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Abstract of the Dissertation
Learning Problem Solving
by
Bruce Walter Porter
Doctor of Philosophy in Computer Science
University of California, Irvine, 1984

Professor Dennis Kibler, Chair

Learning to problem solve requires acquiring multiple forms of knowledge.
Problem solving is viewed as a search of a state-space formulation of a problem.
With this formalism, operators are applied to states to transit from the initial state
to the goal state. The learning task is to acquire knowledge of the state-space
to guide search. In particular, three forms of knowledge are required: why each
operator is useful, when to apply each operator, and what each operator does. A
PROLOG implementation, named PET, demonstrates the learning approach in the
domains of simultaneous linear equations and symbolic integration.

Episodic learning is a technique for learning why individual operators are
useful in a solution path. Episodic learning acquires generalized operator sequences
which achieve the goal state. This is done by backing-up state evaluation and
learning sub-goals in the state-space. ;

Perturbation is a technique for learning when individual operators are useful.
Perturbation guides the generalization process to discover minimally-constained
preconditions for useful operator applications. This is done by experimentation,
thereby reducing the teacher’s role in the learning process.

Learning relational models is a technique for discovering what individual
operators do. Relational models are an explicit representation of the transformation
performed by operators. This representation enables the learning element to reason

with operator semantics to guide further learning.

Tise



Episodic learning, perturbation and relational models form an integrated

approach for learning problem solving. The approach demonstrates self-teaching

by reasoned experimentation.
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CHAPTER 1
Scope of the Dissertation

The Main Contribution

The goal of this dissertation is to present a unified approach to learning
problem solving. Leai'ning to problem solve is a knowledge acquisition task in which
the learner exploits properties of problem solving to facilitate learning. Problem
solving can be modelled as a state-space search from an initial state to a goal state.
At each step of the search, an operator is selected and applied to the current state
to transit to a successor state. The goal of the search is to discover a sequence of
transitions which achieve a goal. The learning task is to derive knowledge of the
search space by solving one problem which aids in solving other problems. The

application of knowledge then replaces search during problem solving.

There are several features of problem solving tasks which facilitate learning.
First, goal states are explicit and the learning is goal-directed. This enables the
learner to reason about goals to constrain the concepts being learned. Second,
problem solving domains are reactive [CARB83]. That is, the learner can derive
useful information by conducting experiments in the domain. Third, operator
sequences frequently recur. This suggests that the .learner should try to discover

useful sequences and build macro operators. Furthermore, heuristics should be

learned which guide the application of these macros.

The contribution of this dissertation is a general approach to efficient learning

in problem solving domains and a mechanism which demonstrates the approach.

The major features of this contribution are:
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1) Episodic Learning - an incremental method for discovering useful operator
sequences. Incremental learning requires that knowledge be acquired grad-
ually and be linked with existing knowledge. In problem solving, the learner
incrementally acquires knowledge of the search space by constructing useful
operator sequences. The purpose of each operator in a sequence is recorded
as the achieved sub-goal. Episodic learning is an approach to learning why
individual operators are usefhl in problem solving by discovering the role

each plays in operator sequences.

2) Perturbation - a technique for automatically generating experiments in the
problem solving domain. Experiments are devised which “flush-out” the
important lesson of teacher supplied advise. The problem with teacher
training is that the advice is too specific. The learner must discover the
general lesson. Perturbation partially automates the role of the teacher
in learning by discovering when individual operators are effective in the

problem solving environment.

3) Relational Models - a novel representation for operators and heuristics.
Relational models are a representation which makes explicit the transfor-
mation performed by an operator. This explicit representation allows the
learner to reason with a model of operator semantics to improve the learning
rate of domain knowledge. It is unrealistic to assume that “natural” opera-
tors have explicit representations. Therefore, an algorithm is presented for
learning relational model representations. Relational models are an explicit

representation of what individual operators do during problem solving.

These contributions are demonstrated with a computer implementation of

the learning paradigm in two domains: simultaneous linear equations and symbolic

integration.




Why Study Machine Learning?

This section describes the contribution of machine learning to science and
engineering. First a definition of learning is proposed which both gives the research
a footing in artificial intelligence (AI) and reveals implicit biases. Then, from the
issues raised in the definition, the relevance of machine learning to “open” problems

in Al and cognitive science is discussed.

A Definition of Machine Leaming

First, it is instructive to define the subject of machine learning. Simon

[SiM083] defines learning to be:

«,..any change to a system that allows it to perform better the second time on repetition
of the same task or another task from the same population.”

This definition correctly implies learning is a dynamic process by which the
learner improves performance from experience. However, it confuses the learning
mechanism (making changes to a system) with the evaluation of the success of the

learning (the performance of the system). These are distinct processes.

Another shortcoming of Simon’s definition, as pointed out by Scott [SCOT83],
is that it covers activities that we would not want to label as learning. For
example, changing the blade in a razor improves performance, but the razor has

pot “learned.” Scott provides his own definition:
“Learning is the organization of experience.”

This definition identifies two important aspects of learning behavior. First, it

implies that a learner’s experiences potentially effect subsequent behavior. Second,

R W e S == ———
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it implies a dynamic memory [SCHA82] with the ability to store experiences for

efficient recall.

A problem with Scott’s definition is that it is neither operational nor testable.
An operational definition suggests implementations, or properties of implementa-
tions. A testable definition is one capable of distinguishing between examples of

the definition and non-examples.

Defining learning is as difficult as defining intelligence or expertise. At best,
a definition of learning should suggest a framework for exploring the process of

learning. My definition of learning which is used in this research is:

“Learning is the process engaged in by a learner of building a representation of an
environment with the goal of improving problem solving in that environment.”

Implications of the Definition

The definition of learning used in this dissertation gives machine learning a
footing in established research areas of Al First, the definition associates learning
with problem solving. That is, the process of problem solving enables learning and
learning enables more advanced problem solving. Carbonell [CARB83] makes this
association even stronger: “Problem solving and learning are inalienable aspects of

a unified cognitive mechanism.”

Second, the definition associates learning and knowledge representation. Con-

structing a representation of an environment consists of two difficult tasks:

1) Selecting a knowledge representation technique.

2) Representing facts and procedures of the environment in terms of the rep-

resentation technique.
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Both of these issues are Al bottlenecks. The first issue was addressed by
Amarel [AMAR68] who demonstrated the effect of the problem representation tech-
nique on problem solving efficiency. Amarel presented six formulations of the mis-
sionaries and cannibals problem. These formulations ranged from problem indepen-
dent, general-purpose representations to formulations which were highly problem
dependent. Formulations which exploit problem characteristics were found to be

significantly more efficient for problem solving.

While Amarel demonstrated the power of representation shifts, the problem
of discovering useful shifts remains. Amarel concluded that this task should be
automated. A system which dynamically shifts representation with the goal of im-
proving problem solving is, as defined above, a learning system. Anzai [ANZA78]
experimented with shifting strategies during problem solving. Initially, weak prob-
lem solving methods, such as breadth-first search and avoiding bad moves, are em-
ployed. Gradually, stronger methods such as subgoaling and means-ends analysis
are developed from repeated solution of the same problem. Finally, problem-specific

strategies like scripts and macros are acquired.

The second issue, frequently called the knowledge acquisition problem, is also
important to Al research. Currently this issue is most relevant to the construction
of expert systems. Expert systems are computer programs which demonst.rate
levels of performance comparable to a human expert in a limited problem domain.
The task of transferring the expert knowledge from the human to the program is
the knowledge acquisition problem in expert systems. The TEIRESIAS system
[DAVI77] is an example of the research on knowledge acquisition. The goal of
TEIRESIAS was to develop an intelligent assistant to aid the expert in encoding
domain knowledge. A set of tools was developed for constructing and maintaining
a knowledge base. For instance, a (limited) consistency checker verified that new

knowledge did not contradict old knowledge.
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However, the knowledge acquisition process is still tedious and errorprone.
Human expertise is acquired over decades of both subliminal and explicit training.
Paraphrasing Yates, experts embody knowledge but cannot make the knowledge
explicit. This suggests an alternate solution to knowledge acquisition. Rather than
assisting the expert to express his knowledge explicitly (the TEIRESIAS approach),
expert knowledge can be acquired by learning from the expert’s problem solving
behavior.

Inductive learning programs, which induce general rules from instances of the
rules, have proven successful in limited domains. For example, in the domain of di-
agnosing plant diseases [MICE80], a learning program induced general classification
rules from examples of diseased plants classified by experts. These induced rules
outperformed rules acquired by “traditional” knowledge acquisition techniques. So
an important contribution of machine learning is the construction of mechanisms
for the acquisition of expert knowledge.

But perhaps more important than developing mechanisms for learning, re-
search in machine learning identifies principles of intelligence, both human and
artificial. Langley and Simon [LANG81] describe learning research as a search for
invariants and generality. A goal of science is to understand laws, or invariants,
which explain observed phenomena. Systems which adapt to their environment are
always changing and no “first-order” laws can account for the system’s performance.
A theory of learning, not a theory of performance, reveals the invariants.

The goal of the search for generality is to discover parsimonious principles,
which are the foundation of a scientific paradigm. For instance, cognitive science
has adopted the information processing model as a general principle of intelligence.
As recounted by Langley and Simon, the early years of Al focused on discovering
general principles which were tested with mechanisms. For example, the General
Problem Solver [NEWE61)] demonstrated the principle of means-ends analysis for

problem solving.
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The search for general principles of the 1950’s and early 60’s gave way
to knowledge-intensive, domain-dependent mechanisms of the next generation.
Partially driven by an engineering approach to Al, researchers constructed high-
performance expert systems which embodied increasing amounts of domain knowl-
edge. The pervasive lesson in this work was that improved performance results from
providing more knowledge to a relatively simple process which applies the knowl-
edge. After discovering the importance of knowledge to problem solving, progress
was stalled by the knowledge acquisition problem discussed above. Research on
learning re-affirms the need for general principles by developing a theory of knowl-

edge acquistion.

This section discussed the relevance of the study of learning to artificial
intelligence. The contributions of learning research are two-fold: the construction of
mechanisms which can be applied to Al problems and the development of theories

which reveal invariants and general principles of intelligent behavior.

Learning Problem Solving

This section discusses the general problem of learning to do problem solving.

Questions addressed in this section are:

What class of problem solving tasks can be learned?
What is the advantage of learning?
What sorts of knowledge need to be acquired?

By what technique does the learning occur?

These issues are critical for learning problem solving in any domain. After
discussing the general problem in this section, chapters 3-6 address these issues in

two specific problem solving domains.



* = goal state
e = non-goal state
-+-b = operator

Figure 1

Abstract State Space

Problem Solving as Search

In a weak form, problem solving can be modelled as state space search. Viewed
this way, a problem solving task is represented by an initial state (the problem to
be solved), a set of goal states (solved problems), and a set of operators which
can be applied to solve the problem. This defines a state-space, as shown in figure
1. Problem solving in this model consists of searching for a sequence of operators

which transit from the initial state to one of the goal states.

Much research in computer science has focused on efficient methods of search-
ing a state space [NILs80, pp 53-128]. Uninformed search simply explores the
search space by random selection of operators to apply. The problem, of course,
is that the search space may be so large as to prohibit uninformed search. An al-
ternative is informed search which selects operators to apply based on information
gleened from the current state in the search. The operator selection knowledge is
embedded in heuristics which may directly recommend an operator, block an opera-

tor judged unuseful, or select an operator based on the estimated quality of resulting




* = goal state
e = pon-goal state
---b = operator
— = solution path

Figure 2

Solution Paths

states. Any task which can be formulated with a state space representation is a
candidate for informed search.

The approach to learning problem solving proposed here is to replace search
by knowledge. The effect of this on problem solving is that operators are selected
to apply to states based on knowledge of the search space rather than by trying
alternatives with little domain knowledge to distinguish among them. Specifically,
there are three types of search space knowledge needed:

1) Knowledge of Solution Paths — As shown in figure 2, solution paths are
sequences of operators which are applied serially. These sequences transit
from an initial state to a goal state. Knowledge of solution paths improves
problem solving because search is eliminated. The solution path serves
as a procedure which dictates the solution with no guess-work. Learning
solution paths is the subject of chapter 3 which proposes a technique called
episodic learning. Episodic learning builds solution paths by learning why

each operator is useful - i.e., the role of each operator in solution paths.
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® = goal state
e = pon-goal state
-+-b = operator
— = solution path
ellipse = cluster

Figure 3

Clusters of States

2)

3)

Clusters of States — As shown in figure 3, clusters are groups of states
which can be regarded as a single state. This is critical to problem solving
because the state space is potentially infinite. For problem solving purposes,
clustering replaces an infinite set of states by a finite set of clusters. Clusters
are formed by grouping states which play the same role in a solution path.
That is, if a solution path transits from state; to a goal then the group of
states in the state space for which the same solution path is effective defines
a cluster which includes state;. Learning clusters of states is the subject
of chapter 4 which discusses the technique of perturbation. Perturbation
is an automated method of discovering when operators should be applied -

i.e., the cluster of states in which each operator is effective.

Operator Representations — As shown in figure 4, there is a spectrum of

operator representations. At one extreme are opaque representations which
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A Spectrum of Operator Representations

cannot be easily analyzed. At the other extreme are transparent repre-
sentations which can be analyzed. The world abounds with opaque op-
erators. With opaque representations, the particular state to which the
operator is applied and the state resulting from the application can be ob-
served. But the general transformation performed by the operator is hidden.
Transparent operator representations, on the other hand, are unnatural in
the world. These representations make explicit the transformation per-
formed by the operator. The advantage of transparent representations is
that a problem solver can reason with the operator “semantics.” Since it is
unreasonable to assume that operators are represented transparently, chap-
ter 5 discusses a technique for learning transparent representations from
examples of application of opaque operators. The representations learned
are called relational models. Relational models explicitly represent what

individual operators do.

This knowledge is useful for solving any problem which can be formulated as a
state space search. In general, this knowledge cannot be built into a problem solver
because it is difficult to obtain and encode (the knowledge acquisition problem).

This dissertation presents a method for learning this essential state space
knowledge. The technique proposed builds on the inter-connection of a problem
solver and a learner. The problem solver is proficient at applying operators to
states and the learner, observing the problem solver, compiles knowledge which can

be used for subsequent problem solving. Initially, the problem solver is presented
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with problems without any knowledge of how to proceed. In this naive state,
there are two alternatives: performing uninformed search or asking for help. Since
search techniques are not the focus of this research, the latter alternative is adopted.
Knowledge is learned when the teacher advises the problem solver of the appropriate
action. The problem with the advice is that it is overly specific - i.e., it refers only
to the current problem solving state. The learner discovers the general lesson from
the specific advice by experimentation. The learner proposes experiments to the

problem solver and draws conclusions from the results.

The learning approach presented in this dissertation is general to the class of
problem solving tasks which can be formulated with a state space representation.
But, to make the ideas more concrete and to compare techniques with other work
in learning problem solving, the bulk of this dissertation focuses on applying the

general techniques to two specific domains: simultaneous linear equations and

symbolic integration.

An Approach to Machine Learning
This section discusses an approach to machine learning by presenting a set of

general principles.

The first principle of learning is that it is incremental. There are two prop-
erties of environments which prevent non-incremental, “wholesale” learning. First,
environments are complex. Techniques proved effective on “toy-domains” frequently
do not scale up to real-world problems. Second, environments change. This requires
an adaptable, intelligent system to maintain problem solving ability in the domain.
However, change is gradual and most environmental properties are preserved. A
ramification of these observations is that intelligent systems should incrementally

incorporate new information about their environment into their relatively stable,

complex knowledge base.
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A second ramification of the principle of incremental learning is that knowl-
edge should be integrated. New knowledge can be understood and retained only if
it relates to existing knowledge. An important issue in learning is this incremental
incorporation of new knowledge. The notion of incremental learning is sﬁpported
by Martin’s Law. “You can’t learn anything unless you almost know it already”
[WINs83, p 401]. |

The second principle of learning is that it should be economical. That is, a
learning system must be aware of resource limitations. Learning does not occur
in a vacuum but rather accompanies problem solving. Therefore, the need to be
economical is more acute with the demands of performance in addition to learning.
While there are no measures of the “cognitive economy” of learning systems, there
are some examples of the principle. Forinstance, AM [LENA76] is a program which
discovers mathematical concepts by exploring interesting patterns in number theory.
AM is highly resource constrained given the enormity of the space of potential
concepts and is directed by an agenda mechanism which selects among competing
exploration paths. Paths are allocated resources based on their “interestingness.”
This measure of promise changes dynamically. Paths are abandoned when their
exploration exceeds the resource allocation or when alternate paths become more
interesting.

Uneconomic learning algorithms make assumptions about the environment
which restrict their utility. For example, the non-incremental ID3 algorithm by
Quinlan assumes that the set of training instances is static and retained throughout
the training session [QUIN83]. As a demonstration of ID3, Quinlan applied the
algorithm to learning best moves in chess endgames. He experimented with a
training set of 125,000 instances, which was about 9% of the universe. While ID3
generated virtually error-free rules, the assumption that large training sets can be
retained throughout the learning process is unrealistic. (Note this does not conclude

that learning systems should not deal with massive training sets; they should. In
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fact, the enormous quantity of data in real-world learning environments compels us
to obey the principle of learning economically.)

The third principle of learning is a bias concerning knowledge representations
for learning. There are two broad classes of representation techniques: conceptual
(symbolic) and numeric. Conceptual representations are rich, symbolié structures
and numeric representations are a compilation of information into a numeric “sum-
mary.” Samuel [SAMU59][SAMU67] used a numeric representation in a program
which learned to play checkers. A static evaluation function was used to select
among candidate moves. The function was a weighted sum of features which Samuel
believed were relevant to checkers play. The learning task was to adjust the feature
weights so that the resulting evaluation function matched the play of the teacher.

In addition to Samuel’s success, proponents of numeric representations point
out that all human behavior (including learning) is representable by neural net-
works. The problem with numeric representations, however, is that the mapping
from high-level cognitive processes to neural nets spans many levels of represen-
tation which are little understood. Until this mapping is understood, symbolic
representations are more likely to enable progress in machine learning.

The issue of numeric versus symbolic representations was addressed by the
MYCIN project. MYCIN, developed by Shortliffe [SBOR76] in 1975, was an expert
system for reasoning about medical illnesses from symptoms. Domain knowledge
was encoded using a combination of numeric representations and weak symbolic rep-
resentations. Production rules are a symbolic representation which allow MYCIN to
draw inferences from data. A numeric representation is used to express the degree
of confidence in each rule and its inferences. Both representations can be consid-
ered a form of compiled knowledge. That is, domain knowledge is “distilled” into
rules and weights but as a result much knowledge is implicit in MYCIN and can-
not be recovered. Clancey [CLAN83], in attempting to “transfer-back” the expert

knowledge in MYCIN to medical students, found that the representations used by
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MYCIN hide relevant information. Clancey concludes that a rich, symbolic repre-

sentation which makes domain knowledge explicit is essential for modelling complex

cognitive processes.

This dissertation describes a learning system designed with these principles in
mind. If a metric were defined for each principle then this work and others could
be plotted on multiple scales. Research in machine learning should strive for “high

marks” on these measures.

Survey of Dissertation Chapters

Chapter 2 surveys related work in machine learning. The chapter describes
“landmark” learning systems which strongly influenced this research. A high-
level description of the learning algorithm and the data structures manipulated

are presented for each system.

Chapter 3 introduces the design of the PET learning system. The emphasis of
the chapter is on the incremental nature of learning as modelled by PET’s episodic
learning. Episodes encode knowledge of why operators are useful by recording the
sub-goal achieved by each. Episodic learning enables PET to learn useful problem

solving sequences of primitive operators.

Chapter 4 discusses PET’s approach to learning when individual opearators
should be applied. Perturbation is a technique for automatically discovering clusters
of states which play the same role in operator sequences. These clusters are formed
by conducting experiments in the task domain. By employing the technique of

perturbation, PET reduces the teacher involvement and speeds learning.

Chapter 5 discusses PET’s approach to learning what individual operators do
during problem solving. An approach is presented for learning a relational model

of the transformation performed by each operator in a problem solving domain.
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Relational models also serve as a variant of heuristic rules. This variance im-
proves problem solving by constraining operator applications. This representation
is learned from example applications of problem solving operators.

Chapter 6 describes the integration of the state space knowledge described
in chapters 3, 4 and 5 into a powerful learning paradigm. Examples of system
performance are presented to demonstrate the inter-play between episodes, pertur-
bation and relational models. This integration permits constraint back-propagation
to improve the learning rate and descriptor composition to improve the description
language.

Chapter 7 concludes the dissertation with a summary of the contributions of

this research. The major shortcomings of PET are also discussed with proposed

areas of future research.




CHAPTER 2
Related Work in Machine Learning

Other research projects relate to this thesis in two ways. First, some related
work is significant for its influence on the entire field of machine learning. These
landmark projects motivate new directions and are discussed because they provide
history and context. Second, some related work is significant for its direct appli-
cability to this thesis. These projects are important to this research because they
address specific problems in the current paradigm of machine learning. As such

they constitute the normal science [KUEN70] of machine learning.

