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ON QUASIHOMOMORPHISMS WITH NONCOMMUTATIVE

TARGETS

KOJI FUJIWARA AND MICHAEL KAPOVICH

Abstract. We describe structure of quasihomomorphisms from arbitrary groups
to discrete groups. We show that all quasihomomorphisms are “constructible”, i.e.,
are obtained via certain natural operations from homomorphisms to some groups
and quasihomomorphisms to abelian groups. We illustrate this theorem by de-
scribing quasihomomorphisms to certain classes of groups. For instance, every
unbounded quasihomomorphism to a torsion-free hyperbolic group H is either a
homomorphism to a subgroup of H or is a quasihomomorphism to an infinite cyclic
subgroup of H .

1. Introduction

Let G be a group and H be a group equipped with a proper left-invariant metric
d (e.g., a finitely-generated group, equipped with a word metric). A map f : G→ H
is called a quasihomomorphism if there exists a constant C such that

d(f(xy), f(x)f(y)) ≤ C

for all x, y ∈ G. In the case when H is discrete (and in this paper we limit ourselves
only to this class of groups), f is a quasihomomorphism if and only if the set of defects
of f

D(f) = {f(y)−1f(x)−1f(xy) : x, y ∈ G}

is finite. A quasihomomorphism with values in Z (or R, equipped with the standard
metric) is called a quasimorphism.

The concept of quasihomomorphisms goes back to S. Ulam [33, Chapter 6], who
asked if they are close to group homomorphisms. There is a substantial literature on
constructing exotic quasimorphisms, i.e., ones which are not close to homomorphisms,
going back to the work of R. Brooks [5], see e.g. [9] and references therein; we will
refer to quasimorphisms constructed via this procedure as Brooks quasimorphisms.
On the other hand, very little is known about quasihomomorphisms with values in
noncommutative groups. The first Ulam-stability theorem was proven by Kazhdan
[23], namely, that ǫ-quasihomomorphisms from amenable groups into the group of
unitary transformations of any Hilbert space are ǫ′-close to homomorphisms (with
limǫ→0 ǫ

′ = 0). It was proven by Shtern [32] (among other things) that any quasiho-
momorphism from an amenable group G into GL(n,R) is a bounded perturbation of
a homomorphism. Ozawa [28] proved that lattices in SL(n,K) (n ≥ 3, K is a local
field) do not admit unbounded quasihomomorphisms to hyperbolic groups. On the
negative side, Burger, Ozawa and Thom proved in [8] that every group containing a
free nonabelian subgroup, is not Ulam-stable, in the sense of Kahzdan’s paper. Rolli
[31] constructed exotic quasihomomorphisms of free groups into groups admitting
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2 KOJI FUJIWARA AND MICHAEL KAPOVICH

bi-invariant metrics. After this paper was written, Danny Calegari shared with us
an email from Bill Thurston, who noted that“About quasi-morphisms to non-abelian
groups: they may be hard to construct in general, but it looks like the Heisenberg
group will be one interesting case.” In the same email Thurston outlined a con-
struction of exotic quasihomomorphisms from hyperbolic 3-manifold groups into the
3-dimensional Heisenberg groups using contact structures on 3-manifolds, although
filling in details requires some work; for instance, it is far from clear why quasihomo-
morphisms defined by Thurston are not close to homomorphisms. It follows from our
main result that, for this to be the case, at the very least, one has to assume that
the 3-manifold M in Thurston’s construction satisfies b2(M) ≥ 2. A construction of
quasihomomorphisms (not close to homomorphisms) from arbitrary hyperbolic groups
to Heisenberg groups, which works in greater generality, but is purely algebraic and
avoids contact structures, is presented in our Example 2.11.

Calegari also brought the paper [10] to our attention, where a certain non-commu-
tative version of quasimorphisms into R is discussed. Furthermore, after this paper
was written we received a preprint by Hartnick and Schweitzer [18], where they proved
existence of exotic quasihomomorphisms of free groups; however, their definition of
quasihomomorphisms is different from Ulam’s. We will discuss their work in more
detail in section 9, together with few other generalizations of homomorphisms. In
that section we also show that, while Brooks’ construction does not generalize to
self-quasihomomorphisms of free groups, it does go through when we replace Ulam’s
notion of a quasihomomorphism with the one of a middle-quasihomomorphism.

The goal of this paper is to explain why it is so “hard to construct” quasihomo-
morphisms to noncommutative groups which are neither homomorphisms, nor come
from quasihomomorphisms with commutative targets, provided that H is a discrete
group.

In order to formulate our main theorem we will need a definition:

Definition 1.1. A quasihomomorphism f : G → H is constructible if there exists
a finite-index subgroup Go < G, a subgroup Ho < H , a finitely generated abelian
subgroup A < Ho central in Ho, and a quasihomomorphism fo : Go → Ho within
finite distance from f |Go such that:

The projection f ′ : Go → Q = Ho/A of fo is a homomorphism.

1 ✲ Go
✲ G

H

f

❄

1 ✲ A ✲ Ho

fo

❄

✲ Q ✲

f
′

✲

1

Special subclasses of quasihomomorphisms include:
1. Almost homomorphisms, i.e., maps f : G → H ′ < H , where H ′ contains a

finite normal subgroup K such that the projection of f to H ′/K is a homomorphism.
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2. Products of quasimorphisms: f : G → H ′ ∼= Z
n < H ; in this case f =

(f1, . . . , fn), where each fi : G→ Z is a quasimorphism.

When we cannot specify the quotient group Q in Definition 1.1, but can only claim
that it belongs to a certain class C of groups, we will say that the quasihomomorphism
f in this definition is constructible from quasihomomorphisms to groups in the class

C.

Our main theorem is:

Theorem 1.2. Every quasihomomorphism f : G→ H is constructible.

We will prove this theorem in section 3 (see Theorem 3.6).

Remark 1.3. Theorem 1.2 essentially reduces the study of quasihomomorphisms
G → H to analyzing quasihomomorphisms Go → A, homomorphisms f ′ : Go → Q
and cohomology classes [ω] ∈ H2(Q;A) with bounded pull-back classes f ′∗([ω]) ∈
H2(Go;A), see section 2.4.1.

We also show how one can sharpen the main theorem by restricting to special
classes of target groups, e.g., some periodic groups (Example 3.3), hyperbolic groups
(Theorem 4.1), CAT (0) groups (Theorem 5.4), mapping class groups (Theorem 7.1)
and groups acting on simplicial trees (Lemma 8.3). For instance:

1. All quasihomomorphisms to free Burnside groups B(n,m) (with large odd
exponent m) are bounded.

2. All unbounded quasihomomorphisms to hyperbolic groups are either almost
homomorphisms or have elementary images.

3. All quasihomomorphisms G → H = Map(Σ) to the mapping class group are
constructible from homomorphisms to other mapping class groups of surfaces (proper
subsurfaces in Σ), see Theorem 7.1 for the more precise statement.

In particular, we will show that higher rank irreducible lattices do not admit
unbounded quasihomomorphisms to hyperbolic groups and to mapping class groups.
This sharpens the main result of Ozawa in [28], since he could prove it only for lattices
in SL(n,K).

Denis Osin [27] extended our results on rigidity of quasihomomorphisms to hy-
perbolic groups and mapping class groups, to the case of relatively hyperbolic tar-
get groups and target groups which act acylindrically on Gromov–hyperbolic spaces.
Lastly, we note that Nicolaus Heuer in his thesis [19] studied quasihomomorphisms
to Lie groups.

Acknowledgements. We are grateful to the Max-Plank-Institute for Mathe-
matics in Bonn, where this paper was written. We are also grateful to Marc Burger,
Danny Calegari, Ursula Hamenstädt, Alessandra Iozzi, Gilbert Levitt, Dan Margalit,
Igor Mineyev, Denis Osin, Narutaka Ozawa, Andy Putman, Mark Sapir and An-
dreas Thom for useful conversations, references and corrections. The first author is
supported by Grant-in-Aid for Scientific Research (No. 23244005, 15H05739). The
second author was also supported by the NSF grant DMS-12-05312. We are grateful
to the referee for useful comments.
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2. Preliminaries

In this section we collect some basic facts about quasihomomorphisms.

2.1. Definition and notation. Throughout the paper (except for §9), we will be
considering quasihomomorphisms to discrete groups, denoted H , equipped with a
proper metric d (whose choice will be suppressed in our notation). The reader can
think of a finitely-generated group equipped with a word metric as the main example.
Set |h| = d(1, h).

Definition 2.1. Suppose that a map f : G → H between groups has the property
that f(G) is contained in a subgroup J < H , J contains a finite normal subgroup
K ⊳ J , such that the projection f̄ : G→ J̄ = J/K is a homomorphism. We then will
refer to f as an almost homomorphism, it is a homomorphism modulo a finite normal
subgroup (in the range of f).

Clearly, every almost homomorphism is a quasihomomorphism.
A quasihomomorphism f : G → H is called bounded if its image is a bounded

(i.e., finite) subset of H . Note that every map f : G → H with bounded image is
automatically a quasihomomorphism.

A map f : G → H is a quasiisomorphism if it is a quasihomomorphism which
admits a quasiinverse, i.e., a quasihomomorphism f ′ : G→ H such that

dist(f ′ ◦ f, id) <∞, dist(f ◦ f ′, id) <∞.

Here and in what follows, for maps f1, f2 : X → Y to a metric space (Y, dY ),

dist(f1, f2) = sup
x∈X

dY (f1(x), f2(x)).

A quasiisomorphism is strict if f ′ = f−1. Two groups G,H are (strictly) quasiisomor-
phic to each other if there exists a (strict) quasiisomorphism between these groups.

In what follows we will frequently use the notation NR(S) ⊂ H to denote the
R-neighborhood of a subset S in a discrete group H equipped with a proper metric.
We will also use the notation h1 ∼ h2 for elements h1, h2 ∈ H to denote that

d(h1, h2) ≤ Const

where Const is a certain uniform constant (which is not fixed in advance). Instead
of the notation ∼, we will also write write

p ∼S q

if p = qs with p, q ∈ H, s ∈ S (where the subset S is bounded). For example, for a
quasihomomorphism f : G→ H with D = D(f), by the definition,

f(ab) ∼D f(a)f(b)

for a, b ∈ G.

For two quasihomomorphisms fi : Gi → H, i = 1, 2, the notation f1 ∼ f2 will
mean that the domain of f1 is a finite index subgroup G1 < G2 and that

dist(f1, f2|G1) <∞.
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For a subset D of a group H and n ≥ 2 we will use the notation Dn to denote
the subset of H consisting of products of at most n elements of D. More generally,
for two subsets A,B ⊂ H we let

A ·B = {ab : a ∈ A, b ∈ B}.

We will use the notation D−1 for the set of inverses of elements of D. Then

h ∼D h′ ⇐⇒ h′ ∼D−1 h.

