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Physics-based Refinement of Proteins in Model Systems 

Benjamin D. Sellers 

 

Abstract 
More accurate comparative (homology) models would enable greater biological 

understanding through structural genomics efforts as well as aid in biological and small-

molecule drug development.  However, improving the accuracy of comparative models 

beyond that of the homologous template protein has proven extremely difficult for many 

years.  The primary aim of this work is to develop more accurate, molecular mechanics-

based, computational methods for refining loops in comparative models.  My approach is 

two-fold: 

A. Create a set of protein “model systems” that exhibit specific 

types of modeling error as found surrounding loops in 

comparative models 

B. Develop new loop-sampling methods that optimize atoms 

outside the loop 

The types of structural errors found in comparative models can be divided into bins based 

on sampling degrees-of-freedom: 1. side-chain error, 2. backbone error, and 3. larger-

scale structural errors, such as helix or domain orientations.  In chapter 1, we perturbed 

crystal structures to contain side-chain errors exclusively (error type 1.)   We then 

augmented our previous loop prediction method to simultaneously optimize side-chains 

surrounding the loop.  Results show that our new method can recover the native state in 
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most of the cases where our previous method failed.  In chapter 2, we chose homology 

models of antibodies as a test system to investigate loop prediction when the surrounding 

backbone atoms are incorrect (error type 2.)  We predict the antibody H3 hyper-variable 

loop ab initio while the remaining five, hyper-variable loops are modeled using loop 

templates whose backbone atoms tend to deviate slightly from native.  By increasing H3 

loop sampling and performing optimizations on the surrounding loops iteratively, we 

were able to increase accuracy over previous methods.  In chapter 3, through 

collaboration with Arjun Narayanan, we have taken initial steps in analyzing the 

determinants of variation in antibody light and heavy domain orientation (error type 3.)  

In chapter 4, through collaboration with Sergio Wong, I applied these new loop 

prediction methods to investigate a previous hypothesis that antibody H3 loops rigidify 

during affinity maturation which occurs within B-cells upon antigen encounter.  In 

summary, this work constitutes a significant step towards a general method of 

comparative model refinement. 
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Introduction 

The Human Genome Project and Structural Genomics 

In 2001, just before the research described in this dissertation began, a working draft of 

the entire human genome was completed1,2.  This scientific landmark, like all discoveries, 

poses at least as many new questions as it answers.  The Human Genome Project 

unlocked a blueprint that describes the parts of a complicated machine, the cell.  But 

unlike the blueprint for a car engine which details the shape and interconnections of fans 

and belts, the human genome alone contains no information on the shape or function of 

the parts.  DNA holds a highly-compressed and convoluted message that requires a 

containing cell to decipher its full meaning.  With 20,000-25,000 coding genes within the 

human cell3, and with each species on earth expressing its own unique set of genes, how 

will we ever answer the questions: What are the functions of the proteins that these genes 

encode?  With which other proteins do they interact?  How do changes in proteins lead to 

disease?  How have these proteins evolved?  How do proteins function at the molecular 

level? 

 

Researchers have been working on these questions for many decades.  To address the 

question of how a protein functions at the molecular level, researchers may attempt to 

determine the three-dimensional atomic structure of a protein.  Most work, however, has 

focused on a single protein at a time, often over many years and at great expense.    For 

example, in 2005, the New York Structural GenomiX Research Consortium 

(NYSGXRC) reported spending an average of $109,641 per protein structure it 

produced4. (Note: this number does include some indirect costs.) 
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NYSGXRC is part of Structural Genomics, a world-wide, post-genomic effort to 

determine large numbers of protein structures.  In a similar high-throughput approach as 

the genome sequencing projects, Structural Genomics aims to streamline the process of 

protein cloning, expression, purification and structure determination.  However, given the 

time and cost for each individual protein experiment, only a small percentage of all 

proteins will be characterized in this effort. 

 

Comparative modeling and the need for refinement of models 

The designers of Structural Genomics were well aware of this limitation and incorporated 

a key aim to leverage the limited number of experimentally determined protein structures 

in order to gain knowledge about the remaining majority that would not be characterized.  

Computer modeling holds this key by taking advantage of a known relationship: proteins 

that are related through evolution, known as homologs, often have similar atomic 

structures.  Comparative modeling, also known as homology modeling, can generate 

virtual atomic structures of unknown proteins using known atomic structures of 

homologous proteins5.  Vitkup et al6 estimated that 90% of all uncharacterized protein 

sequences within a protein family could be modeled if on average two proteins per family 

are rationally selected for experimental structure determination. 

 

The accuracy of these comparative models varies, however, and consequently their 

usefulness to further computational analysis varies.  For example, one possible 

application is to use computers to determine which drugs will inhibit a disease-related 
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protein by “docking” small molecules into a computer model of a protein.  Successfully 

identifying true inhibitors is dependent on the accuracy of the protein model used7.  

Many other applications that use comparative models exist and each has a requirement 

for model accuracy8.  In general, more accurate models will be more useful to research in 

basic science and health.  

 

There are two primary roadblocks to more reliably accurate comparative models, namely 

difficulties in 1) identifying and aligning to a homolog template sequence and 2) refining 

regions in the initial model that potentially differ structurally from the target protein.  In 

general, while much progress has been made in the alignment step, little has been made 

in the refinement step9. 

 

The field of comparative modeling refinement is measured to some degree every two 

years in the Critical Assessment of Techniques for Protein Structure Prediction (CASP)9, 

a blind test of computational methods.  Experimental structures are temporarily withheld 

from publication while hundreds of computational teams across the globe submit protein 

models based solely on the protein’s amino-acid sequence.  In the template-based 

(comparative) modeling category, to the dismay of everyone, no team has been able to 

improve on the accuracy of the best homolog template protein across a majority of the 

test cases.  On average, researchers who attempt to refine the starting model make the 

models worse10. 
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Our approach 

As detailed in the following dissertation, our approach is to simplify the problem of 

refining comparative models.  First, we only focus on the prediction of protein loops.  

Loops are a good choice since the protein fold (i.e. everything except the loops) of 

comparative models are structurally conserved if a homolog protein is available with 

>30% sequence identity5.  Second, we focus on “model systems,” computer models of 

proteins that exhibit only one problem found in comparative models at a time.  By 

reducing the complexity in refining comparative models, we aim to address each issue in 

turn. 

 

Our Findings 

In this work, we report new insights into the causes of model refinement failure and we 

have taken significant steps toward addressing these difficulties with 1. the creation of 

novel, simplified test sets and 2. the development of novel computational methods.  

These advances benefit multiple fields of research, namely, comparative model 

refinement, loop modeling, and antibody modeling.   
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Greater understanding of difficulties in comparative model refinement 

In Chapter 1, we show that even small perturbations in side chains that surround loops 

greatly decreases loop prediction accuracy using our previously-published, state-of-the-

art method.  We were surprised at this simple result but we clearly show that small errors 

in surrounding residue side-chain position can create 1. sampling problems by blocking 

our method from testing native-like loops and 2. energy function problems where native-

like loops are scored higher in energy due to subtle, misaligned energetic contacts 

between the loop and surroundings.  In chapter 2, we show how small errors in the 

modeled backbone of residues surrounding loops exacerbate these sampling and energy 

function failures. 

 

Novel application of simplified test systems to comparative model refinement 

Our validation of refinement methods using simplified protein systems (crystal structures 

with perturbed side chains in chapter 1 and antibody comparative models in chapter 2) is 

a novel approach in the field of comparative model refinement.  This field has seen little 

progress using “unfocused” test sets, collections of proteins that contain a wide variety of 

protein targets with varying structure, quality, and crystal environment (e.g. CASP).  That 

we have made progress using our simplified test systems which aim to de-convolute the 

causes of refinement failure is evidence that our novel approach is working and should be 

a benefit to the field. 
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Furthermore, by expanding our loop modeling goals beyond reproduction of loops in 

crystal structures and on to predictions within error-prone, modeled environments, we 

have implicitly redefined the loop prediction problem for the loop modeling field.  

Though predicting loops within protein models is more difficult than within crystal 

structures, we believe this shift will be more beneficial to real-world, loop-prediction 

applications.  

 

Development of novel refinement methods 

We have methodically developed new prediction algorithms that refine loops when the 

surrounding side-chain and backbone atoms are modeled incorrectly.  These methods 

additionally sample the loop environment simultaneously with the predicted loop.  Our 

success in these developments is important because it is generally understood in the field 

that increasing sampling degrees of freedom increases risk of low-energy decoys.  Most 

importantly, though anecdotal at this point, we have shown in blind predictions that these 

methods can improve the accuracy of loops in full comparative models beyond the 

starting template protein, a task generally understood to be difficult. 

 

In chapter 2, though our primary focus is developing loop prediction methods when 

surrounding backbone atoms are incorrect, we have simultaneously developed a method 

for predicting the complete structure of antibodies.  We created a hybrid method by 

utilizing knowledge-based loop modeling for five of the CDR loops followed by Physics-

based, ab initio modeling for the sixth H3 CDR loop.  While similar methods have been 

developed11, our optimization of the surrounding CDR’s simultaneously with the H3 loop 
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prediction is completely novel.  However, further work is needed to validate this 

approach as a general antibody prediction protocol. 

 

Further advances 

In collaboration with Arjun Narayanan, in chapter 3, we present the first structural-

bioinformatics analysis of antibody heavy and light chain orientations.  Our work is a 

first step toward predicting antibody domain orientation, which is itself a necessary step 

in predicting complete antibody models.  More accurate antibody models would benefit 

antibody engineering, humanization, phage-display library design, and epitope mapping. 

We found a large variation in domain orientation throughout antibodies.  We also show 

that this variation is due to the amino-acid content and backbone structure of the domain 

interface and that crystal packing and antigen effects are minor contributors to domain 

orientation.  We conclude the large variability in domain orientation is a mechanism for 

antibody-antigen recognition in addition to the well-known CDR loop variability. 

  

In collaboration with Sergio Wong in chapter 4, we validate the previous hypothesis that 

antibodies rigidify upon affinity-maturation.  This hypothesis was previously based on 

“macroscopic” evidence, crystal (i.e. averaged) structures of germline and mature 

antibodies.  Here, we present a “microscopic and dynamic” view into this process using 

two different computational methods and show that antibody rigidification occurs using 

multiple physical mechanisms. 
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In Chapter 5, I detail methods for producing an all-atom model of the clathrin hub which 

(following years of failed attempts) enabled solving of phases by molecular replacement 

of a low-resolution crystal structure.   The structure contains novel information 

concerning clathrin heavy chain regulation by clathrin light chain. 

 

In Chapter 6, I describe constant-pH molecular dynamics simulations at pH 6 and 8 of a 

pico-Molar inhibitor in complex with MT-SP1, membrane boune serine protease 

implicated in multiple forms of cancer.  I observe dramatic differences in the stability of 

the complex, providing a microscopic hypothesis for pH-dependent catalysis by 

correlating charge-changes of key titratable residues to complex dissociate at low pH. 

 

Future Directions 

Beyond the work described here, there are several directions to further improve accuracy 

in comparative model refinement.  The first approach is to continue with the plan 

described in this work.  Future loop prediction methods would be more useful if they can 

account for even larger structural variation in the surroundings (ex. displaced helices or 

domains).  Loop enumeration and minima sampling methods used in this work are very 

fast in comparison to more rigorous sampling approaches. 

 

In homology models where sequence identity between target and template drop below 

30%, the surroundings of the loop begin to require as much refinement as the loops 

themselves.  In these cases, methods that can sample multiple structural movements 

simultaneously are needed.  Molecular dynamics (MD), time-based simulation of each 
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atom in the protein, offers a clear solution.  Recent applications to comparative modeling 

refinement have been limited however, and successful refinement appears to require long 

simulation times or advanced sampling techniques such as replica exchange12,13.  But 

sampling power using MD will only improve as computers become faster.  Monte Carlo 

(MC) sampling methods may be the answer, either exclusively or in conjunction with 

MD.  By coordinating multiple move sets, quickly refining multiple protein regions in 

comparative models may be possible.  Furthermore, MD and Monte Carlo sampling will 

enable the field to move away from the presumption that there is a single native structure 

for a protein and move towards producing statistical ensembles that more accurately 

capture the true flexible nature of proteins.   
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Abstract 

Achieving atomic-level accuracy in comparative protein models is limited by our ability 

to refine the initial, homolog-derived model closer to the native state.  Despite 

considerable effort, progress in developing a generalized refinement method has been 

limited.  In contrast, methods have been described that can accurately reconstruct loop 

conformations in native protein structures.  We hypothesize that loop refinement in 

homology models is much more difficult than loop reconstruction in crystal structures, in 

part, because side-chain, backbone, and other structural inaccuracies surrounding the loop 

create a challenging sampling problem; the loop cannot be refined without 

simultaneously refining adjacent portions.  In this work, we single out one sampling issue 

in an artificial but useful test set and examine how loop refinement accuracy is affected 

by errors in surrounding side-chains.  In 80 high-resolution crystal structures, we first 

perturbed 6–12 residue loops away from the crystal conformation and placed all protein 

side chains in non-native but low energy conformations.  Even these relatively small 

perturbations in the surroundings made the loop prediction problem much more 

challenging.  Using a previously published loop prediction method, median backbone (N 

Cα C O) RMSD’s for groups of 6, 8, 10, and 12 residue loops are 0.3 / 0.6 / 0.4 / 0.6 Å, 

respectively, on native structures and increase to 1.1 / 2.2 / 1.5 / 2.3 Å on the perturbed 

cases.  We then augmented our previous loop prediction method to simultaneously 

optimize the rotamer states of side chains surrounding the loop.  Our results show that 

this augmented loop prediction method can recover the native state in many perturbed 

structures where the previous method failed; the median RMSD’s for the 6, 8, 10, and 12 

residue perturbed loops improve to 0.4 / 0.8 / 1.1 / 1.2 Å.   Finally, we highlight three 

 12



 

comparative models from blind tests in which our new method predicted loops closer to 

the native conformation than first modeled using the homolog template, a task generally 

understood to be difficult.  Although many challenges remain in refining full comparative 

models to high accuracy, this work offers a methodical step toward that goal. 
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Introduction 

Despite the rapid increase in the rate of experimental protein structure determination 

catalyzed by structural genomics initiatives, the vast majority of known protein sequences 

will lack experimental structures for the foreseeable future.  The ability to generate 

protein models comparable in accuracy to moderate-to-low resolution experimental 

structures for these proteins would have enormous utility for structure-based drug design 

and biological studies.  Though the method of comparative (or homology) modeling is a 

useful tool in this regard, the resulting models vary in accuracy.1   

 

Vitkup et al2 estimated that 90% of all uncharacterized protein sequences within a protein 

family could be modeled if on average two proteins per family are rationally selected for 

experimental structure determination.  This suggests that, on average, about 100 protein 

sequences without any prior structural characterization could be modeled for each new 

experimental structure1.  The accuracy of these models, however, varies significantly.  As 

documented by the New York Structural Genomix Research Consortium, many models 

accurately represent the overall tertiary structure, but relatively few (<10%, i.e., those 

with >50% sequence identity) are expected to be as accurate as moderate resolution 

experimental structures (1–2 Å RMSD)3.  The majority of the models will require 

refinement in order to be useful for problems requiring high-resolution information, such 

as structure-based drug design. 

There are two primary roadblocks to more reliably accurate comparative models, namely 

difficulties in 1) identifying and aligning to a homolog template and 2) refining regions in 

the initial model that potentially differ structurally from the target protein.  In general, 
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while much progress has been made in the alignment step, little has been made in the 

refinement step4,5,6.  There are a number of approaches to refining protein models and we 

will not provide a detailed summary here.  There has been some work to investigate the 

particular reasons for refinement difficulties.  Fiser et al7 predicted loops in structures 

with artificially distorted backbone positions in the environment of the loop and found 

that predictions became worse as expected.  They suggested simultaneously optimizing 

the environment during the loop prediction to improve accuracy but results were not 

shown.  Qian et al8 found that reducing the number of degrees of freedom, through 

sampling along principal components derived from protein family members, avoided 

generation of low energy, non-native models, and generally improved accuracy beyond 

the starting template.   Mönnigmann and Floudas9 performed backbone sampling of 

residues flanking loops to account for flexibility and variation in the loop stems.  Finally, 

Misura and Baker10 assessed the accuracy of their refinement methods on a test set of 

increasingly distorted starting structures by perturbing bond lengths, side chains and 

secondary structure elements and finally on full de novo models.  In general, they were 

able to refine the perturbed starting structures to lower RMSD models when compared to 

the native structure.  They also found that most of the deviation in their models occurred 

in loop regions. 

