
UC Irvine
ICS Technical Reports

Title
Efficiently verifiable escape analysis

Permalink
https://escholarship.org/uc/item/1tx4p2jf

Authors
Beers, Matthew Q.
Stork, Christian H.
Franz, Michael

Publication Date
2003

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tx4p2jf
https://escholarship.org
http://www.cdlib.org/

Efficiently Verifiable Escape Analysis

Matthew Q. Beers
mbeers@uci.edu

Christian H. Stork
cstork@ics.uci.edu

Technical Report 03-29

Michael Franz
franz@uci.edu

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

December 2003

Notice: This Materi(. ..
may be protected
by Copyright Law
(Title 17 U.S.C.)

Abstract

Escape analysis is highly beneficial for optimizfog object-oriented programming
languages such as Java, significantly reducing memory management and synchroniza­
tion overhead. However, existing escape analysis algorithms are generally too heavy­
weight to be applicable in just-in-time compilation contexts.

We present an alternative analysis that is less precise than traditional escape analy­
sis, but that can be verified extremely efficiently. Hence, it becomes feasible to perform
the analysis ahead of time and ship its result as an annotation with the bytecode, without
sacrificing safety at the code consumer. In contrast, existing escape-analysis annotation
approaches are unsafe. Moreover, unlike any other escape analysis that we know of,
our method optionally provides for dynamic class loading, which is necessary for full
Java compatibility.

Benchmarks indicate that our verifiable analysis can pinpoint on average 66% of
all non-escaping allocation sites (56% when dynamic loading is supported), with neg­
ligible space overhead for the transport of annotations and negligible time overhead for
the verification.

Contents

1 Introduction 2

2 Escape Analysis 3

3 Minimal Annotations and Speedy Verification 6

4 Evaluation 6

5 Related Work 10

6 Future Work 11

7 Summary of Contributions and Conclusion 11

1

1 Introduction

Just-in-time compilation systems for mobile code don't always use the best available
optimization algorithms. Many of the analyses and optimizations that are common­
place in off-line compilers are simply too time-consuming to perform while an interac­
tive user is waiting for program execution to commence. As a result, most just-in-time
compilers are skewed towards compilation speed, rather than code quality.

Annotation-guided optimization systems [KCOl, ANH99, JKOO, PQVR+oo, GMP+oo,
ReiOl] try to bridge this conflict between compilation speed and code quality. In these
systems, analyses are performed off-line and appended to the mobile code as program
annotations. This reduces the just-in-time compilation overhead at the code consumer
and enables optimizations that would otherwise be too time consuming to perform on­
line.

An example of such a complex program analysis is escape analysis [WR99, CGs+99,
BH99], a technique that identifies objects that can be allocated on the stack as opposed
to on the heap. Escape analysis can also reveal when objects are accessible only to a
single thread. This information can then be used to eliminate unnecessary synchroniza­
tion overhead.

Escape analysis is not just time consuming, but also requires lots of memory for the
internal graph representations of each method in a program [WR99, CGs+99, BH99].
On the other hand, benchmarks indicate that its use can result in substantial perfor­
mance gains, even in case of more simplified linear-time analyses [GSOO]. Ideally, we
would wish to annotate programs with escape analysis information that can then be
transported with the program and exploited by an annotation-aware just-in-time com­
pilation system at the target site.

However, there are two primary drawbacks to the use of such annotations for escape
analysis: first, they introduce transfer overhead (for the extra annotation information)
and second and more seriously, their use is unsafe. That is, if someone accidentally
or maliciously changed the escape-analysis result recorded for an allocation site from
"heap allocated" to "stack allocated", then the memory safety of the whole target sys­
tem would be in jeopardy.

Hence, one would need to verify such annotations, similar to the way that Java
bytecode itself is verified. Verification of traditional escape analysis annotations of al­
location sites, however, would essentially be as complicated as performing the original
analysis in the first place, negating the original objective of reducing the workload on
the code consumer. We are not aware of any prior work on safe annotations of es­
cape analysis that would be applicable to Java bytecode, i.e., annotations that could
actually be verified at the target. All published annotation-based solutions in this do­
main [ANH99, JKOO, PQVR+oo] are unsafe.

