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Abstract 

Escape analysis is highly beneficial for optimizfog object-oriented programming 
languages such as Java, significantly reducing memory management and synchroniza­
tion overhead. However, existing escape analysis algorithms are generally too heavy­
weight to be applicable in just-in-time compilation contexts. 

We present an alternative analysis that is less precise than traditional escape analy­
sis, but that can be verified extremely efficiently. Hence, it becomes feasible to perform 
the analysis ahead of time and ship its result as an annotation with the bytecode, without 
sacrificing safety at the code consumer. In contrast, existing escape-analysis annotation 
approaches are unsafe. Moreover, unlike any other escape analysis that we know of, 
our method optionally provides for dynamic class loading, which is necessary for full 
Java compatibility. 

Benchmarks indicate that our verifiable analysis can pinpoint on average 66% of 
all non-escaping allocation sites (56% when dynamic loading is supported), with neg­
ligible space overhead for the transport of annotations and negligible time overhead for 
the verification. 



Contents 

1 Introduction 2 

2 Escape Analysis 3 

3 Minimal Annotations and Speedy Verification 6 

4 Evaluation 6 

5 Related Work 10 

6 Future Work 11 

7 Summary of Contributions and Conclusion 11 

1 



1 Introduction 

Just-in-time compilation systems for mobile code don't always use the best available 
optimization algorithms. Many of the analyses and optimizations that are common­
place in off-line compilers are simply too time-consuming to perform while an interac­
tive user is waiting for program execution to commence. As a result, most just-in-time 
compilers are skewed towards compilation speed, rather than code quality. 

Annotation-guided optimization systems [KCOl, ANH99, JKOO, PQVR+oo, GMP+oo, 
ReiOl] try to bridge this conflict between compilation speed and code quality. In these 
systems, analyses are performed off-line and appended to the mobile code as program 
annotations. This reduces the just-in-time compilation overhead at the code consumer 
and enables optimizations that would otherwise be too time consuming to perform on­
line. 

An example of such a complex program analysis is escape analysis [WR99, CGs+99, 
BH99], a technique that identifies objects that can be allocated on the stack as opposed 
to on the heap. Escape analysis can also reveal when objects are accessible only to a 
single thread. This information can then be used to eliminate unnecessary synchroniza­
tion overhead. 

Escape analysis is not just time consuming, but also requires lots of memory for the 
internal graph representations of each method in a program [WR99, CGs+99, BH99]. 
On the other hand, benchmarks indicate that its use can result in substantial perfor­
mance gains, even in case of more simplified linear-time analyses [GSOO]. Ideally, we 
would wish to annotate programs with escape analysis information that can then be 
transported with the program and exploited by an annotation-aware just-in-time com­
pilation system at the target site. 

However, there are two primary drawbacks to the use of such annotations for escape 
analysis: first, they introduce transfer overhead (for the extra annotation information) 
and second and more seriously, their use is unsafe. That is, if someone accidentally 
or maliciously changed the escape-analysis result recorded for an allocation site from 
"heap allocated" to "stack allocated", then the memory safety of the whole target sys­
tem would be in jeopardy. 

Hence, one would need to verify such annotations, similar to the way that Java 
bytecode itself is verified. Verification of traditional escape analysis annotations of al­
location sites, however, would essentially be as complicated as performing the original 
analysis in the first place, negating the original objective of reducing the workload on 
the code consumer. We are not aware of any prior work on safe annotations of es­
cape analysis that would be applicable to Java bytecode, i.e., annotations that could 
actually be verified at the target. All published annotation-based solutions in this do­
main [ANH99, JKOO, PQVR+oo] are unsafe. 

In this paper, we evaluate a simple escape analysis annotation scheme 

• that can be performed by the code producer in linear time. 

• that has a very small space overhead for the annotations, and 

• that can be verified with negligible time overhead by the code consumer. 
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In the following, we briefly describe escape analysis and then introduce our variable 
partitioning scheme and its impact on the precision of the analysis. We then present 
benchmarks to quantify this impact (Section 4 ). Following this are sections on related 
work (Section 5) and future work (Section 6). A concluding section summarizes our 
contributions. 

