwanted 
volatility. 

Melting of samples at high temperature inhibited the crystallization of one target, 
Mo(PO3)5, whose synthesis attempts produced amorphous samples. While the use of a molten flux 
can sometimes improve reaction kinetics153, the formation of an amorphous state that is low in 
energy may reduce the driving force for crystallization. Indeed, using the workflow outlined by 
Aykol et al.154, we identified amorphous configurations of Mo(PO3)5 with energies as low as 61 
meV/atom above the crystalline ground state, a finding that is consistent with the widely reported 
glass-forming ability of phosphate-rich compounds155,156. 
 
 

 
Figure 5-4. Barriers to the synthesis of materials predicted to be stable. The 17 target materials 
that could not be synthesized by the A-Lab, where each is categorized by the feature that 
complicates its synthesis. One target (Ta4PbO11) is excluded from this list, as it is metastable and 
therefore was predictably unobtained in favor of its stable competitors. The challenges in 
synthesizing the remaining 16 stable targets fall under two categories: experimental barriers (blue, 
13 targets) and computational barriers (green, 3 targets). We distinguish these barriers into four 
distinct failure modes: slow reaction kinetics, precursor volatility, product amorphization, and 
limitations associated with DFT calculations performed at 0 K. A schematic explanation for each 
failure mode is provided. 
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Some failure modes result from inaccuracies in the computed stability of the target and 
therefore cannot be addressed by modifications to the experimental procedures. Fundamental 
electronic structure challenges are likely affecting La5Mn5O16, as all the attempts to synthesize this 
phase instead yielded LaMnO3, which DFT unexpectedly predicts to be highly unstable (120 
meV/atom above the hull) even though it is widely reported in the literature to be experimentally 
accessible157. If the energy of LaMnO3 were lowered, consistent with its experimental stability, 
La5Mn5O16 would be destabilized (above the hull). Errors in the computed energy of LaMnO3 may 
arise from its strong Jahn-Teller activity158, compositional off-stoichiometry159, or the presence of 
f-states in La – all of which present challenges to conventional DFT. Problems with YbMoO4 were 
found to be due to a poor pseudopotential choice in the Materials Project which destabilizes the 
well-known oxide, Yb2O3, and it is likely that in more accurate calculations YbMoO4 is not stable. 
A similar lanthanide-related electronic structure problem may also be responsible for the failure to 
synthesize BaGdCrFeO6. These examples demonstrate the ability of A-Lab to provide important 
feedback to high-throughput computed datasets. With improved calculations that exclude the 
computationally problematic compounds in this work, our total success rate would increase to 78% 
(43/55 targets). 
 
 
5.3 Discussion 
In 17 days of closed-loop operation, the A-Lab performed 355 experiments and successfully 
realized 41 of 58 compounds with diverse structures and chemistries. This unexpectedly high 
success rate (71%) for the synthesis of computationally predicted compounds was achieved by 
integrating robotics with 1) DFT-computed data to survey the energetic landscape of precursors, 
reaction intermediates, and final products; 2) heuristic suggestions for synthesis procedures 
obtained from ML models trained on text-mined synthesis data; 3) ML interpretation of 
experimental data; and 4) an active learning algorithm that improves upon failed synthesis 
procedures. The study also revealed several opportunities to enhance the lab’s active learning 
algorithm by addressing failures caused by slow reaction kinetics, which would enable an 
improved success rate of 74% with in-line solutions.  

Our paper demonstrates that autonomous research agents can dramatically accelerate the 
pace of materials research. Researchers initialized the A-Lab by proposing 58 target materials, 
which were successfully realized at a rate of > 2 new materials per day with minimal human 
intervention. Such rapid discovery points to a vast landscape of opportunities in materials synthesis 
and development. While the current work focused on a limited subset of all possible synthesis 
targets, many new candidates await evaluation. As the breadth of ab-initio computations continues 
to grow, so will this list of novel materials. 

Advances in simulations, ML, and robotics have intersected to enable “expert systems” 
that display autonomy as an emergent quality by the sum of its automated components. The A-Lab 
demonstrates this by combining modern theory- and data-driven ML techniques with a modular 
workflow that can discover novel materials with minimal human input. Lessons learned from 
ongoing experiments can inform both the system itself and the greater community through 
systematic data generation and collection. The systematic nature of the A-Lab provides a unique 
opportunity to answer fundamental questions regarding the factors that govern the synthesizability 
of novel materials, serving as an experimental oracle to validate predictions made based on data-
rich resources such as the Materials Project. In future iterations of the platform, such an oracle 
may be expanded to probe factors beyond synthesizability including microstructure and device 
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performance. Though our current success rate for the synthesis of novel compounds is high, the 
remaining discrepancies between current predictions and their experimental outcomes is a crucial 
signal required to improve our understanding of materials synthesis. 
 
 
5.4 Methods 
5.4.1 Materials screening 
The 58 targets evaluated by the A-Lab were identified from the Materials Project database (version 
2022.10.28). We first obtained all entries from the Materials Project that were marked as 
“theoretical” (i.e., not represented in the ICSD) and predicted to be thermodynamically stable (at 
0 K) or very close to the convex hull (< 10 meV/atom). We did not consider materials with ≤ 2 
elements, nor those containing elements that are radioactive (Ac, Th, Pa, U, Np, Pu, Tc), 
exceedingly rare (Pd, Pt, Rh, Ir, Au, Ru, Os, Re, Tl, Sc, Tm, Pm, Rb, Cs), or toxic (Hg, As).  Due 
to concerns with the experimental handling of certain material systems (e.g., sulfides), we 
constrained our selection to only include the following types of materials: oxides, carbonates, 
bicarbonates, hydroxides, sulfates, sulfites, bisulfates, silicates, fluorides, chlorides, bromides, 
orthoborates, metaborates, tetraborates, phosphates, phosphites, chlorates, chlorites, and 
hypochlorites. Finally, we removed all compounds predicted to have uncommon and potentially 
challenging oxidation states (e.g., Co4+), as determined by pymatgen63. 