For an element h ∈ H we let ad(h) denote the inner automorphism of H defined
by conjugation via h:

ad(h)(x) = hxh−1.

The map ad : H → Inn(H) < Aut(H) is a homomorphism; its image Inn(H) is the
group of inner automorphisms of H . The quotient group Out(H) = Aut(H)/Inn(H)
is the outer automorphism group of H .

Given a group H and its subgroup A we let NH(A) and ZH(A) denote the nor-
malizer and the centralizer of A in H respectively. For a subgroup B < H we will
also use the notation

NB(A) := NH(A) ∩ B, ZB(A) := ZH(A) ∩ B.

2.2. Elementary properties of quasihomomorphisms.

Composition. The composition of quasihomomorphisms is again a quasihomo-
morphism:

D(f2 ◦ f1) ⊂ D(f2) · f2(D(f1)) ·D(f2).

In particular, if f2 is a homomorphism and f2(D(f1)) = {1}, then f2 ◦ f1 is a homo-
morphism.

Product construction. Let fi : G → Hi, i = 1, ..., n be quasihomomorphisms.
Then their product

f = (f1, . . . , fn) : G→ H1 × ...×Hn

is again a quasihomomorphism. Conversely, given a quasihomomorphism

f = (f1, ..., fn) : G→ H1 × ...×Hn,

in view of the composition property above, each component fi is again a quasihomo-
morphism.

Closeness of f(G) and f(G)−1. Suppose that

f : G→ H

is a quasihomomorphism. Then for D = D(f) we obtain:

ǫ = f(1) = f(1)f(1)s, s ∈ D

and, hence,
ǫ = s−1 ∈ D−1.

Furthermore, for x ∈ G

1 = f(xx−1)ǫ−1 = f(x)f(x−1)sǫ−1, s ∈ D

which implies that

(1) (f(x))−1 = f(x−1)s′, s′ ∈ D2.



6 KOJI FUJIWARA AND MICHAEL KAPOVICH

In particular, the sets f(G), (f(G))−1 are Hausdorff-close to each other.

2.3. Quasiaction and bounded displacement property. By the definition of a
quasihomomorphism, for D = D(f):

f(xyz) ∼D f(xy)f(z)

and
f(xyz) ∼D f(x)f(yz) ∼D f(x)f(y)f(z).

In particular,
f(xy)f(z) ∼D−1 f(xyz) ∼D2 f(x)f(y)f(z)

and, hence,

(2) d(f(xy)h, f(x)f(y)h) ≤ C3, ∀h ∈ f(G), C3 = max{|s| : s ∈ D2D−1}.

More precisely,

(3) f(xy)h ∼D2D−1 f(x)f(y)h, h ∈ f(G), x, y ∈ G.

Therefore, the left multiplication by f(x) defines a quasi-action of G on f(G). The
set f(G) is not literally preserved by this quasi-action, but

d(f(x)f(G), f(G)) ≤ C1, C1 = max{|s|, s ∈ D},

for all x ∈ G: For h = f(y) ∈ f(G),

f(x)h ∼D−1 f(xy) ∈ f(G).

In view of (2), the defect set D(f) has the property that every element h ∈ D(f)
quasi-acts on f(G) with bounded displacement. We define the defect subgroup∆ = ∆f

of f to be the subgroup of H generated by D(f). It is then immediate that every
element of ∆f (quasi)acts on f(G) with bounded displacement. Equation (3) shows
that there exists a finite subset D′ = D′(f) = D2D−1 ⊂ ∆f such that for every
s ∈ D = D(f),

(4) sh = hs′, s′ ∈ D′.

Remark 2.2. To verify (4), let h ∈ f(G) and s ∈ D = D(f), then

h−1sh = f(c)−1f(b)−1f(a)−1f(ab)f(c) ∼D2D−1 f(c)−1f(b)−1f(a)−1f(a)f(b)f(c) = 1

where f(c) = h and
f(b)−1f(a)−1f(ab) = s.

In particular,

(5) h−1∆fh ⊂ ∆f .

Since for every h ∈ f(G), h−1 ∈ f(H)D2 ⊂ f(H)∆f (see equation (1)), we conclude
that

(6) h∆fh
−1 ⊂ ∆f

as well. Thus:

Lemma 2.3. The sets f(G) and f(G)−1 are contained in NH(∆f), the normalizer of
∆f in H . In particular, we obtain a homomorphism

G→ NH(∆f)/∆f

whose image is 〈f(G)〉/∆f .
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Let f : G → H be a quasihomomorphism with the defect subgroup ∆f . As we
just proved, the image of f is contained in N = NH(∆f ). It follows that there is
no harm in replacing the group H with the group 〈f(G)〉. We assume from now
on that H = N = 〈f(G)〉; we continue to work with the restriction of the original
left-invariant metric from the target group of f to 〈f(G)〉.

Remark 2.4. We observe that if the group G is finitely-generated, so is the group
〈f(G)〉: It is generated by f(S) and D(f), where S is a finite generating set of G.

By Lemma 2.3, we also obtain a homomorphism

ϕ = ϕf : G→ Out(∆f) = Aut(∆f)/Inn(∆f )

given by sending g ∈ G first to the conjugation automorphism

ϕ̃(g) = ad(f(g)) ∈ Aut(∆f)

ϕ̃(g)(δ) = f(g)δf(g)−1, δ ∈ ∆f

and then projecting to the group of outer automorphisms. (The quasihomomorphism
ϕ̃, of course, in general, is not a homomorphism.) Similarly, by the same lemma, we
have an antihomomorphism

ψ : G→ Out(∆f),

ψ(g) defined by sending g to ψ̃(g) = ad(g−1) and then projecting to Out(∆f). In
view of (1), we have

ψ(g) = ϕ(g−1).

Since ∆f is generated by the finite subset D(f), the automorphisms ϕ̃(g), ψ̃(g)
are determined by their values on the elements s ∈ D(f); the images of elements

s ∈ D(f) under ϕ̃(g) and ψ̃(g) belong to a finite subset D′(f) (independent of g).
Therefore, the subset

ϕ̃(G) ∪ ψ̃(G) ⊂ Aut(∆f)

is finite and, thus, the homomorphism ϕ has finite image. We summarize these simple
(but useful) observations in

Lemma 2.5. 1. There exists a finite subset {y1, ..., yn} of H such that

ϕ̃(G) ∪ ψ̃(G) ⊂ {ad(yj) : j = 1, ..., n}.

2. There exists a finite-index subgroup Go < G such that ϕ(Go) = {1}, i.e., every
automorphism ϕ̃(g), ψ̃(g) ∈ Aut(∆f), g ∈ Go is inner. In particular, we can choose
the elements y1, ..., yn ∈ ∆f such that

ϕ̃(Go) ∪ ψ̃(Go) ⊂ {ad(yj) : j = 1, ..., n}.
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2.4. Lift and projection.

2.4.1. Quasi-split exact sequences. Consider an exact sequence

(7) 1 → A
i
→ B

p
→ C → 1.

Such a sequence is said to be quasi-split if there exists a quasihomomorphism C
s
→ B

such that p◦s = id. (More generally, one can allow this composition to have bounded
displacement, but we will not need this.) In what follows, we will identify A with
i(A). Given a quasi-splitting q we define the mapping

q(b) = b−1 · (s ◦ p(b)) , q : B → A.

Lemma 2.6. If A is central in B then q is a quasihomomorphism.

Proof. Pick b1, b2 ∈ B and set ci = p(bi),

s(ci) = aibi, ai = q(bi) ∈ A, i = 1, 2.

Then

s(c1c2) = s(c1)s(c2)δ, δ ∈ D(s).

Then,

q(b1b2) = b−1
2 b−1

1 · s(c1c2) = b−1
2 b−1

1 s(c1)s(c2)δ =

b−1
2 a1s(c2)δ = a1b

−1
2 s(c2)δ = a1a2δ = q(b1)q(b2)δ. �

We continue with the hypothesis of the lemma and define the maps

F : B → C ×A, F (b) = (p(b), q(b))

and

F ′ : C × A→ B, F ′(c, a) = s(c)a−1.

Since p and q are (quasi)homomorphisms, so is F . The proof that F ′ is a quasiho-
momorphism is completely analogous to the proof of Lemma 2.6 and is left to the
reader.

Lemma 2.7. F ′ = F−1; in particular, the group B is strictly quasiisomorphic to
C × A.

Proof. F ′ ◦F (b) = F ′(p(b), q(b)) = sp(b) · (q(b))−1 = sp(b) · sp(b)−1 · b = b. The reader
will verify that F ◦ F ′ = id. �

Given a quasi-split extension (7), each quasihomomorphism f : G → C lifts to a

quasihomomorphism f̃ : G→ B, f̃ = s ◦ f .

G
f̃

✲ B

C

p

❄

f

✲
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Similarly, given a quasi-split exact sequence (7), each quasihomomorphism f :
B → H projects to a quasihomomorphism f̄ = f ◦ s : C → H .

B
f

✲ H

C

p

❄

f̄

✲

If f : G→ C is unbounded, the quasihomomorphism f̃ is, of course, unbounded as

well. This is not necessarily the case for projections of quasihomomorphisms C
f
→ H

as one can take, for instance, B = A×C and f = f1 × f2 : G→ B, with bounded f2
and unbounded f1. However, if A is finite and f is unbounded, then f̄ is unbounded
as well. We will use this observation several times in the case when H = Z, in order
to construct unbounded quasimorphisms on the quotient group C.

Example 2.8. Examples of quasi-split sequences are given by:
a. Extensions with finite kernel A: In this case any section s : C → B will define

a quasi-splitting.
b. Central extensions whose obstruction class is a bounded 2nd cohomology class,

cf. [16] or [25].

To justify (b), suppose that ω ∈ Z2(C,A) is a bounded normalized cocycle, i.e.,
s(1, c) = s(c, 1) = 0 ∈ A for all c ∈ C. Here and in what follows we use the restriction
of the metric from B to i(A) ∼= A. We also refer the reader to [9] for the discussion
of bounded cohomology.

Following [6, p. 92], we define the extension Eω of C by A, using the group law
on the product A× C given by the formula:

(a1, c1)(a2, c2) = (a1 + a2 + ω(c1, c2), c1c2).

The group Eω is then a central extension of C by A, which is isomorphic to the one
in (7). The quasi-splitting of the sequence

0 → A→ Eω → C → 1

is given by s(c) = (0, c). Then ω is bounded if and only if s is a quasihomomorphism.
We obtain

Lemma 2.9. The sequence (7) quasi-splits if and only if the extension class is
bounded.

In §6 we will prove Proposition 6.4 about quasi-splitting of a central extension
associated with a certain subgroup of the mapping class group of a surface, illustrating
this result.