In this paper, we evaluate a simple escape analysis annotation scheme

• that can be performed by the code producer in linear time.

• that has a very small space overhead for the annotations, and

• that can be verified with negligible time overhead by the code consumer.

2

In the following, we briefly describe escape analysis and then introduce our variable
partitioning scheme and its impact on the precision of the analysis. We then present
benchmarks to quantify this impact (Section 4). Following this are sections on related
work (Section 5) and future work (Section 6). A concluding section summarizes our
contributions.

2 Escape Analysis

Escape analysis identifies captured objects, i.e., objects with lifetimes that do not ex­
ceed that of the method in which they are created. Captured object identification en­
ables several optimizations. Most importantly, captured objects can be allocated on
the stack avoiding the overheads of memory allocation and garbage collection. Fur­
thermore, all synchronization of captured objects can be eliminated since only a single
thread can ever access a captured object. Both optimizations have been shown to signif­
icantly improve program performance [WR99, cos+99, BH99]. Capturedness enables
further minor optimizations, for example, dead store removal and object inlining, i.e.,
replacing objects by local variables representing their fields [GSOO, HAvRF03, LH02].

Commonly, escape analysis is achieved by constructing a variant of a points-to­
graph that models object lifetimes and object aliasing. Based on this model, the anal­
ysis indicates which objects are captured by the method in which they are created.
Whaley and Rinard's escape analysis [WR99] follows this approach.

Instead of considering individual objects, our method instead looks at the (pointer)
variables that objects are attached to. Intuitively, if an object during its lifetime is only
ever pointed to by variables that don't escape, then the object won't escape. A variable
is considered captured if it is never returned from its defining method, isn't passed as
an escaping parameter to some other method, and is never assigned to another variable
that isn't also guaranteed to be captured,

Generally speaking, our analysis traverses the code to be annotated and produces a
list of constraints on captured variables. This constraint equation is then solved so that
the number of captured variables is maximal.

For the purpose of presentation we will look at slightly transformed source code. 1

Table 1 illustrates the relevant conceptual transformations. First of all, we make the
otherwise implicit declaration of the this parameter explicit in order to be able to
uniformly treat all parameters including the this reference. See the transformations
for instance method and constructor declarations with their invocations changed cor­
respondingly. ·Constructors are dealt with in a special way by splitting the creation of

· new objects into two consecutive statements. The first of which returns a reference to
the allocated and zeroed object. The second statement calls the corresponding initial­
izer with the otherwise implicit this reference as argument for the first parameter.
Formally, initializers are treated like regular method calls.

Our analysis produces a boolean predicate esc(v) and a runtime type property
rtt(v) for every local variable v and parameter p. The value of rit (v) is either a class
Ci, uninitialized (l), or unknown (T). These elements form a fiat lattice with partial

10ur implementation actually operates on a canonicalized abstract syntax tree.

3

Before After

Instance Method class c { ... class c { ...
Declaration Cr et m(CP1 p1, ...) { Cr et m(C this, CPl p1, ...) {

... } ... }
... } ... }

Instance Method vo .m(v1, ...) m(vo,v1, ...)
Call
Constructor class c { ... class c { ...
Declaration2 C(CPl p1, ...){ void initc (C this, Cp1

... } ... }
... } ... }

Constructor Call Vo = new C (v1, .. . Vn) Vo = new C;
initc (vo, vi, ... Vn)

Table 1: Conceptual source code transformations

order ::::;; and T being the least upper bound of any two distinct elements. The meaning
of rtt(v) = Tis "v's runtime type is its declared type or any subtype thereof'.

The runtime type property has to obey certain constraints that are generated for
code fragments as shown in Table 2. Assigning a new object of class C to a variable
v lifts rtt(v) to at least C. Note that if our analysis encounters another assignment of
a new instance of class D to v then rtt(v) becomes T unless D = C. We conserva­
tively assume the runtime type of static and non-static fields and method results to be
unknown. ,The runtime type constraint corresponding to an assignment vo=v1 among
variables enforces that "v0 is at least initialized with v1 's runtime type".