The novelty of each candidate material was verified by cross-checking with several 
experimental sources. We first removed all compositions that appeared in SynTERRA, a text-
mined set of experimental synthesis data extracted from more than 24,000 publications160. 
Additionally, we removed any materials with compositions appearing in the Handbook of 
Inorganic Substances (de Gruyter)161. While these methods are not exhaustive, they provide an 
automated and high-throughput approach to screen for materials novelty. For the remaining 432 
candidates that were labeled as previously unsynthesized using this workflow, we filtered by 
thermodynamic stability in air. This was done by calculating the formation energy of each 
compound in a grand potential with respect to oxygen, assuming standard atmospheric conditions 
(pO2 = 21,200 Pa) and temperatures ranging from 600-1100 °C. We further checked for reactivity 
with CO2 and H2O under those same conditions by using the Interface Reactions module in 
pymatgen. From the resulting list of 146 new compounds that were stable in air, we selected 58 
targets for which precursors were readily available.  

The algorithm we used for identifying potential synthesis targets is available on GitHub 
(github.com/mattmcdermott/novel-materials-screening). It operates autonomously once given the 
following information: which elements to consider in the target materials, how large an upper limit 
to impose on each material’s energy above the convex hull, the atmospheric conditions under 
which the materials will be synthesized, and a threshold on the reaction energies that exist between 
each material and the gaseous species present in the specified atmosphere. The algorithm then 
scrapes the Materials Project and produces a list of candidate materials that satisfy these criteria. 
Additional filtering may be considered based on the availability and cost of precursors for each 
target. While this is done manually in the current version of the algorithm, potential improvements 
could automate the process by leveraging online data from chemical inventory lists and vendor 
websites.  
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5.4.2 Synthesis recipes from text-mined knowledge 
We have established a pipeline for recommending synthesis recipes by using a knowledge base of 
33,343 solid-state synthesis procedures extracted from 24,304 publications160. For a given target, 
the initial recipe is selected based on the most common precursors in the knowledge base. We then 
transition to a similarity-based strategy for recipe selection100,151. Each target is transformed into a 
numerical vector by using a synthesis context-based encoding model. The similarity between a 
given (new) target and each known material in the knowledge base is evaluated using the cosine 
similarity between their encoded vectors. After identifying the reference material that is most 
similar to the target, its precursors are included in the new recommendation. When these precursors 
do not cover all the elements in the target, we use a masked precursor completion model to account 
for such missing precursors. Subsequent recommendations are implemented by moving down the 
list of known materials ranked to be most similar to the target. 

For each set of recommended precursors, the most effective synthesis temperature is 
predicted using an XGBoost regressor trained in previous work99. The target and its associated 
precursors are transformed into three sets of features: (1) precursor properties including melting 
points, standard enthalpies of formation, and standard Gibbs free energies of formation; (2) target 
compositional features indicating which elements are present; and (3) the calculated 
thermodynamic driving force associated with pairwise reaction paths from precursors to target. 
While the proposed synthesis temperature is dependent on the precursors, not just the target, it may 
vary for each recipe. However, to maximize the efficiency with which the A-Lab operates, we 
chose to use one fixed temperature for each target. This temperature was calculated by averaging 
the proposed synthesis temperatures for the top five precursor sets recommended for a given target. 
This allowed all such precursor sets to be batched in a single furnace.  
 
5.4.3 Robotic synthesis & characterization 
The A-Lab performs fully automated solid-state synthesis and characterization. It is a bespoke 
robotic platform that consists of a precursor preparation station with a central robot arm 
(Mitsubishi) for powder dispensing and mixing (custom-made with Labman Automation Ltd.), a 
high-temperature heating station with four box furnaces (based on F48055-60, Thermo Scientific 
with custom actuators to control its door), a product handling station developed in-house for 
powder retrieval and sample loading, a characterization station with a powder X-ray diffractometer 
(Aeris Minerals, Malvern Panalytical), and two collaborative robot arms (UR5e, Universal Robots) 
that transfer samples and labware between stations. 

The synthesis process starts from the precursor preparation station, where the necessary 
consumables (plastic vials, ZrO2 balls, and crucibles) and precursor dosing bottles containing 
between 50 and 100 g of powders are manually loaded prior to starting a new experimental 
campaign. Prescribed amounts of the precursor powders are dispensed into a plastic vial by an 
automatic dispenser-balance (Quantos, Mettler Toledo). The precursor powders are then mixed 
thoroughly with ethanol and ten 5 mm ZrO2 balls in a Dual Asymmetric Centrifuge (Smart 
DAC250, Hauschild) for 9 minutes. To ensure proper slurry viscosity, the ethanol amount is 
automatically calculated based on the amount and density of each powder comprising the mixture. 
The resulting slurry is transferred with an automated pipettor (rLine LH-710969, Sartorius) into 
an alumina crucible, which is then dried at 80 °C in a closed evaporation system. A UR5e robot 
arm on a linear rail (Olympus Controls) removes the dried samples from the precursor preparation 
station and loads them into one of four box furnaces. Heating is executed in batches, with each 
furnace containing up to 8 samples on an alumina tray. Each batch is heated to 300 ℃ with a slow 
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ramping rate of 2 ℃/min to raise the likelihood that any phosphate precursor has time to react 
before it becomes volatile at higher temperature. The samples are then heated to the specified 
synthesis temperature with a nominal ramp rate of 15 ℃/min, followed by a 4 h dwell. After the 
dwell is complete, the samples are naturally cooled to 100 ℃, at which point a UR5e arm removes 
the samples from the furnace and waits another 10 minutes to allow the samples to cool to room 
temperature. 

A separate UR5e arm transfers the cooled samples to the next station for powder retrieval 
and characterization. There, a 10 mm alumina ball is placed in each crucible by an automatic ball 
dispenser developed in-house, then sent to a vertical shaker that grinds the samples into fine 
powders. The resulting powders are then poured by the UR5e arm from the crucibles into a clean 
plastic vial covered using a steel mesh. By inverting the container, the powder is dispensed through 
the mesh onto an XRD sample holder and subsequently flattened with an acrylic disk. The UR5e 
arm transfers each flattened sample into the diffractometer for X-ray measurements, which are 
performed using 8-min scans that range from 2θ = 10° to 100°. The XRD sample holders must be 
cleaned manually when the lab has depleted its stock. Precursor powders should also be refilled or 
replaced, when necessary, though this can be performed without halting the lab’s workflow. 
 