2.4.2. Second bounded cohomology of G. Note that there are situations when the
sequence (7) does not quasi-split, but homomorphisms f : G → C still lift to quasi-

homomorphisms f̃ : G→ B. Namely, assume that the subgroup i(A) is central in B
and the class f ∗([ω]) ∈ H2(G;A) is bounded. Then the homomorphism f lifts to a
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quasihomomorphisms f̃ : G→ B. To see this, consider the central extension of G by
A defined by the class f ∗([ω]):

0 → A→ Ẽ → G→ 1.

Let s̃ : G→ Ẽ be the quasi-splitting. Composing s̃ with the natural homomorphism
f̂ : Ẽ → B (which projects to f : G → C), we obtain the required lift f̃ . The

converse to this is also easy to see: If f lifts to a quasihomomorphism f̃ , then the
class f ∗([ω]) ∈ H2(G;A) is bounded.

Example 2.10. Consider the case where A is a finitely-generated abelian group and
the group G is hyperbolic. Then all cohomology classes in H2(G;A) are bounded (see
[25]), which implies that quasihomomorphisms f : G → C always lift to quasihomo-
morphisms G→ B.

Example 2.11. Consider the integer Heisenberg group B = H2n, where A ∼= Z,
C ∼= Z

2n and the obstruction class [ω] is unbounded (the cocycle ω is the restriction
of a symplectic form from R

2n to Z
2n). Then every homomorphism f : G→ Z

2n from

a hyperbolic group G, lifts to a quasi-homomorphism f̃ : G→ H2n. We now explain
how to use this in order to construct examples of quasihomomorphisms to nilpotent
groups which are not close to homomorphisms.

It follows from the definition of H2n that two elements b, b′ ∈ B commute if and
only if ω(p(b), p(b′)) = 0. Take G which admits an epimorphism f : G → C ′ ∼= Z

2 <
Z
2n such that ω is nondegenerate on C ′ and f ∗(ω) defines a trivial cohomology class

of G. For instance, we can take G to be the fundamental group of a closed oriented
surface of genus ≥ 2 and f : G → C induced by a map of nonzero degree S → T 2.
Or, in line with Thurston’s suggestion mentioned in the introduction, we can take
G to be the fundamental group of a closed hyperbolic 3-manifold M which admits a
retraction r :M → S to a closed oriented hyperbolic surface S ⊂M . (It follows from
the work of Agol, Haglund and Wise that for every quasifuchsian surface subgroup
of π1(S) < π1(M) there exists a finite index subgroup of Γ′ < π1(M) which retracts
to π1(S) ∩ Γ′. Hence, examples which we need abound.) Then take the composition
of r with a homomorphism induced by a nonzero degree map S → T .

Lemma 2.12. Suppose that G is a hyperbolic group, f : G→ C is a homomorphism
such that [f ∗(ω)] 6= 0 in H2(G,Z). Then:

1. For each quasihomomorphism f̃ : G → B as above, there is no finite index
subgroup Go < G such that f̃ |Go is within finite distance from a homomorphism.

2. The image of f̃ is not Hausdorff-close to an abelian subgroup of B.

Proof. 1. Suppose, for the sake of a contradiction, that there exists such Go < G and
a homomorphism f ′ : Go → B within finite distance from f |Go. Then the distance
between the homomorphisms fo := p ◦ f ′ and f |Go is again bounded, which implies
(since C is free abelian of finite rank) that the two homomorphisms are actually equal.
Since Go has finite index in G, the transfer argument shows that [f ∗

o (ω)] = [f ∗(ω)] ∈
H2(Go,Z) is still nonzero. However, for arbitrary central extension

1 → A→ Γ̃ → Γ → 1

and arbitrary group Λ we have that a homomorphism h : Λ → Γ lifts to a homomor-
phism h̃ : Λ → Γ̃ if and only if the pull-back h∗(ω) of the extension cocycle, vanishes
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in H2(Λ, A). Thus, in our situation, we obtain a contradiction with the assumption
about nontriviality of the f ∗(ω).

2. Suppose that f̃(G) is Hausdorff-close to an abelian subgroup B′ < B. Then
the subgroup f(G) < C is Hausdorff-close to the abelian subgroup C ′ = p(B′). Since
subgroups of the abelian group C are Hausdorff-close iff they are commensurable, we
can assume, after replacing G with a finite index subgroup Go < G, that f(Go) is

contained in C ′ and, hence, f̃(Go) is contained in B′. As in Part 1, the restriction
of the extension class ω to the finite index subgroup Co := f(Go) < f(G) is still
nontrivial. This, however, implies that each abelian subgroup of p−1(Co), such as
B′ ∩ p−1(Co), projects to a cyclic subgroup of C, in particular, the restriction of ω to
p(B′) = Co is trivial in this case. A contradiction. �

Remark 2.13. As a warning to the reader, we note that, in general, even if B is
finitely-presented, its center may fail to be finitely generated, see e.g. [1].

Question 2.14. Is it true that for arbitrary (countable) abelian group A and a
hyperbolic group G, every class in H2(G;A) is bounded (i.e., is represented by a
cocycle taking only finitely many values)?

Suppose that f̃1, f̃2 : G→ B are distinct quasihomomorphisms lifting f : G→ C.
Then for every g ∈ G

f̃2(g) = φ(g)f̃1(g),

where φ(g) ∈ A (which we identify with i(A)). It is immediate that φ : G → A is a
quasihomomorphism. We summarize these observation as

Lemma 2.15. Assume that i(A) is central in B. Then:

1. A homomorphism f : G → C lifts to a quasihomomorphism f̃ : G → B if and
only if the pull-back class f ∗([ω]) ∈ H2(G;A) is bounded.

2. Different quasihomomorphic lifts differ by quasihomomorphisms G→ A.

2.5. Summary of constructions of quasihomomorphisms. So far, we saw sev-
eral basic constructions of quasihomomorphisms:

i) Lift. If f̄ : G → H̄ is a quasihomomorphism and 1 → K → H → H̄ → 1 is
a short exact sequence with a (virtually) abelian group K, then lift f̄ (if possible)
to a quasihomomorphism f : G → H . Note that if the exact sequence quasi-splits
with a quasi-splitting s : H̄ → H , then we can always lift f̄ to a quasihomomorphism
f = s ◦ f̄ . For instance, all almost homomorphisms G→ H appear in this fashion.

ii) Product. If fi : G→ Hi are quasihomomorphisms, i = 1, ..., n, then take

f = (f1, . . . , fn) : G→ H =

n∏

i=1

Hi.

iii) Composition. The special case of the composition construction is when
f : G → H is a quasihomomorphism and ι : H → H̃ is a monomorphism; then we
extend f to the quasihomomorphism f̃ = ι ◦ f .

iv) Extension from a finite index subgroup. Extend fo : Go → H (if possible)
to a quasihomomorphism f : G→ H , where |G : Go| <∞.

v) Bounded perturbation. Replace f (if possible) with a quasihomomorphism
f ′ within finite distance from f . Note, however, that (unlike quasimorphisms to
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abelian groups) a bounded perturbation of a quasihomomorphism need not be a
quasihomomorphism. For instance, we will show in Theorem 4.4 that if f1, f2 : G→ H
are quasihomomorphisms to a torsion-free hyperbolic group, and dist(f1, f2) < ∞,
then either f1 = f2, or f1, f2 are both bounded, or both are quasimorphisms to the
same cyclic subgroup. Nevertheless, we will see and use repeatedly in the paper that
sometimes quasihomomorphisms can be perturbed to quasihomomorphisms.

By using repeatedly these constructions one can obtain new quasihomomorphisms
from a given set of quasihomomorphisms. In Theorem 1.2 we show that all quasiho-
momorphisms are constructible; in particular, there is no need to repeat the above
constructions. Another construction which, as it turns out, to be not needed (in full
generality) is the composition of quasihomomorphisms. One needs only its special
cases as in (i) and (iii).

3. Rigidity of quasihomomorphisms

3.1. Quasihomomorphisms and centralizers. Consider a quasihomomorphism
f : G→ H . By Part 1 of Lemma 2.5, there exists a finite subset {y1, . . . , yn} ⊂ G′ =
f(G) ⊂ H , such that for every x ∈ G there exists yj for which

ψ̃(x) = ad(yj) ∈ Aut(∆f),

i.e., for every δ ∈ ∆f ,

f(x)−1δf(x) = yjδy
−1
j ,

and, hence,
[f(x)yj, δ] = 1.

In other words, f(x)yj belongs to ZH(∆f), the centralizer of ∆f in H . Moreover, by
Part 2 of the same lemma, if ϕ(x) = 1 then we can choose yj ∈ ∆f . Recall that the
image of the homomorphism ϕ is finite and the kernel Go = ker(ϕ) has finite index
in G.

We, thus, obtain the following strengthening of Lemma 2.5:

Corollary 3.1. There exists a constant C such that

f(G) ⊂ NC(ZH(∆f)).

Moreover, setting Go = ker(ϕ), we get

f(Go) ⊂
n⋃

i=1

ZH(∆f ) · yi, yi ∈ ∆f .

In particular,

Corollary 3.2. Suppose that H has the property that the centralizer of every non-
trivial element is abelian. Then for every quasihomomorphism f : G → H either f
is a homomorphism or its image lies in a C-neighborhood of some abelian subgroup
(with C depending on f , of course).

Example 3.3. Let H be either an (infinite) free Burnside group B(n,m) on n gen-
erators and odd exponent m ≥ 665, or a Tarski monster (see [26]), where all proper
subgroups are finite cyclic. Note that by a theorem of Adyan and Novikov (see e.g.
[26]), the centralizer of every nontrivial element of B(n,m) is cyclic of order m. In
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the case of Tarski monsters constructed by Olshansky, centralizers of nontrivial ele-
ments are again cyclic, Theorem 26.5 of [26] (we owe the reference to Denis Osin).
Therefore, for every group G, every unbounded quasihomomorphism f : G→ H is a
homomorphism. (Since if D(f) 6= {1} then f(G) is close to the centralizer of D(f).)

Note, however, that for m even, some centralizers in B(n,m) are infinite, see [20]
for the details. This leads to

Question 3.4. Are there quasihomomorphisms f : G → H to torsion groups H ,
which are not within finite distance from almost homomorphisms?

We note that if H is a nilpotent torsion group, then indeed, the answer to this
question is negative (since the defect subgroup is finite in this case). Furthermore, by
repeating the construction in Example 2.11 with A = Z2 and G a countably infinite
direct sum of Z2’s, it is easy to construct examples of quasi-homomorphisms to torsion
nilpotent groups which are not close to homomorphisms.

We next explain how one can alter f such that its image is actually contained in
ZH(∆f ). As above, let Go = ker(ϕ). We let r : f(Go) → ZH(∆f ) be a nearest-point
projection and set

fo := r ◦ f : Go → ZH(∆f) < ZH(∆f |Go
)

Clearly, d(f, fo) = R <∞.

Lemma 3.5. The map fo is a quasihomomorphism and D(fo) ⊂ ∆f .