Noting this dichotomy of important related work, this chapter addresses the
landmark research projects which influence all of machine learning. On the other
hand, projects which specifically relate to this thesis are discussed in subsequent
chapters. The details of these projects can then be related directly to the learning

approach presented in this thesis.

Five Landmark Projects

This chapter surveys five machine learning projects. The purpose of this
survey is to provide history and context to the new research presented in this
thesis. Each project is described by the goals of the designers. This is made specific
with detailed descriptions of the learning algorithm and knowledge representation
technique. From this, the contributions and limitations of each learning approach

are discussed. This discussion motivates the design of the PET learning system

described in chapters 3-7.

The research projects discussed in this chapter are:

17
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Figure &
A Model of Learning by Example

1) Samuel’s checkers player which learns a state evaluation function that ac-
curately mimics the play of its opponent.

2) Winston’s ARCH program which learns by example to identify structured
objects.

3) Quinlan’s ID3 program which gains efficiency by restricting the description
language.

4) Michalski, et.al. INDUCEL.2 program which proposes a highly expressive
description language and powerful generalization operators.

5) Mitchell, et.al. LEX program which addresses the issue of integrating

learning with problem solving.

Learning by Example

The five experiments in machine learning discussed in this chapter all demon-
strate the technique of learning by example. The central issue in learning by ex-
ample is illustrated in the model shown in figure 5 [CORE82, pp 327-332]. In
the learning model, ellipses denote declarative information such as facts presented
by the teacher or facts learned from training. Boxes denote procedures. The ar-
rows show the flow of data through the learning system. The environment supplies
training to the learning element in the form of examples. The learning element

interprets the examples and refines the knowledge base. The performance element



19

uses the knowledge base to demonstrate its learned ability. Finally, information

derived during performance may serve as feedback to the learning element.

The information provided by the environment is too specific. The environment
supplies specific examples of general concepts to the learner. The learning task is
to generalize this training by separating the relevant details of the examples from
the irrelevant details. Since the learning element does not know in advance which
details can be ignored, it must form intelligent hypotheses. These hypotheses can
be tested by matching them with subsequent training examples. Or, the hypotheses
can be encoded in the knowledge base and tested by the performance element.

The performance element provides evidence of the learning system’s progress.
In its simpliest form, the performance can be evaulated by the teacher to guide
subsequent training. An alternative is to use the performance as feedback to the
learning element. With this feedback, the learning element can use the performance
element as a testbed for validating hypotheses. This is particularly useful for
addressing the credit-assignment problem [MINs63)]. Given a trace of a problem
solving task requiring multiple steps, the credit-assignment problem is the problem
of assigning credit or blame to individual steps in the solution. This information is

useful for subsequent training to avoid bad steps and reward good steps.

This simple model of learning by example provides a framework for discussing

the five research projects reviewed in this chapter.

Samuel's Checkers Player

Arthur Samuel’s contributions to machine learning are significant. Between
1947 and 1967, Samuel conducted a series of experiments in the domain of checkers
playing. His experiments demonstrated such potential that he predicted in 1964
that the problem of machine learning would be solved by now [SAMU64]:
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“At the present time, computers do not learn from their experience. Given a new
problem to be solved, no matter how similar it may be to a previously solved problem,
we, as humans, must write a new set of instructions, a programme in the jargon of the
trade, to specify the solution procedure ... By contrast, when similar tasks are given
to a human assistant, he is expected to learn from his experience; and a clerk who has
failed to do so is likely to be looking for another position. This problem of machine
learning should certainly have been solved well within the next twenty years, and the
computer will then become a very much more useful device.”

Review of Checkers

Samuel’s checkers player [SAMU67] follows the model of learning by example
described above. The environment is a teacher who presents board positions to the
learning element. Accompaning each board position is advice on the best move to
make from the set of possible moves. Equivalently, this advice can be the best board
position achievable from the current state. The learner assumes that the teacher
has an “expert” board evaluation function. This function measures the quality of
the candidate board positions. The teacher selects the best board position from

the set of possible positions by applying the function to each. The board position

with the highest score is selected.

The learning task is to discover the board evaluation function used by the
teacher. This function is assumed to be represented by a weighted feature vector.
The goal of the learning is to discover a set of weights, such that the resulting
weighted feature vector mimics the state evaluation function used by the teacher.

In this sense, the checkers player uses a numerical representation, as described in

chapter 1.

The checkers player is provided with a set of 38 features which are potentially
relevant to evaluating a board position. Initially, the knowledge base consists of
the state evaluation function with all features equally weighted. The performance
element selects among possible moves by conducting a limited alpha-beta search.

The evaluation function is applied to leaf nodes and the best move is backed up.
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The teacher provides direct feedback by confirming the move selection or pointing
out a better alternative. The learning element then adjusts feature weights to
produce performance on this example which matches the teacher’s advice.

Before delving into the details of the learning algorithm, it is noteworthy
that the teacher’s role is automated in Samuel’s checkers player. This is done by
using the same knowledge base (state evaluation function) as the learning system’s
performance element. The key difference is that the teacher performs a deeper
mini-max search. The teacher’s selected move is therefore more informed, since the
terminal nodes of a deep search are a better indicator of ultimate success or failure
than are terminal nodes of a shallow search. The learner adjusts feature weights
such that the limited search yields the same recommended move as the teacher’s
extensive search.

Samuel’s algorithm for inducing feature weights is described with the following

algorithm:
GIVEN a set of features {f1, f2,--.,fn}, and corresponding
feature weights {w;, wo, ..., w;}

INITIALIZE all feature weights to 1
Board « initial position
LOOP
S — estimate of the quality of Board computed by a
shallow minimax search using the static evaluation function
2z wifi.
T «— the teacher’s evaluation of Board computed by a
deep search with the same evaluation function as above.
A~T-S
IF A <0 THEN S overestimates the quality of Board, so reduce
weights of features which scored high in S
IF A > 0 THEN S underestimates the quality of Board, so increase
weights of features which scored high in T
WHILE A #0
REPEAT

The goal of the algorithm is to discover a set of weights which mimic the
state evaluation computed by the teacher’s extensive search. This is viewed as a

hill-climbing search through the space of candidate numerical weights. Each move
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serves as a training instance which is classified by the teacher and incorporated into

the learner’s knowledge base by refining weights.

Evaluation of Checkers

There are several major shortcomings of numerical representations. First,
the set of features must be provided to the learner. While not attempting to
discover new features, Samuel did address a weaker form of this problem - feature
selection. Feature selection is the task of choosing those features, from a fixed set
of features, which are relevant to the evaluation function. Irrelevant features are
removed from the computation. Samuel speculated that some features are relevant
to the beginning of checkers play, some to mid-game and some to end-game. During
the process of adjusting weights, features with low weights are considered irrelevant
and features with high weights are considered relevant. Features thereby fall in and

out of consideration as the learning algorithm adjusts weights.

A second shortcoming of numerical representations is that interactions be-
tween features are difficult to represent. Simply summing weighted features assumes
that each feature is independent. In fact, features are typically not independent and
their combinations are quite relevant to the “correct” evaluation function. Samuel
addresses the issue of interacting features by explicitly computing and representing
a value for the evaluation of every combination of features. These values are stored
in a signature table, which is an n-dimensional array. Each dimension of the array
corresponds to a feature, which in the simpliest case is two-valued (feature present
or absent). To obtain a board evaluation, the board is evaluated on n features and
a unique cell in the signature table is indexed. While signature tables represent
interacting features, they are large and difficult to learn.

A third drawback to numerical representations is that the supporting evidence

for a conclusion is irrecoverable from the numerical answer. In the domain of

checkers playing, for example, an evaluation of a board position might be based
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on sub-goals covered by the board (e.g. “achieved control of board center”) or
potential advantages of the board (e.g. “from here a King can be won in 3 moves”).
The reasons supporting a board evaluation are terms of the polynomial evaluation
function but are lost in the numerical representation. This has serious ramifications
when the knowledge derived from learning is used for anything beyond performance
at the original task. For example, the knowledge cannot be used for teaching,
explaining, or assisting learning or related tasks. This issue has been addressed by
Berliner in QBKG system which explains its moves in backgammon [BERL80].

In summary, Samuel’s checkers program demonstrates both the strengths and
weaknesses of numerical representations for learning from examples. It shows the
power of machine learning with a simple and straightforward learning algorithm.
Samuel discovered shortcomings of the approach and implemented solutions. But,
the limitations inherent in the representation could not be overcome without a

fundamental change in direction.

Winston’s ARCH Algorithm

Winston re-ignited interest in machine learning with the ARCH system.
Learning research before ARCH was predominately based on numerical representa-
tions, such as Checkers and perceptron training [ROSE62]. From limited successes
in selected domains, researchers speculated that learning by numerical weight ad-
justment would apply to building intelligent machines. Speculation ended abruptly
when Minsky and Papert [MINs69] proved that there are limits on the potential of

perceptron training.

Winston experimented with a richer knowledge representation and demon-
strated the power of learning incrementally from examples. ARCH learned to iden-
tify structured objects from examples presented by the teacher. In this section we

review the philosophy and design of ARCH.
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Figure 6

An Example Block Diagram and Semantic Net (from [WINS77, p 31])

Review of ARCH

The learning component of ARCH [WINs75] demonstrates learning descrip-
tions of structured objects from examples. Following the learning model presented
above, the learning environment, or teacher, provides ARCH with block diagrams
and classifications. These diagrams are particular configurations of structures like
arches and bridges. These structures are built from blocks of varying size and
shape. The learning element induces a general description of each classification
from the specific examples presented by the teacher. With each example, the learn-
ing element refines the descriptions in the knowledge base. As these descriptions
become more accurate, the performance element is able to correctly classify new

block diagrams presented by the teacher.

ARCH makes two significant contributions. The first is the departure from
numerical representations. ARCH uses a semantic net representation both for
describing examples presented by the teacher and for representing knowledge in the

knowledge base. The semantic nets represent blocks (domain objects) and relations
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between blocks. Within the network, blocks are represented by nodes and relations
are represented with arcs. Arcs which connect two nodes are annotated with binary
relations which describe the relationship between the nodes. In addition, nodes
are created with unary features which are connected with arcs annotated with
HAS-PROPERTY-OF to the objects they describe. Figure 6 is an example of the
representation used by ARCH.

An important part of the learning task is to discover the difference between
a specific example of a structured object presented by the teacher and the general
description of this class of objects stored in the knowledge base. To describe
this difference, ARCH builds a third semantic net. Meta-relations (ie. relations
between relations) are represented here. For example, if two nets, SN, and SN,
are compared and relation R holds in SN, and relation - R holds in SNz, then the
relation OPPOSITE can be used to describe the difference.

The second significant contribution of ARCH is the use of near-misses in
training. The teacher’s role is to guide the refinement of concept descriptions stored
in the knowledge base (thereby improving the system’s performance). ARCH allows
the teacher to present to the learning element both positive and negative examples of
the concept being taught. Winston observed that negative examples are extremely
valuable in correcting concept descriptions which are overly generalized. But, to be
useful, a negative example must differ from the current concept description in only
a single feature. This enables the learning element to detect the (single) difference
between the negative example and the current concept description and make the

correct refinement. This restricted class of negative examples are called near-misses.

Given the description of the differences between a training instance and the
current concept definition, the algorithm specializes (for negative instances) or
generalizes (for positive instances) the concept description. Generalization and

specialization operators used are:
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1) climbing/descending concept tree — meta-relations and objects are gener-
alized and specialized with concept hierarchy trees. Nodes of the tree are
labelled with subsets of meta-relations or objects. If node n, is a descendant

of node nz, then n; is a subset of n2 (e.g. a CUBE is a type of BLOCK).

2) dropping conditions - objects considered irrelevant to the concept are
dropped by removing them from the semantic net. Note that relationships

found irrelevant are simply weakened by (1).

Winston’s induction algorithm is described with the following algorithm:

Concept « first positive training instance
REPEAT
TI ~ a training instance
Diff — skeletal-match(Concept, T1)
Concept — incorporate-diff(Concept, Dif f)
DISPLAY Concept
UNTIL teacher satisfied

FUNCTION skeletal-match(Concept, TI)

skeleton — match nodes of TI and Concept semantic nets
to find “best” correspondences. Sub-graph isomorphism
(matching) is NP-complete. However the search is constrained
by arc annotations. Winston ignores the problem of multiple
matchings by expecting the teacher to present examples
examples with little difference. For one approach to handling
interference matching, see [HAYE78].

skeletal — match «— annotate skeleton with notes describing
the match. Most common note is INTERSECTION which means that
both matched nodes in the two graphs point to the same concept
(node) with the same relationship (arc). The NEGATIVE-
SATELLITE note means opposite relationships.
EXIT notes annotate nodes outside of the match. These
nodes are considered irrelevant to the concept.
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FUNCTION incorporate-diff(Concept, Dif f)
incorporate — dif f — heuristically selected “best”
generalization of Concept with Diff. This is a point of
non-determinism. The algorithm backtracks if the generalization
returned is found to violate subsequent training instances.
Non-determinism arises in the matching process and
the specialization of the concept. Generalizing with
positive instances is not a problem because they loosen
constraints by minimal generalization of relations using a
concept tree. Thus any number of differences can exist
between the current concept and a positive instance (as
long as a skeletal match can be found).
Negative instances are a problem because:
(1) there are multiple features of a training instance
which might account for the “miss”
(2) there are multiple ways to specialize a relation
using the concept tree.
Only “near-misses” are permitted for negative instances.
A near miss differs from the current concept in only one
feature. This constraint mitigates these problems.

Evaluation of ARCH

Winston introduced the use of symbolic knowledge representation for machine
learning. This was a useful departure from “traditional” numeric representations
and proved particularly useful for representing structured objects. However, simple
semantic net representations do have limitations. N-ary relations cannot be directly
represented in semantic nets! The arc annotation vocabulary for describing exam-
ples permits only conjunctive descriptions (since all relations in the semantic net
are assumed to hold simultaneously). The vocabulary for describing general con-
cepts allows weak forms of disjunction and exceptions. Disjunction is introduced
via the MAYBE annotation. This is equivalent to saying that a relation (unary or
binary) holds OR it does not hold in the description. This is a restricted form of
internal disjunction [MicE83] in which the set of permitted values (which are im-

plicit in MAYBE annotation) are TRUE, FALSE, and DON'T KNOW. Exceptions

1 Although not used by Winston, n-ary relations can be represented with n+1 binary relations.
See [DELI79).
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are represented with the annotation NOT and MUST-NOT on arcs in the net.
The vocabulary for general concepts uses variables to replace constants (e.g. object

names) but makes no use of quantification[ HEND79].

The remainder of the evaluation of Winston’s learning system is characterized
as teacher-dependent. Winston assumes that training instances are thoughtfully
presented. The teacher must be cognizant of the current state, the goal state,
and the internal induction mechanism in order to direct the learning process. By
requiring that the teacher know the system’s knowledge state and plan the training

sequence accordingly, Winston largely avoids certain complications:

1) checking past instances — The induction algorithm performs a depth-first
search through the space of concept descriptions. A depth-first algorithm,
in order to ensure consistency with past instances, must check past positive
instances when specializing and past negative instances when generalizing.
Winston does not perform these checks and thus cannot make strong claims
of consistent concepts. By assuming that training instances differ from the
current concept by only a few features (one feature for negative instances),
induction proceeds in small steps. The generalization tends to “stay on

track” and minor errors can be corrected with subsequent training instances.

2) interference matching (combinatorial explosion) — For each training instance
presented, the induction algorithm finds the “best” match between the
instance and the current concept description. ‘The problem of multiple
matchings is alleviated by assuming that the graphs being compared are
highly similar.

3) guaranteeing maximally-specific generalizations - Positive instances must
be presented in the “correct” order if maximally-specific generalizations are
to be found. Only one candidate concept description is carried through the

induction and generalized and specialized with instances. Permuting the
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order of the instances changes the final concept. In particular the concept

may not be maximally-specific.

In summary, Winston’s ARCH system is significant for its successful use
of symbolic knowledge representation at a time when the limitations of numeric
representations were casting a dark shawdow on machine learning. Also ARCH
demonstrated the role of near-misses in learning by example. However, ARCH can

be faulted for over-reliance on the teacher.

Quinlan’s ID3 algorithm

Quinlan’s ID3 learning algorithm [QUIN79B, QUIN83] is significant because
of its simplicity and efficiency. Referring to the learning model presented above,
ID3 employs a simple learning element for acquiring a knowledge base which allows

highly efficient performance.

Review of 1D3

ID3 demonstrates the trade-off between representational power and efficiency.
Quinlan built on Hunt et.al.’s experiments in induction [HUNT66]. The environ-
ment provides a set of examples to the learning element. Each example in the
training set is classified by the concept it belongs to. In the simple case oi’~ sin-
gle concept learning, each example is classified as a positive or negative instance
of the concept. The learning task is to induce general concept descriptions which
are consistent with the training set. Performance is demonstrated by classifying

subsequent examples by applying the learned concept descriptions.

The motivation for ID3 is both efficiently inducing over a large set of training
instances and building a concept representation which can classify new instances
quickly. ID3 demonstrates that this efficiency can be achieved but representational

power is sacrificed. First, the language used for describing examples is restricted to
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feature vectors. If n features are used to classify instances then the feature vector

is of the form:

(fh Iz ---,In)O.t.V;I <i1<n

fi € {va,viz,...,0m}

m possible values Jor fi

This representation is equivalent to a conjunct of features. The features are fixed
and are assumed to be independent.

Second, the language used for describing general concepts is a decision tree.
This is analogous to a collection of rules each with conjunction and disjunction of
feature values. The nodes represent features chosen from the set {f1, f2,..., fn}
and the arcs from a node labeled f; are chosen from the set of values for f;, namely
{vi1,%i2, - - -,Ym}. Leaves of the tree are labelled with names from the set of classes
{e1,¢2,... €k}

A sample decision tree for three concepts (chair, stool, and table) is shown in
figure 7. An instance is classified by the decision tree by traversing the tree from
the root. At each internal node labeled f;, evaluate the instance with respect to
f; and traverse the arc labelled with the result of the evaluation. When a leaf is

reached then the instance is classified by the leaf’s value. For example, an object
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represented with the feature vector (4 legs, no armrests, short) is classified as a

table by the decision tree in figure 7.

The goal of the induction algorithm is to minimize the complexity of the
resulting decision tree. Several metrics for measuring complexity are described
below. Roughly, assume complexity is measured by the average number of arcs
traversed in classifying an object using the decision tree. This is minimized by
selecting features which are highly predictive of classification to occupy nodes near
the root. Also, features which are irrelevant to classification are dropped from
the tree entirely. The induction algorithm is surprisingly straightforward and can
be implemented using about 20 lines of Prolog (not including the beam search

explained below). The PDL of the ID3 algorithm is:

Instances — a set of training instances
Features — feature vector (fi, f2,...,fa) input from teacher
Domains — set of domains for Features {d;,dz,...,d,}
where each d; is a set of possible values {vy;, v2;, ..., Vmi}
Classes — set of classes {c},€2,...,Ck}
Note this set is simply {+,- } for single concept learning.
Rule — formrule(Instances, Features, Domains, Classes)

DISPLAY Rule

FUNCTION formrule(Instances, Features, Domains, Classes)

For some class € Classes
IF all members of Instances fall into class THEN RETURN class

ELSE f « select-feature(Features, Instances)
d — domain from set Domains corresponding to f
RETURN a tree of the form:

b o <-- root labelled f
A\ <-- arcs labeled with
7Sl X\ values from d

<-- each child is a subtree
created by recursive call:

formrule({i | § € Instances, eval(i, f) = d,}, Features, Domains),1 < j < m
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The select feature function selects a feature from the set of features which will
be used to sub-divide the instances. Several of the more interesting criteria which

might be used in the select-feature function are:

1) random selection — while guaranteed to result in a correct decision tree
(i.e. complete and consistent with instances given)? the rule is sub-optimal.
Features may be chosen which do not divide the set of instances into useful
subsets. For example, all instances may share one value of the feature,
resulting in a node with one descendant. Or, more subtle, the feature may
subdivide the instances, but not be criterial to the rule. In this case the
subsets have the same mixture of positive and negative instances as the set
before subdividing.

2) information theoretic selection — as explained by Quinlan [QUIN83] this
method selects the feature (for sub-dividing each node) which, Quinlan con-
jectures, results in a tree with minimum expected classification time. The
feature is selected which is most criterial to the concept being formalized.
Criteriality is measured by the ability of a feature to classify instances.

3) minimal cost selection — used in Hunt’s original CLS system [EUNT66], this
feature selection method balances the cost of evaluating an instance for a
feature with the cost of misclassifying the instance. Input to the function
are two sets of costs: P; of measuring the {+th feature of some instance and
Qi of misclassifying it as belonging to class j when it is really a member of
class k. The goal is to minimize the combined costs. This method is useful
when the cost of evaluating instances is not uniform for all features (e.g.

medical diagnosis [QUIN79B]).