 

Two requirements for successful comparative model refinement are 1) efficient methods 

for sampling degrees of freedom that enable near-native configurations to be located from 

the starting structure; and 2) an energy function capable of identifying near-native 

conformations.  Though some progress has been made11,12,13, both of these challenges 
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remain unsolved in our view.  In this work, we take a simplified approach and focus 

exclusively on the sampling problem, in particular through increased sampling within and 

around loop regions. 

  

Most loop prediction algorithms have been evaluated primarily by their ability to 

reproduce the conformations of loops in protein crystal structures.  In these tests, all 

portions of the protein other than the loop in question are generally retained in their 

native conformation, after adding hydrogen atoms and sometimes performing energy 

minimization.  Numerous methods have been reported that achieve high-accuracy 

reproduction of loops in such tests14,15,16,17,18,19,26.  Accurate reconstruction of loops in 

crystal structures is an important prerequisite for the more challenging task of refining 

loops in homology models.  The critical difference is that a given loop in a homology 

model will be surrounded by other portions of the protein which themselves are 

inaccurate.  Refining the loop in this inaccurate environment, without explicitly 

optimizing the surroundings, frequently fails, indicating that loop refinement in 

homology models is much more difficult than loop prediction in crystal structures.  The 

inaccuracies in the surroundings can be divided into three categories:  1) errors in the 

conformations of side chains surrounding the loop, 2) errors in the backbone flanking the 

loop (the loop “stems”), and 3) errors in non-adjacent portions of the backbone.   In this 

work we consider an artificial but useful intermediate case where we isolate only the first 

of these types of errors.  That is, we have chosen to focus on loop prediction when side 

chains outside the loop have inaccurate initial conformations but the backbone outside the 

loop is retained in the native conformation.  This makes the loop prediction problem 

 16



 

much more challenging, although still less difficult than loop refinement in homology 

models.  We are not addressing larger refinement problems such as surrounding 

backbone, helix or domain optimization.  In doing so, we hope to de-convolute some of 

the causes of error and begin to bridge the gap between loop prediction in crystal 

structures and loop refinement in homology models. 

 

We have developed a new method, Hierarchical Loop Prediction with Surrounding Side 

chain optimization (HLP-SS), for predicting loops in inexact environments that builds on 

a previously reported method, which we refer to here as Hierarchical Loop Prediction 

(HLP).  Through the simultaneous optimization of side chains within and in the vicinity 

of the loop, we have increased the accuracy of our loop predictions relative to our 

previous protocol when applied to proteins with inaccurate surroundings.  We previously 

applied a similar method to predicting loop conformational changes due to post-

translational phosphorylation18, an application with challenges that are similar to 

homology model refinement, but the approach has not otherwise been extensively tested.  

Here we evaluate this protocol using a large and diverse test set of 80 loops, varying in 

length and difficulty, with artificially perturbed surroundings.  We examine specific cases 

that illustrate successes and failures, and provide some anecdotal but encouraging results 

suggesting that the approach can be used successfully in blind tests of homology model 

refinement.   
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Methods 

In previous work19, HLP, which is implemented in the Protein Local Optimization 

Program (PLOP), has been tested for its ability to reconstruct protein loops in crystal 

structures.  The sampling algorithm and energy function have recently been improved26 

for long loops as highlighted below.   In this current work, we augment HLP by enabling 

the simultaneous sampling and optimization of surrounding side chains.  A full 

description of the previous protocol can be found here19,26.  We provide an overview of 

HLP, and discuss the features of our new method, HLP-SS.  

 

Previous Hierarchical Loop Prediction method: HLP 

The previously published method involves a hierarchy of loop prediction stages in which 

the lowest energy loops generated from one stage are passed to the next where more 

focused (constrained) sampling is performed.   

 

Specifically, as shown in Figure 1, the initial structure is passed to two, parallel, initial 

prediction stages (only one is shown) labeled “Init.”  The two initial stages vary with the 

amount of allowed steric overlap between atoms as measured by an overlap factor: 0.7, 

0.6, respectively.  The overlap factor is defined as the ratio of the distance between two 

atom centers to the sum of their van der Waals radii.  The resulting lowest 5 energy 

structures from each of the initial stages (10 total loops) are passed as new starting 

structures to the parallel refinement stages (only one is shown in Figure 1).  In the first 

refinement stage, the Cα atoms of the loop are constrained during sampling to less than 4 
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Ǻ from Cα atoms in each starting loop.  Finally, the 5 lowest energy loops from all 

refinement 1 stage processes are passed to 5 parallel refinement stages (only one is shown 

in Figure 1) labeled “Ref 2.”  In this second refinement stage, the Cα atoms of the loop 

are constrained to less than 2 Ǻ from Cα atoms in each starting loop.  The lowest energy 

loop from all stages is taken as the predicted loop. 

 

An all-atom force field energy with implicit solvent is calculated for each sampled loop 

and the loops are then ranked by energy.  The energy is calculated using the OPLS all-

atom force field20,21,22, the Surface Generalized Born model of polar solvation23, an 

estimator for the nonpolar component of the solvation free energy developed by Gallichio 

et al.24, and a number of correction terms as detailed in Ghosh et al.23 and in Jacobson et 

al.22 

 

At each stage of the procedure, the sampling is performed by perturbing dihedral angles 

in the backbone and side chains, using knowledge-based preferences: as described 

previously19, backbone dihedral angles are chosen randomly from a 5° resolution library 

representing the well-known Ramachandran plot, and side chain rotamers are chosen 

randomly from a 10° resolution library developed by Xiang and Honig25.  All heavy-

atom torsion angles between the terminal peptide bonds are sampled.  All bond lengths 

and angles associated with these are initially set to default values, but are allowed to vary 

during energy minimization.  Polar hydrogens (e.g., OH group on Ser/Thr/Tyr) are 

sampled during side chain optimization; non-polar hydrogens are not sampled other than 

through minimization.   
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To obtain greater accuracy for long loops (in this work, loops longer than 9 residues), the 

algorithm has been augmented as described previously26.  Sampling has been increased 

dramatically through the addition of five additional “fixed” stages where sub-segments of 

the loop are sampled while the remainder of the loop is held fixed.  In addition, Zhu et al. 

have also incorporated an additional hydrophobic term adapted from the ChemScore27 

scoring function, which has been successfully used to describe the hydrophobic 

contribution to the binding free energy between ligands and protein receptors.  The "long 

loop" protocol and scoring function were utilized in this study for the 10 and 12 residue 

loop cases.  We did not use the augmented protocol and energy function on the 6 and 8 

residue loop cases for efficiency reasons. Though, these changes have been applied to 

short loops in a previous study28 which shows moderate improvement in accuracy.  Only 

three and four "fixed" stages were used for the 10 and 12 residue loop cases, respectively, 

to improve the computational efficiency. Our experience showed this choice was 

sufficient to achieve convergent results.  

 

New method incorporating surrounding side chains: HLP-SS  

In this work, we modified the HLP algorithm presented above in two places: during the 

loop buildup and during the side chain optimization (Figure 2). 

1. Removal of side chains during backbone sampling 

For efficient backbone sampling, the previously published loop prediction method applies 

a variety of screens to rule out high energy loops as early as possible.  One of these 
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screens checks for steric clashes between the loop backbone and the rest of the protein, as 

the loop is built up from either side.  By default, this steric screening checks for clashes 

with all heavy atoms outside the loop.  However, if the portions of the model surrounding 

the loop are inaccurate, this screen could prevent native-like structures from being 

sampled, e.g., if a side chain is occupying a portion of the space that the loop backbone 

should pass through.  To avoid this problem, we created an option to ignore side chains 

surrounding the loop during the steric screening.   

 

However, a significant downside to ignoring the surrounding side chains during backbone 

sampling is that the conformational search space increases significantly.  Also, we may 

be discarding information because frequently, some initial side chain conformations in 

the surroundings are approximately correct.  For any given loop refinement in a particular 

model, it is not a priori obvious whether including or excluding surrounding side chains 

is more likely to succeed.  For this reason, in our method, we do both (in separate 

optimizations) and ultimately use the MM-GBSA energy function implemented in PLOP 

to choose the final predicted conformation.  Specifically, we added a third initial stage 

“Init3” with overlap factor of 0.7 and used our new option to exclude surrounding side 

chains during the steric screening.  We continue to include the surrounding side chains 

during steric screening in the original two initial stages, “Init1” and “Init2”.  Finally, we 

also make certain to optimize the same surrounding side chains across all prediction 

stages so that we can compare the energies of all sampled loops.  
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2. Simultaneous optimization of side chains in surroundings and loop 

In the HLP method, the energy for each candidate loop conformation is obtained after 

iteratively optimizing the side chain conformations on the loop followed by energy 

minimization.  In the HLP-SS, we expand the list of side chains to be optimized by 

including the side chains of the surrounding residues.  The self-consistent side chain 

optimization is accomplished by iteratively placing one side chain at a time while holding 

the others fixed until no side chain changes rotamer state.  In HLP-SS, we optimize the 

side chains on the loop first and then side chains from surroundings, iteratively.  

 

Data set choice and perturbation 

In order to de-convolute the many compounding problems that occur in loop prediction in 

full comparative models, we chose to predict loops on a data set consisting of crystal 

structures that are perturbed to contain modeling errors in side chains only.  Our current 

goal is neither to create a representative sampling of all loops found within proteins nor 

to generate all possible loop refinement scenarios found in comparative models.  Rather, 

our intention is to create a test set with enough variety in difficulty and types of 

refinement problems, that we (and others) may test approaches to loop prediction in 

inaccurate environments. 

 

Criteria for test set selection    

We constructed a test set of 80 loops, 20 loops each of 6, 8, 10, and 12 residues in length.   

For each loop length, we chose a smaller number of loops from the larger, previously 
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published sets19,26 due to the computational expense of the additional sampling of the 

loop surroundings.  The 6, 8 and 10 residue loops were taken from Jacobson et al19 and 

the 12 residue loops were taken from Zhu et al26.  The proteins in the set are diverse in 

sequence, observed in crystal structures with ≤ 2.0 Å resolution, and have been filtered 

such that the simulated loops are far from heteroatom groups.  This set contains a mix of 

both difficult and easy loop prediction cases, similar to the previously published larger 

test sets.  The median RMSD predictions for our subset of loops are similar to those from 

the larger, previously published test sets (when predicted on the native crystal structure 

with simulated crystal environment).  

Generation of perturbed crystal structures 

We perturbed crystal structures in the following way.  For each of the 80 loops we 

performed the following.  

1) Generate a low-energy loop far from the native conformation:  We performed a 

single run of loop prediction in PLOP which generates a list of sampled loops ranked by 

MM-GBSA energy.  In general, we chose a sampled loop greater than 3 Å backbone 

heavy atom RMSD from the native loop and then grafted this loop onto the crystal 

structure.  In some cases, no loops were sampled greater than 3 Å from the native and in 

those cases we simply selected from one of the lower-RMSD, non-native loops.   

2) Rotamer optimization on the full protein with non-native loop:  We performed 

rotamer optimization and energy minimization on all side chains in the perturbed protein 

using the method described in Jacobson et al19.  This procedure removes the memory of 

native χ angles and bond lengths/angles of all side chains and places the protein in a non-
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native, local minimum, creating a more difficult loop prediction scenario that more 

closely resembles an initial comparative model.    

 

 The dataset and the relevant information are listed in tables S1, S2, S3, and S4. 

 

Method of choosing surrounding side chains to optimize 

The key new element introduced into the loop modeling procedure is simultaneous 

optimization of side chains on the loop and in its surroundings.  In the extreme, the 

algorithm could optimize all side chains on the protein, but this would unnecessarily 

increase computational expense due to sampling many side chains distant from the loop 

(and also increases “noise” in the computed energy).  At the other extreme, only those 

side chains in contact with the starting loop could be optimized.  However, the initial 

loop may be far from its native position in a homology model, as are many of the 

perturbed loops in our test set.  For this reason we developed a protocol to attempt to 

identify all side chains that could interact with any conformation of the loop.  We 

accomplish this by first generating a coarse unbiased sampling of loops, <50, using a 

quick backbone buildup within PLOP. We then identify all residues with a distance cutoff 

of any of these loop conformations to decide which side chains outside the loop are 

optimized.  Surrounding residues are included that have a side-chain heavy atom within a 

certain cutoff from Cβ atoms within an initial set of sampled loops.  The Cβ atoms from 

the N-terminal and C-terminal loop residues are excluded in this screen.  For example, at 

a distant cutoff of 7.5 Å, this translates to an average of 17 surrounding side chains for 

the 8-residue cases but the number varies considerably from 9 to 37 depending on the 
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solvent-exposure of each loop.  We tested distance cutoffs of 5.0, 7.5, and 10.0 Å in this 

work.   

 

Sampling and energy function failure analysis 

In cases where the method predicted loops greater than 1.5 Å backbone heavy atom 

RMSD, we attempted to understand why, distinguishing between two broad classes of 

problems:  insufficient sampling, and inability of the energy function to identify near-

native states.  Sampling problems were identified if no loops are sampled within 1 Å N-

Cα-C RMSD from the native.  Energy function problems are identified by calculating 

Egap, the difference in energy between our predicted loop and a native-like loop.  We did 

not calculate the native energy using the conformation found in the crystal structure 

because the loop found in the crystal structure must relax using the same optimizations as 

our predicted loops in order for the energies to be comparable.  The native energy is 

taken from the lowest energy loop with <1 Å N-Cα-C RMSD from the native.  For 

consistency, this analysis was carried out on both the unperturbed and perturbed crystal 

structure test cases. 

 

RMSD calculations 

Loop RMSD’s are calculated using N, Cα, C, and O atoms in the loop backbone with the 

protein aligned, excluding the loop.  Side chain RMSD’s are calculated using non-

hydrogen atoms in the side chain.  Full comparative models were first aligned to the 
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native crystal structures using the MatchMaker function in Chimera29 with default 

settings.   

 

Crystal packing simulation 

We do not include crystal packing in the primary predictions presented here.  However, 

in one case we suspected crystal packing effects might affect the results, and to 

investigate this possibility, we used the option in  PLOP that includes all atoms found in a 

single asymmetric unit plus all atoms <20 Å from adjacent asymmetric units.  Each 

asymmetric unit is identical at every stage of the calculation.   

 

Protonation states of titratable residues 

All titratable residues are placed in their standard protonation state at pH 7.0 (e.g. 

histidine is neutral), regardless of whether pH is specified in the PDB file.  This 

assumption may affect accuracy in some cases, particularly when we compare to 

structures that were crystallized at non-physiological pH. 

 

Generation of full comparative model test set 

In order to begin to test the applicability of our new method in full comparative models, 

we refined loops within initial models that were generated by our team in the latest 

Critical Assessment of Techniques for Protein Structure Prediction (CASP7) 

experiment.30  As the submitted models highlighted here were refined using HLP-SS, the 
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refinements were “blind” tests.  Targets T326, T345, and T376 are highlighted in this 

work.  Target T326 was aligned to template, 2GHR, using BLAST31 and constructed 

using the Protein Local Optimization Program19 as previously described32.  T345 and 

T376 were aligned to templates 2F8A and 1YXC, respectively, using HMAP33 and 

constructed using NEST33.  A loop was identified in the initial model as “requiring 

refinement” if the sequence alignment between template and target contained gaps or 

deletions within regions between secondary structure elements found in the template 

structure.    
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Results and discussion 

Assessment of our previous method: HLP 

A comparison of results applying our previous protocol, HLP, to the unperturbed and 

perturbed test cases illustrates how incorrect side chain conformations can degrade the 

performance of loop predictions when surrounding side chains are not included in the 

optimization (Table I).  For all loop lengths, the median backbone RMSD increases by 

approximately a factor of 4.   More specifically, HLP predicts 42 out of 80 test cases 

greater than 1.5 Å backbone RMSD on the perturbed test set compared to 15 out of 80 

when predicted on the unperturbed crystal structures.  The “easy” test cases, i.e., the ones 

that the previous protocol performs relatively well on, serve as controls to verify that our 

new protocol does not adversely affect these cases.   