Proof. We have

f(x1x2) = f(x1)f(x2)s, s ∈ D(f)

f(xi) = fo(xi)δi, δi ∈ ∆f , f(x1x2) = fo(x1x2)δ3, |δi| ≤ R, i = 1, 2, 3.

Since fo(xi) commutes with ∆f ,

fo(x1)fo(x2)δ1δ2 = fo(x1)δ1fo(x2)δ2 =

f(x1)f(x2) = f(x1x2)s = fo(x1x2)δ3s.

Therefore,

fo(x1)fo(x2) ∼Do
fo(x1x2)

where Do = D(fo) ⊂ ∆f is finite (since |δi| ≤ R and s ∈ D(f)). �

We can now prove

Theorem 3.6. Every quasihomomorphism f : G → H is constructible: For the
subgroup Go < G and the quasihomomorphism

fo : Go → Ho < ZH(∆fo) < H

as above, we have:
a) The projection of fo to f̄o : Go → Q = Ho/∆fo is a homomorphism.
b) Ho = 〈fo(Go)〉 and the finitely generated abelian subgroup ∆fo is central in

Ho.
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Proof. Let Ho < H be the subgroup generated by fo(Go). By the construction,

fo(Go) ⊂ ZH(∆f ) < ZH(∆fo)

since ∆f > ∆fo . Since Ho = 〈fo(Go)〉, the subgroup ∆fo < Ho is central in Ho. Since
∆fo contains the defect set of fo, the map f̄o is a homomorphism. �

We note that Theorem 1.2 from the introduction follows immediately.

3.2. Quasihomomorphisms close to abelian subgroups. In this and the follow-
ing section we establish two technical results, which are variations of Theorem 1.2
and will be used in the proof of Theorem 7.1.

Let B be a group which is an extension

1 → A→ B
p
→ C → 1,

where A is a finitely generated abelian group. Suppose, further, that A is virtually

central in B in the sense that there exists a finite index subgroup C ′ ⊳ C which acts
trivially on A. We will then refer to B as a virtually central extension of C by A.

Proposition 3.7. Let B be a virtually central extension of C by A and f : G → B
be a quasihomomorphism whose projection to C has bounded image. Then there
exists a finite index subgroup Go < G such that f |Go is within finite distance from
a quasihomomorphism fo : G → A (fo ∼ f). Furthermore, if A is contained in the
center of B, then one can take Go = G.

Proof. Let ρ : C → Aut(A) denote the action of C on A, let Q be the image of ρ;
by our assumption, the group Q is finite. Without loss of generality, we may assume
that the subset f(G) generates B (otherwise, we replace B with 〈f(G)〉. By Theorem
1.2, we can assume (after passing to a finite index subgroup Go < G and replacing
f |Go with a nearby quasihomomorphism) that ∆f is contained in the center of B. In
particular, ρp(∆f ) = {1} and, hence, the composition

G
f
→ B

p
→ C

ρ
→ Q

is a homomorphism. Let Go denote the kernel of this homomorphism; it is a finite
index subgroup of G. Then, by the construction, A is contained in the center of
Bo = f(Go) = Ker(ρ ◦ p). In what follows we use the restriction of the metric from
B to Bo.

We let ro : Bo → A denote a nearest-point projection. We claim that the restric-
tion of ro to each n-neighborhood Nn(A) of A in Bo is a quasihomomorphism:

ro(xy) ∼Sn
ro(x)ro(y)

for all x, y, xy ∈ Nn(A). The finite subsets Sn, in general, will depend on n.
The proof of the claim is similar to the one in the proof of Theorem 1.2. Let

hi = aibi ∈ Bo, ai = ro(hi), bi ∼ 1, bi ∈ Bo, i = 1, 2. Then, since A is central in Bo,

h1h2 = a1a2b1b2,

ro(h1h2) ∼ a1a2 = ro(h1)ro(h2),

cf. the proof of Lemma 3.5. Thus, the restriction of ro to Nn(A) is indeed a quasi-
homomorphism. Consequently, the composition fo = ro ◦ f : Go → A is also a
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quasihomomorphism. By the construction, the maps fo|Go and f |Go are within finite
distance from each other.

Lastly, we note that if A is central in B, then Q = 1 and, thus, Bo = B,Go =
G. �

Corollary 3.8. Suppose that B is a finitely generated virtually abelian group, B =
A⋊ C, where A is free abelian of finite rank and C is finite. Then for each quasiho-
momorphism f : G→ B, there exists a finite index subgroup Go < G such that f |Go

is within finite distance from a quasihomomorphism fo : G → A. Furthermore, if A
is contained in the center of B, then one can take Go = G.

3.3. Quasihomomorphisms to finite extensions. Suppose that we have an ex-
tension of a group H , i.e., a short exact sequence

1 → K → H
p

−→ Q→ 1,

and a quasihomomorphism f : G → H such that D(f) is contained in the center of
H and p ◦ f(G) is finite, e.g., Q is a finite group. Assume, furthermore, that the
subgroup Qo := p(∆f ) has finite index in Q.

Proposition 3.9. Under the above assumptions, there exists a finite index subgroup
Go < G and a quasihomomorphism f o : Go → K, f o ∼ f , D(f o) ⊂ ∆f .

Proof. Since the subgroup ∆f is central in H , its image Qo = p(∆f ) is central in Q.
The composition

G
f

−→ H
p

−→ Q→ Q/Qo

is then a homomorphism to a finite group; let Go denote its kernel. Since p(∆f) = Qo

and p ◦ f(G) is finite, there exists a finite subset

D1 = {h1, . . . , hn} ⊂ ∆f ,

such that

f(Go) ⊂
n⋃

i=1

Khi.

Similarly to the proof of Proposition 3.7, we define the retraction

r :

n⋃

i=1

Khi → K, r(khi) = k.

Centrality of ∆f in H implies that

k1hi1k2hi2 = k1k2hi1hi2 = k1k2hi3,

with hi1 , hi2 , hi3 ∈ D1. It follows that f
o := r ◦ f |Go is a quasihomomorphism and

D(f o) ⊂ D2
1D

−1
1 ⊂ ∆f .

Clearly, dist(f o, f |Go) <∞. �
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4. Quasihomomorphisms to hyperbolic groups

Theorem 4.1. 1. Suppose that H is a torsion-free hyperbolic group. Then (for an
arbitrary group G) every unbounded quasihomomorphism f : G → H is either a
homomorphism or a quasimorphism to a cyclic subgroup of H .

2. Suppose that H is a general hyperbolic group. Then for every unbounded
quasihomomorphism f : G → H either the image of f is contained in an elementary
subgroup of H or f is an almost homomorphism.

Proof. In view of Corollary 3.1, f(G) is contained in a C-neighborhood of the central-
izer of ∆f in H . Since f(G) is infinite, it follows that the defect subgroup ∆ = ∆f

has infinite centralizer in H , and, hence, is elementary. Let N = NH(∆) be the
normalizer of ∆ in H . If ∆ is finite then composition of f with the projection to
Q = N/∆ is a homomorphism and, hence, f is an almost homomorphism. If ∆ is
infinite, then N is elementary. By Lemma 2.3, f(G) < N , which concludes the proof
of Part 2.

Furthermore, suppose H is torsion free. If ∆ is finite, then it is trivial and f
is a homomorphism. If ∆ is infinite, then N is cyclic. Thus, f : G → N is a
quasimorphism from G to an infinite cyclic subgroup of H . �

The following lemma is a sharpening of the statement about quasihomomorphisms
to elementary groups:

Proposition 4.2. If f : G → H is an unbounded quasihomomorphism to an ele-

mentary hyperbolic group H , then, the reduction f̂ of f modulo the maximal finite
normal subgroup F ⊳H either is a quasimorphism (to Z) or this statement holds after

restricting f̂ to an index 2 subgroup Go < G.

Proof. The projection of f , f̂ : G→ H/F , is again a quasihomomorphism. Therefore,
it suffices to consider the case when F = 1 and H is either Z or Z2 ⋆ Z2; moreover,
it suffices to consider the case where H is generated by f(G). If H ∼= Z, then f is
a quasimorphism. If H ∼= Z2 ⋆ Z2, the group ∆f has to fix the ideal boundary of H
pointwise (since it acts onH with bounded displacement). Therefore, the composition
of f with the projection to Z2 is a homomorphism. Restricting f to the kernel Go of

this homomorphism results in a quasimorphism f̂ : Go → Z. �

Corollary 4.3. Suppose that Γ is an irreducible lattice in a semisimple Lie group of
real rank ≥ 2. Then every quasihomomorphism f : Γ → H , with hyperbolic target
group H , is bounded.

Proof. First of all, it is proven in [7] (Corollary 1.3) that Γ has only bounded quasimor-
phisms. Suppose, therefore, that f : Γ → H is an unbounded quasihomomorphism.
If the image of f is contained in an elementary subgroup of H then, after passing
to an index 2 subgroup Γo < Γ, we obtain an unbounded quasimorphism Γo → Z

(see Proposition 4.2), which is a contradiction. Otherwise, by Theorem 4.1, there
exists a (nonelementary) subgroup J < H such that f(Γ) < J and a finite normal
subgroup K ⊳J such that the projection f̄ of f to J̄ = J/K is a homomorphism. The
construction of quasimorphisms applied to the subgroup J < Γ (see [15], [12]) yields
unbounded quasimorphisms h : J → Z. Since K is a normal finite subgroup in J , the
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sequence

1 → K → J → J̄ → 1

is quasi-split (see Example 2.8) and, hence, h projects to an unbounded quasimor-
phism h̄ : J̄ → Z (see the projection construction in §2.4.1). Composing the quasimor-
phism h̄ with the homomorphism f̄ : Γ → J̄ , we obtain an unbounded quasimorphism
Γ → Z, which again contradicts [7]. �

As another application of Theorem 4.1, we will prove deformation rigidity of quasi-
homomorphisms to torsion-free hyperbolic groups. It shows that a bounded pertur-
bation such a quasihomomorphism is seldom a quasihomomorphism.

Theorem 4.4. Suppose that H is a torsion-free hyperbolic group and f1, f2 : G→ H
are quasihomomorphisms with dist(f1, f2) <∞. Then either both f1, f2 are bounded,
or both take values in the same cyclic subgroup of H , or f1 = f2.