Our analysis specifies the boolean predicate esc (v) for local variables or parameters
v. If esc(v) is false we say that v is captured. Note the difference to most other escape
analyses, which model capturedness of individual objects. The meaning of the esc(v)
predicate is roughly "an object referenced through v might escape". Therefore, if an
object o is only referenced by captured variables, then o is captured. This does not
mean that a captured variable always references a captured object! For example, it is
perfectly in accordance with our analysis to assign an escaping variable to a captured
variable.

The constraints for a series of representative source code statements are given in
Table 2. The first set of esc(v) constraints define our notion of "directly escaping":
References escape if they are returned, thrown, or assigned to static variables, fields, or
array elements. We only have two dependent esc(v) constraints (listed under combined
constraints). First, we exclude the assignment of a captured variable to an escaped
one-i.e., such an assignment by definition might cause the variable to escape.

Second, we assume all method results to escape. We also ensure that passing a
variable Vi as an argument to a method call m lets this variable escape if the corre­
sponding parameter Pi could escape. For an object-oriented language like Java, the
former necessitates knowledge of the type hierarchy in order to determine all method
declarations m' that could be invoked when calling m. Again, we chose a very conser­
vative approximation of what we mean by "invokable". If mis a static, private, or final

4

P1, · · ·) {

Escape Constraints
return v

throw v

s = v

Vo· f = V1
vo [...] = v1

Runtime Type Constraints

esc(v)
esc(v)
esc(v)
esc(v1)
esc(v1)

v new C C ~ rtt(v)
v = s T ~ rtt(v)
vo = v1 . f T ~ rtt (vo)

Combined Constraints
Vo v1

Vo = m (v1, v2, ... Vn)

rtt(v1) ~ rtt(vo) /\ esc(vo):::;. esc(v1)

T ~ rtt(vo) /\ esc(vo) /\
V parameters pi' of method declarations m' invokable as m:
esc(pi

1

):::;. esc(vi)

Table 2: Representative statements and their corresponding constraints where v, vi
stand for local variables or formal parameters, s for static fields, f for instant field
names, m for method names, and C for classes.

method then there is exactly one invokable implementation; otherwise the invokable
methods depend on the runtime type property of the self reference. rtt (v1) is either a
specific class C, in which case only C's implementation of mis invokable, or rtt(v1)
is unknown, i.e., T, in which case all implementations of m for v1 's declared type or
any ofv1 's subclasses are invokable.

Here is the only place where supporting dynamic loading produces different results.
In a "closed world" without dynamic loading, a whole program analysis can inspect all
subclasses of v1 's declared type. In an "open world" in which additional classes can be
added dynamically at any time, this is not possible. We have to assume the worst case,
so all arguments of m escape. Therefore the escape constraints produced by a method
invocation under the open world assumption shrinks to esc (Pi) for all parameters.

Given an allocation·site

v = new C

the allocated object o is captured if the variable v is captured. This holds because
by our definition "no object can escape through the v" and v is the only reference
to o; therefore o cannot escape. Arrays are handled like objects and array elements
are treated as object fields. Therefore a one-dimensional array can be captured but
its elements escape and multi-dimensional arrays can only be captured in their first
dimension due to the fact that they are modelled as nested one-dimensional arrays in
Java.

5

Newly constructed arrays that are assigned to captured variables or passed as cap­
tured parameters are captured. As mentioned before, the array's components are not
captured. Therefore multidimensional arrays are only "captured in their first dimen­
sion".

3 Minimal Annotations and Speedy Verification

In order to transport the analysis results we mark local and formal variables v at their
declaration site with their esc(v) predicate and their runtime type property rlt(v). Ac­
tually, the property rlt(v) can be turned into a boolean predicate assuming we allow for
some simple code transformations. Note that rlt(v) = J_ means that vis not the target
of a non-null assignment in the program and all its occurrences in the program could
be replaced by null. We can therefore ignore the case of rlt(v) = J_, The boolean
version of rlt(v) would mean "v's runtime type is equal to its declared type D". This
definition leaves only the cases uncovered where rtt(v) = C # D. But since Chas to
be a subclass of D and all assignments to v are-by definition of our constraints-of
declared and runtime type C, we can change v's declared type to C.