When the size of the set of Instances becomes large the goal of efficient rule

generation is lost. The problem occurs in two steps of the formrule function: the

2 As defined in [MICH83], a concept is complete if it covers all past positive instances; A concept
is consistent if it does not cover any past negative instances.
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first step of determining whether all members of Instances fall into the same class
and the last step which involves evaluating each instance with respect to a feature.
Due to this practical concern ID3 has been implemented using a beam search.
Basically, a subset of the set of instances is selected and a rule is formed which is
complete and consistent with respect to the subset. If the rule is not contradicted by
any instances in the set of instances, then the beam search terminates. Otherwise,
a new selection of instances is made and the search continues. Quinlan [QUIN83]
and Michalski [MiICE83] have experimented with different criteria for selecting the

subset of instances to use at each iteration of the search.

Evaluation of ID3

The expressive power of ID3’s description languages is weak. Instances are
represented with a feature vector and concepts are represented with a decision
tree. The expressive power of a feature vector is minimal. External conjunction
is implicit. Disjunction, exception, variables and quantification are not permitted.
Decision trees allow both conjunction and disjunction of features. Variables and
quantification are not used. This prevents natural encodings of structural and other
n-ary relations. Exceptions, also, cannot be represented.

The only generalization rule used in forming the decision tree is the dropping
condition rule. This is implicit in the operation of selecting a feature to sub-divide
a set of instances. Some features are not used in the final decision tree because
they are deemed non-criterial to the “minimal” concept description.

Balancing the weak expressive power of the description language and the
modest generalization technique is ID3’s efficiency. Efficiency of both the induction

process and the resulting decision tree can be measured:

1) the induction algorithm — ID3 was designed to perform induction over large
sets of instances. A main source of complexity in the induction algorithm

is evaluating an instance with respect to a feature. This operation must
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be performed | F | x | I | times at each node in the tree (where F is the
set of features used by I, the set of instances). The efficiency of this step is

dependent on the amount of useful knowledge encoded in the feature vector.

2) the decision tree — The final decision tree formed is minimal in that the
expected classification time of an instance using the tree is no greater than
the classification time of an “equivalent” tree. We say two decision trees
DT; and DT; are equivalent if for all instances I, classifiable by either DT
or DT>,

classify(I, DTy) = classify(I, DT3).

This assumes that the set of instances “seen” by the induction algorithm to

form a decision tree is representative of the distribution of the larger set of

unseen instances.

The efficiency of ID3 is demonstrated with the task of classifying chess
endgame positions as won or lost [QUIN83]. In experiments with lost in 2-ply
board situations, a decision tree with 83 nodes for 23 features was discovered in less
than 3 seconds. The resulting tree classified board positions in .96 seconds, which
was about 8 times faster than minimax search.

ID3 requires no teacher assistance during the induction process. All training
instances must be provided before processing begins. The induction proceeds depth-
first and only one candidate concept description is maintained. Since all instances
are present, the problem of checking past instances for consistency (required for
incremental learning) is avoided. The rules formed by ID3 are maximally-general

in that they do not use features which are not needed to classify instances.

ID3 uses a beam search for efficient learning given a large set of training
instances. Given this search strategy ID3 can be made noise tolerant by relaxing
the constraint that a decision tree be consistent with all instances. This provides

a margin for error. Additional evidence of noise tolerance is given by Quinlan
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[QUIN83] when describing the main findings of using a beam search. He found that
a correct and consistent tree was formed using only a small fraction of the total set
of instances and that the search was not sensitive to the size of the subset selected
at each iteration. This indicates that a small margin for error will not disrupt
learning in general. A consequence of the ID3 decision tree representation for rules
is that the impact of small rule errors on final classification errors is a function of
the position of the error in the decision tree. Rule errors near the root of the tree

are more serious than errors near the leaves.

In summary, ID3 is motivated by concerns of efficiency. This efficiency is
evident both in the induction algorithm and in the resulting decision tree. But there
are two shortcomings of the ID3 approach. First, the algorithm is non-incremental.
The instances used in training must be presented as a static set to the learning
element. Second, the description languages are weak. The instance language is
restricted to a feature vector with a fixed set of features and the generalization

language is a decision tree.

Michalski et.al.'s INDUCE algorithm
The INDUCE algorithm [MicE83] exhibits great inductive power. The main

contributions of INDUCE are a multitude of generalization operators and a highly
expressive description language. The resulting power is controlled by a heavy influx

of domain specific knowledge to guide the induction process.

Referring to the learning model presented above, the INDUCE environment,
or teacher, presents the learning element with a set of pre-classified positive and
negative examples of a concept. The learning element applies powerful general-
ization operators (under the guidance of domain knowledge) to form a rule which
is consistent with the training set. This rule may be quite terse because of the

elegance of the description language.




APC Form Example APC~FOPC
internal conjunction went(MaryAMother,movie) p(T1AT2) «p(T1)Ap(T2)
internal disjunction inside(key,(desk1vdesk?2)) p(T1vT2) ~p(T1)vp(T2)
relational stmts. length(rect)>width(rect) T1 rel T2 ~rel(T1,T2)
negations =(size(ball)=large) =(Rel.Stmt.)~
Rel.Stmt. with oppaosite rel.
exception () went(Mary,movie) S 4.8; ~(=5; = S1)A (S2 = AS))

went(Mother,movie)

Table 1
Examples of INDUCE’s Description Language

Review of INDUCE

The description language used by INDUCE is built on predicate calculus.
Both the instance language and the generalization language allow descriptions of
an instance or a concept using Annotated Predicate Calculus (APC). Descriptions
are of the form:

predicates sn APC

{quanti fier form) (conjunction of relational statements)

A

zero or more logical quantifiers

Michalski defines APC with a set of syntactic additions to first-order predicate
calculus (FOPC) and semantic preserving two-way transformations. This allows for
more natural encodings of knowledge. Examples of APC usage and mappings to
FOPC are given in table 1. .

The instance language and the generalization languages differ only in that
internal disjunction is prohibited in the former and allowed in the latter. This is
a natural restriction since a known instance can be described without this non-
determinism. In the generalization language, internal disjunction allows more
efficient and natural representation than the traditional external disjunction used
in Vere’s Thoth system [VERE75], for example.

The generalization rules employed by INDUCE are also very powerful. To

some extent this power results from “big step” generalizations. More conservative
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generalization rules, such as climbing generalization tree, turning constants to

variables and dropping a condition, proceed in small steps and are not as likely

to drastically deviate from the “correct” learning path. Michalski introduces the

following generalization operators (where { stands for an arbitrary expression, €

stands for “is in class”, and } stands for “can be generalized to”):

1) The closing-the-interval rule:

2)

3)

EA[L=adl€e K
EA[L=a...bl€K
EAN[L=beK
This rule states that two rules can be generalized if they differ only in the

value of a term. The values are assumed to be extremes of a range for which
the rule applies.
The extension-against rule:
GA[L=R]€eK
} [L# R € K
& A[L=R)] €K
The rule states that given two rules, one positive and one negative for
concept K, a generalization is formed which ignores all but one term from
each rule. The rule then infers that any instance for which descriptor L
does not take value R; is positive for class K.
Constructive generalization rule:
EANFieEK }
EnF2EK
Fi=>F
This rule generates an inductive assertion that uses descriptors (in this
example F3) not present in the original instance description. By applying
background knowledge and rules which draw conclusions from observed
facts, new terms are introduced for use in the generalization language.

This allows learned concepts to be used in forming new concepts. This

incremental learning rule is also used by Sammut [SAMM81].
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Using the description language APC and the powerful generalization rules

discussed above, the INDUCE algorithm [MicB83] is summarized by Michalski as:

pos +— set of positive instances from teacher
neg « set of negative instances from teacher
m — upper bound on the number of candidate concept descriptions
REPEAT while COLLECTing all values of rule

posinst — a random selection from pos

rule — formrule(posinst, pos, neg, m)

reduce pos to include only those instances not covered by rule
UNTIL disjunction of elements of rules covers pos
apply collection of FOPC — APC transformations on rules to

get a simpler expression and DISPLAY

FUNCTION formrule(posinst, pos, neg, m)
candidates — {f | f is one conjunct of posinst}
order candidates, favoring those which cover the greatest portion of
pos and reject the greatest portion of neg
expand the set of candidates by applying the following inference
rules to posinst:
1) constructive generalization
2) problem-specific generalizations defined for the domain
(this can cover alot of “dirty-tricks” and is not well
is not well defined by Michalski)
3) the definitions of previously-learned concepts to determine
whether parts of posinst satisfy some already known
concepts (again ill-defined).
order candidates using criteria described above.
delete all but the m most preferable descriptions from the set of
candidates.
solutions — {r | r € candidates A r is complete and consistent
with respect to pos and neg.
consistent «— {r | r € candidates A ris consistent with
neg but incomplete with respect to pos
generalize elements of consistent by applying:
1) extension against rule
2) closing the interval rule
3) climbing generalization tree rule
add to the set of solutions those elements of consistent

which are now complete
formrule «— m-best candidates from solutions as ordered

by above preference criteria
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Notice that the formrule function forms a set of maximally general rules which
are complete and consistent with the positive and negative instances. This is due to
the “seeds” chosen in the first step: maximal generalizations of a selected positive
instance. These seeds are then specialized. Since the rules are maximally general,
the INDUCE algorithm can form a rule to cover a (non-trivial) subset of the set
of positive instances by considering only a single instance. One maximally general

rule will then be found which covers the entire set.

Evaluation of INDUCE

The description languages for INDUCE are as expressive as FOPC. Conjunc-
tion, disjunction, exception, variables and quantification are permitted. Moreover,
the encodings are natural, syntactic modifications to FOPC. In addition, the gen-
eralization rules used are powerful. Constructive generalization adds descriptors to

a generalization which are not present in the instances used in the generalization.

The INDUCE algorithm is non-incremental. The search technique has com-
ponents of both a beam search and best-first search. A set of maximally-general
candidate concept descriptions is found which is consistent with all negative in-
stances and complete w.r.t. one positive instance. The best description (/as defined
by a domain-specific heuristic) is saved. The process repeats with another positive
instance. The final rule is the disjunction of best descriptions for some (hopefully

small) number of iterations.

INDUCE might demonstrate good noise immunity because of the structure
of generalizations found. A generalization is basically a disjunction of terms where
each term covers some subset of the positive instances. Noisy instances, assuming

they are very noisy, are in separate terms which can be removed.

Clearly, the description languages are able to represent any concept for which

FOPC is appropriate. But, guided by powerful generalization rules, what class of
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concepts can be learned? The problem encountered is the size of the search space.

There are three points in the INDUCE algorithm in which non-determinism arises:

1) Expanding the set of candidates by applying inference rules. This involves
a non-deterministic selection from three powerful generalization rules with
multiple bindings likely.

2) Generalizing consistent concept descriptions in attempt to make them com-

plete also employs three generalization rules.

3) Implicit matching of instances with concept descriptions requires a pattern
matcher. This finds the “best” match between an instance and a concept

description. It is also used to determine if a concept covers an instance.

Countering this enormous search space, INDUCE employs a body of domain-
specific heuristics to select the most promising candidate concept descriptions.
These pruning heuristics are essential and are applied at every opportunity during
each iteration of the search (formrule function performs one iteration). It is
surprising that INDUCE does not guide the selection of generalization rules with
heuristics. The learning element must select among five different rules to apply,

each with the potential of multiple bindings to the current state.

However, as described by Lenat [LENA83], heuristics have a limited domain of
applicability. Outside of this domain, a heuristic can be useless or dangerous. We
are unable to judge the heuristic adequacy [McCA69] of the INDUCE algorithm.
The “knowledge-intensive” approach is proving useful in problem solving, expert
systems and natural language processing (among other areas) and should find
application in inductive learning as well. However, evaluation of such a system is
easily influenced by the quality and quantity of knowledge available to the system.

This can conceal the domain-independent, formal properties of an algorithm.

In summary, the INDUCE algorithm contributes an expressive description

language and a set of powerful generalization operators under the guidance of a
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knowledge intensive learning element. The performance properties of the learning

element are difficult to judge because domain specific heuristics are used to prune

the search for a generalization.

Mitchell et.al.'s LEX Algorithm

There are two major contributions of the LEX system. First, LEX addresses
all components of the learning model described above. The result is a system
which integrates the environment with learning and problem solving. Second, LEX
proposes a representation for heuristics, called version space, which aids in the

refinement of heuristics with training.

Review of LEX

LEX, described in [MITC78, MITC82, MITC83], is an incremental model
for learning problem solving. In a problem solving domain, operators cause state
transitions which progress toward the goal. In LEX, the environment, or teacher,
presents advice on which operators to apply during problem solving. As with the
other learning from examples systems discussed in this chapter, the LEX learning
element discovers general rules which are consistent with this teacher training.

Given operators {op;,0p2,...,0p,} in a problem solving domain, LEX forms rules
{cond; — op;,cond; — opa,...,cond, — Opn}.

For each rule, cond; corresponds to the concept “states in which op; can be usefully
applied.”

Domain knowledge provided to LEX is a set of concept hierarchy trees. An
example concept hierarchy tree is shown in figure 8. This domain knowledge
serves three purposes in LEX. First, nodes of the concept hierarchy trees define

the vocabulary of LEX’s description languages. Examples presented by the teacher
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Figure 8

Concept Hierarchy Tree for Functions

must be described using terms in the leaves of the trees. Concept descriptions

(generalizations) are described using terms in any node in the trees.

The second use of concept hierarchy trees is to define LEX’s generalization
operator. Generalization is performed by “climbing the generalization tree.” A
generalization of an example is formed by replacing a primitive feature of the
example with a generalization of the feature. The primitive feature is restricted
to be a leaf of a concept hierarchy tree. A generalization of the feature is any

(internal node) ancestor of the leaf.

The third, and most significant, use of concept hierarchy trees is to guide
LEX’s learning element. LEX views concept learning as a search through a space
of concept definitions. Both positive and negative training instances are used for
navigating through the space. The space of candidates is structured by a partial
ordering imposed on candidate concepts. This ordering is defined by a more-specific-
than relation between concepts. The ordering defines a tree with the most specific
concept at the root and least specific concepts at the leaves. Positive instances
force generalizations (i.e. searching deeper in a branch) and negative instances

prune branches of the tree.

Traditional breadth first and depth first strategies for searching the space

of candidate concept definitions require keeping past instances and verifying that
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current candidates do not violate previous instances. LEX avoids these time and
space requirements by a search technique analogous to bi-directional search. LEX
maintains two sets of candidate concept definitions. One set, S, contains candidates
which are equal to or more specific than (as defined by the partial ordering) the
correct concept. The other set, G, contains candidates which are equal to or
more general than the correct concept. The correct concept lies between these
boundaries. Mitchell calls this space between S and G (inclusive) the version space
of the concept. The version space is implicitly defined and structured by concept

hierarchy trees which relate terms in the description languages according to the

partial ordering.

The LEX algorithm is described by the following PDL:

Ctrees «— set of concept trees from teacher
posinst — initial positive instance from teacher
S «— {posinst}
G «~ {g | mazimal — generalization(posinst, Ctrees, g)}
REPEAT
TI « training instance from teacher
IF T1I is a positive instance THEN
retain in G only those elements g, s.t. match(T1, g,Ctrees)
for all s € S, s.t. ~match(T1, s), replace s in S by
generalize(s,T1,Ctrees)
for all s € S, remove 8 from S if there exists g
in G, s.t. match(s,g,Cltrees)
for all distinct pairs of elements 8; and 82 € S, remove
82 from S if match(sz, 8;, Ctrees)
IF T1I is a negative instance THEN
retain in S only those elements s, s.t. ~match(TI, s)
for all g € G, s.t. match(T1,g,Ctrees), replace g in G by
specialize(g, T1, Ctrees)
for all g € G, remove g from GIF 3s € S, s.t.
match(g, s, Ctrees)
for all distinct pairs of elements g, and g2 € G, remove
g1 from G IF match(g, g2, Ctrees)
UNTIL S=G
DISPLAY S
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FUNCTION generalize(concept,instance, Ctrees)

RETURN the list of minimal generalizations of concept with the (ground)
tnstance, w.r.t. Ctrees.
Assuming a concept definition of n features, the list of generalizations
returned will be at most length n!.
For each pairing of features in concept with features in snstance,
find the minimal generalization by:

generalization — “null” term for all pairs of

corresponding features f; € tnstance and t. € concept
ctree «— subtree of Ctrees s.t. f; is a node of ctree
APPEND to generalization the closest common ancestor of ¢; and

t. in ctree.

FUNCTION specialize(concept, instance, Ctrees)
RETURN the list of minimal specializations of concept with the (ground)
tnstance, w.r.t. Cirees.
This list is formed by collecting the results of all successful
paths through the non-deterministic algorithm:
for all pairs of corresponding features f; € instance and
fe € concept
ctree — member of Ctrees s.t. {; is a node of ctree
replace t. with a descendant of ¢, from ctree in concept
IF match(instance, concept, Ctrees) THEN
concept — specialize(concept,instance, Ctrees)
EXIT with concept

Boolean FUNCTION match(spec, gen,Ctrees)
(note: match is true iff spec is equal to, or more specific than, gen)
RETURN true IF
for some pairing of features in spec with features in gen,
for each pair of features f, € spec and f; € gen,
there exists ctree, a sub-tree of Ctrees s.t.

Jo=Jyor
Js is a descendant of f; in ciree
OTHERWISE RETURN false

The LEX induction algorithm terminates when the S and G boundaries meet.
This convergence is guaranteed given sufficient (and different) training instances.
If the boundaries pass then the training set must be noisy. The ability to estimate
confidence in a partially-learned concept (as estimated by the “distance” between
S and G) and to determine whether the training set is noisy are significant contri-

butions of the version space representation.
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Figure 9
The LEX Learning Cycle (from [MITC83, p 167])

LEX differs from the other induction algorithms surveyed in that it addresses
all components of the learning model. Learning becomes a dynamic process which is
integrated with problem solving. This dynamic, integrated learning model consists
of four components (see figure 9):

1) The problem generator - this component proposes problems to be solved
from which LEX can refine its knowledge base.

2) The problem solver - this component attempts to solve the proposed prob-
lem using the current knowledge.

3) The critic - this component analyses the resulting search graph. Credit
assignment defines “appropriate” applications of a (partially-learned) rule
from the knowledge base as those on the solution path. Inappropriate
applications are those deviating from the solution path.

4) The generalizer - this component integrates the positive and negative in-
stances of rule application (identified by the critic) with the current knowl-

edge base. This corresponds to the version space induction algorithm.
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Evaluation of LEX

LEX sacrifices inductive power for a guarantee of maximally specific, complete
and consistent concept descriptions. The concept trees used for generalization and
specialization combined with the frontiers of the bi-directional search implicitly
define the version space. Also implicitly defined (reconstructable) are two sets of
concept descriptions which LEX has ruled out. One set contains those descriptions
found inconsistent with some past negative training instance. The second set
contains those descriptions found incomplete with respect to some positive instance.
LEX proceeds incrementally. For each new training instance, LEX reduces the size
of the version space by moving a frontier (effectively moving candidate concept
descriptions from the version space to one of the two sets of “ruled out” concepts).
This insures that only complete and consistent concept descriptions remain in the
version space. Furthermore, the frontiers are moved minimally with each training
instance in the sense that only those candidates from the version space which are
inconsistent with the current training instance are removed. This guarantees that
LEX will find the maximally specific concept description which is complete and

consistent with the training set.

The description languages and the generalization rules are central to the
LEX version space approach. The description languages are essentially feature
lists. The description languages allow natural, domain specific, forms of descrip-
tion (e.g. mathematical notation for the domain of integration problems) but the
expressive power is equivalent to a conjunction of features. The only generaliza-
tion/specialization rule is climbing/descending concept hierarchy trees. By intro-
ducing more powerful rules, perhaps operating on a more expressive generalization
language, LEX would forfeit the ability to re-construct the search space from the
frontiers and to divide the search space into three sets: possible candidates, incom-

plete candidates, and inconsistent candidates.
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One strong advantage of the version space algorithm is that LEX has a
dynamic representation of what it knows. This meta-knowledge could be used
by LEX’s problem generator. The problem generator could measure the degree of
convergence on a concept (as measured by the distance between the frontiers of the
search graph). A problem could be proposed which bisects the version space, for
an optimum learning rate. In fact, the meta-knowledge is not currently used by the
problem generator, although Mitchell documents its potential [MITC83]. Another
use of this meta-knowledge allows LEX to measure the confidence of a partially-
learned concept. This could allow the problem solver and the critic to prudently
use partially-learned concepts when expanding a search graph or performing credit
assignment. A third use of the meta-knowledge is for learning with noisy training
sets. Mitchell and Cohen [MiTC78, COBE82] have defined a modified version space
algorithm which maintains multiple boundary sets. In the modified algorithm, the
sets Sy and Gy correspond to the sets S and G in the noise-free algorithm. Added to
the storage requirements are S-S, and G}-G,, where each description in the set S;
is consistent with all but ¢ of the positive training instances and each description in
the set G; is consistent with all but ¢ of the negative instances, for § between 0 and
n. If the algorithm detects the crossing of a pair of boundaries S; and G; then the
algorithm concludes that at least ¢ instances were noisy and looks for convergence

on a concept bounded by S;4; and G;4;.

