
UC Davis
UC Davis Previously Published Works

Title
Last Level Collective Hardware Prefetching for Data-Parallel Applications

Permalink
https://escholarship.org/uc/item/1tz16957

ISBN
978-1-5386-2293-3

Authors
Michelogiannakis, George
Shalf, John

Publication Date
2017-12-01

DOI
10.1109/hipc.2017.00018

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tz16957
https://escholarship.org
http://www.cdlib.org/

Last Level Collective Hardware Prefetching For Data-Parallel Applications

George Michelogiannakis and John Shalf

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Email: {mihelog, jshalf}@lbl.gov

Abstract—With rapidly increasing parallelism, DRAM per-
formance and power have surfaced as primary constraints from
consumer electronics to high performance computing (HPC)
for a variety of applications, including bulk-synchronous data-
parallel applications which are key drivers for multi-core, with
examples including image processing, climate modeling, physics
simulation, gaming, face recognition, and many others. We
present the last-level collective prefetcher (LLCP), a purely
hardware last-level cache (LLC) prefetcher that exploits the
highly correlated prefetch patterns of data-parallel algorithms
that would otherwise not be recognized by a prefetcher that
is oblivious to data parallelism. LLCP generates prefetches on
behalf of multiple cores in memory address order to maximize
DRAM efficiency and bandwidth, and can prefetch from mul-
tiple memory pages without expensive translations. Compared
to well-established other prefetchers, LLCP improves execution
time by 5.5% on average (10% maximum), increases DRAM
bandwidth by 9% to 18%, decreases DRAM rank energy
by 6%, produces 27% more timely prefetches, and increases
coverage by 25% at minimum.

I. INTRODUCTION

Technology improvements combined with power and

clock frequency constraints create a drive towards greater

parallelism in order to continue historical growth in compute

performance [1], [2], [3], [4], [5], [6]. Continued perfor-

mance growth intensifies stress on memory, but DRAM tech-

nology improvements are not projected to scale fast enough

to meet future demands [7], [8], [9], [10], [11] due to daunt-

ing manufacturing and data movement constraints. Even

today, numerous applications reach the memory bandwidth

ceiling using just a fraction of cores available in a modern

chip multiprocessor (CMP), such as 48 cores generating

300GB/s of memory bandwidth demand in the case of graph-

ics [12]. To make things worse, projections state that chip

pins that directly correlate to available bandwidth to off-chip

memory increase by 10% every year, whereas processing

capacity doubles every 18 months [13]. In addition, DRAM

power consumption is already critical. For instance, a DDR4

DIMMs consume about 35pJ per bit, meaning that a system

with only 0.2 bytes per FLOP memory bandwidth requires

over 160mW of DRAM power [2]. Likewise, memories

already require tens to hundreds of core cycles per memory

access [7]. 3D stacked memory promises improvements in

bandwidth and energy, but the underlying technology and

associated power, latency, and bandwidth will continue to

be challenged by performance scaling [14], and capacity and

cost concerns necessitate that most of the memory in future

large-scale systems will remain “conventional” DRAM [14].

Memory performance constraints are particularly limiting

for bulk-synchronous data-parallel single program multiple

data (SPMD) execution where all compute elements are

employed in tandem to speed up a single kernel. In this

work we focus on memory system optimizations for bulk-

synchronous data-parallel SPMD execution for CMPs be-

cause they are at the core of a wide variety of critical and

diverse applications from consumer-grade electronics to high

performance computing (HPC). This family of workloads

includes image processing, machine learning, physics simu-

lation, climate modeling, and others [8]. In fact, data-parallel

applications have been cited as the biggest drivers for multi-

core because of their promise to take the most advantage

of parallelism in the future [15]; applications in future

multi-cores, even consumer and mobile, are expected to

follow data-parallelism [15]. Because of the amount of data

processed, data-parallel applications are particularly stressful

to main memory. In fact, many important applications today

are limited by memory bandwidth or latency [16], [17], [11].

Even worse, emerging applications will be more sensitive

to main memory bandwidth and latency than today [18].

Because the performance of a memory-bound application is

roughly proportional to the rate at which its memory requests

are served [19], techniques to increase memory bandwidth

directly impact application execution time [11].

Data prefetching is currently the defacto solution for

latency hiding in modern CMPs [20], [21], [22]. Hardware

data prefetchers observe the memory access stream and

predict what data should be moved closer to the cores

before the data is actually requested by the cores. However,

modern last-level cache (LLC) prefetchers on many-core

architectures are oblivious to the highly structured data

access patterns that are inherent in SPMD execution [23],

[24], and so are unable to effectively preserve memory

address order across groups of cores. That is partly because

LLC prefetchers typically operate in the physical address

space and performing reverse translations for prefetching

is prohibitively expensive [25]. Therefore, prefetching from

a different memory page than that of the request that

initiated the prefetch is a major challenge. Low-level cache

prefetchers do not have this opportunity because they do not

get exposed to the access streams of other cores.

In this paper, we describe the last-level collective

Con$guous	Array	

(in	DRAM)	
SPMD	

Threads	
Domain	

Decomposi$on	

Processed	

Data	

Writeback	to	

DRAM	

Figure 1: An example from a typical data-parallel image

processing kernel.

prefetcher (LLCP), a LLC prefetcher that recognizes and

exploits the highly correlated access patterns of data-parallel

algorithms and coarse-grain parallelization. LLCP extends

the strided prefetcher [26] to anticipate memory accesses

by other cores that will request different parts of the same

distributed array that the initiating core accesses first. The

prefetches issued on behalf of different cores may reside

in different physical memory pages, without the need for

expensive address translations [25]. Furthermore, LLCP

issues prefetch requests to memory on behalf of multiple

cores in memory address order, which maximizes bandwidth

and reduces power [27], [28], [29], [30], [31]. For appli-

cations without data-parallel access patterns, LLCP reverts

to conventional strided prefetcher behavior [26]. Essentially,

LLCP acts as a memory access accelerator for the critical

class of data-parallel applications and requires no software

intervention.

Compared against the best performing among the strided

prefetcher [26], spatial memory streaming (SMS) [32], and

global history buffer (GHB) [33], well-established prefetch-

ers that target access patterns similar to LLCP, LLCP

improves execution time by 5.5% on average (10% maxi-

mum), increases DRAM bandwidth by 9% to 18%, decreases

DRAM rank energy by 6%, produces 27% more timely

prefetches, and increases the number of prefetched data that

are referenced over the number of cache misses (prefetching

coverage) by 25% at minimum. LLCP achieves this array of

improvements with no increase in complexity compared to

competition, a marginal increase in logic area and power in

the CMP, and with no software assistance.

II. BACKGROUND AND MOTIVATION

A. SPMD and Data-Parallel Applications

Bulk-synchronous SPMD execution employs groups of

cores executing essentially the same code in tandem with

different inputs to speed up a single kernel. SPMD kernels

typically rely on domain decomposition to divide up a large

work array, which is a common way to expose parallelism

as shown in Figure 1 [8], [34]. Each core computes on the

data tiles it is assigned and then writes tiled results back to

a contiguous array in main memory. Domain decomposition

generalizes to problems of any dimension.

In this setting, a core requesting a tile provides a strong

indication that the other tiles in the same distributed array

should be prefetched to on-chip caches. Past work has

already quantified the spatial and temporal localities inherent

in data-parallel applications [23], [24], [34]. However, the

predictability of this pattern is currently unexploited by

modern prefetchers. It is spatial locality that we pursue with

a prefetcher that is aware of data-parallel application access

patterns. Even though there can be time skew between cores,

because data-parallel applications use barriers between com-

putation kernels [9], this skew typically is small enough such

that prefetched data will not be evicted before they are used

as long as the LLC can hold the working set for each core.