The decision of whether to allocate an object on the stack or on the heap is made at
each object (and array) allocation site as described in the previous section.

Verifying the annotations is as easy as verifying the _constraints from Table 2 while
traversing the code (either while loading the code or while compiling it). In particular,
during this verification, coming across an assignment of a captured variable to an es­
caping variable implies that the program or the annotations have been tampered with
after the analysis was performed.

Note that in both the open and the closed world scenarios we analyze the library
methods that are called by the subject program. Even in the open world case, our
analysis depends on these annotations to coincide between code producer and receiver.
Therefore, this has to be checked at link-time.

Even though our implementation augments canonicalized abstract syntax trees, the
annotations are easily adaptable to Java classfiles. This would provide a low-impact
addition of escape analysis optimizations for existing JVMs.

4. Evaluation

To evaluate the efficacy of our escape analysis, we performed the analysis for a number
of benchmarks. The benchmarks we selected are a subset of the applications provided
by the JavaGrande Forum [Jav] and a subset of the SPECjvm98 [SPE] benchmarks.
The benchmarks we selected are listed in Table 3.

Our method is by its definition less accurate at denoting the capturedness of an ob­
ject allocation than the traditional escape analysis. This loss of precision is acceptable
because by annotating declaration sites we gain verifiability. Likewise, by introduc­
ing an open world assumption, we lose accuracy but gain dynamic class loading with
escape analysis.

6

J avaGrande Benchmarks
euler

moldyn

Computational fluid dynamics

Molecular dynamics simulation

montecatlo Monte Carlo simulation

raytracer

search

3-dimensional ray tracer

Alpha-beta pruned search

SPECjvm Benchmarks
jess Java Expert Shell System

raytrace

db

javac

jack

3-dimensional ray tracer

SPEC Database benchmark

Java compiler

Java parser generator

Table 3: Description of benchmarks

To quantify this loss of precision, we counted the number of static allocations as­
signed to variables annotated as captured. This method was chosen to highlight the
coverage we have against the currently most thorough pointer analysis described by
Whaley and Rinard. While counting, an allocation site was considered to escape if it
was

• assigned to variable marked escaped 3

• returned from the method

• the exception in a throw statement

Each benchmark was analyzed under both open and closed world assumptions, and
always with runtime type checking. All escape annotations were made against the
canonicalized abstract syntax tree described above. Our compiler parses Java source,
and implements the escape analysis by performing multiple passes over the intermedi­
ate representation.

The results of the Whaley and Rinard analysis were obtained by inserting a cus­
tom counting pass into the PointerAnaiysis package of the FLEX research compiler.
The counting pass utilizes the points-to-graph to determine the escapedness for each
analyzed allocation site. It is important to note that the FLEX compiler infrastructure
begins with a Java classfile, and only analyzes methods that are reachable from a main
method. Therefore, a small variation in the calculated total number of allocation sites
exists between our analysis and their results.

Table 4 shows the number of static allocation sites that allocate captured objects
(over the total number of allocation sites). Objects allocated at these sites may be stack­
allocated, and synchronization of these objects can be removed. The type declarations
of each stack-allocatable object as well as occurrences in method signatures of method

3This includes assignements to array elements or a fields

7

parameters that do not escape inside are annotated with captured. On average, Whaley
and Rinard mark 36% of the static allocation sites are such sites.

Whaley and Rinard Our Analysis
Benchmark Sites Closed World Captured Sites Closed World Captured Open World Captured

euler 39 11 (28%) 39 9 (23%)
moldyn 7 2 (29%) 7 1 (14%)
montecarlo 41 22 (54%) 40 17 (43%)
raytracer 46 9 (20%) 44 4 (9%)
search 18 8 (44%) 19 3 (16%)
raytrace 129 55 (43%) 128 19 (15%)
jess 433 164 (38%) 424 148 (35%)
db 41 30 (73%) 41 24 (59%)
jack 209 123 (59%) 212 112 (53%)
javac 760 200 (26%) 793 150 (19%)
Total 1723 624 (36%) 1747 487 (28%)

Table 4: Comparison of captured allocation sites.