Young et.al. [YOUN77] have devised a space-saving modification to the version
space algorithm. Basically, they propose eliminating the explicit representation of
the frontiers by an implicit representation. Markers are placed at nodes in each
concept tree corresponding to the most specific and most general abstractions of
the each concept which is consistent with past instances. This is analogous to
distributing the frontiers from the concept version space to each of the concept

trees involved in the total concept.
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In summary, LEX makes two significant contributions to machine learning.
First, LEX integrates components of the learning model. This reduces the in-
volvement (influence) of the environment by allowing the learning element to test
hypotheses with the performance element. Second, LEX refines heuristics by re-
ducing the version space of each heuristic with incremental training. The version

space representation of heuristics is also useful for deriving meta-knowledge on the

learning process.

Conclusions

We have surveyed the induction algorithms used by five significant learning
systems. These systems are in the class of learning by examples. We have detailed
the control mechanism and the knowledge representation used by each. Samuel’s
checkers player revealed the strengths and weaknesses of a numeric representation
for learning. Winston’s ARCH system was found to be domain and teacher de-
pendent. By relying on near examples and near misses in the training set, ARCH
avoids incorrect concepts and combinatorial explosion. Quinlan’s ID3 algorithm
buys efficiency and simplicity at the expense of expressive power. Michalski et.al.
INDUCE program has the expressive power of FOPC, and powerful generaliza-
tion rules. It represents a significant effort to apply more domain knowledge to
the learning process. Finally, Mitchell et.al. LEX system guarantees complete
and consistent concept descriptions, but employs weak description languages and

generalization rules.

This chapter illuminates the commonalities and differences of five significant
machine learning algorithms. More important, however, are the ubiquitous trade-
offs of expressive power versus efficiency, domain independence versus strong meth-
ods, and teacher guidance versus combinatorial explosion, that characterize the

state of the art of machine learning.



CHAPTER 3
Episodic Learning

This chapter discusses a technique for learning operator sequences useful
in problem solving. The technique is called episodic learning. The goal of
episodic learning is to learn useful sequences of operators and heuristics to guide
their application. This is important for reducing search for a goal during problem
solving. Episodic learning is motivated by the principles of incremental knowledge

acquisition discussed in chapter 1.

Defining the Problem

A useful model of problem solving is state-space search as described by Newell
and Simon [NEWE72]. Basically, a problem solving task is modelled as search
through the space of all possible problem states. One state in the space is selected
as the initial state and some set of states are identified as goal states. Operators
are defined for the task which transit from one state to another. Starting at the
initial state, the problem solving task is to select an operator which, when applied
to the initial state, yields a state which is closer to the goal. A sequence of such
operator applications transits from the initial state to a goal state. This sequence
of operators is called an episode [NEWE72, pp 283-303].

Episodes are useful in problem solving because they can be treated as units.
Naive state-space search involves making local decisions at each state in the search of
which operator to apply. The strategy used to select operators (the control strategy)
can be blind or heuristically guided. In the latter case, heuristics suggest operators
which are most likely to advance the search from the current state to a goal state.

The heuristics are indexed by features of the current state. While heuristic search

49
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can be an improvement over blind search, heuristically guided search can still be
inefficient. This inefficiency is caused by the cost of indexing heuristics and by the
fact that local decisions can be faulty. Applying episodes during problem solving

mitigates these difficulties by reducing the number of decisions during search.

Newell and Simon observed that people apply episodes during problem solv-
ing. They conducted protocal analysis of people solving crypt-arithmetic puzzles.
This analysis revealed that human problem-solving activity can be segmented into
episodic units. Each episode achieves a part of the problem and advances the search
to a recognizable problem sub-goal. Since the episode is a single unit, the problem
solver need not labor over multiple local decisions. “[The problem solver| can ig-
nore within-episode detail, and concentrate analysis on the moves from episode to

episode” [NEWE72, p 286].

Episodes are effective at reducing non-determinism in state-space search mod-
els of problem solving activity. The two issues that this chapter addresses are how
useful episodes can be discovered in a problem solving domain and how the appli-

cation of episodes can be heuristically guided.

Related work on Learning Episodes

This section discusses research projects which address issues in episodic learn-
ing. A common theme in this research is that a memory should support episodes
as units. Such a memory structure improves indexing of problem solving knowl-
edge. The learning projects discussed here are MACROPS in the STRIPS planning
system, rule composition in ACT learning system, and sub-goal learning in the

Universal Puzzle Learner.
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OPERATOR: pickup(z)

Precondition: ONTABLE(z) A HANDEMPTY ACLEAR(z)
Delete List: ONTABLE(z), HANDEMPTY, CLEAR(z)
Add List: HOLDING(z)

Figure 10
An Example STRIPS Operator

MACROPS - The Learning Element of STRIPS

Referring to the model of learning presented in chapter 2, MACROPS is the
learning element for the STRIPS performance element. STRIPS is a problem-
solving developed by Fikes and Nilsson [FIKE71]. STRIPS forms plans for achieving

a pre-specified goal state. The plan constitutes an operator sequence, or episode.

The representation of operators in STRIPS is important to the system. As
shown in figure 10, operators are represented by a precondition list, a delete list,
and an add list. The precondition list is a formula which must be deducible from
the current state description to enable the operator to apply. The delete list is a
set of literals which are removed from the current state description by the operator
application. Finally, the add list is a set of literals which are added to the current
state description by the operator application. In summary, this form of STRIPS
operator explicitly lists the requirements for the operator to apply as well as the

transformation from the current state to the successor state.

Planning in STRIPS is done with means-ends analysis, similar to that of GPS
[NEWE61]. The program selects a difference between the goal state and the current
state and applies an operator which reduces the difference. The difference consists
of a literal of the goal state which is not in the current state description. The
operator selected is one which includes the relevant literal in the add list. The
selected operator is applied to the current state if its precondition list is satisfied.

Otherwise, the unsatisifed preconditions are set as sub-goals to be achieved.
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A Triangle Table Representation of a STRIPS Episode

This planning process generates a sequence of operators, or an episode. The
STRIPS planning system has no facility for improving performance. The intent
of MACROPS [FIKE71] is to remember robot plans that have been generated by
STRIPS so that the plan can be reused without regeneration. The plans are stored
in triangle tables which record the order of application of operators in the plan and

how their pre-conditions are satisfied. MACROPS also generalizes plans so they

are applicable to a class of problems.

A sample episode from MACROPS is shown in figure 11 (this example and
description is from [NILS80, pp 282-287]). A triangle table is a lower diagonal
array. The columns are labelled with names of operators applied in the episode.
The columns are numbered sequentially from zero, so that the j** column is headed
by the j** operator in the sequence. The rows are numbered sequentially from one.

If there are n operators in the sequence then there are n + 1 rows in the triangle
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table. The entries in cell (i, §) of the table, for j > 0 and § < n+1, are those literals
added to the state description by the j*» operator that survive as preconditions of
the i** operator. The entries in cell (¢,0), for i < n+1 are those literals of the
initial state description that survive as preconditions of the i*h operator.

Triangle tables explicitly represent the flow of literals through states in a
solution path. The solution path is defined by an operator sequence, or episode. In
particular, the entries in the row to the left of the ith operator in the episode are
precisely the preconditions of the operator. The entries in the column below the i

operator are precisely the literals in the add list of that operator that are needed

by subsequent operators or the goal.

The intent of the triangle table representation of episodes is that sub-sequences
of the episode can be extracted and re-used without further planning by STRIPS.
Such a sub-sequence is called a kernel. The 4th kernel is outlined by double lines
in figure 11. The entries in this sub-array are precisely the conditions that must
be satisifed by a state description in order that the sub-episode of operators 56
achieve the goal.

While effective in recording plans, MACROPS has difficulty applying its
acquired knowledge [CARB83]. The central problem is that the operators in a
MACROPS plan are not segmented into meaningful sequences. Any sequence of
operators defines a kernel which can be extracted from the triangle table and re-
used as a macro operator. A sequence of length n defines ﬂ%;!l macros. However,
few of these sequences are useful. MACROPS offers no assistance in selecting the
useful sequences from a plan. An alternative is to forbid the selection of operator
sub-sequences and consider the entire plan to be an episode. This results in a large
collection of single-purpose macro operators with no branching within the plan. In
either case, combinatorial eiplosion makes planning with the macros impractical.
(It should be recognized that MACROPS was designed to control a physical robot,
not a simulation. The goal of the MACROPS design was to permit the robot
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planner to skip ahead in a plan if the situation allowed or to repeat a step in a plan
if the operation failed due to physical difficulties.)

A hierarchical representation of the purpose of learned episodes is miss-
ing in MACROPS. The triangle table is a flat representation of operators in an
episode. One way for MACROPS to overcome the combinatorial explosion of pos-
sible episodes derivable from a set of stored plans is to record the purpose of each
episode learned. This might include the goal accomplished, the problem solving
context, and the strategy and tactics guiding the problem solving. An example
of this structuring of problem solving knowledge is Silver’s LP learning system
[SiLv83].

In summary, MACROPS is the learning element for the STRIPS problem
solving system. With an explicit representation of operators, MACROPS records
each episode in a triangle table. This table captures the flow of literals through
the episode. In particular, it allows sub-sequences of operators to be extracted
from the episode and re-used as a macro. But, without some guidance for selecting

useful macros, it is difficult to problem solve with MACROPS episodes due to

combinatorial explosion.

Rule Composition in ACT .

The ACT learning system [NEVE81, ANDES83] is a theory of learning applied
to several domains including that of high school geometry problem solving. ACT is
an experiment in knowledge proceduralization. The ACT learning element is given
a body of declarative knowledge about a problem domain, in this case geometry.
The learning task is to convert this knowledge into a procedural form which can be
applied by the performance element. This is an example of skill acquisition in that
improvement of an existing ability is the concern.

ACT is an example of a learning system in which the results of the performance

element feed-back to the learning element (see chapter 2). The performance element
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IF A+ ¢B =180
THEN ¢A and /B are supp.

IF ¢A and /B are supp.

Supplementar
g 4% 4 THEN LA+ ¢(B =180
AUgJey are knowledge
£¥8 spgies * T compilation
whose measures P IF ¢A and ¢B are supp.
bave sum 180 AND the goal is to findZA
THEN set subgoal to find /B
etc.
Figure 12

An Example of Knowledge Compilation in ACT

is presented with a geometry problem to solve and a set of general production rules
which can apply forwards or backwards. For example, two rules concerning the

definition of vertical angles are given by the following two rules:

P1: IF Y is the midpoint of XZ THEN XY ~ Y Z by definition
P2: IF the goal is to prove that Y is the midpoint (_)f__ﬁ
THEN set as the subgoal to prove that XY ~Y Z

P1 is a forward working production rule and P2 is a backward working rule. The
ACT performance element generates a plan for proving a geometry problem by
simultaneously applying forward rules to the “givens” in the problem statement
and backward rules to the “to prove” in the problem statement. This bi-directional
search creates a proof tree. The problem is solved when the two advancing frontiers
of the search meet.

The task of the learning element is to improve the efficiency of creating proof
trees. This is done by compiling knowledge from a declarative form to a procedural
form. Declarative knowledge, such as the definition of midpoint, is applied to a
problem solving task with general interpretive productions. Declarative knowledge
is represented in ACT with semantic nets. Procedural knowledge, by contrast, is
directly applied to a task because it is encoded in production rules, such as those

given above. Anderson draws on the analogy with programming language compilers
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which input a declarative statement (a program source) and output a procedural
statement (an executable object). An example of knowledge compilation in ACT is
shown in figure 12.

The ACT learning element attempts to model the human process of gradually
improving problem solving ability with practice. Anderson assumes that people
first encode new information declaratively. General interpretive mechanisms then
apply this knowledge in multiple circumstances. This performance incrementally
improves ability by enabling the learning element to create new procedures (rules)
which directly apply this new knowledge without the interpretive step.

There are two learning processes in the ACT system: composition and pro-
ceduralization. Rule composition creates a new production that accomplishes the
effect of a series of rules in a single step. This is done by combining both the
preconditions and the effects of each rule in the sequence to form a global precon-
dition and effect list for the entire sequence. Rule composition is applied whenever
sequences of rules occur in problem solving. This is viewed as a form of episodic
learning which improves performance by replacing a sequence of rules with a single
rule. This single rule can be used whenever the original sequence applies. Further,
the new rule accomplishes the same effect as the sequence.

Rule proceduralization is a learning process which constructs specialized ver-
sions of productions. The advantage of proceduralization is that access to memory
is reduced during the application of a production rule. This is done by identifying
general clauses in the rule which are pattern matched with specific clauses in the
state description. By replacing the general clauses by the specific clauses, a produc-
tion rule is created which applies directly to this situation without the overhead of
pattern matching. The penalty, of course, is that many specific rules are created.

The goal of both rule composition and proceduralization is to create produc-
tion rules which improve the efficiency of problem solving. With composition, this

is done by combining a sequence of rules into a single rule with the same effect.
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With proceduralization, efficiency is improved by creating rules which reduce ac-

cess to memory by replacing general clauses with specific clauses found in problem

states.

The problem is that this learning approach results in a proliferation of pro-
duction rules. Composition is applied on every pair of productions that fire in
succession. A composition of two rules creates a rule which, if used in subsequent
problem solving, is a candidate for further composition. Limiting rule composi-
tion is the fact that as rules get “large,” they apply to fewer new problem states,
thereby reducing further composition opportunities. Also, proceduralization is ap-
plied whenever possible. This means that specific rules are quickly produced from

general rules which apply to limited situations.

The rules created by ACT’s learning element are strong procedures [ANZA78].
They improve problem solving by compiling knowledge into a form which can be
applied without search. Moreover, the strong, more specific rules which are learned
are simply added to the knowledge base. Therefore, ACT can resort to weaker, more

general rules when highly proceduralized rules do not apply to a new problem.

But, there is an implicit assumption in ACT that the expense of finding a rule
to apply to a problem state is negligible. Since this assumption is unwarranted,
it is important to reduce the number of rules under consideration. Anderson ‘calls
this problem tuning the search for a proof. He proposes four (unimplemented)
techniques which reduce the number of candidate rules for each problem state.
An alternative is to filter the number of rules which knowledge compilation creates.
Learning might be restricted to those rules which satisfy some high-level constraint.
For example, rule composition might be applied only to rule sequences which recur
or to sequences which achieve a generally useful sub-goal. From both a cognitive

and a practical standpoint, it is unreasonable to assume that learning is unfettered

by such constraints.
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In summary, the ACT system is motivated by the goal of modelling skill acqui-
sition by people. The assumption is that students are presented with declarative
knowledge which is initially applied by a general interpretive mechanism. From
this performance, procedural knowledge is created which improves problem solv-
ing efficiency. This is done by the twin learning processes of rule composition and
proceduralization. But, the procedures formed must be useful to general problem
solving tasks which recur in the domain. Otherwise, the problem solving search

space expands by the addition of new rules without commensurate benefit.

Operator Sequences in UPL

This section discusses the Universal Puzzle Learner (version 2) by Stellan
Ohlsson [OBLS82). UPL consists of a performance element and a three-part learning
element. The performance element searches a state space defined by the operators in
a problem solving domain. Knowledge of the search space acquired by the learning
element guides the search for a goal. If there is no relevant knowledge, then the
learning element performs unselective search. Therefore, the performance element
can be used independent of the learning element.

The goal of the learning element is to acquire heuristics for improving the

performance efficiency. The learning element consists of three components:

1) Good Step Identifier (GSI) - proposes rules which suggest an operator to be
applied in a particular situation. A good step is defined to be a transition
from the current state to either a goal state or a state which is closer to a
goal state.

2) Bad Step Avoider (BSA) - proposes critics which reject an operator in a
particular situation. A bad step is defined to be a transition which causes
a loop, leads into a dead-end, or leads further away from the goal.

3) Goal Analyzer (GA) - creates goal-setting rules. The purpose of GA is
to identify subgoals, which are defined to be useful stepping stones on the
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solution path of some top goal. A state in the search space is classified as

a sub-goal by GA if it provides opportunity for progress towards the goal.

The knowledge structure constructed by the three part learning mechanism is
a set of production rules. These production rules are created during performance
at some task. Suppose the performance element tramsits from state s; to s; by
applying operator OP while seeking goal G. This transition is classified as good or
bad by the learning element. This classification is based on a domain-dependent

static state evaluation. If the transition is bad, the BSA creates the rule:
IF the current state is 8; and the goal is G THEN do not apply OP
If the transition is good, the GSI and GA propose the following pair of rules:

IF the current state is 8; and the goal is G THEN apply OP
IF the current state is 8; and the goal is G THEN set as subgoal to reach s;

There is no doubt that the knowledge acquired by the UPL learning mecha-
nism is adequate for problem solving. The rules proposed by the GSI and GA define
an episode. The episode is guaranteed to achieve the goal, if it applies. Suppose
UPL learns an episode of length n transitions from state S to goal state G. As de-
scribed above, there are n rules learned by GSI and n rules learned by GA. If this
episode is being used by the performance element, subgoal setting rules proposed
by the GA back-up from G to S. All states on the solution path from S to G are
marked as subgoals. This path is then followed by the operator proposing rules
created by GSI. The episode effectively defines a procedure for achieving G form S
with no search required.

There is a strong implicit assumption in UPL that static state evaluations
can be defined to guide learning and performance. State evaluations are critical for
the learning element. The GSI, BSA and GA components use state evaluations to
estimate the quality of states. A transition between two states s; and 8; is good

if 82 is closer to the goal than s;, as judged by the static evaluations of 8; and s;.
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This determines whether a proposer rule is created by the GSI or a critic rule is
created by the BSA.

There are two inherent problem with static evaluation functions. First, they
are inaccurate. Reliance on static evaluation functions can result in the frailities
common in hill-climbing search. Hill-climbing is frustrated by the problems of local
maxima, plateaus, and ridges in the state space [NILS80, pp 22-24]. Second, static
evaluation functions are difficult (sometimes impossible) to define. For example,
the function which counts the number of tiles out of place is adequate for some
initial configurations of the eight tile puzzle but gets stranded on local maxima
for other configurations [NILS80, p 24]. But, the broader issue is that even if a
“correct” function could be found by exhaustively studying a particular problem
domain, learning mechanisms should not rely on this. Reliance on static evaluation
functions by learning mechanisms reduces domain independence and restricts their
application to domains for which functions can be found before learning takes place.

In summary, the Universal Puzzle Learner is a system for learning while
doing. The learning mechanism observes performance at one task and creates
production rules which improve performance efficiency on subsequent, related tasks.
This knowledge is based on local evaluations of paths selected during performance.
Unfortunately, these evaluations are based on static evaluation functions applied
to states in the search space. This restricts the utility of UPL to those domains in

which computable functions exist and can be defined a prion.

Learning Episodes for Problem Solving

The PET approach to learning episodes is now described with the reviews of
MACROPS, ACT, and UPL as background. With the aid of a teacher, students
learn to solve simultaneous linear equations and symbolic integration problems.
This section discusses this learning process with emphasis on the role of the teacher,

the student’s prior knowledge about math, and the result of the learning. These
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general comments are then made more specific with a PDL description of the PET

learning cycle, which learns problem solving in these two domains.

What the Teacher Does

The teacher plays the role of the environment in the model of learning in-
troduced in chapter 2. To fill this role, the teacher performs the following two
functions:

1) The teacher demonstrates effective operator sequences for solving specific
problems in the problem domain. From this the student learns episodes for
problem solving in this domain. The student must discover the purpose of
each operator in the episode. This information is not made explicit by the
teacher but is required for constructing episodes whose usefulness extends
beyond the small set of examples worked out by the teacher.

2) The teacher presents specific examples of general concepts to the learning
element, or student. From this the student discovers the general concepts by
induction over the set of examples. This conforms to the model of learning
by example. Advice to apply OP to proﬁlem state S is a specific example
of the general concept “problem states in which OP is useful.” As with (1),
this form of generalization also extends the student’s knowledge beyond the

limited training provided by the teacher.

The first of these learning tasks is the topic of this chapter. The second task is
elaborated on in chapter 4. These issues are jointly addressed in the PET system,
but it is useful to describe them separately here.

As discussed in chapter 2, there is a spectrum of levels of involvement by the
teacher in the learning cycle. The teacher’s role in the PET learning cycle is to
provide advice on which operator to apply to a particular problem when the PET
performance element is “stumped.” This advice is followed and PET attempts

to understand why it is appropriate. If PET can determine the purpose of the
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operator in this instance, then PET learns from the exercise. Otherwise, PET
must “bear-with” the teacher until something understandable happens. In either
case, PET continues with the solution path, requesting help when necessary, until

the problem is solved.

What the Student Already Knows
A student learning to solve simultaneous linear equations or symbolic integra-

tion problems is assumed to have prior knowledge of certain mathematical principles

and procedures. This knowledge is in three categories:

1) knowledge of operators in the domain - The student is assumed to know
how to apply operators to problems in the domain. This involves pattern
matching general operator definitions with specific problems and propagat-
ing bindings through the operator definition.