 

Using HLP on perturbed structures, we anticipated a decrease in accuracy due to 

sampling since the perturbed side chains in the surroundings of the loop may block the 

native conformation.  Interestingly, the number of energy function problems also 

increases which indicates that native-like loop backbones are being sampled using our old 

protocol but the perturbed surroundings may prevent key side chain contacts from 

forming. 
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Assessment of our new method: HLP-SS 

In order to test whether our new protocol, HLP-SS, is more effective at predicting loops 

in inexact environments, we utilized our perturbed test set and compared results using 

HLP-SS to results using HLP.   

 

We first varied the number of surrounding side chains to include during the loop 

prediction by testing our new protocol with different cutoff distances (see Methods).  The 

comparison of prediction accuracy to computational expense summarized in Figure 3 

indicates that a radius of 7.5 Å is a good tradeoff.  Interestingly, increasing the radius to 

10 Å does not give a marked increase in accuracy over a radius of 7.5 Å but does increase 

computational expense considerably.  All results in this paper are reported using the 7.5 

Å cut-off unless otherwise noted. 

 

The results in Table I show a consistent increase in accuracy when side chains 

surrounding the loop are optimized during the loop prediction compared to when they are 

held fixed.  Individual predictions can be found in the supplemental Tables S1, S2, S3 

and S4.  The overall accuracy for each loop length is increased using HLP-SS over HLP.  

For example, for the 8 residue perturbed loop set, the median backbone RMSD is 0.8 Å 

using HLP-SS compared to 2.2 Å using HLP.  By comparison, on the unperturbed 8 

residue loops, the median backbone RMSD is 1.0 Å using HLP-SS and 0.6 Å using HLP.  

Thus, the results of using HLP-SS on the perturbed loops approaches the accuracy that 

can be achieved in loop reconstruction, especially for short loops (6 and 8 residues).  

With longer loops (10 and 12 residues), HLP-SS produces a small increase in median 
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backbone RMSD (by a factor of ~1.3) on perturbed structures versus unperturbed.  

Including surrounding side chains during the loop optimization clearly produces more 

accurate results on our perturbed test set than not including them. 

 

The number of sampling problems is reduced using our new method: out of the 80 

perturbed test cases, HLP produces 24 loop sampling problems compared to 3 using 

HLP-SS (see Methods for our definition of sampling and energy problems).  HLP-SS 

produces similar numbers of sampling problems as seen in the control experiments on the 

unperturbed crystal structures. These results suggest 1) our perturbed test set creates more 

sampling difficulties than the unperturbed crystal structures, and 2) our enhanced 

sampling in the HLP-SS method is addressing these difficulties.  However, the number of 

errors that can be attributed to limitations of the energy function is not reduced using 

HLP-SS.  In loop reconstruction in native crystal structures, the number of failures 

attributed to the energy function increases using HLP-SS versus HLP.  That is, the 

increased sampling due to simultaneous optimization of side chains surrounding the loop 

places a greater burden on the energy function in distinguishing between native and non-

native configurations (i.e., many more non-native side chain contacts are sampled).  

Thus, the perturbed loop test set increases the difficulty of both sampling native-like 

configurations and identifying these among many non-native conformations, relative to 

loop reconstruction in native proteins.   

 

As a control, we tested our new method on native crystal structures to see if our new 

method degrades accuracy when the loop and its surroundings are initially in the native 
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state.  This control represents the “best that we can expect” using HLP-SS because it will 

uncover energy and sampling problems unrelated to the altered side chains in the 

perturbed test set.  As expected, median backbone RMSD’s increase slightly using HLP-

SS compared to HLP: results using HLP-SS show an increase of +0.1, +0.4, +0.4, and 

+0.3 Å for 6, 8, 10, and 12 residue loops respectively over HLP (Table I).  Sampling 

surrounding side chain rotamers increases the number of degrees of freedom and thus the 

likelihood of energy function or sampling problems.   

 

If we consider the set of “easy loops” among the perturbed loop test set, i.e., cases where 

our old protocol predicts native-like loops (better than 1.5 Å backbone RMSD), our new 

protocol predicts non-native loops (worse than 1.5 Å RMSD) in only 5 of these 39 easy 

cases.   

 

Interestingly, although the average loop prediction accuracy improves with our new 

method, the average accuracy of the side chains in the surroundings does not improve 

(data not shown).  Looking at averages over many surrounding residues may be hiding 

the role of an important few.  While in some cases the role of a single surrounding 

residue is clear, such as in case 1CLC (see below) where a single residue blocks sampling 

of the native conformation, other cases are more subtle.  In cases where sampling is not a 

problem, key energetic contributing residues, now free to move in our new method, may 

form incorrect contacts for reasons such as differences in the pH between crystal 

structure and our modeling conditions, or other problems with our energy function. 
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Effects of crystal packing 

Because our goal is to predict loops within comparative models, where crystal symmetry 

information is not known, we do not simulate the crystal environment in the primary 

predictions presented here.  However, since we are comparing to crystal structures in this 

intermediate step, crystal packing effects may contribute to apparent error in our 

predictions19,34.  In order to assess these effects in our test set, we performed predictions 

using HLP on the unperturbed crystal structures with and without simulation of crystal 

packing (Table S5).  Simulation of crystal packing is described in Methods.  Nine cases 

(PDB’s:  1XIF, 3TGL, 1IAB, 1PRN, 1SBP, 1ARB-12 residue case, 1CNV, 1M3S, 

1OTH) show potential crystal packing effects which we define as a predicted loop 

backbone accuracy >1.5 Å RMSD without simulating crystal packing but <1.5 Å RMSD 

with crystal packing.  Loop predictions are affected by either restricting the sampling 

space or by changing the energy landscape through inter-chain contacts.  Since HLP is 

sampling conformations <1.2 Å RMSD in all nine cases without simulated crystal 

packing, the increases in accuracy with crystal packing are probably not due to restricting 

the sampling space but are enabled through inter-chain energetic contacts.   See example 

3TGL below for an example. 

 

Most importantly, these errors likely propagate through our perturbed test predictions and 

should be taken into account in assessing the new method.  However, removing the above 

nine cases (identified as having adverse crystal packing effects) from our statistics, we 

see little increase in overall accuracy for our new method (Table S6).  HLP-SS median 

RMSD’s for the 6, 8 and 10 residue perturbed cases stay within 0.1 Å of the statistics 
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derived from the full test set, suggesting crystal packing is playing a minor role for the 

cases.   Because four of the nine “crystal packing” cases are in the 12 residue test set, the 

statistics show moderate decreases in median and average RMSD’s for both our old and 

new protocol.  In the 12 residue perturbed test set, median/average RMSD’s for HLP-SS 

are reduced from 1.2/1.7 Å to 1.1/1.3 Å in this filtered test set.  Statistics for HLP are 

reduced from 2.3/2.6 Å to 1.6/2.4 Å. 

 

1CLC 

The benefits of our approach are clear in the 8 residue test case 1CLC, residues 313–320.  

In the perturbed loop starting structure, Glu322 protrudes into the space that the native 

loop would occupy (Figure 4).  Without optimizing this side chain during the loop 

prediction, near-native loops will have high energies due to steric clashes.  HLP-SS 

selects a near native loop with backbone RMSD of 0.4 Å.  Without side chain 

optimization, the lowest energy loop is 4.3 Å RMSD.  Sampling is enhanced near the 

native as seen in Figure 5. 

 

1F46 

Another successful prediction, the 12 residue test case 1F46 (residues, 64-75), highlights 

a more subtle effect of incorrect surroundings on loop refinement.  HLP-SS predicts a 1.1 

Å backbone RMSD loop while HLP predicts a 3.8 Å backbone RMSD loop (Figure 6).  

In contrast to 1CLC above, there are no surrounding side chains obstructing the backbone 

from sampling close to the native.  As seen using HLP, backbone conformations are 
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sampled as low as 0.3 Å RMSD.  HLP selects a 3.8 Å RMSD loop because at least one 

incorrect surrounding residue prevents a key loop side chain from repacking, thus leading 

to near-native conformations having high energies.  Interestingly, HLP-SS with a 5.0 Å 

cutoff also failed, predicting a loop of 2.3 Å RMSD.  By examining which residues are 

included in the 7.5 Å and 5.0 Å cutoffs, we determined that the repacking of the side 

chain of Met64 is blocked by nearby Arg161, a residue that is not optimized in the HLP 

and HLP-SS (5.0 Å cutoff) protocols.  Optimizing Arg161 with the larger 7.5 Å cutoff 

enables repacking of Met64 and contributes to a lower energy, near-native loop. 

3TGL 

Including surrounding side chains did not improve our prediction of the six residue loop, 

residues 82–87 in 3TGL, beyond 3.1 Å backbone RMSD.  Upon inspection of the 

original crystal structure, we found significant interactions between the loop and other 

chains within the asymmetric unit.  We thus reran our calculations while including all 

atoms from crystal symmetry chains within 20 Å of the original chain.  Note that the 7.5 

Å cut-offs for including nearby side chains was reapplied to capture residues from the 

symmetry copies of the protein.  Our new prediction achieved a 0.5 Å backbone RMSD 

and correctly forms the salt bridge between Arg86 and Glu47 of the symmetric chain 

(Figure 7).  In a control experiment using HLP on the unperturbed crystal structure, the 

effect of crystal packing is clear with accuracy increasing from 3.1 Å to 0.7 Å when 

crystal packing is simulated.  The apparent failure of HLP-SS to predict the native loop in 

the perturbed 3TGL structure is therefore due to crystal packing. 

 

 34



 

1ALC 

HLP-SS failed to identify a native loop in the eight residue loop case, PDB 1ALC.  This 

target was identified as problematic even when predicting the loop within the native 

crystal structure but the failure is not due to omission of crystal packing.  Although we 

sampled a loop as close as 0.4 Å backbone RMSD (Figure 8, black triangles), we were 

not able to identify it as a near native loop because its energy is higher than decoy loops 

with >4.0 Å backbone RMSD from the native.  In this case the failure does not appear to 

be due to limitations of the energy function but rather due to a particularly rugged energy 

landscape for this loop.  Though the loop is on the protein surface, a large percentage of 

its surface area is buried (Figure 9).  To validate this idea, we re-ran our prediction while 

constraining the sampling within 1 Å of the native loop and successfully identified a 

near-native loop lower in energy than the previously generated decoys (Figure 8, red 

circles).  In the future, optimizing the surrounding backbone atoms in addition to side 

chains may improve sampling for loops like this that are tightly constrained by their 

environment. 

 

Application of our new method to the refinement of full 

comparative models 

To begin testing whether our new method can better refine full comparative models, 

where backbone as well as side chain atoms are inexact, we compared results from loop 

predictions on three homology models using our old and new methods.  The resulting 
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models using HLP-SS were submitted to the CASP7 experiment.  After the experiment, 

we re-ran the loop refinements using HLP to compare to our blind HLP-SS results.    

 

The important question is whether each method predicted loops more accurate than the 

initial homolog-derived loop, a task generally considered to be difficult.  Figure 10 and 

Table II clearly show that ignoring surrounding side chains produced less accurate 

predictions than the initial starting models: HLP results for targets T345, T326, and T376 

were 5.6, 2.2, and 5.6 Å RMSD respectively in comparison to the starting conformations, 

1.5, 1.7, and 4.6 Å RMSD.  In contrast, HLP-SS not only produced more accurate loops 

than HLP, it also improved somewhat upon the starting loop in these cases:  HLP-SS 

predicts loops to 1.4, 1.1, and 3.5 Å backbone RMSD for the three targets.   

 

Our intention here is to highlight evidence that initial models with both backbone and 

side chain errors can also benefit from HLP-SS.  We do not make the claim that our 

protocol will work on all comparative models and we have seen many cases where 

backbone perturbations outside of the loop are large enough that HLP-SS fails (data not 

shown).  However, the difficulty of homology model refinement is such that any success 

in a blind test is encouraging.  At the very least, these examples highlight how loop 

prediction methods that do not account for errors in the surroundings (HLP in this work) 

not only fail to improve homology models but can make the results much worse.   
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Conclusion/Further directions 

Refining comparative models is difficult for two reasons: the energy landscape is rugged 

and the sampling space is vast.  In this study, we aimed to address one important 

sampling difficulty that occurs in the refinement of protein models, namely the ab initio 

prediction of loop segments when surrounding residue side chain positions are incorrect.  

By sampling rotamer states of nearby residues simultaneously with our previous all-atom 

loop sampling strategy, we have shown that a simple solution can significantly improve 

our predictive ability in these cases.   

 

We chose to test our protocol on perturbed crystal structures.  Rationally perturbed, 

idealized test sets are critical to de-convolute the sources of difficulty facing full 

comparative modeling refinement.  In this study, we show that simply perturbing loops 

and then scrambling side chains in crystal structures creates a much more difficult loop 

prediction problem, relative to reconstructing loops in unperturbed crystal structures.  We 

then show that our new method can predict near-native loops in a large majority of these 

perturbed cases by simultaneously sampling the side chains surrounding the loop.  Our 80 

perturbed test cases are available for download (see link below). 

 

A logical next step after perturbing side chains within crystal structures is to introduce 

inaccurate backbone conformations in regions of the protein surrounding the loop in 

question.  Initial results (data not shown) suggest that optimizing backbone atoms in 

surrounding residues, including the loop “stem” residues, during the side chain 
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optimization stage can improve predictions in cases where surrounding inaccuracies 

cannot be corrected through side chain optimization alone.   

 

Increasing the sampled degrees of freedom as we have done in this study implies a need 

for an energy function that is increasingly more robust at discerning native-like from non-

native-like structures.  Robust homology model refinement will thus require not only the 

development of new sampling methods but also more accurate energy functions.  Some 

limitations are addressable whereas others are not.  For example, because we are 

comparing our predictions to experiments, experimental factors that are not generally 

known at the time of comparative modeling can affect our accuracy.  We have shown 

(Figure 7 and Table S5) that inclusion of the crystal symmetry chains during the loop 

prediction can increase accuracy.  The pH at which the protein was crystallized can also 

dramatically affect conformations seen in the crystal structure, particularly with side 

chain positions relevant to this current study.  Since we assumed standard protonation 

states for titratable residues at pH 7.0, we will not account for changes in conformation 

due to pH. 

 

There are energy function limitations we can improve without knowledge of 

experimental crystal conditions, however.  Though we can only assume a physiological 

pH at the time of modeling, we should be able to predict local pKa shifts within the 

protein.  We hope to address this issue in the near future.  Limitations in using the 

Generalized Born implicit solvent model can lead to over-stabilized salt bridges35 and 
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will fail to predict water-mediated interactions.  Using a fixed-charge, non-polarizable 

force field may introduce errors as well.    

 

An assumption implicit in this work is that the loop adopts a single well-defined 

conformation, and that the correct answer is the single conformation reported in the PDB 

file.  From a computational standpoint, this limitation can be addressed by recasting the 

algorithms presented in this work as Monte Carlo sampling, i.e., to predict an ensemble 

of structures rather than a single structure.  Work along these lines is underway.  