B. Memory Access Streams

In current CMPs and even in SPMD execution, cores

access memory independently – causing requests to arrive

unordered to the DRAM controller [35], [28]. Even though

data-parallel applications typically use barriers between

computation kernels [9], there are many loop iterations

during computation phases. This effectively eliminates any

coordination among cores when they access the DRAM to

load or write tiles. The skew in the data access patterns is

exacerbated by variability in core execution time caused by

load imbalance, the system scheduler, and other factors [36].

This generates non-contiguous access patterns to the mem-

ory. Our claim is that the majority of bulk-synchronous

SPMD codes would present a very highly ordered streaming

data access pattern to the memory system were it not for

this skew between load-store streams coming from these

independent processor cores. Related work only partially

addresses this problem or imposes substantial performance

penalties.

In general, non-contiguous access patterns degrade

DRAM bandwidth, latency, and power [28], [27], [29],

[30], [31]. because they do not take advantage of pre-

activated rows and therefore cause more row activations

compared to sequential access patterns [28]. This is known

as overfetch [28], [30]. Overfetch is detrimental to memory

throughput, latency, and power because activating a new row

requires charging bit lines, amplification by sense amplifiers,

and then writing bits back to cells. As a result, in many

workloads an open row is used only once or twice before

being closed due to a row conflict [28]. Past work reports

that, depending on the access pattern, as little as 14%–97%

of peak memory bandwidth can actually be utilized [12].

Past work also reports that a random-order access stream

compared to an in-order one lowers DRAM throughput by

25% for reads and 41% for writes, increases median latency

by 23% for loads and 64% for stores, and increases power

by 2.2× for loads and 50% for stores [27].

Modern memory controllers reorder requests in their

transaction queues to reduce overfetching. However, they are

typically passive elements which do not control how requests

arrive to them. Therefore, their degree of choice is limited

to the entries in their finite-size transaction queues [19],

[16], [37], [29], [38]. In a medium- to large-scale CMP

where each core issues just a few tens of requests, this is

enough to overwhelm nearly any modern DRAM controller’s

transaction queue.

C. Prefetchers

Prefetchers in low-level caches move data closer to the

cores. LLC prefetchers move data from the DRAM to the

LLC (off chip to on chip). Low-level cache prefetchers often

suffer on bulk-synchronous applications with dense block

arrays because the contiguous address stream is typically

short [27] and confuses the prefetcher’s filter heuristics.

In addition, low-level cache prefetchers also issue requests

independently of others and thus create out-of-order access

patterns to the memory [39].

A simple and yet popular prefetcher is the strided

prefetcher [26], [22]. Each read request arriving to the

prefetcher creates or accesses a stride prediction entry (SPE).

When a load instruction requests address A, it is compared

to the previous address the same load requested (B). The

difference A − B is the new stride S for that instruction.

When the request for A arrives, the SPE is activated causing

the prefetcher to issue A+ i× S where i ranges from 1 to

D where D is the degree, set by the prefetcher.

Strided prefetchers maintain a SPE for every load instruc-

tion and each core, and use the program counter (PC) or

cache block addresses to differentiate between instructions.

Each entry contains a base address, the identifier of the

core, the stride S, and degree D. In addition, SPEs carry

a confidence value that has to be above a threshold (CON-

FTHRESH) for the SPE to produce prefetches. Confidence

increases by CONFINC if, at the time the request for

A arrives, the newly-calculated stride S matches the old

stride (old value of S). Otherwise, confidence decreases by

CONFDEC. New SPEs are assigned an initial confidence

value CONFINIT. Confidence values have a minimum MIN-

CONF and a maximum MAXCONF.

The strided prefetcher maintains its SPEs in the reference

prediction table (RPT). The RPT is indexed by a hash

function that takes as input the load instruction’s PC or cache

block index [26]. The RPT is typically set-associative [40]

such as to allow multiple SPEs with the same hash function

value. SPEs are evicted when a new SPE is created using a

replacement policy such as least recently used (LRU).

Current LLC prefetchers typically do not prioritize mem-

ory bandwidth and also do not accurately capture access

patterns created by data-parallel applications. In part, this is

because LLC prefetchers typically operate in the physical

address space. Thus, spanning memory pages in a single

prefetch activation requires a reverse translation to the

virtual address space [25] which makes such approaches

impractical. There is a substantial opportunity to exploit the

1 2

4 5

3

6

7 8 9

Distributed array

Base addr entry A

 ...

End of entry A

Tile

Base addr entry B

 ...

End of entry B

Figure 2: A single tile is much larger than a typical value

of D. Only twice as large is shown, therefore two SPEs (A

and B) would prefetch the entire tile.

correlated behavior of cores that are executing SPMD code.

Currently, even state-of the art prefetchers are unable to do

so because of this assumption of independence.

III. LLCP: LAST-LEVEL COLLECTIVE PREFETCHER

A. Predictability of Data-Parallel Algorithms

Figure 2 shows that tiles are typically much larger than

SPE degrees (D). It is impractical to set D large enough to

fetch the entire tile at once because this may create LLC con-

tention. Therefore, SPEs have to be activated from multiple

memory requests at different times to prefetch the entire tile.

Also, the majority of modern mappings of tiles to memory

addresses do not preserve contiguous memory address order

of data [41]; mappings that do so tend to have negative side

effects to performance or programmability. Because tiles do

not consist of contiguous address spaces, the request stream

generated by prefetchers that only prefetch within a single

core’s tile cannot be in contiguous address order.

In addition, tiles tend to be much larger than mem-

ory pages (4KB is a common memory page size). Given

that LLC prefetchers predominantly operate in the phys-

ical address space, a LLC prefetcher trying to prefetch

an entire tile would require multiple translations between

the virtual and physical address spaces. This would be

unfavorably costly, even if a last-level translation lookaside

buffer (TLB) is available [25]. Therefore, prefetchers tend to

stop prefetching at page boundaries which limits prefetching

effectiveness.

B. Overview

Figure 3 shows the desired functionality. When a core

requests its tile, part of or the entire tile is prefetched,

similarly to the strided prefetcher. However, LLCP also

prefetches the equivalent parts of other tiles into the LLC

if the application generates data-parallel memory access

patterns. LLCP fetches each tile from the memory page

it resides in, which may differ from the memory page

the triggering request is in. Finally, all data across cores

are fetched in memory address order to maximize memory

bandwidth.

Distributed array

LLC

On-chip cores

A

B

1 2 3

7 8 3

4 5 6

Figure 3: A core requests the first part of its next tile (A).

LLCP fetches the equivalent parts of other tiles (in purple) in

memory address order (B), anticipating other cores’ requests.

To produce a prefetch stream in address order, LLCP

maintains all SPEs associated with the same distributed array

sorted by base address in the physical space. Therefore, in

the example of Figure 2, there is one SPE per tile and SPEs

are associated to each other and sorted by base address.

When a prefetch for a distributed array initiates, SPEs are

used in an interleaved manner. If Basei is the base address

of the ith SPE in memory address order, Si its stride, Di

its degree, and N the number of SPEs associated with the

same distributed array, the generated access stream is

Base1, ..., BaseN , ..., (Base1 + S1), ..., (BaseN + SN), ...,

(Base1 + S1 ×D1), ..., (BaseN + SN ×DN)
(1)

This assumes all Si are equal; this is true for distributed

arrays that map all tiles to addresses the same way.

In bulk-synchronous SPMD execution, it is the same

instructions (with the same PC) but from different cores

that access different parts of the same distributed array.