5.4.4 Phase analysis 
Given an XRD pattern obtained from an unknown sample, we apply XRD-AutoAnalyzer to 
identify the constituent phases and estimate their weight fractions80. This algorithm relies on a 
CNN consisting of six convolutional layers, with max pooling applied between each, followed by 
three fully connected layers with ReLU activation. Batch normalization and a dropout rate of 50% 
is applied between the fully connected layers for regularization. At inference, we apply Monte 
Carlo dropout to create an ensemble of 100 networks with 50% of their connections randomly 
excluded. The final prediction is taken as the phase that appears most frequently in the ensemble, 
and its associated confidence is defined as the fraction of models that predict it. 
 A unique model instance is trained on the chemical space defined by each target. 
Experimental structure entries with elements shared by the given target are extracted from the 
ICSD, also including carbonates and hydroxides. For the DFT-calculated target, we apply a 
machine learned volume correction to its lattice parameters prior to including it in the training set. 
From each reference phase, 200 diffraction patterns are simulated with stochastic variations 
derived from experimental artifacts including lattice strain, crystallographic texture, impurity 
peaks, and poor crystallinity. These augmented patterns are used to train the CNN for 50 epochs, 
after which they are ready for the analysis of novel patterns. 
 To confirm the predictions of the CNN, we use an automated approach to multi-phase 
Rietveld refinement. An agent with two deep neural networks (actor/critic) were trained using 
reinforcement learning based on a proximal policy optimization algorithm implemented in a 
custom gym environment that interacts with the GSAS-II software package through a scripting 
interface162,163. The environment is initialized by refining the background, followed by the scale 
factor and sample displacement. After initialization is performed based on these parameters, the 
algorithm freely refines the lattice parameters, phase fractions, isotropic microstrains, and particle 
sizes. For each step in the refinement, our algorithm decides which parameters to refine and/or 
reset to the initial values with the objective of minimizing the difference between the calculated 
and the experimentally observed patterns. 

When the automated refinement gives a poor fit, manual analysis is performed. For targets 
where we suspect the poor fit resulted from configurational disorder, we refined the XRD patterns 
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using cation-disordered versions of the target’s structure taken from the Materials Project. The 
cations allowed to be exchanged (disordered) with one another were selected based on the Hume-
Rothery rules. Such cases were still considered successful so long as the disordered version of the 
target retained the same crystal structure and overall composition as the ordered version. 
 
5.4.5 Active learning algorithm 
Active learning is performed using Autonomous Reaction Route Optimization with Solid-State 
Synthesis (ARROWS), our recently developed algorithm that learns from previous experimental 
outcomes to identify improved reaction pathways149. Given the products obtained from a set of 
precursors proposed by our natural language models at temperature TNLP, ARROWS first suggests 
that a lower temperature (TNLP - 300 °C) be tested for the same precursor set. The intent of this 
approach is to reveal which intermediate phases lead to the formation of each impurity observed 
at higher temperature. From the low-temperature synthesis outcome, information is extracted 
regarding the pairwise reactions that occurred, including those between the precursors (to form the 
observed intermediates) as well as those between the intermediates (to form the high-temperature 
impurities). New synthesis experiments are then proposed based on sets of precursors expected to 
avoid such reactions, giving priority to those with a maximal thermodynamic driving force to form 
the target. The driving force is calculated as the free energy difference between a target and its 
associated precursors, where all solid energies (at 0 K) are extracted from the Materials Project 
and corrected using a machine-learned descriptor that accounts for vibrational entropy 
contributions at the specified temperature114.  
 After testing a precursor set at low temperature (TNLP - 300 °C), iteratively higher 
temperatures (ΔT = 100 °C) are probed until the target is obtained with a yield exceeding 50%, or 
until the temperature reaches TNLP. At each step, the algorithm determines which pairwise reactions 
occurred and records them in a database that is referred to throughout all other experiments 
performed by the A-Lab. In subsequent iterations, ARROWS prioritizes sets of precursors 
containing pairs of phases that are expected to form the desired target while avoiding pairs that 
form unwanted impurities. Moreover, to avoid testing redundant synthesis routes for which 
different precursors form identical products, the algorithm checks whether the low-temperature 
(TNLP - 300 °C) intermediates obtained from a given precursor set differ from those obtained with 
previous (unsuccessful) recipes. If not, then no further experiments are proposed for that set of 
precursors. This process is repeated until the target is successfully obtained, or until all the 
available precursor sets have been exhausted.  
  



 74 

CHAPTER 6   Summary and Outlook 
 
 
 
 Achieving complete autonomy in the synthesis of novel inorganic materials requires the 
automation of experimental procedures for powder handling and XRD, interpretation of the 
resulting data to determine what products were obtained from a set of experiments, and decision 
making to learn from these outcomes and design new experiments. We have shown that this is 
possible with the development of the A-Lab, whose initial application (Chapter 5) resulted in the 
synthesis of 41 DFT-predicted compounds in just 17 days of experimentation. The success of this 
platform was enabled by the integration of robotics with algorithms that can automatically identify 
crystalline phases from XRD patterns, and in cases where these phases do not include the desired 
synthesis product, suggest new experiments with alternative precursors that facilitate increased 
yield of the desired product. 
 

As described in Chapter 2, automated XRD interpretation was accomplished by training an 
ensemble of CNNs on simulated patterns which are systematically augmented to account for 
common experimental artifacts like strain and texture. Because these models are fast once trained, 
we showed in Chapter 3 how they can be applied in-line with XRD measurements to steer the 
diffractometer toward areas of the pattern that matter most for phase identification, substantially 
reducing the scan time required per sample. The information gleaned from these methods can then 
be fed into an active learning algorithm designed to optimize experimental procedures for the 
targeted synthesis of new materials (Chapter 4). This algorithm uses existing synthesis data to 
construct a database of pairwise reactions that have been observed. This database, coupled with 
the analysis of ab-initio computed reaction energies, enables the selection of optimal precursors 
whose reaction pathways maintain a large thermodynamic driving force to form the desired 
synthesis product. 

 
While the methods described in this work have proven sufficiently effective to synthesize 

a variety of compounds in the A-Lab, there remain some limitations that warrant further attention. 
The platform’s current hardware is designed only to handle materials that are stable in air at room 
temperature. This precludes the synthesis of any compounds that readily react with gaseous species 
(O2, H2O, CO2) present in air. Future iterations of the A-Lab may therefore consider housing its 
robotics within a glovebox (containing N2 or Ar) to expand the range of materials that it can make. 
These iterations may also include the addition of new robotics that can take any samples made by 
the lab and use them to fabricate devices such as Li-ion batteries. Coupling this with methods to 
measure device performance (e.g., electrochemical cycling) would provide a unique opportunity 
to perform end-to-end optimization of the manufacturing process.  