Predicted ensembles of loop structures could be compared to experimental temperature 

factors from crystal structures, or preferably, to structures that were refined using an 

ensemble approach36.  
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Chapter 1: Table I 
  Crystal Structures Perturbed Crystal Structures 

    6 res. 8 res. 10 res. 12 res. 6 res. 8 res. 10 res. 12 res. 
Median 
RMSD 0.0 0.0 0.0 0.0 2.9 3.9 4.2 4.8 Starting 

Structure
s Average 

RMSD 0.0 0.0 0.0 0.0 3.4 4.3 4.9 4.6 

Median 
RMSD 0.3 0.6 0.4 0.6 1.1 2.2 1.5 2.3 

Average 
RMSD 0.7 1.2 0.6 1.2 1.7 2.4 1.7 2.6 

Samplin
g 

Failures 
1 3 0 0 3 9 6 6 

HLP 

Energy 
Failures 1 2 1 7 4 4 4 6 

Median 
RMSD 0.4 1.0 0.8 0.9 0.4 0.8 1.1 1.2 

Average 
RMSD 0.8 1.4 1.0 1.4 0.8 1.3 1.5 1.7 

Samplin
g 

Failures 
0 0 0 4 0 1 0 2 

HLP-SS 

Energy 
Failures 3 6 4 3 3 3 7 6 

 

Table I caption 

 

Median and average predicted loop backbone (N Cα C O) RMSD’s in Å using our 

previous and new methods on unperturbed and perturbed crystal structure test cases.   

Statistics are calculated over the 20 test cases in each loop-length category.  The numbers 

of sampling and energy failures are also listed.  Rows 1 and 2: the median and average 

RMSD of the loop before prediction.  Rows 3 and 4:  median and average RMSD for 

predictions using HLP (without optimizing surrounding side chains).  Rows 5 and 6: the 

number of sampling and energy failures in each subset using HLP.  Rows 7 and 8: 

median and average RMSD for predictions using HLP-SS (optimizing surrounding side 

chains).  Rows 9 and 10:  the number of sampling and energy failures in each subset.  



 

Chapter 1: Table II 

Model 
Native 
PDB 

Loop 
start res 

num 
Loop end 
res num 

Starting  loop 
RMSD 

Predloop 
RMSD: 

HLP 

Pred loop 
RMSD: 
HLP-SS 

T345 2HE3 11 19 1.5 5.6 1.4 

T326 2H2W 173 178 1.7 2.2 1.1 

T376 2HMC 273 284 4.6 5.6 3.5 

 

 

Table II caption  

Loop predictions on full comparative models.  Column 1: CASP model designation, 

Column 2: the native PDB, Column 3, 4: the loop endpoints, Column 5: the starting 

backbone heavy atom (N Cα C O) RMSD, Column 6: the predicted backbone RMSD 

using our old protocol which does not optimize surrounding side chains, Column 7: the 

predicted backbone RMSD using our new protocol which simultaneously optimized the 

surrounding side chains.  Each model was first globally aligned to the crystal structure 

using Chimera to calculate RMSD’s.  
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Init 

Chapter 1: Figure 1 
 

A high level schematic of the Hierarchical Loop Prediction (HLP) protocol described 

here and previously.  “Init” refers to the initial stage of sampling and scoring.  “Ref” 

refers to the refinement stages where sampling is constrained around starting loop 

conformations. See Methods for details. 

 

Ref 1

Ref 2

E 

E 

E 

Lowest E 



 

 

A 

C D 

B 

Chapter 1: Figure 2 
 

 

Schematic of the two ways surrounding side chains (white squares) are incorporated into 

each stage of our hierarchical protocol, backbone sampling (A and B) and simultaneous 

side chain optimization (C and D).  A)  Our previous protocol HLP would eliminate loop 

backbones (dashed line) that overlap with surrounding side chain positions.  B)  In an 

initial stage of HLP-SS, we remove the surrounding side chains (dashed squares) during 

backbone sampling to allow for backbone conformations that might be allowed if the 

surrounding side chains are given a chance to optimize.  C)  HLP optimizes side chains 

on the loop only. D)  In HLP-SS the side chains are optimized on the loop as well as the 

surrounding residues. 
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Chapter 1: Figure 3 
Comparison of total relative CPU time (top) and prediction accuracy (bottom) versus 

increasing cutoff distance for including surrounding side chains using HLP-SS.  The radii 



 

cutoffs of 0.0 (i.e. none), 5.0, 7.5, and 10.0 Å specify which surrounding residues are 

included in the optimization (see Methods).  Top: Average total CPU times in seconds 

represent a relative cumulative time if our new protocol were not run in parallel.  For 

clarity, average CPU times are shown for the 20 eight-residue test cases only.  Error bars 

represent the standard deviation across each data set.  Bottom: Average RMSD’s are 

calculated over all test cases.  Positive and negative error bars contain 34.1% of the 

RMSD population above and 34.1% below the average, respectively. 
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Chapter 1: Figure 4 
 

A successful application of our algorithm in PDB 1CLC, residues 313 to 320.   The 

crystal structure is in gray, the initial perturbed structure is in purple, the predicted loop 

using our old protocol is in orange and our prediction using surrounding side chain 

optimization during loop prediction is in light blue.  Glu322 partially obstructs the native 

loop conformation in the initial perturbed starting structure.  A near-native loop is only 

correctly predicted when nearby side chains including Glu322 are also optimized.    
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Chapter 1: Figure 5 
Calculated MM-GBSA energy versus loop N-Cα-C RMSD between predicted and native 

loop conformations for test case 1CLC.  Only samples within the 50 kcal/mol of the 

lowest predicted energy are shown.  Top: predicting loops without nearby side chain 

optimization (HLP method). Bottom: predicting loops with nearby side chain 

optimization (HLP-SS method).  Note since different atoms are optimized in each 

example, the relative shapes, and not absolute energies, between the two plots are 

comparable.   
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Chapter 1: Figure 6 
 

Comparison of loop predictions on the 12 residue loop test case, PDB 1F46, residues 

A:64-A:75.  The crystal structure is in gray, the predicted loop using our old protocol, 

HLP,  is in orange,  our prediction using HLP-SS using a side chain cutoff of 5 Å is in red 

and our prediction using HLP-SS with a side chain cutoff of 7.5 Å is in light blue.    

Heavy atom backbone RMSD’s are HLP: 3.8 Å, HLP-SS (5.0 Å cutoff): 2.3 Å, HLP-SS 

(7.5 Å cutoff): 1.1 Å.  The Arg121 residue outside the loop is not optimized in either the 

HLP or HLP-SS (5.0 Å) protocols. 
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Chapter 1: Figure 7 
The loop in 3TGL, residues 82-87, is shown with our predictions in light blue and crystal 

structure in gray.  Top: our new protocol predicts a conformation with a backbone RMSD 

of 3.1 Å.  Bottom: by including the additional atoms from the surrounding chains in the 

crystal, our new protocol predicts a near-native loop with 0.7 Å backbone RMSD. 
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Chapter 1: Figure 8 
In black triangles, the MM-GBSA energy is plotted versus N-Cα-C RMSD for each 

sampled loop conformation using our HLP-SS applied to loop residues 34 to 41 in PDB 

1ALC.  Though one loop conformation with loop backbone RMSD of 0.3 Å is sampled, 

lower energy decoys exist with backbone RMSD greater than 4.0 Å from the native.  In 

red, energy versus backbone RMSD for sampled loops constrained to less than 2.0 Å 

from the native. 
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Chapter 1: Figure 9 
Depiction of the crystal structure, PDB 1ALC.  The native loop, residues 34 to 41, sits in 

a tight pocket.  All atoms not in the loop are represented as a blue surface map while the 

loop surface has been removed to show the environment in which we are sampling. 
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Chapter 1: Figure 10 
Comparison of blind loop predictions within full comparative models to native crystal 

conformations.  In all figures, the loops are colored as follows.  Gray: native crystal 

structure, Purple: unrefined loop model, Orange: refined loop model without 

simultaneous optimization of surrounding side chains, Blue: refined loop model with 

simultaneous optimization of surrounding side chains.  Top: CASP7 target T345, residues 

11-19.  Middle: CASP7 target T376, residues 273-284.  Bottom:  CASP7 target T326, 

residues 173-178.   
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Abstract 

Refining comparative models of proteins to accuracies similar to moderate-resolution 

(<2.5 Å) crystal structures is difficult and no published method has yet provided a general 

solution to improve the accuracy beyond the template protein.  While previous attempts 

have validated protocols on full comparative models, our approach is to develop new 

methods using simple model systems, where causes of sampling or energy function 

failures are easier to dissect.  We recently showed in one such system, that incorrectly 

modeled side chains in residues surrounding loops can drastically decrease loop 

prediction accuracy.  We then showed that optimization of rotamers in surrounding 

residues during the loop prediction reliably increases accuracy.  As a next step, the aims 

in the present study are to investigate the effects of incorrectly modeled backbone atoms 

in residues surrounding loops and to develop more accurate methods. 

 

We have chosen the H3 loop in comparative models of antibody variable fragments (Fv) 

as a model system not only because of their tremendous biological and therapeutic 

relevance but also because predicting Fv structure is largely reduced to predicting a 

single loop, the hyper-variable H3 loop.  The remaining five complementarity 

determining region (CDR) loops can often be modeled (with some inherent backbone 

error) using knowledge-based rules.  H3 is thus surrounded by minor (<2Å RMSD) 

backbone errors in the surrounding loops.  From a non-redundant library of 49 high-

resolution X-ray crystal structures, we constructed a test set of 14 Fv models with 5-8 

residue H3 loops, by grafting canonical CDR loop-templates from chains with <60% 

sequence identity from the target onto the native protein framework.  By using the native 
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crystal structure for the conserved Fv framework, effects of heavy and light domain 

orientation are ignored in this study.   The H3 loop was then placed in a non-optimized 

starting conformation as typical of homology modeling.  Variation in the backbone atoms 

outside the H3 loop are solely due to modeling errors in the nearby CDR loops. 

 

In crystal structures, results show we predict H3 loops to an average backbone RMSD of 

1.3 Å when crystal packing and antigens are removed (0.5 Å with these elements are 

included.)  However, failure to refine the surroundings of the loop in comparative models 

of the same antibodies decreases accuracy to 3.2 Å.  Using our previously published 

protocol that refines rotamers in surrounding residues, accuracy improves to 1.8Å.  

Finally, we have developed a new method that additionally optimizes backbone atoms of 

residues outside H3, iteratively.  Average accuracy improves to 1.4 Å which is very close 

to the accuracy achieved in crystal structures without crystal packing or antigens.  These 

results suggest that our hierarchical protocol of iteratively refining surrounding backbone 

and side-chain atoms around loops in conjunction with a Physics-based force field can 

often correctly identify native-like states and offers another step toward accurate 

refinement of loops in error-prone comparative models. 

 

Introduction 

Reliably accurate models of proteins would be useful to biological and therapeutic studies 

that investigate protein function at the atomic level.  Though tens of thousands of 

experimental protein structures exist13, millions of protein sequences, many with 

unknown function, have been generated14.  As recognized by the field of Structural 
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Genomics15, demand for accurate computational models of proteins will be high for the 

foreseeable future.   

 

To address this broad gap between the numbers of sequences and structures, comparative 

(or homology) models have been utilized as surrogates for moderate-resolution (≤2.5Å) 

experimental structures in a variety of successful biological studies. Examples include 

inhibitor discovery16-19, enzymatic function prediction20, and protein-protein docking21.  

While anecdotal successes exist, in general, comparative models are not as useful as 

crystal structures, particularly in applications requiring atomic-level accuracy.  For 

example, McGovern and Shoichet7 compared docking results (as measured by database 

enrichment factor) with crystal structures and homology models and found in general, 

homology modeled receptors produced worse results (less enrichment.)  A general 

method for producing high-accuracy comparative models would extend the usefulness of 

such models.  In our view, a general method has yet to be developed. 

 

The most recent Critical Assessment of Techniques for Protein Structure Prediction 

(CASP7)9 shows little progress in the development of high-accuracy modeling methods.  

For the template-based (comparative-modeling) category, an important metric for success 

is whether predicted protein structures are more accurate than the starting homolog 

template protein, that is, whether the model can be refined closer to the native structure.  

In the most recent CASP, though some submitted models were closer to the native 

structure than the best template, no single method improved upon the optimal template on 

average10.  
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There are a number of reasons why a comparative model will deviate from the X-ray 

crystal structure of the same protein.  Between the target and template sequences, the 

modeler may choose a non-optimal sequence alignment or there may be gaps and/or 

insertions.  With a perfect sequence alignment, parts of the target structure may simply be 

different from the template or the protein may be flexible.  Crystal packing and the pH of 

the template crystal environment can create artifacts in the experimental structure, which 

can either be functionally relevant or not, depending on whether the crystal symmetry 

represents a biological symmetry or the pH is close to physiological pH.  Finally, even an 

ideal template structure can produce an inaccurate comparative model if the modeling 

tools do not provide adequate sampling or an accurate energy function.  

 

Refining protein models is in part limited by the accuracy of methods which refine loops 

regions within these models. Since protein fold is generally conserved between proteins 

>30% sequence identity22, most residues requiring refinement reside in loop regions.  But 

predicting loops in models (as opposed to within crystal structures) is difficult.  Loops are 

also inherently flexible and can be found in various conformations in different crystal 

environments or with different binding partners23.  For example, crystal packing in X-Ray 

structures has been shown to affect loop conformations24,25.   

 

Refining loops in comparative models is more difficult that predicting loops within 

crystal structures because of inherent modeling errors in residues surrounding the loop.  

We showed previously that a loop refinement method that does not optimize the 
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surrounding residues often fails26.   It fails because residues outside the loop may be 

modeled incorrectly, preventing algorithms from sampling and accurately scoring a near 

native loop conformation.  Our approach is to first define three types of errors that can 

surround loops: 1. the side chains of surrounding residues may be incorrect 2.  the 

backbone atoms of surrounding residues may be incorrect or 3. the loop stems, residues 

adjacent to the loop, may be incorrect. 

 

In previous work26, we addressed item (1) above by developing a new method that refines 

rotamers of surrounding residues while simultaneously predicting the loop.  The method 

holds the backbone of surrounding residues fixed.  On average, in perturbed crystal 

structures, in which the side chains in the entire protein had been scrambled, we obtained 

similar accuracies as when predicting the same loops in unperturbed crystal structures.  

We also demonstrated that the method could improve accuracies in full comparative 

models but the problem was not generally solved.   Errors in the backbone of surrounding 

and adjacent residues were preventing our method from accurately predicting near native 

loops. 

 

In this work, we aimed to augment our loop refinement method to account for errors in 

the backbone in residues around loops.  We first sought a test set that would exhibit 

relatively small (~<2Å) errors in the backbone of residues surrounding the loop to be 

predicted.  We chose to predict the H3 loop in comparative models of antibody variable 

fragments (Fv).  We chose this protein family as our test system for several reasons: 1. 

antibodies are biological and therapeutic important 2. there are large numbers of antibody 
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structures for testing 3. five of the six CDR loop structures can often be predicted with 

the well known sequence-structure statistical rules27-30, leaving the sixth H3 CDR to be 

predicted ab initio by our method and 4. the sequence variability of H3 loops and the 

surrounding residues is high providing a diverse test set.  One downside of using 

antibodies is that the H3 loop is routinely directly involved in antigen binding.  We 

therefore discuss the effects of antigens (i.e. induced fit) on H3 loop prediction accuracy.   

 

Methods 

 

Non-redundant library of antibodies 

Our first goal was to create a non-redundant set of all possible, high-resolution antibody 

crystal structures in the PDB.  We searched the Protein Databank13 for antibody Fv and 

Fab structures.  Single chain (scFv), homo-dimer and single-domain (e.g. camelid) 

antibodies were removed leaving an initial set of 459 structures.   

 

In narrowing the test set further, we had competing requirements.  We aimed to have a 

high-resolution test set that 1. maximizes the test set size in order to calculate meaningful 

statistics and 2. minimizes sequence redundancy.   The Protein Databank contains many 

structures of closely related proteins. In particular the contained antibody sequences are 

highly redundant, due to the vast number of mutational studies, bound-unbound antigen 

studies and due to the genetics of antibodies.  Several attempts at clustering antibody Fv 

sequences produced very small test sets (data not shown).  Eventually, we clustered the 
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antibodies using Pisces31,32 with a cutoff of 80% sequence identity, 2.2Å resolution, and 

0.3 R-value.  The method clusters each chain sequence separately with at most one chain 

from each PDB selected.  The result was a non-redundant list containing both heavy and 

light chains, each from a separate PDB.  Since we wanted complete antibody variable 

fragments, for a given light chain in the non-redundant list, the associated heavy chain 

was included and vice versa.  Since many of these bound chains were first excluded 

during clustering, this step introduces some redundancy but enabled us to have a larger 

library of 49 PDB structures.   

