
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Quantization of Neural Networks

Permalink
https://escholarship.org/uc/item/1tz0f6hg

Author
Long, Ziang

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tz0f6hg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Quantization of Neural Networks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Ziang Long

Dissertation Committee:
Professor Jack Xin, Chair

Professor Yifeng Yu
Professor Long Chen

2022

Chapter 2 © 2022 American Institude of Mathematical Sciences
Chapter 3 © 2021 Springer Nature

All other materials © 2022 Ziang Long

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Convergence and Slow-to-Fast Weight Evolution in DNN training for Classi-

fying Linearly Non-Separable Data . 1
1.2 Learning Quantized Neural Nets by Coarse Gradient Method 4

2 Convergence and Slow-to-Fast Weight Evolution in DNN training for clas-
sifying Linearly Non-Separable Data 10
2.1 Problem Setup . 10
2.2 Preliminaries . 13

2.2.1 Decomposition . 13
2.2.2 Landscape . 15

2.3 Convergence Analysis for Non-Bias Case . 19
2.4 Main Results . 29
2.5 Experiments . 32

2.5.1 Synthetic Data . 32
2.5.2 MNIST Experiments . 36

3 Learning Quantized Neural Nets by Coarse Gradient Method for Non-
Linear Classification 39
3.1 Problem Setup . 39

3.1.1 Data Assumptions . 39
3.1.2 Network Architecture . 41
3.1.3 Coarse Gradient Methods . 44

3.2 Main Result and Outline of Proof . 46
3.3 Space Decomposition . 47

ii

3.4 Learning Dynamics . 49
3.5 Landscape Properties . 52
3.6 Proof of Main Results . 55
3.7 Experiments . 56

3.7.1 Synthetic Data . 57
3.7.2 MNIST Experiments . 59
3.7.3 CIFAR-10 Experiments . 61

4 Recurrence of Optimum for Training Weight and Activation Quantized
Networks 63
4.1 Preliminaries . 63

4.1.1 Problem Setup . 63
4.1.2 Characterization of Optimal Solutions 65
4.1.3 Coarse Gradient . 66
4.1.4 Weight Quantization Step . 67

4.2 Binary Weight . 68
4.3 Ternary Weight . 73
4.4 Experiments . 86

4.4.1 Synthetic Data . 87
4.4.2 MNIST . 87
4.4.3 CIFAR-10 . 88

Bibliography 90

Appendix A Supplementary Figures for Chapter 4 94

iii

LIST OF FIGURES

Page

1.1 Quantized activation functions. τ is a value determined in the network train-
ing; see section 3.7 . 7

2.1 Geometric Condition in Lemma 2.4 (d = 3) 22
2.2 2-dim section of Rd spanned by w̃1 and n 26
2.3 Number of iterations to convergence v.s. θ, the anlge between subspaces V1

and V2. 33
2.4 Left: convergent iterations vs. number of neurons (d = 2). Right: histogram

of norm of weights: max
t

|W t| (d = 2 and k = 4). 34

2.5 Dynamics of weights: w̃j and uj . 35
2.6 Left: Slow-to-Fast transition during LeNet [36] training on MNIST dataset.

Right: 2D projections of MNIST features from a trained convolutional neural
network [42]. The 10 classes are color coded, the feature points cluster near
linearly independent subspaces. 37

2.7 Top row: Projections onto S2 (inside randomly selected 3D subspaces) of
weight vectors in the first fully connected layer of a trained LeNet. Bottom
row: Projections onto S2 (inside randomly selected 3D subspaces) of weight
vectors and their convex hull in the second fully connected layer of a trained
LeNet. 38

3.1 Different choices of g(x) for the straight-through estimator. 45
3.2 Left: Iterations to convergence v.s. θ, Right: Norm of weights v.s. θ. 58
3.3 Validation accuracies in training LeNet-5 with quantized (2-bit and 4-bit)

ReLU activation. 59
3.4 2D projections of MNIST features from a trained convolutional neural network

[42] with quantized activation function. The 10 classes are color coded, the
feature points cluster near linearly independent subspaces. 60

3.5 CIFAR-10 experiments for VGG-11 and ResNet-20: weight ℓ2-norm vs epoch. 62

4.1 One-hidden-layer neural network. The first linear layer resembles a convo-
lutional layer with each Zi being a patch of size n and w being the shared
weights or filter. The second linear layer serves as the classifier. 64

4.2 2-dim section of Rn spanned by w̃ and w∗ 67

iv

4.3 Evolution of Weight signs of synthetic network described in (4.1).
Each of the 8 large blocks is a colored display of weight sign values via 8×100
matrix (i.e., 8 filter weight signs evolved over the last 100 iterations). The
bars to the right of blocks are the corresponding optima. Top two rows:
Binary weight signs, red /blue for 1/−1. Bottom two rows: Ternary weight
signs, red/green/blue for 1/0/−1. 88

4.4 Evolution of signs of weight filters in the last training epoch (or
600 iterations) of LeNet-5. Each of the six 25 × 200 blocks corresponds
to evolution of the 5 × 5 convolutional filter over 200 iterations. Top three
rows: Binary weights over the last 600 iterations of training, red/blue for
sign values 1/−1. Bottom three rows: Ternary weights over the last 600
iterations of training, red/green/blue for sign values 1/0/−1. 89

4.5 LeNet-5 Training Loss v.s. Epoch. Left: Binary weights. Bottom: Ternary
weights. 89

v

LIST OF TABLES

Page

2.1 Iterations taken (mean ± std) to convergence with random and half space
initializations. 35

3.1 Frequently Used Notations . 40
3.2 Validation Accuracy (%) on MNIST with LeNet5. 61

4.1 Validation Accuracy of LeNet-5 on MNIST and ResNet-20/VGG-11 on CIFAR-
10. 88

vi

ACKNOWLEDGMENTS

Firstly, I would like to express my gratitude to my advisor Prof. Jack Xin for the contin-
uous and unconditional support throughout the five years of my Ph.D. study. I could not
appreciate more the guidance and the opportunity and could not have imagined a better
mentor.

I also would like to thank Prof Yifeng Yu, my co-advisor, for all the interesting mathematics
questions that motivated me, and inspired me.

Besides my advisor, I would like to thank my collaborator, Dr. Penghang Yin, for being a
role model as a peer and offering great help on my research.

I also thank Prof Long Chen for his Blog and career advice.

Last but the most importantly, I would like to thank my wife, Dr.Hongxuyang Yu for her
love and has been always standing by me.

Portion of the text of Chapter 2 is a reprint of the material as it appears in Global convergence
and geometric characterization of slow to fast weight evolution in neural network training
for classifying linearly non-separable data, Inverse Problem and Imaging, 2021.

Portion of the text of Chapter 3 is a reprint of the material as it appears in Learning quantized
neural nets by coarse gradient method for nonlinear classification, Research in Mathematical
Science, 2021.

My work was partially supported by NSF grants IIS-1632935, DMS-1854434, DMS-1924548,
and DMS-1924935.

vii

VITA

Ziang Long

EDUCATION

Doctor of Philosophy in Mathematics 2022
University of California, Irvine Irvine, California

Master of Science in Mathematical Finance 2017
Rutgers University New Brunswick, New Jersey

Bachelor of Science in Mathematics 2015
Nankai University Tianjin

RESEARCH EXPERIENCE

Graduate Research Assistant 2017–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2017–2022
University of California, Irvine Irvine, California

viii

REFEREED JOURNAL PUBLICATIONS

Global convergence and geometric characterization of
slow to fast weight evolution in neural network training
for classifying linearly non-separable data

2021

Inverse Problems and Imaging

Learning quantized neural nets by coarse gradient
method for nonlinear classification

2021

Research in the Mathematical Sciences

ix

ABSTRACT OF THE DISSERTATION

Quantization of Neural Networks

By

Ziang Long

Doctor of Philosophy in Mathematics

University of California, Irvine, 2022

Professor Jack Xin, Chair

We study the dynamics of gradient descent in learning neural networks for classification

problems. Unlike in existing works, we consider the linearly non-separable case where the

training data of different classes lie in orthogonal subspaces.

Deep neural networks (DNNs) are quantized for efficient inference on resource-constrained

platforms. However, training deep learning models with low-precision weights and activations

involves a demanding optimization task, which calls for minimizing a stage-wise loss function

subject to a discrete set-constraint. While numerous training methods have been proposed,

existing studies for full quantization of DNNs are mostly empirical. From a theoretical

point of view, we study practical techniques for overcoming the combinatorial nature of

network quantization. Specifically, we investigate a simple yet powerful projected gradient-

like algorithm for quantizing two-layer convolution networks, by repeatedly moving one step

at float weights in the negative direction of a heuristic fake gradient of the loss function

(so-called coarse gradient) evaluated at quantized weights. For the first time, we prove

that under mild conditions, the sequence of quantized weights recurrently visit the global

optimum of the discrete minimization problem for training fully quantized network. We

also show numerical evidence of the recurrence phenomenon of weight evolution in training

quantized deep networks.

x

Chapter 1

Introduction

1.1 Convergence and Slow-to-Fast Weight Evolution in

DNN training for Classifying Linearly Non-Separable

Data

Deep neural networks (DNN) have achieved remarkable performances in image and speech

classification tasks among other AI applications in recent years; for examples, see [19, 25,

35, 40]. Although there have been numerous theoretical contributions to understand their

success, the learning process in the actual network training remains largely empirical. One

interesting phenomenon is that over-parametrized DNN’s trained by stochastic gradient de-

scent generalize [32, 33] instead of overfitting the training data contrary to conventional sta-

tistical learning. Though several convergence results are proved in the over-parameterized

regime for deep networks [13, 28, 2], the network weights move only in a small neighborhood

of the random initialization and so their dynamics are very localized. Partly, this may be

attributed to the exceedingly large number of neurons in convergence theory, far surpassing

1

what is used in practice where the weights evolve significantly from random start through

hundreds of epochs in training to reach best prediction accuracy.

Chapter 2 addresses how the weights evolve towards a global minimum of loss function as

the number of neurons increases from the feature dimension (the least necessary) to the

over-parametrized regime. To facilitate analysis, our model network structure is motivated

by [6] on classifying linearly separable data. We instead study a linearly non-separable

multi-category classification problem with an emphasis on the dynamics of weights in terms

of the two time scales of evolution and a geometric characterization of the transition time.

Our training data of the two classes will lie in orthogonal sub-spaces, which extends the data

configuration in [5] where the subspace of each class is one dimensional for an XOR detection

problem. Orthogonality of input data from the two classes implies that the training process

in each class can be analyzed independently of the other. In the one-dimensional case [5],

each weight update does not increase the loss on any sample point. In the multi-dimensional

case here, we find that during gradient descent weight update, it is not possible that the loss

is non-increasing in the point-wise sense (on each input data). Instead, the population loss is

decreasing (i.e. in the sense of expectation). The population loss here is based on the hinge

loss function and the network activation function is ReLU. Under a mild non-degenerate data

condition, we prove that all critical points of our non-convex and non-smooth population

loss function are global minima. Similar landscapes (a local minimum is a global minimum)

are known for deep networks with activation functions that are either strictly convex [29],

or real analytic and strictly increasing [33].

In DNN training, one observes that the network learning consists of alternating phases:

plateaus where the validation error remains fairly constant and periods of rapid improvement

where a lot of progress is made over a few epochs. Prior to our work, [11] studied slow and

fast weight dynamics in a solvable model while minimizing a binary cross entropy or hinge

loss function on linearly separable data.

2

In the regression context, [4] came across such two time-scale phenomenon in training a two-

linear-layer convolutional network with prescribed ground truth and unit Gaussian input

data. This particular data assumption makes it possible to readily derive the closed-form

expressions of the population loss and gradient, and then analyze the energy landscape and

convergence of the gradient descent algorithm.

In chapter 2, we study network weight dynamics in training a one-hidden-layer ReLU network

via hinge loss minimization on multi-category classification of linearly non-separable data

lying in n orthogonal sub-spaces. Our main contributions are:

• We discovered a geometric condition (GC) to characterize the transition time T from

the first (slow) phase of weight evolution to the second fast weight convergence. The

condition says that the convex hull of the weights on the unit sphere contains the

origin, see Fig. 2.1 for an illustration. Equivalent geometric conditions are also derived

(Lemma 2.4). In the first (slow) phase, the weight directions spread out over the unit

sphere to satisfy GC.

• We obtain upper bound on T in terms of data distribution function provided that the

network weights are uniformly bounded during training which we observed numerically.

• We give probabilistic bounds on the validity of geometric condition for random ini-

tialization, which suggests that the larger the number of neurons, the more likely GC

holds and the earlier the fast phase of evolution begins.

• We prove the global convergence of gradient descent training algorithm under the

uniformly bounded weight assumption. In case of positive network bias, we prove a

global Lipschitz gradient property of the loss function and sub-sequential convergence

of weights to a global minimum. In case of zero network bias, we prove that the loss

function has Lipschitz gradient away from the origin and is piece-wise C1.

3

• We prove that all critical points of the population loss function are global minima

under a non-degenerate data condition.

• We provide numerical examples to substantiate our theory, extend the data assumption,

and illustrate the weight dynamics as the network size increases towards the over-

parametrized regime. We visualize the feature and weight vectors in DNNs on MNIST

data in connection with our model findings.

1.2 Learning Quantized Neural Nets by Coarse Gradi-

ent Method

Deep neural networks (DNNs) have achieved remarkable success in a number of domains

including computer vision [25, 35], reinforcement learning [31, 40] and natural language

processing [9]. However, due to the huge number of model parameters, the deployment of

DNNs can be computationally and memory intensive. As such, it remains a great challenge

to deploy DNNs on mobile electronics with low computational budget and limited memory

storage.

To address this challenge, research efforts have been made to the quantizing weights and ac-

tivations of DNNs while maintaining their performance. Quantization methods train DNNs

with the weights and activation values being constrained to low-precision arithmetic rather

than the conventional floating-point representation in full-precision. [22, 51, 7, 50, 30, 52],

which offer the feasibility of running DNNs on CPUs rather than GPUs in real-time. For ex-

ample, the XNOR-Net [34] with binary weights and activations sees 58× faster convolutional

operations and 32× memory savings.

The approximation power of weight quantized DNNs was investigated in [15, 12], while the

recent paper [39] studies the approximation power of DNNs with discretized activations. On

4

the computational side, training quantized DNNs typically calls for solving a large-scale op-

timization problem, yet with extra computational and mathematical challenges. Although

people often quantize both the weights and activations of DNNs, they can be viewed as two

relatively independent subproblems. Weight quantization basically introduces an additional

set-constraint that characterizes the quantized model parameters, which can be efficiently

carried out by projected gradient type methods [10, 26, 27, 48, 20, 46]. Activation quantiza-

tion (i.e., quantizing ReLU), on the other hand, involves a stair-case activation function with

zero derivative almost everywhere (a.e.) in place of the sub-differentiable ReLU. Therefore,

the resulting composite loss function is piece-wise constant and cannot be minimized via the

(stochastic) gradient method due to the vanished gradient.

To overcome this issue, a simple and hardware friendly approach is to use a straight-through

estimator (STE) [17, 3, 44]. More precisely, one can replace the a.e. zero derivative of

quantized ReLU with an ad-hoc surrogate in the backward pass, while keeping the original

quantized function during the forward pass. Mathematically, STE gives rise to a biased first-

order oracle computed by an unusual chain rule. This first-order oracle is not the gradient of

the original loss function because there exists a mismatch between the forward and backward

passes. Throughout Chapter 3 and Chapter 4, this STE-induced type of “gradient” is called

coarse gradient. While coarse gradient is not the true gradient, in practice it works as

it miraculously points towards a descent direction (see [44] for a thorough study in the

regression setting). Moreover, coarse gradient has the same computational complexity as

standard gradient. Just like the standard gradient descent, the minimization procedure of

training activation quantized networks simply proceeds by repeatedly moving one step at

current point in the opposite of coarse gradient with some step size. The performance of the

resulting coarse gradient method, e.g. convergence property, naturally relies on the choice

of STE. How to choose a proper STE so that the resulting training algorithm is provably

convergent is still poorly understood, especially in the nonlinear classification setting.

5

The idea of STE dated back to the classical perceptron algorithm [37, 38] for binary classifica-

tion. Specifically, the perceptron algorithm attempts to solve the empirical risk minimization

problem:

min
w

N∑
i=1

(sign(x⊤
i w)− yi)

2, (1.1)

where (xi, yi) is the i
th training sample with yi ∈ {±1} being a binary label; for a given input

xi, the single-layer perceptron model with weightsw outputs the class prediction sign(x⊤
i w).

To train perceptrons, Rosenblatt [37] proposed the following iteration for solving (1.1) with

the step size η > 0:

wt+1 = wt − η
N∑
i=1

(sign(x⊤
i w

t)− yi) · xi, (1.2)

We note that the above perceptron algorithm is not the same as gradient descent algorithm.

Assuming the differentiability, the standard chain rule computes the gradient of the ith

sample loss function by

(sign(x⊤
i w

t)− yi) · (sign)′(x⊤
i w

t) · xi. (1.3)

Comparing (1.3) with (1.2), we observe that the perceptron algorithm essentially uses a

coarse (and fake) gradient as if (sign)′ composited in the chain rule was the derivative of

identity function being the constant 1.

The idea of STE was extended to train deep networks with binary activations [17]. Successful

experimental results have demonstrated the effectiveness of the empirical STE approach.

For example, [3] proposed a STE variant which uses the derivative of sigmoid function

instead of identity function. [21] used the derivative of hard tanh function, i.e., 1{|x|≤1},

as an STE in training binarized neural networks. To achieve less accuracy degradation,

6

STE was later employed to train DNNs with quantized activations at higher bit-widths

[22, 51, 7, 8, 47], where some other STEs were proposed including the derivatives of standard

ReLU (max{x, 0}) and clipped ReLU (min{max{x, 0}, 1}).