 
Another limitation lies in the analysis techniques used by the A-Lab. Identifying all the 

compounds present in a multi-phase mixture remains a challenging problem, especially when those 
phases exhibit strong peak overlap in the corresponding XRD pattern. One approach that could 
help in overcoming this limitation is the incorporation of physical domain knowledge into the 
pipeline for phase analysis. For instance, one could form a prior distribution of suspected phases 
in a sample based on its most likely synthesis products, which could be predicted from ab-initio 
computed reaction energies. This prior would then be updated based on the phases identified from 



 75 

the XRD pattern of that sample. This reflects the concept of data fusion outlined in Chapter 1. 
Further building on this idea of leveraging multiple information sources, one could also perform 
phase identification using additional characterization methods beyond XRD. Perhaps the most 
promising approach is combining Scanning Electron Microscopy (SEM) with Energy Dispersive 
Spectroscopy (EDS) to map the distribution of particle compositions within a sample. Analysis of 
the resulting data, with algorithms such as non-negative matrix factorization, can be used to 
decompose SEM/EDS data into distinct phases. These phases could then be aggregated with the 
predictions from computations and XRD to bolster the accuracy of phase analysis.  
 
 One final area that could benefit from further advances is the decision-making process used 
by the A-Lab. Its current implementation focuses solely on choosing precursors that maximize the 
thermodynamic driving force to form the desired synthesis product, avoiding the formation of inert 
reaction intermediates that are slow to form that product. However, the experiments discussed in 
Chapter 5 demonstrated the prevalence of several issues that cause a synthesis trial to fail but are 
not related to low thermodynamic driving force. These include melting and volatility, which often 
complicated the synthesis of metal phosphates and could not be overcome by choosing alternative 
precursors. It would therefore be beneficial to expand the decisions available to the A-Lab, e.g., to 
use lower synthesis temperatures or slower heating/cooling rates to circumvent these issues. We 
also observed several cases where highly stable reaction intermediates could not be avoided during 
synthesis, despite using alternative precursors, leading to sluggish formation of the desired target. 
To deal with this problem, future iterations of the lab’s algorithms could detect the occurrence of 
slow reactions (by observing intermediates with low thermodynamic driving force to react) and 
overcome them using improved mixing, higher synthesis temperature, or longer hold time. These 
advances, in combination with the growing database of pairwise reactions known to the A-Lab, 
promise to bolster its performance and accelerate the discovery of novel inorganic materials.  
 
 
 
 
  



 76 

REFERENCES 
 
1. D. P. Tabor et al. Accelerating the discovery of materials for clean energy in the era of 

smart automation. Nat Rev Mater 5, 5–20 (2018). 
2. A. Jain et al. Commentary: The Materials Project: A materials genome approach to 

accelerating materials innovation. APL Mater 1, 011002 (2013). 
3. S. Kirklin et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of 

DFT formation energies. Npj Comput Mater 1, 15010 (2015). 
4. M. Shevlin. Practical High-Throughput Experimentation for Chemists. ACS Med Chem Lett 

8, 601–607 (2017). 
5. C. A. Nicolaou, I. A. Watson, H. Hu, & J. Wang. The Proximal Lilly Collection: Mapping, 

Exploring and Exploiting Feasible Chemical Space. J Chem Inf Model 56, 1253–1266 
(2016). 

6. A. Weber, E. von Roedern, & H. U. Stilz. SynCar:  An Approach to Automated Synthesis. J 
Comb Chem 7, 178–184 (2005). 

7. P. Szymański, M. Markowicz, & E. Mikiciuk-Olasik. Adaptation of High-Throughput 
Screening in Drug Discovery - Toxicological Screening Tests. Int J Mol Sci 13, 427–452 
(2011). 

8. F. Häse, L. M. Roch, C. Kreisbeck, & A. Aspuru-Guzik. Phoenics: A Bayesian Optimizer 
for Chemistry. ACS Cent Sci 4, 1134–1145 (2018). 

9. L. M. Roch et al. ChemOS: Orchestrating autonomous experimentation. Sci Robot. 3, 
eaat5559 (2018). 

10. N. S. Eyke, B. A. Koscher, & K. F. Jensen. Toward Machine Learning-Enhanced High-
Throughput Experimentation. Trends Chem 3, 120–132 (2021). 

11. S. Steiner et al. Organic synthesis in a modular robotic system driven by a chemical 
programming language. Science 363, eaav2211 (2019). 

12. B. P. MacLeod et al. Self-driving laboratory for accelerated discovery of thin-film 
materials. Sci Adv 6, eaaz8867 (2020). 

13. B. Burger et al. A mobile robotic chemist. Nature 583, 237–241 (2020). 
14. S. Sun et al. Accelerated Development of Perovskite-Inspired Materials via High-

Throughput Synthesis and Machine-Learning Diagnosis. Joule 3, 1437–1451 (2019). 
15. A. Ludwig. Discovery of new materials using combinatorial synthesis and high-throughput 

characterization of thin-film materials libraries combined with computational methods. Npj 
Comput Mater 5, 70 (2019). 

16. F. Ren et al. Accelerated discovery of metallic glasses through iteration of machine learning 
and high-throughput experiments. Sci Adv 4, eaaq1566 (2019). 

17. B. Li et al. Hydrogen Storage Materials Discovery via High Throughput Ball Milling and 
Gas Sorption. ACS Comb Sci 14, 352–358 (2012). 

18. G. H. Carey & J. R. Dahn. Combinatorial Synthesis of Mixed Transition Metal Oxides for 
Lithium-Ion Batteries. ACS Comb Sci 13, 186–189 (2011). 



 77 

19. T. Adhikari et al. Development of High-Throughput Methods for Sodium-Ion Battery 
Cathodes. ACS Comb Sci 22, 311–318 (2020). 

20. S. Krishnadasan, R. J. C. Brown, A. J. deMello, & J. C. deMello. Intelligent routes to the 
controlled synthesis of nanoparticles. Lab Chaip 7, 1434–1441 (2007). 

21. P. Nikolaev et al. Autonomy in materials research: a case study in carbon nanotube growth. 
Npj Comput Mater 2, 16031 (2016). 

22. J. Chang et al. Efficient Closed-loop Maximization of Carbon Nanotube Growth Rate using 
Bayesian Optimization. Sci Rep 10, 9040 (2020). 

23. B. R. Ortiz, J. M. Adamczyk, K. Gordiz, T. Braden, & E. S. Toberer. Towards the high-
throughput synthesis of bulk materials: thermoelectric PbTe–PbSe–SnTe–SnSe alloys. Mol 
Syst Eng 4, 407–420 (2019). 