Therefore, SPEs with the same PC value are associated

and will generate prefetches (activate) when one SPE with

that PC activates. We define that SPEs with the same PC

and confidence no less than CONFTHRESH belong to a

group. In Figure 2, SPEs for tiles 1, .., 9 belong to the same

group. SPEs join or create a group when their confidence is

increased to no less than CONFTHRESH. They get evicted

when they are evicted from the RPT or their confidence falls

below CONFTHRESH. SPEs update their confidence in a

similar manner to the strided prefetcher. It is by forming

groups that LLCP detects and exploits data-parallel access

patterns.

C. Architecture

LLCP’s internal architecture is shown in Figure 4. Similar

to the strided prefetcher [26], SPEs contain a base address,

core identifier, radix (R), degree (D) and confidence. When

a memory request arrives to the prefetcher, the hash function

is used to index the RPT. The RPT returns a SPE that was

created by the same core as the incoming request.

SPEs in the same group are not constrained to belong

to the same RPT set (line), if allowed by the hash func-

RPT (assoc. 4)

Hash
Based
index

A B C D PC1 A

Group table

H Q

PC2 H

Figure 4: LLCP is based on the strided prefetcher. Thus, it

also contains a RPT with associativity (four in this Figure).

LLCP extends each SPE by two pointers such that a group

is a double-linked list. In this example, SPEs A, C, and D

are in the same group and thus linked to each other. B is

in the same set as A, C, and D as determined by the hash

function, but is not in the same group due to a different PC

or low confidence value. H and Q are in a second group.

A separate group table holds a pointer to the SPE of each

group with the lowest base address.

tion. In our implementation, the hash function is simply

(
PCrequest%NumLinesRPT

4
+ CoreID)%4. With this hash

function, all SPEs with the same PC value have to be in

one of four RPT lines (hence the modulo four in the hash

function) such that the way associativity of the RPT can be

four times less than the maximum group size. Otherwise,

groups of maximum size cannot be formed because SPEs of

the group will keep evicting other SPEs of the same group

in the RPT.

D. Prefetch Predictions

The decision tree for LLCP is shown in Figure 5. When

a memory request arrives to the prefetcher, the RPT and

the group table are accessed in parallel. If an existing SPE

with the incoming request’s core and PC values does not

exist in the RPT, the prefetcher behaves exactly as the

strided prefetcher [26] by creating a new SPE with the initial

confidence (CONFINIT) and the request’s address as base.

This requires finding a free location in the set dictated by the

indexing hash function, and potentially finding an eviction

candidate [26]. If a SPE is found in the RPT but a group

with the request’s PC does not exist (the group table contains

no such entry), LLCP uses the SPE from the RPT in the

same manner as the strided prefetcher to issue prefetches.

Therefore, in applications that do not exhibit data-parallel

memory access patterns, LLCP operates similarly to the

strided prefetcher because no groups are formed. Even if

a group activates, the confidence, base address and stride

S of the SPE retrieved from the RPT is updated similarly

to the strided prefetcher. If a group does exist, that group

is used to generate prefetches. Confidence values of other

SPEs in the group are not updated.

If the group exists, the prefetcher issues one prefetch per

SPE in an interleaved manner by base address order. As

Request arrives

Access RPT
and group table

in parallel

SPE
exists?

Create SPE
No group activation

NoYes

Group
exists?

Prefetch group Prefetch SPE
No group activation

Conf. ≥
threshold?

NoYes

Yes

Update confid.
No prefetch

No

Figure 5: Decision flow chart for when LLCP observes a

new memory request.

explained in Section III-E, SPEs in groups are kept in a

double-linked list by base address order. In Figure 6, the

base address order sequence is “A”, “C”, “E”, “D” for that

group. Therefore, the linked list is accessed starting from

the lowest base address SPE found in the group table (“A”

in the example), and then uses the list’s pointers to find

the next SPE in sequence until all SPEs are accessed. Once

all SPEs in the group generate one prefetch request, the

traversal repeats for a total number of D linked list sweeps.

Therefore, the prefetch stream is that of Equation 1 for N

SPEs in the group. Because groups are ordered by base

address, this results in a prefetch request stream ordered by

memory address. This implies that D and S are the same

for all SPEs in the group, which is true for mappings that

map tiles to memory the same way for all tiles.

SPE base addresses update when the same instruction

(same PC) from the same core that created them issues a sub-

sequent request, similar to the strided prefetcher. However,

when a SPE activates as part of a group, it still contains an

old base address. In Figure 3, the first core that requests the

bottom half (green) of its tile (or an entirely new distributed

array), will activate all other SPEs of the same group for

other tiles. To prevent having all other SPEs fetch the top

half of their tile again using their old base address, LLCP

calculates the difference between the address of the new

memory request that is triggering the prefetch and the base

address of the SPE with the same PC and core identifier,

found in the RPT. This difference (adjustment factor) is

applied to all prefetches by SPEs in the same group. In the

example of Figure 3, this means that the first request that

arrives for the bottom (green) part of a tile, activates all SPEs

in the group but for the bottom part of their corresponding

tiles, by adding the adjustment factor to the base address of

SPEs in the group.

However, to prevent fetching the bottom half of tiles again

when another SPE in the group activates due to its own

Stride table (assoc. 4)

Hash
Based
index

A E C D PC1 A

Group table

H U Q

PC2 U

PC3 ZZ

Figure 6: In Figure 4, lets assume that E joins the group

with the same PC as A, C, and D (PC1). B is evicted by

the RPT’s replacement policy. If the base address of E is

between C and D, the double linked list will be manipulated

to result in a group order of A, C, E, D. In addition, U with

PC2 joins the H, Q group and has the lowest base address.

Therefore, the group table updates to point to U instead of H.

Finally, Z is created by another memory request with PC3,

but finds no entry in the group table. Thus, it allocates a

new one, essentially starting a new group.

core’s memory requests, each SPE is extended to record the

base address (adjusted by the adjustment factor) the last time

it activated. If a SPE would activate again with the same base

address and adjustment factor, it is skipped instead.

In all cases, if a single SPE would cross page boundaries,

any further prefetches are suppressed. This determination

is done for each SPE individually and does not affect

other SPEs in the group. This is similar to the strided

prefetcher without physical to virtual address translation.

However, because a group can contain multiple SPEs and

each SPE can point to a different memory page, a single

group activation can fetch from each memory page that SPEs

in the group have their base addresses set to. Essentially, this

means LLCP prefetches from multiple memory pages from

a single prefetch, without address translation.

E. Forming Groups

A SPE joins or creates a collective group when its confi-

dence reaches CONFTHRESH. This can happen during SPE

creation if CONFINIT is no less than CONFTHRESH, or at

the time memory accesses arrive and are used to update SPE

confidence values in the RPT. SPEs leave a collective group

when their confidence falls below CONFTHRESH or when

they are evicted from the RPT by the RPT’s replacement

policy. A SPE with both of its pointers set to null does not

belong to a collective group. This process is illustrated in

Figure 7.

For a SPE to join a group, LLCP performs a lookup in the

group table. If an entry with the same PC is found, the SPE

joins that group. In that case, the SPE traverses the linked

list of the group to find the existing SPE with the largest

base address that is still smaller that the newly-joining SPE’s

base address (the largest smaller value). It then manipulates

the pointers appropriately to insert the newly-joining SPE

Request for an address arrives

Calc. Stride S
based on old
base address

New S
==

old S?

Decrease SPE

confidence

NoYes

Add SPE
to group

Increase SPE
confidence

Conf. ≥
CONFTHRESH?

Conf. <
CONFTHRESH?

Remove SPE
from group

Figure 7: Decision flow chart to add or remove an SPE from

a collective group when its confidence updates.

at that location. This serves to keep the group sorted by

base address. If an entry with the same PC is not found

but a free slot in the group table exists, the SPE creates an

entry, essentially starting a new group. Examples are shown

in Figure 6.