Regarding the theoretical justification, it has been established that the perceptron algorithm

in (1.2) with identity STE converges and perfectly classifies linearly separable data; see

for examples [43, 14] and references therein. Apart from that, to our knowledge, there

had been almost no theoretical justification of STE until recently: [44] considered a two-

linear-layer network with binary activation for regression problems. The training data is

assumed to be instead linearly non-separable, being generated by some underlying model

with true parameters. In this setting, [44] proved that the working STE is actually non-

unique and that the coarse gradient algorithm is descent and converges to a valid critical

point if choosing the STE to be the proxy derivative of either ReLU (i.e., max{x, 0}) or

clipped ReLU function (i.e., min{max{x, 0}, 1}). Moreover, they proved that the identity

STE fails to give a convergent algorithm for learning two-layer networks, although it works

for single-layer perception.

τ

τ

x

σ(x) 1-bit Quantized ReLU

τ 2τ 3τ

τ

2τ

3τ

x

σ(x) 2-bit Quantized ReLU

Figure 1.1: Quantized activation functions. τ is a value determined in the network training;
see section 3.7

Fig. 1.1 shows examples of 1-bit (binary) and 2-bit (ternary) activations. We see that a

quantized activation function zeros out any negative input, while being increasing on the

positive half. Intuitively, a working surrogate of the quantized function used in backward

pass should also enjoy this monotonicity, as conjectured by [44] which proved the effective-

7

ness of coarse gradient for two specific STEs: derivatives of ReLU and clipped ReLU, and

for binarized activation. In Chapter 3, we take a further step towards understanding the

convergence of coarse gradient methods for training networks with general quantized activa-

tions and for classification of linearly non-separable data. A major analytical challenge we

face here is that the network loss function is not in closed analytical form, in sharp contrast

to [44]. We present more general results to provide meaningful guidance on how to choose

STE in activation quantization. Specifically, we study multi-category classification of lin-

early non-separable data by a two-linear-layer network with multi-bit activations and hinge

loss function. We establish the convergence of coarse gradient methods for a broad class of

surrogate functions. More precisely, if a function g : R → R satisfies the following properties:

• g(x) = 0 for all x ≤ 0,

• g′(x) ≥ δ > 0 for all x > 0 with some constant δ,

then with proper learning rate, the corresponding coarse gradient method converges and

perfectly classifies the non-linear data when g′ serves as the STE during the backward pass.

This gives the affirmation of a conjecture in [44] regarding good choices of STE

Training fully quantized DNN requires solving a challenging optimization problem with piece-

wise constant (and non-convex) training loss functions and a discrete set-constraint. That is,

one considers the following constrained optimization problem for training quantized neural

nets:

min
w

f(w) := Ex∼p(x)[ℓ(w;x)] subject to w ∈ Q (1.4)

where ℓ(w;x) is the loss function for sample x, which is discrete-valued as non-linear ac-

tivations are also quantized; Q is the set of quantized weights. For general constrained

8

minimization, the classical projected gradient descent (PGD):

wt+1 = projQ
(
wt − ηt E[∇wℓ(w

t;x)]
)

is considered. Here projQ is the projection onto set Q for quantizing float weights to ones at

low bit-width, giving a weight quantization scheme. However, with quantized activations, the

gradient of loss function ∇wℓ(w;x) is almost everywhere (a.e.) zero, leaving the standard

back-propagation and hence PGD inapplicable.

In Chapter 4, we study the following iterative algorithm for training fully quantized networks


yt+1 = yt − ηt E[∇̃wℓ(w

t;x)]

wt+1 = projQ(y
t+1),

(QUANT)

where ∇̃wℓ denotes some heuristic modification of the vanished ∇wℓ based on the so-called

straight-through estimator (STE) [3, 17], rendering a valid search direction. Compared with

PGD which can be recast as the two-step iteration:


yt+1 = wt − ηt E[∇wℓ(w

t;x)]

wt+1 = projQ(y
t+1)

(PGD)

another key difference is that, in the gradient step, float weights yt+1 is updated by perturbing

yt instead of the current projection wt.

9

Chapter 2

Convergence and Slow-to-Fast Weight

Evolution in DNN training for

classifying Linearly Non-Separable

Data

2.1 Problem Setup

In this chapter, we consider the multi-category classification problem in the d-dimensional

space X = Rd. Let Y = [n] := {1, 2, · · · , n} be the set of labels, and {Di}ni=1 be n prob-

abilistic distributions over X × Y . Throughout the theoretical analysis of this chapter, we

make the following assumptions on the data:

1. (Separability) There are n orthogonal subspaces Vi ⊆ X for i ∈ [n] with
⊕n

i=1 Vi = X ,

10

such that

P
(x,y)∼Di

[x ∈ Vi and y = i] = 1.

2. (Boundedness of data) For i ∈ [n], There exist positive constants mi and Mi, such

that

P
(x,y)∼Di

[mi ≤ |x| ≤ Mi] = 1.

3. (Boundedness of p.d.f.) For i ∈ [n], let pi be the probability density function of

distribution Di restricted on Vi. For any x ∈ Vi with mi < |x| < Mi, it holds that

0 < pmin ≤ pi(x) ≤ pmax < ∞.

Later on, we denote D to be the evenly mixed distribution of Di’s. For notation simplicity,

we let m = min
i∈[n]

mi, M = max
i∈[n]

Mi and di = dimVi.

We consider a two-layer neural network with k hidden neurons. Denote byW = [w1, · · · ,wk] ∈

Rd×k the weight matrix in the hidden layer. For any input data x ∈ X = Rd, we have

hj = ⟨wj,x⟩ − bj and fi =
n∑

j=1

vi,jσ(hj)

and the neural net outputs

f (W ;x) = V σ
(
W⊤x

)
= [f1, · · · , fn]⊤ , (2.1)

where σ := max(·, 0) is the ReLU function acting element-wise, and the bias bj ≥ 0 and

V = (vi,j) are constants. Throughout this chapter, we assume the following:

Assumption 2.1. V = (vi,j) ∈ Rk×n satisfies

1. For any i ∈ [n], there exists some j ∈ [n] such that vi,j > 0.

11

2. If vi,j > 0 then vr,j < 0 for all r ̸= i and r ∈ [n].

3. There exists some constant v > 0 such that |vi,j| = v.

One can show that as long as k ≥ n, such V can be constructed easily.

The prediction is given by the maximum coordinate index of the network output

ŷ (W ;x) = argmax i ∈ [n]fi,

ideally ŷ(x) = i if x ∈ Vi. The classification accuracy in percentage is the frequency that

this occurs (when network output label ŷ matches the true label) on a validation data set.

Given the data sample {x, y}, the associated hinge loss function reads

l(W ; {x, y}) :=
∑
i ̸=y

max {0, 1− fy + fi} . (2.2)

For network training, we consider the gradient descent algorithm with step size η > 0

W t = W t−1 − η∇l(W t−1) (2.3)

to solve following population loss minimization problem

min
W∈Rd×k

l (W) = E
{x,y}∼D

[l (W ; {x, y})] , (2.4)

where the sample loss function l (W ; {x, y}) is given by (2.2). Let li be the population loss

function of data type i. More precisely,

li(W) = E
(x,y)∼Di

[l (W ; {x, y})] = E(x, y) ∼ Di

∑
r ̸=i

σ (1− fi + fr).

12

Thus, we can rewrite the loss function as

l(W) =
1

n

n∑
i=1

li(W).

Note that the population loss function

li(W) =
∑
r ̸=i

∫
{fi<fr+1}

(1− fi + fr) pi (x) dx

has no closed-form solution even if p is a constant function on its support. We cannot use

closed-form formula to analyze the learning process, which makes our work different from

many other works.

2.2 Preliminaries

2.2.1 Decomposition

Lemma 2.1. 1. For any i ∈ [n], if W ∗
i ∈ Rd×k solves the optimization problem

min
W∈V k

i

li(W),

then W ∗ =
∑n

i=1W
∗
i solves the original problem

min
W∈Rd×k

l(W).

2. If W ′ = W − η∇W li(W), then for any r ̸= i, we have

l(W ′; {x, r}) = l(W ; {x, r})

13

for almost all (x, r) ∼ Dr.

Proof of Lemma 2.1. Note that X = Rd =
⊕n

i=1 Vi, we decompose wj =
∑n

i=1 wj,i where

wj,i ∈ Vi.

Since Vi’s are orthogonal spaces, we have

⟨wj,x⟩ = ⟨wj,i,x⟩

if x ∈ Vi. Now, assume x ∈ Vi, let

Wi = [w1,i, · · · ,wk,i] ,

we have f(W ;x) = f(Wi,x) and hence we get our first claim.

On the other hand, we have

∇wj
l(W ; {x, y}) = −

∑
i ̸=y

(vy,j − vi,j)1Ωy,i
(x)1Ωwj

(x)x,

where

Ωy,i = {x : fy < fi + 1} and Ωwj
= {x : ⟨wj,x⟩ > bj} .

Now, we see that ∇wj
l(W ; {x, y}) ∈ Vi for almost all (x, i) ∼ Di so that W ′

r = Wr for all

r ̸= i and hence our desired result follows.

The optimization problem can be decomposed to n independent problems of the same form

i.e. the optimization of li’s. Therefore, it suffices to consider only one subproblem. Let

Wi = [w1, · · · ,wk] ∈ V k
i , where wj ∈ Vi = Rdi , the network output for the input data

14

x ∈ Vi = Rdi is given by

f̃ i(Wi;x) = [f1, · · · , fn]⊤ = V σ
(
W⊤

i x
)
. (2.5)

Networks (2.1) and (2.5) are different, since the parameters in (2.1) are W ∈ Rd×k, whereas

in (2.5), we have Wi ∈ V k
i

∼= Rdi×k. The corresponding input data are also in different

intrinsic dimensions. From now on, we just focus on the loss function associated with data

of Class i:

li(W) = E
(x,y)∼Di

[∑
r ̸=i

max {0, 1− fi + fr}

]
.

2.2.2 Landscape

The following Proposition 2.1 shows that while the loss function is non-convex, any critical

point is in fact a global minimum, except for some degenerate cases.

Proposition 2.1. Consider the neural network in (2.5). Assume d > 1, if W is a critical

point of li(W) and there exists some x ∈ Vi such that f(W ;x) ̸= 0 then we have li(W) = 0.

Proof of Proposition 2.1. For any j ∈ [k], we have

∇wj
li(W) = −

n∑
r ̸=i

(vi,j − vr,j)E(x, y) ∼ Di1Ωi,r
(x)1Ωwj

(x)x = 0.

Recall the definition of Ωwj
, we know that each summand is a zero vector. By assumption

2.1, we know that either vi,j = vr,j or

E(x, y) ∼ Di1Ωi,r
(x)1Ωwj

(x)x = 0,

15

where the latter implies Ωi,r ∩ Ωwj
= ∅. Observe that

fi − fr =
k∑

j=1

(vi,j − vr,j)σ(hj),

we see that if there exists some (x, y) ∼ Di such that fi− fr < 1 then there must exist some

x ∈ Ωi,r but this implies x ̸∈ Ωwj
for all j ∈ [k] such that vi,j ̸= vr,j which gives fi = fr = 0.

This contradicts with our assumption, so we get fi − fr ≥ 1 for all x ∼ Di and this implies

li(W) = 0.

The above result holds only when the global minimum of training loss function exists. The

following proposition shows that the loss function has plenty of global minima.

Proposition 2.2. Consider the network in (2.5). If the convex hull spanned by vertices

{wj : vi,j > 0} contains a ball centered at the origin with radius max
j∈[k]

1+bj
mi

, and {wj : vi,j < 0}

lies in a ball with radius min
j∈[k]

bj
Mi

, then li(W) = 0.

The above proposition shows that if number of neurons is greater than the dimension of

input data, then global minimum exists. Next, we study the smoothness of the loss function.

The following proposition shows that as long as weights are bounded away from 0, then the

loss function has Lipschitz gradient.

Lemma 2.2. Consider the network in (2.1) with positive bias 0 <
∑k

j=1 bj < 1. The loss

function l(W) is Lipschitz differentiable, i.e, there exists some constant L > 0 depending on

k, b, pmax, ,M, V , such that

|∇l(W1)−∇l(W2)| ≤ L |W1 −W2| .

Proof of Lemma 2.2. Note that l(W) = 1
n

∑n
i=1 li(W), it suffice to show that each li has

16

Lipschitz gradient. Note that

li(W) =
∑
r ̸=i

E(x, y) ∼ Diσ (1− fi + fr),

it suffice to show each summand has Lipschitz gradient. Now, we write the gradient of the

summands as

∇wj
E(x, y) ∼ Diσ (1− fi + fr)

=E(x, y) ∼ Di∇wj
σ (1− fi + fr)

=E(x, y) ∼ Di1Ωi,r
(x)1Ωwj

(x) (vr,j − vi,j)x.

On one hand, if vr,j = vi,j, then the formula above is obviously zero and Lipschitz gradient

follows. On the other hand, we can without loss of generality assume |vi,j − vr,j| = 1. For

notation simplicity, we fix i and r and denote

φ(W) := E(x, y) ∼ Di1Ωi,r
(x)1Ωwj

(x)x and ϕ(W ;x) = fi(W ;x)− fr(W ;x).

Now, our desired result becomes φ(W) is Lipschitz in W . Denote Ω1 = Ωi,r(W1) and

Ω2 = Ωi,r(W2) where Wi = [wi
1, · · · ,wi

k], we only need to show there exists some constant

L such that

∥φ(W1)− φ(W2)∥ ≤ L ∥W1 −W2∥ .

Note that

∥φ(W1)− φ(W2)∥

=

∥∥∥∥E1Ω1(x)1Ω
w1

j

(x)x− E1Ω2(x)1Ω
w2

j

(x)x

∥∥∥∥
≤E1Ω1∆Ω2(x) ∥x∥︸ ︷︷ ︸

1

+E1Ω
w1

j
∆Ω

w2
j

∥x∥︸ ︷︷ ︸
2

,

we can deal with 1 and 2 respectively.

17

W.l.o.g, we assume ϵ = ∥W1 −W2∥ ≤ 1
2
. On one hand, if x ∈ Ω1∆Ω2, then we claim

1− ϵ ∥x∥ ≤ ϕ(W1;x) ≤ 1 + ϵ ∥x∥

because

∥ϕ(W1;x)− ϕ(W2;x)∥ =

∥∥∥∥∥
k∑

j=1

(vi,j − vr,j)
[
σ(h1

j)− σ(h2
j)
]∥∥∥∥∥

≤

∥∥∥∥∥
k∑

j=1

〈
w1

j −w2
j ,x
〉∥∥∥∥∥ ≤

∥∥W⊤
1 x−W⊤

2 x
∥∥ ≤ ϵ ∥x∥ .

Furthermore, we claim for such x’s the gradient of ϕ is bounded away from zero. More

precisely, with x = rω where r = ∥x∥, we have

d

dr
ϕ(W ;x) =

[
k∑

j=1

(vi,j − vr,j)1Ωwj
(x)wj

]
ω

≥

(
ϕ(W ;x)−

k∑
j=1

bj

)
/r ≥ 1

M

(
1

2
−

k∑
j=1

bj

)
=: C > 0.

Now, we have

1 ≤ E(x, y) ∼ Di11−ϵ∥x∥≤ϕ(W1,x)≤1+ϵ∥x∥(x) ∥x∥

≤
∫
1−ϵ∥x∥≤ϕ(W1,x)≤1+ϵ∥x∥

∥x∥ pmax dx ≤ 2

(∥∥Sdi−1
∥∥Mdipmax

C

)
ϵ.

As for 2 , w.l.o.g. we can assume
∥∥w1

j

∥∥ ≥
∥∥w2

j

∥∥. Note that when
∥∥w1

j

∥∥ ≤ bj
M

then hj ≤ 0

so that ∇wj
li(W) = 0 and this 2 = 0. Hence, we only need to take care of the case when∥∥w1

j

∥∥ ≥ bj
M
. Note that

∥∥w1
j −w2

j

∥∥ ≤ ϵ we know

sin θ ≤ ϵM

bj
,

18

where θ denotes the acute angle between w1
j and w2

j . We have the following estimate

2 ≤ pmax
ϵM

bj

∥∥Sdi−1
∥∥ .

Combine with 1 , we get our desired result.

Note that Lipschitz differentiability in Lemma 2.2 does not hold for the case bj = 0, as the

gradient might be volatile near the origin.

2.3 Convergence Analysis for Non-Bias Case

With the Lipschitz differentiability shown in Lemma 2.2 in the case bj > 0, it is not hard to

prove the convergence result in Theorem 2.1. In this section, we focus on the non-bias case

(bj = 0) where the Lipschitz differentiability fails and sketch the convergence analysis.

Lemma 2.3. Consider the network (2.5), |wt
j| is non-decreasing in t if vi,j > 0. For any

r > 0, choosing learning rate η < min
{

r
CpM2

i
, r
2vnMi

}
, then |wt

j| is non-increasing if vi,j < 0

and
∣∣wt

j

∣∣ > r, where Cp is a constant satisfying

Cp = max
v∈Vi,a∈R

∫
{⟨v,x⟩=a}

pi(x) dx = O
(
pmax M

di
)
.

Proof of Lemma 2.3. We first define

Cp = max
v∈V1,a∈R

∫
⟨v,x⟩=a

p1(x) d S ≤ Md−1pmax.

Recall the definition of Ωwj
, for all x ∈ Ωwj

, we have ⟨w̃j,x⟩ > 0. For vi,j > 0,

〈
w̃j,−∇wj

li(W)
〉
= 2v

∑
r ̸=i

E
x∼Di

[
1Ωi,r

(x)1Ωwj
(x)⟨w̃j,x⟩

]
≥ 0.

19

Note we have from (2.3) that

wt+1
j = wt

j − η∇wj
li(W

t).