Proof. According to Theorem 4.1, each f1, f2 is either bounded, or is a quasimorphism
to a cyclic subgroup or is a homomorphism. Recall that if C1, C2 are cyclic subgroups
of a hyperbolic group H then either their ideal boundaries in the Gromov boundary
of H are disjoint, or C1, C2 generate an elementary subgroup of H . In the former
case, for each R <∞, the intersection

NR(C1) ∩NR(C2)

is bounded. In the setting of our theorem, it follows that if the image of fi is contained
in a cyclic subgroup Ci of H , then the image of f3−i is contained in a cyclic subgroup
of H containing Ci. Therefore, it remains to analyze the case when both f1, f2 are
homomorphisms. For x ∈ G let Ci denote the cyclic subgroup of H generated by
fi(x). Since the homomorphisms

fi : 〈x〉 → Ci < H

are within finite distance from each other, the subgroups C1, C2 generate a cyclic
subgroup C of H . The reader will verify that if fi : 〈x〉 → C are two homomorphisms
within finite distance from each other, they have to be equal. Hence, f1(x) = f2(x)
for all x ∈ G when both f1, f2 are homomorphisms. �

5. Quasihomomorphisms to CAT (0) groups

We will need several standard facts from the theory of CAT (0) groups. Recall that
a group Γ is said to be a CAT (0) group if there exists a CAT (0) space and Γ y X , a
properly discontinuous isometric cocompact action. (This action is not required to be
faithful, but the kernel of the action is necessarily finite. We are unaware, though, of
any examples of CAT (0) groups which do not admit faithful properly discontinuous
isometric cocompact actions on CAT (0) spaces.) Recall that for an isometry α of X ,
the displacement of α is

Dα = inf
y∈X

d(y, αy).

Since Γ y X is cocompact and properly discontinuous, for every α ∈ Γ this infimum
is attained in X and one defines the minimal set Minα of α as

{x ∈ X : d(x, αx) = Dα}.



18 KOJI FUJIWARA AND MICHAEL KAPOVICH

It is clear that Minα is closed; the CAT (0) property implies that Minα is convex [4,
Ch II.6, Theorem 6.2] and, hence, is a CAT (0) space.

Lemma 5.1. Let Φ < Γ be a finite subgroup. Then the fixed-point set X ′ = XΦ

of Φ in X is a nonempty closed convex subspace and X ′/Γ′ is compact, where Γ′ =
ZΓ(Φ) < Γ is the centralizer of Φ in Γ.

Proof. The fact that X ′ is nonempty is a special case of the Cartan’s Fixed Point
Theorem (see [4, Ch. II.2, Corollary 2.8]). The fact that X ′ is closed is immediate;
its convexity follows from uniqueness of geodesics in CAT (0) spaces. Invariance of
X ′ under Γ′ is again clear. Compactness of X ′/ΓX′ is proven in [30, Remark 2]. �

Suppose that Γ y X is a cocompact properly discontinuous action of Γ on a
CAT (0) space X . For an abelian subgroup A < Γ consider the subset MinA ⊂ X ,
which is the intersection ⋂

α∈A

Minα.

Then MinA is a nonempty closed convex subset of X , which splits isometrically as
the direct product Y × F , where F is a flat and Y is a CAT (0) space, see [4, Ch
II.7, Theorem 7.1]. Furthermore, each α ∈ A preserves the product decomposition
of MinA and acts on Y as the identity map, while A acts as a cocompact group of
translations on F . Moreover, by the same theorem, the normalizer NΓ(A) of A in Γ
preserves MinA and contains a finite index subgroup which centralizes A.

Lemma 5.2. The action of ZΓ(A) is cocompact onMinA. In particular, the normal-
izer NΓ(A) is finitely generated.

Proof. The subgroup A is finitely generated, see e.g. [4, Ch II.7, Corollary 7.6]. Let
T < A denote the torsion subgroup. Then ZT (Γ) acts cocompactly on MinT by
Lemma 5.1 and the group T < A acts trivially on MinT . Therefore, after replacing
X with MinT , we can assume that A is torsion-free.

Now, the claim of our lemma is proven in [30, Theorem 3.2] in the case when A is
cyclic. For a general torsion-free group A < Γ, split A as the product A1 × A2, A1

∼=
Z. Then the group ZΓ(A1) (containing ZΓ(A)) acts cocompactly on MinA1

. The
group NΓ(A1) preserves the product decomposition R × Y1 of MinA1

and projects
to a properly discontinuous cocompact group of isometries of Y1. We then proceed
inductively. Since A is finitely generated, lemma follows. �

Corollary 5.3. The quotient Γ
′
of Γ′ by the torsion subgroup T < A, contains a

finite index subgroup Γ′
o isomorphic to Πo × A/T , where Πo is a CAT (0) group,

acting properly discontinuously and cocompactly on a closed convex subset of X .

Proof. We have MinA ⊂ MinT ⊂ X and the group T acts trivially on MinT . The
centralizer of T in Γ acts properly discontinuously and cocompactly on MinT , hence

the quotient group Γ
′
also acts. The group A/T is now free abelian of finite rank and

[4, Ch II.7, Theorem 7.1] implies existence of a finite index subgroup Γ′
o isomorphic to

Πo×A/T . Lastly, the construction of the virtual splitting Γ′
o
∼= Πo ×A/T also shows

that Πo has a properly discontinuous cocompact action on a closed convex subset of
X : The minimal set MinA splits as a product Y × F , where F is a flat (invariant
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under A) and Y ⊂ MinA ⊂ X is a closed convex subset on which Πo acts properly
discontinuously and cocompactly. �

We can now prove our rigidity theorem for quasihomomorphisms to CAT (0)
groups:

Theorem 5.4. Suppose that H is a CAT (0) group. Then for every quasihomo-
morphism f : G → H there exists a finite-index subgroup Go < G, a CAT (0)
subgroup H ′ < H , a finite central subgroup T < H ′ and a quasihomomorphism
f o : Go → H ′ < H within finite distance from f |Go such that the projection f̄ o of f o

to H ′/T splits as a product map

f o = (f1, f2) : G
o → H1 ×H2 < H ′/T,

where f1 : G
o → H1 is a homomorphism to a CAT (0)-group and f2 is a quasihomo-

morphism to a finitely-generated free abelian group H2.

Proof. We continue with the notation in Theorem 3.6. We obtain a finite index
subgroup Go < G and a quasihomomorphism

fo : Go → Ho := ZH(∆fo) < H

within finite distance from f |Go. We let A denote the (finitely generated) abelian
group ∆fo and T < A the torsion subgroup. We have quotient homomorphisms

Ho
p

−→ Ho/T
q

−→ Ho/A.

By Corollary 5.3, Ho/T contains a finite index subgroup Ho which splits as the
product H1 ×H2 = Πo ×A/T , where H1 = Πo is a CAT (0) group. Since A contains
the defect set of fo, the composition h := q ◦ p ◦ fo is a homomorphism.

Setting H ′ := p−1(Ho) < Ho, we conclude that Go := h−1(q(Ho)) < Go is a finite
index subgroup of G. Then we obtain a quasihomomorphism

f o := p ◦ fo = (f1, f2) : G
o → H1 ×H2,

where f1 is a homomorphism and f2 : Go → H2 is a quasihomomorphism to a free
abelian group. �

Corollary 5.5. Suppose thatH is a uniform lattice in a connected reductive algebraic
Lie group and G is an irreducible lattice in a semisimple algebraic Lie group of real
rank ≥ 2. Then for every quasihomomorphism f : G→ H there exists a finite index
subgroup Go < G and a quasihomomorphism f̃ : Go → H within finite distance from
f |Go such that f̃ is an almost homomorphism.

Proof. The group H is a CAT (0) group, acting (with finite kernel) on a certain non-
positively curved symmetric space. We thus can apply Theorem 5.4 (whose notation
we will be now using). The subgroup Go < G is still an irreducible higher rank lattice;
therefore, it has only bounded quasihomomorphisms to free abelian groups (see [7]).
Hence, the map f2 in Theorem 5.4 is bounded and, therefore,

dist(f o, f1) <∞,

f1 : G
o → H1 < H ′/T

is a homomorphism. Since T is a finite group, the map f1 lifts to an almost homo-
morphism f̃ : Go → H ′ < H . By the construction, the maps f |Go, f̃ are bounded
distance from each other. �
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Example 5.6. There are higher rank (non-residually finite) uniform lattices H as in
Corollary 5.5 with finite nontrivial center ZH < H , such that ZH is contained in every
finite index subgroup of H , see [29]. (The group H is a lattice in a nonlinear con-
nected algebraic Lie group, a Z2-central extension of the group SO(n, 2).) Therefore,
setting G = H/ZH and letting f : G → H be a (quasihomomorphic) lift of the iden-
tity homomorphism G→ H/ZH , we obtain examples of quasihomomorphisms whose
restrictions to any finite index subgroup Go < G are not close to homomorphisms
Go → H .

Theorem 5.7. Suppose that G is a connected semisimple algebraic Lie group of rank
≥ 2 without nontrivial compact normal subgroups and Γ < G is an irreducible lattice.
Then each quasihomomorphism f : Γ → Γ has bounded image or is an automorphism
of Γ.

Proof. In view of Theorem 1.2, after replacing Γ with a finite index subgroup and f
with a nearby quasihomomorphism, we can assume that

f : Γ → Λ < Γ, 1 → A→ Λ
p

−→ Q→ 1,

where A is a central subgroup of Λ, containing ∆f and, thus, f ′ := p ◦ f is a ho-
momorphism. We let H = Λ̄ denote the Zariski closure of Λ in G; we will use the
notation Ā for the Zariski closure of A.

By the Margulis Superrigidity Theorem, one of the following holds:
1. Either f ′ has finite image, or
2. The restriction of f ′ to a finite index subgroup of Γ is induced by an injective

homomorphism G→ G′ = H/Ā.

In the first case, the restriction of f to the kernel Γo of f ′ is a quasihomomorphism
Γo → A. According to [7], f |Γo is bounded; hence, f is bounded as well.

In the second case, A has to be finite (since dim(G′) ≥ dim(G)). If A is nontrivial,
then the dimension of H is strictly smaller than the one of G (since we assume that G
has no nontrivial normal compact subgroups). It follows that f is a homomorphism
in the second case. By the Mostow Rigidity Theorem, f is an automorphism of Γ. �

6. Mapping class groups

In this section we collect some definitions and facts about mapping class groups
of surfaces of finite type that will be used in the following section in order to prove
a rigidity theorem for quasihomomorphisms to mapping class groups. Most of this
material is quite standard, we refer the reader to [13, 21] for the details.

6.1. Basic definitions. A finite type surface Σ is an oriented (possibly disconnected)
surface (without boundary), admitting a hyperbolic surface of finite area. Aperipheral
loop in Σ is a simple loop α ⊂ Σ such that one of the components of Σ\α is an annulus.
An essential multiloop on Σ is a (possibly empty) 1-dimensional compact submanifold
(without boundary) c ⊂ Σ, such that no two components of c are isotopic and each
component of c is essential in Σ, i.e., does not bound a disk or an annulus. If c is
connected and nonempty, it is called an essential loop in Σ. Thus, an essential loop
cannot be peripheral. A subsurface Σ′ ⊂ Σ is called essential if each essential loop in
Σ′ is still essential in Σ.
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We let Map(Σ) denote the mapping class group of Σ,

Map(Σ) = Homeo(Σ)/Homeoo(Σ),

where Homeoo(Σ) is the connected component of the identity map Σ → Σ in the
full group of homeomorphisms Homeo(Σ). For a ∈ Map(Σ) we let ha ∈ Homeo(Σ)
denote an (unspecified) homeomorphism representing a.