2) knowledge of goals in the domain - The student is assumed to know the
general form of a solved problem in the domain. This serves to guide
solution paths to the final goal.

3) knowledge of generalization — The student is assumed to be able to general-
ize rules from examples. This is not required for episodic learning and will

be covered in detail in chapter 4.

Items 1 and 2 will be explained with examples in section 3.5.

The Result of the Leaming Process

The task of the learning element is to discover knowledge about the problem
space which improves problem solving in the space. Episodic learning contributes
part of this knowledge: knowledge of why individual operators are useful in problem
solving. That is, episodic learning is concerned with discovering the purpose of
individual operators in operator sequences. The assumption is that knowledge of

parts contributes to knowledge of the whole.
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Episodic learning consists of acquiring two types of state space knowledge:
state evaluations and useful solution paths. State evaluations are a measure of the
quality of states in the state space. The quality of a state S is measured by the
distance from S to a goal state, where low distances indicate high quality. In PET,
this distance measure is called the score of a state. In particular, goal states have

score zero.

Learning state evaluations is done by incrementally backing-up values from
known states to “neighboring” states. This process starts with goal states. States
8; and s; € S are neighbors if there is a single operator, OP, such that the
application of OP to s; yields s;. States which are neighbors of goal states are
assigned a score of one. Then, states which neighbor states of score one (and are

not goal states) are assigned a score of two, and so on.

There are two problems with this straightforward approach to state evaluation.
First, the state space is potentially infinite and the set of states which need to
be evaluated must be limited. Second, the state space does not provide explicit
information on which states are neighbors. These two problems are both addressed
by the second type of knowledge discussed above: knowledge of solution paths.
Solution paths are states which are passed through by an operator sequence, or
episode. Those states which are included in solution paths are exactly the sét of
states which PET evaluates. Also, solution paths make explicit neighboring states
in the state space. So, knowledge of state evaluation is intimately connected with

knowledge of solution paths.

PET incrementally builds solution paths backwards from the goal state. That
is, a solution path of length n states is defined by an episode (operator sequence)

of length n — 1 operators. Consider the episode E defined by:

v e,
81 82 sfeted == K8
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where s, is a goal state. PET is constrained to only learn from a state transition
in an episode if the purpose of the transition can be understood from existing
knowledge. Initially, PET only knows the state evaluation of goal states, which
have a score of zero. Therefore, initially PET is restricted to learning transitions
to goal states, in which the purpose of the transition is clear. Assuming PET has
not learned any other episodes and E is presented by the teacher, PET learns that
state 8,_; is a neighbor of s,. This enables PET to assign a score of one to 8,—.
Further, PET learns the solution path of op,-1 to transit from 8,_; to 8,.

From this initial learning, PET expands its ability to understand the purpose
of transitions. Now transitions which achieve state s,—; are recognized as useful.
If episode E is again presented by the teacher, PET learns that state 8,2 is a
neighbor of s,—;. This enables PET to assign a score of two to 8,—2. Further,
PET learns the solution path of op,—2 to transit from 8,2 to 8,—1. Thus, PET is
incrementally learning E backwards from the goal state.

State space knowledge is encoded in augmented production rules. The form

of a production rule for a transition from state, to state; via operator op is:
score — slatey — op

where score is the state evaluation for state;. So, the knowledge derived from

episode E above is:
1 — 81 — Opn-1
2 — 8p-2 — Opn-2
(n—=1) — 8 —op
As shown in figure 13, episodic learning constructs a lattice structure of
solution paths. Each node of the lattice is a learned sub-goal. Arcs between
nodes represent transitions which have proved useful in past problem solving. This
knowledge of episodes is applied to new problem solving by navigating through the

lattice starting with the initial state. If there are multiple successors of a node, then
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A Lattice of Solution Paths

the problem solver selects the successor with the lowest score. Should the lattice
not include the initial state, then weak problem solving methods are applied until
a state is reached which is in the lattice. Problem solving with learned episodes

replaces search with knowledge of past experience encoded in the lattice.

The PET Episodic Learning Cycle

This section presents the PET learning cycle for episodic learning. A cycle
of the learning process begins with a training instance. This instance may either
be presented by the teacher or be a state in the solution path of an old problem
which PET is still in the process of solving. The second step in the learning cycle
is PET’s attempt to apply existing knowledge to solve the problem. If PET has
already learned an episode which applies to this problem then the episode is applied
and this cycle is concluded. Otherwise, the teacher is asked for advice. The final
step in the learning cycle is to discover the purpose of the operator suggested by
the teacher. If the purpose of the advice can be understood then PET forms an
heuristic rule which records this operator’s role in the evolving episode. Otherwise,
PET does not learn from this training instance.

The PET learning cycle is formally described by the following PDL:




GIVEN an initially empty rulebase of heuristics
REPEAT
get problem from teacher
REPEAT
IF some rule € rulebase matches problem THEN
apply — episode(rulebase, rule, problem) (no learning)
ELSE
get operator advice from teacher
IF understand — advice(rulebase, problem, operator, newrule) THEN
learn — rule(rulebase, newrule)
ELSE no learning
UNTIL problem solved
DISPLAY rulebase for teacher
UNTIL teacher satisfied

Subroutine apply — episode(rulebase, rule, problem)

S «~ score of rule

newproblem — APPLY(rule, problem) (apply rule at head of episode)

LOOP (apply rules in remainder of episode to achieve goal)

WHILE § >0
DECREMENT S
SELECT rule € rulebase with score S which matches newproblem
newproblem — APPLY (rule, newproblem)

REPEAT

LOOP (apply all possible immediately simplifying operators)
SELECT rule € rulebase with score 0 which matches newproblem
newproblem — APPLY (rule, newproblem)

WHILE rule # @

REPEAT

Boolean Function understand — advice(rulebase, problem, operator, newrule)
understand — advice — TRUE
IF operator simplifies problem (goal condition) THEN
newrule — (problem — operator) with score 0
ELSEIF APPLY (operator, problem) yields a state S which
enables R € rulebase
THEN newrule — (problem — operator) with score of score(R) + 1
ELSE understand — advice — FALSFE
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Operator Semantics
combinex(Eq) Combine x-terms in equation Eq.
combiney(Eq) Combine y-terms in equation Eq.
combinec(Eq) Combine constant terms in equation Eq.

deletezero(Eq) Delete term with O coefficient or
0 constant from equation Eq.

sub(Eq1,Eq2) Replace Eq2 by the result of
subtracting Eql from Eq2

add(Eql,Eq2) ° Replace Eq2 by the result of
adding Eql to Eq2

mult(Eq,N) Replace Eq by the result of

multiplying Eq by N

Table 2

Operators in the Domain of Simultaneous Linear Equations

Subroutine learn — rule(rulebase, newrule)
ADD newrule to rulebase
(Note: This function is the main topic of chapter 4. Specifically,
chapter 4 discusses how new knowledge can be integrated into
existing knowledge. This integration results in the generalization
of knowledge. For now, assume that new knowledge is simply
appended to old knowledge.)

Examples of Episodic Learning

This section demonstrates the technique of learning episodes in the PET sys-
tem. The important points of episodic learning are that episodes grow incrementally
backwards from the goal and that episodes encode knowledge of state evaluations
and solution paths. Furthermore, episodes are constructed without entire solution
paths because learning is based on local decisions. Episodic learning is demon-
strated with examples from both the domains of simultaneous linear equations and
symbolic integration. These examples are from the PROLOG implementation of
PET.

Simultaneous Linear Equations
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This section presents multiple examples of episodic learning by the PET
system in the domain of simultaneous linear equations. Operators that PET learns
to apply for problem solving in this domain are listed in table 2. PET learns
episodes which incorporate these operators. Example problems presented by the
teacher are expressed in the instance language for the domain. PET converts this

representation to an internal form. For example, the teacher presented problem:
a:2z-5y=-1

b:3z+4y=10

is converted to:
{term(a,2z),term(a, —5y), term(a, 1),
term(b,3z),term(b, 4y), term(b, —10)}

where a and b are labels for the equations in the problem.

PET starts with knowledge of how to apply operators to a problem state.
But, there is an empty rule base of knowledge of when to apply them. Initially,
PET has the single goal of simplifying the problem state by reducing the number of

terms in the equations. PET builds episodes, or operator sequences, which simplify
the problem state.
For the first example, PET is presented the training instance by the teacher:

a6z +3y =12

State 1
e S b6z +4y =14

with the advice to apply operator sub(a,b). PET applies the operator, which
yields the state:

a 6z +3y=12

Stat
>tate ) b6z —6z+4y—3y=14—12

The operator did not simplify the problem state, since the number of terms in-
creased from six to nine. Using the current knowledge base, PET is unable to

understand why the operator is useful. No learning takes place, and PET must

“bear with” the teacher.
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Now the teacher suggests that operator combinex(b) be applied to the current
state. PET applies the operator, yielding:

a6z +3y =12

Stat
{State ) b:0z+4y—3y=14—12

This state is a simplification with the number of terms reduced to eight. PET can
now add knowledge to the rulebase based on this episode.

From this episode, PET learns both an evaluation of state 2 and a solution
path from state 2 to the goal. The evaluation is based on the distance to the goal,
which, in this case is one. The solution path is combinex(b). The heuristic added
to the knowledge base is therefore:

( State 2 )

LA

‘term(a, 62), term(a, 3y), term(a, £19),

1 — — { term(b,6z),term(b,—61z),term(b,4y), ¢ — combinez(b)

term(b, —3y), term(b, —14), term(b, 12)

\ J

Now the teacher suggests the operator sequence combiney(b), combinec(b),
and deletezero(b). The operators are applied sequentially to state 3 and the

resulting state is:
a :6z +3y =12

(State 4) bty 2

Each operator achieved a state simplification. Therefore, each transition is assigned

the score one. The rules learned by this training are:
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( term(a, 6z), term(a, 3y), term(a, —12), )
1 - — { term(b,0z),term(b,4y),term(b,=3y), ¢ — combiney(d)
| term(b, —14), term(b, 12) i
[ term(a, 62), term(a, 3y), term(a, —12), )

1 - - { term(b,0z),term(b, 1y), ¥ — combinec(b)

| term(b, —14), term(b, 12) j
{ term(a,6z),term(a, 3y), term(a, —12),}
e — deletezero(b)
term(b,0z),term(b, 1y), term(b, —2)

With state 2 learned as a sub-goal with an episode which achieves simplifica-
tion at state 4, the original training instance for the the subtract operator can be
understood. If the teacher re-presents the training instance labelled state 1 with
the advice to apply the operator sub(a,b), then PET applies the operator yielding
state 2. The learned episode then achieves the goal with no further teacher assis-
tance. Therefore PET is able to understand the transition enabled by sub(a,b).
The evaluation for state 1 is done by backing up the value of state 2 and recording
the distance to the goal. This is based on the local observation that the evaluation
of state 1 is one plus the evaluation of state 2; or two. State 1 is recorded as a
subgoal in the space of simultaneous linear equation problem solving. From this

training, PET adds the following heuristic rule to the rulebase:
State 1

'term(a,ﬁz),term(a,3y),tcrm(a,—12):
2 - - —  sub(a,bd)
term(b,6z),term(b, 4y),term(b, —14),

Now PET can expand its rulebase and increase the complexity of the learned
episodes by learning rules for multiply. First the teacher presents the training
instance:

a :6z + 3y =12

iPtates) b3z+2y=7
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PET’s current knowledge does not apply, so the teacher provides the advice to
apply mult(b,2). PET applies the operator, yielding:

a:6z+3y=12

(riate ) b6z +4y =14
which is equivalent to the subgoal defined by state 1. Now current knowledge

applies. PET applies the episode headed by the rule recommending sub(a,b). The

episode is:
(sub(a, b), combinez(b), combiney(b), combinec(b), deletezero(b))

which achieves a simplification of state 6. Therefore, PET understands the advice
to apply mult(b,2) and new knowledge is added to the rulebase. First, state 5 is
evaluated to be a distance 3 from the goal (one plus the already learned distance

of 2 for state 1). Second, the following heuristic rule is created:

State 5

Tcrm(a,ﬁr),term(a,Sy),term(a,—lﬁ
3 — - —  mult(b,2)
term(b, 3z), term(b, 2y), term(b, =7),

PET learns an episode for “cross-multiply” with further training. Cross-
multiply requires multiplying both equations in a pair of simultaneous linear equa-
tions with appropriate constants such that the resulting equations have equal x or
y coefficients. For this training, PET is presented with the training instance:

a:2z+1y=4
5 e b3z + 23 =7
Since current knowledge does apply, PET requests advice. The teacher suggests the
operator mult(a,3), which yields the learned subgoal defined by state 5. Current
knowledge provides an episode for a solution from state 5, so PET understands the

purpose of the teacher advice. PET forms the rule:

State 7

‘term(a, 2z), term(a, 1y), term(a, -4),
4 — - —  mult(a,3)
term(b, 3z), term(b, 2y), term(b, =7),
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From this training session, PET learns seven heuristic rules for six operators.
These episodes eliminate search by controlling problem solving for subsequent
problems covered by the learned rules. The issue of generalizing this knowledge

to cover a set of similar problems is addressed in chapter 4.

Symbolic Integration

This section presents a short example of episodic learning in the domain of
symbolic integration. As before, PET starts with a set of operators and knowledge
of how to apply them, but an empty rulebase of heurisitics to control when they are

applied. While there are eighteen operators in this domain, for present purposes,

assume there are only two:

zn+l

C
n+l+

OP1: / "dz —

OP2:/apoly(z) dz — a/poly(z) dz

OP1 integrates a power of the variable of integration, z. OP2 extracts a constant,

a, from the expression being integrated.

As before, PET initially has a single goal. In the domain of symbolic inte-
gration it is to eliminate the integral. Incremental learning constrains learning to
only those operators applied to states which yield a goal state. Suppose the teacher

presents the training instance:

(State 1) / 722 dz

with the advice to apply OP2. PET follows the advice by binding a to 7 and poly(z)

to z2, yielding:
(State 2) 7/ 22 dz

State 2 is not a goal state, so PET does not learn from the training.
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“Bearing with” the teacher, PET is advised to continue with State 2 by
applying OP1. This yields:

773

te 3 5
(State 3) 3

which is a goal state. PET backs-up evaluation from state 3 (the goal state) to
state 2 and assigns state 2 the score 1. State 2 is recorded as a sub-goal in the
problem solving search space and the heuristic rule:

State2
e m—

1 —7/:2d1—»OP1

is added to the rulebase.
Now, the original training instance (state 1 with advice to apply OP2) can

enable learning. Applying OP1 to state 1 yields state 2 which is a recognized
subgoal. State 1 is assigned a score of 2 by backing up evaluation from state 2.
From this PET learns the subgoal state 1 and the heuristic rule:

Statel
e am—

2 —/712d:r—»0P2

It is important to note that the episode learned is “loosely packaged.” That
is, rules from the rulebase can be applied in any order so long as the scores of the
rules in the sequence are non-increasing. This enables branching within episodes
when a shorter path can be selected over a longer path (path length measured by
state evaluation). At each state in the solution path, an operator is selected which

most advances the progress to a goal.

Summary of Experience with Episodic Learning
This section summarizes PET’s experience with episodic learning for learning

problem solving in the domains of simultaneous linear equations and symbolic

integration.
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In the domain of simultaneous linear equations, PET formed a lattice of
rules for the operators multiply, subtract, add, combine x-terms, combine y-terms,
combine constant terms, and delete zero term. The longest episode was seven
rule applications from initial state to goal state. The “head” rule in this episode
recommended “cross multiply,” which requires two successive multiply operations.
As this episode demonstrates, a technique for recording the sub-goals achieved by
each operator is essential. Without this supporting justification for each step in
a learned solution path this episode could not be learned. As discussed in the
previous section, the problem is that the intermediate states in the solution path

do not appear to be successively approaching the goal.

In the domain of symbolic integration, PET formed episodes which included
rules for eighteen operators. The longest episode was eleven rule applications from
initial state to goal state. The initial state was f sin’ z dz and the solution sequence
is shown in figure 14. Again, the intermediate states in the sequence appear to be

diverting from a simplified goal state. Episodes bridge these necessary “digressions.”

Once learned, PET can re-play an episode in whole or in part. The limiting
factor is that the episode is overly-specific. The next chapter discusses a technique
for generalizing episodes so that they apply to a class of problems. The technique
utilizes the structures built by episodic learning to partially automate the role of

the teacher in learning by examples.

Conclusions

Episodes are important to problem solving because they reduce the complexity
of the search for a goal. An episode is a sequence of operators which cause a
useful transition in the state space. As such, they can be treated as a single unit.
The problem solver can ignore the details inside the episode and concentrate on

connecting the “big pieces.”
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Figure 14
An Episode Linking Eleven Rules

MACROPS, ACT, and UPL are examples of learning systems which discover
episodes while problem solving. MACROPS encodes the flow of literals between
rules using a triangle table which defines a set of episodes. But, MACROPS does
not record the purpose of operators and episodes. This creates a problem with

applying MACROPS knowledge because of the combinatorial explosion of candidate
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episodes. PET learns state evaluations (scored sub-goals) which support operator
sequences by recording the purpose of each operator in the episode. Another
viewpoint on this problem is that episodes constructed by MACROPS are treated
as individual operators. In PET, episodes effectively replace individual operators
as they are constructed.

ACT is a cognitive model of skill acquisition which demonstrates the construc-
tion of episodes by composing a sequence of rules into a single procedure. But, ACT
lacks controls on learning so that problem solving can be encumbered by a vast cor-
pus of useless rules. PET restricts learning to those episodes which achieve a goal
state. The PET system takes into account the problem solving penalty for each
new rule added.

UPL demonstrates learning while doing. Performance is improved by adding
rules which record episodes which are useful on one problem so they can be re-
played on similar problems. The problem with UPL is local decisions are made
on state evaluations by estimating the distance to a goal. This restricts UPL to
those domains for which static evaluation functions can be found. PET avoids
this restriction by basing local decisions concerning state evaluations on the known
distance to a goal. Episodes grow backwards from the goal, so distances are known.

Assumptions concerning the role of the teacher and the student’s past knowl-
edge are made explicit in this chapter. The notion of incremental learning of state
space knowledge is defined. Episodic learning is shown to involve both discovering
state evaluations and operator sequences. This description is formalized with a
PDL description of the PET learning cycle. This algorithm will be augmented in
chapters 4, 5, and 6 with increased learning capabilities in the PET system.

Episodic learning in the PET system is demonstrated with a set of examples in
both the domains of simultaneous linear equations and symbolic integration. These

examples follow the PROLOG implementation of the PET system.




CHAPTER 4

Perturbation:
A Technique for Automatic Rule Generalization

In generality there is simplicity. This observation is the motivation for this
chapter. The learning element of an intelligent entity must acquire knowledge at
the proper level of abstraction. Knowledge which is too general cannot be efficiently
applied or may apply in inappropriate situations. Knowledge which is too specific
results in an overwhelming mass of detail which conceals the forest with the trees.

The “proper” level of abstraction is a balance of these extremes in which knowledge

acquisition improves knowledge application.

This chapter discusses a technique for generalizing problem solving knowl-
edge. There are two issues in this discussion. First, how can specific knowledge
encoded as rules be generalized such that the knowledge correctly applies to a set
of situations? Generalization simplifies the knowledge by removing spurious details
which aetract from the basic principle. Second, how can the generalization process
be automated? Automation simplifies the learning process by removing the teacher
from the learning cycle. These issues are first discussed with related work by other

researchers and then solidified with an implementation in the PET learning system.

Defining the Problem

This section discusses the problem of generalizing knowledge to an appropriate
level of abstraction. This issue is central to many forms of learning but is addressed
here with respect to the model of learning by example described in chapter 2. First,

some terminology is introduced which will be useful in the discussion.
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General Rule R

Training Set for
Concept C

positive examples of C
negative examples of C

Figure 15

A Generalization from Examples

Terminology for Issues in Generalization

Referring to the model of learning presented in chapter 2, generalizing specific
instances is the issue in learning from examples. In this model, the teacher provides
training by presenting the learning element with examples of general concepts.

The power of using both positive and negative examples is demonstrated with
Winston’s ARCH system. As described in chapter 2, the teacher provides ARCH
with training instances for a concept which are classified as positive or negative
examples. A negative example is one which, for some reason, does not fit the
general concept definition. ARCH restricts negative examples to be Dear-misses
which fail to meet the concept definition in a limited number of features (ARCH
allows only a single feature mismatch). For example, a tricycle is a near-miss of the
general concept of bicycles.

Figure 15 illustrates the generalization of a concept definition from a training
set of examples of the concept. From these examples, the learning element abstracts
a general rule which is complete and consistent with respect to the examples. That

is, a rule R for a concept C is abstracted from a set of examples E such that:




79

E = {e* | e* is a positive example of concept C}U

{e” | ¢ is a negative example of concept C}

V.+epR is a legal generalization of e* (Completeness Criteria)

V.-ecR is not a legal generalization of e~ (Consistency Criteria)

(A precise definition for “legal generalization” is given below. For now, rely on an
intuitive understanding.)