So, ∣∣wt+1
j

∣∣ = 〈wt+1
j , w̃t+1

j

〉
≥
〈
wt+1

j , w̃t
j

〉
≥
〈
wt

j, w̃
t
j

〉
=
∣∣wt

j

∣∣ .
Let Ωj

i,r = Ωi,r ∩ Ωwj
. For vi,j < 0, we know

∣∣∇wj
li(W)

∣∣ = 2v

∣∣∣∣∣∑
r ̸=i

E
[
1Ωj

i,r
(x)x

]∣∣∣∣∣ ≤ 2vM
∑
r ̸=i

P
[
Ωj

i,r

]2
,

where we omit the distribution x ∼ Di.

On the other hand, by definition of Cp, we know

∣∣〈∇wj
li(W), w̃j

〉∣∣ = ∣∣∣∣∣2v∑
r ̸=i

E
x∼Di

[
1Ωj

i,r
(x)⟨w̃j,x⟩

]∣∣∣∣∣ ≥ v

Cp

∑
r ̸=i

P
[
Ωj

i,r

]2
.

When 0 < η < r
2vnM

, we have

〈
wj − η∇wj

li(W), w̃j

〉
= ⟨wj, w̃j⟩ − η

〈
∇wj

li(W), w̃j

〉
> r − 2vηM

∑
r ̸=i

P
[
Ωj

i,r

]
> 0.

Now, we decompose ∇wj
li(W

t) into two parts,

∇wj
li(W

t) =
〈
w̃t

j,∇wj
li(W

t)
〉
w̃t

j︸ ︷︷ ︸
n

+
(
∇wj

li(W
t)−

〈
w̃t

j,∇wj
li(W

t)
〉
w̃t

j

)︸ ︷︷ ︸
ν

.

20

So that when η < r
M2Cp

, we have

∣∣wt+1
j

∣∣2 = ∣∣wt
j − η∇wj

li(W
t)
∣∣2 = ∣∣wt

j − ηn
∣∣2 + |ην|2

=
∣∣wt

j

∣∣2 − η
(
2
∣∣wt

j

∣∣ |n| − η
(
|n|2 + |ν|2

))
≤
∣∣wt

j

∣∣2 − 2vη

(∣∣wt
j

∣∣
Cp

− ηM2

)∑
r ̸=i

PΩj
i,r

2 ≤
∣∣wt

j

∣∣2 ,
as long as |wj| ≥ r. Now, we get the desired result.

The above theorem provides the dynamic information of the weights. When we input data

with distribution Di, the weights {wj : vi,j > 0} become more useful for classification as the

norm of those wj’s grows larger on every iteration. On the other hand, {wj : vi,j < 0} serve

only as noise when vi,j < 0. On one hand, when w ∈ {wj : vi,j < 0} has large magnitude,

the learning process guarantees the decreasing of ∥w∥. On the other hand, when w ∈

{wj : vi,j < 0} has a small magnitude, it shall be trapped into a small region near the origin

and contribute little to classification.

The learning process consists of two phases. In the beginning, since the weights are randomly

distributed, there may well be some data that does not activate any neurons. The weights

then automatically spread out. We call this process the first (slow learning) phase, during

which the learning process is rather slow. The next Lemma lists four equivalent statements

of a geometric condition. When the geometrical condition holds, we say that the learning

process enters the second (fast learning) phase.

Lemma 2.4. Let w̃j =
wj

|wj | ∈ Sd−1 be k points on the unit sphere, where 1 ≤ j ≤ k. Let ΛW

be the convex hull of {w̃j} and {Hi}li=1 be the facets of convex hull. The following statements

are equivalent:

1. For any unit vector n ∈ Sd−1, there exist some j1 and j2 such that ⟨n, w̃j1⟩ > 0 and

⟨n, w̃j2⟩ < 0.

21

0

w̃1

w̃2

w̃3

w̃4

Figure 2.1: Geometric Condition in Lemma 2.4 (d = 3)

2. There exists no closed hemisphere that contains all w̃j.

3. 0 lies in the interior of ΛW .

4. For each 0 ≤ i ≤ l, we have 0 and all w̃j lie on the same side of Hi.

Proof of Lemma 2.4. (1 ⇔ 2) is trivial.

(1 ⇒ 3) Proof by contradiction. Assume 0 ̸∈ Λ◦
W . Since Λ◦

W is a open convex set, and {0}

is a convex set, we know from geometric form of Hahn-Banach Theorem, that there exist a

closed hyper-plane that separates {0} and Λ◦
W . Hence, there exist a unit vector n ∈ Sd−1,

such that ⟨n, w̃j⟩ ≥ ⟨n,0⟩ = 0 for all j, but this contradict with our assumptions in 1.

(3 ⇒ 4) Assume that Hi = [⟨vi,w⟩ = αi], where α > 0. Note that the convex hull ΛW is a

polytope with faces Hi. We know, Λ◦
W all lies on one side of Hi. Since 0 ∈ Λ◦

W , we know for

all w ∈ Λ◦
W we have ⟨vi,w⟩ < αi, and hence ⟨vi, w̃j⟩ ≤ αi for all j.

(4 ⇒ 3) is trivial.

(3 ⇒ 1) 0 ∈ Λ◦
W implies there exist positive numbers λj, such that

k∑
j=1

λjw̃j = 0.

22

Hence for any unit vector n, we have

k∑
j=1

λj⟨n, w̃j⟩ = 0.

Since w̃j are in general position, so ⟨n, w̃j⟩ cannot all be 0. Hence, there must be both

positive and negative terms. Now, we get the desired result.

Remark 2.1. If wj is initialized such that w̃j is uniformly distributed on Sd−1, then the

probability that the geometric condition (GC) in Lemma 2.4 holds is

Pgc := Prob(GC holds) = 21−k

k−1∑
j=d

(
k − 1

j

)
.

In particular, at any fixed feature dimension d,

lim
k→∞

Pgc = 1.

Proof of Remark 2.1. For any J ∈ {±1}k, we let SJ ({w̃j}) = {Jjw̃j : 1 ≤ j ≤ k}. From the

choice of w̃j, we know all SJ have the same distribution, so that

Prob{w̃j}(GCholds) = ProbSJ
(GCholds).

Hence, we can simplify the probability as follows

Prob(GCholds) =
1

2n
E

[∑
J

1gc (SJ ({w̃j}))

]
.

We claim that
∑

J 1gc (SJ ({w̃j})) is a constant independent of choice of w̃j as long as they

are in general position.

Let w̃j ∈ Sd−1 where 1 ≤ j ≤ k. Each w̃j corresponds to a subspace Hj with codimension

23

1 in Rd, that is

Hj =
{
x ∈ Rd : ⟨w̃j,x⟩ = 0

}
.

Note that any connected region of (∪JHJ)
c corresponds to a choice of J such that the

geometric condition fails. More precisely, for any given connected region D of (∪JHJ)
c, we

know ⟨w̃j,x⟩ is one sign for all x ∈ D, so with

Jj = sign (⟨w̃j,x⟩) ,

we know x correspond to SJ ({w̃j}) where the geometric condition fails. Hence, the number

of connected regions of (∪JHJ)
c is same as 2n −

∑
J 1gc (SJ ({w̃j})). By [18], we have

∑
J

1gc (SJ ({w̃j})) = 2n − 2
d−1∑
j=0

(
k − 1

j

)
= 2

k∑
j=d

(
k − 1

j

)
.

The desired result follows.

Per Remark 3, the more neurons the network has, higher possibility the geometric condition

in Lemma 2.4 holds upon initialization. As a consequence, the learning process skips the

first phase and goes straight to the fast learning phase. This explains why gradient descent

for learning a over-parameterized network converges rapidly to a nearby critical point from

random initialization.

The following proposition gives an upper bound on the maximum number of iterations for

the learning process to enter the second phase.

Proposition 2.3. Let bj = 0 in (2.5), and assume that |W t| ≤ R for all t. Let T1 be the set

of t such that
{
wt

j : vi,j > 0
}
does not satisfy the geometric condition in Lemma 2.4, then

24

|T1| ≤ CpR

vηp2R
, where pR is a positive constant. Also, the following estimate holds for pR:

pR = Ω

(
pmin√

di (MiR)di

)

where Cp is the constant in Lemma 2.3. More precisely,

|T1| = O

(
CpdiR

2di+1M2di
i

vηp2min

)
= O

(
CpdR

2d+1M2d

vηp2min

)
.

Proof of Proposition 2.3. W.l.o.g, assume i = 1 and v1,j > 0 if and only if j ∈ [k1]. Let

t ∈ T1, by Lemma 2.4, we know, for any fixed t ∈ T1, there exists a α ∈ [0, π
2
] and a unit

vector v ∈ Rd1 , such that ⟨v, w̃t
j⟩ ≥ sinα for all j ∈ [k1] and ⟨v, w̃t

1⟩ = sinα. W.l.o.g,

we assume v = (1, 0, · · · , 0) and ⟨v, w̃t
1⟩ = sinα. For any non-zero x ∈ V1, we write

x̃ = x
|x| ∈ Sd1−1.

Note that |W | is bounded by R, we know there exist β ∈ (0, π
2
− α) such that

∑k
j=1

∣∣wt
j

∣∣ ≤
R = 1

2vM1 sinβ
. Now, w.l.o.g, we can assume w̃t

1 = (cosα, sinα, 0, · · · , 0). Take n =

(− cosα, sinα, 0, · · · , 0), we know ⟨n, w̃t
1⟩ = 0. For all x ∈ V1 such that ⟨n, x̃⟩ > cos β,

we have

cos β < ⟨n, x̃⟩ = −x̃1 cosα + x̃2 sinα ≤ −x̃1 cosα +
√

1− x̃2
1 sinα.

So, we have

x̃1 < − cos(α + β).

Now, for all x ∈ V1 such that x̃1 < − cos (α + β), we have

f1(W
t;x)− fr(W

t;x) ≤ 2vM1

k∑
j=1

σ
(〈
wt

j, x̃
〉)

≤ 2vM1

k∑
j=1

|wt
j| sin β < 1.

So, with

D1 := {x ∈ V1 : ⟨n, x̃⟩ > cos β and ⟨w̃1, x̃⟩ > 0} ,

25

we have for any r > 1

D1 ⊂ Ω1,r.

See Fig 2.2 for a intuition of D1. Note that n and w̃1 perpendicular to each other, and the

x1

x20

Rw̃1

w̃1

v

n

α

β
α

β

D1

Figure 2.2: 2-dim section of Rd spanned by w̃1 and n

probability distribution p1 is bounded from below, so there exists a constant pR, such that

P
[
Ω1,r ∩ Ωwt

j

]
≥ P

[
D1
]
= pR > 0,

and we have the following estimate for pR

pR =

∫
D1

〈
w̃t

1,∇w1l(W)
〉
p1 (x) dx

≥
pmin

∣∣Sd1−2
∣∣

|Sd1−1|

∫ 1

cosβ

(
1− y2

) d1−3
2 dy

=
pmin

∣∣Sd1−2
∣∣

|Sd1−1|

∫ β

0

(sin θ)d1−2 dθ

= Ω

(
pmin (sin β)

d1−1

(d1 − 1)

∣∣Sd1−2
∣∣

|Sd1−1|

)

= Ω

(
pmin√

d1 (M1R)d1

)
.

.

26

Now, we know the gradient of w1 on w̃1 direction is bounded below, with same arguments

in proof of Lemma 2.3, we have

∣∣〈w̃t
1,∇w1l1

(
W t
)〉∣∣ ≥ v p2R

Cp

.

Note that

k1∑
j=1

∣∣wt+1
j

∣∣− ∣∣wt
j

∣∣ ≥ ∣∣wt+1
1

∣∣− ∣∣wt
1

∣∣ ≥ η
∣∣〈w̃t

1,∇w1l
(
W t
)〉∣∣ ≥ v η p2R

Cp

and since
∣∣wt

j

∣∣ is non-decreasing for j ∈ [k1], we have

∑
t∈T1

k1∑
j=1

∣∣wt+1
j

∣∣− ∣∣wt
j

∣∣ ≤ R.

Combining the above two equations, it follows |T1| ≤
CpR

v η p2R
.

At the beginning of the second phase, w̃j are already evenly distributed. That is, the convex

hull of w̃j contains the origin, and any input data must at least activate some of the neurons.

As long as an input data contributes to the loss, it also contributes to the gradient. So

learning process becomes faster during the second phase. The following proposition shows

the loss decays faster than before.

Proposition 2.4. Let bj = 0 in (2.5). Let T2 be the set of t such that {wt
j : vi,j > 0} satisfies

the geometric condition in Lemma 2.4, and that |W t| is upper-bounded by R at all t. Then:

∑
t∈T2

li
(
W t
)2 ≤ 4η−1vn2CpR

2M2
i R.

27

Proof of Proposition 2.4. First, we estimate li(W
t) as follows

li(W
t) =

∑
r ̸=i

E(x, y) ∼ Diσ (1− fi + fr)

≤
∑
r ̸=i

(2vRMi) P(x, y) ∼ Difi < 1 + fr

=(2vRMi)
∑
r ̸=i

P(x, y) ∼ DiΩi,r.

Now, we have ∑
r ̸=i

P(x, y) ∼ DiΩi,r ≥
li(W

t)

2vRMi

.

Second, we estimate the gradient. Let Ωj
i,r = Ωi,r ∩ Ωwj

and assume vi,j > 0, we have

∇wj
li(W

t) =
∑
r ̸=i

2vE(x, y) ∼ Di1Ωj
i,r
(x)x.

By the same arguments in proof of Lemma 2.3, we know

〈
∇wj

li(W
t), w̃t

j

〉
≥ 2v

PΩj
i,r

2

2Cp

=
vPΩj

i,r

2

Cp

.

Next, we utilize the geometric condition which implies

∑
vi,j>0

PΩj
i,r ≥ PΩi,r

28

and get ∑
vi,j>0

∥∥wt+1
j

∥∥− ∥∥wt
j

∥∥ ≥
∑
vi,j>0
r ̸=i

vηPΩj
i,r

2

Cp

=
vη

Cp

∑
vi,j>0
r ̸=i

PΩj
i,r

2

≥ vη

Cp

1

ki

∑
r ̸=i

PΩi,r
2 ≥ vη

Cp

1

ki(n− 1)

(∑
r ̸=i

PΩi,r

)2

≥ vη

n2Cp

li(W
t)2

4v2R2M2
i

=
η

4vn2CpR2M2
i

li(W
t)2.

where ki is the number of j’s such that Vi,j > 0.

Finaly, we combine the inequalities above and the assumption ∥W t∥ < R and get

∑
t∈T2

li(W
t)2 ≤ 4vn2CpR

2M2
i

η

∑
vi,j>0
t∈T2

∥∥wt+1
j

∥∥− ∥∥wt
j

∥∥ ≤ 4η−1vn2CpR
2M2

i R.

From the above proposition, we see that in order to get li (W
t) < ϵ for some t ∈ T2, we only

need

|T2| ≥
4vn2CpR

2M2
i R

ηϵ
.

Compared with Proposition 2.3, we see that |T2| does not rely on the dimension di, whereas

the upper bound of |T1| is exponential in di.

2.4 Main Results

Although (2.4) is a non-convex optimization problem, we show that under mild conditions,

the gradient descent algorithm (2.3) converges to a global minimum with zero classification

error. Specifically, we consider two different networks with a positive bias bj > 0 (Theorem

2.1) and without a bias (Theorem 2.2), respectively. For both cases, we have the fact that

29

any critical point of problem (2.4) is a global minimum (Proposition 2.1). The key differ-

ence between these two cases is that the population loss function has Lipschitz continuous

gradient (Lemma 2.2) when bj > 0, whereas this desirable property does not hold otherwise.

For the latter case bj = 0, we present a totally different analysis based on a geometric con-

dition proved to emerge during the training process (Proposition 2.3). Under this geometric

condition, the objective value converges zero (Proposition 2.4).

Theorem 2.1. Assume 0 <
∑k

j=1 bj < 1 and assumption 2.1 holds in (2.1), and {W t}

generated by the algorithm (2.3) are bounded uniformly in t. If there exists (x, i) ∼ Di

and some indices j ∈ [k], such that vi,j > 0 and
∣∣〈w0

j ,x
〉∣∣ > bj, then there exists some

η0 (v, k, b, pmax, n,M) > 0 such that for the learning rate η < η0, lim
t→∞

li (W
t) = 0 and

lim
t→∞

P
{x,i}∼Di

[
ŷ
(
W t;x

)
̸= i
]
= 0, i ∈ [n], ∀n ≥ 2.

Proof of Theorem 2.1. By Lemma 2.1, we only need to prove the convergence of the simpli-

fied network (2.5). From Lemma 2.2, we know li(W) has Lipschitz gradient. We can assume

for any W1,W2 ∈ V k
i , we have

|∇li(W1)−∇li(W2)| ≤ L |W1 −W2| .

As long as we take η < L
2
in algorithm (2.3), we know

li(W
t+1) ≤ li(W

t)−
(
η − η2L

2

) ∣∣∇li(W
t)
∣∣2 ≤ li(W

t). (2.6)

Hence, li(W
t) is monotonically decreasing. Therefore, for any convergent subsequence

{W tk} with the limit W0, there exists l0 ≥ 0 such that

lim
t→∞

l
(
W t
)
= lim

k→∞
l
(
W tk

)
= l0.

30

Now, we can take subsequence and limit on both side of equation (2.6), we get

l0 ≤ l0 −
(
η − η2L

2

)
|∇li(W0)|2 .

Now, we see that ∇li(W0) = 0.

Theorem 2.2. Assume bj = 0 and assumption 2.1 holds in (2.1), and {W t} generated by

algorithm (2.3) is bounded by R uniformly in t. If there exist some (x, i) ∼ Di and some

indices j ∈ [k], such that vi,j > 0 and
〈
w0

j ,x
〉
̸= 0, then lim

t→∞
li (W

t) = 0 and

lim
t→∞

P
{x,i}∼Di

[
ŷ
(
W t;x

)
̸= i
]
= 0, i ∈ [n], ∀n ≥ 2.