If a newly-created SPE does not find a group with the

same PC and no free entry exists in the group table, it looks

for group entries with only one SPE (marked with a flag in

the group table). Among them, it replaces the LRU group

entry because the oldest group that still contains a single

SPE is less likely to get new SPEs in the future. Inactive

or imprecise groups eventually get disbanded by either low

confidence or RPT evictions. SPEs that do not find space to

form a group will retry when they are activated next.

F. Complexity and Cost

A SPE in LLCP contains a base address, stride S, degree

D, confidence, PC, two additional pointers to other SPEs

to implement the double-linked list, and an additional field

to record the base address when the SPE last generated

prefetches. Compared to the strided prefetcher, only the

additional field and two pointers to other SPEs are added.

With 64-bit addresses, each SPE in LLCP requires no more

than 64 bytes in the RPT, compared to approximately 52

bytes for the strided prefetcher. LLCP also adds a group

table, which is significantly smaller than the RPT that the

strided prefetcher also has. The RPT must fit a sufficient

number of SPEs such that a sufficient number of groups can

form. For instance, to allow ten 64-SPE groups to form, the

RPT requires 640 entries minimum. In that case, the group

table requires ten entries, with each entry containing just a

PC value and a pointer to the SPE of each group with the

lowest base address.

Modern prefetchers have tables or similar structures to

implement their prediction algorithms [32], [33]. For LLCP,

similar to strided, the largest and most energy-consuming

structure is the RPT. Inserting a SPE to an existing group

requires a linear traversal of the group to locate the ap-

propriate location in the linked list such as to maintain

SPE ordering by base address within a group. At every

step during the traversal, the base address of that SPE is

compared against the new SPE’s base address. Each step

is better performed in a separate cycle, resulting in multi-

cycle insertions. However, this is off the critical path of the

prefetcher. Even if the group activates in the meantime, it can

ignore the newly-inserted SPE if the insertion is pending.

Activating a group to generate prefetches also requires a

linear traversal. In order to avoid accessing the RPT D×N

times as per equation 1, we provide a set of N registers (N

is the maximum group size) to act as temporary storage for

SPEs. This way, each SPE in the RPT is accessed once and

transferred to a register.

For removal, a pointer to the removed SPE is readily

available either because we just decremented its confidence

or evicted it from the RPT. These are the two scenarios that

cause SPEs to be removed. Removing a SPE from a group

uses the two double-linked list pointers contained in the SPE

to update the pointers of the adjacent SPEs in the linked list,

and no traversal or re-sorting is required.

IV. EVALUATION

A. Methodology

We perform full system simulations using the GEM5

simulator and the classic memory model [42], configured

for a CMP with 64 in-order 2GHz Alpha cores, a crossbar,

64KB 2-way set associative private L1 caches, and four

32MB (2MB per core) 8-way set associative shared L2s

each co-located with a memory controller. Caches use MESI

coherence. Memory controllers have a single DDR3-1600

x64 channel with one command and address bus, based

on Micron MT41J512M8. Memory addresses are mapped

first to rows, then columns, then ranks, then banks and

finally channels. We select representative benchmarks from

Parsec [43], Rodinia [44], and Parboil [45] with their

medium-size inputs where possible. The benchmarks we

choose create a variety of patterns to illustrate LLCP’s

functionality, including benchmarks that do not benefit from

LLCP compared to strided (e.g., Heartwall) as well as

benchmarks where LLCP is not the winner. Backprop is

an unstructured grid pattern recognition application. Ferret

is pipelined instead of data-parallel and performs similarity

search. Myocyte is a structured grid biological simulation

application. Stencil performs an iterative Jacobi stencil op-

eration on a regular 3D grid [9]. Streamcluster performs

data-parallel data mining. Cutcp computes the short-range

component of Coulombic potential over a 3D grid. Heartwall

performs medical imaging processing. Finally, Fluidanimate

computes fluid dynamics using smoothes particle hydrody-

namics (SPH). These benchmarks have a varying degree of

data sharing [46], [43], [44]. Specifically, Streamcluster and

Stencil having low degrees of sharing and the rest moderate

to high.

We compare against the implementation of the strided

prefetcher [26] found in GEM5 [42], and optimized imple-

mentations of GHB [33] and SMS [32] found in the data

prefetching competitions of [47] and [48] respectively. We

choose these competitors because they are well-respected

state of the art prefetchers that target access patterns sim-

ilar to LLCP. In Section VI, we discuss alternatives that

differ compared to LLCP in scope, software assistance, or

are otherwise not directly comparable. All prefetchers are

implemented in GEM5 behaviorally and placed at the LLC,

but we also report results with L1 cache prefetchers. LLCP

and the strided prefetcher each have an RPT with 64 entries,

one for each core. Each entry has 16 sets (lines) for LLCP

and 18 sets for the strided prefetcher, to normalize for area

since LLCP’s SPEs are larger. LLCP’s group table has 32

entries. The maximum group size is 64 to match the number

of cores. The LRU replacement policy is used.

SPEs have a degree (D) of eight in both the strided

prefetcher and LLCP. This value of D is chosen based on

the number of cores (i.e., maximum SPEs in a group) and

the size of the LLC. The minimum confidence (MINCONF)

is zero, maximum (MAXCONF) is seven, and starting and

threshold confidences (INITCONF and CONFTHRESH re-

spectively) are both four. These values were derived to

control how conservative LLCP is in creating and activating

groups. INCCONF and DECCONF are both set to one.

The SMS prefetcher has 16 miss status handling registers

(MSHR) entries, a pattern history table with 1024 lines of

8 entries each, an active generation table of 16 lines of 16

entries each, a block size of 64 bytes, and 512-byte regions.

GHB has 1024 entries in its history buffer, 256 eight-way

entries in its index table, and a maximum prefetch degree of

8. These sizes were chosen to equalize the area occupied by

each prefetcher. No prefetcher performs virtual to physical

translations. Memory page size is 4KB.

B. Performance and Accuracy

Figure 8 shows execution time results. For all applica-

tions except Backprop and Stencil, LLCP offers the highest

speedup. The highest speedup for LLCP compared to no

prefetching is 24% for Myocyte and the average among

all applications is 9%. Compared to the best-performing of

the competition for each benchmark, LLCP offers a 5.5%

improvement by average and 10% at maximum for Myocyte.

To understand the performance results, we first look at

the LLC miss rate for each benchmark and prefetcher in

Figure 9. LLCP has a 56% lower miss rate compared

to SMS, 44% compared to GHB, and 63% compared to

baseline. LLCP has a comparable miss rate with strided,

but DRAM bandwidth, coverage, and timeliness—explained

below— contribute to LLCP’s superior performance.

-10

-5

0

5

10

15

20

25

30

Backprop Cutcp Heartwall Myocyte Stencil Streamcluster Ferret Fluidanimate Average

S
p

e
e

d
u

p
 c

o
m

p
a

re
d

 t
o

 n
o

 p
re

fe
tc

h
in

g
 (

%
)

Stride SMS GHB LLCP

9%

5%

1%2%

Figure 8: Speedup results compared to no prefetchers (base-

line). Negative speedup indicates a slowdown.

0

10

20

30

40

50

60

Backprop Cutcp Heartwall Myocyte Stencil Streamcluster Ferret Fluidanimate Average

LLC Miss Rate (%)

Stride SMS GHB LLCP Baseline

Figure 9: LLC (L2) miss rates (%).