 

We constructed multiple alignments of the heavy and light chain sequences from this test 

set using CLUSTAL33.  The sequences were then cut to Fv length that we define as eight 

residues after the C-terminal end of CDR3, which corresponds roughly to the end of the 

final beta strand in the Fv.   

 

Force-field parameterization of antigens 

To assess the effects of antigens on our loop prediction ability, we included antigens that 

are present in the crystal structure in control calculations (see Results).  Small-molecule 

antigens were parameterized for the 2005 Optimized Potential for Liquid Simulations 

(OPLS) force-field34-36 using the hetgrp_ffgen program (Schrödinger, Inc.). 
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Antibody Fv loop prediction test set 

The 14 antibodies in our non-redundant antibody library that have H3 loops of length 5 to 

8 residues were used as the tests cases in this study.   

 

Construction of antibody Fv models 

Antibody Fv models were constructed as follows (see Figure 1):   

 

1. individual models were created for each target chain sequence, one for the heavy chain 

and one for the light chain, using the target (i.e. native) crystal structure as the template 

for the non-CDR residues (here referred to as the scaffold) and using multiple loop-

templates for the non-H3 CDR loops as described below.  The H3 loop is left truncated 

initially.  The multiple-template homology modeling feature in PLOP is then used to 

create heavy and light chain models.   

 

2. The heavy and light chain models are then combined into a single model.  Since the 

models are constructed using the native chains as the scaffolds, the domains are in the 

native orientation.    

 

3. All residue side chains with steric clashes are optimized using the side chain 

optimization function in PLOP24,36.  Steric clashes are defined as any residue containing 

atoms with overlap factor <0.7 with any other atom and were calculated using the 

“evaluate steric” command in PLOP.  Overlap factor is defined as the distance between 

two atom centers divided by the sum of the two atomic radii.  The side-chain prediction is 
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executed with a minimum overlap factor of 0.3 and with 4 iterations to enhance sampling.  

The result is a complete Fv model, with native-like scaffold residues, template-modeled 

canonical loops for the non-H3 loops and an initial, non-optimized H3 loop.  Further 

details of the canonical loop modeling follow. 

 

4. The missing H3 loop is constructed ab initio and placed in a non-optimized starting 

conformation using PLOP’s loop prediction function24.  Minimal sampling was used to 

mimic the gap-closure method used in the homology modeling function in PLOP as 

previously described37.   

 

Library of canonical CDR loops 

We constructed a library of canonical loops from which templates are chosen for the non-

H3 CDR’s as follows.  Each CDR loop, excluding H3, in the non-redundant antibody 

library was classified by canonical class as defined in Martin et al30.  If a loop did not 

match at least 75% of the residues in any sequence rule, the loop was labeled “non-

canonical.”  By being lenient on matching, we were able to assign most of the CDR loops 

to canonical classes, though this introduces more backbone error in the CDR loops.  

 

Though previous studies have identified H3 structural classes38-42, we ignore them in this 

study to test our ab initio loop prediction method.  A physics-based loop prediction 

method that does not rely on knowledge-based methods would be a more general solution 

for H3 loops and applicable to other protein families. 
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Modeling of canonical CDR loops 

When possible, the H1, H2, L1, L2, L3 loops in our models were constructed using the 

well-known canonical loop rules, a set of mappings between key positions in the Fv chain 

sequence and a set of loop backbone coordinates.  The CDR loops were first identified in 

the target sequence and assigned to a canonical class.  We then chose the best loop-

template from the library given the following criteria: the sequence-identity between the 

template chain and the target chain has the highest sequence identity of all possible class 

templates while <60% sequence-identity.  The 60% cutoff was used to reduce bias 

towards the native CDR conformation.   

 

Each CDR in the target structure is removed and replaced using the loop-template as 

follows.  The loop-template structure is first structurally aligned to the scaffold-template 

by aligning the Cα coordinates from:  A. the three residues preceding the N-terminus and 

and following the C-terminus of the H3 loop and B. the three residues centered on each 

Cysteines involved in the conserved disulfide bridge.  Initial results (data not shown) 

showed that aligning to either all the residues in the conserved framework or just the stem 

residues produced poor structural alignment of the loop end-points.   

 

Modeling of non-canonical CDR loops 

If a non-H3 CDR of length N is not assigned to a canonical class, then it is modeled from 

a loop template with the same length N with the highest chain sequence identity <60%.  

If no loop template exists in the non-redundant library that meet these criteria, then loops 

with N-1 residues are checked.  If no loop templates are found, then loops of length N+1 
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are searched. This is repeated until a template is found.  If a loop of different size is used, 

then the loop is modeled with an appropriate number of gaps or insertions in the sequence 

using the homology modeling command in PLOP37.  For example, if a target L1 loop of 

length 10 cannot be modeled by a canonical loop-template and no other 10-residue loops 

exist with chains <60% sequence identity, then it may be modeled by a 9 residue L1 loop 

and the extra residue will be modeled as part of the homology modeling process in PLOP. 

 

Prediction of H3 loop 

Initial models with non-optimized H3 loops were used to test various loop prediction 

methods. 

 

Hierarchical Loop Prediction – HLP 

The HLP protocol (as named here and previously26) was first described in Jacobson et 

al24. 

   

HLP with Surrounding Side-chain optimization - HLP-SS 

The HLP-SS protocol was described previously26 as a new method for predicting loops 

when the surrounding side chains are incorrect.  In summary, the method is an 

augmentation of the HLP method in that 1. backbone sampling is increased through an 

additional “initial” stage in which surrounding side chains are excluded from the 

backbone screening process and 2. in all stages, the surrounding side chain rotamers are 

optimized simultaneously with the loop side chain rotamers.   
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HLP with Surrounding Side-chain and Backbone optimization - HLP-SSB 

The new method described here augments HLP-SS by further increasing the sampling in 

the intial stages and by optimizing the backbone atoms of the non-H3 CDR loop residues 

before each refinement stage (see Figure 2).  Three more initial stages were added with 

reduced overlap factors.  The overlap factor is defined as the ratio of the distance between 

two atom centers to the sum of the atomic radii.  Overlap factors <1.0 indicate some 

overlap between atoms.  As described previously in detail24, to remove samples with 

large steric clashes, we use a minimum-allowed overlap factor in deciding which loop 

backbones in the backbone buildup stage and side chains in the side-chain optimization 

stage are to be screened out.  In this work, the overlap factor of the first refinement stage 

is reduced as well.  The five lowest energy loops in each initial stage are used as starting 

points in the refinement stages, so the three, additional initial stages lead to 15 additional 

round-one refinement stages.  As in HLP-SS, the third and sixth initial stages in HLP-

SSB do not screen out loop backbone samples that clash with the surrounding side-chains 

in order to allow for native-like samples that may be initially occluded by incorrectly 

modeled side chains (using the “sidefrz=no” option in PLOP.)   

 

In addition to increased sampling, a novel addition to this method is the minimization of 

all CDR (except H3) backbone and side-chain atoms using the Protein Local 

Optimization Program43.   This is performed before each refinement stage to enable 

producing an iterative protocol: minimize around loop, then predict loop, then minimize 

surroundings, then predict loop. 
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Results 
 

Assessment of test set 

Attributes of our test set are shown in Table 1.  Eight of the fourteen Fv test cases contain 

antigens, five with small molecules and three with protein antigens.  Loops range from 

five to eight residues in length.  The average sequence identity of the Fv’s (i.e. combined 

across heavy and light chains) between all test cases is 54% with minimum and 

maximum identities of 40% and 78% (see supplemental Table S1).   

 

Predicting H3 in crystal structures 

We first set out to establish baseline results by predicting H3 loops in crystal structures.  

Past experience suggests these results should be much more accurate than in comparative 

models of the same antibodies.  Using our previously published method24, HLP (see 

Methods), which does not optimize the surroundings of the loop, we predict an average 

and median backbone RMSD of 0.5 Å and 0.4 Å respectively.  We included crystal 

packing from adjacent chains in the crystal and included any antigen that may be present 

(see Table 1).  The accuracy of these results are in agreement with previous results 

generated across a much larger loop prediction test set24.   

 

To assess the effects of crystal packing, we predicted H3 loops using HLP without 

including crystal symmetry molecules while including antigens.  Results do not change, 

with average and median backbone RMSD of 0.5 Å and 0.4 Å respectively, suggesting 

that crystal packing is not playing a role in determining H3 structure in this test set.  This 
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however, may be more indicative of the large number of antibodies in complex with 

antigens within our test set.  Antigens that interact with H3 may prevent H3 from making 

crystal contacts. 

 

To assess the effects of antigens on H3 loop conformation, we reran our calculations 

using HLP on the apo form of all antibodies.  Average and median backbone RMSD’s 

increase to 0.9 Å and 0.6 Å, respectively, indicating that antigens are playing a role in H3 

loop conformation.  We have shown previously that crystal packing and antigen effects 

may be less extreme if all atoms outside the H3 loop are held fixed.  By extending the 

degrees of freedom to the residues surrounding H3, these atoms may relax when other 

molecules from the unit cell are removed, resulting in different predictions.  To quantify 

this, we ran further predictions on the apo antibody structures using HLP-SS which 

additionally samples side-chain rotamers outside the H3 loop (see Methods).  Accuracy 

further decreased to an average and median backbone RMSD of 1.3 Å and 0.8 Å, 

respectively. 

 

Predicting H3 in homology models of antibody Fv’s 

We first predicted H3 loops using our previous method, HLP, in homology models of 

antibody variable fragments to assess the accuracy of a method that does not refine the 

residues outside of the loop.  In Table 1, the average and median RMSD’s are 3.2 Å and 

3.9 Å respectively (see Figures 3 and 4.)  The median RMSD is much worse than the 3.2 

Å median RMSD of the starting loops.  Thus, failing to incorporate the surroundings of 

the loop in an error-prone environment such as a comparative model, leads to erroneous 
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results.  In one case, PDB 1UB6, HLP failed to generate any loops because all loops were 

screened out.  This can occur when the residues around the loop create a tight 

conformational space and particularly with HLP which screens more loops than the other 

methods with its large minimum overlap factors (see Methods.) 

 

We then predicted H3 loops using our previous method, HLP-SS, in homology models of 

Fv’s to assess the accuracy of a method that refines the side-chains, but not the backbone, 

of residues outside of the loop.  Since the backbone of the surrounding residues contains 

only small structural errors, we were interested if simply including surrounding side 

chains would be enough to predict native-like H3 loops.  The results show that accuracy 

using HLP-SS increases compared to results with HLP.  Average and median backbone 

RMSD’s are 1.8 Å and 1.2 Å, respectively (see Figures 3 and 4.)  Six of the fourteen 

cases show significant improvement.  All five and six-residue loops are predicted < 1.5 Å 

RMSD.  We can hypothesize that shorter loops are less affected by errors in the 

environment because 1. fewer energetic contacts are required and/or 2. a reduced number 

of possible backbone conformations leads to fewer chances of the native being blocked 

by surrounding residues. 

 

Results using our new method show an increase in accuracy to 1.4 Å and 1.1 Å average 

and median RMSD, respectively (see Figures 3 and 4.)  .  Through increased sampling 

and iteratively refining all the non-H3 CDR’s before each refinement stage, more native-

like loops are sampled and refined gradually throughout the hierarchical protocol.  The 

energy landscapes change dramatically (Figure 3) using this new protocol.  More low-
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energy minima are explored and the method is able to iteratively refine into these lower 

energy basins.  Figure 5 shows much of the surrounding residue rotamer states are 

predicted to near-native states.  Examples of rotamers that fail to pack correctly around 

H3 are large, non-specific residues Phe and Trp. 

 

Discussion 

In summary, our results in crystal structures are in agreement with previous published 

experimental studies that suggest H3 loops are flexible depending on the chemical 

environment of H3.  This is particularly important in comparative models, where crystal 

packing and antigens are not present.  Moreover, predicting H3 loops in crystal structures 

without any molecules found in the crystal establishes a new baseline to compare to when 

we analyze results from H3 prediction in comparative models. 

 

By design, the test set of comparative models we present here are not optimal starting 

models.  For example, some of the starting loop conformations are far from the native 

which in turn causes the surrounding residues to “collapse” around the incorrect starting 

loop.  This may create a more difficult refinement problem than we would want if our 

goal were to simply predict antibody structures to the highest accuracy.  In this work, our 

aim was not to develop an antibody modeling tool.  Rather, we aimed to develop methods 

that can generally recover from a variety of modeling errors in the surroundings H3. 

 

In preliminary results for this work, we found that the orientations of the variable heavy 

(VH) and light (VL) chains can affect our H3 predictions (data not shown.)  Because of 
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this, choosing an appropriate scaffold template that has a similar VL-VH orientation as 

the target’s domain orientation will be imperative when modeling antibodies that are truly 

novel.  We are currently analyzing the determinants of VL-VH domain orientations (not 

published.) 

 

The remaining type of modeling error than can affect loop predictions is structural 

variation found in the stem residues, those just before and following the termini of the 

predicted loop (error type #3 mentioned in the Introduction.)  In the present study, we 

used the native crystal structure for the conserved scaffold in order focus on the 

surrounding residues alone.  In the future, sampling multiple stem conformations may 

benefit H3 loop prediction as it has been shown in other proteins in a previous study44. 

 

Extending predictions to longer H3 loops will be required for many antibody 

applications.  As there have been advances in predicting longer loop lengths within 

crystal structures using the Protein Local Optimization Program25, we believe predicting 

long loops in comparative models is possible.  In the future, we aim to combine lessons in 

long loop prediction with lessons from the present work.  However, the additional 

sampling of the surroundings will increase computational requirements sharply in long 

loops and therefore, keeping such a protocol efficient will be challenging. 

 

We believe our method will be beneficial to modeling complete antibody structures, 

particularly in scenarios where a similar template antibody exists such as in antibody 

humanization efforts.  Our Physics-based method does not use any previously 
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published38-42,45,46 statistics-based information for H3 conformations, making our method 

more valuable to synthetic antibody engineering efforts that may utilize H3 sequences 

that are not found in natural antibodies.   
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Figure 1 
 

 

 

Chapter 2: Figure 1 

Flow chart depicting process of creating the initial antibody Fv homology model. 

 



 
 

Figure 2 

HLP-SSB 

HLP-SS 
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Differences between the previously published HLP-SS (top) and the new method HLP-

SSB (bottom).  Each oval depicts a single execution of the loop prediction command in 

the Protein Local Optimization Program.  The numbers in each oval are the overlap factor 

(see Methods).  Three more initial stages with reduced overlap factors were added in 

addition to two non-H3 CDR-minimization stages before each refinement stage.  Items in 

white are new or changed elements of the new protocol. 
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Figure 3 
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Chapter 2: Figure 3 
 

Energy versus RMSD for all samples < 35 kcal/mol from the lowest predicted energy 

using three protocols for 8 residue loop PDB 1A7Q.  Top: HLP, Middle: HLP-SS, 

Bottom: HLP-SSB. 



 
 

 

Figure 4 

 
Chapter 2: Figure 4 
 

 

Closeup of final H3 loop predictions in the same comparative model of antibody PDB 

1A7Q.  Gray: Crystal structure, Purple: starting H3 loop with 7.0 Å RMSD, Orange: HLP 

predicts to 4.7 Å RMSD, Red: HLP-SS predicts to 4.3 Å, Blue: our new protocol HLP-

SSB predicts to 0.5 Å RMSD. 
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Figure 5 
 
 

 
 
Chapter 2: Figure 5 
 
 
Global view of HLPSS-B prediction (blue) in 1A7Q with crystal structure (gray and  
yellow H3 loop.)  
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Table S1.  Combined fraction sequence identity for antibody Fv domains in test set.  The 

fraction sequence identity is across all residues in both the heavy and light chain.  