As expected, their comprehensive analysis marks a higher percentage of static al­
location sites captured. Our escape analysis fares quite well, however, marking on
average 28% allocation sites captured. Perhaps more interesting is how well the al­
gorithm performed in the open world case, covering an average of 24% of the static
allocation sites.

The unexpected performance of the analysis under an open world assumption seems
to suggest that significant numbers of variables reference only a single class through­
out their lifetimes. This pattern represents an ideal case for the runtime type analysis
to detect and take advantage of, allowing for a pruning of the invokable methods at a
given invocation site.

An advantage of Whaley and Rinard's algorithm is the explicit tracking of objects
through method calls, potentially through many method calls. The completeness of the
algorithm is part of what contributes to its large overhead. However, under both the
closed and open world of our analysis, this completeness does not seem to provide a
large advantage.

Object allocations inside loops warrant extra attention since they are potentially
executed many more times then allocations outside of loops. To better understand
how our analysis performs with respect to loops, we compare the relative number of
captured allocation sites within and outside of loops. (We considere only whether an
allocation site is located inside a loop or not, i.e, we ignore the nesti11g level of loops.)

The results in Tables 5 and 6 show what percentage of allocation sites located in
loops are marked captured as opposed to the percentage of allocation sites marked
captured outside of a loop. We found that the percentage of allocation sites captured
inside of loops is significantly higher than those captured outside of loops. It appears
that objects are normally more short-lived within loops and that our analysis benefits
from this.

8

9 (23%)
1 (14%)

12 (30%)
3 (7%)
3 (16%)
4 (3%)

138 (33%)
21 (51%)

103 (49%)
125 (16%)
419 (24%)

Allocations in Alloc. outside Captured Captured
Benchmark loop (AIL) loop (AOL) AIL AOL CAIL/AIL

euler 7 (18%) 32 (82%) 0 9 0%
moldyn 2 (29%) 5 (71 %) 0 1 0%
montecarlo 6 (15%) 34 (85%) 5 12 83%
raytracer 2 (5%) 42 (95%) 0 4 0%
search 3 (16%) 16 (84%) 3 0 100%
raytrace 14 (11%) 114 (89%) 1 18 7%
jess 71 (17%) 353 (83%) 26 122 37%
db 8 (20%) 33 (80%) 5 19 63%
jack 56 (26%) 156 (74%) 44 68 79%
javac 147 (19%) 646 (81 %) 29 121 20%
Total 316 (18%) 1431 (82%) 113 374 39%

Table 5: Distribution of captured allocation sites within loops under closed world as­
sumption

Allocations in Alloc. outside Captured Captured
Benchmark loop (AIL) loop (AOL) AIL AOL CAIUAIL

euler 7 (18%) 32 (82%) 0 9 0%
moldyn 2 (29%) 5 (71 %) 0 1 0%
montecarlo 6 (15%) 34 (85%) 4 8 67%
raytracer 2 (5%) 42 (95%) 0 3 0%
search 3 (16%) 16 (84%) 3 0 100%
raytrace 14 (11%) 114 (89%) 0 4 0%
jess 71 (17%) 353 (83%) 23 115 32%
db 8 (20%) 33 (80%) 5 16 63%
jack 56 (26%) 156 (74%) 44 59 79%
javac 147 (19%) 646 (81 %) 17 108 12%
Total 316 (18%) 1431 (82%) 96 323 30%

Table 6: Distribution of captured allocation sites within loops under open world as­
sumption

9

CAOUAOL

28%
20%
35%
10%
0%

16%
35%
58%
44%
19%
26%

CAOUAOL

28%
20%
24%

7%
0%
4%

33%
48%
38%
17%
23%

A large percentage of the static allocations, especially within the SPEC bench­
marks, is actually String concatenations. The standard method to deal with this op­
eration is to translate the concatenation into a series of append method calls of a
j ava. lang. StringBuffer object. The created string buffer is alive only long
enough to output the final concatenated string and in these series of operations, the
string buff er does not escape. The large number occurences of this pattern contribute
significantly to the effectiveness of the escape analysis.