At the core of a learning algorithm is a description language which restricts
the set of examples and biases the general rule. Language shapes and restricts the
class of ideas that afe expressible in the language. This observation, called the
Whorfian hypothesis [WHOR56], certainly holds true for description languages.

There are two description languages important to machine learning: the
instance language and the generalization language. The instance language is used
for describing examples provided by the teacher to the learning element. The
generalization language is used for describing general concepts acquired by the
learning element. Frequently, the generalization language includes the instance
language, yielding a single representation language [MiTc82]. This simplifies the
generalization task since a representation shift is not required. Furthermore, the
simplification is justifiable on the grounds that the generalization language, a
superset of the instance language, contains constructs for abstraction which are
not required for describing ground instances.

Generalization operators are applied to examples in the instance language to
create general concepts in the generalization language. Generalization operators
“transit” from examples to general concepts by removing specificity from instance
language descriptions. Since these descriptions contain explicit details of examples,
multiple generalizations are possible. The generalization operators define the legal

generalizations that can be applied to examples to create general concepts. For
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example, the dropping conditions generalization operator [MICE83] simply removes
a specific detail of an example. Using this operator, the example “large, red, square
objects” can be generalized to the concept of “large, red objects.”

A legal generalization G of an example E is any state derivable from a sequence
of generalization operators applied to E. The space of legal generalizations is
defined by a state space in which E is the initial state and the generalization
operators perform state transitions. If a path from E to G, a “goal” state in the
space, can be found in this space then G is a legal generalization of E.

- This terminology of examples, general concepts, description languages, gener-

alization operators and generalization space is used throughout this chapter.

Generalization Relies on Regularity

As described above, a set of examples of a concept C and the set of general-
ization operators define a generalization space of candidate definitions of C. With
this framework, the generalization step of learning can be viewed as a search of
this space. The issue addressed in this chapter is that this space is too large to
search naively. As described by Mitchell in “Generalization as Search” [MITC78],
the learning task is to search this space efficiently.

Why should one have any hope that an efficient algorithm exists for searching
the generalization space? Intelligent search is possible because the world is regular.
That is, a set of examples of a natural concept in the world share many features in
common. The set of examples represent a prototype of the concept [MERV81]. Since
examples have more features in common than in difference, the function at least m
of n applied to feature descriptions is useful for defining prototypes [HAMP83].

The AM learning system by Lenat exploites this regularity by guiding learning
with heuristics which recommend actions in particular situations [LENA83]. Each

heuristic relies on the function:

appropriateness(Action, Situation)
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which measures the usefulness of Action in Situation. Lenat observes that this

is a continuous function of both variables. He postulates two correlaries of this

observation: ) y DAk g ;
IF Action A is appropriate in situation S

THEN A is appropriate in situations which are very similar to S
IF Action A is appropriate in situation S
THEN so are most actions which are very similar to A
Lenat also observes that the world is regular in the Situation parameter. This

regularity makes reasoning by analogy between similar situations a useful problem

solving tactic.

It is this regularity and continutity that enables learning of state clusters for
problem solving. Viewed abstractly, a state cluster is a group of “neighboring”
states in the state space which are basically homogeneous. They constitute a
training set for generalization of problem solving knowledge. The state cluster
contains positive examples of problem solving concepts. This set of examples can
be used to form an initial general concept description. The concepts learned in a

problem solving domain are of the form:

The conditions under which operator OP is effective are -- -

(where effectiveness is measured by OP’s ability to progress toward a goal - see
chapter 3). This concept is defined by a generalization of the set of states in the

problem solving state space for which OP is effective. This set of states is a state

cluster for OP.

In summary, acquiring problem solving knowledge is a form of generalization
from a cluster of states. State clusters can be discovered because the world is
inherently regular and continuous. Discovering a concept definition which is a legal
generalization of a state cluster requires intelligent search of the generalization
space. The body of this chapter discusses a technique called perturbation which

guides this search.
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Related Work on Generalization

This section reviews related work in learning with emphasis on the issue of
generalizing concepts from specific examples. Generalization from teacher supplied
training instances is relatively well researched. But, there is little research on the
issue of automatic generation of instances to enable self-teaching. This section
first reviews early research on the theoretical limitations of generalization before

discussing recent developments.

The Philosopher’s Lament

From a theoretical viewpoint, searching for an efficient induction algorithm is
futile. The problem of finding a deterministic finite-state acceptor of minimum size
which is compatible with a training set of positive and negative examples is NP-hard

[ANGL78, GOLD78]. So, philosopher’s may ask, why pursue the impossible?

This cry gained impetus with E. Mark Gold’s [GOLD67] theoretical study of
language learning. Gold introduced two fundamental concepts: identification in the

limit and identification by enumeration.

Identification in the limit views induction as a process which approaches
a correct generalization but can never verify this correctness. This is modelled
with an induction mechanism M that is provided with an infinite training set T
of positive examples of a general concept C. M generates an infinite sequence
of conjectures of C from increasingly larger subsets of T. Call this sequence
¢1,¢2,¢3,.... If there exists some integer n such that ¢, is a correct description
of C and ¢, = Cn41 = Cn42 = ..., then M is said to identify C correctly in the limit

on this sequence of examples.
M conforms to the model of learning by examples discussed in chapter 2. M

incrementally refines its model of C. If, after some finite time, M converges on a

correct model of C, then M correctly identifies C in the limit. However, M cannot
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determine whether the final model of C is absolutely correct since new, unseen

examples may conflict with the model.

Identification by enumeration is a theoretical technique for implementing M.
Basically, a domain of concept conjectures is defined which circumscribes candidates
of C. All conjectures in the domain are then enumerated, generating descriptions
dy,d2,ds,.... Given a collection of positive examples of C, identification by enu-
meration goes down this list to find the first description, say d;, that is consistent

with the examples. d; is then conjectured as a model of concept C.

However, enumeration is not guaranteed either to achieve correct identification
in the limit or to be computable. If the examples provided to M satisfy the following

two conditions then identification in the limit is assured:

1) A correct hypothesis is always compatible with the examples given.

2) Any incorrect hypothesis is incompatible with some sufficiently large col-

lection of examples and with all larger collections.
The conditions for an enumeration to be computable are:

1) The enumeration d;,dg,ds,... must be computable from the domain of

concept conjectures.

2) It must be possible to compute whether a given concept description is

compatible with a given collection of examples.

The problem with these concept identification methods is that they ignore
regularities. As argued in the previous section, intelligent induction algorithms
exploit regularity in natural domains to form concept prototypes. One way that
Gold’s theoretical results can be made more practical is to re-organize the space
of concept descriptions [ANGL83]. Identification by enumeration uses a simple
nonadaptive linear list. The organization of the concept space can be structured to

allow the elimination of a set of descriptions when a single incompatibility with
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the examples is detected. Furthermore, the structure itself may help select a
replacement for a failed hypothesis.

A second form of regularity in natural domains is the categorization of objects
in the domain. Rosch and Mervis [Rosc76, MERV81] contend that categories are
nonarbitrary. If this contention is valid, then the space of generalizations which
must be considered by an induction algorithm is greatly reduced. To demonstrate
the nonarbitrary nature of categories, Rosch and Mervis suggest three attributes for
classifying animals [MERV81]: coat (fur, feathers), oral opening (mouth, beak), and
primary mode of locomotion (flying, on foot). This attribute set defines eight differ-
ent animal categories. But only two of the eight theoretically possible combinations
of attribute values comprise the great majority of existing animal species. By ex-
ploiting naturally occuring categories rather than theoretically possible categories,
learners significantly reduce the complexity of the learning task.

The next section reviews practical generalization techniques which rely on

domain regularities.

Practical Generalization Techniques

This section reviews generalization techniques which have been used in prac-
tice. This review is covered in three ways. First, learning systems which acquire
knowledge encoded as production rules are briefly reviewed. Second, two approaches
to automating the generation of training examples are reviewed. Third, the reader is
directed to chapter 2 of this thesis for an in-depth survey of five significant learning
systems which perform generalization from examples.

Many learning systems have encoded acquired knowledge with production
rules. These systems have proved successful across multiple domains, including
poker playing [WATE70], puzzle solving [ANZA78, OHLS82], algebra problems
[NEVE78, LANG83, SILV83], arithmetic problems [BRAZ78], and molecular chem-

istry [BUCH78]. Of these, Neves’ system [NEVE78] learns to solve one equation in
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one unknown from textbook traces. The system learns both the context (precon-
ditions) of an operator as well as which operator is applied, although the operator
has to be known to the system. Silver’s system LP [SILV83] carries this research
further. LP learns domain knowledge at multiple levels from worked problem so-
lutions. At the lowest level, LP learns rewrite rules by finding differences between
consecutive lines in the worked example. At the highest level, LP learns plans by
discovering the strategic purpose of each step in the example.

The problem of improving rule learning generalization programs by automat-
ing the generation of training instances is little-researched. Two proposals for
automatic generation stem from the LEX project. The goal of both projects is to
use current knowledge to guide subsequent training.

The first experiment in self-teaching was a theoretical study by Mitchell
[MiTCc78). Mitchell observed that the version space representation of acquired
knowledge (see chapter 2 for a review) contained a meta-level description of the
learning process. That is, the learning element can determine its level of certainty
in acquired knowledge by examining the version space. Domain knowledge is
represented with heuristic rules which guide the application of operators by the
problem solver. Each heuristic is defined by a version space of candidate concept
descriptions. The version space is bounded by a set of “most specific possible”
and a set of “most general possible” heurisitics. All concept descriptions which lie
between these two boundaries are compatible with the training examples seen so
far.

Mitchell proposes using the version space representation to guide the gener-
ation of subéequent training examples in two ways. First, an examination of the
version spaces for all of the partially learned heuristics reveals which heuristic is
least refined. The heuristic with the largest set of candidate concept descriptions is
the one which might most benefit from training. Second, the version space repre-

sentation is used to generate a training example which most advances the learning
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of the selected heuristic. An example is generated which permits the version space
of the heuristic to be bisected. The version space is viewed as a set which is well-
ordered by the hierarchy of concepts used for generalization. An example which
lies equidistant from the two advancing boundaries will exclude half of the concept
candidates. Which half is excluded depends on the classification of the example
as positive or negative for the concept being learned. While the learning element
can derive meta-level knowledge from the version space to guide the generation of
training instances, their classification is a problem. More on this below.

The second technique for automating the generation of training instances
is implemented in LEX by Mitchell, et.al. [MiTc83]. This technique generates
instances in the same way that perturbation does. Basically, small changes are
made to a single training instance to generate a set of highly similar instances. The
rational behind this-technique is discussed in the next section. One advantage of
this generation method over the version space bisection method is computational
efficiency.

A shortcoming of both of these training instance generation techniques is that
the classification of the generated instance is difficult. Simply asking the teacher
for the classification defeats one of the goals: self-teaching. Instead, LEX classifies
instances by applying the problem solver to the instance. As described in chapter 2,
the LEX problem solver does more than find a solution path for the instance. The
problem solver creates a partial search graph which includes failed and abandoned
search paths. The critic, another of the LEX system components, analyzes the
search graph and classifies state transitions which lie on the shortest solution path
to be positive examples and all other transitions to be likely negative examples.
Those examples suspected to be negative are confirmed by expanding the search
graph to a depth equal to the length of the shortest solution path found thus far.
If a shorter path is not discovered on these spurs, then the negative classification

is confirmed.
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Concept Hierarchy Trees for Simultaneous Linear Equations

Classification is difficult in LEX because there is no explicit learning of
episodes. State evaluations are not acquired so sub-goals are not discovered. Only
achieving the goal state is recognized as success. The next section discusses the
PET technique for self-teaching which makes efficient use of knowledge acquired by

episodic learning.

PET Learns General Rules for Problem Solving

PET uses the technique of perturbation to automatically guide the general-
ization process. While learning concepts for problem solving, perturbation relies on
regularities in the domain to form state clusters. Perturbation is a semi-automation

of the role of the teacher in learning by examples.

This section discusses PET’s algorithm for generalizing knowledge. The first
sub-section discusses PET’s generalization method. The second sub-section dis-

cusses the perturbation method for automatically guiding this process.

PET's Generalization Scheme

PET’s generalization scheme is not original. Following Mitchell [MITC78] and
Michalski [MICH83], the two generalization operators used by PET are the climbing
hierarchy tree operator and the dropping conditions operator. These operators are

used in both the domains of simultaneous linear equations and symbolic integration.
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Concept Hierarchy Trees for Symbolic Integration
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Figures 16 and 17 show the concept hierarchy trees used by PET for climbing
trec generalization. These trees represent an infusion of domain knowledge into the
induction process. (Recently, there has been growing interest among researchers
to learn these hierarchies. Chapter 6 reviews this research and discusses PET’s
approach to it.)

PET also permits generalization by deleting conditions from an example.
Disjunctive generalization is allowed by adding additional concepts (represented
as production rules in PET). This covers all of the generalization rules discussed
by Michalski [M1CE79] except for closed interval generalization.

These few generalization operators applied to the instance language for simul-
taneous linear equations define an enormous concept space. Consider the single

example:
a:2z—-5y=-1

b:3z+4y=10
which is converted to:
{term(a,2z),term(a, —5y),term(a, 1),

term(b,3z),term(b,4y),term(b, —10)}

The first term, term(a,2z), has two generalizations of @ (a and egn(z)), four gen-
eralizations of 2 (2, positive(/N), nonzero(N), and integer(N)) and two generaliza-
tions of z (z and var(Y)). The two equations above have four such terms as well
as two constant terms, yielding a total of 16* * 42 or more than a million possible
generalizations! Note that this does not count the additional generalizations that
are created by the dropping conditions operator.

During the generalization process, pairs of concept descriptions are matched to
find a minimal generalization. This is done with a straight-forward pattern matcher.
Some of the terms in each concept description are treated as constants. These are
terms which are values of leaf nodes in a concept hierarchy tree. The remaining

terms in each concept description are treated as typed variables. These are terms
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which have already been generalized from constants to values of internal node in a
concept hierarchy tree. The pattern matcher associates terms from one description
with those of the other description. The generalizer then finds the minimal common
ancestor of the associated terms. If any of the associated terms do not have a
common ancestor then a generalization with the current set of associations fails
and the pattern matcher tries again.

This simple generalization scheme provides PET with the capability of creat-
ing state clusters from examples. The teacher provides the PET learning element
with positive and negative examples of a problem solving concept. PET applies the
generalization operators to the training set. This defines a generalization space.
PET could simply search this space by incrementally refining a concept hypothe-
sis with each new training instance. This approach, adopted by Winston’s ARCH
system for example (see chapter 2), suffers from over-reliance on the teacher. The

next section discusses a technique for reducing this reliance.

Automating Generalization with Perturbation

Perturbation is a technique for reducing the teacher’s role in learning by
example. The teacher has two responsibilities: generating training instances for a
concept and classifying them as positive or negative examples of the concept. From
this, the learning element forms a general concept description which is complete
and consistent with respect to the training set.

Perturbation relies on inherent regularity in natural domains. Given a training
instance I for concept C provided by the teacher, perturbation makes small changes
to I. The inherent assumption is that I is prototypical of C. This implies that an
instance which is highly similar to I will also be a positive example of concept C.
Perturbation generates and classifies the state space “neighbors” of I to form a
state cluster of positive examples of C. This state cluster is then provided to a

generalization algorithm to form a description of C.
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Specifically, perturbation automatically generates a set of positive and nega-
tive examples of a concept by a simple two step algorithm. First the examples are

generated then they are classified.

Perturbation generates examples by applying a set of perturbation operators
to a single teacher supplied example, I. Each perturbation operator selects a single
feature f in I and slightly modifies it. Modifications are of two types: replace f
by the null feature (effectively removing the feature altogether) or replace f by a
sibling of f in a concept hierarchy tree containing f. The latter type of modification
generates a set of perturbation operators since f may either have multiple siblings
or be in multiple trees. Each perturbation operator generates an example I' which
is highly similar to I.

Perturbation classifies examples by exploiting the fact that problem solving
domains are reactive. Consider a training instance I which is classified by the
teacher as a positive example of the concept “states in which operator OP is
effective.” The generation step of perturbation creates a set of examples which
includes example I'. The classification step of perturbation determines whether I
is a positive or negative example of the concept by experimentation. Specifically, I'
is a positive example if and only if the effect of OP on I is the same as the effect

of OP on I. The eflect of an operator on a state is the transition achieved by the

operator. So,

apply(OP, I) = apply(OP, I') — I' is a positve example

An important advantage of the PET perturbation technique is that examples
are efficiently classified. The LEX system [MICE83], by contrast, requires that the
problem solver be applied to an example. This involves a full n-level expansion of
the search space which terminates when a goal state is reached. If the example

lies on the shortest solution path then it is classified as positive, otherwise it is
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Figure 18

Perturbation Generates and Classifies

Multiple Examples from a Single Positive Example

negative. The perturbation technique simply performs a 1-level search to determine

the immediate successor of the example.

Furthermore, examples are efficiently generated by perturbation. Although
the efficiency ultimately depends on the instance description language, perturbation
simply selects a feature of the instance, finds it in the concept hierarchy tree (a linear
search of the leaves, at worst) and selects a sibling (requiring two arc transitions).

The perturbation process is shown in figure 18.

The advantage of perturbation is that it removes irrelevant detail from a
concept description. The relevance of each feature of an example is tested in two
ways. First, the feature is tested to determine if it can be completely removed.

Second, if the feature cannot be removed, it is tested to determine if it can be
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generalized. Thus, perturbation generalizes each positive example without teacher

involvement before generalizing it with the current concept description.

In summary, perturbation is a technique for automatically generating and
classifying near-examples and near-misses of a concept. Standard generalization
techniques can then be applied. Perturbation semi-automates the learning process

by removing spurious details from examples.

The PET Learning Cycle with Perturbation

This section incorporates the technique of perturbation into the PET learning
cycle presented in chapter 3. The entire algorithm is repeated here to provide
context for the changed code which is boxed.

The PET learning cycle with perturbation is formally described by the fol-
lowing PDL:

GIVEN an initially empty rulebase of heuristics
REPEAT
get problem from teacher

REPEAT
IF some rule € rulebase matches problem THEN

apply — episode(rulebase, rule, problem) (no learning)
ELSE
get operator advice from teacher
IF understand — advice(rulebase, problem, operator, newrule) THEN
learn — rule(rulebase, newrule)

ELSE no learning

UNTIL problem solved

DISPLAY rulebase for teacher

UNTIL teacher satisfied
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Subroutine apply — episode(rulebase, rule, problem)

S «— score of rule

newproblem — APPLY(rule, problem) (apply rule at head of episode)

LOOP (apply rules in remainder of episode to achieve goal)

WHILE S >0
DECREMENT S
SELECT rule € rulebase with score S which matches newproblem
newproblem — APPLY(rule, newproblem)

REPEAT

LOOP (apply all possible immediately simplifying operators)
SELECT rule € rulebase with score 0 which matches newproblem
newproblem — APPLY (rule, newproblem)

WHILE rule # 0

REPEAT

Boolean Function understand — advice(rulebase, problem, operator, newrule)
understand — advice — TRUE ;
IF operator simplifies problem (goal condition) THEN
newrule — (problem — operator) with score 0
ELSEIF APPLY (operator, problem) yields a state S which

enables R € rulebase
THEN newrule — (problem — operator) with score of score(R) + 1

ELSE understand — advice — FALSE
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Subroutine learn — rule(rulebase, newrule)
Decompose newrule into components:
state — LHS(newrule)
OP — RHS(newrule)
Generalize newrule using perturbation:
currgen «— state
REPEAT
SELECT perturbation operator P
APPLY P to state, yielding state'
IF apply(OP, state) = apply(OP, state’) THEN
currgen — minimal generalization of state
and state’
UNTIL there are no more perturbation operators
(now currgen is a description of a state cluster of positive
examples of the concept “states in which OP is effective.”)
Integrate the new rule into the rulebase:
genrule — (currgen — OP) with score of newrule
IF a2 member of rulebase can be generalized to cover newrule,
THEN replace member by generalization
ELSE add newrule to rulebase

Examples of Guiding Generalization with Perturbation

This section demonstrates the technique of perturbation in the PET system.
The important points of perturbation are that a set of near-examples and near-
misses are automatically generated and classified. These classified examples are
then provided to the PET induction algorithm which forms a concept description

which is complete and consistent with respect to the training set of examples.

Perturbation is demonstrated with examples from both the domains of simul-
taneous linear equations and symbolic integration. The examples are from chapter
3 in which overly specific rules are learned by episodic learning. Perturbation guides

the generalization of these rules.