24. T. A. Stegk, R. Janssen, & G. A. Schneider. High-Throughput Synthesis and 
Characterization of Bulk Ceramics from Dry Powders. J Comb Chem 10, 274–249 (2008). 

25. S. Shuang et al. High-throughput automatic batching equipment for solid state ceramic 
powders. Rev Sci Instrum 90, 083904 (2019). 

26. XPR Automatic Balance from Mettler Toledo, https://www.mt.com/my/en/home/products/ 
 Laboratory_Weighing_Solutions/ Analytical/Excellence/XPR_Automatic_Balance. 
27. Flex SWILE from Chemspeed Technologies, https://www. chemspeed.com/flex-swile-

nmr/. 
28. S. Gates-Rector & T. N. Blanton. The powder diffraction file: A quality materials 

characterization database. Powder Diffr 34, 352–360 (2019). 
29. A. Altomare et al. Advances in powder diffraction pattern indexing: N-TREOR09. J Appl 

Cryst 42, 768–775 (2009). 
30. P. M. d. Wolff. A simplified criterion for the reliability of a powder pattern indexing. J Appl 

Cryst 1, 108–113 (1968). 
31. R. Oishi-Tomiyasu. Reversed de Wolff figure of merit and its application to powder 

indexing solutions. J Appl Cryst 46, 1277–1282 (2013). 
32. J.-M. Le Meins, L. M. D. Cranswick, & A. L. Bail. Results and conclusions of the internet 

based ‘“Search/match round robin 2002”’. Powder Diffr 18, 106–113 (2003). 
33. C. J. Gilmore, G. Barr, & J. Paisley. High-throughput powder diffraction. A new approach 

to qualitative and quantitative powder diffraction pattern analysis using full pattern profiles. 
J Appl Cryst 37, 231–242 (2004). 

34. E. Hernández-Rivera, S. P. Coleman, & M. A. Tschopp. Using similarity metrics to 
quantify differences in high-throughput data sets: Application to X-ray diffraction patterns. 
ACS Comb Sci 19, 25–36 (2017). 

35. L. A. Baumes, M. Moliner, & A. Corma. Design of a full profile-matching solution for 
high-throughput analysis of multiphase samples through powder X-ray diffraction. Chem – 
Eur 15, 4258–4260 (2009). 

36. V. Stanev et al. Unsupervised phase mapping of X-ray diffraction data by nonnegative 
matrix factorization integrated with custom clustering. Npj Comput Mater 4, 43 (2018). 



 78 

37. Y. Iwasaki, A. G. Kusne, & I. Takeuchi. Comparison of dissimilarity measures for cluster 
analysis of X-ray diffraction data from combinatorial libraries. Npj Comput Mater 3, 4 
(2017). 

38. W. B. Park et al. Classification of crystal structure using a convolutional neural network. 
IUCrJ 4, 486–494 (2017). 

39. P. M. Vecsei, K. Choo, J. Chang, & T. Neupert. Neural network based classification of 
crystal symmetries from x-ray diffraction patterns. Phys Rev B 99, 245120. 

40. F. Oviedo et al. Fast and interpretable classification of small X-ray diffraction datasets 
using data augmentation and deep neural networks. Npj Comput Mater 5, 60 (2019). 

41. P. M. Maffettone et al. Crystallography companion agent for high-throughput materials 
discovery. Nat Comput Sci 1, 290–297 (2021). 

42. J.-W. Lee, W. B. Park, J. H. Lee, S. P. Singh, & K.-S. Sohn. A deep-learning technique for 
phase identification in multiphase inorganic compounds using synthetic XRD powder 
patterns. Nat Commun 11, 705 (2020). 

43. Z. Zhou, X. Li, & R. N. Zare. Optimizing chemical reactions with deep reinforcement 
learning. ACS Cent Sci 3, 1337–1344 (2014). 

44. D. Xue et al. Accelerated search for materials with targeted properties by adaptive design. 
Nat Commun 7, 12241 (2016). 

45. L. Porwol et al. An Autonomous Chemical Robot Discovers the Rules of Inorganic 
Coordination Chemistry without Prior Knowledge. Angew Chem Int Ed Engl 59, 11256–
11261 (2020). 

46. W. F. Maier, K. Stöwe, & S. Sieg. Combinatorial and High-Throughput Materials Science. 
Angew Chem Int Ed Engl 46, 6016–6067 (2007). 

47. M.-X. Li et al. High-temperature bulk metallic glasses developed by combinatorial 
methods. Nature 569, 99–103 (2019). 

48. R. Zarnetta et al. Identification of Quaternary Shape Memory Alloys with Near-Zero 
Thermal Hysteresis and Unprecedented Functional Stability. Adv Funct Mater 20, 1917–
1923 (2010). 

49. J. Schmidt, M. R. G. Marques, S. Botti, & M. A. L. Marques. Recent advances and 
applications of machine learning in solid-state materials science. Npj Comput Mater 5, 83 
(2019). 

50. L. Himanen, A. Geurts, A. S. Foster, & P. Rinke. Data-Driven Materials Science: Status, 
Challenges, and Perspectives. Adv Sci 6, 1900808 (2019). 

51. E. Kim et al. Materials Synthesis Insights from Scientific Literature via Text Extraction and 
Machine Learning. Chem Mater 29, 9436–9444 (2017). 

52. P. Raccuglia et al. Machine-learning-assisted materials discovery using failed experiments. 
Nature 533, 73–76 (2016). 

53. T. Lookman, P. V. Balachandran, D. Xue, & R. Yuan. Active learning in materials science 
with emphasis on adaptive sampling using uncertainties for targeted design. Npj Comput 
Mater 5, 21 (2019). 



 79 

54. W. Huyer & A. Neumaier. SNOBFIT — Stable noisy optimization by branch and fit. ACM 
Trans Math Softw 35, 1–25 (2008). 

55. L. M. Rios & N. V. Sahinidis. Derivative-free optimization: a review of algorithms and 
comparison of software implementations. J Glob Optim 56, 1247–1293 (2013). 

56. A. M. Gopakumar, P. V. Balachandran, D. Xue, J. E. Gubernatis, & T. Lookman. Multi-
objective optimization for materials discovery via adaptive design. Sci Rep 8, 3738 (2018). 

57. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, & N. d. Freitas. Taking the human out of 
the loop: A review of Bayesian optimization. Proc IEEE 104, 148–175 (2015). 

58. S. Sun et al. A data fusion approach to optimize compositional stability of halide 
perovskites. Matter 4, 1305–1322 (2021). 