We let PMap(Σ) < Map(Σ) denote a finite index normal subgroup equal to the
kernel of the homomorphism

Map(Σ) −→ Aut(H1(Σ,Z/3)),

defined via the action of homeomorphisms of Σ on its 1st homology group. We will
refer to PMap(Σ) as the pure subgroup ofMap(Σ), it entirely consists of pure mapping

classes; we will discuss pure mapping classes in more detail in §6.2, for now we only
note that each a ∈ PMap(Σ) obviously acts trivially on H0(Σ) and preserves isotopy
classes of all peripheral loops; the subgroup PMap(Σ) is torsion-free.

Given an essential multiloop c ⊂ Σ, define the twist subgroup Tc < PMap(Σ)
associated to c, to be the group generated by Dehn twists along the components of c.
Then Tc is a free abelian group of rank r, where r is the number of components of c.

For an essential multiloop c ⊂ Σ we let Mapc(Σ) < Map(Σ) denote the subgroup
consisting of mapping classes which preserves c (but is allowed to permute its com-
ponents and change orientation of some of the components). The twist subgroup Tc
is a normal subgroup in Mapc(Σ).

If
Σ = Σ1 ⊔ ... ⊔ Σm

is a decomposition of Σ into its connected components, then the group Map(Σ)
contains the product

m∏

i=1

Map(Σi)

as a finite index normal subgroup with the quotient group Q < Sn (the group Q
acts on Σ by permuting homeomorphic components of Σ). In the context of pure
subgroups, we have

PMap(Σ) ∼=

m∏

i=1

PMap(Σi).

6.2. Reduction systems and pure elements of Map(Σ). According to the Niel-
sen–Thurston classification, for a connected surface Σ all elements of Map(Σ) are
classified as:

1. Finite order.
2. Reducible.
3. Pseudo-Anosov.

Each torsion subgroup of Map(Σ) is finite, since the pure subgroup PMap(Σ) is
torsion-free.

Lemma 6.1. Suppose that Σ is connected. Then the normalizer NMap(Σ)(a) of each
pseudo-Anosov element a ∈ Map(Σ) is virtually infinite cyclic, it contains a cyclic
pseudo-Anosov subgroup of finite index. The centralizer ZPMap(Σ)(a) of a in the pure
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mapping class group is infinite cyclic, consisting only of pseudo-Anosov elements (and
the identity).

Proof. A proof can be found for instance in [24]. Alternatively, the statement about
centralizers in PMap(Σ) is the content of [21, Lemma 8.13]; the statement about the
normalizer follows by taking the intersection

ZPMap(Σ)(a) = NMap(Σ)(a) ∩ PMap(Σ),

which has finite index in NMap(Σ)(a). �

Remark 6.2. One also has NPMap(Σ)(a) ∼= Z, but we will not need this property.

Corollary 6.3. Suppose that Σ has the connected components Σ1, . . . ,Σm, ai ∈
Map(Σi) are pseudo-Anosov, i = 1, . . . , m; define the the free abelian subgroup A <
Map(Σ) generated by a1, . . . , am. Then

ZPMap(Σ)(A) ∼= Z
m.

Each reducible element a ∈ Map(Σ) admits a canonical reduction system (see
e.g. [21, §7.4]), which is a certain essential multiloop ca ⊂ Σ invariant under ha (the
orientation on some of the loops can be reversed); due to the canonical nature of ca,
this multiloop is invariant (up to isotopy) under the normalizer NMap(Σ)(a) of a in
Map(Σ). The multiloop ca has the property that (up to isotopy) it is contained in
each ha-invariant multiloop in Σ.

An element a ∈ Map(Σ) is pure if it is orientation-preserving and either it is
pseudo-Anosov or it is reducible, so that ha preserves (up to isotopy) each component
of ca (together with its orientation), preserves all complementary components Σi ⊂
Σ \ ca, and the restriction of ha to each Σi defines either the trivial or the pseudo-
Anosov element of Map(Σi). A pure reducible element of Map(Σ) is trivial iff ca is
empty. Minimality of ca implies that if a ∈ Map(Σ) is pure and preserves (up to
isotopy) an essential subsurface Σ′ ⊂ Σ, then a preserves each component and each
boundary loop of Σ. The subgroup PMap(Σ) consists only of pure elements, see [21,
Corollary 1.8].

6.3. Mapping class groups of surfaces with boundary. Suppose that Σ̂ is a
surface with boundary C, which is a partial compactification of a finite type surface
Σ, Σ = Σ̂ \C. In this setting one defines the relative mapping class group Map(Σ̂, C)
as the quotient,

Homeo(Σ̂, C)/Homeoo(Σ̂, C)

where Homeo(Σ̂, C) is the group of homeomorphisms of Σ fixing the boundary C

pointwise, and Homeoo(Σ̂, C) < Homeo(Σ̂, C) is the identity component. We define

the pure mapping class group PMap(Σ̂, C) analogously to the case of mapping class
groups for surfaces without boundary, as the kernel of the homomorphism

Map(Σ̂, C) → Aut(H1(Σ,Z/3)).

The inclusion Σ →֒ Σ̂ of the interior Σ of Σ̂ into Σ̂ defines the restriction homo-
morphism

Homeo(Σ̂) → Homeo(Σ)
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and the associated homomorphism of mapping class groups

ρ :Map(Σ̂, C) → Map(Σ).

The homomorphism ρ is neither surjective nor injective: It’s image is a finite index
normal subgroup of Map(Σ); the quotient Map(Σ)/ρ(Map(Σ̂, C)) is isomorphic to
the semidirect product (Z2)

n
⋊ Sn, where n is the number of the components of C.

The kernel of ρ is a free abelian subgroup TC of rank n, its free basis consists of
Dehn twists Dαi

along loops αi ⊂ Σ, parallel to the components of C, i = 1, . . . , n.
However, by restricting to the pure mapping class groups we obtain a short exact
sequence

(8) 1 → TC → PMap(Σ̂, C) → PMap(Σ) → 1.

Proposition 6.4. The sequence (8) quasi-splits.

Proof. The proof is by induction on the number n of components of C.
1. Suppose that n = 1, i.e., C is connected. Let S denote the surface closed surface

obtained from Σ̂ by attaching the 2-disk along C. In this case, the obstruction to
splitting the sequence (8) is the Euler class e ∈ H2(PMap(Σ);Z), which can be
defined as the pull-back of the Euler class

ẽ ∈ H2(Homeo(S1);Z)

under the embedding

PMap(Σ) → Aut(π1(S)) → Homeo(S1),

see [13, Section 5.5.4]. The class ẽ is bounded, see e.g. [17]. Therefore, the class e is
bounded as well. Hence, the sequence (8) quasi-splits.

2. Suppose that the claim holds for all surfaces with n−1 boundary components.
Let Σ̂ be a surface with

∂Σ̂ = C = C1 ⊔ . . . ⊔ Cn.

Define the surface Σ̂′ by removing the circle Cn from Σ̂ and set C ′ := C \ Cn = ∂Σ̂′.

The surface Σ̂′ has n− 1 boundary components, hence, by the induction hypothesis,
there exists a quasi-splitting

s′ : PMap(Σ′) → PMap(Σ̂′, C ′),

of the central extension

1 → TC′ → PMap(Σ̂′, C ′) → PMap(Σ) → 1.

We claim that the central extension

(9) 1 → TCn
→ PMap(Σ̂, C) → PMap(Σ̂′, C ′) → 1

quasi-splits, equivalently, has bounded extension class. Given a quasi-splitting

s′′ : PMap(Σ̂′, C ′) → PMap(Σ̂, C),

we then compose it with a quasi-splitting s′ as above and obtain a quasi-splitting

s = s′′ ◦ s′ : PMap(Σ′) → PMap(Σ̂, C)

of (8).
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To prove existence of s′′ we use the following trick. Define a new surface S by

attaching one-holed tori R1, . . . , Rn−1 to Σ̂ along each circle C1, . . . , Cn−1 (leaving the
last circle Cn untouched). The surface S now has only one boundary circle. Each
homeomorphism

h ∈ Homeo(Σ̂, C)

extends to a homeomorphism h̃ of S by the identity on each Ri. Projecting h̃ to the
mapping class group Map(S, ∂S), yields embeddings

j :Map(Σ̂, C) →֒ Map(S, Cn)

and a the analogous embedding

j :Map(Σ̂′, C ′) →֒ Map(S ′)

for the surface S ′ := S \Cn (which has empty boundary). We obtain a commutative
diagram:

1 ✲ TCn

✲ PMap(Σ̂, C) ✲ PMap(Σ̂′, C ′) ✲ 1

1 ✲ TCn

id

❄

✲ PMap(S, Cn)

j

❄

✲ PMap(S ′)

j′

❄

✲ 1

We now apply the 1st step of induction to the bottom row of this diagram to obtain a

quasi-splitting σ of that central extension. Restricting σ to PMap(Σ̂′, C ′) we obtain
the desired quasi-splitting of the top row of the diagram, i.e., of the central extension
(9). �

6.4. Reducible subgroups. Recall for each essential multiloop c ⊂ Σ, we have
two subgroups of Map(Σ), the subgroup Mapc(Σ) and its normal subgroup Tc (the
twist subgroup). The subgroup PMapc(Σ) :=Mapc(Σ)∩PMap(Σ) still contains Tc.
Define the essential subsurface Σc := Σ \ c.

Lemma 6.5. The inclusion Tc →֒ PMapc(Σ) defines a short exact sequence

1 → Tc → PMapc(Σ)
π

−→ PMap(Σc) → 1.

Proof. The homomorphism π : PMapc(Σ) → PMap(Σc) is induced by restricting
homeomorphisms of Σ preserving c to the subsurface Σc. The fact that its kernel
contains Tc is immediate. We next prove the equality. Let N (c) ⊂ Σ denote an open
regular neighborhood of c in Σ; the inclusion

Σ \ N (c) →֒ Σc

is a homotopy-equivalence. If f ∈ Homeo(Σ) fixes Σ\N (c) pointwise, then f projects
to an element of the twist subgroup Tc. It follows that ker(π) = Tc.