Proof of Theorem 2.2. By Proposition 2.3, we know the iterates {W t} stay in the first phase

is bounded by ∥T1∥. Combining Proposition 2.4 which shows the summation of squared loss

values in phase two is bounded, the summation of all loss values in the learning process is

bounded ∑
t∈T2

li
(
W t
)2

< ∞.

The desired result follows.

Remark 2.2. The assumptions on the initialization |⟨w0
j ,x⟩| > bj in both theorems are

natural. This assumption guarantees that the neuron wj is activated by some input data.

Without this assumption, the algorithm suffers zero gradient and fails to update.

Remark 2.3. Theorem 2.2 does not explicitly require the learning rate η to be small. How-

ever, a larger learning rate will implicitly result in a larger bound in Propositions 2.3 and

2.4 which we used to prove Theorem 2.2.

31

2.5 Experiments

In this section, we report the results of our experiments on both synthetic and MNIST data.

The experiments on synthetic data aim to show that convergence to global minimum con-

tinues to hold if data subspaces form acute angles, going beyond the theoretical orthogonality

assumption under which convergence is observed to be the fastest. Our theoretical results

and the geometric conditions are supported by simulations. Experiments on MNIST dataset

exhibit subspace structures in data flow and slow-to-fast training dynamics on LeNet-5.

These phenomena from our model are worth further study in deep networks.

2.5.1 Synthetic Data

Let {ej}j∈[4] be orthonormal basis of R4, θ be an acute angle and v1 = e1, v2 = sin θ e2 +

cos θ e3, v3 = e3, v4 = e4. Now, we have two linearly independent subspaces of R4 namely

V1 = Span ({v1,v2}) and V2 = Span ({v3,v4}). We can easily calculate that the angle

between V1 and V2 is θ. Next, we define

X̂1 = {r (cosφv1 + sinφv2) : r ∈ Sr, φ ∈ Sφ} ,

X̂2 = {r (cosφv3 + sinφv4) : r ∈ Sr, φ ∈ Sφ} ,

where

Sr =

{
20

j
: j ∈ [20]− [9]

}
, Sφ =

{
jπ

40
: j ∈ [80]

}
.

Let X1 corresponds to label y = 1 and X2 corresponds to label y = −1. Since we are

considering a binary classification problem, the neural network structure can be simplified

32

as (2.7):

f̃ (W ;x) =
k∑

j=1

σ (hj)−
2k∑

j=k+1

σ (hj) , (2.7)

and the prediction is given by ŷ(x) = sign ˜f (W ;x). Now, the population loss becomes

li(W) :=
1

|X̂i|

∑
x∈X̂i

max
{
0, 1 + (−1)if̃ (W ;x)

}
.

In our first simulation, we set k = 4 in (2.7) and run gradient descent (2.3) on l1 + l2

with learning rate η = 0.1. Fig. 2.3 shows the iterations it takes to converge to global

minima given θ and a Gaussian noise added to Xi’s. From this simulation, we see that the

orthogonal data assumptions are only technically needed and our convergence result holds

in more general settings.

Figure 2.3: Number of iterations to convergence v.s. θ, the anlge between subspaces V1 and
V2.

In our second and remaining simulations of this subsection, we take θ = π
2
so that V1 and V2

are orthogonal. Lemma 2.1 suggests the learning process of l1 and l2 are independent, so we

only simulate the training process of l1 and assume wj ∈ V1
∼= R2. We take entries of W 0

to be i.i.d. standard normal i.e. w0
j ∼ N(0, I2). We train the network (2.7) with gradient

33

descent (2.3) in all our simulations, where learning rate η = 0.1. The left plot of Fig. 2.4

shows how many iterations algorithm (2.3) takes in searching for a global minima from the

random initialization mentioned above. For each box, the red mark indicates the median,

and the bottom and top of the box indicate the 25th and 75th percentiles, respectively. As

we can see from the graph, as number of hidden neurons (2k) becomes larger, the algorithm

(2.3) tends to need less iterations in searching for a global minima.

Figure 2.4: Left: convergent iterations vs. number of neurons (d = 2). Right: histogram of
norm of weights: max

t
|W t| (d = 2 and k = 4).

In the third simulation, we compare the convergence speed with and without the geometric

condition being satisfied. We introduce two initialization method: random initialization

and half space initialization i.e. with ŵj,i ∼ N(0, 1), random initialization takes w0
j,i = ŵj,i

whereas half space initialization takes w0
j,1 = |ŵj,1| and w0

j,2 = ŵj,2. We run the algorithm for

100 times with different numbers of hidden neurons using initialization methods, and report

the means and standard variances of the number of iterations in Table 2.1. We see from

Remark 2.1 how the Pgc increases when the number of hidden neurons grows. However, the

half space initialization never satisfies the geometric condition, as all the weights lie in the

same half space. A widely believed explanation on why a neural network can fit all training

labels is that the neural network is over-parameterized. Our work explained one of the

reasons why over-parameterization helps convergence: it helps the weights to spread more

34

’evenly’ and quickly after initialization. Table 2.1 shows that when we randomly initialize,

the iterations for convergence in gradient descent (2.3) come down a lot as the number of

hidden neurons increases; much less so in half space initialization.

Table 2.1: Iterations taken (mean± std) to convergence with random and half space initial-
izations.

of Neurons (2k) Random Init. Half Space Init.
6 578.90±205.43 672.41±226.53
8 423.96±190.91 582.16±200.81
10 313.29±178.67 550.19±180.59
12 242.72±178.94 517.26±172.46
14 183.53±108.60 500.42±215.87
16 141.00±80.66 487.42±220.48
18 126.52±62.07 478.25±202.71
20 102.09±32.32 412.46±195.92
22 90.65±28.01 454.08±203.00
24 82.93±26.76 416.82±216.58

Our fourth simulation take specifically 2k = 8. With 2000 runs we did a histogram of the

maximum norm of W during the training process shown in the right plot of Fig. 2.4. In

fact, our third simulation suggests our boundedness assumption on W in Theorem 2.1 and

Theorem 2.2 are reasonable.

Figure 2.5: Dynamics of weights: w̃j and uj

In our last simulation, we take k = 3 so that there are in total 6 hidden neurons. For notation

simplicity, we denote uj = wj+3. For j ∈ [3], we plot w̃j’s and uj’s in Fig. 2.5, where we

plot w̃j’s instead of wj’s since some of |wj|’s are greater than one. Before algorithm (2.3)

35

starts, the parameters in neural network (2.5) are initialized to be

w0
j = u0

j =
3

4

(
cos

(2− j)π

6
, sin

(2− j) π

6

)

for j ∈ {1, 2, 3}. In Fig. 2.5, the tiny blue points are input data under Kelvin transfor-

mation: x → x∗ = x
|x|2 . Take x = 1

r
(cos θ, sin θ) so that under Kelvin transformation

x∗ = r (cos θ, sin θ). For convenience, we let x̃ = rx = (cos θ, sin θ). The orange dashed

curve has expression in polar coordinates:

ρ(θ) = min
{
1, σ

(
f̃ (W ; x̃)

)}
.

Note that we are taking Hinge loss l(W ; {x, 1}) = 0 if and only if f̃(W ;x) ≥ 1, i.e.

f̃ (W ; x̃) = rf̃ (W ;x) ≥ r = |x∗|.

Here, in our data set X̂ , all data point have norm less than one under Kelvin transformation,

so l(W ; {x, 1}) = 0 if and only if ρ(θ) ≥ |x∗|. This means, the blue points when surrounded

by the orange dashed curve provide zero loss. In particular, when ρ(θ) = 1, the population

loss is 0.

2.5.2 MNIST Experiments

The two-phase dynamics we proved in our model does appear in deep network training on

real (non-synthetic) data sets. In experiments on MNIST, we used a simplified version of

LeNet-5 [36] with 2 convolutional layers and two fully-connected (fc) layers; see [1] for the

full version where F6 and output layers correspond to our fc layers. The simplified Lenet-5

is trained via stochastic gradient descent (SGD) at constant learning rate 0.01, batch size

1000 and without momentum or regularization. We show in Fig. 2.6 (left) the loss value

36

Figure 2.6: Left: Slow-to-Fast transition during LeNet [36] training on MNIST dataset.
Right: 2D projections of MNIST features from a trained convolutional neural network [42].
The 10 classes are color coded, the feature points cluster near linearly independent subspaces.

vs. iterations during training. At the early stage, the loss decays slowly, then the fast phase

sets in after 400 iterations. Fig. 2.6 (left) clearly supports our theory on the slow and fast

dynamics of gradient descent.

Network visualization helps understand its geometric properties. In Fig. 2.6 (right), we plot

2D projections of feature vectors at input to fc layer extracted by a neural network [42]

consisting of 6 convolutional layers followed by an fc layer. Projected features from different

classes cluster around linearly independent subspaces. The plot suggests that in trained

deep networks, the linearly independent subspace assumption approximately holds for the

input to the fully connected layer before classification output. Similar subspace structure

of high level feature vectors on CIFAR-10 and enlargement of subspace angles to improve

classification accuracy have been studied in [45].

In Fig. 2.7, we show four projections onto unit sphere S2 (inside randomly selected 3D

subspaces) of the weight vectors of the first and second fc layers of LeNet [36]. Visual

inspection on these and others (not shown) suggests that our geometric condition holds with

high probability.

37

Figure 2.7: Top row: Projections onto S2 (inside randomly selected 3D subspaces) of weight
vectors in the first fully connected layer of a trained LeNet. Bottom row: Projections onto
S2 (inside randomly selected 3D subspaces) of weight vectors and their convex hull in the
second fully connected layer of a trained LeNet.

38

Chapter 3

Learning Quantized Neural Nets by

Coarse Gradient Method for

Non-Linear Classification

3.1 Problem Setup

3.1.1 Data Assumptions

In this section, we consider the n-ary classification problem in the d-dimensional space X =

Rd. Let Y = [n] be the set of labels, and for i ∈ [n] let Di be probabilistic distributions over

X × Y . Throughout this chapter, we make the following assumptions on the data:

1. (Separability) There are n orthogonal sub-spaces Vi ⊆ X , i ∈ [n] where dimVi = di,

such that

P
{x,y}∼Di

[x ∈ Vi and y = i] = 1, for all i ∈ [n].

39

2. (Boundedness of data) There exist positive constants m and M , such that

P
{x,y}∼Di

[m < |x| < M] = 1, for all i ∈ [n].

3. (Boundedness of p.d.f.) For i ∈ [n], let pi be the marginal probability distribution

function of Di on Vi. For any x ∈ Vi with m < |x| < M , it holds that

0 < pi(x) < pmax < ∞.

Later on, we denote D to be the evenly mixed distribution of Di for i ∈ [n].

We have Table 3.1 for notations used in this chapter.

Table 3.1: Frequently Used Notations

Symbols Definitions
[n] {1, 2, · · · , n}
1S(x) indicator function which take value 1 for x ∈ S

and 0 for x ̸∈ S
|x| ℓ2-norm of vector x
|W | the collumn-wise ℓ2-norm sum for a matrix W .

For W := [w1, · · · ,wk], |W | =
∑k

j=1 |wj|
Hd d-dimensional Hausdorff measure
x̃ the unit vector in the direction of x, i.e., x̃ := x

|x| .

Additionally, 0̃ := 0.
σ quantized ReLU function
ΩW {x ∈ X : l(W ; {x, y}) > 0}
Ωa

v {x ∈ X : ⟨v,x⟩ > a}
Ωj

W ΩW ∩ Ω0
wj

Remark 3.1. The orthogonality of subspaces Vi’s in the data assumption (1) above is tech-

nically needed for our proof here. However, the convergence in Theorem 3.1 to a perfect

classification with random initialization is observed in more general settings when Vi’s form

acute angles and contain a certain level of noise. We refer to section 3.7.1 for supporting

experimental results.

40

Remark 3.2. Assumption (3) can be relaxed to the following, while the proof remains basi-

cally the same.

Di is a mixture of ni distributions namely Di,j for j ∈ [ni]. There exists a linear decomposi-

tion of Vi =
⊕ni

j=1 Vi,j and Di,j each has a marginal probability distribution function pi,j on

Vi,j. For any x ∈ Vi,j and < m < |x| < M , it holds that

0 < pi,j(x) ≤ pmax < ∞.

3.1.2 Network Architecture

We consider a two-layer neural architecture with k hidden neurons. Denote by W =

[w1, · · · ,wk] ∈ Rd×k the weight matrix in the hidden layer. Let

hj = ⟨wj,x⟩

the input to the activation function, or the so-called pre-activation. Throughout this

chapter, we make the following assumptions:

Assumption 3.1. The weight matrix in the second layer V = [v1, · · · ,vn] is fixed and

known in the training process and satisfies:

1. For any i ∈ [n], there exists some j ∈ [k] such that vi,j > 0.

2. If vi,j > 0, then for any r ∈ [n] and r ̸= i, we have vr,j = 0.

3. For any i ∈ [n] and j ∈ [k] we have vi,j < 1.

One can easily show that as long as k ≥ n, such a matrix V = (vi,j) is ubiquitous.

41

For any input data x ∈ X = Rd, the neural net output is

f(W ;x) = [o1, · · · , on], (3.1)

where

oi = ⟨vi, σ (h)⟩ =
k∑

j=1

vi,jσ(hj).

The σ(·) is the quantized ReLU function acting element-wise; see Fig. 1.1 for examples

of binary and ternary activation functions. More general quantized ReLU function of the

bit-width b can be defined as follows:

σ(x) =


0 if x ≤ 0,

ceil(x) if 0 < x < 2b − 1,

2b − 1 if x ≥ 2b − 1.

The prediction is given by the network output label

ŷ(W ,x) = argmax
r∈[n]

or,

ideally ŷ(x) = i for all x ∈ Vi. The classification accuracy in percentage is the frequency

that this event occurs (when network output label ŷ matches the true label) on a validation

data set.

Given the data sample {x, y}, the associated hinge loss function reads

l(W ; {x, y}) := max {0, 1− fy} := max

{
0, 1−

(
oy −max

i ̸=y
oi

)}
. (3.2)

To train the network with quantized activation σ, we consider the following population loss

42

minimization problem

min
W∈Rd×k

l (W) := E
{x,y}∼D

[l (W ; {x, y})] , (3.3)

where the sample loss l (W ; {x, y}) is defined in (3.2). Let li be the population loss function

of class i with the label y = i, i ∈ [n]. More precisely,

li(W) = E
{x,y}∼Di

[max {0, 1− fi}]

= E
{x,y}∼Di

[
max

{
0, 1−

(
oi −max

r ̸=i
or

)}]
.

Thus, we can rewrite the loss function as

l(W) =
1

n

n∑
i=1

li(W).

Note that the population loss

li(W) = E
{x,y}∼Di

[l(W ; {x, y})]

fails to have simple closed-form solution even if pi are constant functions on their supports.

We do not have closed-form formula at hand to analyze the learning process, which makes

our analysis challenging.

For notational convenience, we define:

ΩW = {x ∈ X : l(W ; {x, y}) > 0} ,

Ωa
v = {x ∈ X : ⟨v,x⟩ > a} ,

and

Ωj
W = ΩW ∩ Ω0

wj
.

43

3.1.3 Coarse Gradient Methods

We see that derivative of quantized ReLU function σ is a.e. zero, which gives a trivial

gradient of sample loss function with respect to (w.r.t.) wj. Indeed, differentiating the

sample loss function with respect to wj, we have

∇wj
l(W ; {x, y}) = − (vy,j − vξ,j) 1ΩW

(x)σ′ (hj)x = 0, a.e., 1 ≤ j ≤ k

where ξ = argmaxi ̸=y oi.

The partial coarse gradient w.r.t. wj associated with the sample {x, y} is given by replacing

σ′ with a straight through estimator (STE) which is the derivative of function g, namely,

∇̃wj
l(W ; {x, y}) := − (vy,j − vξ,j) 1ΩW

(x) g′(hj)x. (3.4)

The sample coarse gradient ∇̃l(W ; {x, y}) is just the concatenation of ∇̃wj
l(W ; {x, y})’s.

It is worth noting that coarse gradient is not an actual gradient, but some biased first-order

oracle which depends on the choice of g.

Throughout this chapter, we consider a class of surrogate functions during the

backward pass with the following properties:

Assumption 3.2. g : R → R satisfies

1. g(x) = 0 for all x ≤ 0.

2. g′(x) ∈ [δ, δ̃] for all x > 0 with some constants 0 < δ < δ̃ < ∞.

Such a g is ubiquitous in quantized deep networks training; see Fig.3.1 for examples of g(x)

satisfying Assumption 3.2. Typical examples include the classical ReLU g(x) = max(x, 0)

44

and log-tailed ReLU [7]:

g(x) =


0 if x ≤ 0

x if 0 < x ≤ qb

qb + log(x− qb + 1) if x > qb

where qb := 2b − 1 is the maximum quantization level. In addition, if the input of the

activation function is bounded by a constant, one also can use g(x) = max{0, qb(1−e−x/qb)},

which we call reverse exponential STE.

−1 1 2 3

1

2

3

x

g(x) g(x) = ReLU

qb

x

g(x) g(x) = reverse exp.

qb

qb

x

g(x) g(x) = log-tailed ReLU

Figure 3.1: Different choices of g(x) for the straight-through estimator.

To train the network with quantized activation σ, we use the expectation of coarse gradient

over training samples:

∇̃l(W) := E
{x,y}∼D

∇̃l(W ; {x, y})

where ∇̃l(W ; {x, y}) is given by (3.4). In this chapter, we study the convergence of coarse

gradient algorithm for solving the minimization problem (3.3), which takes the following

iteration with some learning rate η > 0:

W t+1 = W t − η ∇̃l(W t) (3.5)

45

3.2 Main Result and Outline of Proof

We show that if the iterates {W t} are uniformly bounded in t, coarse gradient decent with

the proxy function g under Assumption 3.2 converges to a global minimizer of the population

loss, resulting in a perfect classification.