59. R. D. King et al. The automation of science. Science 324, 85–89 (2009). 
60. H. S. Stein & J. M. Gregoire. Progress and prospects for accelerating materials science with 

automated and autonomous workflows. Chem Sci 10, 9640–9649 (2019). 
61. F. Oviedo et al. Fast and interpretable classification of small X-ray diffraction datasets 

using data augmentation and deep neural networks. Npj Comput Mater 5, 60 (2019). 
62. A. Belsky, M. Hellenbrandt, V. L. Karen, & P. Luksch. New developments in the Inorganic 

Crystal Structure Database (ICSD): accessibility in support of materials research and 
design. Acta Cryst B58, 364–369 (2002). 

63. S. P. Ong et al. Python Materials Genomics (pymatgen): A robust, open-source python 
library for materials analysis. Comput Mater Sci 68, 314–319 (2013). 

64. D. T. Murphy, S. Schmid, J. R. Hester, P. E. R. Blanchard, & W. Miiller. Coordination Site 
Disorder in Spinel-Type LiMnTiO4. Inorg Chem 54, 4636–4643 (2015). 

65. JADE Pro; Materials Data MDI: Livermore, CA, USA, 2019. 
66. N. Krins et al. LiMn2−xTixO4 spinel-type compounds (x ≤ 1): Structural, electrical and 

magnetic properties. Solid State Ion 177, 1033–1040 (2006). 
67. G. S. Mattei et al. Enumeration as a Tool for Structure Solution: A Materials Genomic 

Approach to Solving the Cation-Ordered Structure of Na3V2(PO4)2F3. Chem Mater 32, 
8981–8992 (2020). 

68. N. J. Szymanski et al. Toward autonomous design and synthesis of novel inorganic 
materials. Mater Horiz 8, 2169–2198 (2021). 

69. Z. Chen et al. Machine learning on neutron and x-ray scattering and spectroscopies. Chem 
Phys Rev 2, 031301 (2021). 

70. M. Ziatdinov et al. Deep Learning of Atomically Resolved Scanning Transmission Electron 
Microscopy Images: Chemical Identification and Tracking Local Transformations. ACS 
Nano 11, 12742–12752 (2017). 

71. A. Maksov et al. Deep learning analysis of defect and phase evolution during electron 
beam-induced transformations in WS2. Npj Comput Mater 5, 12 (2019). 

72. S. Akers et al. Rapid and flexible segmentation of electron microscopy data using few-shot 
machine learning. Npj Comput Mater 7, 187 (2021). 



 80 

73. J. Liu et al. Deep convolutional neural networks for Raman spectrum recognition: a unified 
solution. Analyst 142, 4067–4074 (2017). 

74. M. M. Noack et al. A Kriging-based approach to autonomous experimentation with 
applications to X-ray scattering. Sci Rep 9, 11809 (2019). 

75. R. K. Vasudevan et al. Autonomous Experiments in Scanning Probe Microscopy and 
Spectroscopy: Choosing Where to Explore Polarization Dynamics in Ferroelectrics. ACS 
Nano 15, 11253–11262 (2021). 

76. M. A. Ziatdinov et al. Hypothesis Learning in Automated Experiment: Application to 
Combinatorial Materials Libraries. Adv Mater 34, 2201345 (2022). 

77. P. M. Maffettone et al. Gaming the beamlines—employing reinforcement learning to 
maximize scientific outcomes at large-scale user facilities. Mach Learn Sci Technol 2, 
025025 (2021). 

78. H. Kohlmann. Looking into the Black Box of Solid-State Synthesis. Eur J Inorg Chem 
4174–4180 (2019). 

79. X. Wei, X. Wang, Q. An, C. Han, & L. Mai. Operando X-ray Diffraction Characterization 
for Understanding the Intrinsic Electrochemical Mechanism in Rechargeable Battery 
Materials. Small Methods 1, 170083 (2017). 

80. N. J. Szymanski, C. J. Bartel, Y. Zeng, Q. Tu, & G. Ceder. Probabilistic Deep Learning 
Approach to Automate the Interpretation of Multi-phase Diffraction Spectra. Chem Mater 
33, 4204–4215 (2021). 

81. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, & A. Torralba. Learning Deep Features for 
Discriminative Localization. Preprint at arXiv:1512.04150. (2015). 

82. R. Murugan, V. Thangadurai, & W. Weppner. Fast lithium ion conduction in garnet-type 
Li7La3Zr2O12. Angew Chem Int Ed Engl 46, 7778–7781 (2007). 

83. A. Neumann & D. Walter. The thermal transformation from lanthanum hydroxide to 
lanthanum hydroxide oxide. Thermochim Acta 445, 200–204 (2006). 

84. A. Miura et al. Observing and Modeling the Sequential Pairwise Reactions that Drive 
Solid-State Ceramic Synthesis. Adv Mater 33, 2100312 (2021). 

85. R. R. Selvaraju et al. Grad-CAM: visual explanations from deep networks via gradient-
based localization. Int J Comput Vis 128, 336–359 (2020). 

86. U. Schubert & N. Hüsing. Synthesis of Inorganic Materials. (Wiley-VCH, 2019). 
87. J. R. Chamorro & T. M. McQueen. Progress toward Solid State Synthesis by Design. Acc 

Chem Res 51, 2918–2925 (2018). 
88. C. J. Bartel. Review of computational approaches to predict the thermodynamic stability of 

inorganic solids. J Mater Sci 57, 10475–10498 (2022). 
89. A. Miura et al. Selective metathesis synthesis of MgCr2S4 by control of thermodynamic 

driving forces. Mater Horiz 7, 1310–1316 (2020). 
90. P. K. Todd et al. Selectivity in Yttrium Manganese Oxide Synthesis via Local Chemical 

Potentials in Hyperdimensional Phase Space. J Am Chem Soc 143, 15185–15194. 



 81 

91. A. Narayan et al. Computational and experimental investigation for new transition metal 
selenides and sulfides: The importance of experimental verification for stability. Phys Rev 
B 94, 045105 (2016). 

92. W. Sun et al. The thermodynamic scale of inorganic crystalline metastability. Sci Adv 2, 
e160022 (2016). 

93. G. P. Nagabhushana, R. Shivaramaiah, & A. Navrotsky. Direct calorimetric verification of 
thermodynamic instability of lead halide hybrid perovskites. Proc Natl Acad Sci USA 113, 
7717–7721 (2016). 

94. Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, & C. C. Tasan. Metastable high-entropy dual-
phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2106). 