Sequence identities ≥ 70% are shown in gray. 
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Abstract 
Diversity in antibody structure is crucial to the ability of adaptive immune system to 

recognize the tremendously diverse set of potential antigens.  The diversity in structure is 

most apparent in the six hyper-variable loops of the complentarity-determining regions 

(CDRs).  However, given that these CDR loops occur at the interface of the heavy and 

light chain variable domains and form the paratope for antigen binding, we examined the 

possibility that the relative orientation of the heavy and light chain variable domains is 

another source of structural diversity that could lead to changes in antigen binding. Here, 

we show that there is a large variation in the VL:VH orientation in existing crystal 

structures. We find the extent of variation is much greater than that expected from effects 

of crystal packing, antigen binding, or the presence of antibody constant regions, and that 

this variation is consequently encoded by sequence.  Through calculations of the 

energetics of different orientations, we show that side-chain mediated contacts of 

interface residues play a major role in defining the energy landscape with respect to 

VL:VH orientation.  The backbone structures of the individual domains are also shown to 

play a role in defining the orientation.  Together, this work establishes that the relative 

orientation of the heavy and light chain variable domains in antibodies is an important 

source of structural diversity, which may be important in the ability of the antibody 

molecule to serve as a scaffold for the recognition of a diverse set of antigens. 

 98



 
 

Introduction 
The sequence diversity in antibodies generated by the immune system is crucial to the 

recognition of the almost infinite set of potential antigens.  How this sequence diversity 

manifests itself in structural diversity and, consequently, in functional diversity, is an area 

of active research.  Structurally, the overall fold of each antibody variable domains is 

extremely well conserved, and the differences in sequence and structure within the 

variable domains are largely localized to the complimentarity-determining regions (CDRs 

), the six variable loops that are important for antigen binding.  However, we show here 

that structural diversity is also generated via the relative orientation between the variable 

domains of the heavy and light chains. Since the paratope used for antigen binding is 

most often formed at the interface of the light and heavy chain variable domains, the 

relative orientation of these domains could have significant impacts on the antigen-

binding properties of antibodies.   

 

Some evidence for the idea that the VL:VH orientation affects antigen-binding properties  

comes from antibody humanization efforts in which CDR loops from a high-affinity 

murine antibody are grafted onto a human framework. In particular, Banfield et al.1 

reported a humanized antibody with a 2-fold change in affinity. Though the 

conformations of the CDR loops were minimal, a significant difference in the VL:VH 

orientation resulted in large changes in the relative positions of the CDR loops, and 

consequently the affinity for antigen.  Additionally, biochemical experiments in which 

individual residues at the inter-domain interface were mutated to alanine showed that the 

dissociation rate of antigen binding increased significantly, affecting both affinity and 
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specificity2.  Since mutations at the VL:VH interface could have significant effects on the 

VL:VH orientation, these studies may suggest changes in domain orientation can alter 

antigen binding. 

 

The ability to predict domain orientations would benefit homology modeling refinement 

not only for antibodies but in general.  For example. another family of proteins, kinases,  

have been observed with different domain orientation dependent on the state of the 

protein as well as between family members.  Several studies have shown that differences 

in kinase domain orientations are functional3-7.  Furthermore, anecdotal successes exist in 

computationally predicting domain orientations with various proteins targets and 

methods8 9,10. 

 

If the VL:VH orientation is indeed a functionally important manifestation of antibody 

sequence diversity, then one would expect to see a large variation in the orientation in 

existing antibody crystal structures.  However, to our knowledge, no such large-scale 

analysis of the orientation has been performed. Here, we characterize the diversity of 

VL:VH orientations in 142 existing antibody crystal structures and find that the orientation 

can vary widely, confirming that the relative orientation of the heavy and light chains are 

a source of structural, and potentially functional, diversity in the set of possible 

antibodies. We show that this variation in the VL:VH orientation is sequence-dependent, 

and not purely an artifact of crystal packing or antigen-binding.  We then used a physics-

based scoring method coupled with a sampling scheme based on existing antibody crystal 

structures to begin understanding how the domain orientation is encoded in sequence.  
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We find that side-chain mediated contacts in the interface and the conformation of the 

backbone of the antibody framework are important determinants of the VL:VH 

orientation.   
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Methods 

Production of Datasets: 

We first obtained all experimentally-determined structures of antibodies by searching the 

Protein Databank11 for entries with titles containing “antibody”, “Fv”, or “Fab”.  Single-

domain (ex. camelid),  single-chain (scFv) and homo-dimers were removed resulting in a 

list of 459 antibody structures.  These structures were further reduced in number due to 

technical difficulties that were discovered in identification and sequence processing of 

CDR loops and framework residues, generally involving missing residues.  This reduced 

the number of structures in our dataset to 301.  As this was deemed a sufficient sized 

dataset, calculations were performed neglecting these other antibodies.  Each structure in 

this dataset was cut to an Fv fragment by removing all residues more than 8 residues after 

the end of the third CDR on each chain.  

 

From this original dataset, a non-redundant dataset was produced.  First, 9 antibodies 

with less than 90% sequence identity to each other and which were crystallized as Fv 

fragments in the absence of antigen were chosen for physics-based analyses to avoid any 

questions of whether the presence of constant domains or ligand were affecting our 

prediction accuracy.  These 9 antibodies were used as a seed to generate a set of 142 

antibodies that had less than 90% sequence identity between any pair.   

 

Generation of Multiple Sequence Alignments for the Heavy and Light Chains: 

The heavy and light chain multiple sequence alignments were modified to align CDRs 

L1, L3, H1, and H2 according to structure-based alignments12  Gaps in the CDR regions 
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for H3 were placed in the middle of the CDR region, and for L2, the alignment was 

preserved ( only 7FAB has a deletion in L2 ). 

 

Calculation of difference in domain orientation: 

In the case of comparing the domain orientation between two different antibodies, 

antibody A and antibody B, the following protocol was applied.  Structural alignments 

were performed using the non-CDR alpha carbons as the atoms to align unless otherwise 

noted.  First, the heavy chains of A and B were aligned.  The light chain of A was then 

aligned to the light chain of B to obtain A’, the light chain of A in the configuration it 

would adopt if it had the same domain orientation as B.  The root mean square deviation ( 

RMSD ) of the non-CDR alpha carbons was then calculated between the light chain of A’ 

and A to give the difference in domain orientation.  Using the same alignments, the 

difference in the fraction of native contacts was calculated, with a contact being defined 

as any residue pair for which heavy atoms were within 4Å of one another.  Using this 

method, RMSD and native contact calculations are unaffected by structural intra-chain 

differences between A and B, apart from the effect of these differences on the initial 

alignments themselves.   

 

Structural bioinformatics examination of variation in domain orientation: 

To examine the variation in the VL:VH orientation of antibodies, we calculated the 

difference in orientation between all pairs of our 142 antibody non-redundant dataset.   

 

Calculation of sequence identity and similarity: 
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Sequence identity and similarity of all pairs within our 142 antibody non-redundant 

dataset were calculated by combining the identity and similarity calculations for the 

heavy and light chains.  Both the identity and similarity were calculated using the same 

multiple sequence alignments used to perform the  structural alignments.  For each 

position in the alignment, the number of positions that were identical or similar (as 

defined by a positive score in the Blosum6213 matrix ) was kept and was divided by the 

total number of positions compared.  Any column in which either of the sequences being 

compared contained a gap was not used in the comparison.   

 

Decoy Sampling and Physics-based Scoring: 

We aimed to develop a method for sampling and scoring different orientations of the 

heavy and light chain variable domains in order to test hypotheses about the determinants 

of the orientation.  Due to the large number of antibody structures available, we decided 

to take the approach of using the VL:VH orientations in existing antibody crystal 

structures as states to sample from.  We refer to these orientations as “decoys”, as in the 

context of the current work, these are orientations that are designed to test the ability to 

predict the known native orientation for a given antibody.  The decoy orientations are 

taken from all 300 antibody structures found in our dataset before filtering for 

redundancy.  For each of the 9 free, non-redundant Fv structures that we found in our 

dataset ( above ), we separated the crystallographic heavy and light chains variable 

domains and aligned these individually to the corresponding domains in each structure of 

our dataset to generate the decoy orientations. 
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Clearly, simply reorienting the domains will lead to severe clashes of the side-chains and 

possibly the backbone in many cases.  We made the approximation of a fixed-backbone 

for simplicity, and while there are obvious problems with this14, we believed that it would 

still lead to a useful model in order to probe the interactions that are important for 

determining the orientation.  However, the side-chains at the interface required 

optimization. 

 

To define the interfacial side-chains, we determined the residues that had any side-chain 

heavy atom within 4 Å of any heavy atom of the opposing domain in any of the native or 

decoy structures sampled.  This set of side-chains, comprising the union of the side-

chains at the interface in any of the native or decoy structures, was optimized in all of the 

native or decoy structures, thus providing a fair comparison of each orientation.  The 

side-chain optimization was performed using the Protein Local Optimization Program ( 

PLOP )15 with the OPLS all-atom energy function16,17  and a Generalized Born solvent 

model with a surface-area correction18,19. 

 

Decoy Sampling and Physics-based Scoring Using Comparative Models: 

In order to test whether backbone perturbations affect VL:VH orientation, we built 

comparative models of the heavy and light chains of each of the 9 free, non-redundant Fv 

antibodies in our dataset.  We built 3 comparative models of each of the 9 antibodies, 

with different levels of template accuracy.  For each of our 9 target antibodies, possible 

templates in our non-redundant dataset of 142 antibodies were classified according to 

their difference in structure of the individual domains.  One group was formed by those 
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antibodies for which neither the heavy nor light chain variable domains had > 1.0 Å non-

CDR C-alpha RMSD with the corresponding domain in the target antibody.  Another 

group contained antibodies for which at least one of the variable domains had between 

1.0 and 1.5 Å non-CDR C-alpha RMSD with the corresponding domain in the target, and 

another group contained antibodies for which at least one of the variable domains had 

between 1.5 and 2.0 Å non-CDR C-alpha RMSD with the corresponding domain in the 

target.  In each group, the antibody with the largest orientation difference between itself 

and the target antibody was chosen as the template. 
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Results 
Extent of Variation of VL:VH Orientation in Experimentally-Observed Antibody 

Structures: 

We are interested in the hypothesis that VL:VH orientation in antibodies may play an 

important role in determining the structure of the antigen-combining site and thus the 

binding properties of the antibody.  This hypothesis suggests that we should find a 

significant amount of variation in the orientation of the variable domains in existing 

crystal structures.   

 

To examine the extent of variability in the VL:VH orientation present in existing crystal 

structures of antibodies, we created a dataset of 300 antibody structures of which a subset 

of 142 structures was used as a non-redundant set to be used in structural bioinformatics 

studies (see Methods).  The difference in domain orientation for each pair of structures 

was calculated by first aligning the heavy chains followed by optimal superposition of the 

light chains.  The difference in orientation was defined as the non-CDR alpha-carbon 

RMSD calculated between the light chain of one of the structures in its original and 

superimposed orientations. This ensures that contributions to the RMSD arising from 

different internal structures of the light chain are discounted, resulting in a more accurate 

measure of the difference in orientation. 

 

We found the differences in domain orientation to be moderate overall, with a mean of 

2.3 Å RMSD.  However, with a standard deviation of 1.1 Å, it appears that the 
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differences in orientation between antibodies can often be quite large, especially in 

comparison with the RMSDs between the non-CDR regions between different light or 

heavy chains, which is 0.9 and 1.1 Å, respectively.   This indicates that the VL:VH 

orientation may be an important source of structural diversity in antibodies.  The 

difference in domain orientation in 211 out of 10011  pairs were greater than 5.0 Å, with 

the largest deviation observed being 7.4 Å.  While these pairs obviously represent only 

2% of the data points, the fact that they exist reinforces the idea that the heavy and light 

chain variable domains can take on significantly different orientations between different 

antibodies. 

 

Crystal packing and antigen binding effects may give rise to some of the observed 

variation in orientation. Therefore, we calculated the differences in domain orientation 

between 24 pairs of antibody structures of identical sequences regardless of crystal form 

or antigen-binding state and filtered for redundancy at 90% sequence identity.  We found 

that the mean orientation difference was 0.7 Å with a standard deviation of 0.4 Å and a 

maximum orientation difference of 2.0 Å.  These smaller orientation differences in 

identical-sequence complexes indicate that the large differences observed in the non-

redundant dataset are mostly due to sequence difference and only a small amount of the 

variation is attributable to effects of crystal packing or antigen binding.   

  

Correlation of Differences in VL:VH Orientation with Differences in Sequence: 

We next investigated whether the variation between antibodies in our dataset was 

correlated with simple measures of the relatedness of their sequences.  First, we 
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calculated the sequence identity and similarity over the full length of both the light and 

heavy chain variable regions for all pairs of antibodies.  The difference in domain 

orientation for each pair was plotted against the sequence identity or similarity ( Figure 1, 

A and B, respectively ).  The mean difference in orientation was qualitatively correlated 

with both sequence identity and similarity.  However, the range of observed orientations 

seen at a given sequence identity or similarity was large.   

 

Since the residues at the interface of the two domains may play a larger role than non-

interface residues in determining the VL:VH orientation, we examined whether 

differences in domain orientation were correlated with sequence identity and similarity of 

the interface residues.. Once again, while the mean values of differences in orientation 

are correlated with the sequence identity or similarity of the pairs, there is large variation 

for pairs of antibodies with the same identity or similarity (Figure 1, C and D ) .  

Together, these data suggest that the domain orientation of an antibody is encoded by its 

sequence; however, the simple sequence identity or similarity metrics are not sufficient to 

determine the difference in orientation between two antibodies, even when comparing 

sequences with relatively high sequence conservation.   

 

Energy-Based Prediction of VL:VH Orientation – Case Study: 

To further support the idea that the VL:VH orientations is encoded by sequence, we 

developed a tool for sampling and scoring relative orientations of the heavy and light 

chain variable domains. The method samples from VL:VH orientations found in existing 

crystal structures and scores these orientations after side-chain optimization of the 

residues at the interface of the variable domains. We illustrate the various calculations we 
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performed and the results obtained using a case study of a humanized variant of anti-

p185HER2 antibody 4D5 ( PDB ID: 1fvc ).  
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Testing the impact of the loss of interface side-chain contacts on VL:VH orientation: 

In order to examine the consequences of the loss of interface side-chain contacts on 

VL:VH orientation, we predicted the orientation of nine antibodies using their native 

sequences or after having mutated all interface residues to alanine.  These calculations 

were done in the context of a perfect backbone structure of the individual domains, 

including all the CDR loops.. We sampled relative orientations of the heavy and light 

chain observed in 300 existing crystal structures of antibodies.  The full dataset of crystal 

structures ( and not the non-redundant dataset ) was used because it is possible that slight 

variations in orientation between very closely related sequences may have significantly 

different energies.  While there may be some bias in the fact that some areas of 

orientation space will be better sampled than others, this would be true with the smaller 

non-redundant data set as well, and the smaller sampling space could limit the prediction 

accuracy.  All residues found at the interface ( see Methods ) in any of the 300 decoy 

structures or native structure were selected to be treated flexibly in calculating the energy 

of each orientation. For each decoy structure and for the crystal structure, the interface 

side-chains were optimized and ranked by energy using the Protein Local Optimization 

Program (PLOP) with the OPLS all-atom energy function15-17 and a Generalized Born 

solvent model18,19 with a surface-area based nonpolar correction term.  The results show 

that we predict a near-native orientation as the lowest-energy, with a domain orientation 

RMSD of 0.5 Å ( Figure 3a ).  This provides further evidence that the orientations 

observed in antibody crystal structures are encoded in sequence, and are representative of 

the global minimum in the energy landscape.  
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In contrast, when the same protocol was applied after all of the interface residues were 

mutated to alanine, the lowest-energy orientation was far from the crystallographic 

orientation, with a domain orientation RMSD of 3.8 Å ( Figure 3a ).  Furthermore, 

whilethe energy landscape of the native sequenceshowed a distinct funnel-like shape, the 

energy landscape of the sequence with interface residues mutated to alanine resulted in a 

much flatter energy landscape with little preference for orientation ( Figure 3b ).  It is 

clear that side-chain mediated contacts involving the residues at the interface are defining 

factors of the energy landscape, resulting in the preference for a well-defined VL:VH 

orientation. 