Theorem 3.1. Suppose data assumptions (1)-(3) and STE assumptions 3.1-3.2 hold. If

the network initialization satisfies w0
j,i ̸= 0 for all j ∈ [k] and i ∈ [n] and W t is uniformly

bounded by R in t, then for all vi,j > 0 we have

lim
t→∞

∣∣∣∇̃wj
li(W

t)
∣∣∣ = 0.

Furthermore, if W∞ is an accumulation point of {W t} and all non-zero unit vectors w̃∞
j,i’s

are distinct for all j ∈ [k] and i ∈ [n], then

P
{x,y}∼D

(ŷ (W∞,x) ̸= y) = 0.

We outline the major steps in the proof below.

Step 1: Decompose the population loss into n components. Recall the definition

of li which is population loss functions for {x, y} ∼ Di. In Section 4, we show under

certain decomposition of W , the coarse gradient decent of each one of them only affects a

corresponding component of W .

Step 2: Bound the total increment of weight norm from above. Show that for all

vi,j > 0 we have |wj,i|’s are monotonically increasing under coarse gradient descent. Based

on boundedness on W , we further give an upper bound on the total increment of all |wj|’s,

from which the convergence of coarse gradient descent follows.

46

Step 3: Show that when the coarse gradient vanishes, so does the population

loss. In section 6, we show that when the coarse gradient vanishes towards the end of

training, the population loss is zero which implies a perfect classification.

3.3 Space Decomposition

With V =
⊕n

i=1 Vi, we have the orthogonal complement of V in X = Rd, namely Vn+1. Now,

we can decompose X = Rd into n+ 1 linearly independent parts:

Rd = V
⊕

Vn+1 =
n+1⊕
i=1

Vi

and for any vector wj ∈ Rd, we have a unique decomposition of wj:

wj =
n+1∑
i=1

wj,i,

where wj,i ∈ Vi for i ∈ [n+ 1]. To simply notation, we let

Wi = [w1,i, · · · ,wk,i] .

Lemma 3.1. For any W ∈ Rk×d and i ∈ [n], we have

li (W) = li

(
n∑

r=1

Wr

)
= li(Wi).

Proof. Note that for any x ∈ Vi and j ∈ [k], we have x ∈ V , so

⟨wj,n+1,x⟩ = 0

47

and

hj = ⟨wj,x⟩ =

〈
k∑

j=1

wj,i,x

〉
= ⟨wj,i,x⟩ .

Hence

f (W ;x) = f

(
k∑

j=1

Wi;x

)
= f (Wi)

for all W ∈ Rd×k, x ∈ Vi. The desired result follows.

Lemma 3.2. Running the algorithm (3.5) on li only does not change the value of Wr for

all r ̸= i. More precisely, for any W ∈ Rd×k, let

W ′ = W − η∇̃li(W),

then for any r ∈ [n] and r ̸= i

W ′
r = Wr.

Proof of Lemma 3.2. Assume i, r ∈ [n] and i ̸= r. Note that

w′
j = wj − η∇̃wj

li(W)

and

∇̃wj
li(W) = − E

{x,y}∼Di

[(vy,j − vξ,j) 1ΩW
(x) g′(hj)x] ∈ Vi.

Since Vi’s are linearly independent, we have

w′
j,i = wj,i − η∇̃wj

li(W)

and

w′
j,r = wj,r.

48

By the above result, we know (3.5) is equivalent to

W t+1
i = W t

i −
η

n
∇̃li
(
W t
)
. (3.6)

3.4 Learning Dynamics

In this section, we show that some components of the weight iterates have strictly increasing

magnitude whenever coarse gradient does not vanish, and it quantifies the increment during

each iteration.

Lemma 3.3. Assume

v̂j = max
i1,i2∈[n]

vi1,j − vi2,j ,

we have the following estimate:

P
{x,y}∼Di

(
Ωj

W

)
≥ 1

v̂j δ̃M

∣∣∣∇̃wj
li (W)

∣∣∣ .
Proof of Lemma 3.3.

∣∣∣∇̃wj
li(W)

∣∣∣ = ∣∣∣∣ E
{x,y}∼Di

[(vy,j − vξ,j) 1ΩW
(x) g′(hj)x]

∣∣∣∣
≤v̂j δ̃M E

{x,y}∼Di

[
1Ωj

W
(x)
]

=v̂j δ̃M P
{x,y}∼Di

(
Ωj

W

)

Lemma 3.4. For any j ∈ [k] if

ṽi,j := vi,j −max
r ̸=i

vr,j > 0

49

we have 〈
w̃j,i,−∇̃wj

li(W)
〉
≥ ṽi,jδ

2Cp
P

{x,y}∼Di

(
Ωj

W

)2
,

where

Cp = max
v∈Vi,a∈R

∫
⟨v,x⟩=a

pi(x) dHdi−1(x).

Proof of Lemma 3.4. First, we prove an inequality which will be used later. Recall that

|x| ≤ M , and that ∇̃wj
l(W , {x, y}) ̸= 0 only when x ∈ Ωj

W . Hence, we have ⟨w̃j,i,x⟩ > 0.

We have

P
{x,y}∼Di

(
Ωj

W ∩ {x : ⟨w̃j,i,x⟩ < t}
)
=

∫
Ωj

W

1{⟨w̃j,i,x⟩<t}(x)pi(x) dx

=

∫ t

0

∫
⟨w̃j,i,x⟩=s

pi(x) dHdi−1(x) d s

≤t Cp.

Now, we use Fubini’s Theorem to simplify the inner product:

〈
w̃j,i,−∇̃wj

li(W)
〉
= E

{x,y}∼Di

[
(vy,j − vξ,j)1Ωj

W
(x) g′(hj) ⟨w̃j,i,x⟩

]
≥ṽi,j δ

∫
Ωj

W∩Vi

⟨w̃j,i,x⟩pi(x) dx

=ṽi,j δ

∫
Ωj

W∩Vi

∫ ∞

0

1{⟨w̃j,i,x⟩>t} d t pi(x) dx

=ṽi,j δ

∫ ∞

0

∫
Ωj

W∩Vi

1{⟨w̃j,i,x⟩>t} pi(x) dx d t

=ṽi,j δ

∫ ∞

0
P

{x,y}∼Di

(
Ωj

W ∩ {x : ⟨w̃j,i,x⟩ > t}
)
d t.

Now using the inequality just proved above, we have

50

P
{x,y}∼Di

(
Ωj

W ∩ {x : ⟨w̃j,i,x⟩ > t}
)

= P
{x,y}∼Di

(
Ωj

W

)
− P

{x,y}∼Di

(
Ωj

W ∩ {x : ⟨w̃j,i,x⟩ < t}
)

≥max

{
P

{x,y}∼Di

(
Ωj

W

)
− t Cp, 0

}
.

Combining the above two inequalities, we have

〈
w̃j,i,−∇̃wj

li(W)
〉
≥ṽi,j δ

∫ ∞

0

max

{
P

{x,y}∼Di

(
Ωj

W

)
− t Cp, 0

}
d t

≥ ṽi,j δ

2Cp
P

{x,y}∼Di

(
Ωj

W

)2
.

Lemma 3.5. If ṽi,j > 0 in Lemma 3.4, then {|wt
j,i|} in Equation (3.1) is non-decreasing

with coarse gradient decent (3.5). Moreover, under the same assumption, we have

∣∣wt+1
j,i

∣∣− ∣∣wt
j,i

∣∣ ≥ ηṽi,jδ

2nCpv̂2j δ̃
2M2

∣∣∣∇̃wj
li(W

t)
∣∣∣2 ,

where Cp is defined as in Lemma 3.4 and v̂j as in Lemma 3.3.

Proof of Lemma 3.5. Since wt+1
j,i = wt

j,i −
η
n
∇̃wj

li(W
t), we have

∣∣wt+1
j,i

∣∣− ∣∣wt
j,i

∣∣ ≥ 〈wt+1
j,i −wt

j,i, w̃
t
j,i

〉
=
〈
−η

n
∇̃wj

li(W
t), w̃t

j,i

〉
.

Hence, it follows from Lemma 3.3 and Lemma 3.4 that

∣∣wt+1
j,i

∣∣− ∣∣wt
j,i

∣∣ ≥ ηṽi,jδ

2nCpv̂2j δ̃
2M2

∣∣∣∇̃wj
li(W

t)
∣∣∣2 , (3.7)

which is the desired result.

51

Note that one component of wj is increasing but the weights are bounded by assumption,

hence, summation of the increments over all steps should also be bounded. This gives the

following proposition:

Proposition 3.1. Assume {|wt
j|} is bounded by R, then if ṽi,j > 0 in Lemma 3.4, then

∞∑
t=1

∣∣∣∇̃wj
li(W

t)
∣∣∣2 ≤ 2nCpv̂

2
j δ̃

2M2R

ηṽi,jδ
< ∞,

where Cp is as defined in Lemma 3.4 and v̂j defined in Lemma 3.3. This implies that

lim
t→∞

∣∣∣∇̃wj
li(W

t)
∣∣∣ = 0

as long as ṽi,j > 0.

Remark 3.3. Lemmas 3.3, 3.4, 3.5 and Proposition 3.1 were proved without Assumption

3.1. Under Assumption 3.1, we have v̂j = maxi∈[n] vi,j in Lemma 3.3 and ṽi,j = v̂j if vi,j > 0

and ṽi,j = −v̂j if vi,j = 0 in Lemma 3.4.

3.5 Landscape Properties

We have shown that under boundedness assumptions, the algorithm will converge to some

point where the coarse gradient vanishes. However, this does not immediately indicate the

convergence to a valid point because coarse gradient is a fake gradient. We will need the

following lemma to prove Proposition 3.2, which confirms that the points with zero coarse

gradient are indeed global minima.

Lemma 3.6. Let Ω =
{
x ∈ Rl : m < |x| < M

}
, where 0 < m < M < ∞. For j ∈ [k], let

Ωj = {x : ⟨wj,x⟩ > a}, where a ≥ 0 and Ωi ̸= Ωj for all i ̸= j. If for i ∈ [k] and x ∈ Ωi∩Ω,

52

there exists some j ̸= i such that x ∈ Ωj, then

(
k
∪
j=1

Ωj

)
∩ Ω = ∅ or Ω.

Proof of Lemma 3.6. Define Ω̃ =
⋃k

j=1 Ωj, by De Morgan’s law, we have

Ω̃c =

(
k
∪
j=1

Ωj

)c

=
k
∩
j=1

Ωc
j.

Note that k is finite and 0 ∈ Ωc
j for all j ∈ [k], we know Ω̃c is a generalized polyherdon and

hence either (
∂Ω̃
)
∩ Ω = ∅

or

Hl−1
((

∂Ω̃
)
∩ Ω

)
> 0.

The first case is trivial. We show that the second case contradicts our assumption. Note

that

∂Ω̃ = ∂

(
k
∪
j=1

Ωj

)
⊆

k
∪
j=1

∂Ωj,

we know there exists some j⋆ ∈ [k] such that Hl−1 (∂Ωj⋆ ∩ Ω) > 0. It follows from our

assumption that Ω̃ = ∪k
j=1Ωj = ∪j ̸=j⋆ Ωj, and hence

Hl−1 (∂Ωj⋆ ∩ ∂Ωj) > 0.

Note that ∂Ωj’s are hyperplanes. Therefore, Ωj = Ωj⋆ , contradicting with our assumption

that all Ωj’s are distinct.

The following result shows that the coarse gradient vanishes only at a global minimizer with

zero loss, except for some degenerate cases.

Proposition 3.2. Under Assumption 3.1, if ∇̃wj
li(W) = 0 for all ṽi,j > 0 and w̃j,i’s are

53

distinct, then li(W) = 0.

Proof of Proposition 3.2. For quantized ReLU function, let qb := max
x∈R

σ(x) be the maximum

quantization level, so that

σ(x) =

qb−1∑
a=0

1{x>a}(x).

Note that

fi (W ;x) = oi − oξ =
k∑

j=1

(vi,j − vξ,j)σ(hj) =
k∑

j=1

(vi,j − vξ,j)

qb∑
a=0

1Ωa
wj
(x).

By assumption, ∇̃wj
li(W) = 0 for all ṽi,j > 0 which implies 1ΩW

(x)1Ωa
wj
(x) = 0 for all

ṽi,j > 0 and a ∈ [n] almost surely. Now, for any x ∈ Ωa
wj

we have x ̸∈ ΩW . Note that

x ∈ ΩW if and only if oi − oξ ≥ 1, then for any x ∈ Ωa
wj
, since vi,j − vξ,j < 1, there exist

j′ ̸= j and a′ ∈ [n] such that vi,j′ > 0 and x ∈ Ωa′
wj′

. By Lemma 3.6, P{x,y}∼Di
[ΩW] = 0 is

empty, and thus li(W) = 0.

The following lemma shows that the expected coarse gradient is continuous except atwj,i = 0

for some j ∈ [k].

Lemma 3.7. Consider the network in (3.1). ∇̃wj
li(W) is continuous on

{
W ∈ Rk×d : |wj,i| > 0 for all j ∈ [k], i ∈ [n]

}
.

Proof of Lemma 3.7. It suffices to prove the result for j ∈ [k]. Note that

∇̃wj
li(W) = E

{x,y}∼Di

[− (vy,j − vξ,j) 1ΩW
(x) g′(hj)x]

54

For any W 0 satisfying our assumption, we know

lim
W→W 0

1ΩW
(x)g′(hj) = 1ΩW 0 (x)g

′(h0
j), a.e.

The desired result follows from the Dominant Convergence Theorem.

3.6 Proof of Main Results

Equipped with the technical lemmas, we present:

Proof of Theorem 3.1. It is easily noticed from Assumption 3.1 that vi,j > 0 if and only if

ṽi,j > 0. By Lemma 3.5, if vi,j > 0 and |w0
j,i| > 0, then |wt

j,i| > 0 for all t. Since W is

randomly initialized, we can ignore the possibility that w0
j,i = 0 for some j ∈ [k] and i ∈ [n].

Moreover, Proposition 3.1 and Equation (3.5) imply for all vi,j > 0

lim
t→∞

∣∣∣∇̃wj
li(W

t)
∣∣∣ = 0.

Suppose W∞ is an accumulation point and w∞
j,r ̸= 0 for all j ∈ [k] and r ∈ [n], we know for

all vi,j > 0

∇̃wj
li (W

∞) = 0.

Next, we consider the case when wj,r = 0 for some j ∈ [k] and r ∈ [n]. Lemma 3.4 implies

vr,j = 0. We construct a new sequence

ŵt
j,r =


wt

j,r if w∞
j,r ̸= 0

0 if w∞
j,r = 0

55

and

Ŵ t
r =

[
ŵt

1,r, · · · , ŵt
k,r

]
.

With

ôr =
k∑

j=1

vr,jσ(ĥj) =
k∑

j=1

vr,jσ (⟨ŵj,r,x⟩) ,

we know ôr = or for all r ∈ [n]. Hence, we have

l
(
Ŵ t, {x, i}

)
= ReLU (1− ôi + ôξ) = l

(
W t, {x, i}

)
.

This implies that ΩŴ t = ΩW t , so we have for all j ∈ [k],

∣∣∣〈∇̃wj
li(Ŵ

t
1), w̃

t
j,i

〉∣∣∣ ≤ ∣∣∣〈∇̃wj
li(W

t
i), w̃

t
j,i

〉∣∣∣ ≤ ∣∣∣∇̃wj
li(W

t
i)
∣∣∣ .

Letting t go to infinity on both side, we get

∣∣∣〈∇̃wj
li(Ŵ

∞), w̃∞
j,i

〉∣∣∣ = 0.

By Lemma 3.3 and Lemma 3.4, we know

∇̃wj
li(W

∞) = ∇̃wj
li(W

∞
i) = 0,

so ∇̃W li(W
∞) = 0. By Proposition 3.2, li(W

t) = 0, which completes the proof.

3.7 Experiments

In this section, we conduct experiments on both synthetic and MNIST data to verify and

complement our theoretical findings. Experiments on larger networks and data sets will left

for a future work.

56

3.7.1 Synthetic Data

Let {e1, e2, e3, e4} be orthonormal basis of R4, θ be an acute angle and v1 = e1, v2 =

sin θ e2 + cos θ e3, v3 = e3, v4 = e4. Now, we have two linearly independent subspaces of

R4 namely V1 = Span ({v1,v2}) and V2 = Span ({v3,v4}). We can easily calculate that the

angle between V1 and V2 is θ. Next, with

Sr =

{
j

10
: j ∈ [20]− [9]

}
, Sφ =

{
jπ

40
: j ∈ [80]

}
,

we define

X̂1 = {r (cosφv1 + sinφv2) : r ∈ Sr, φ ∈ Sφ}

and

X̂2 = {r (cosφv3 + sinφv4) : r ∈ Sr, φ ∈ Sφ} .

Let D̂i be uniform distributed on X̂i×{i} and D̂ be a mixture of D̂1 and D̂2. Let X̂ = X̂1∪X̂2.

The activation function σ is 4-bit quantized ReLU:

σ(x) =


0 if x < 0,

ceil(x) if 0 ≤ x < 15,

15 if x ≥ 15.

For simplicity, we take k = 24 and vi,j =
1
2
if j − 12(i− 1) ∈ [12] for i ∈ [2] and j ∈ [24] and

0 otherwise. Now, our neural network becomes

fi =
(−1)i−1

2

[
12∑
j=1

σ(hj)−
12∑
j=1

σ(hj+12)

]

where hj = ⟨wj,x⟩ and x ∈ R4. The population loss is given by

l(W) = E
{x,y}∼D̂

[l(W ; {x, y})] = E
{x,y}∼D̂

[max {1− fi}] .

57

Figure 3.2: Left: Iterations to convergence v.s. θ, Right: Norm of weights v.s. θ.