2 Escape Analysis 

Escape analysis identifies captured objects, i.e., objects with lifetimes that do not ex­
ceed that of the method in which they are created. Captured object identification en­
ables several optimizations. Most importantly, captured objects can be allocated on 
the stack avoiding the overheads of memory allocation and garbage collection. Fur­
thermore, all synchronization of captured objects can be eliminated since only a single 
thread can ever access a captured object. Both optimizations have been shown to signif­
icantly improve program performance [WR99, cos+99, BH99]. Capturedness enables 
further minor optimizations, for example, dead store removal and object inlining, i.e., 
replacing objects by local variables representing their fields [GSOO, HAvRF03, LH02]. 

Commonly, escape analysis is achieved by constructing a variant of a points-to­
graph that models object lifetimes and object aliasing. Based on this model, the anal­
ysis indicates which objects are captured by the method in which they are created. 
Whaley and Rinard's escape analysis [WR99] follows this approach. 

Instead of considering individual objects, our method instead looks at the (pointer) 
variables that objects are attached to. Intuitively, if an object during its lifetime is only 
ever pointed to by variables that don't escape, then the object won't escape. A variable 
is considered captured if it is never returned from its defining method, isn't passed as 
an escaping parameter to some other method, and is never assigned to another variable 
that isn't also guaranteed to be captured, 

Generally speaking, our analysis traverses the code to be annotated and produces a 
list of constraints on captured variables. This constraint equation is then solved so that 
the number of captured variables is maximal. 

For the purpose of presentation we will look at slightly transformed source code. 1 

Table 1 illustrates the relevant conceptual transformations. First of all, we make the 
otherwise implicit declaration of the this parameter explicit in order to be able to 
uniformly treat all parameters including the this reference. See the transformations 
for instance method and constructor declarations with their invocations changed cor­
respondingly. ·Constructors are dealt with in a special way by splitting the creation of 

· new objects into two consecutive statements. The first of which returns a reference to 
the allocated and zeroed object. The second statement calls the corresponding initial­
izer with the otherwise implicit this reference as argument for the first parameter. 
Formally, initializers are treated like regular method calls. 

Our analysis produces a boolean predicate esc( v) and a runtime type property 
rtt( v) for every local variable v and parameter p. The value of rit ( v) is either a class 
Ci, uninitialized (l), or unknown (T). These elements form a fiat lattice with partial 

10ur implementation actually operates on a canonicalized abstract syntax tree. 
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Before After 

Instance Method class c { ... class c { ... 
Declaration Cr et m(CP1 p1, ... ) { Cr et m(C this, CPl p1, ... ) { 

... } ... } 
... } ... } 

Instance Method vo .m(v1, ... ) m(vo,v1, ... ) 
Call 
Constructor class c { ... class c { ... 
Declaration2 C(CPl p1, ... ){ void initc (C this, Cp1 

... } ... } 
... } ... } 

Constructor Call Vo = new C (v1, .. . Vn) Vo = new C; 
initc ( vo, vi, ... Vn) 

Table 1: Conceptual source code transformations 

order ::::;; and T being the least upper bound of any two distinct elements. The meaning 
of rtt( v) = Tis "v's runtime type is its declared type or any subtype thereof'. 

The runtime type property has to obey certain constraints that are generated for 
code fragments as shown in Table 2. Assigning a new object of class C to a variable 
v lifts rtt( v) to at least C. Note that if our analysis encounters another assignment of 
a new instance of class D to v then rtt(v) becomes T unless D = C. We conserva­
tively assume the runtime type of static and non-static fields and method results to be 
unknown. ,The runtime type constraint corresponding to an assignment vo=v1 among 
variables enforces that "v0 is at least initialized with v1 's runtime type". 

Our analysis specifies the boolean predicate esc ( v) for local variables or parameters 
v. If esc( v) is false we say that v is captured. Note the difference to most other escape 
analyses, which model capturedness of individual objects. The meaning of the esc( v) 
predicate is roughly "an object referenced through v might escape". Therefore, if an 
object o is only referenced by captured variables, then o is captured. This does not 
mean that a captured variable always references a captured object! For example, it is 
perfectly in accordance with our analysis to assign an escaping variable to a captured 
variable. 