95. A. Stein, S. W. Keller, & T. E. Mallouk. Turning Down the Heat: Design and Mechanism 
in Solid-State Synthesis. Science 259, 1558–1564 (1993). 

96. D. P. Shoemaker et al. In situ studies of a platform for metastable inorganic crystal growth 
and materials discovery. Proc Natl Acad Sci USA 111, 30 (2014). 

97. A. S. Haynes, C. C. Stoumpos, H. Chen, D. Chica, & M. G. Kanatzidis. Panoramic 
Synthesis as an Effective Materials Discovery Tool: The System Cs/Sn/P/Se as a Test Case. 
J Am Chem Soc 139, 10814–10821 (2017). 

98. M. Bianchini et al. The interplay between thermodynamics and kinetics in the solid-state 
synthesis of layered oxides. Nat Mater 19, 1088–1095 (2020). 

99. H. Huo et al. Machine-Learning Rationalization and Prediction of Solid-State Synthesis 
Conditions. Chem Mater 34, 7323–7336 (2022). 

100. T. He et al. Inorganic synthesis recommendation by machine learning materials similarity 
from scientific literature. Sci Adv 9, eadg818 (2023). 

101. R. Merkle & J. Maier. On the Tamman-Rule. Z Anorg Allg Chem 631, 1163–1166 (2005). 
102. C. W. Coley, W. H. Green, & K. F. Jensen. Machine Learning in Computer-Aided 

Synthesis Planning. Acc Chem Res 51, 1281–1289 (2018). 
103. C. W. Coley, L. Rogers, W. H. Green, & K. F. Jensen. Computer-Assisted Retrosynthesis 

Based on Molecular Similarity. ACS Cent Sci 3, 1237–1245 (2017). 
104. E. J. Corey. The Logic of Chemical Synthesis: Multistep Synthesis of Complex Carbogenic 

Molecules (Nobel Lecture). Angew Chem Int Ed Engl 30, 455–612 (1991). 
105. M. H. S. Segler, M. Preuss, & M. P. Waller. Planning chemical syntheses with deep neural 

networks and symbolic AI. Nature 555, 604–610 (2018). 
106. J. S. Schreck, C. W. Coley, & K. J. M. Bishop. Learning Retrosynthetic Planning through 

Simulated Experience. ACS Cent Sci 5, 970–981. 
107. X. Wang et al. Towards efficient discovery of green synthetic pathways with Monte Carlo 

tree search and reinforcement learning. Chem Sci 11, 10959. 
108. K. Kovnir. Predictive Synthesis. Chem Mater 33, 4835–4841 (2021). 
109. M. J. McDermott, S. S. Dwaraknath, & K. A. Persson. A graph-based network for 

predicting chemical reaction pathways in solid-state materials synthesis. Nat Commun 12, 
3097 (2021). 



 82 

110. M. Aykol, J. H. Montoya, & J. Hummelshøj. Rational Solid-State Synthesis Routes for 
Inorganic Materials. J Am Chem Soc 143, 9244–9259 (2021). 

111. A. G. Kusne et al. On-the-fly closed-loop materials discovery via Bayesian active learning. 
Nat Commun 11, 5966 (2020). 

112. A. A. Volk & M. Abolhasani. Autonomous flow reactors for discovery and invention. 
Trends Chem 3, 519–522 (2021). 

113. H. Hayashi, K. Hayashi, K. Kouzai, A. Seko, & I. Tanaka. Recommender System of 
Successful Processing Conditions for New Compounds Based on a Parallel Experimental 
Data Set. Chem Mater 31, 9984–9992 (2019). 

114. C. J. Bartel et al. Physical descriptor for the Gibbs energy of inorganic crystalline solids 
and temperature-dependent materials chemistry. Nat Commun 9, 4168 (2018). 

115. D. A. Porter, K. E. Easterling, & M. Y. Sherif. Phase Transformations in Metals and 
Alloys. (CRC Press, Taylor & Francis Group, 2009). 

116. M. Z. Bazant. Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium 
Thermodynamics. Acc Chem Res 46, 1144–1160 (2013). 

117. E. O. Chi, K. M. Ok, Y. Porter, & P. S. Halasyamani. Na2Te3Mo3O16:  A New Molybdenum 
Tellurite with Second-Harmonic Generating and Pyroelectric Properties. Chem Mater 18, 
2070–2074 (2006). 

118. H. Morimoto et al. Charge/discharge Behavior of Triclinic LiTiOPO4 Anode Materials for 
Lithium Secondary Batteries. Electrochem. 84, 878–881 (2016). 

119. L. C. Pathak & S. K. Mishra. A review on the synthesis of Y–Ba–Cu-oxide powder. 
Supercond Sci Technol 18, R67–R89 (2005). 

120. B. D. Fahlman. Superconductor Synthesis — An Improvement. J Chem Educ 78, 1182 
(2001). 

121. I. Arvanitidis, Du. Sichen, & S. Seetharaman. A Study of the Thermal Decomposition of 
BaCO3. Met. Mater Trans B 27, 409–416 (1996). 

122. A. Małecki, J. Obła̧kowski, & S. Łabuś. The role of BaCO3 in high temperature synthesis of 
electronic materials. Mater Res Bull 30, 731–737 (1995). 

123. P. F. de Aguiar, B. Bourguignon, M. S. Khots, D. L. Massart, & R. Phan-Than-Luu. D-
optimal designs. Chemom Intell Lab Syst 30, 199–210 (1995). 

124. A. D. Clayton et al. Algorithms for the self-optimisation of chemical reactions. React Chem 
Eng 4, 1545–1554 (2019). 

125. H. Takeda et al. Process optimisation for NASICON-type solid electrolyte synthesis using a 
combination of experiments and bayesian optimisation. Mater Adv 3, 8141 (2022). 

126. W. Zhang, J. Sun, X. Wang, G. Shen, & D. Shen. Crystal growth and optical properties of a 
noncentrosymmetric molybdenum tellurite, Na2Te3Mo3O16. CrystEngComm 14, 3490 
(2012). 

127. Y. Zeng et al. Selective formation of metastable polymorphs in solid-state synthesis. 
Preprint available at arXiv:2309.05800v1 (2023). 



 83 

128. T. F. Malkowski et al. Role of Pairwise Reactions on the Synthesis of Li0.3La0.57TiO3 and 
the Resulting Structure–Property Correlations. Inorg Chem 60, 14831–14843 (2021). 