For instance, Figure 10 shows that LLCP produces an

average 9% higher DRAM read bandwidth compared to

strided, 14% compared to GHB and SMS, and 18% com-

pared to baseline. This is a crucial factor for memory

bandwidth-constrained applications and is caused by LLCP’s

in-order memory access, and not just prefetching more bytes

or mispredicting and thus fetching useless data. This is

evident by the average 5% higher row buffer hit rate of

LLCP compared to competitors, reduced DRAM access

latency, comparable number of bytes fetched compared to

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

Backprop	 Cutcp	 Heartwall	 Myocyte	 Stencil	 Streamcluster	 Ferret	 Fluidanimate	 Average	

D
R
A
M
	r
e
a
d
	b
a
n
d
w
id
th
	(
M
iB
y
te
s/
s)
	 DRAM	read	bandwidth	(MiBytes/s)	

Stride	 SMS	 GHB	 LLCP	 Baseline	

Figure 10: DRAM read bandwidth (MBytes per second).

0.00001	

0.0001	

0.001	

0.01	

0.1	

1	

10	

100	

1000	

10000	

Backprop	 Cutcp	 Heartwall	 Myocyte	 Stencil	 Streamcluster	 Ferret	 Fluidanimate	 Average	

Lo
g
a
ri
th
m
ic
	S
ca
le
	

x
	1
0
0
0
0
0
	

Timeliness	Measure.	Lower	is	Be:er	

Stride	 SMS	 GHB	 LLCP	

Figure 11: Number of prefetches that were squashed by a

demand missed (late prefetches), divided by the total number

of prefetchers. Lower is better.

strided and SMS (later explained), and that with LLCP

DRAM rows retrieve an average 7% to 11% more bytes

each time they activate.

Due to accessing memory in address order, LLCP reduces

LLC read miss latency by an average of 15% compared to

competition, and the DRAM read latency by 4%.

Compared to all three competitors, LLCP generates more

timely prefetches because it can prefetch from multiple

memory pages, thus can prefetch more data from a single ac-

tivation. In addition, another reason LLCP improves timeli-

ness compared to strided is that even though both prefetchers

eventually activate the same SPEs, LLCP activates multiple

SPEs at once whereas strided has to wait for requests from

each core individually. As a measure of timeliness, we record

the number of prefetches that were squashed by a demand

miss at the LLC, which indicates the number of prefetches

that were issued too late. We then divide this number by the

overall number of prefetches issued. As shown in Figure 11,

by average across benchmarks LLCP improves on this metric

by 82% compared to strided, 17% compared to SMS, and

80% compared to GHB.

More read bytes per row activation means fewer row

activations if the number of retrieved bytes for LLCP is

no greater than competition. This is in fact the case with

LLCP causing a comparable number of bytes to be read from

DRAM compared to SMS, 3% more than strided, and 14%

more than GHB. These differences are slightly magnified

if we count the number of cache lines requested by the

prefetcher. Fewer row activations result in an average of

5% lower row activation energy in the DRAM for LLCP

compared to competition, and a 6% lower overall energy

per rank in the DRAM.

The extra bytes LLCP retrieves from DRAM compared

to competition are due to cache lines that were fetched and

evicted without being referenced because the application

previously generated data-parallel access patterns but that

is no longer the case, and LLCP has not adapted yet. With

applications that frequently change access patterns (a chal-

lenge for many prefetchers), LLCP can prefetch useless data

which may evict useful data from the LLC; this is the reason

for LLCP’s lower performance in Backprop compared to

strided in Figure 8. For applications that never generate

data-parallel access patterns, LLCP behaves similarly to the

strided prefetcher, as is the case with Heartwall. However,

we notice that the majority of our application benchmarks

consistently generate data-parallel access patterns, because

LLCP forms a minimum of 126 groups with 64 SPEs

for Ferret indicating that 64 cores participate in a data-

parallel access pattern, maximum of 3473 64-SPE groups

for Myocyte, and an average of 2077. Groups activate a few

million times during the entire course of an application.

Finally, we look at accuracy and coverage [20], [21], [22].

Accuracy is the ratio of prefetched data that was referenced

over the number of generated prefetches. Coverage is the

ratio of prefetched data that was referenced over the number

of cache misses. We notice that LLCP has in fact 8% lower

accuracy than strided, 2% lower than GHB, and 23% higher

than SMS by average. This result is intuitive because LLCP

uses SPEs the same way as strided and therefore in the

course of an application all SPEs will activate and prefetch

the same data, but LLCP risks erroneously activating other

SPEs for non-data parallel access patterns. However, it is the

timeliness of LLCP’s prefetches and the in-order memory

accesses that generate the performance advantages. Still,

compared to SMS, LLCP improves accuracy on top of the

other factors. The trend reverses when examining coverage

since LLCP has 25% higher coverage by average than

strided, 4× compared to SMS, and 5.8× compared to GHB.

Experiments with fewer cores show smaller differences

between prefetchers, partly because the stress on the memory

is smaller.

C. OOO Cores, LLC Size, L1 Prefetchers

We repeat our experiments with out of order (OOO) cores,

different LLC sizes, and L1 cache prefetchers. With OOO

cores, for Backprop, Heartwall, and Myocyte LLCP provides

smaller gains compared to GHB and SMS and no gain

compared to strided. This is the effect of OOO cores being

more latency tolerant making timeliness a smaller factor.

However, for the rest of our applications LLCP actually

increases its performance gains compared to the highest

performing competitor, with an average of 8% and maximum

of 12% for Fluidanimate. Primarily in-order cores benefit

from increasing the cache hit rate and timeliness, whereas

OOO cores primarily care about DRAM bandwidth and

coverage. Therefore, replacing in-order cores with OOO

cores does not universally penalize or favor LLCP.

We then repeat our experiments with half the original

LLC size, as well as one quarter. For both half the size and

one quarter the size, LLCP remains the highest performer

but with a smaller margin (3% and 2% respectively), while

still reducing DRAM energy and increasing bandwidth. As

expected, smaller LLCs magnify the adversary effects of

prefetching wrong data which LLCP is more prone to,

because that useless data is more likely to evict useful data.

However, smaller LLCs also increase the miss rate which

makes accurate and timely prefetching more important.

Finally, we repeat our experiments after adding strided

prefetchers to L1 caches. LLCP still outperforms compe-

tition in four benchmarks (Backprop, Heartwall, Fluidan-

imate, and Streamcluster) by up to 5%. It also performs

comparably in all other benchmarks to the highest per-

forming competitor, except for Stencil where it shows a

3% drop compared to strided. The average speedup for

LLCP compared to baseline with L1 prefetchers is 4%. L1

prefetchers cannot replicate LLCP’s functionality because

they prefetch independently and thus create an out-of-order

access stream to the memory, which hurts performance and

power. LLCP is synergistic to L1 prefetchers because L1

prefetchers can move the data from the LLC to each core’s

level 1 cache, without LLCP having to push data to lower-

level caches to achieve the same result.

D. Energy and Area

For the configuration used in our experiments, each in-

stance of LLCP occupies 65,536 bytes. This is approx-

imately equal to SMS, GHB, and the strided prefetcher.

LLCP occupies an insignificant 1% of each of the L2 LLCs

in our CMP.

As previously stated, fewer row activations due to in-

order memory accesses result in an average 5% lower row

activation energy in the DRAM for LLCP compared to

competition and a 6% lower overall energy per rank in the

DRAM. The power consumed by LLCP is dominated by

the RPT because that is its largest structure. For the given

configuration, the total dynamic read energy per access to a

L2 cache requires 17× more energy than a similar access to

LLCP’s RPT. In fact, the total dynamic energy for LLCP is

95% lower than for each L2 cache, measured by recording

the number of accesses to the RPT and cache, by aver-

age across benchmarks. Compared to the other prefetchers,

LLCP consumes 2× to 3× more dynamic energy, but that

is still a marginal increase (e.g., 1%) compared to just a

single L2 cache. The cache also has 50× higher leakage

power compared to LLCP. Energy was estimated for a 32nm

technology using Cacti 6.5 [49].