 

We next tested to see whether the CDR H3 loop plays a significant role in determining 

domain orientation.  There is crystallographic evidence showing different domain 

orientations for antibodies with and without antigen and, though no causal effect has been 

established, conformational changes in the H3 loop have been linked to these domain 

orientation changes.  Additionally, in comparative modeling studies, we have seen that 

the orientation of the variable domains can affect predictions in the structure of the H3 

loop.  If the structure of the H3 loop was also required to accurately predict the 

orientation, a difficult optimization problem would result.   

 

To test the hypothesis that contacts made by the H3 loop are a significant determinant of 

the VL:VH orientation, we removed the H3 loop from the 1fvc heavy chain and again ran 

our decoy-sampling and interface side-chain optimization protocol.  The orientation 

RMSD increased from 0.5 Å in the calculations on the unmodified domains to 1.4 Å after 
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the H3 loop is removed ( Figure 3a and b ).  There appears to be some information 

contained in the H3 loop structure to specify the orientation, but overall, it is not a drastic 

effect, as there appears to be enough orientation-determining information contained in the 

rest of the interface.  This suggests that comparative modeling efforts can consider the 

orientation of the variable domains prior to structure prediction of the H3 loop and, in the 

absence of other errors, be able to expect a reasonably accurate prediction of the 

orientation. 

 

Effects of Deviations in the Backbones of the Individual Variable Domains on the VL:VH 

Orientation: 

All of the above calculations were performed using the crystallographic backbone 

structure of the individual variable domains of 1fvc. We wanted to examine how much 

altering the backbone structure would affect the orientation for two reasons.  First, 

alterations in backbone structural elements through affinity maturation may lead to 

changes in the backbone structure of the individual variable domains.  This consequently 

could have an effect on the orientation.  Secondly, backbone errors will be present in 

comparative models of the variable domains.  These errors may significantly affect the 

ability to accurately predict the VL:VH orientation.  In order to test the effects that 

deviations from the native backbone conformation have on the domain orientation, we 

introduced error in the backbone structures by building comparative models of the heavy 

and light chain variable domains with varying accuracy.   
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We picked three antibodies to be used as templates from which to model the variable 

domains of 1fvc ( see Methods ).  The accuracy of the resulting models  is shown in 

Figure 4.  The H3 loop was not built for these models, as we believe that modeling the 

conformation accurately may require an accurate domain orientation.  Given that the 

absence of the H3 loop did not result in large decreases in accuracy when the 

crystallographic backbone atoms were used, we do not think that the absence of the H3 

loop significantly affects our results.   

 

These models of the individual domain structures were then input into our decoy 

sampling and side-chain optimization protocol to see the impact that these backbone 

differences have on the VL:VH orientation.  Our results are shown in Figure 4.  Even 

fairly small deviations in the backbone structures of the individual domains can 

dramatically change the relative orientation of the heavy and light chain variable 

domains.  Conversely, this allows the possibility for small and seemingly local changes in 

structure to have long-range effects and alter the structure of the paratope by causing 

changes in the VL:VH orientation. 

 

Physics-Based Prediction of VL:VH Orientation – Overall Results: 

The overall results of testing our decoy sampling protocol on nine antibodies using the 

crystallographic domain structures are shown in Table I.  The nine antibodies were 

chosen as those which were a) crystallized as an Fv fragment in the absence of ligand and 

b) had < 90% pairwise sequence identity between them.  The fact they were crystallized 
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as Fv fragments discounts the possibility that the constant regions of the antibodies or the 

presence of ligand could affect the orientation. 

 

Overall, the results in nearly all of the cases show similar results to those presented for 

1fvc.  In the context of the unmodified crystallographic structures of the individual 

domains, our method predicts the native or near-native (< 1Å RMSD) orientation in all 

cases.  Again, this suggests that the observed crystallographic orientation in these cases is 

the global minimum in the energy landscape and determined by its sequence.  In all 

cases, we find that side-chain contacts made by residues at the interface are a key 

determinants of the VL:VH orientation, as mutation of the interface residues to alanine 

often results in prediction of a non-native orientation  ( Table I ) and a flattened energy 

landscape with respect to the relative orientation of the heavy and light chain variable 

domains. In addition, we see that in most cases, the removal of the H3 loop prior to 

prediction only has fairly small effects on the orientation suggesting that major 

determinants of the orientation reside outside the H3 loop.   

 

We also tested the dependence of the orientation on differences in backbone structure as 

we did above with 1fvc.  Again, the results show that deviations, even modest ones, of 

the backbone conformation from the native conformation results in altering the energy 

landscape such that non-native orientations are now the lowest-energy ( Table II ).   . 

Minimizations that allow the backbone to relax back towards their native conformation ( 

which is also determined by sequence ) allow the variable domains to return to more 

native-like orientations, although  the limited sampling afforded by minimization leads to 
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the recovery being incomplete. The fact that small deviations in the backbone 

conformation can significantly influence the energetics of different VL:VH orientations 

suggests an avenue by which mutations could affect the domain orientation and 

consequently the function in an action-at-a-distance effect. 
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Discussion 
We have shown that there is a large amount of structural diversity in the relative 

orientation of the heavy and light chain variable domains in antibodies, and we show that 

crystal packing, antigen binding, or constant region effects can account for only a small 

part of this variation.  We show this by comparing the differences in orientation we see in 

existing crystal structures to the differences we see between crystal structures of identical 

sequence, regardless of crystal packing environment, antigen-binding state, or presence 

or absence of Ig constant regions ( Figure 1 ).  We also find an inverse relationship 

between the mean orientation difference and the sequence identity or similarity over 

either the full or interface sequences.  We support this idea through calculations of the 

energy of different relative orientations of the heavy and light chain variable domains, 

and show that by neglecting any factors other than the sequence of the antibody and the 

structure of its individual domains, the native orientation is still predicted to be the global 

energy minimum ( Table I ).   

 

Because of the large amount of variation we observe in the VL:VH orientation, we 

propose that this may be an important part of the ability of the immune system to 

recognize a tremendously diverse set of antigens, together with other structural 

manifestations of sequence diversity as the amino-acid composition and structure of the 

CDR loops.  Indeed, the diversity in antibody orientation would allow loops of the same 

structure ( and possibly sequence ) to present a different combining site to the antigen, 

allowing for a greater diversity of recognition.  Coupled with the newly-emerging idea 

that the heavy chain constant region can also affect the affinity and specificity of antigen-
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binding20-23, the notion that there are multiple ways in addition to CDR diversity which 

the immune system uses in order to convert the sequence diversity generated through 

somatic recombination and affinity maturation into functional diversity is gaining 

credibility.   

  

We have shown that the domain orientation is sensitive to the amino-acid composition of 

the interface and that the orientation is sensitive to small backbone shifts in the individual 

domains. In our calculations we observe that mutation of the interface residues to 

alanines resulted in a flattening of the energy landscape governing VL:VH orientation, 

indicating that the side-chain mediated contacts of the interface residues are key factors 

in shaping the energy landscape.  Incorrect predictions were also observed when the 

correct sequences were given small backbone errors in the individual domains by 

building comparative models of the individual domains. 

 

Mutations in the framework have previously been observed to have an effect on the 

spatial positioning of the CDR loops24, and to have effects on antigen-binding properties 

through altering of the VL:VH affinity.  But our work suggests that additionally, mutations 

may change the orientation of the variable domains through a direct mechanism ( e.g. 

mutation at the interface ) or an indirect mechanism whereby influencing the backbone 

structures of the individual domains propagates to changes in the interface that must be 

accommodated by reorientation of the variable domains.   

 

 118



 
 

There is a possibility that some number of key contacts are essential in determining the 

domain orientation.  We cannot, at this time, rule out this possibility.  However, one 

would expect such a model to predict that there would be a limited number of discretized 

orientations based upon the combination of contacts that exist for each antibody.  

However, we failed in attempts at clustering the orientation by RMSD. Instead of 

observing discrete clusters, we observed a continuum of conformations ( data not shown 

).  Secondly, comparisons of antibodies with either very similar or very different 

orientations suggests that there are amino-acid differences that can compensate for each 

other to maintain the same orientation, and residues that can be used in different ways, 

adopting different conformations based on the residue context around them to result in 

very different orientations ( data not shown ). At the moment, the orientation seems to be 

dependent on the properties of the interface as a whole as defined by the exact sequence 

of the antibody.  

 

Finally, the fact that there is such a large diversity in the VL:VH orientation suggests that 

this is a degree of freedom that needs to be taken into account when building comparative 

models of antibodies.  Our work here has shown that prediction of the orientation cannot 

be achieved by simply repacking side-chains on a fixed backbone.  In general, in order to 

build quality comparative models of antibodies, backbone perturbations of the individual 

domains must be sampled ( either in advance in the production of an ensemble of 

backbones or simultaneously ) in addition to the domain orientations and side-chains at 

the interface.   
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Chapter 3: Table I 
  RMSD of Lowest Energy Conformation in Å 

PDB ID Reproduction Alanine Interface H3 Removal 

1a6u 0.8 1.5 1.6 

1a7n 0.2 0.8 0.2 

1bvl 1.0 2.1 1.2 

1dlf 0.4 0.4 0.4 

1dql 1.5 4.2 0.9 

1dsf 1.0 1.0 2.5 

1fvc 0.5 3.8 1.4 

1igm 0.6 3.6 1.6 

43c9 0.3 1.3 0.7 

 

Table I:  Results of decoy-sampling calculations using crystallographic backbones. 

The domain orientation RMSDs of the predicted lowest-energy orientations ( excluding 

the native orientation ) are shown.  Cases in which this number is in bold are cases for 

which the native orientation would score as the lowest-energy orientation.   
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Chapter 3: Table II  
  RMSD of Lowest Energy Conformation in Å 

PDB ID <1 Å 1-1.5 Å 1.5 - 2.0 Å 

1a6u 2.6 3.5 3.1 

1a7n 3.4 4.5 3.2 

1bvl 3.7 4.4 4.3 

1dlf 3.5 2.6 2.4 

1dql 1.3 2.3 4.2 

1dsf 1.5 2.9 4.7 

1fvc 2.4 1.4 2.8 

1igm 2.0 2.0 2.5 

43c9 2.0 3.4 3.4 

 

Table II:  Results of decoy-sampling calculations using modeled structures of the 

individual heavy and light chain domains.   

The domain orientation RMSDs of the predicted lowest-energy orientations are shown in 

cases in which templates of < 1Å non-CDR C-alpha backbone RMSD of the individual 

domains, 1-1.5 Å, or 1.5-2.0 Å were used to generate the individual domain structures.  

These individual domain structures were generated without an H3 loop, and the results 

are significantly worse than predictions made using the crystallographic backbone ( Table 

I, column “H3 Removal” ). 
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Chapter 3: Figure 1 

 

Figure 1:  Mean difference in domain orientation is correlated with simple measures of 

difference in sequence, but there is large variability.  The difference in the domain 

orientation ( as measured by non-CDR C-alpha RMSD, as calculated in methods ) for a 

non-redundant set of 142 antibodies is plotted against the a) combined sequence identity ( 

a ) or similarity ( b ) over the entirety of both the heavy and light chain sequence; or the 

sequence identity ( c ) or similarity ( d ) over all residues that make inter-chain contacts 

in any of the structures in the dataset.  Each data point was binned in 10% increments of 

sequence identity or similarity, and the mean was calculated, and a line was plotted for 

the means of all bins containing greater than 50 data points ( black line ).  Data points 

that were in the lowest  or highest 10% of domain orientation differences are plotted as 

points ( blue ).  The mean and standard deviations of comparisons involving identical 

antibodies from different crystal structures is shown in red at 100% identity or similarity. 
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Chapter 3: Figure 2 

Figure 2:  Schematic of different modifications of a decoy-sampling scheme for 

prediction of the VL:VH orientation. 

As input, the methodology takes the individual structures of each domain.  In the testing 

of the method done here, these individual structures come from the true crystallographic 

structure.  In the case of a true prediction and in our analysis of the tolerance of the 

method to backbone errors, these individual domain structures would come from 

comparative models.  The individual domain structures are then combined to take on the 

orientations observed in our dataset of 300 antibody structures as described in Methods.  

For each of these orientations, any side-chains that are involved in interchain contacts are 
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added to a list of residues for which side-chain sampling will be done in all orientations.  

In the Reproduction protocol, these orientations are passed directly to side-chain 

optimization and scoring with the OPLS all-atom energy function and Generalized Born 

solvation model.  This provides a test of whether this method works in the ideal case of a 

perfect environment for reconstruction of the crystallographic orientation.  In the 

Interface Side-Chain Removal protocol, the interface residues are all mutated to alanine 

and then passed to the side-chain optimization and scoring.  This test allows us to ensure 

that we are capturing the sequence-dependent nature of the orientation.  In the H3 

Removal protocol, the H3 loop is removed before the orientations are passed to the side-

chain optimization and scoring.  This provides a test of whether the H3 loop is required 

for determining the VL:VH orientation.   
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Chapter 3: Figure 3 

 

H3 RemovalInterface Side-Chain RemovalReproduction 

B 

A 

Figure 3:  Results of the decoy-sampling method for antibody 1fvc.   

a) The predicted orientation of the light chain ( red ) vs. the native orientation (blue) 

and the corresponding domain orientation RMSDs.  The crystallographic heavy chain is 

shown in gray in all cases.  b) Predicted energy vs. domain orientation RMSD plots of the 

decoy orientation sampled.  The native orientation is shown as a red square on the y-axis.  

The decoy sampling method correctly predicts the native orientation, captures the 

sequence dependence of the orientation, and shows that the H3 loop is not a major 

determinant of the VL:VH orientation in antibody 1fvc. 
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Chapter 3: Figure 4 

1dfb

 

Figure 4:  Small Differences in Backbone Conformation can lead to differences in 

orientation. 

Models of the individual light ( red )and heavy ( blue ) chain variable domains of 1fvc 

generated by templates 1dfb, 1kel, and 1bgx, and the associated predicted orientations ( 

green )and RMSDs using the decoy-sampling scheme.  Models built from 1dfb have a 

small amount of error in the backbone conformation of the individual domains, yet still 

result in an inaccurate prediction.  Models built from 1kel have a slightly larger amount 

of error in their light chain, but yield a prediction comparable in accuracy to the 

crystallographic domains without the H3 loop.  Models built from 1bgx have larger errors 

in the backbones of the individual domains and result in an inaccurate prediction. 

Modeled  
Light Chain 

Vs. Xtal 
w/ RMSD 

Modeled  
Heavy Chain 0.6 Å

1kel 1bgx 

Vs. Xtal 
w/ RMSD 

Predicted  
Vs Native 

Orientation 
w/ RMSD 
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Chapter 3: Figure 5 

Figure 5:  Overall structural and orientational differences observed in the comparative 

analysis of three sets of antibodies.  

1fvc vs. 
1dql 

Å

1fvc vs. 1a7n
2.4 Å 

1dlf vs. 1kel
7.4 Å 

 The antibodies being compared and the domain orientation RMSDs are indicated 

below each image.  The first of the antibodies is shown with the heavy chain in gray and 

the light chain in beige.  The second of the antibodies is shown with the heavy chain in 

cyan and the light chain in green. 
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Chapter 3: Figure 6 

A B C

 

Figure 6:  Differences in the H3 loop compensate for the L46K sequence difference 

between 1fvc and 1dql.   

1fvc is shown with its heavy chain in grey, its light chain in beige, and its H3 loop in 

yellow.  1dql is shown with its heavy chain in cyan, its light chain in dark green, and its 

H3 loop in purple.  a) The ribbon representation showing the conformation of the residue 

at position 46L and the differing conformations of the H3 loop.  B) The surface 

representation of 1fvc.  L46 is colored red, and is largely buried by the H3 loop.  C) The 

surface representation of 1dql.  K46 is colored red, and the differing H3 loop allows this 

residue to be solvent exposed.   