We choose the ReLU STE (i.e., g(x) = max{0, x}) and use the coarse gradient

∇̃W l(W) = E
{x,y}∼D̂

[
∇̃W l (W , {x, y})

]
=

1

|X̂ |

∑
x∈X̂1

∇̃W l (W ; {x, 1}) +
∑
x∈X̂2

∇̃W l (W ; {x, 2})

 .

Taking learning rate η = 1, we have equation 3.5 becomes

W t+1 = W t − ∇̃W l
(
W t
)
.

We find that the coarse gradient method converges to a global minimum with zero loss.

As shown in box plots of Fig. 3.2, the convergence still holds when the sub-spaces V1 and

V2 form an acute angle, and even when the data come from two levels of Gaussian noise

perturbations of V1 and V2. The convergence is faster and with a smaller weight norm when

θ increases towards π
2
or V2 are orthogonal to each other. This observation clearly supports

the robustness of Theorem 1 beyond the regime of orthogonal classes.

58

Figure 3.3: Validation accuracies in training LeNet-5 with quantized (2-bit and 4-bit) ReLU
activation.

3.7.2 MNIST Experiments

Our theory works for a board range of STEs, while their empirical performances on deeper

networks may differ. In this subsection, we compare the performances of the three type of

STEs in Fig. 2.

As in [7], we resort to a modified batch normalization layer [23] and add it before each acti-

vation layer. As such, the inputs to quantized activation layers always follow unit Gaussian

distribution. Then the scaling factor τ applied to the output of quantized activation layers

can be pre-computed via k-means approach and get fixed during the whole training process.

The optimizer we use to train quantized LeNet-5 is the (stochastic) coarse gradient method

with momentum = 0.9. The batch size is 64, and learning rate is initialized to be 0.1 and

then decays by a factor of 10 after every 20 epochs. The three backward pass substitutions

g for the straight through estimator are (1) ReLU g(x) = max{x, 0}, (2) reverse exponential

g(x) = max{0, qb(1 − e−x/qb)} (3) log-tailed ReLU. The validation accuracy for each epoch

is shown in Fig. 3.3. The validation accuracies at bit-widths 2 and 4 are listed in Table.

3.2. Our results show that these STEs all perform very well and give satisfactory accu-

racy. Specifically, reverse exponental and log-tailed STEs are comparable, both of which are

59

Figure 3.4: 2D projections of MNIST features from a trained convolutional neural network
[42] with quantized activation function. The 10 classes are color coded, the feature points
cluster near linearly independent subspaces.

60

slightly better than ReLU STE. In Fig. 3.4, we show 2D projections of MNIST features at

the end of 100 epoch training of a 7 layer convolutional neural network [42] with quantized

activation. The features are extracted from input to the last fully connected layer. The data

points cluster near linearly independent subspaces. Together with subsection 8.1, we have

numerical evidence that the linearly independent subspace data structure (working as an

extension of subspace orthogonality) occurs for high level features in a deep network for a

nearly perfect classification, rendering support to the realism of our theoretical study. En-

larging angles between linear subspaces can improve classification accuracy, see [45] for such

an effort on MNIST and CIFAR-10 data sets via linear feature transform.

Table 3.2: Validation Accuracy (%) on MNIST with LeNet5.

g(x) bit-width (b) valid. accuracy
32 99.45

ReLU
2 99.10
4 99.38

reverse exp.
2 99.17
4 99.46

log-tailed ReLU
2 99.24
4 99.36

3.7.3 CIFAR-10 Experiments

In this experiment, we train VGG-11/ResNet-20 with 4-bit activation function on CIFAR-10

data set to numerically validate the boundedness assumption upon the ℓ2-norm of weight.

The optimizer is momentum SGD with no weight decay. We used initial learning rate = 0.1,

with a decay factor of 0.1 at the 80-th and 140-th epoch.

we see from Fig. 3.5 that the ℓ2 norm of weights is bounded during the training process. This

figure also shows that the norm of weights is generally increasing in epochs which coincides

with our theoretical finding shown in Lemma 3.5.

61

Figure 3.5: CIFAR-10 experiments for VGG-11 and ResNet-20: weight ℓ2-norm vs epoch.

62

Chapter 4

Recurrence of Optimum for Training

Weight and Activation Quantized

Networks

4.1 Preliminaries

4.1.1 Problem Setup

We consider a one-hidden-layer model that outputs the prediction for an input Z ∈ Rm×n:

y(Z;w) :=
m∑
i=1

viσ
(
Z⊤

i w
)
= v⊤σ (Zw) (4.1)

where Z⊤
i denotes the i-th row vector of Z; w ∈ Rn is the trainable weights in the first linear

layer, and v ∈ Rm the weights in the second linear layer which are assumed to be known

and fixed during the training process; the activation function σ(x) = 1{x>0} is binary, acting

63

component-wise on the vector Zw. The label is generated according to y∗Z := y(Z;w∗) for

some unknown teacher (real-valued) parameters w∗ ∈ Rn.

· · ·
· · ·

· · ·

...
. . .

...
...

...

σ (⟨w, ·⟩)

σ (⟨w, ·⟩)

σ (⟨w, ·⟩)

v1

v2

vm

Z1

Z2

Zm

h1

h2

hm

⟨v,h⟩

Figure 4.1: One-hidden-layer neural network. The first linear layer resembles a convolutional
layer with each Zi being a patch of size n and w being the shared weights or filter. The
second linear layer serves as the classifier.

We fit the described model with quantized weights w ∈ Q and binary activation function

σ(x) = 1{x>0} on the i.i.d. Gaussian data {(Z, y∗Z)}Z∼N (0,I). In this chapter, we will focus

on the cases of binary and ternary weights. In the binary case, every quantized weight

in w is either α or −α for some universal real-valued constant α > 0, or equivalently,

Q = R+ × {±1}n; this setup of binary weights is widely adopted in the literature; for

example, [34]. Similarly in the ternary case, we take Q = R+ × {0,±1}n; see [26, 49] for

examples.

We use the squared loss to measure the discrepancy between the model output and label:

ℓ(w;Z) :=
1

2
(y(Z;w)− y∗Z)

2

=
1

2

(
v⊤σ(Zw)− v⊤σ(Zw∗)

)2
.

(4.2)

We cast the learning task as the following population loss minimization problem:

min
w∈Rn

f(w) := EZ∼N (0,I) [ℓ(w;Z)] subject to w ∈ Q (4.3)

64

where the sample loss function ℓ(w;Z) is given in (4.2).

In the rest of the chapter, we study the convergence behavior of QUANT described below in

Algorithm 1 for solving optimization problem (4.3), in which ∇̃f standards for an unusual

gradient of f called coarse gradient [44], so as to side-step the vanished gradient issue. Since

the loss function is scale-invariant, i.e., ℓ(Z;w) = ℓ(Z;w/c) for any scalar c > 0, without

loss of generality, we assume that ∥w∗∥ = 1 is unit-normed.

Algorithm 1: QUANT algorithm for solving (4.3)

Input: number of iterations T , learning rate ηt, weight bits b;
Initialize: auxiliary real-valued weights y0 ∈ Rn, step number t = 1;
while t ≤ T do

yt = yt−1 − ηt∇̃f(wt−1);
wt = projQ(y

t) ;

t = t+ 1;

end

Throughout this chapter we assume the following on the learning rate ηt > 0:

1.
∑∞

t=1 ηt = ∞.

2. ηt is upper bounded by some positive constant η.

4.1.2 Characterization of Optimal Solutions

To study the convergence of Algorithm 1, we first obtain the closed-form expression of the

objective function for the optimization problem (4.2), which only depends on the angle

between quantized weight vector w and the true weight vector w∗. This helps us find the

expression of global minimum to (1).

Lemma 4.1. Let w ̸= 0 be nonzero vector.

65

• the training loss in (4.3) is given by

f(w) =
∥v∥2

2π
arccos

(
w⊤w∗

∥w∥

)

• For any δ > 0, w = δ · projQ(w∗) is a global optimum of quantization problem (4.3).

The above result can be easily derived from Lemma 1 of [44], so we omit the proof. Lemma

4.1 states that the optimal quantized weights is just the projection of w∗ onto Q, i.e., the

direct quantization of teacher parameters w∗. Note that the projection/quantization may

not be unique, we refer to projQ(y) as any choice of the projection of y onto Q.

4.1.3 Coarse Gradient

In this part, we specify the coarse gradient ∇̃f(w) in Algorithm 1. The standard back-

propagation gives the gradient of ℓ(w;Z) w.r.t. w by

∇wℓ(w;Z) = Z⊤ (σ′(Zw)⊙ v) ℓ(w;Z).

Note that σ′ is zero a.e., which makes ∇wℓ(w;Z) inapplicable to the training. The sample

coarse gradient w.r.t. w associated with the sample (Z, y∗Z) is given by replacing σ′ with a

surrogate derivative, known as straight-through estimator (STE) [3, 44]. Here we consider the

derivative of ReLU function µ(x) = max{x, 0} which is a widely used STE for quantization,

namely, we modify the original gradient ∇wℓ(w;Z) as follows:

∇̃wℓ(w;Z) = Z⊤ (µ′(Zw)⊙ v) ℓ(w;Z).

The coarse gradient induced by ReLU STE µ′ is just the expectation of ∇̃wℓ(w;Z) over

Z ∼ N (0, I). We evaluate the coarse gradient ∇̃f(w) used in Algorithm 1:

66

Lemma 4.2. The expected coarse gradient of ℓ(w;Z) w.r.t. w is

∇̃f(w) :=EZ∼N (0,I)[∇̃wℓ(w;Z)]

=
∥v∥2

2
√
2π

(
w

∥w∥
−w∗

)
.

(4.4)

Proof or Lemma 4.2. [44] gives

∇̃f(w) =
∥v∗∥2√

2π

 w

∥w∥
− cos

(
θ

2

) w
∥w∥ +w∗∥∥∥ w
∥w∥ +w∗

∥∥∥
 .

Let w̃ = w
∥w∥ , we can easily see from Fig. 4.2 that the coarse gradient can be further

0

w̃

w∗

w̃+w∗

∥w̃+w∗∥

θ
2

θ
2

cos
(
θ
2

)

Figure 4.2: 2-dim section of Rn spanned by w̃ and w∗

simplified as (4.4)

4.1.4 Weight Quantization Step

The following two lemmas give the closed-form formulas of the projection/quantization

projQ(·) in Algorithm 1 in the binary and ternary cases, respectively.

Lemma 4.3 (Binary Case). For any non-zero y ∈ Rn, the projection of y onto Q =

67

R+ × {±1}n is

projQ(y) =
∥y∥1
n

s̃ign (y) ,

where the sign function acts element-wise

s̃ign (y)i =


1 if yi ≥ 0

−1 if yi < 0.

The above lemma is due to [34]. In the ternary case, [49] gives the following result:

Lemma 4.4 (Ternary Case). For any non-zero y ∈ Rn, the projection of y on Q = R+ ×

{0,±1}n is

projQ(y) =

∥∥y[j∗]

∥∥
1

j∗
sign

(
y[j∗]

)
where j∗ = argmax1≤j≤n

∥y[j]∥2

1

j
, and y[j] ∈ Rn extracts the first j largest entries in magnitude

of y and enforces 0 elsewhere. Here,

sign (y)i =


1 if yi > 0

0 if yi = 0

−1 if yi < 0.

4.2 Binary Weight

The binary case is rather simple. We show that part of the coordinates is stable while others

have oscillating sign. We further prove that the set of oscillating coordinates is not empty

as long as w∗ ̸∈ Q = R+ ×{±1}n is not quantized. In view of Lemmas 4.1 and 4.3, we have

that the normalized optimum of (4.3) is 1√
n
s̃ign (w∗). The Lemma below shows that some

coordinates of wt generated by Algorithm 1 have oscillating signs.

68

Lemma 4.5. Let wt be any infinite sequence generated by Algorithm 1. If |w∗
j | < 1√

n
, then

there exist infinitely many t1 and t2 such that wt1
j = 1√

n
and wt2

j = − 1√
n
.

Proof of Lemma 4.5. For notational simplicity, since
∥∥w∗

j

∥∥ < 1√
n
, we have

α :=
1√
n
− w∗

j > 0 and β :=
1√
n
+ w∗

j > 0.

Using Lemma 4.3 in Algorithm 1, we see that

yt+1
j = ytj + ηt

∥v∥2

2
√
2π

(w∗
j − wt

j)

=ytj + ηt
∥v∥2

2
√
2π

(
w∗

j −
1√
n
s̃ign

(
ytj
))

,

and thus

yt+1
j =


ytj − ηt

∥v∥2

2
√
2π

α if ytj ≥ 0

ytj + ηt
∥v∥2

2
√
2π

β if ytj < 0

Since ytj is bounded for each fixed t ≥ 0 and j ∈ [n], our desired result follows from our

assumptions on learning rate ηt.

The above proposition clearly implies that wt does not converge, as long as w∗ ̸∈ Q.

Corollary 4.1. If w∗ ̸∈ Q, then any sequence {wt} generated by Algorithm 1 does not

converge.

Proof of Corollary 4.1. Since w∗ ̸∈ Q̃n
1 , we know there must exist some j ∈ [n] such that

|w∗
j | < 1√

n
and Proposition 4.5 gives our desired result.

Since Algorithm 1 does not have a limit unless the weights in the network are already

quantized, we ask a natural question: Can we guarantee the optimum to be visited infinitely

69

many times? The general answer is no. We have the following example demonstrating that

the optimum may never be achieved. We refer the proof of the following example to the

appendix.

Example 4.1. Let w∗ =
(

1
6
, 1
6
, 1
6
, 1
2

√
11
3

)
so that the best the optimum p̃rojQw

∗ =
(
1
2
, 1
2
, 1
2
, 1
2

)
.

Let ηt = η, λ = η∥v∥2

6
√
2π

and 

y01 ∈ (−λ, 0)

y02 ∈ (0, λ)

y03 ∈ (λ, 2λ)

y04 ∈ (0,∞)

the sequence {wt} generated by Algorithm 1 with initialization y0 satisfies wt+3 = wt and

wt ̸= p̃rojQw
∗ for all t.

Proof of Example 4.1. In order to show the periodicity, it suffices to show wt+3
j = wt

j. Note

that ∂̃w4f(w) < 0 we have yt4 > 0 for all t since w0
4 > 0. It follows that wt

4 = w0
4 =

1
2
. Next,

we would like to show the periodicity of wt
j for j ∈ [3]. Note that

yt+1
j =


ytj +

η ∥v∥2

2
√
2π

(
w∗

j +
1

2

)
if ytj < 0

ytj +
η ∥v∥2

2
√
2π

(
−w∗

j +
1

2

)
if ytj ≥ 0

we choose w∗
j =

1
6
so that with

λ =
η ∥v∥2

6
√
2π

we have

yt+1
j =


ytj + 2λ if ytj < 0

ytj − λ if ytj ≥ 0

70

Hence, we have

wt =



(
−1

2
,
1

2
,
1

2
,
1

2

)
if t ≡ 0(mod 3)(

1

2
,−1

2
,
1

2
,
1

2

)
if t ≡ 1(mod 3)(

1

2
,
1

2
,−1

2
,
1

2

)
if t ≡ 2(mod 3)

In the following, we give a sufficient condition for the optimum to be recurrent. The condition

requires w∗ to be close to Q.

Theorem 4.1. If the optimum ŵ := p̃rojQ(w
∗) = 1√

n
s̃ign (w∗) of (4.3) satisfies 0 <∑

|w∗
j |<

1√
n
|w∗

j − ŵj| < 2√
n
then there exist infinitely many t values for any sequence {wt}

generated by Algorithm 1 such that wt = p̃rojQ(w
∗).

Proof of Theorem 4.1. Without loss of generality, we can assume w∗
j ≥ 0 for all j ∈ [n] so

that ŵj =
1√
n
for all j.

Firstly, if w∗
j >

1√
n
, we know

yt+1
j = ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

)
≥ wt

j + ηt
∥v∥2

2
√
2π

(
w∗

j −
1√
n

)
,

so that

ytj ≥ y0j +
∥v∥2

2
√
2π

(
t−1∑
s=0

ηs

)(
w∗

j −
1√
n

)
where the right hand side goes to infinity and thus wt

j = ŵj for all but finitely many t values.

Secondly, if w∗
j =

1√
n
, we know when wt

j < 0:

yt+1
j = ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

)
= ytj + ηt

∥v∥2

2
√
2π

2√
n

71

holds so that there must exist some t such that ytj > 0. Once ytj > 0 we have w∗
j = wt

j so

that yt+1
j = ytj and hence wt

j = ŵj for all but finitely many t values.

Third, if w∗
j < 1√

n
, we have ytj · ∂̃jf(wt) > 0 so that ytj is increasing when ytj < 0 and

decreasing when ytk > 0. This tells us ytj is bounded uniformly in t. Furthermore,

ytj = y0j +
∥v∥2

2
√
2π

[(
t−1∑
s=0

1{ws
j>0}ηs

)(
w∗

j −
1√
n

)

+

(
t−1∑
s=0

1{ws
j<0}ηs

)(
w∗

j +
1√
n

)]
.

For notation simplicity, we let

αj =
1√
n
− w∗

j > 0 and βj = w∗
j +

1√
n
> 0,

atj =
1

t

t−1∑
s=0

1{ws
j>0}ηs and btj =

1

t

t−1∑
s=0

1{ws
j<0}ηs.

Now, we have
ytj − y0j

t
=

∥v∥2

2
√
2π

(
−αja

t
j + βjb

t
j

)
.

Since ytj is bounded for all w∗
j <

1√
n
, we let t → ∞ so that left hand side vanishes and

lim
t→∞

btj
atj + btj

=
αj

αj + βj

.

By assumption, we have

lim
t→∞

n∑
j=1

btj
atj + btj

=
n∑

j=1

αj

αj + βj

< 1.