Finally, the cycle time of LLCP is comparable to the

strided prefetcher. The logic complexity of using and up-

dating SPEs, processing incoming requests, and accessing

the RPT are comparable. In addition, the latency to generate

prefetches is the same because the group table is accessed

in parallel to the RPT (which the strided prefetcher also

accesses) for each incoming memory request. Actions that

take additional steps, such as adding a SPE to a group, are

not time sensitive and thus are off the critical path.

V. DISCUSSION

Similar to any prefetcher, LLCP can potentially prefetch

useless data and pollute the LLC. This can happen if multiple

cores generate memory accesses from instructions with the

same PC, but the requested addresses are unpredictable

and do not follow data parallelism. Setting INITCONF to

be much smaller than CONFTHRESH makes LLCP more

conservative by having SPEs only produce prefetches if

their prediction has already been confirmed multiple times.

In fact, we can extend LLCP to dynamically adjust CON-

FTHRESH as well as the maximum group size based on

run-time prediction quality feedback. In memory access

patterns that are caused by instructions with different PCs

such as irregular access patterns, LLCP forms no groups and

thus behaves similarly to the strided prefetcher. In divergent

memory accesses where the access pattern follows data

parallelism but the number of participating cores changes,

a high CONFTHRESH makes LLCP more conservative and

lets LLCP adjust quickly by removing inactive SPEs from

collective groups; this is preferable in memory bandwidth

constrained systems.

Applications with low degrees of data sharing between

cores favor LLCP because with high sharing other prefetch-

ers are more likely to fetch data that are useful to more

than one core. Still, even with high sharing all data are not

typically shared by all cores which means LLCP will tend to

generate more timely prefetches compared to competition.

In addition, in the case where some cores are slower than

others, LLCP will still prefetch the data for each individual

core’s next iteration regardless of the iteration count for

every group activation, because of how the adjustment factor

is calculated (Section III-D). Multiple threads on the same

core generating requests from the same PC can be confusing

for many prefetchers, but this can be alleviated by making

LLCP thread-aware or allowing threads to run long enough

to re-train LLCP.

Furthermore, because some memory requests may be

satisfied by lower-level caches, the LLC risks not observing

the constant-stride sequences applications create but instead

consider them as variable-stride patterns. However, this is

not predominant in data-parallel applications where at every

iteration of the algorithm each core fetches a new tile from a

new distributed array. Thus, no on-chip cache contains that

data [15], [8]. Therefore, the LLC observes the application’s

unfiltered access stream.

Because SPEs are in the physical address space, it is

possible that by the time LLCP activates SPEs in a group,

some of those SPEs refer to address memory pages that

have been released by the operating system. This, however,

is unlikely to happen in data-parallel applications where

distributed arrays are typically allocated and released as

a whole. Furthermore, in some modern processors, the

LLC only observes cache line addresses instead of memory

addresses. In such cases, strides in SPEs can be based on

cache lines.

In its current form, LLCP fetches data to the LLC and

does not push to lower-level caches to avoid modifications

to current cache coherency protocols that do not support

receiving data they did not request. Such modifications lead

to complex verification [50]. Given that the latency and

energy required to fetch data from an on-chip location com-

pared to off-chip is an order of magnitude lower, fetching

data to the LLC provides a good trade-off of benefit versus

complexity [2].

A variety of past prefetchers also make use of the PC

at the LLC, including the strided prefetcher [33], [26].

Accessing PC information at the LLC is already part of a

variety of processors [51], [52]. However, some architectures

do not expose the PC to the LLC. In such cases, associating

SPEs into groups can be performed by other information

such as virtual addresses or more complex access stream

pattern matching. LLCP thus would be similar to cache

block-based stride prefetchers [53].

In essence, LLCP acts as memory access accelerator for

the critical and large class of data-parallel applications. In

this sense, LLCP pushes the boundary of specialization

of memory accelerators, which is an avenue for continued

performance scaling for digital computing.

Our study focuses on DRAM because capacity and cost

concerns necessitate that most of the memory in future large-

scale systems will remain “conventional” DRAM, including

stacked in-package memories such as HBM [14]. 3D stacked

memory with abstracted memory interfaces may be affected

differently by the order of memory access streams, but

prefetching will still be an effective way to reduce data

access latency. Even with memory technologies that pro-

vide higher bandwidth and lower latency, architectures and

applications tend to adapt and eventually become bandwidth

or latency limited again. LLCP is also a prime candidate for

graphical processor units (GPUs) because many applications

with bulk-synchronous data parallelism execute in such

platforms. However, as we discuss in Section VI, some

cooperative prefetching techniques exist for GPUs but very

little similar work is found for CMPs.

VI. RELATED WORK

The SMS [32] and GHB [33] prefetchers are data

prefetchers for the LLC that monitor global memory access

patterns and exploit regularity of access patterns of data

structures. Thus, they have similar goals with LLCP. SMS

predicts the blocks in a certain memory range that are

spatially correlated potentially beyond a single cache block

by recording which blocks are accessed within a predefined

time interval into a history table. SMS defines spatial cor-

relation as recurring patterns in relative addresses. Future

predictions use a combination of address and PC to retrieve

a recorded pattern from the history table. In contrast, GHB

identifies strides between addresses of different instructions

using the PC and addresses to index into an index table,

which contains pointers to a global history table. Each global

history table entry stores a global miss address and a link

pointer, which chains multiple table entries into address lists.

Through forming address lists, a memory access caused by

instruction A may trigger a prefetch for instruction B.

Numerous other data prefetchers exploit data locality [21],

[20], typically stride-based [54], [26], context-based [55], or

a combination [21], [56]. The complex prefetcher uses multi-

ple prediction tables to capture access patterns with multiple

strides (address deltas) within the same page [57]. The

sandbox prefetcher determines at run-time the appropriate

prefetch algorithm [58]. The irregular stream buffer is simul-

taneously temporally and spatially ordered [59]. The indirect

prefetcher captures irregular access patterns generated from

indirect patterns of the form A[B[i]] [60]. Similarly, the

stateless prefetcher predicts addresses in pointer-intensive

applications [61]. These are synergistic approaches that we

can apply to LLCP with modifications to handle pointer-

intensive applications.

Furthermore, the adaptive stream prefetcher adaptively

modulates the aggressiveness of a stream prefetcher to match

the workload’s spatial locality [62]. Prefetching has also

been used to improve row buffer locality and reduce thrash-

ing, but this work exploited the predictability of GPU appli-

cations, the specific architecture, and shared some limitations

with other work such as prefetching from a single memory

page at a time [63]. OWL includes a cooperative prefetching

scheme for threads in a GPU, but only prefetches among al-

ready active DRAM rows [64]. Other prefetchers adapt their

aggressiveness using information collected during program

execution [65], [62] or performance gradients [65]. Stealth

prefetching requires keeping address-related metadata (hun-

dreds of KBs per core) to decide the subset of a page that

should be prefetched [66]. Other context-based prefetchers

capture the working set of loop iterations by using code

annotations and are based on the observation that code block

working sets are highly interdependent across tight loop

iterations [56]. Other approaches include delta correlation

instead of simple strides [67], defining spatial groups that

are simultaneously fetched [54], and using tags instead of

cache-line addresses [68].