Simultaneous Linear Equations

This section presents multiple examples of the use of perturbation to gen-
eralize rules acquired by episodic learning. As described in chapter 3, these rules
encode heuristic knowledge of operators which are effective in particular states. For

example, the first rule learned in chapter 3 recommends the operator combinex(b)

in state:

a6z + 3y =12

Stat
Flate 1 b6zxz—-—6z+4y—-3y=14-12

From this, episodic learning forms the rule:

( State 1 )

‘term(a, 6z), term(a, 3y), term(a, =12
1 - — { term(b,6z),term(b,—6z),term(b,4y), ; — combinez(d)

term(b, —3y), term(b, —14),term(b, 12)
\ J

The goal of perturbation is to discover a general description of a cluster of

states in which combinex(b) is effective. This single positive example provided by
the teacher does not adequately restrict the space of candidate concept descriptions.

A few of the candidates (selected from the space of millions) are:

State 1 )

(
T Jterm(a,3y), term(a, -12),

1-— { term(b,6z),term(b,—6z), term(b, 4y), — combinez(d)

term(b, —3y), term(b, —14), term(b, 12)
\ J

( State 1 )

term(a, 6z), term(a, 3y), term(a, —12):
1-— ¢ lerm(b,ez),lerm(b,@z),term(b,w),y — combinez(b)

term(b, —3y), term(b, —14), term(b, 12)
{ )
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( State 1 )

S N

‘term(a, 6z), term(a, 3y), term(a, —12), b
1 - — { term(b,6z),term(b,—6z),term(b,4y), } — combinez(d)

term(b, —3(z)), term(b, —14), term(b, 12)

\ /

Perturbation operators are applied to the example in state 1 to generate a
set of highly similar examples. Each perturbation operator selects a feature of the
example and either deletes it or replaces it by a sibling of the feature found in a

concept hierarchy tree. Four of the resulting examples are:

a:61+|—__]=12 a 6z +3y =12

b6r—6z+4y—3y=14—12 b Tk-6z+4y-3y=14-12
E, E,

a :6z+ 3y =12 6 :6z + 3y =12

b6r—[ |+4y—-3y=14-12 b6z—6z+4y-3y=[ |-12
Es E,

The second step of the perturbation process is to classify each example as
positive or negative for the concept being learned. In this case, the concept is “states
in which combinex(b) is effective.” Effectiveness of combinex(b) is determined for
each of the generated examples. The score of the current rule of the operator
says that combinex(b) should be one step from the goal. That is, the effect of
combinex(b) is that it immediately simplifies the current state by reducing the

number of terms.

PET applies this effectiveness criteria to each of the four generated examples
above. E; is classified as a positive example because combinex(b) is effective

at reducing the number of terms in E;. PET minimally generalizes the state
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description of the current rule for combinex with Ej, yielding a new rule:
term(a,67), [:_—__L term(a, -12),
1- — { term(b,6z),term(b,—6z), term(b,4y), —  combinez(b)
term(b, —3y), term(b, —14),term(b, 12)
The major effect is to delete the condition on the y-term of equation a. Thisis a
spurious detail which is irrelevant to the general concept.

Generated example E; is also classified as positive. The minimal generaliza-

tion of the state description of the current rule with E; yields the new rule:
term(a, 6z), term(a, —12),
1—-— { term(b, @ * z),term(b, —6z), term(b, 4y), —  combinez(b)
term(b, —3y), term(b, —14), term(b, 12)

The major effect of this learning is to recognize that one of the x-coefficients of
equation B can be any positive integer. Notice that the constraint on this coefficient
is still overly constrained since negative integers are excluded. Negative integers
are not tested by perturbation in this example because they are not immediate
siblings of the original coefficient 6. “Distant” siblings can be tested at the expense
of an increase in the number of perturbation operators. Rather that incur this
expense, PET relies on the teacher for subsequent training to further refine this
rule constraint. This is one of many instances in which PET would benefit from
intelligent selection of perturbation operators. Chapter 6 discusses a technique
which allows PET to test distant siblings with some assurance that the test will be
fruitful.

Generated example Ej is classified as negative because the combinex(b) op-
erator does not apply. This negative information is not used by the PET induction
algorithm. Negative examples are useful for correcting over-generalization in con-
cept definitions. This does not occur in PET since only conservative, minimal

generalizations are performed.
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Example Ej is classified as positive. This yields the concept description:
term(a, 6z),term(a, —12),
1 —— { term(b, positive * z), term(b, —6z), term(b, 4y), —  combinez(b)

term(b,—3y),[ | term(b,12)

After the perturbation process the heuristic rule for the operator combinex(b)
is highly refined. For the single training instance in state 1, there are thirty
perturbation operators. Fifteen of these test if a feature can be removed and fifteen
test if a relevant feature can be generalized. The result of minimally generalizing

over the generated examples which are classified as positive is the rule:
1 — — {term(b, positive, * z),term(b, positivez + z)} — combinez(b)

where positive; and positive; denote two positive integers which are not necessarily
equal.

This rule is significantly more refined than its original ancestor above. One
rough measure is the number of constraints in the state description. This count is
reduced from nine to two by perturbation. Moreover, the two remaining constraints
are generalized to cover a set examples. Most importantly, this learning does not
involve teacher participation.

The second example of using perturbation to guide the generalization of
heurisitic knowledge about linear equations is for the subtract operator. In chapter

3, PET is presented with the following positive example for the operator sub(a,b):

a :6z +3y =12
tat
(Blatesd) b6z+4y=14
From this training, PET acquires the following rule by episodic learning:

State 2

‘term(a, 62), term(a, 3y), term(a, -12),
2 — - —  sub(a,bd)
term(b,6z),term(b, 4y), term(b, —14),
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Again, the rule is overly specific and perturbation is used to remove spurious detail.
In this case there are twenty perturbation operators and each generates an

example which is highly similar to state 2. Four of these examples are:

af ]+3y=12 a6z+[ |=12

b6r+4y=14 b6z+4y=14
E, E;

a 6z +3y =12 a :6z 4+ 3y =12

b{Thk+4y=14 b6z+[ |=14
Es Eq

PET classifies each of the instances by determining the effectiveness of the
sub(a,b) operator on each. The score of the current rule for sub(a,b) is 2. This
means that the operator is effective for a state if its application enables a rule with
a score of 1. This ensures that the transition progresses toward the goal.

E, and Ej are classified as negative examples. The operator sub(a,b) is not
effective if the x-term of either equation is modified. If the x-terms are modified
simultaneously and equally (for instance, each coefficient is changed to a 7) then
the operator is effective. However, the size of the set of perturbation operators is
kept relatively small by excluding such modifications.

E, and E; are classified as positive examples. A minimal generalization of the

state description of the current rule with E» followed by Ej yields the new rule:

term(a,6z),[ | term(a,~12),
G
term(b, 6:),:‘, term(b, —14),

The effect of this generalization is to remove the constraint that the equations

—  sub(a,b)

contain y terms.

The heuristic rule for sub(a,b) after the perturbation process is:

2 — — {term(a,6z),term(b,6z)} — sub(a,bd)
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While this is a significant improvement over the original rule, further refinement

requires another training example from the teacher. If the teacher provides the

positive example:

a:-2z+3y=4
b:—2z+4y=6

then PET forms the minimal generalization:
2 — — {term(a,nonzero; * z),term(b, nonzero, * )} — sub(a,bd)

In this rule, the x-coefficients are forced to be equal since they must bind to the
same variable (nonzero;). Thus, PET converges on the correct rule for sub(a,b)
with only two training instances provided by the teacher.

Note that learning the rule for sub(a,b) relies on the generalized rule for
combinex(b). The knowledge that any pair of non-zero z terms in equation b
should be combined had to precede the final refinement of the rule for sub(a,b).
This demonstrates that the rules are independently generalized with the constraint

that the order of training instances can influence the rate of learning.

Symbolic Integration

This section presents a short example of perturbation in the domain of sym-

bolic integration. Following chapter 3, assume that there are only two operators in

the domain:
n+l

C
T

OPl:/z" dz —
n

0P2:/apoly(z) dz — a/poly(:r) dr

OP1 integrates a term consisting of the variable of integration, z. OP2 extracts a

constant, a, from the expression being integrated.

The first rule formed by episodic learning in chapter 3 is:

1--7/:%:-»0131
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This rule is overly specific and is generalized by PET.

First, perturbation operators are applied to generate a set of examples. Four

of these examples are:

[()fz2dz  7f[ Jdz [8]f2%dz 7f:@dz
E, E; Es E,

E,, E3 and E, are classified as positive examples of the concept “states in
which OP1 is effective.” Since the current heuristic rule for OP1 has a score of
1, effectiveness is determined by a state transition to a goal state (a state not
containing an integral). A minimal generalization of the state description of the

current rule for OP1 with E;, Ey and Ey yields the new rule:
= / POtV 4z —, OPI

where positive represents any positive integer.

Only one more teacher supplied training instance is required for PET to

converge on the final heuristic rule for OP1. Given the positive example:

/1"'3 dzr

PET mimimally generalizes to:

1 i _/zﬂOﬂZCPO dz oy OPl

PET's Learning Rate

This section describes the learning rate of the PET system with perturbation.
For this purpose, the learning rate is defined to be the number of training instances
required to achieve concept convergence.

Concept convergence rate is a function of the complexity of the rule and the
depth of the concept hierarchy tree. As demonstrated with the examples above, the
initial rule learned by PET is overly-specific. The initial rule is based on the first
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positive instance of the rule presented by the teacher. Assume that this instance has
n descriptors. Further assume that the concept hierarchy tree used for generalizing
descriptors is of depth d. (If there are multiple concept hierarchy trees then use the

depth of the deepest tree for the worst-case analysis).

Assuming that no two training instances are identical, each positive training
instance forces a generalization of (at least) one descriptor of the concept descrip-
tion. In the worst case, each generalization moves up a single link in the concept
hierarchy tree. In the worst case, each descriptor must be generalized to the root

node of the tree. Therefore, the number of training instances required is n * d.

Perturbation improves this learning rate by testing for irrelevant descriptors
before generalizing relevant ones. If m descriptors are determined to be irrelevant,
then the number of training instances required for concept convergence in the worst

case is reduced to m + d(n — m).

The learning rate is only partially influenced by the order of training instances
presented by the teacher. This influence is significantly mitigated by perturbation
which capitalizes on training. Irrelevant descriptors are removed and relevant
descriptors are generalized even when the order of training instances is non-optimal.
Unlike Winston’s ARCH system [WINS75], the order of training instances presented
to PET cannot result in an erroneous generalization. The worst case learning

performance (analyzed above) is the most serious consequence.

Conclusions

This chapter discusses an approach to generalization which reduces the re-
liance of the learning element on the teacher. The technique, perturbation, au-
tomatically generates and classifies a set of examples of a concept. This set of
examples is then provided to a “standard” induction algorithm to form a concept

description.
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Perturbation is motivated by the observation that the world is inherently
regular. That is, if an example is classified as positive for a particular concept
then other examples which are highly similar to it are likely to be positive as well.
Perturbation generates this set of highly similar near-examples and near-misses by
making minimal changes to an initial example.

Perturbation classifies examples by using the knowledge acquired by episodic
learning. If a generated example plays the same role in an episode as the initial
example did, then the generated example is classified as positive. One of the strong
advantages of perturbation is that generation and classification of examples is quite
efficient.

The chapter concludes with examples of perturbation applied to two domains.
The effectiveness of perturbation at enabling concept convergence with minimal

teacher assistance is demonstrated.




CHAPTER 5

Learning Operator Transformations

This chapter discusses a technique for learning what operators do. During
problem solving, operators are applied to states to transit from one state to its
successor. While learning problem solving, the learning element can see the states
before and after the operator application. However, the transformation performed
by the operator is hidden. By discovering the transformation the learning element
can reason with the operator definitions and improve the learning process.

An algorithm is presented for learning operator transformations. The task is
viewed as a form of learning from examples. The learning element is presented with
examples of operators applied to specific states. From this, a representation called
a relational model is formed which defines the general transformation performed
by the operator. Examples of the PET implementation of the algorithm are given
for the domain of symbolic integration. Chapter 6 continues this discussion by

demonstrating the significant contribution of relational models to learning problem

solving.

Defining the Problem

The world abounds with opaque operators. Opaque operator representations
hide the sematics of operators. The transformation performed by the operator
is concealed by the operator representation. Examples of opaque operators are
familiar to everyone who has learned a task by observing experts who are proficient
at the task. Their actions are recognized as legal but the observed solution seems
magical. Their instruction cannot be fully assimilated without an understanding of

the transformation performed at each step in the solution path.

105
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One of the requirements for gaining expert problem solving skills is to acquire
transparent representations for operators. Transparent operator representations
reveal the “inner-workings” of the operator. This enables reasoning with operator

definitions. Chapters 5 and 6 of this dissertation examine two issues:

1) how transparent operator representations can be learned from opaque rep-

resentations (the subject of this chapter).

2) how transparent operator representations can improve the process of ac-

quiring problem solving heuristics (the subject of chapter 6).

Transparent operator representations are essential for reasoning about opera-
tor transformations. For example, Waldinger’s planning system |WALD77] demon-
strates an effective use of transparent operator representations. The planner as-
sumes that operators are represented with lists of pre-conditions, delete-conditions
and add-conditions, ala STRIPS (see chapter 3). The planner solves multiple
goals simultaneously and must address the problem of sub-goal conflicts. One ap-
proach to handling sub-goal conflicts is demonstrated by HACKER [Suss73] and
INTERPLAN [TATE75). These planning systems simply backtrack when a conflict
is encountered. A couple of goals are reordered and the planners try to solve the
new problem description. However, Waldinger exploites the operator representa-
tion to discover goal conflicts before they arise in planning. Goal regression is used
to back-up constraints from each of the goal description. If any constraints con-
flict, then the planner tries goal re-ordering. This ensures that the resulting plan is
free of goal conflicts. As demonstrated by Waldinger, goal regression is a powerful
reasoning strategy. But, as will be discussed in chapter 6, it relies on transparent

operator representations.

This chapter discusses a technique for learning transparent operator represen-
tations from examples of operator applications. These transparent representations

are called relational models. The central issue in learning relational models is the
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utilization of existing “background knowledge” about the domain. Several tech-
niques for incorporating background knowledge into an evolving concept descrip-
tion are discussed in the next two sections. This leads to the technique of learning

relational models which is demonstrated with the PET system.

Related Work

This section discusses related work in learning operator representations. First,
research in automatic programming is reviewed. A branch of this work, program
synthesis from input/output pairs, is viewed as a form of learning from examples.
Second, research in learning mental models is reviewed. This research seeks a
cognitive model for learning operator semantics. Third, an induction algorithm by
Vere is reviewed which experiments with learning in the presence of background
knowledge. This is directly related to the PET approach of learning operator

transformations in terms of existing domain knowledge.

Automatic Programming
One direction in automatic programming is program synthesis from input /

output pairs. For example, given the pairs:
({a,b,¢},{c,b,8}),({e, f},{/,€})

a program is constructed which inputs a list of atoms and outputs the list with the
order of atoms reversed.
One approach adopted by researchers in automatic programming consists of

the following two steps [BIER76]:

1) For each example input / output pair (¢,0), determine a transformation
t—o.

2) Find a program that performs this transformation when ¢ is input.

RS S N i : EE—
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For the most part, step 1 has only been addressed theoretically. The space
of possible transformations is large and discovering the transformation which is
consistent with the training set is difficult. Researchers in program synthesis view

the problem as intractable because of the following theorem:

The programs for the partial recursive functions cannot be generated
from samples of input / output behavior [GOLD67, BIER72].

Therefore, researchers have chosen to put the burden of specifying the transforma-
tion on the human programmer.

Step 2, on the other hand, is studied extensively and effective techniques
for constructing programs exist [PRYW77, GREE76, FICK82]. This has led to a
prevalent approach to program synthesis called autoprogramming. Autoprogram-
ming skirts step 1 of automatic programming by requiring that the user specify the
transformation to be performed using a high level language. Then autoprogram-
ming synthesizes a detailed program which is semantically equivalent to the user’s

high-level description.

Automatic programming from input / output pairs is a form of learning
from examples in which the concept description language is a formal programming
language. Concepts can be expressed as horn clauses [SEAP83] or LISP code
[SEAW75, HARD74]. For a complete automatic programming system, the problem
of learning the transformation exemplified by the input / output pairs must be

addressed. Relational models, the subject of this chapter, address the problem.

Mental Models

Mental models research is concerned with examining how people understand
the world. The tenet of this research is that people represent domain knowledge
with qualitative models which enable prediction. The ability to draw inferences
from a state description is called envisionment. An example of envisionment by a

mental model is demonstrated with Hayes research. Hayes [HAYE79] analyzed how
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people predict when a liquid will flow, stand still, or spread into a thin sheet on
a surface. From this analysis he constructed a mental model which describes the

inferences that a person can draw from each of these different liquid states.

Envisionment in a domain is possible using mental models because they repre-
sent the semantics of operators in the domain. Many researchers have proposed that
mental models are acquired by analogical reasoning [DOUG83, BURS83, GENT83,
WINs81, CARB83]. Of these, Douglas and Moran [DouG83] focus on learning op-
erator semantics in the domain of text editing by reasoning from existing knowledge
about typewriting. The difficulty with reasoning by analogy is that misconceptions
arise. The learner must discern which features are relevant in an analogical match
between the two domains. Preventing misconceptions during analogical reasoning
is a central issue in research on reasoning by analogy.

Discovering operator semantics by analogy is a powerful technique when there
is sufficient existing knowledge to reason with. The technique of learning relational
models addresses the issue of acquiring this initial knowledge. An integrated
learning paradigm which first learns relational models to build a foundation of
knowledge and then shifts to learning by analogical reasoning would be an important

contribution to research in machine learning.

Vere's Induction Algorithm

Vere’s experiments with learning in the presence of background knowledge
[VERE77] are directly related to learning relational models. When learning in a
domain D, background knowledge is a body of facts which is separate from D but
relates to the interpretation of D. Essentially, background knowledge is the existing
body of facts that a learner employs in the task of acquiring new knowledge.

Background knowledge is incorporated into an evolving concept description
when the induction process leads to ambiguities. For example, Vere addresses the

problem of inducing general descriptions of poker hands from examples. Consider
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the two “full house” hands:
2.) 20) 401 4‘) 4‘

109, 106, J&, J&, JO
Using the turning-constants-to-variables generalization operator [Mice83], the fol-
lowing concept description of full house hands is formed:

r18), 7182, r283, 7284, 1285

where r; and s; are variables which bind to a card’s rank and suit, respectively. Vere
calls this generalization deterministic because no information is required beyond
that present in the concept description.

By contrast, learning the concept of “straight” from the examples:

30, 49, 59, 60, 78

1090, J&, QO, KO, A®

requires additional knowledge. The generalization of these examples is:
r18], 7282, 7383, T484, 1585

which lacks the constraint that the ranks in a straight must be serial. This rank-
ing information is considered to be background knowledge to the domain of poker

hands. Specifically, the instance language descriptions of the card hands are aug-

mented with nezt(z,y) relations, as in:
30, 49, 59, 60, 78,
nezt(3,4), nezt(4,5), nezt(5,6), nezt(6,7)
Now the concept description is:

r18], 1282, r383, r484, 7585,

"“t("l,"z), "Czt("zy"a)a ncz‘(n9r4)’ nczt(rlyr\'))
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3\/4\/5\/\/“
next(3,4) next( 4,5) next( 5,6 ) next( 6,7)
Figure 19

An Example Association Chain

Terms from background knowledge are “pulled-in” to an instance language
description of an example to form an association chain. Two literals, Ly(t11,¢12)
and La(t21,t22), in the description are associated if t); = t5;. An association chain
is a sequence of these associations. An example association chain for the example
of “straight” given above is shown in figure 19. If a single chain links all literals
which are associated (i.e. the association chain is unbroken) then the concept

description is deterministic. A non-deterministic description is under-constrained,

or over generalized.

The contribution of Vere’s research is the identification of the problem of
potential over-generalization and the use of background knowledge to solve it. The
shortcomings of the approach are discussed in the next section which presents an

early approach to learning with background knowledge in PET.

Rule Augmentation-The Precursor of Relational Models

This section discusses a technique for utilizing background knowledge for
discovering general concept descriptions. The technique is called rule augmentation
which refers to the addition of background knowledge to new knowledge represented
as a production rule. Rule augmentation is demonstrated with examples from an
early implementation of the PET system in the domain of simultaneous linear
equations. Rule augmentation is then compared with Vere’s use of association

chains. Finally, a discussion of the shortcomings of rule augmentation motivates

relational models for operator definitions.
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Examples from Simultaneous Linear Equations

In the domain of simultaneous linear equations, PET uses rule augmentation
to relate together terms in the instance language. For example, a relevant relation
between coefficients is product(M,N,P) (the product of M and N is P). This relation
augments the instance language. The augmentation represents necessary pieces
of knowledge (not available at the surface level of the training instance) which a
student must have in order to solve problems.

Augmentation of the instance language is necessary when the terms or values
necessary for an operation (the RHS of a rule) are not present in the pre-conditions
for the operation (the LHS of the rule). For example, the training instance:

a:2z -5y =-1

b:3z+4y=10
might be presented with the teacher advice to multiply equation a by 3 with the
operator mult(a,3). This yields:

a :6z - 15y = -3
b:3z+4y=10

From this training instance, PET forms the rule (after perturbation):
{term(a,2z),term(b,3z)} — mult(a,3).