To prove surjectivity of π, we note that each element of

a ∈ PMap(Σc) ∼= PMap(Σ \ N (c))

can be represented by a homeomorphism ha of Σ \ N (c) fixing the boundary of this
subsurface pointwise. We then extend ha to each annular component of N (c) by



ON QUASIHOMOMORPHISMS WITH NONCOMMUTATIVE TARGETS 25

an iterated Dehn twist. The result is a homeomorphism h̃a of Σ preserving c are
projecting to an element ã ∈ PMapc(Σ) such that π(ã) = a. �

6.5. Structure of infinite abelian subgroups and their normalizers. The struc-
ture of infinite abelian subgroups A < Map(Σ) is described in [3] and in [21, chapter
8]. Below is a brief review of this description. The intersection AP := A∩PMap(Σ) is
a finite index subgroup of A; this subgroup is either cyclic pseudo-Anosov, or AP con-
tains nontrivial reducible elements. We consider the latter case. For any a1, a2 ∈ AP ,
the multiloops ca1 , ca2 are disjoint up to an isotopy, but some of the components of
these multiloops could be isotopic to each other. We pick an auxiliary complete hy-
perbolic metric on Σ and let cA denote the union of closed geodesics in Σ representing
all the loops in ca, a ∈ AP ; then cA is an essential multiloop in Σ invariant under AP .
Due to the canonical nature of cA, this multiloop is invariant (up to isotopy) under
all elements of the normalizer NMap(Σ)(A) of A in Map(Σ). In order to simplify the
notation, we will denote cA by c.

It follows that

Tc < ZPMap(Σ)(AP ) < NMap(Σ)(A) < Mapc(Σ)

and, by restricting the homomorphism π defined in the previous section to the sub-
group NMap(Σ)(A), we obtain the homomorphism

NMap(Σ)(A)
π

−→Map(Σc)

and the exact sequence

1 → Tc → NMap(Σ)(A)
π

−→Map(Σc).

We next partition the surface Σ \ c = Σc as

Σc = Σ+
c ⊔ Σ−

c

where Σ−
c is the union of components Σi of Σc such that the restriction of each

ha, a ∈ A, to Σi is isotopic to a periodic homeomorphism. In other words, a component
Σj of Σc is contained in Σ+

c iff there exists a ∈ AP such that ha : Σj → Σj is pseudo-
Anosov; a component Σj belongs to Σ−

c iff its stabilizer in A restricts to a torsion
(and, hence, finite) subgroup of Map(Σj).

This partition of Σc is preserved by NMap(Σ)(A) and we obtain

π = (π+, π−) : NMap(Σ)(A)−→Map(Σ+
c )×Map(Σ−

c ) < Map(Σc).

Clearly, the image π±(NMap(Σ)(A)) < Map(Σ±
c ) is contained in the normalizer

NMap(Σ±
c )(A

±), A± = π±(A).

We now restrict our discussion to pure subgroups. Set A±
P := π±(AP ); these are

subgroups of PMap(Σ±
c ). By Corollary 6.3, the group ZPMap(Σ+

c )(A
+
P ) is free abelian.

The fact that A− is torsion implies that A−P is trivial and, hence, ZPMap(Σ−
c )(A

−
P ) =

PMap(Σ−
c ). We summarize these observations as

Lemma 6.6. For the groups A±
P = π±(AP ), we have: ZPMap(Σ+

c )(A
+
P )

∼= Z
r and

ZPMap(Σ−
c )(A

−
P ) = PMap(Σ−

c ). Here r = b0(Σ
+
c ).
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7. Quasihomomorphisms to mapping class groups

In this section we will extend the rigidity results from CAT (0) and hyperbolic
target groups to mapping class groups. The main result of this section, a rigidity
theorem for quasihomomorphisms to mapping class groups is similar to Theorem 5.4,
except that the centralizers in mapping class groups do not (virtually) split.

Theorem 7.1. Suppose that Σ is an oriented connected surface of finite type and
f : G→Map(Σ) is a quasihomomorphism. Then there exists a finite index subgroup
Go < G, a quasihomomorphism f o : Go → Map(Σ), f o ∼ f , such that:

1. f o(Go) ⊂ PMapc(Σ) for some (possibly empty) essential multiloop c ⊂ Σ.
2. The surface Σc = Σ \ c admits a partition into subsurfaces Σc = Σ+

c ⊔ Σ−
c , for

which we have the exact sequence

1 → Tc → PMapc(Σ)
(π+,π−)
−→ PMap(Σ+

c )× PMap(Σ−
c ) → 1,

as in §6.5.
3. The maps f± = π± ◦ f o satisfy:
a. f+ is a quasihomomorphism with free abelian target.
b. f− is a homomorphism.

Proof. In what follows, we consider a quasihomomorphism f : G → Map(Σ) with
infinite image. In view of Theorem 1.2, there exists a finite index subgroup Go < G
and a quasihomomorphism fo : Go → Map(Σ), fo ∼ f , such that:

∆fo < Map(Σ)

is an abelian subgroup central in 〈fo(Go)〉. Consider the sequence

1 → PMap(Σ) → Map(Σ) → Aut(H1(Σ,Z/3)) → 1.

Applying Proposition 3.9 to fo and this sequence, we replace Go with its finite index
subgroupGo and replace fo with a quasihomomorphism f o : Go → PMap(Σ), f o ∼ fo,
such that

A := ∆fo < ∆fo

and f o(Go) still centralizes A:

f o : Go → ZPMap(Σ)(A).

Since the image of f o is contained in the pure mapping class group, the group A = AP

is free abelian (of finite rank). If A is trivial, f o is a homomorphism and we are done.
Therefore, we will assume from now on that the group A is nontrivial.

So far, the proof is analogous to the one for CAT(0) groups. However, unlike in
the CAT (0) setting, centralizers in the mapping class group do not virtually split.

There are the following possibilities for the infinite group A (see §6.5):
1. Pseudo-Anosov case: There exists a pseudo-Anosov element a ∈ A. Then,

the group ZPMap(Σ)(A) is infinite cyclic. It then follows that the quasihomomorphism
f o : Go → PMap(Σ) has infinite cyclic image, which concludes the proof in this case.

2. Reducible case: A contains nontrivial reducible elements. As in §6.5, we
have an A-invariant essential multiloop c = cA ⊂ Σ, split the surface Σc := Σ \ c as
Σ+

c ⊔ Σ−
c and obtain homomorphisms

ZPMap(Σ)(A) < PMapc(Σ)
π

−→ PMap(Σc) = PMap(Σ+
c )× PMap(Σ−

c ),
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π = (π+, π−), π± : PMap(Σ; c) → PMap(Σ±
c ).

As we observed in Lemma 6.6, π+(ZPMap(Σ)(A)) ∼= Z
r, where r is the number of

components of Σ+
c . Therefore, for A

+ = π+(A), we obtain the quasihomomorphism

f+ = π+ ◦ f o : Go → ZPMap(Σ+
c )(A

+) ∼= Z
r.

As for Σ−
c , the projection π−(A) is trivial and, since A contains the defect subgroup

of f o, the composition

f− = π− ◦ f o : Go → ZPMap(Σ−
c )(A

−) = PMap(Σ−
c )

is a homomorphism. �

Corollary 7.2. Suppose that Γ is an irreducible lattice in a connected semisimple
Lie group of rank ≥ 2, without compact factors. Then every quasihomomorphism of
Γ to a mapping class group Map(Σ) has finite image.

Proof. Suppose to the contrary that f : Γ → Map(Σ) is an unbounded quasihomo-
morphism. As in Theorem 7.1, we replace Γ with its finite index subgroup Γo (which is
still an irreducible lattice of rank≥ 2) and replace f with f o ∼ f, f o : Γo → PMap(Σ).
The compositions

f± = π± ◦ f o : Γo → PMap(Σ±
c ),

satisfy the property that f+ is a quasihomomorphism to a free abelian group A1

and f− is a homomorphism. The homomorphism f− has to have finite image (see
[2, 14, 22]); actually, in our setting, the image of f− is trivial since PMap(Σ−

c ) is
torsion-free. Therefore, the image of the map f o is contained in the abelian subgroup
B < PMap(Σ), the preimage (π+)−1(A1). Therefore, f

o is bounded in view of [7]. A
contradiction. �

8. Quasihomomorphisms to groups acting trees

Suppose T is a simplicial tree and H = Aut(T ) is the group of automorphisms of
T acting on T without inversions.

Definition 8.1. Suppose that T ′ ⊂ T is a nonempty simplicial subtree and that f :
G→ Aut(T ) is a quasi-homomorphism whose image preserves T ′. Let H ′ = AutT ′(T )
denote the subgroup of Aut(T ) preserving T ′. We have the restriction homomorphism
r : H ′ → Aut(T ′). The composition f ′ := r ◦ f is a quasihomomorphism f ′ : G →
Aut(T ′). In this situation we will say that the quasihomomorphism f is a lift of the
quasihomomorphism f ′.

We now proceed with the analysis of quasihomomorphisms f : G→ H = Aut(T ).
Using Theorem 3.6, we find fo : Go → Ho = 〈fo(Go)〉, such that ∆ = ∆fo is central
in Ho.

Case 1. Axial case: Suppose that ∆ contains an axial isometry δ of T , i.e., an
isometry which preserves a complete geodesic T ′ in T and acts on T ′ as a nontrivial
translation, i.e., T ′ is the axis of δ. Since each axial isometry has unique axis, the axis
T ′ of δ is invariant under Ho and Ho acts on L by integer translations. (Centrality of
∆ implies that every element of Ho preserves the orientation on T ′.) Let

Aut+T ′(T ) < AutT ′(T )
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denote the subgroup of Aut(T ) preserving T and its orientation. We have a natural
homomorphism

τ : Aut+T ′(T ) → Z,

sending each h ∈ Aut+T ′(T ) to the translation number for its action on T ′. Composing
fo with τ we obtain a quasimorphism

f ′
o = τ ◦ fo : Go → Z.

Thus, in this setting, fo is a lift of a quasihomomorphism to Z.

Case 2. Elliptic case: Suppose that ∆ contains only elliptic isometries, i.e.,
each element of ∆ has a fixed point in T . Recall that the defect group ∆ is finitely
generated abelian.

Lemma 8.2. Let A be a finitely generated abelian group acting isometrically on a
tree T such that every element of A is elliptic. Then the fixed-point set of the action
of A on T is nonempty.

Proof. We let A1, . . . , An denote cyclic factors of A. The fixed subtree Ti of each Ai

is nonempty. We claim that the tree

T ′ = T1 ∩ . . . ∩ Tn

is nonempty. The proof is by induction on n. The claim is clear for n = 1. Assume
that it holds for n − 1. The subgroup A′ < A1 × . . . × An−1 < A preserves the tree
Tn and each element of A′ acts on Tn as an elliptic isometry. Thus, the claim follows
from the induction hypothesis. �

Applying this lemma to the group A = ∆fo , we conclude that its fixed-point set
in T is a nonempty subtree T ′ ⊂ T . By the normalization property, this subtree has
to be invariant under Ho and, as above, we obtain the homomorphism

f ′
o = r ◦ fo : Go → H ′ = Aut(T ′).

Hence, the quasihomomorphism fo is a lift of the homomorphism f ′
o.

This proves

Lemma 8.3. If f : G → H = Aut(T ) is a quasi-homomorphism then, there exists
fo : Go → H , fo ∼ f , such that:

1. Either fo is an extension of a quasimorphism f ′
o : Go → Z < H , or

2. fo is an extension of a homomorphism f ′
o : Go → H ′ = Aut(T ′) where T ′ ⊂ T

is a nonempty subtree.