Other work motivates a heterogeneous interconnect where

low-power wires carry prefetch requests [22]. Furthermore,

compression in caches can affect the accuracy of prefetch-

ers [69]. In addition, using the same replacement policies

for prefetched and demand requests may evict prefetched

data before they are used [70]. Pinning data to the LLC and

suppressing select prefetch requests may increase prefetch

accuracy [39]. Prefetching also applies to TLBs [25]. Re-

lated to LLCP, the inter-core cooperative TLB multi-level

prefetcher exploits common miss patterns across cores in a

CMP [71].

Software-only or hardware/software prefetchers also ex-

ist [21], [20]. The key differences are the modifications to the

software and hardware to give the compiler or application

detailed knowledge of the architecture as well as the ability

to pass down information to the hardware, combined with

the difficulty in making predictions statically (without run-

time data). This is a fundamental tradeoff which makes

accurate hardware-only prefetching attractive, and thus the

focus of LLCP. Still, software can provide helpful hints

to the hardware [72], [73], [74] to change the memory

bandwidth available for prefetching [75], manage scratchpad

memories [76], or assist with other functions such as dead

block prediction [77]. or perform application-specific opti-

mizations [78], [79]. Software prefetching (including direct

memory access (DMA)–based techniques) can outperform

LLCP, just like other hardware prefetchers as past studies

show [21], [20], since they receive all necessary information

from the application instead of predicting it [27], [80]. LLCP

aims to be hardware-only and thus not receive software hints,

thus we compare against other hardware-only prefetchers.

Software prefetchers can adversely affect the training

of hardware prefetchers if not designed in tandem [20],

[81]. GPUs can use adjacent threads to more efficiently

identify address patterns [82], use software hints [83], or use

prefetch-aware warp scheduling [84]. The operating system

can also provide support in the form of a buffer to mitigate

LLC pollution [85]. Other studies examine the interference

between hardware prefetchers residing at different levels

of the cache hierarchy [86], [87] as well as the effect on

memory bandwidth.

Alternative approaches hide or mitigate memory access

latency with load value prediction [88], approximation [89],

precomputing data with separate threads [90], simultaneous

multithreading, and others.

VII. CONCLUSION

We present LLCP, a collective hardware LLC data

prefetcher that exploits access patterns generated by data-

parallel algorithms by using one core’s memory access

stream to predict data for other cores with no software

assistance [15], [34], [91]. LLCP can prefetch from multiple

pages from a single triggering memory request without the

need for expensive translations [25]. To maximize memory

bandwidth and reduce power, LLCP issues prefetch requests

to memory on behalf of multiple cores in memory address

order [27], [28], [29]. Both in-order memory accesses and

prefetching from multiple memory pages are important

advances. For applications that do not exhibit data-parallel

access patterns, LLCP behaves as a strided prefetcher [26].

Essentially, LLCP acts as a memory access accelerator for

data-parallel applications.

LLCP improves execution time by 5.5% on average (10%

maximum), increases DRAM bandwidth by 9% to 18%,

decreases DRAM rank energy by 6%, produces 27% more

timely prefetches, and increases prefetching coverage by

25% at minimum across applications compared to the best-

performing from our state of the art competitors, with

comparable complexity, and with just a marginal increase

in logic area and power in the CMP.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of

Science, of the U.S. Department of Energy under Contract

No. DE- AC02-05CH11231.

REFERENCES

[1] S. Borkar and A. A. Chien, “The future of microprocessors,” Com-

munications of the ACM, vol. 54, no. 5, 2011.

[2] J. Shalf, S. S. Dosanjh, and J. Morrison, “Exascale computing
technology challenges,” ser. VECPAR, vol. 6449. Springer, 2010.

[3] J. Torrellas, “How to build a useful thousand-core manycore system?”
International Parallel and Distributed Processing Symposium, 2009.

[4] V. Agarwal et al., “Clock rate versus IPC: the end of the road for
conventional microarchitectures,” ser. ISCA, 2000.

[5] M. Horowitz and W. Dally, “How scaling will change processor
architecture,” ser. ISSCC, 2004.

[6] S. Borkar, “Thousand core chips: a technology perspective,” ser.
DAC, 2007.

[7] K. Sudan et al., “Micro-ignorepages: increasing DRAM efficiency
with locality-aware data placement,” ser. ASPLOS, 2010.

[8] K. Datta et al., “Stencil computation optimization and auto-tuning on
state-of-the-art multicore architectures,” ser. SC, 2008.

[9] J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance
code generation for stencil computations on GPU architectures,” ser.
ICS, 2012.

[10] L. Peng et al., “High-order stencil computations on multicore clus-
ters,” ser. IPDPS, 2009.

[11] A. Vega et al., “Breaking the bandwidth wall in chip multiprocessors,”
ser. SAMOS, 2011.

[12] S. Rixner, “A bandwidth-efficient architecture for a streaming media
processor,” Ph.D. dissertation, MIT, 2001.

[13] B. M. Rogers et al., “Scaling the bandwidth wall: challenges in and
avenues for CMP scaling,” ser. ISCA, 2009.

[14] D. Jevdjic et al., “Unison cache: A scalable and effective die-stacked
dram cache,” ser. MICRO, 2014.

[15] Y.-K. Chen et al., “Convergence of recognition, mining, and synthesis
workloads and its implications,” Proceedings of the IEEE, vol. 96,
no. 5, 2008.

[16] E. Ebrahimi et al., “Parallel application memory scheduling,” ser.
MICRO, 2011.

[17] J. Huh, D. Burger, and S. W. Keckler, “Exploring the design space
of future CMPs,” ser. PACT, 2001.

[18] R. Murphy, “On the effects of memory latency and bandwidth on
supercomputer application performance,” ser. IISWC, Sept 2007.

[19] L. Subramanian et al., “MISE: Providing performance predictability
and improving fairness in shared main memory systems,” ser. HPCA,
2013.

[20] J. Lee, H. Kim, and R. Vuduc, “When prefetching works, when it
doesn’t, and why,” ACM Trans. Archit. Code Optim., vol. 9, no. 1,
2012.

[21] S. Byna, Y. Chen, and X.-H. Sun, “A taxonomy of data prefetching
mechanisms,” ser. I-SPAN, May 2008.

[22] A. Flores, J. Aragon, and M. Acacio, “Energy-efficient hardware
prefetching for CMPs using heterogeneous interconnects,” ser. PDP,
Feb 2010.

[23] J. Meng, J. W. Sheaffer, and K. Skadron, “Exploiting inter-thread
temporal locality for chip multithreading,” ser. IPDPS, April 2010.

[24] J. Weinberg et al., “Quantifying locality in the memory access
patterns of HPC applications,” ser. SC, 2005.

[25] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level
TLBs for chip multiprocessors,” ser. HPCA, 2011.

[26] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed
prefetching in scalar processors,” ser. MICRO, 1992.

[27] G. Michelogiannakis et al., “Collective memory transfers for multi-
core chips,” ser. ICS, 2014.

[28] A. N. Udipi et al., “Rethinking DRAM design and organization for
energy-constrained multi-cores,” ser. ISCA, 2010.

[29] S. Rixner et al., “Memory access scheduling,” ser. ISCA, 2000.

[30] J. H. Ahn et al., “Future scaling of processor-memory interfaces,”
ser. SC, 2009.

[31] D. T. Wang, “Memory DRAM memory systems: performance anal-
ysis and a high performance, power-constrained DRAM scheduling
algorithm,” Ph.D. dissertation, University of Maryland, 2005.

[32] S. Somogyi et al., “Spatial memory streaming,” ser. ISCA ’06, 2006.

[33] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” ser. HPCA, 2004.

[34] S. M. F. Rahman, Q. Yi, and A. Qasem, “Understanding stencil code
performance on multicore architectures,” ser. CF, 2011.

[35] G. L. Yuan, A. Bakhoda, and T. M. Aamodt, “Complexity effective
memory access scheduling for many-core accelerator architectures,”
ser. MICRO, 2009.