Here the 3 in the RHS operation mult(a,3) appears on the LHS in term(b,3*x).
In this case, the LHS of the rule is predictive of the operator on the RHS and no
augmentation is needed.

In contrast, the teacher advice to apply mult(b,2) to the last pair of equations
cannot generate a predictive rule. The operation is useful and yields:

a :6z — 15y = -3
b:6z+ 8y =20
The problem is that the 2 in the RHS operation mult(b,2) is not contained in the

instance language description of the equations. Therefore, it could not be on the

LHS of any rule in this language.
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Relation Semantics
sum(L,M,N) (sum of L and M is N)
product(L,M,N) (product of L and M is N)
square(M,N) (square of M is N)

Table 3

Background Knowledge for Simultaneous Linear Equations

An augmentation of the instance language is needed to relate the 2 on the
RHS with some term on the LHS. In this case, the additional knowledge needed is
the 3-ary predicate product, specifically product(2,3,6). Now the rule to cover the

training instance can be formed:
{term(a,6z), term(b, 3z), product(2,3,6)} — mult(a, 2)
This can be generalized (with more training instances) to:
{term(a, N * z),term(b, M * z), product(L, N, M)} — mult(a, L)

where L, M and N are nonzero integers.

Concepts in the augmentation language form a second-order search space for
generalizing to the correct rule for an operator. Concepts used by PET in the
domain of simultaneous linear equations are listed in table 3. This is a (partial)
list of concepts that a student might rely on for understanding relations between
numbers. When a predictive rule cannot be found in the first-order search space
then PET tries to form a rule using the augmentation as well. Concepts are
pulled from the list and added to a developing rule. If the concept makes the
rule predictive, then it is retained. Otherwise, it is removed and another concept is

tried. If no predictive rule can be found then PET ignores the training instance.

Rule Augmentation in Perspective

The technique of rule augmentation has some important advantages over

Vere’s use of association chains. Vere describes an “association chain” which links
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together each term in a rule. If a term in the rule is not linked in the chain then more
background information must be “pulled in” until it is associated. This test for a
break in the chain serves the same purpose as PET’s test for rule predictiveness.
Both tests detect gross over-generalization of a rule in which variables in the concept
description are unconstrained.

One problem with both PET’s and Vere’s approaches to learning with back-
ground knowledge is determining how much knowledge to incorporate. Incorpo-
rating too little knowledge results in an over-generalized rule. However, detecting
when too much knowledge has been pulled in is difficult. In this case, the rule
formed will be over-specialized. PET overcomes this problem to a large extent by
perturbation (see chapter 4). Vere relies solely on forming a disjunction of rules
(each overly specialized) for the correct generalization.

Vere allows only one concept in the background knowledge. This further
simplifies the task of knowing how much knowledge to pull in. However, as the
complexity of problem domains increase, more background knowledge must be
brought to bear. Rule augmentation addresses some of the problems of managing
this knowledge.

But rule augmentation has two critical shortcomings. First, the predictiveness
test used by rule augmentation is too weak. For example, consider the following
(first) training instance for the multiply operator:

a:3z-4y=9
b:9z 4+3y=21
The teacher recommends the operator mult(a,3). Assuming that PET understands

the advice (see chapter 3 on episodic learning), the rule after perturbation is:
{term(a, 3z), term(b,9z) — mult(a, 3)

The problem is that the rule is “falsely” predictive. Although the rule passes

the test for predictiveness, the 3 on the left hand side of the rule does not explain
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(or account for) the 3 on the right hand side. Therefore, the rule will not correctly
generalize. Since the predictiveness test is a simple syntactic check, it is easily
fooled by coincidental surface level matches.

The second shortcoming of rule augmentation is that it does not represent
the total transformation performed by the operator. Each term pulled in from
background knowledge to augment a rule relates a literal on the left hand side of
the rule with a literal on the right hand side. This process stops when the rule
passes the predictiveness test. The idea of rule augmentation can be extended to
define the transformation performed by operators. With this extension, background
knowledge is used to relate all the terms in the description of the state before the
operator is applied with terms in the description of the state after the operator
is applied. Rather than simply relate a couple of terms, this approach defines
a complete mapping. This extension of rule augmentation to learning operator

transformations is discussed in the next section.

Relational Models

Relational models extend the idea of utilizing background knowledge to learn
new concepts. In addition to augmenting concept descriptions to prevent over-
generalization, relational models represent the transformation performed by oper-
ators. This section formalizes the relational model representation of operators and
heuristics used by PET. First, a variant of typical production rules for heuristics is
introduced. Then, a formal definition of relational models is built on these heuris-

tics. Finally, several examples of relational models learned by PET in the domain

of symbolic integration are presented.

Representations for Heuristics and Operators
A relational model of an operator OP is built on a heuristic rule for OP. This

rule is a variant of the production rule representation for heuristics presented in
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chapter 3. In chapter 3, heuristic rules are of the form:

PRE state description — OP

with the interpretation:

If the current state, S, matches PRE then operator OP is recommended in S.

A relational model is of the form:

PRE state description 2 POST state description

with the interpretation:

IF the current state, S, matches PRE, and the state resulting from
applying OP to PRE matches POST THEN OP is recommended in S.

The key difference between the two forms of rules is that the latter form
explicitly represents the state description which results from the operator transition.
This follows the style of rules proposed by Amarel [AMAR68]. One of the advantages
of this style is that the representation helps to constrain inappropriate operator
applications during problem solving. In addition to limiting operator applications
to those states which match preconditions, Amarel-style rules require that the
postconditions match as well. This form of heuristic rule thereby represents an

entire transition.

In PET, these heuristic rules represent the PRE and POST state descriptions
as parse trees. For example, the rule which recommends the operator

n+l

OP:/z"d:r-—» &
n+1

+C

in state [ z%dz is:
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where “+C” is dropped for simplicity. Note that the state resulting from the
operator application, POST, is explicitly represented as the right hand side of the

rule.

This form of heuristic rule is generalized using “standard” generalization tech-
niques. For example, the generalization technique which is used with perturbation
(chapter 4) forms generalizations of rules of the form PRE — OP. Applying the
same algorithm to states resulting from OP’s application yields a generalization of
POST. For each operator OP in a problem solving domain, PET uses the dropping
conditions and climbing hierarchy tree generalization operators to induce general
forms both for states in which OP is recommended and for states resulting from
recommended applications.

However, this generalization scheme can yield unusable generalizations. For
instance, the rule above can be generalized with the positive training example

[ 23 dz. This yields the rule:

J -
o \x Mo 2/ >os
/A JEN

X pos X pos
This rule is over-generalized since the critical relations are lost. There are

two essential constraints in the original, instantiated rule that are lost in the

generalization:
1) the z exponent in POST is the increment of the z exponent in PRE.
2) the denominator in POST is the increment of the z exponent in PRE.

Further, generalizing with a third positive example, [ y* dy, yields the gener-

alization:
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Relation Semantics
equal(X)Y) X and Y are equal
suc(M,N) N is the integer successor of M

sumof(LM,N) sumofLandMisN
product(L,M,N) product of L and M is N
power(L,M,N) L raised to the M-power is N
derivative(M,N) derivative of M is N

Table 4
Background Knowledge for Symbolic Integration

S +
‘/ )ar —P ., “/ >os
7o\ / '\

var pos var pos
and a third essential constraint is lost:
3) the variable in the numerator of POST is the variable of integration in

PRE.

Relational models are an augmentation of this form of heuristic rule. An
important role of this augmentation is to explicitly represent constraints between
terms in PRE and POST so that they are not lost during generalization. Back-
ground domain knowledge augments the heuristic rules to relate terms in PRE with
terms in POST. The previous section suggested some useful background relations
for simultaneous linear equations. PET uses the set of relations listed in table 4 in
the domain of symbolic integration.

The augmentation is a list of relations from background knowledge which is in-
stantiated with terms from the heuristic rule. These relations represent constraints
between the terms so that they are not lost during rule generalization. For example,

an augmentation of the rule given above forms the following relational model:
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eq(x,x)
suc(2,3)
suc(2,3)
Now, if the rule is generalized as above, the constraints are not lost. The generalized

augmented rule is:

I <
/ \

! h (var var)

suc (posy, pos2)
suc(pos; posz)

The augmentation alters the interpretation of an heuristic rule for operator
OP. The augmentation is instantiated with terms from PRE and POST and the

resulting rule is interpreted as:

IF the current state, S, matches PRE and the state resulting from
applying OP to PRE matches POST such that the relations in the
augmentation hold, THEN OP is recommended in S.

With this intuitive understanding, relational models can be formally defined.
A relational model is a 4-tuple (OP, PRE,POST, AUG). The augmentation,
AUG, is a set of relations {rely, rel, ..., rel,} from background knowledge. Each
relation rel; € AUG has a relation name, or functor, and m > 2 arguments,
{a1,082,...,8m}. The purpose of the augmentation is to relate subexpressions

of PRE with subexpressions of POST, thereby “linking” PRE to POST. To




G R E R S SE By am B 2 N G D A am e am A

120

establish these links, each a; is constrained to be a subexpression of either PRE or
POST, such that not all a; are from the same source.

Actually, this is a simplification. By allowing a; to be a subexpression of
an argument of another relation in AUG, composites of relational descriptors can
be formed by “daisy-chaining” a link between PRE and POST through multiple
descriptors. For example, the relation that PRE is the double derivative of POST
is represented by:

derivative(PRE X),derivative(X,POST).

Learning Algorithm for Relational Models

This section presents an algorithm for learning relational models. The learning
algorithm conforms to the model of learning from examples that permeates the de-
sign of PET. The input to the relational model learning element is an unaugmented
heuristic rule. The learning element then searches for the “best” augmentation. The
output of the learning element is a relational model in which the augmentation is
instantiated with terms from the original unaugmented rule.

Augmentations are rated by an evaluation function § which estimates the
“quality” of a relational model by measuring the coverage of PRE and POST by
AUG. Intuitively, coverage is a measure of the number of nodes of PRE and POST

which are in arguments of AUG. Formally,
§((OP,PRE,POST,AUG)) =| S; |+ | Sz |

where | S | is the cardinality of set S and
S) = {nodes n in PRE: 3rel(a,,a;...,a,) € AUGA
31,1 < 1 < m, such that descendantof(n,a;)}

S, is similarly defined for nodes in POST. Note that an individual node in PRE or
POST can contribute to coverage at most once since S; and S; are sets not bags.

Given an unaugmented heuristic rule R = (OP, PRE, POST), a relational
model of R is constructed by searching for the set of instantiated augmentation
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relations, AUG, which best covers R. This search is implemented in PET as a
beam-search through the space of candidate augmentations. In this space, nodes
are represented by the tuple (AUG, Pool) where Pool is the set of subexpres-
sions of PRE and POST not covered by AUG. In particular, the initial state
is (nil, {PRE U POST}). There is one operatbr in this search which is described

by:

Given a state (AUG, Pool),
SELECT a relational descriptor, D, from the set of background concepts

INSTANTIATE D with members of Pool or their sub-expressions
REMOVE selected Pool members from Pool, yielding Pool’'
ADD instantiated descriptor to AUG, yielding AUG'.

Generate new state (AUG’, Pool').

The search terminates with AUG when continued search fails to improve coverage.

Built-in biases reduce the non-determinism of the search for an augmentation
with maximal coverage and minimal complexity. In the selection of a relational
descriptor, preference is given to more primitive relations, such as equal and suc,
over more complex relations, such as product. Further, there are semantic con-
straints on the subexpressions selected to instantiate a relation. For example, the
first parameter in the derivative relation must contain a variable of differentiation.
Finally, note that the algorithm tries large subexpressions from PRE and POST
before small subexpressions, thereby maximizing the coverage of the augmentation.

If two relational models have the same coverage, then the one with fewer relations

is preferred.

Examples of Relational Models

This section presents multiple examples of relational models in the domain of
symbolic integration. These examples are generalized heuristics learned by PET
and correspond to twelve operators used in symbolic integration [TEOM68]. Each

of the relational models uses generalized descriptors from the concept hierarchy tree
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for symbolic integration (see figures 16 and 17 in chapter 4). Some of the examples

are annotated with supplemental explanation.

The following relational model uses {2 to represent a null sub-tree and var to

represent any variable (see the concept hierarchy tree).

|
u‘-'-l 3 opl @
eq(var,var)

The next relational model uses nz to represent a non-zero integer from the

concept hierarchy tree. Note that the descriptors use subscripts to enforce equality

conditions.

J =
/ \ /

0p2 u+1 2 il

du
! i | eq(var,var)

suc(nz, nzp)
suc(nzl nzz)

fof

J
7 \

L eq(var,var) j

f"""lgu =5
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The next relational model illustrates PET’s bias to select large sub-expressions
of PRE and POST when instantiating augmentation relations. PET seeks an
augmentation with maximum coverage of PRE and POST.

f

GQ(C.TP"" ezpvar)

The generalized descriptor int in the following relational model represents any
integer. Note that each occurrence of int must bind to equal valued integers for the

heuristic represented by the relational model to recommend operator op5.

—
|

[a® duTk—' . var R 3 Ig

o5
eq(int,int)
eq(var, var)
eq(int,int)

J
/ \ sin

Jcosudu “Z sinu —opb_ '
L eq(var, var)
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%

/\

L— eq(var, var) —)

In the following relational model, poly represents any polynomial. Again, note

the enforced equality constraints.

+ var
fdu+fdv ~—1

eq(int,int)

eQ(pon,poly)

eq(var,var)

op9

eq(polyo, polyo)
eq(poly,, poly:)
eq(var, var)

eq(var, var)

e
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g ] AR
sin? "= 1 — cos? 1 ‘
0210 /
cos
eq(poly, poly)
eq(2,2)
4 g £\
cos? ='1 — sin? 1 %
sin

eq(poly, poly)
eq(2,2)

The following relational models are for the substitution operator. This opera-
tor simplifies a problem by replacing a subexpression with a variable. For example,
the problem [(z + 3)*dz is simplified by replacing z + 3 by the variable u. In this

case, PET builds the relational model:
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LN J

subs .

u=z+3

subst(z + 3, u)
eq(4,4)

The augmentation descriptor subst is automatically added to the relational model
by PET to record the substitution.

A more complex instance of the substitution operator is f(2z + 3)*dz with
the advice to substitute u for 2z +3. Unlike the previous example, the derivative of
the substituted sub-expression is not 1. The resulting integral must be multiplied
by the reciprocal of the derivative to maintain equality. The state resulting from
the substitution is [ 3u*du. The relational model built by PET for the operation

is:

J

J
i\ ik

i X
bs » 3
subst
o u=2z+3 / \ i
L
1
subst(2z + 3, u)
derivative(2z + 3,|2 dz)
T 2}

eq(4,4)
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PET generalizes this relational model using perturbation and further teacher

training. The generalized rule is:

subst(poly,, u)
derivative(poly,,|poly; dz)
eq(int,int)

The relational model explicitly represents the constraint that poly; is the
derivative of poly;. This explicit representation overcomes representational inade-

quacies in LEX [UTG083] which are discussed in the next chapter.

While not currently implemented in PET, it does not seem difficult for the
learning element to note that the first relational model for the substitution operator
shown above is a special case of the previous general rule. The augmentation of the
general rule could guide the learning element. In particular, derivative(z+3, md:t),

% =1 and 1 * poly = poly. This simple reasoning permits some special case rules

to be removed.

Conclusions

Augmentation of acquired knowledge is important to machine learning because
it relates new knowledge to existing knowledge. Augmentation originates from a
set of facts which relate to, but is separate from, the domain being learned. This

body of knowledge is called background knowledge and is useful for interpreting

new knowledge.
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One important use of augmentation is learning relational models. Relational
models represent the transformation performed by operators in a problem solving
domain. The augmentation links features of the description of the state before an
operator is applied with features of the description of the state after the application.
This defines the transformation performed by the operator.

An algorithm is presented for learning relational models from examples of
operator applications. The algorithm is a guided search for the augmentation which
best represents the operator transformation. Multiple examples of relational models

constructed by the PET learning system are presented.




CHAPTER 6
Improving the Learning Rate

This chapter demonstrates a powerful technique for rapid, independent learn-
ing. The technique is a variant of goal regression and is called constraint back-
propagation. Constraint back-propagation enables the learner to detect generality
in one rule of an episode which is used to guide the generalization of other rules in

the episode. Using the technique, the learner efficiently refines the knowledge base

with little teacher involvement.

Successful constraint back-propagation relies on an integration of the knowl-
edge structures created by episodic learning, perturbation, and relational models.

This integration demonstrates the soundness of the architecture of PET.

The chapter begins with a discussion of the general problem of improving the
learning rate. Then constraint back-propagation in the LEX system is reviewed and
operator representation is shown to be a central issue. The power of the relational

model representation for operators is demonstrated with examples of rapid concept

learning by PET.

The General Problem

This section discusses the general problem of improving the learning rate by
constraint back-propagation. The learning rate of a learning system is roughly
measured by the amount of knowledge acquired divided by the number of training
instances used. The goal of the learning system is to maximize the learning rate.
The method proposed in this chapter is to automatically generate training instances

which are most useful in advancing the state of knowledge.

129
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In terms of the PET system, the learning rate is improved by guiding the se-
lection of perturbation operators. As discussed in chapter 4, perturbation partially
automates the teacher’s role in learning by examples. This is done by applying a
set of perturbation operators to a single teacher supplied training instance. Each
perturbation operator generates a slight variant of the original instance. While
perturbation is effective for guiding the generalization process, it is unselective in
the application of perturbation operators. The integrated approach to improving
the learning rate proposed here addresses the problem of generating only the most
useful perturbation candidates.

The technique of constraint back-propagation is similar to goal regression.
Goal regression is a useful technique for reasoning backwards from a goal in plan-
ning. Utgoff applies the technique in the LEX system to learn new concepts and

insert them in concept hierarchy trees. This related research is reviewed in the next

section.

Related Work

This section reviews both the general technique of goal regression and a
specific application of goal regression in machine learning. Goal regression is
discussed in the context of an abstract planning system. Paul Utgoff’s [UTG0O83]
research in adjusting concept hierarchy trees is reviewed as a useful application of a
variant of goal regression, called constraint back-propagation. This review is useful

for the next section which discusses the use of goal regression in PET.

Goal Regression
This section reviews the process of goal regression with examples from a blocks
world planning system [RICE83). Assume that there are two operators in the

domain which are defined with the following STRIPS-like operator definitions:
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STACK(x,y)
Preconditions: clear(y) A holding(x)
Delete conditions: clear(y) A bholding(x)
Add conditions: armempty A on(x,y)

PICKUP(x)
Preconditions: clear(x) A ontable(x) A armempty
Delete conditions: ontable(x) A armempty
Add conditions: holding(x)
Goal regression is a technique for applying operator inverses. The regression
of a goal state description through an operator determines what must be true before

the operator is applied in order that the goal be satisfied afterward. For example,

goal
REGRESSION(on(A, B), pickup(C)) = on(A, B)
— —

operator

determines that the operator pickup(C) will achieve the goal on(A, B) when applied

to any state in which on(A, B) is true.

Goal regression is also useful for determining when a goal is unattainable by

a particular operator. For example,
REGRESSION(armempty, pickup(A)) = FALSE

determines that there are no states in which the opertor pickup(A) will achieve

armempty.

Goal regression is a useful technique for reasoning with operator definitions.
However, the representation of operators is critical to the success of the technique.
The representation must make the pre and post conditions of the operator applica-
tion explicit. This constraint is satisfied by STRIPS-like operator representations
and relational models in PET. The next section reviews an application of goal re-
gression to machine learning in which the issue of operator representations is of

central importance.
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Utgoff ‘s Application of Goal Regression

Utgofl’s research [UTGO83] addresses the important issue of adjusting the
bias that is inherent in learning from examples. The induction process is guided
by generalization operators which determine legal generalizations of specific exam-
ples. The generalization operators represent biases, or prejudices, which enable
concept descriptions to be found. If this bias is faulty then either incorrect concept
descriptions are found or no concept description can be found at all.

Utgoff demonstrates his approach by adjusting bias which is built into the
LEX system [MITC78, MITC83]. As reviewed in chapter 2, generalization in the
LEX system is guided by concept hierarchy trees. Concept descriptions are found
by applying the climb-hierarchy-tree generalization operator to specific examples.
Utgoff proposes a technique for adjusting the concept hierarchy trees when the
existing bias is faulty.

Utgoff’s approach to adjusting bias consists of three steps:

1) Detecting when bias adjustment is needed — Adjustment is called for when a
concept description cannot be found in the existing space of generalizations
which is complete and consistent with the training set.

2) Determining what bias adjustment is called for - When the existing gen-
eralization language is determined to be inadequate, a new descriptor is
created. A descriptor is sought which enables a concept description to be
formed which correctly distinguishes between positive and negative exam-
ples of the concept.

3) Determining where the bias adjustment belongs - When a new descriptor
is created, it must be correctly inserted in the existing concept hierarchy

trees.

The second step in this approach to adjusting bias utilizes a variant of goal re-
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