The constraints for a series of representative source code statements are given in 
Table 2. The first set of esc( v) constraints define our notion of "directly escaping": 
References escape if they are returned, thrown, or assigned to static variables, fields, or 
array elements. We only have two dependent esc( v) constraints (listed under combined 
constraints). First, we exclude the assignment of a captured variable to an escaped 
one-i.e., such an assignment by definition might cause the variable to escape. 

Second, we assume all method results to escape. We also ensure that passing a 
variable Vi as an argument to a method call m lets this variable escape if the corre­
sponding parameter Pi could escape. For an object-oriented language like Java, the 
former necessitates knowledge of the type hierarchy in order to determine all method 
declarations m' that could be invoked when calling m. Again, we chose a very conser­
vative approximation of what we mean by "invokable". If mis a static, private, or final 
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Escape Constraints 
return v 

throw v 

s = v 

Vo· f = V1 
vo [ ... ] = v1 

Runtime Type Constraints 

esc(v) 
esc(v) 
esc(v) 
esc( v1) 
esc(v1) 

v new C C ~ rtt(v) 
v = s T ~ rtt(v) 
vo = v1 . f T ~ rtt ( vo) 

Combined Constraints 
Vo v1 

Vo = m ( v1, v2, ... Vn) 

rtt(v1) ~ rtt(vo) /\ esc(vo):::;. esc(v1) 

T ~ rtt(vo) /\ esc(vo) /\ 
V parameters pi' of method declarations m' invokable as m: 
esc(pi

1

):::;. esc(vi) 

Table 2: Representative statements and their corresponding constraints where v, vi 
stand for local variables or formal parameters, s for static fields, f for instant field 
names, m for method names, and C for classes. 

method then there is exactly one invokable implementation; otherwise the invokable 
methods depend on the runtime type property of the self reference. rtt ( v1) is either a 
specific class C, in which case only C's implementation of mis invokable, or rtt(v1) 
is unknown, i.e., T, in which case all implementations of m for v1 's declared type or 
any ofv1 's subclasses are invokable. 

Here is the only place where supporting dynamic loading produces different results. 
In a "closed world" without dynamic loading, a whole program analysis can inspect all 
subclasses of v1 's declared type. In an "open world" in which additional classes can be 
added dynamically at any time, this is not possible. We have to assume the worst case, 
so all arguments of m escape. Therefore the escape constraints produced by a method 
invocation under the open world assumption shrinks to esc (Pi) for all parameters. 

Given an allocation·site 

v = new C 

the allocated object o is captured if the variable v is captured. This holds because 
by our definition "no object can escape through the v" and v is the only reference 
to o; therefore o cannot escape. Arrays are handled like objects and array elements 
are treated as object fields. Therefore a one-dimensional array can be captured but 
its elements escape and multi-dimensional arrays can only be captured in their first 
dimension due to the fact that they are modelled as nested one-dimensional arrays in 
Java. 
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Newly constructed arrays that are assigned to captured variables or passed as cap­
tured parameters are captured. As mentioned before, the array's components are not 
captured. Therefore multidimensional arrays are only "captured in their first dimen­
sion". 

3 Minimal Annotations and Speedy Verification 

In order to transport the analysis results we mark local and formal variables v at their 
declaration site with their esc( v) predicate and their runtime type property rlt( v ). Ac­
tually, the property rlt( v) can be turned into a boolean predicate assuming we allow for 
some simple code transformations. Note that rlt( v) = J_ means that vis not the target 
of a non-null assignment in the program and all its occurrences in the program could 
be replaced by null. We can therefore ignore the case of rlt(v) = J_, The boolean 
version of rlt(v) would mean "v's runtime type is equal to its declared type D". This 
definition leaves only the cases uncovered where rtt( v) = C # D. But since Chas to 
be a subclass of D and all assignments to v are-by definition of our constraints-of 
declared and runtime type C, we can change v's declared type to C. 

The decision of whether to allocate an object on the stack or on the heap is made at 
each object (and array) allocation site as described in the previous section. 

Verifying the annotations is as easy as verifying the _constraints from Table 2 while 
traversing the code (either while loading the code or while compiling it). In particular, 
during this verification, coming across an assignment of a captured variable to an es­
caping variable implies that the program or the annotations have been tampered with 
after the analysis was performed. 