Corollary 8.4. Suppose that Go has no unbounded quasimorphisms and satisfies the
property FA (e.g., G is an irreducible lattice in a connected semisimple Lie group of
rank ≥ 2). Then there exists a subgroup Go < Go of finite index and a quasihomo-
morphism f o : Go → Aut(T ), f o ∼ fo, such that f o(Go) fixes a vertex in T .

Proof. Since Go satisfies the property FA, fo(G) has a fixed vertex in T ′ in the elliptic
case. Hence, in this situation, we can take Go = Go, f

o = fo. Consider now the
hyperbolic case. By the assumptions, the quasimorphism f ′

o : Go → Z has finite
image. Therefore, we apply Proposition 3.9 to the exact sequence

1 → K → Aut+T ′(T )
τ

−→ Z → 1
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and conclude that there exists a finite index subgroup Go < Go and a quasihomomor-
phism f o : Go → K with f o ∼ fo. The image of f o fixes each vertex of T ′. �

Corollary 8.5. Suppose that H is the fundamental group of a graph of groups where
every vertex group is hyperbolic. Then for every group G satisfying the hypothesis
of Corollary 8.4, each quasihomomorphism f : G→ H has finite image.

9. Other generalizations of homomorphisms

In this section we compare the notion of quasihomomorphisms used in this paper
and going back to Ulam, with several other notions. In order to avoid the nota-
tion confusion, we will refer to quasihomomorphisms used earlier as Ulam–quasi-

homomorphisms. The other notions discussed in this section are equivalent to the
one of Ulam–quasihomomorphism when the target is Z, but differ in general.

9.1. Algebraic and geometric quasihomomorphisms. Let G and H be groups
and d is a left-invariant metric on H . A map f : G → H is an algebraic quasiho-

momorphism if there exists a bounded subset S ⊂ H such that for all x, y ∈ G we
have:

f(xy) = s1f(x)s2f(y)s3, si ∈ S, i = 1, 2, 3.

The true novelty in this definition (comparing to the one of Ulam–quasihomomor-
phisms) is presence of the element s2. This class of maps is preserved by the following
bi-bounded perturbation procedure: Pick a bounded subset B ⊂ (H, d) and consider
a map f ′ : G → H such that for each x ∈ G, f(x) ∈ Bf(x)B. Then f ′ is again an
algebraic quasihomomorphism.

Alternatively, one can require the more restrictive condition

f(xy) = f(x)s2f(y)s3, si ∈ S, i = 2, 3,

where S is a bounded subset of (H, d). We refer to such maps as geometric quasihomo-

morphisms. Geometric and algebraic quasihomomorphisms are stable under bounded
perturbations. This presents a sharp contrast with Ulam’s quasihomomorphisms (cf.
Theorem 4.4).

We let AQHom(G, (H, d)) and GQHom(G, (H, d)) denote the sets of algebraic
and geometric quasihomomorphisms, and denote by UQHom(G, (H, d)) the set of
Ulam-quasihomomorphisms.

Example 9.1. 1. Each map f : H → H such that dist(f, id) < ∞, is a geometric
quasihomomorphism.

2. Compositions of algebraic (respectively, geometric) quasihomomorphisms are
again (respectively, geometric) quasihomomorphisms.

We will give some interesting examples of geometric quasihomomorphisms in the
next section.

A situation when geometric quasihomomorphisms appear naturally is the one of
Margulis-type superrigidity: Suppose that Γ < G is a uniform lattice in a connected
Lie group (equipped with a left-invariant Riemannian metric) and φ : Γ → (H, d)
is a homomorphisms. Then for a nearest-point projection ρ : G → Γ (which is a
geometric quasihomomorphism), the composition

f = φ ◦ ρ : G→ (H, d)
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is again a geometric quasihomomorphism. If G is a simple noncompact group of rank
≥ 2, then the Margulis Superrigidity Theorem implies that such geometric quasiho-
momorphism f is within finite distance from a homomorphism G→ H , provided that
H is another connected Lie group (and d is induced by a left-invariant Riemannian
metric on H). This leads to:

Question 9.2. Suppose that G is a connected simple Lie group of real rank ≥ 2
and (H, d) is a connected Lie group with trivial center, equipped with a metric d
induced by a left-invariant Riemannian metric on H . Is it true that every geometric
quasihomomorphism f : G→ (H, d) is within finite distance from a homomorphism?

Note that the answer is clearly negative for all rank 1 Lie groups, for instance,
because these groups contain uniform lattices admitting unbounded quasimorphisms
to Z.

Problem 9.3. Describe AQHom(G,H) for simple connected Lie groups G,H of
rank ≥ 2. Is it true that each f ∈ AQHom(G,G) is a bi-bounded perturbation of a
homomorphism?

9.2. Middle–quasihomomorphisms. The following definition is inspired by a cor-
respondence from Narutaka Ozawa.

Definition 9.4. A map f : G→ H of two groups is a middle–quasihomomorphism if
there exists a finite subset S ⊂ H such that for all x, y ∈ G, there is s ∈ S satisfying

f(xy) = f(x)sf(y).

We let MQHom(G,H) denote the set of all middle–quasihomomorphisms G→ H .

By the definition, each middle–quasihomomorphism is geometric. As with other
quasihomomorphisms, composition preserves middle–quasihomomorphisms.

Below is an interesting construction of middle–quasihomomorphisms f : F2 → F2

which is a generalization of the Brooks’ construction of quasimorphisms of free groups.
Let a, b be free generators of the free group F2. We say that two nonempty reduced
words u, v in the alphabet a±1, b±1 are non-overlapping if for every reduced word w
in the alphabet a±1, b±1 any two subwords which are copies of distinct elements of

T = {u, u−1, v, v−1},

are disjoint. (In particular, the words u, v are cyclically reduced.) For instance, for
m ≥ 2 the words

u = ambam, v = bmabm

satisfy this condition. Let L denote the maximum of lengths of u and v.
The subgroup H generated by u and v is free of rank 2 (with the generators u, v),

since this subgroup cannot be cyclic.
Now, given a reduced word w in the alphabet a±1, b±1, consider all the subwords

t1, . . . , tn (listed in the order of their appearance in w) which belong to the set T .
Define the map

f : F2 → H,

f(w) = fu,v(w) := t1 . . . tn ∈ F2.
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If n = 0, we set f(w) = 1. Let α : H → Z denote the homomorphism sending v to
0 ∈ Z and u to 1 ∈ Z. Then the composition β = α ◦ f is the Brooks quasimorphism
F2 → Z, associated with the word u.

It is clear from the construction that f(w) = (f(w))−1 for each w ∈ F2.

Theorem 9.5. 1. f is a middle–quasihomomorphism.
2. The image of f is infinite and is not contained in the R-neighborhood of an

infinite cyclic subgroup of F2 for any R <∞.
3. The map f is not within finite distance from a homomorphism.

Proof. 1. We first check that f is a middle–quasihomomorphism. Consider two words
w1, w2, w1 = w′

1w
′′
1 , w2 = w′

2w
′′
2 , where w

′′
1 , w

′
2 are maximal with the property that

w′′
1w

′
2 = 1.

We let J(wi) denote the ordered set (listed in the order of their appearance in wi) of
subwords in wi which are copies of elements of T overlapping both w′

i, w
′′
i . Then the

ordered product Yi of the elements of J(wi) has length ≤ L2. Furthermore,

f(w1) = X1Y1Z1, f(w2) = Z−1
1 Y2Z2,

and for the element w3 ∈ F2 represented by w1w2 we have

f(w3) = X1Y3Z2,

where |Y3| ≤ L2. Set

s2 = Y −1
1 Y3Y

−1
2 .

Then

f(w3) = f(w1)s2f(w2),

where s2 has length ≤ 3L2. This proves the first claim.

2. It is clear that f(un) = un and f(vn) = vn for each n. Since the cyclic
subgroups of F2 generated by u and by v are not Hausdorff-close, the second claim
of the theorem follows.

3. The map f sends both cyclic subgroups 〈a〉 and 〈b〉 to {1}. Therefore, for
each map f ′ : F2 → F2 within finite distance from f , the images of 〈a〉 and 〈b〉 are
bounded. Hence, f ′ can be a homomorphism only if it is the constant map F2 → {1}.
Since f is unbounded, we conclude that it cannot be within finite distance from a
homomorphism. �

9.3. Quasimorphisms of Hartnick and Schweitzer. In their paper [18], which
appeared shortly after the initial version of our paper was posted, Hartnick and
Schweitzer introduce the following notion, which we will refer to as an HS–quasimor-
phism:

Definition 9.6. A map f : G → H of two groups is an HS–quasimorphism if for
each quasimorphism ϕ : H → R, the composition ϕ ◦ f : G → R is a quasimor-
phism. (Note that H need not be equipped with a metric.) We will use the notation
HSQMor(G,H) for the set of HS–quasimorphisms.
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In other words, Hartnick and Schweitzer take the concept of quasimorphisms
(quasihomomorphisms to R) as central, and then define HS–quasimorphisms in a cate-
gorical fashion. It is immediate that composition preserves HS–quasihomomorphisms.
If we equip the target group H with a discrete proper left-invariant metric (whose
choice is irrelevant and will be suppressed), then, clearly,

UQHom(G,H) ⊂ GQQHom(G,H) ⊂ AQHom(G,H) ⊂ HSQMor(G,H),

MQHom(G,H) ⊂ GQQHom(G,H) ⊂ AQHom(G,H) ⊂ HSQMor(G,H).

In particular, as with algebraic quasihomomorphisms, if f1 : G → H is an HS–
quasihomomorphism and dist(f1, f2) < ∞, then f2 : G → H is again an HS–
quasihomomorphism. Hartnick and Schweitzer prove, among other interesting results,
that free groups Fn of finite rank n ≥ 2 have abundant supply of HS–automorphisms.
More precisely, let QAut(Fn) denote the space of HS–quasiautomorphism Fn → Fn,
Hom(Fn,R) is the space usual homomorphisms and H(Fn) the space of homogeneous
quasimorphisms Fn → R. Then, according to Theorem 1 of [18], the closure of the
linear span of the QAut(Fn)-orbit of Hom(Fn,R) is the entire space H(Fn).

A drawback of Definition 9.6 is that it is only meaningful for maps to groups
H which admit abundant supply of quasimorphisms (e.g., hyperbolic groups). In
contrast, if H is an irreducible lattice of rank ≥ 2, then every map G → H is
an HS–quasimorphism, as H has only bounded quasimorphisms. In contrast, The-
orem 5.7 shows that if Γ < G is an irreducible lattice in a connected semisimple
Lie group G of rank ≥ 2, without nontrivial compact normal subgroups, then each
Ulam-quasihomomorphism f : Γ → Γ has finite image or is an automorphism.
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