129. G. Franceschini & S. Macchietto. Model-based design of experiments for parameter 
precision: State of the art. Chem Eng Sci 63, 4846–4872 (2008). 

130. B. Cao et al. How To Optimize Materials and Devices via Design of Experiments and 
Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano 12, 7434–7444 
(2018). 

131. B. J. Shields et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 
590, 89–96 (2021). 

132. A. M. K. Nambiar et al. Bayesian Optimization of Computer-Proposed Multistep Synthetic 
Routes on an Automated Robotic Flow Platform. ACS Cent Sci 8, 825–836. 

133. L. Ward et al. Matminer: An open source toolkit for materials data mining. Comput Mater 
Sci 152, 60–69 (2018). 

134. T. Xie & J. C. Grossman. Crystal Graph Convolutional Neural Networks for an Accurate 
and Interpretable Prediction of Material Properties. Phys Rev Lett 120, 145301 (2018). 

135. C. Chen, W. Ye, Y. Xuo, C. Zheng, & S. P. Ong. Graph Networks as a Universal Machine 
Learning Framework for Molecules and Crystals. Chem Mater 31, 3564–3572 (2019). 

136. K. Choudhary & B. DeCost. Atomistic Line Graph Neural Network for improved materials 
property predictions. Npj Comput Mater 7, 185 (2021). 

137. J. R. González-Velasco, R. Ferret, R. López-Fonseca, & M. A. Gutiérrez-Ortiz. Influence of 
particle size distribution of precursor oxides on the synthesis of cordierite by solid-state 
reaction. Powder Technol 163, 34–42 (2005). 

138. G. E. Kamm et al. Relative Kinetics of Solid-State Reactions: The Role of Architecture in 
Controlling Reactivity. J Am Chem Soc 144, 11975–11979 (2022). 

139. P. J. Linstrom & W. G. Mallard. The NIST Chemistry WebBook:  A Chemical Data 
Resource on the Internet. J Chem Eng Data 46, 1059–1063 (2001). 

140. N. J. Szymanski et al. Understanding the Fluorination of Disordered Rocksalt Cathodes 
through Rational Exploration of Synthesis Pathways. Chem Mater 34, 7015–7028 (2022). 

141. S. Patoux & M. M. Doeff. Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate 
precursors. Electrochem Commun 6, 767–772 (2004). 

142. Ilia Geigman, N. G. Furmanova, P. G. Nagornyi, L. D. Yun, & M. V. Rotenfel’D. Crystal 
structure and V4+ EPR of the Li-Ti double oxyorthophosphate α-LiTiOPO4. Crystallogr 
Rep 38, 759–762 (1993). 

143. A. Jain, Y. Shin, & K. A. Persson. Computational predictions of energy materials using 
density functional theory. Nat Rev Mater 1, 15004 (2016). 

144. J. Sun et al. Accurate first-principles structures and energies of diversely bonded systems 
from an efficient density functional. Nat Chem 8, 831–836 (2016). 

145. Z. Ren et al. Embedding physics domain knowledge into a Bayesian network enables layer-
by-layer process innovation for photovoltaics. Npj Comput Mater 6, 9 (2020). 



 84 

146. J. Li et al. Synthesis of many different types of organic small molecules using one 
automated process. Science 347, 1221–1226 (2015). 

147. P. J. Kitson et al. Digitization of multistep organic synthesis in reactionware for on-demand 
pharmaceuticals. Science 359, 2018. 

148. C. W. Coley et al. A robotic platform for flow synthesis of organic compounds informed by 
AI planning. Science 365, eaax1566 (2019). 

149. N. J. Szymanski, P. Nevatia, C. J. Bartel, Y. Zeng, & G. Ceder. Autonomous and dynamic 
precursor selection for solid-state materials synthesis. Nat Commun In print, 
https://doi.org/10.1038/s41467-023-42329-9 (2023). 

150. N. J. Szymanski et al. Adaptively driven X-ray diffraction guided by machine learning for 
autonomous phase identification. Npj Comput Mater 9, 31 (2023). 

151. T. He et al. Similarity of Precursors in Solid-State Synthesis as Text-Mined from Scientific 
Literature. Chem Mater 32, 7861–7873 (2020). 

152. A. Pardo, J. Romero, & E. Ortiz. High-temperature behaviour of ammonium dihydrogen 
phosphate. J Phys Conf Ser 935, 012050 (2017). 

153. S. K. Gupta & Y. Mao. Recent Developments on Molten Salt Synthesis of Inorganic 
Nanomaterials: A Review. J Phys Chem C 125, 6508–6533 (2021). 

154. M. Aykol, S. S. Dwaraknath, W. Sun, & K. A. Persson. Thermodynamic limit for synthesis 
of metastable inorganic materials. Sci Adv 4, eaaq014 (2018). 

155. B. Bridge & N. D. Patel. The elastic constants and structure of the vitreous system Mo-P-O. 
J Mater Sci 21, 1186–1205 (1986). 

156. F. Muñoz & L. Sánchez-Muñoz. The glass-forming ability explained from local structural 
differences by NMR between glasses and crystals in alkali metaphosphates. J Non Cryst 
Solids 503–504, 94–97 (2019). 

157. P. Norby, I. G. Krogh Andersen, E. K. Andersen, & N. H. Andersen. The crystal structure 
of lanthanum manganate(iii), LaMnO3, at room temperature and at 1273 K under N2. J 
Solid State Chem 119, 191–196. 

158. Y.-J. Kim, H.-S. Park, & C.-H. Yang. Raman imaging of ferroelastically configurable Jahn–
Teller domains in LaMnO3. Npj Quantum Mater 6, 62 (2021). 

159. J. A. Alonso et al. Non-stoichiometry, structural defects and properties of LaMnO3+δ with 
high δ values (0.11 ≤ δ ≤ 0.29). J Mater Chem 7, 2139–2144 (1997). 

160. O. Kononova et al. Text-mined dataset of inorganic materials synthesis recipes. Sci Data 6, 
203 (2019). 

161. P. Villars, K. Cenzual, & R. Gladyshevskii. Handbook of Inorganic Substances. (De 
Gruyter, 2017). 

162. B. H. Toby & R. B. von Dreele. GSAS-II: the genesis of a modern open-source all purpose 
crystallography software package. J Appl Cryst 46, 544–549 (2013). 

163. J. H. O’Donnell, R. B. Von Dreele, M. K. Y. Chan, & B. H. Toby. A scripting interface for 
GSAS-II. J Appl Cryst 51, 1244–1250 (2018). 

 