The variance between total allocation sites found in Whaley and Rinard versus our
algorithm is primarily due to the aforementioned method the FLEX infrastructure uses
to determine methods to analyze. We have attempted to limit our analysis to only these
methods to present a more accurate comparison. Other deviations can be attributed to
semantic differences between source and bytecode.

Table 7 shows the coverage our algorithm achieves when compared with Whaley
and Rinard. For each benchmark, the percentage is number of allocation site our anal­
ysis marks as captured against the number of sites their analysis marks. On average,
we cover 66% of the static allocation sites in the closed world, and 56% in the open
world. This means that even with dynamic class loading, we can still find and po­
tentially optimize approximately half of the allocation sites that Whaley and Rinard's
analysis finds-and transmit this information to a just-in-time compiler in a verifiable
manner.

Benchmark 11 Closed World I Open World

euler 82% 82%
moldyn 50% 50%
montecarlo 77% 55%
raytracer 44% 33%
search 38% 38%
raytrace 35% 7%
jess 90% 84%
db 80% 70%
jack 91% 84%
javac 75% 63%
Total 66% 56%

Table 7: Measure of percentage of captured allocation sites pinpointed by our algorithm
as compared to Whaley and Rinard

5 Related Work

Lifetime analysis as dealt with in this paper was first described by Ruggieri and Murtagh [RM88].
The term escape analysis was coined by Park and Goldberg [PG92] in the context
of functional languages. Their work spawned work on algorithms, which represent
the escaping objects by integers [Deu97, Bla03]. In contrast, the most precise es-

10

cape analyses for Java use augmented points-to-graphs to model a program's behav­
ior [CGs+99, WR99].

With the exception of Gay and Steensgard's analysis [GSOO] our (closed world)
analysis is the only one of which we know that can be performed in time O(N · T)
where N is program size and T is the size of the class hierarchy. Their approach is also
similar to the phase 1 analysis in Bogda and HOlzle [BH99] with the major difference
that Bogda and HOlzle deal with alias sets instead of variables. In the case of the open
world assumption our runtime complexity is even O(N). Over all, our analysis can be
viewed as flow-insensitive variant of Gay and Steensgard's algorithm with the added
benefit of trivial verifiability.

Hartmann et al. [HAvRF03] use a similar analysis to ours (one of the authors of
their paper is also a co-author of this paper). They augment an SSA-based intermedi­
ate representation with type modifiers corresponding to "captured" vs. "may-escape".
Their method is predicated on SSA and not directly applicable to Java bytecode. The
method presented in this paper is much more lightweight and could be incorporated
into existing Java virtual machines with very little overhead.

6 Future Work

In order to extend the reach of our escape analysis, we are exploring ways to inte­
grate multidimensional arrays, instance fields, and array components into our notion of
capturedness while at the same time maintaining easy verifiability.

Currently, if a variable is used in different rOles - once holding an escaping refer­
ence and, at a different location in the code, holding a captured reference - then we
have to mark it as escaping. Maybe it warrants the effort to look for such cases and
split the variable in two with two different annotations.

7 Summary of Contributions and Conclusion

In this paper, we evaluated a verifiable annotation of escape analysis information for
the purpose of transferring the cost of analysis from code consumer to code producer.

Our method is the only such analysis that we know of that can support dynamic
loading.

Our benchmarks evaluated the various trade-offs of escape analysis along several
different axes: with respect to complexity, with respect to-open vs. closed world (with
or without dynamic loading of classes), and with respect to the payoff of the run-time
type analysis.

Our method is able to provide a safe performance boost at an almost negligible
overhead, targeting low- to medium-performance just-in-time compilers. At the same
time, it is completely complementary to any consumer-side escape analysis that a high­
end just-in-time compiler might still wish to perform.