Note that in both the open and the closed world scenarios we analyze the library 
methods that are called by the subject program. Even in the open world case, our 
analysis depends on these annotations to coincide between code producer and receiver. 
Therefore, this has to be checked at link-time. 

Even though our implementation augments canonicalized abstract syntax trees, the 
annotations are easily adaptable to Java classfiles. This would provide a low-impact 
addition of escape analysis optimizations for existing JVMs. 

4. Evaluation 

To evaluate the efficacy of our escape analysis, we performed the analysis for a number 
of benchmarks. The benchmarks we selected are a subset of the applications provided 
by the JavaGrande Forum [Jav] and a subset of the SPECjvm98 [SPE] benchmarks. 
The benchmarks we selected are listed in Table 3. 

Our method is by its definition less accurate at denoting the capturedness of an ob­
ject allocation than the traditional escape analysis. This loss of precision is acceptable 
because by annotating declaration sites we gain verifiability. Likewise, by introduc­
ing an open world assumption, we lose accuracy but gain dynamic class loading with 
escape analysis. 
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J avaGrande Benchmarks 
euler 

moldyn 

Computational fluid dynamics 

Molecular dynamics simulation 

montecatlo Monte Carlo simulation 

raytracer 

search 

3-dimensional ray tracer 

Alpha-beta pruned search 

SPECjvm Benchmarks 
jess Java Expert Shell System 

raytrace 

db 

javac 

jack 

3-dimensional ray tracer 

SPEC Database benchmark 

Java compiler 

Java parser generator 

Table 3: Description of benchmarks 

To quantify this loss of precision, we counted the number of static allocations as­
signed to variables annotated as captured. This method was chosen to highlight the 
coverage we have against the currently most thorough pointer analysis described by 
Whaley and Rinard. While counting, an allocation site was considered to escape if it 
was 

• assigned to variable marked escaped 3 

• returned from the method 

• the exception in a throw statement 

Each benchmark was analyzed under both open and closed world assumptions, and 
always with runtime type checking. All escape annotations were made against the 
canonicalized abstract syntax tree described above. Our compiler parses Java source, 
and implements the escape analysis by performing multiple passes over the intermedi­
ate representation. 

The results of the Whaley and Rinard analysis were obtained by inserting a cus­
tom counting pass into the PointerAnaiysis package of the FLEX research compiler. 
The counting pass utilizes the points-to-graph to determine the escapedness for each 
analyzed allocation site. It is important to note that the FLEX compiler infrastructure 
begins with a Java classfile, and only analyzes methods that are reachable from a main 
method. Therefore, a small variation in the calculated total number of allocation sites 
exists between our analysis and their results. 

Table 4 shows the number of static allocation sites that allocate captured objects 
(over the total number of allocation sites). Objects allocated at these sites may be stack­
allocated, and synchronization of these objects can be removed. The type declarations 
of each stack-allocatable object as well as occurrences in method signatures of method 

3This includes assignements to array elements or a fields 
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parameters that do not escape inside are annotated with captured. On average, Whaley 
and Rinard mark 36% of the static allocation sites are such sites. 

Whaley and Rinard Our Analysis 
Benchmark Sites Closed World Captured Sites Closed World Captured Open World Captured 

euler 39 11 ( 28%) 39 9 ( 23%) 
moldyn 7 2 ( 29%) 7 1 ( 14%) 
montecarlo 41 22 ( 54%) 40 17 ( 43%) 
raytracer 46 9 ( 20%) 44 4 ( 9%) 
search 18 8 ( 44%) 19 3 ( 16%) 
raytrace 129 55 ( 43%) 128 19 ( 15%) 
jess 433 164 ( 38%) 424 148 ( 35%) 
db 41 30 ( 73%) 41 24 ( 59%) 
jack 209 123 ( 59%) 212 112 ( 53%) 
javac 760 200 ( 26%) 793 150 ( 19%) 
Total 1723 624 ( 36%) 1747 487 ( 28%) 

Table 4: Comparison of captured allocation sites. 

As expected, their comprehensive analysis marks a higher percentage of static al­
location sites captured. Our escape analysis fares quite well, however, marking on 
average 28% allocation sites captured. Perhaps more interesting is how well the al­
gorithm performed in the open world case, covering an average of 24% of the static 
allocation sites. 