72

Hence, we know

lim
t→∞

t−1∑
s=0

1{ws=ŵ∗}ηs ≥ lim
t→∞

[(
1−

n∑
j=1

btj
atj + btj

)
t−1∑
s=0

ηs

]
= ∞,

where we used the assumption
∑∞

t=0 ηt = ∞. Now, the desired result follows.

4.3 Ternary Weight

The proof of the ternary case follows the following steps. Our first step shows the sequence

yt generated by Algorithm 1 is bounded away from the origin for all but finitely many t

values. Then, our second step shows each coordinate of yt is of the same sign of w∗ for all

but finitely many t values. This forces yt to stay in the same orthant to which w∗ belongs.

As a matter of fact, an n-dimensional space has in total 2n orthants, which means yt can only

stay in a small region near w∗. After that, our third step furthermore cuts the orthant into

n! congruent cones and argue yt must stay in the same cone where w∗ is for all but finitely

many t values. In the last step, we prove the ternary case of Theorem 4.2, which asserts that

as long as the underlying true parameter w∗ is close to quantized state Q = R+ ×{0,±1}n,

i.e., any vertex of the cone it belongs to, the optimum is guaranteed to be recurrent.

The first result shows that wt generated by Algorithm 1 is generally divergent, and it con-

verges only when the true parameters w∗ ∈ Q = R+ × {0,±1}n.

Proposition 4.1 (Ternary Case). Let {wt} be any sequence generated by Algorithm 1. If

w∗ ̸∈ Q = R+ × {0,±1}n, then {wt} is not a convergent sequence.

Proof of Proposition 4.1. We prove by contradiction. Observe that Q ∩ Sn−1 is a finite set,

we know wt converges to w∞ is equivalent to wt = w∞ for all but finitely many t values.

Assume wt = w∞ for all but finitely many t values, we know there exists some T ≥ 0 such

73

that wt = w∞ for all t ≥ T . Thus,

yT+t = yT −
t−1∑
s=0

ηT+s∇̃f
(
wT+s

)
= yT −

(
t−1∑
s=0

ηT+s

)
∇̃f (w∞)

= yt +

(
t−1∑
s=0

ηT+s

)
∥v∥2

2
√
2π

(w∗ −w∞) .

Now, we have

〈
yT+t,w∞〉 = 〈yT ,w∞〉+(t−1∑

s=0

ηT+s

)
∥v∥2

2
√
2π

⟨w∗ −w∞,w∞⟩

where

⟨w∗ −w∞,w∞⟩ = ⟨w∗,w∞⟩ − 1 < 0.

Note that
∑∞

s=0 ηT+s = ∞, there exists some T1(T), such that for all t > T1(T)

〈
yt,w∞〉 < 0.

This contradicts Lemma 4.4 and our desired result follows.

In what follows, we detail the proof of convergence behavior of Algorithm 1.

Our first step is to rule out an exceptional case that the direction of yt changes significantly

in only one iteration. As shown in Lemma 4.2, the coarse gradient is bounded by a constant

depending only on the fixed weight vector v. So it suffices to show that ∥yt∥ is bounded

away from zero for all but finitely many t values.

Lemma 4.6. Let {yt} be any auxiliary sequence generated by Algorithm 1. If w∗ ̸∈ Q, then

∥yt∥1 converges to infinity as t increases.

74

Proof of Lemma 4.6. Q ∩ Sn−1 is a compact set because it is finite. Also, since Q is sym-

metric, w∗ ̸∈ Q also implies −w∗ ̸∈ Q. It follows that

α := inf
w∈Q∩Sn−1

θ (w∗,w) ∈ (0, π).

Hence, for any w ∈ Q ∩ Sn−1 we have

〈
−∇̃f(w),w∗

〉
=

∥v∥2

2
√
2π

⟨w∗ −w,w∗⟩ ≥ ∥v∥2

2
√
2π

(1− cosα) .

Now, we know 〈
yT ,w∗〉 = 〈y0,w∗〉+ T−1∑

t=0

ηt

〈
−∇̃f

(
wt
)
,w∗

〉
≥
〈
y0,w∗〉+(T−1∑

t=0

ηt

)
∥v∥2

2
√
2π

· (1− cosα) .

Let T → ∞, we see that limt→∞ ∥yt∥ = ∞ which is equivalent to limt→∞ ∥yt∥1 = ∞.

Lemma 4.6 shows that for any positive constant c > 0, we have ∥yt∥1 > c for all but finitely

many t values.

Since Lemma 4.6 guarantees that the direction of yt will not change significantly, we cut

down the region that yt can belong to in two steps. To describe our first cut down, we need

the following definition to make our statement precise.

Definition 4.1. For any x ∈ Rn, we define the orthant of x as

O(x) := {y ∈ Rn : sign (y) = sign (x)} ,

where sign (·) acts coordinate-wise. Furthermore, we say O(x) is regular if any coordinate

of x is not zero.

We state some basic properties of the defined orthant.

75

Proposition 4.2. For any x,y ∈ Rn, the following statements are true:

1. Either O(x) = O(y) or O(x) ∩O(y) = ∅.

2. x ∈ O(x).

3. ∪x∈RnO(x) = Rn.

4. There are in total 3n orthants.

5. There are in total 2n regular orthants.

Lemma 4.7. Let w = projQ(y), then |yj| < 1
5n

∥y∥1 implies wj = 0.

Proof of Lemma 4.7. Without loss of generality, we assume yi ≥ 0 for all i ∈ [n] and yj <

1
5n

∥y∥1 for a fixed j ∈ [n]. Let δ = 1
5n

∥y∥1 and

jδ := | {i ∈ [n] : |yi| ≥ δ} |

we know jδ ≥ 1 by the principle of drawer. Now, with

j∗ = argmax

∥∥y[j]

∥∥2
1

j

for any 1 ≤ k ≤ n− jδ ∥∥y[j∗]

∥∥2
1

j∗
−
∥∥y[jδ+k]

∥∥2
1

jδ + k

≥
∥∥y[jδ]

∥∥2
1

jδ
−
∥∥y[jδ+k]

∥∥2
1

jδ + k

=
(jδ + k)

∥∥y[jδ]

∥∥2
1
− jδ

∥∥y[jδ+k]

∥∥2
1

jδ (jδ + k)
,

where the numerator is

k
∥∥y[jδ]

∥∥2
1
− jδ

(∥∥y[jδ+k]

∥∥2
1
−
∥∥y[jδ]

∥∥2
1

)
≥k
[∥∥y[jδ]

∥∥2
1
− jδδ

(∥∥y[jδ+k]

∥∥
1
+
∥∥y[jδ]

∥∥
1

)]
.

76

With τ =
∥y[jδ+k]∥1

nδ
, we have

k
[∥∥y[jδ]

∥∥2
1
− jδδ

(∥∥y[jδ+k]

∥∥
1
+
∥∥y[jδ]

∥∥
1

)]
≥k
[(∥∥y[jδ+k]

∥∥
1
− kδ

)2 − 2nδ
∥∥y[jδ+k]

∥∥
1

]
=k (nδ)2

(
τ 2 − 4τ + 1

)
.

Note that

τ =

∥∥y[jδ+k]

∥∥
1

nδ
≥ ∥y∥1 − nδ

nδ
≥ 4,

we conclude that ∥∥y[j∗]

∥∥2
1

j∗
>

∥∥y[jδ+k]

∥∥2
1

jδ + k

and hence j∗ ≤ jδ. Now, Lemma 4.4 gives wj = 0.

Lemma 4.8. Let {wt} and {yt} be the sequence and the auxiliary sequence generated by

algorithm 1. Assume w∗ ̸∈ Q, the following statements hold.

• If w∗
j = 0, then ytj is bounded and wt

j = 0 for all but finitely many t values.

• If w∗
j ̸= 0, then sign

(
ytj
)
= sign

(
w∗

j

)
for all but finitely many t values.

Proof of Lemma 4.8. On the one hand, we consider the case w∗
j = 0, so that

yt+1
j = ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

)
= ytj − ηt

∥v∥2

2
√
2π

wt
j.

Note that Lemma 4.4 shows ytj and wt
j are of the same sign if wt

j ̸= 0, we know ytj is bounded

by Cj := max
{
|y0j |, η

∥v∥2

2
√
2π

}
. Moreover Lemma 4.6 shows ∥yt∥1 > 5nCj for all but finitely

many t values. Finally, we see from Lemma 4.7 that wt
j = 0 for all but finitely many t values.

On the other hand, consider the case w∗
j ̸= 0. Without loss of generality, we can assume

77

w∗
j > 0. Note that whenever ytj ≤ 0, we also have wt

j ≤ 0 so that

yt+1
j = ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

)
≥ ytj + ηt

∥v∥2

2
√
2π

w∗
j .

From the above inequality, we see that ytj is increasing where the increment is bounded from

below by ηt
∥v∥2

2
√
2π
w∗

j > 0 where
∑

ηt = ∞, so that there must exist some Tj > 0 such that

y
Tj

j > 0. With Lemma 4.6, we can without loss of generality assume that ∥yt∥1 ≥ 5nη ∥v∥2

2
√
2π

for all t ≥ Tj. For ease of notation, we let δ = η ∥v∥2

2
√
2π

so that ∥yt∥1 ≥ 5nδ for all t ≥ Tj. We

shall next prove that ytj ≥ 0 for all t ≥ Tj. We prove by induction, assume ytj > 0 for some

t > Tj and show yt+1
j > 0.

1. If ytj > δ,

yt+1
j = ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

)
≥ ytj − δ > 0.

2. If 0 < ytj ≤ δ, since ∥yt∥1 ≥ 5nδ, Lemma 4.7 shows wt
j = 0 so that

yt+1
j = ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

)
= ytj +

ηtδ

η
w∗

j > ytj > 0.

Combining the above two cases, we get our desired result.

Lemma 4.9. Let {yt} be any auxiliary sequence generated by Algorithm 1. If w∗ ̸∈ Qn,

then any subsequential limit of ỹt := yt

∥yt∥ belongs to the closure of O(w∗). Furthermore, if

O(w∗) is regular, then yt lies in O(w∗) for all but finitely many t values.

Proof of Lemma 4.9. By Lemma 4.8, we see that sign
(
ytj
)
= sign

(
w∗

j

)
for all w∗

j ̸= 0. We

only need to prove w∗
j = 0 implies limt→∞ ỹtj = 0. Indeed, by Lemma 4.8, we know that ytj is

bounded by Cj while Lemma 4.6 tells us ∥yt∥ goes to infinity. Thus, limt→∞ ỹtj =
ytj
∥y∥ = 0.

In our previous step, we have partitioned Rn into orthants and showed that yt enter into a

small neighborhood of the orthant where w∗ stays. Now, we prove a stronger result based on

78

the conclusion of our previous step. We would like to cut each orthant into several congruent

cones which we shall define later and argue yt will move and stay in close neighborhood of

the cone where w∗ stays. This step makes a stronger statement because we manage to shrink

the size of the region where yt can stay.

Definition 4.2. For any non-zero vector x ∈ Rn, we define the cone of x to be

Cone(x) :=

{
y ∈ O(x) : sign (|yj| − |yi|) = sign (|xj| − |xi|) for ∀i, j ∈ [n]

}
.

Moreover, we say Cone(x) is regular if O(x) is regular and any |xj| ≠ |xi| for all j ̸= i.

Proposition 4.3. For any x,y ∈ Rn, the following statements are true:

1. Either Cone(x) = Cone(y) or Cone(x) ∩ Cone(y) = ∅.

2. x ∈ Cone(x).

3. If y ∈ Cone(x), then Cone(y) = Cone(x).

4. ∪y∈O(x)Cone(y) = O(x).

5. Any regular orthant contains n! regular cones.

Lemma 4.10. Let {w∗} and {yt} be any sequence and auxiliary sequence generated by

Algorithm 1. Assuming that w∗ ̸∈ Qn
2 , we have the following fact.

1. If |w∗
j | > |w∗

i |, then |ytj| > |yti | for all but finitely many t values.

2. If |w∗
j | = |w∗

i |, then
∣∣|ytj| − |yti |

∣∣ is bounded and |wt
j| = |wt

i| for all but finitely many t

values.

Proof of Lemma 4.10. Without loss of generality, we can assume w∗
1 ≥ w∗

2 ≥ · · · ≥ w∗
n ≥ 0.

79

For the first statement, we only need to show that w∗
j > w∗

j+1 implies ytj > ytj+1 for all but

finitely many t values. Note that whenever ytj < ytj+1, then Lemma 4.4 implies wt
j ≤ wt

j+1,

hence

yt+1
j − yt+1

j+1

=

(
ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

))
−

(
ytj+1 + ηt

∥v∥2

2
√
2π

(
w∗

j+1 − wt
j+1

))

=
(
ytj − ytj+1

)
+ ηt

∥v∥2

2
√
2π

[(
w∗

j − w∗
j+1

)
+
(
wt

j+1 − wt
j

)]
≥
(
ytj − ytj+1

)
+ ηt

∥v∥2

2
√
2π

(
w∗

j − w∗
j+1

)
.

Now that we know ytj − ytj+1 is increasing as long as it is negative and
∑

ηt = ∞. Therefore,

we conclude that there exist infinitely many t values such that ytj−ytj+1 > 0. We can therefore

assume yTj − yTj+1 > 0, where T is the constant in Lemma 4.6 such that ∥yt∥1 ≥ 5n
√
2ϵ for

all t ≥ T where we set ϵ = η∥v∗∥2√
2πn

. Next, we would like to show ytj − ytj+1 > 0 for all t ≥ T

by induction.

Next, assuming ytj − ytj+1 > 0, we want to show yt+1
j − yt+1

j+1 > 0.

On the one hand, if ytj − ytj+1 ≥ ϵ, we have

yt+1
j − yt+1

j+1

=
(
ytj − ytj+1

)
+ ηt

∥v∥2

2
√
2π

[(
w∗

j − w∗
j+1

)
+
(
wt

j+1 − wt
j

)]
>
(
ytj − ytj+1

)
+ ηt

∥v∥2

2
√
2π

(
wt

j+1 − wt
j

)
≥
(
ytj − ytj+1

)
− ηt

∥v∥2

2
√
2π

1√
n
≥
(
ytj − ytj+1

)
− ϵ ≥ 0.

On the other hand, if ytj − ytj+1 < ϵ, we still have

yt+1
j − yt+1

j+1 >
(
ytj − ytj+1

)
− ηt

∥v∥2

2
√
2π

(
wt

j − wt
j+1

)
,

80

so that it suffices to show wt
j = wt

j+1. From Lemma 4.4, we see that with

j∗ = argmax
j∈[n]

∥∥∥yt
[j]

∥∥∥2
1

j
, (4.5)

we only need to show j ̸= j∗. We prove by contradiction, assuming j = j∗ so that wt
j > 0

and wt
j+1 = 0. Lemma 4.7 shows ytj ≥ 1

5n
∥yt∥1. Also, (4.5) gives

∥∥∥yt
[j−1]

∥∥∥2
1

j − 1
≤

∥∥∥yt
[j]

∥∥∥2
1

j
=

(∥∥∥yt
[j−1]

∥∥∥
1
+ ytj

)2
j

. (4.6)

Simplifying the above inequality, we get


∥∥∥yt

[j−1]

∥∥∥
1

ytj

2

− 2(j − 1)


∥∥∥yt

[j−1]

∥∥∥
1

ytj

− (j − 1) ≤ 0.

Left hand side is a quadratic function of

(
∥yt

[j−1]∥1

ytj

)
, we know

∥∥∥yt
[j−1]

∥∥∥
1

ytj
≤ j − 1 +

√
j(j − 1) ≤ n− 1 +

√
n(n− 1) < 2n. (4.7)

We write equation (4.6) in a different way and get

j ≥

(∥∥∥yt
[j−1]

∥∥∥
1
+ ytj

)2
ytj

(
2
∥∥∥yt

[j−1]

∥∥∥
1
+ ytj

) . (4.8)

Now, we use j = j∗ again, to get

∥∥∥yt
[j]

∥∥∥2
1

j
≤

∥∥∥yt
[j+1]

∥∥∥2
1

j + 1
. (4.9)

81

Rewriting the above inequality, we get

j ≤

(∥∥∥yt
[j−1]

∥∥∥
1
+ ytj

)2
ytj+1

(
2
∥∥∥yt

[j−1]

∥∥∥
1
+ 2ytj + ytj+1

) . (4.10)

Combining (4.8) and (4.10), we get

(
ytj − ytj+1

)2 − (2∥∥yt
[j−1]

∥∥
1
+ 4ytj

) (
ytj − ytj+1

)
+ 2

(
ytj
)2 ≤ 0.

Solving the above inequality, we get

ytj − ytj+1 ≥
∥∥yt

[j−1]

∥∥
1
+ 2ytj

−
√∥∥∥yt

[j−1]

∥∥∥2
1
+ 4

∥∥∥yt
[j−1]

∥∥∥
1
ytj + 2(ytj)

2.

(4.11)

Combining (4.7) and (4.11), we get

ytj − ytj+1 ≥ (ytj)
2
(
2n+ 2−

√
4n2 + 4n+ 2

)
>

(ytj)
2

2
. (4.12)

Recalling that ytj ≥ 1
5n

∥yt∥1 ≥
√
2ϵ, we have

ytj − ytj+1 >
1

2

(
∥yt∥1
5n

)2

> ϵ.

This contradiction shows j ̸= j∗, and hence wt
j = wt

j+1 and it follows that yt+1
j > yt+1

j+1. Now,

we have proved our first statement.

82

For the second statement, since w∗
j = w∗

i , we have

yt+1
j − yt+1

i

=

(
ytj + ηt

∥v∥2

2
√
2π

(
w∗

j − wt
j

))
−

(
yti + ηt

∥v∥2

2
√
2π

(
w∗

i − wt
i

))

=ytj − yti − ηt
∥v∥2

2
√
2π

(
wt

j − wt
i

)
= ytj − yti − 2

ηtϵ

η

(
wt

j − wt
i

)
.