Acknowledgements. We are thankful to Alexandro Sfilcianu for his help with the
FLEX compiler and to Peter Frohlich for his comments on earlier versions of this

11

paper.

References

[ANH99] A. Azevedo, A. Nicolau, and J. Hummel. Java annotation-aware just­
in-time compilation system. In ACM Java Grande Conference, pages
142-151, June 1999.

[BH99] Jeff Bogda and Urs Holzle. Removing unnecessary synchronization in
Java. In ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), 1999.

[Bla03] Bruno Blanchet Escape Analysis for Java(TM). Theory and Practice.
ACM Transactions on Programming La.nguages and Systems, 25(6):713-
775, November 2003.

[CGS+99] J. Choi, M. Gupta, M. Serrano, V. Shreedhar, and S. Midkiff. Escape
analysis for Java. In ACM SIG PLAN Conference on Object-Oriented Pro­
gramming Systems, La.nguages, and Applications (OOPSLA), November
1999.

[Deu97] Alain Deutsch. On the complexity of escape analysis. In Conference
Record of POPL '97: The 24TH ACM SIGPLAN-SIGACT Symposium on
Principles of Programming La.nguages, pages 358-371. ACM SIGACT
and SIGPLAN, ACM Press, 1997.

[GMP+oo] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. Eggers. Dye: An
expressive annotation-directed dynamic compiler for c. Technical Report
Tech Report UW-CSE-97-03-03, University of Washington, 2000.

[GSOO] D. Gay and B. Steensgard. Fast escape analysis and stack allocation
for object-based programs. In Compiler Construction 2000, Berlin, Ger­
many, March 2000.

[HAvRF03] Andreas Hartmann, Wolfram Amme, Jeffrey von Ronne, and Michael
Franz. Code annotation for safe and efficient dynamic object resolution.
Electronic Notes in Theoretical Computer Science, 82(2), 2003.

[Jav]

[JKOO]

[KCOl]

Java Grande Forum. The Java Grande Forum benchmark suite.

Joel Jones and Samuel Kamin. Annotating Java class files with vir­
tual registers for performance. Concurrency: Practice and Experience,
12(6):389-406, May 2000.

Chandra Krintz and Brad Calder. Using annotations to reduce dynamic
optimization time. In Proceedings of the ACM SIGPLAN 'OJ Conference
on Programming La.nguage Design and Implementation, pages 156-167,
Snowbird, Utah, June 20-22, 2001. SIGPLAN Notices, 36(5), May 2001.

12

[LH02]

[PG92]

Ondrej Lhotak and Laurie Hendren. Run-time evaluation of opportuni­
ties for object inlining in java. In Proceedings of the 2002 joint ACM­
ISCOPE conference on Java Grande (JGI-02), pages 175-184, New
York, November 3-5 2002. ACM Press.

Young Gil Park and Benjamin Goldberg. Escape analysis on lists. In Pro­
ceedings of the 5th ACM SIGPLAN Conference on Programming Lan­
guage Design and Implementation, pages 116-127, 1992.

[PQVR+OO] P. Pominville, F. Qian, R. Vallee-Rai, L. Hendren, and C. Verbrugge. A
Framework for Optimizing Java Using Attributes. In Sable Technical
Report No. 2000-2, 2000.

[ReiOl]

[RM88]

[SPE]

[WR99]

Fermin Reig. Annotations for portable intermediate languages. In Nick
Benton and Andrew Kennedy, editors, Electronic Notes in Theoretical
Computer Scienc~, volume 59. Elsevier Science Publishers, 2001.

C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynamically allo­
cated objects. In Conference Record of the Conference on Principles
of Programming Languages, pages 285-293. ACM SIGACT and SIG­
PLAN, ACM Press, 1988.

SPEC NM98 benchmarks. See online at http://www.spec.org/osg/jvm98
for more information.

J. Whaley and M. Rinard. Compositional pointer and escape analysis
for java programs. In Proceedings of the 14th Annual ACM SIG PLAN
Conference on Object-Oriented Programming Systems, Languages, and
{ipplications, Denver, CO, November 1999.

13