The unexpected performance of the analysis under an open world assumption seems 
to suggest that significant numbers of variables reference only a single class through­
out their lifetimes. This pattern represents an ideal case for the runtime type analysis 
to detect and take advantage of, allowing for a pruning of the invokable methods at a 
given invocation site. 

An advantage of Whaley and Rinard's algorithm is the explicit tracking of objects 
through method calls, potentially through many method calls. The completeness of the 
algorithm is part of what contributes to its large overhead. However, under both the 
closed and open world of our analysis, this completeness does not seem to provide a 
large advantage. 

Object allocations inside loops warrant extra attention since they are potentially 
executed many more times then allocations outside of loops. To better understand 
how our analysis performs with respect to loops, we compare the relative number of 
captured allocation sites within and outside of loops. (We considere only whether an 
allocation site is located inside a loop or not, i.e, we ignore the nesti11g level of loops.) 

The results in Tables 5 and 6 show what percentage of allocation sites located in 
loops are marked captured as opposed to the percentage of allocation sites marked 
captured outside of a loop. We found that the percentage of allocation sites captured 
inside of loops is significantly higher than those captured outside of loops. It appears 
that objects are normally more short-lived within loops and that our analysis benefits 
from this. 
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1 ( 14%) 

12 ( 30%) 
3 ( 7%) 
3 ( 16%) 
4 ( 3%) 

138 ( 33%) 
21 ( 51%) 

103 ( 49%) 
125 ( 16%) 
419 ( 24%) 



Allocations in Alloc. outside Captured Captured 
Benchmark loop (AIL) loop (AOL) AIL AOL CAIL/AIL 

euler 7 ( 18%) 32 ( 82%) 0 9 0% 
moldyn 2 ( 29%) 5 ( 71 %) 0 1 0% 
montecarlo 6 ( 15%) 34 ( 85%) 5 12 83% 
raytracer 2 ( 5%) 42 ( 95%) 0 4 0% 
search 3 ( 16%) 16 ( 84%) 3 0 100% 
raytrace 14 ( 11%) 114 ( 89%) 1 18 7% 
jess 71 ( 17%) 353 ( 83%) 26 122 37% 
db 8 ( 20%) 33 ( 80%) 5 19 63% 
jack 56 ( 26%) 156 ( 74%) 44 68 79% 
javac 147 ( 19%) 646 ( 81 %) 29 121 20% 
Total 316 ( 18%) 1431 ( 82%) 113 374 39% 

Table 5: Distribution of captured allocation sites within loops under closed world as­
sumption 

Allocations in Alloc. outside Captured Captured 
Benchmark loop (AIL) loop (AOL) AIL AOL CAIUAIL 

euler 7 ( 18%) 32 ( 82%) 0 9 0% 
moldyn 2 ( 29%) 5 ( 71 %) 0 1 0% 
montecarlo 6 ( 15%) 34 ( 85%) 4 8 67% 
raytracer 2 ( 5%) 42 ( 95%) 0 3 0% 
search 3 ( 16%) 16 ( 84%) 3 0 100% 
raytrace 14 ( 11%) 114 ( 89%) 0 4 0% 
jess 71 ( 17%) 353 ( 83%) 23 115 32% 
db 8 ( 20%) 33 ( 80%) 5 16 63% 
jack 56 ( 26%) 156 ( 74%) 44 59 79% 
javac 147 ( 19%) 646 ( 81 %) 17 108 12% 
Total 316 ( 18%) 1431 ( 82%) 96 323 30% 

Table 6: Distribution of captured allocation sites within loops under open world as­
sumption 
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28% 
20% 
35% 
10% 
0% 

16% 
35% 
58% 
44% 
19% 
26% 

CAOUAOL 

28% 
20% 
24% 

7% 
0% 
4% 

33% 
48% 
38% 
17% 
23% 



A large percentage of the static allocations, especially within the SPEC bench­
marks, is actually String concatenations. The standard method to deal with this op­
eration is to translate the concatenation into a series of append method calls of a 
j ava. lang. StringBuffer object. The created string buffer is alive only long 
enough to output the final concatenated string and in these series of operations, the 
string buff er does not escape. The large number occurences of this pattern contribute 
significantly to the effectiveness of the escape analysis. 