Hence, we know that |ytj − yti | is bounded by

Ci,j := max

{
|y0j − y0i |,

η ∥v∗∥2√
2π

}
.

Without loss of generality, we can assume j < i and min
{
ytj, y

t
i

}
≥ 0 by Lemma 4.8.

Recalling (4.12), we have wt
j ̸= wt

i implying that

|ytj − yti | >
max

{
ytj, y

t
i

}2
2

≥ 1

2

(
∥yt∥
5n

)2

where the right hand side goes to infinity. This contradicts the boundedness of |ytj − yti | if

there are infinitely many t values such that wt
j ̸= wt

i .

Lemma 4.11. Let {yt} be any auxiliary real-valued sequence generated by Algorithm 1. If

w∗ ̸∈ Q, then any sub-sequential limit of ỹt := yt

∥yt∥ belongs to the closure of Cone(w∗).

Moreover, if Cone(w∗) is regular, then yt ∈ Cone(w∗) for all but finitely many t values.

Proof of Lemma 4.11. Note that we already have Lemma 4.9, we only need to show for

any sub-sequential limit y of ỹt, we have sign (|yj| − |yi|) = sign
(
|w∗

j | − |w∗
i |
)
. The first

statement of Lemma 4.10 tells us that it is true for all sign
(
|w∗

j | − |w∗
i |
)
̸= 0. Thus, it

suffices to show that |w∗
j | = |w∗

i | implies |yj| = |yi|.

Note that the second statement of Lemma 4.10 says that ||yj| − |yi|| is bounded by Ci,j,

83

while Lemma 4.6 gives limt→∞ ∥yt∥ = ∞, we see that

|ỹj| = lim
k→∞

|ytkj |
∥ytk∥

= lim
k→∞

|ytki |
∥ytk∥

= |ỹi|.

The auxiliary weight vector yt can only stay in a small region around w∗ for large t values.

Definition 4.3. For any point x ∈ Rn, assume (j1, j2, · · · , jn) is a permutation of [n] such

that

|xj1| ≥ |xj2| ≥ · · · ≥ |xjn|

We define the set of vertexes of x to be

Λ(x) :=

{
1√
k

k∑
i=1

sign (xji) eji : xjk+1
̸= xjk are nonzeros

}
.

Below are some basic facts about connection between vertexes and cones.

Proposition 4.4. For any x,y ∈ Rn let k := |Λ(x)|, the following statements are true:

1. 0 ≤ k ≤ n.

2. Λ(x) is empty if and only if x = 0.

3. Λ(x) is a subset of the boundary of Cone(x).

4. Cone(x) = Cone(y) if and only if Λ(x) = Λ(y).

5. p̃rojQ(x) ∈ Λ(x).

6. y lies in Cone(x) if and only if there exists k positive numbers {µz(y) : z ∈ Λ(x)}

such that y =
∑

z∈Λ(x) µz(y)z.

84

7. y lies in the closure of Cone(x) if and only if there exists k non-negative numbers

{µz(y) : z ∈ Λ(x)} such that y =
∑

z∈Λ(x) µz(y)z.

8. ∪x∈Rn Λ(x) = {x ∈ Q : ∥x∥ = 1} .

Lemma 4.12. Let {wt} be the sequence generated by Algorithm 1. If w∗ ̸∈ Q = R+ ×

{0,±1}n, then wt ∈ Λ(w∗) for all but finitely many t values.

Proof of Lemma 4.12. First, by Proposition 4.3, yt ∈ Cone(w∗) implies p̃rojQ(y
t) ∈ Λ(w∗).

Second, let ∂̃Cone(w∗) = Cone(w∗)−Cone(w∗). Now, a non-zero yt ∈ ∂̃Cone(w∗) implies

Cone(yt) ⊂ ∂̃Cone(w∗) so that we also have p̃rojQ(y
t) ∈ Λ(yt) ⊂ Λ(w∗).

Third, by compactness of Cone(w∗) ∩ Sn−1, we know there exists some ϵ > 0 such that

ỹt := yt

∥yt∥ lies in ϵ-neighborhood of Cone(w∗) ∩ Sn−1 implying p̃rojQ(y
t) ∈ Λ(w∗).

Finally, Lemma 4.11 suggests ỹt lies in ϵ-neighborhood of Cone(w∗) for all but finitely many

t values. We get our desired result.

In the following, we give a sufficient condition for the optimum to be recurrent. The condition

requires w∗ to be close to Q.

Theorem 4.2. [Ternary Case] Let {zj}kj=1 = Λ(w∗) where z1 = p̃rojQw
∗ is the optimum

and w∗ =
∑k

j=1 λjzj. If 0 <
∑k

j=2 λj < 1, we have wt = p̃rojQw
∗ for infinitely many t

values, where wt is any infinite sequence generated by Algorithm 1 with any initialization.

Proof of Theorem 4.2 (Ternary Case). Note that Lemma 4.11 suggests ỹt = yt

∥yt∥ lies in ϵ-

neighborhood of Cone(w∗) for all but finitely many t values. Let Λ(w∗) = {z1, · · · , zk} and

define µt
j be the constants such that

yt =
k∑

j=1

µt
jzj

85

which is determined uniquely by yt.

Let wt = zjt , we know from Algorithm 1 that

yt+1 − yt = ηt
∥v∥2

2
√
2π

(w∗ − zjt).

Thus
k∑

j=2

µt+1
j =

k∑
j=2

µt
j + ηt

∥v∥2

2
√
2π

[(
k∑

j=2

λj

)
− 1

]
.

It follows that

k∑
j=2

µt
j = Constant +

(
t−1∑
s=0

ηs

)
∥v∥2

2
√
2π

[(
k∑

j=2

λj

)
− 1

]
< 0,

for large t’s. Now we see that when t is large enough, ỹt is bounded away from Cone(w∗)

which contradicts Lemma 4.11 and our desired result follows.

Intuitively, the parameter λj in Theorem 4.2 stands for the proportion of time that {wt}

stays at zj. For instance, if λj ≈ 1, then most of {wt} stay at zj so that the oscillation

has a longer ‘period’ and is harder to observe. On the contrary, if all λj’s are almost the

same then {wt} behaves like uniform distribution and oscillation becomes more obvious.

Beside λj’s, a smaller learning rate can render yt moves slower which can also slow down

the oscillation. Although there are ways to stabilize the training process, both our theorem

and the experiments in the next section suggests the oscillation behavior is inevitable.

4.4 Experiments

In this section, we implement QUANT algorithm on both synthetic data and MNIST/CIFAR

image data. Our goals are (1) to validate our theoretical findings and (2) to show the

86

appearance of the oscillation behavior in more complicated setups. With that said, we

emphasize that we did not extensively tune the hyper-parameters or use ad-

hoc tricks to achieve the best possible validation accuracy. More comprehensive

experimental results for QUANT-based approaches can be found in, for examples, [7, 8, 22,

51]. Here we report the validation accuracies on MNIST and CIFAR-10 for fully quantized

networks in Table 4.1. For both synthetic and image data sets, we observed the oscillation

behavior.

4.4.1 Synthetic Data

We take m = 4, n = 8 in (4.1) and construct v ∼ N(0, Im) and w∗ ∼ N(0, In) be random

vectors. For each run, we fix v andw∗ and train the neural network (4.1) by algorithm (1) for

200 iterations with a learning rate being 0.1. Fig. 4.3 show the evolution of binary/ternary

weight of wt in the last 100 iterations. Each block of size 8×100 corresponds to the evolution

of wt during the 100 iterations. The (quantized) global minimum projQw
∗ for each run is

shown on the right side of the corresponding subplot in Fig. 4.3.

4.4.2 MNIST

We train LeNet-5 with binary/ternary weights and 4-bit activations using QUANT algo-

rithm. For deep networks, the (quantized) global optimum is generally unknown, we instead

show the oscillating behavior around local optimum. Note that Fig. 4.5 shows the train-

ing loss no longer drop significantly during the last 30 epochs (50 in total). This suggests

the network parameters have reached a local valley. However, Fig. 4.4 shows the iterating

sequence of model parameters still have oscillating signs towards the end of training.

Fig. 4.4 shows the evolution of the quantized weights of one convolution filter in the first

87

float binary ternary
LeNet-5 99.37 99.33 99.34
ResNet-20 92.33 89.42 90.86
VGG-11 92.15 89.47 90.91

Table 4.1: Validation Accuracy of LeNet-5 on MNIST and ResNet-20/VGG-11 on CIFAR-
10.

Figure 4.3: Evolution of Weight signs of synthetic network described in (4.1). Each
of the 8 large blocks is a colored display of weight sign values via 8×100 matrix (i.e., 8 filter
weight signs evolved over the last 100 iterations). The bars to the right of blocks are the
corresponding optima. Top two rows: Binary weight signs, red /blue for 1/−1. Bottom
two rows: Ternary weight signs, red/green/blue for 1/0/−1.

convolution layer during the last 600 iterations. To visualize the weights, each quantized

filter is reshaped into a 25-dimensional column vector. Each block (3 in a group) of size

25× 200 corresponds to the evolution of the one filter during 200 iterations. As we can see

from these two figures, a proportion of the weights do not converge to a limit but rather

have oscillating signs.

4.4.3 CIFAR-10

We repeat the experiments on CIFAR-10 [24] with ResNet-20/VGG-11. We train ResNet-20

[16]/VGG-11 [41] with binary/ternary weights and 4-bits activation using QUANT for 200

epochs. We refer to the appendix for some figures that show similar oscillation behavior.

Towards the end of training, although there has been no noticeable decay of training loss,

we can see a clearer pattern of the oscillating signs of the weights.

88

Figure 4.4: Evolution of signs of weight filters in the last training epoch (or 600
iterations) of LeNet-5. Each of the six 25 × 200 blocks corresponds to evolution of the
5× 5 convolutional filter over 200 iterations. Top three rows: Binary weights over the last
600 iterations of training, red/blue for sign values 1/−1. Bottom three rows: Ternary
weights over the last 600 iterations of training, red/green/blue for sign values 1/0/−1.

Figure 4.5: LeNet-5 Training Loss v.s. Epoch. Left: Binary weights. Bottom: Ternary
weights.

89

Bibliography

[1] Lenet-5 architecture.

[2] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-
parameterization. CoRR, abs/1811.03962, 2018.

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] A. Brutzkus and A. Globerson. Globally optimal gradient descent for a convnet with
gaussian inputs. arXiv preprint arXiv:1702.07966, 2017.

[5] A. Brutzkus and A. Globerson. Over-parameterization improves generalization in the
XOR detection problem. CoRR, abs/1810.03037, 2018.

[6] A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[7] Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep learning with low precision by half-
wave gaussian quantization. In IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[8] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakr-
ishnan. Pact: Parameterized clipping activation for quantized neural networks. arXiv
preprint arXiv:1805.06085, 2018.

[9] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In International Conference on Machine
Learning, pages 160–167. ACM, 2008.

[10] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, pages 3123–3131, 2015.

[11] R. T. des Combes, M. Pezeshki, S. Shabanian, A. Courville, and Y. Bengio. Convergence
properties of deep neural networks on separable data, 2019.

90

[12] Y. Ding, J. Liu, J. Xiong, and Y. Shi. On the universal approximability and complexity
bounds of quantized relu neural networks. arXiv preprint arXiv:1802.03646, 2018.

[13] S. S. Du, X. Zhai, B. Póczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. CoRR, abs/1810.02054, 2018.

[14] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algo-
rithm. Machine learning, 37(3):277–296, 1999.

[15] J. He, L. Li, J. Xu, and C. Zheng. ReLU deep neural networks and linear finite elements.
Journal of Computational Mathematics, 38:502–527, 2020.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[17] G. Hinton. Neural networks for machine learning, coursera. Coursera, video lectures,
2012.

[18] C. Ho and S. Zimmerman. On the number of regions in an m-dimensional space cut by
n hyperplanes. The Australian Mathematical Society Gazette, 33, 01 2006.

[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[20] L. Hou and J. T. Kwok. Loss-aware weight quantization of deep networks. In Interna-
tional Conference on Learning Representations, 2018.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural
networks. In Advances in Neural Information Processing Systems, 2016.

[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural
networks: Training neural networks with low precision weights and activations. Journal
of Machine Learning Research, 18:1–30, 2018.

[23] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[24] A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pages
1097–1105, 2012.

[26] F. Li, B. Zhang, and B. Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

[27] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein. Training quantized nets:
A deeper understanding. In Advances in Neural Information Processing Systems, pages
5811–5821, 2017.

91

[28] Y. Li and Y. Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. CoRR, abs/1808.01204, 2018.

[29] S. Liang, R. Sun, Y. Li, and R. Srikant. Understanding the loss surface of neural
networks for binary classification. CoRR, abs/1803.00909, 2018.

[30] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M. Welling. Relaxed quanti-
zation for discretized neural networks. In International Conference on Learning Repre-
sentations, 2019.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[32] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro. Towards under-
standing the role of over-parametrization in generalization of neural networks. CoRR,
abs/1805.12076, 2018.

[33] Q. Nguyen, M. C. Mukkamala, and M. Hein. On the loss landscape of a class of deep
neural networks with no bad local valleys. CoRR, abs/1809.10749, 2018.

[34] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In European Conference on Computer
Vision, pages 525–542. Springer, 2016.

[35] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing
systems, pages 91–99, 2015.

[36] A. Rosebrock. Lenet – convolutional neural network in python, 2016.

[37] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para.
Cornell Aeronautical Laboratory, 1957.

[38] F. Rosenblatt. Principles of neurodynamics. Spartan Book, 1962.

[39] Z. Shen, H. Yang, and S. Zhang. Deep network approximation with discrepancy being
reciprocal of width to power of depth. arXiv preprint arXiv:2006.12231, 2020.

[40] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

[41] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[42] H. Wang, Y. Wang, Z. Zhou, X. Ji, Z. Li, D. Gong, J. Zhou, and W. Liu.
Cosface: Large margin cosine loss for deep face recognition. CVPR 2018. DOI:
10.1109/CVPR.2018.00552. CoRR, abs/1801.09414, 2018.

92

[43] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

[44] P. Yin, J. Lyu, S. Zhang, S. J. Osher, Y. Qi, and J. Xin. Understanding straight-through
estimator in training activation quantized neural nets. In International Conference on
Learning Representations, 2019.

[45] P. Yin, J. Xin, and Y. Qi. Linear feature transform and enhancement of classification
on deep neural network. J. Sci. Computing, 76(3):1396–1406, 2018.

[46] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Binaryrelax: A relaxation
approach for training deep neural networks with quantized weights. SIAM Journal on
Imaging Sciences, 11(4):2205–2223, 2018.

[47] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Blended coarse gradient descent
for full quantization of deep neural networks. Research in the Mathematical Sciences,
6(14), 2019.

[48] P. Yin, S. Zhang, Y. Qi, and J. Xin. Quantization and training of low bit-width convo-
lutional neural networks for object detection. Journal of Computational Mathematics,
37:349–359, 2019.

[49] P. Yin, S. Zhang, J. Xin, and Y. Qi. Training ternary neural networks with exact
proximal operator. ArXiv, abs/1612.06052, 2016.

[50] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization:
Towards lossless CNNs with low-precision weights. arXiv preprint arXiv:1702.03044,
2017.

[51] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[52] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

93

Appendix A

Supplementary Figures for Chapter 4

Figure A.1: Training Loss of CIFAR-10. Left: Binary/Ternary weight ResNet-20. Right:
Binary/Ternary weight VGG-11.

94

Figure A.2: Evolution of signs of weight filters in the last training epoch (or 600
iterations) of ResNet-20. Each of the three 27 × 200 blocks corresponds to evolution
of the 3 × 3 × 3 convolutional filter over 200 iterations. Binary weights over the last 600
iterations of training, red/blue for sign values 1/−1.

Figure A.3: Evolution of signs of weight filters in the last training epoch (or 600
iterations) of ResNet-20. Each of the three 27 × 200 blocks corresponds to evolution
of the 3 × 3 × 3 convolutional filter over 200 iterations. Ternary weights over the last 600
iterations of training, red/green/blue for sign values 1/0/−1.

95

Figure A.4: Evolution of signs of weight filters in the last training epoch (or 600
iterations) of VGG-11. Each of the three 27× 200 blocks corresponds to evolution of the
3× 3× 3 convolutional filter over 200 iterations. Binary weights over the last 600 iterations
of training, red/blue for sign values 1/−1.

Figure A.5: Evolution of signs of weight filters in the last training epoch (or 600
iterations) of VGG-11. Each of the three 27× 200 blocks corresponds to evolution of the
3× 3× 3 convolutional filter over 200 iterations. Ternary weights over the last 600 iterations
of training, red/green/blue for sign values 1/0/−1.

96

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Convergence and Slow-to-Fast Weight Evolution in DNN training for Classifying Linearly Non-Separable Data
	Learning Quantized Neural Nets by Coarse Gradient Method

	Convergence and Slow-to-Fast Weight Evolution in DNN training for classifying Linearly Non-Separable Data
	Problem Setup
	Preliminaries
	Decomposition
	Landscape

	Convergence Analysis for Non-Bias Case
	Main Results
	Experiments
	Synthetic Data
	MNIST Experiments

	Learning Quantized Neural Nets by Coarse Gradient Method for Non-Linear Classification
	Problem Setup
	Data Assumptions
	Network Architecture
	Coarse Gradient Methods

	Main Result and Outline of Proof
	Space Decomposition
	Learning Dynamics
	Landscape Properties
	Proof of Main Results
	Experiments
	Synthetic Data
	MNIST Experiments
	CIFAR-10 Experiments

	Recurrence of Optimum for Training Weight and Activation Quantized Networks
	Preliminaries
	Problem Setup
	Characterization of Optimal Solutions
	Coarse Gradient
	Weight Quantization Step

	Binary Weight
	Ternary Weight
	Experiments
	Synthetic Data
	MNIST
	CIFAR-10

	Bibliography
	Appendix Supplementary Figures for Chapter 4