[36] A. Mazouz, S.-A.-A. Touati, and D. Barthou, “Study of variations
of native program execution times on multi-core architectures,” ser.
CISIS, 2010.

[37] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth
contention through bandwidth-aware scheduling,” ser. PACT, 2010.

[38] Y. Ishii, M. Inaba, and K. Hiraki, “Unified memory optimizing
architecture: memory subsystem control with a unified predictor,”
ser. ICS, 2012.

[39] M. Kandemir, Y. Zhang, and O. Ozturk, “Adaptive prefetching for
shared cache based chip multiprocessors,” ser. DATE, 2009.

[40] S. Subha, “A set associative cache architecture,” ser. ITNG, 2010.

[41] T. Henretty et al., “Data layout transformation for stencil computa-
tions on short-vector SIMD architectures,” ser. CC/ETAPS, 2011.

[42] N. Binkert et al., “The Gem5 simulator,” SIGARCH Comput. Archit.

News, vol. 39, no. 2, 2011.

[43] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. disserta-
tion, Princeton University, January 2011.

[44] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” ser. IISWC, 2009.

[45] J. A. Stratton et al., “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” University of Illinois at
Urbana-Champaign, Urbana, Tech. Rep. IMPACT-12-01, Mar. 2012.

[46] H. Luo, X. Xiang, and C. Ding, “Characterizing active data sharing
in threaded applications using shared footprint,” 2013.

[47] M. Dimitrov and H. Zhou, “Combining local and global history for
high performance data prefetching,” 2009.

[48] M. Ferdman, S. Somogyi, and B. Falsafi, “Spatial memory streaming
with rotated patterns,” in In 1st JILP Data Prefetching Championship,
2009.

[49] S. Li et al., “CACTI-P: Architecture-level modeling for SRAM-based
structures with advanced leakage reduction techniques,” ser. ICCAD,
2011.

[50] R. Komuravelli, S. V. Adve, and C.-T. Chou, “Revisiting the com-
plexity of hardware cache coherence and some implications,” ACM

Trans. Archit. Code Optim., vol. 11, no. 4, 2014.

[51] S. Khan et al., “Improving cache performance by exploiting read-
write disparity,” ser. HPCA, 2014.

[52] S. Ghose, H. Lee, and J. F. Martı́nez, “Improving memory scheduling
via processor-side load criticality information,” ser. ISCA, 2013.

[53] T. Sherwood, S. Sair, and B. Calder, “Predictor-directed stream
buffers,” ser. MICRO, 2000.

[54] C. F. Chen et al., “Accurate and complexity-effective spatial pattern
prediction,” ser. HPCA ’04, 2004.

[55] D. Joseph and D. Grunwald, “Prefetching using markov predictors,”
ser. ISCA ’97, 1997.

[56] A. Fuchs et al., “Loop-aware memory prefetching using code block
working sets,” ser. MICRO, 2014.

[57] M. Shevgoor et al., “Efficiently prefetching complex address pat-
terns,” ser. MICRO, 2015.

[58] S. Pugsley et al., “Sandbox prefetching: Safe run-time evaluation of
aggressive prefetchers,” ser. HPCA, Feb 2014.

[59] A. Jain and C. Lin, “Linearizing irregular memory accesses for
improved correlated prefetching,” ser. MICRO, 2013.

[60] X. Yu et al., “IMP: Indirect memory prefetcher,” ser. MICRO, 2015.
[61] R. Cooksey, S. Jourdan, and D. Grunwald, “A stateless, content-

directed data prefetching mechanism,” ser. ASPLOS, 2002.
[62] I. Hur and C. Lin, “Memory prefetching using adaptive stream

detection,” ser. MICRO, 2006.
[63] R. Panda et al., “Prefetching techniques for near-memory throughput

processors,” ser. ICS, 2016.
[64] A. Jog et al., “OWL: Cooperative thread array aware scheduling

techniques for improving GPGPU performance,” ser. ASPLOS, 2013.
[65] L. M. Ramos et al., “Multi-level adaptive prefetching based on per-

formance gradient tracking,” Journal of Instruction-Level Parallelism,
vol. 13, 2011.

[66] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Stealth prefetching,”
ser. ASPLOS, 2006.

[67] K. Nesbit, A. Dhodapkar, and J. Smith, “AC/DC: an adaptive data
cache prefetcher,” ser. PACT, 2004.

[68] Z. Hu, M. Martonosi, and S. Kaxiras, “TCP: Tag correlating prefetch-
ers,” ser. HPCA, 2003.

[69] A. Alameldeen and D. Wood, “Interactions between compression and
prefetching in chip multiprocessors,” ser. HPCA, Feb 2007.

[70] C.-J. Wu et al., “PACMan: Prefetch-aware cache management for
high performance caching,” ser. MICRO, 2011.

[71] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative TLB for
chip multiprocessors,” ser. ASPLOS, 2010.

[72] S. W. Son et al., “A compiler-directed data prefetching scheme for
chip multiprocessors,” ser. PPoPP, 2009.

[73] Z. Wang et al., “Guided region prefetching: A cooperative hard-
ware/software approach,” ser. ISCA, 2003.

[74] V. Papaefstathiou et al., “Prefetching and cache management using
task lifetimes,” ser. ICS, 2013.

[75] V. Jimenez et al., “Increasing multicore system efficiency through
intelligent bandwidth shifting,” ser. HPCA, Feb 2015.

[76] L. Alvarez et al., “Runtime-guided management of scratchpad mem-
ories in multicore architectures,” ser. PACT, 2015.

[77] M. Manivannan et al., “RADAR: Runtime-assisted dead region
management for last-level caches,” ser. HPCA, 2016.

[78] S. Ainsworth and T. M. Jones, “Graph prefetching using data structure
knowledge,” ser. ICS, 2016.

[79] D. Zucker, R. Lee, and M. Flynn, “Hardware and software cache
prefetching techniques for MPEG benchmarks,” Circuits and Systems

for Video Technology, IEEE Transactions on, vol. 10, no. 5, Aug
2000.

[80] S. Saidi et al., “Optimizing explicit data transfers for data parallel
applications on the cell architecture,” ACM Trans. Archit. Code

Optim., vol. 8, no. 4, Jan. 2012.
[81] S. Mehta et al., “Multi-stage coordinated prefetching for present-day

processors,” ser. ICS, 2014.
[82] A. Sethia et al., “APOGEE: Adaptive prefetching on GPUs for energy

efficiency,” ser. PACT, 2013.
[83] J. Lee et al., “Many-thread aware prefetching mechanisms for

GPGPU applications,” ser. MICRO, Dec 2010.
[84] A. Jog et al., “Orchestrated scheduling and prefetching for GPGPUs,”

ser. ISCA, 2013.
[85] L. Soares, D. Tam, and M. Stumm, “Reducing the harmful effects

of last-level cache polluters with an os-level, software-only pollute
buffer,” ser. MICRO, 2008.

[86] N. Enright Jerger, E. Hill, and M. Lipasti, “Friendly fire: understand-
ing the effects of multiprocessor prefetches,” ser. ISPASS, 2006.

[87] F. Liu and Y. Solihin, “Studying the impact of hardware prefetching
and bandwidth partitioning in chip-multiprocessors,” ser. SIGMET-
RICS, 2011.

[88] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value locality and
load value prediction,” SIGOPS Oper. Syst. Rev., vol. 30, no. 5, 1996.

[89] J. S. Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
ser. MICRO, 2014.

[90] I. Atta et al., “Self-contained, accurate precomputation prefetching,”
ser. MICRO, 2015.

[91] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simula-
tion for interactive applications,” ser. SCA, 2003.