The variance between total allocation sites found in Whaley and Rinard versus our 
algorithm is primarily due to the aforementioned method the FLEX infrastructure uses 
to determine methods to analyze. We have attempted to limit our analysis to only these 
methods to present a more accurate comparison. Other deviations can be attributed to 
semantic differences between source and bytecode. 

Table 7 shows the coverage our algorithm achieves when compared with Whaley 
and Rinard. For each benchmark, the percentage is number of allocation site our anal­
ysis marks as captured against the number of sites their analysis marks. On average, 
we cover 66% of the static allocation sites in the closed world, and 56% in the open 
world. This means that even with dynamic class loading, we can still find and po­
tentially optimize approximately half of the allocation sites that Whaley and Rinard's 
analysis finds-and transmit this information to a just-in-time compiler in a verifiable 
manner. 

Benchmark 11 Closed World I Open World 

euler 82% 82% 
moldyn 50% 50% 
montecarlo 77% 55% 
raytracer 44% 33% 
search 38% 38% 
raytrace 35% 7% 
jess 90% 84% 
db 80% 70% 
jack 91% 84% 
javac 75% 63% 
Total 66% 56% 

Table 7: Measure of percentage of captured allocation sites pinpointed by our algorithm 
as compared to Whaley and Rinard 

5 Related Work 

Lifetime analysis as dealt with in this paper was first described by Ruggieri and Murtagh [RM88]. 
The term escape analysis was coined by Park and Goldberg [PG92] in the context 
of functional languages. Their work spawned work on algorithms, which represent 
the escaping objects by integers [Deu97, Bla03]. In contrast, the most precise es-
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cape analyses for Java use augmented points-to-graphs to model a program's behav­
ior [CGs+99, WR99]. 

With the exception of Gay and Steensgard's analysis [GSOO] our (closed world) 
analysis is the only one of which we know that can be performed in time O(N · T) 
where N is program size and T is the size of the class hierarchy. Their approach is also 
similar to the phase 1 analysis in Bogda and HOlzle [BH99] with the major difference 
that Bogda and HOlzle deal with alias sets instead of variables. In the case of the open 
world assumption our runtime complexity is even O(N). Over all, our analysis can be 
viewed as flow-insensitive variant of Gay and Steensgard's algorithm with the added 
benefit of trivial verifiability. 

Hartmann et al. [HAvRF03] use a similar analysis to ours (one of the authors of 
their paper is also a co-author of this paper). They augment an SSA-based intermedi­
ate representation with type modifiers corresponding to "captured" vs. "may-escape". 
Their method is predicated on SSA and not directly applicable to Java bytecode. The 
method presented in this paper is much more lightweight and could be incorporated 
into existing Java virtual machines with very little overhead. 

6 Future Work 

In order to extend the reach of our escape analysis, we are exploring ways to inte­
grate multidimensional arrays, instance fields, and array components into our notion of 
capturedness while at the same time maintaining easy verifiability. 

Currently, if a variable is used in different rOles - once holding an escaping refer­
ence and, at a different location in the code, holding a captured reference - then we 
have to mark it as escaping. Maybe it warrants the effort to look for such cases and 
split the variable in two with two different annotations. 

7 Summary of Contributions and Conclusion 

In this paper, we evaluated a verifiable annotation of escape analysis information for 
the purpose of transferring the cost of analysis from code consumer to code producer. 

Our method is the only such analysis that we know of that can support dynamic 
loading. 

Our benchmarks evaluated the various trade-offs of escape analysis along several 
different axes: with respect to complexity, with respect to-open vs. closed world (with 
or without dynamic loading of classes), and with respect to the payoff of the run-time 
type analysis. 

Our method is able to provide a safe performance boost at an almost negligible 
overhead, targeting low- to medium-performance just-in-time compilers. At the same 
time, it is completely complementary to any consumer-side escape analysis that a high­
end just-in-time compiler might still wish to perform. 

Acknowledgements. We are thankful to Alexandro Sfilcianu for his help with the 
FLEX compiler and to Peter Frohlich for his comments on earlier versions of this 
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