 

 131



 
 

Chapter 3: Figure 7 

 

Figure 7:  Compensatory mutations in the hydrophobic core of the VL:VH interaction. 

1fvc is shown with its heavy chain in grey and its light chain in beige.  1dql is shown 

with its heavy chain in cyan and its light chain in dark green.  M107H in 1fvc is replaced 

with a glycine at the corresponding position in 1dql.  To make up for the space created in 

this substitution, there is a corresponding difference at position 96L where there is a 

proline in 1fvc and a tryptophan in 1dql, along with a 1 residue deletion in L3.   
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Chapter 3: Figure 8 

A B C

Figure 8:  Differences around W47H would lead to clashes if 1fvc adopted the 1a7n 

orientation. 

Structural differences around W47H are shown for a) 1fvc ( heavy chain in grey, light 

chain in beige ) and for b) 1a7n ( heavy chain in cyan, light chain in dark green ).  

Corresponding residues in both structures are shown with R59H in 1fvc corresponding to 

a glutamate in 1a7n, P96L corresponding to an arginine, and F98H corresponding to 

glutamate.  C) If the 1fvc light chain were to adopt the orientation found in 1a7n, ( green 

), T94L would clash with R59H and P95L would clash with the highly conserved W47H.   
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Chapter 3: Figure 9 

iii iii 

iii i iiA 

B 

Figure 9:  Substitution of large aromatics leads to inability of 1dlf to adopt the 1kel 

orientation. 

Close-up structural examination of a) the region around W47H and b) the region around 

W101H ( both in 1dlf numbering ).  Panel I shows 1dlf, with its heavy chain in grey and 

its light chain in beige.  Panel ii shows 1kel, with its heavy chain in cyan and its light 

chain in dark green.  Panel iii shows 1dlf, with its light chain in its native orientation and 

moved into the orientation taken on by 1kel ( green ).  The large shift in orientation 

between these two structures would result in steric clashes between F98L and W47H ( a ), 

and between W101H and Y49L and L46L ( b ).  These clashes would likely require 

extensive side-chain and backbone conformational changes to be resolved.  
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Abstract  
 

Prior studies have suggested that antibody CDR flexibility is lost during affinity 

maturation, but the physical basis for the rigidification remains unclear.  Here, molecular 

dynamics simulations captured CDR flexibility differences between 4 mature antibodies 

(7G12, AZ28, 28B4, 48G7) and their germline predecessors.  Analysis of their 

trajectories: 1) rationalized how mutations during affinity maturation restrict CDR 

motility, 2) captured the equilibrium between bound and unbound conformations for the 

H3 loop of unliganded 7G12, and 3) predicted a set of new mutations that, according to 

our simulations, should diminish binding by increasing flexibility.  In addition, we 

enumerated energy minima for the H3 loop using our previously published loop sampling 

method.  Qualitatively, three of the four pairs show an increased number of low energy 

basins in the mature sequence. 
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Introduction 
The immune system is able to produce highly specific and potent antibodies for 

essentially any target molecule, or antigen.  The process starts with germline antibodies, 

the set originally available at birth, binding a target antigen.  These antibodies undergo 

cycles of somatic hypermutation and selection, for the strongest binders, to yield 

“affinity-mature” antibodies.  Six hypervariable loops or complementary determining 

regions (CDR) form the antibody binding site1.   

 

Because antibodies can bind essentially any antigen by changing the amino acid sequence 

of these hypervariable loops, they are an excellent model system to study molecular 

recognition and binding.  Understanding how and why somatic mutations modulate 

binding affinity may permit the design or disruption of protein-protein interactions, 

protein-ligand interactions and enable the rational engineering of antibodies for improved 

affinity.  These would be useful in developing new applications in biotechnology and as 

therapeutic agents2,3.  

 

One hypothesis suggests that germline antibodies are inherently flexible, easily 

rearranging to facilitate binding to multiple antigens and that mutations during maturation 

restrict CDR loops to prearrange them for binding4-7.  Binding site pre-organization 

eliminates the free energy cost of rearrangement upon binding and contributes to affinity 

maturation.  Experimental data that supports this position includes: 1) crystallographic 

and kinetic studies of mature immunoglobulins and their germline predecessors4,8,9,8; 2) 

the entropic lower cost of binding after maturation5,10; 3) the loss of polyreactivity6, the 



 
 

ability to bind distinctly different antigens, as antibodies mature.  If this hypothesis is 

correct, how do mutations modulate flexibility? 

 

Studying the factors that drive flexibility can be experimentally challenging.  B-factors 

from crystallographic studies and NMR relaxation data11,12 can provide indications of 

flexibility; however, deciphering the mechanism by which a given mutation modulates 

flexibility can be difficult.  This motivates a theoretical approach to examine these effects 

to identify atomic-resolution interactions that limit flexibility. 

 

A few previous studies have examined the dynamics of specific antibodies.  Zimmerman 

et al13 studied the antifluorescein antibody 4-4-20 using molecular dynamics to 

complement nonlinear laser spectroscopy and surface plasmon resonance measurements.  

Their simulation complement experimental data in showing that the mature antibody is 

more rigid than its germline counterpart.  Analysis of crystallographic coordinates 

suggest hydrogen bonding and packing help rigidify CDRs.  Thorpe and Brooks14 

performed molecular dynamics and binding free energy estimates to further study the 4-

4-20 antibody.  Their analysis shows a drop in the entropic cost of binding as the 

antibody matures.  Sinha et al15 performed simulations of the HyHEL63 antibody and its 

target.  Results of this analysis show that salt bridges, absent in crystal structures, formed 

during the molecular dynamics runs and play an important role in binding and specificity.  

 

We present here a broader survey that examines four mature/germline antibody pairs 

(7G12, AZ28, 28B4 and 48G7) using molecular dynamics and loop sampling.  We 
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explore how interactions introduced by somatic mutations lower CDR flexibility during 

antibody maturation and find common mechanisms for this process.  In all four cases, the 

calculations capture greater flexibility, assessed by calculated B-factors, in germline H3 

CDR loop than their mature counterparts.  Via analysis of the simulations it was possible 

to: 1) identify single mutations that, even far from the paratope, can significantly restrict 

CDR mobility, 2) identify putative new mutations that could affect binding, 3) observe 

7G12 visit its bound H3 conformation even in absence of antigen i.e. it binds through a 

conformational selection mechanism, and 4) observe that 48G7 CDR flexibility loss does 

not drive its affinity maturation.    These results support previous suggestions that 

hydrogen bond/salt bridges and tight sidechain packing play an important role in 

restraining CDRs during the maturation process.  In addition, they show evidence of a 

conformational selection binding mechanism for the 7G12 germline antibody, where 

somatic mutations change the population distribution towards a pre-arranged “bound” 

conformation.  While anecdotal, the finding that single mutations can independently 

modulate flexibility, and affect the binding affinity, could be particularly useful in the 

design and optimization of binding sites.   
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Methodology 
 

Molecular dynamics  

 

Molecular dynamics of 7G12, 28B4, AZ28 and 48G7 were performed using the Amber 8 

simulation package16.  Simulations were carried out at 300 and 400 K.  In order to avoid 

distortions at 400 K and make RMSD comparisons easier, Cα atoms not on CDR loops 

were restrained harmonically (force constant =0.3 kcal/mol/A2) to their crystallographic 

coordinates.  Solvent effects were incorporated by: 1) using Langevin dynamics17 and 2) 

a Generalized Born18 (igb=5) model with a surface area correction for non-polar effects.  

The collision frequency parameter was set equal to 2 to maximize barrier crossing19.  The 

parm99 force field with Simmerling’s backbone corrections20 were used.  For 

computational efficiency, long range forces were only updated every 4 time-steps 

(nrespa=4).  The inner timestep was 1 fs.  The production run spanned 15 ns of 

simulation time.   

 

The PDB structure files, specific chain segments used, and the residues not restrained 

during the simulations are listed in Table 1.  Note that no ligands were included in the 

simulations.  The starting structures underwent 2000 steps of steepest descent 

minimization; an equilibration run followed.  The temperature was gradually increased 

from 0 K to 300 K over 10,000 time-steps.  The temperature was kept at 300 K for the 

rest of the 100 ps equilibration run.  If the system target temperature was 400 K, it was 

heated from 300 to 400 K over the 10 ps period following the initial heating (over 



 
 

picoseconds 10-20 of the equilibration run).    During this time, the harmonic restraints 

mentioned above were enforced. 

 

The trajectories were subsequently visualized using VMD21.  The mutated residues were 

observed for differences in interactions between the germline and mature species. 

 

Generation of local minima using Protein Local Optimization Program 

In order to view differences in the energy landscape of possible H3 loop conformations in 

the four pairs of antibodies, sampled local minima were generated using the loop 

prediction algorithm in our Protein Local Optimization Program (PLOP).  To better 

represent the antibodies in solution, we first allowed the crystal structures to relax 

without other molecules from crystal symmetry with an all-atom minimization using 

PLOP22.  Titratable residues were placed in standard protonation states at pH 7.0 

(Histidine is neutral.) We used a hierarchical approach to iteratively optimize loop 

conformations as described previously23 but with increased sampling.  In order to avoid 

artifacts due to holding nearby residues fixed (ex. blocking alternative loop 

conformations), side chains with a heavy atom <7.5Å from the loop were removed during 

the backbone buildup stage of the loop prediction and later optimized simultaneously 

with the loop residues.  All samples generated during the hierarchical loop prediction run 

were collected and backbone (N-Cα-C-O) RMSD’s were calculated relative to the loop 

conformation with the lowest energy. 
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Hydrogen bonds analysis 

The ptraj module in Amber was used to hydrogen bond partner distances.  The distance 

cut-off heavy-atom to hydrogen distance cut-off was 2.5 Å.  In cases where equivalent 

atoms existed i.e., a carboxylic acid, the lowest distance to either atom was taken.   

 

Results and discussion 
Molecular dynamics 

Molecular dynamics simulations of AZ2824, 7G1225-27, 28B428,29 and 48G730-32 and their 

corresponding germline predecessors were performed to explore the role of flexibility in 

antibody maturation.  The H3 CDR was the focus of the investigation because it is the 

most diverse CDR loop in sequence and length33 and is believed to play a central role in 

specificity during maturation33-35.  Its conformation is far more variable than other 

CDRs36,37 (Figure 2).  So, as a first order measure of flexibility we focused on CDR Cα 

B-factors of H3 and found larger deviations for the germline H3 loop than its mature 

counterpart (Figure 1). Visualization of the trajectories made it possible to identify 

contacts formed only in the mature species and that appear to restrict CDR mobility.  The 

four examples discussed here illustrate mechanism by which somatic mutations rigidify 

CDR’s during maturations.  The two mechanisms that arise are: 1) the formation of 

hydrogen bonds or salt bridges and 2) restriction via pi-pi interactions (side-chain 

packing).  Zimmerman et al13 previously suggested these in their analysis of 

crystallographic structures.  Here we see these mechanisms surfacing during the 

simulations.   
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7G12 

 

MD simulations of the 7G12 antibody and its germline predecessor help explain how 

somatic mutations modulate flexibility.  Two examples are: 1) the Ser76HAsn mutation 

anchors the H1 loop via hydrogen bonds and 2) the Ser97HMet mutation seems to hinder 

H3 by restraining Met97H via sidechain packing interactions.  In addition, the simulations 

illustrate the advantage of a flexible germline antibody.  The H3 loop of the 7G12 

germline predecessor is in equilibrium between its apo and holo conformations.  The 

Ser97HMet mutation anchors the H3 loop into the holo conformation in the mature 

antibody.  

 

While Yin et al 26 ignore the Ser76HAsn mutation in their analysis, it substantially hinders 

the motion of the H1 loop in our calculations.  Asn76H in the mature species 

simultaneously hydrogen bonds with the alcohol group of Thr28H and the backbone 

carbonyl of Tyr27H (Figure 4).  This does not occur in the germline case where a serine 

occupies that position.  Germline H1 Cα B-factors (up to ~440) were roughly 3 times the 

magnitude of its mature counterpart (~130); Figure 4 shows snapshots of the H1 loop, 

which clearly show the level of restriction.  In addition, the probability density of the 

distance between the residue centroids at positions 76H and 28H clearly depicts a peak 

around 6.5 Å for the mature simulation which is absent in the germline result; the 

probability density in the 6–8 Å interval is roughly twice for the germline trajectory than 

the mature (Figure 3).  If this model is correct: 1) a significant difference in H1 flexibility 

should be observed between the 7G12 antibody and its germline predecessor and 2) a 
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Thr28HAla mutation would increase flexibility the mature species and make no difference 

in the germline antibody.     

 

While the effect of the Ser76HAsn mutation on binding is experimentally unknown, it 

may play a role since H1, in the germline simulation, swings to the binding pocket 

vicinity and interacts with nearby residues.  This will have to be experimentally verified.  

 

The simulations of the mature antibody are consistent with the interpretation of Yin et 

al26, that the Ser97HMet mutation anchors the H3 loop to its holo conformation, since the 

methionine contacts are firmly kept throughout the simulation.  It appears that this 

mutation in fact reduces the flexibility of H3, as predicted.  An unexpected observation 

was the transition from the apo to holo conformation of the H3 loop in the germline 

simulation, in the absence of ligand.  Figure 5 shows the Cα RMSD to the bound and 

unbound conformations.  The corresponding simulation of the mature species fails to 

display this behavior.  This observation is striking because it suggests 7G12 binds 

through a conformational selection mechanism and the Ser97HMet shifts the equilibrium 

towards the conformation most auspicious for binding.  Conformational selection in 

antibodies has been proposed5,8,9,38,39 and, in some cases, experimentally verified4,8, but, 

to our knowledge, it had not been observed in this type of simulation.  Simulating these 

changes would be useful in predicting putative induced fit effects in antibodies. 
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28B4 

The maturation of 28B4 involves the Asp95HTrp mutation which, when reversed, lowers 

binding affinity by 3.7 kcal/mol28 (more than half of the total binding free energy gained 

during maturation).  Trp95H is located at the base of the H3 loop and interacts with the 

bound ligand through pi-stacking interactions.  However, our simulations suggest it may 

also restrict H3.  H3, in the germline simulation, drifts into the space occupied the 

Trp95H side-chain in the mature structure and onto the binding pocket (Figure 6).  The 

corresponding simulation of the affinity-matured antibody does not display this behavior.  

So, here we again observe tight sidechain packing as a mechanism to anchor H3. 

 

A caveat of this observation is that perhaps, given enough simulation time, the mature H3 

loop would explore the same conformational space spanned in the germline trajectory. A 

loop prediction calculation, which is not subject to this type of kinetic trapping, helped 

eliminate this possibility.  The loop conformation from the germline simulation was 

grafted onto the mature antibody crystal structure, the residue at H95 mutated manually 

in the pdb file, and a loop prediction calculations, where loop Cα atoms were kept within 

2 Å of these coordinates was carried out.  This calculation failed to find a set of loop 

coordinates that satisfied these restraints because the Trp sidechain could not be 

accommodated (even if nearby side-chains were removed).  Therefore, it is unlikely the 

mature antibody H3 loop adopts this conformation or, at the very least, it clearly has 

fewer accessible states than its germline counterpart, which shifts the equilibrium toward 

the “bound” structure in the mature case.   
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The energy contribution to binding of this prearrangement effect versus the pi-pi stacking 

interaction of the Trp side-chain and ligand are difficult to deconvolute.  But it is clear 

that this bulky non-polar group is able to very specifically shift the conformational 

equilibrium of H3. 

 

AZ28 

During AZ28 maturation, only one mutation occurs at a binding site residue 

(Ser34LAsn)40, and no structural changes are apparent from the crystallographic 

structures. In both cases the residue at position 34L hydrogen bonds with the hydroxyl 

group of Tyr100Ha40, which sits at the base of the H3 loop.  Yet, it does cause a binding 

affinity difference of 0.9 kcal/mol40,41 and our calculations show a drop in flexibility of 

H3. One notable difference is that a crystallographic water molecule mediates this 

interaction in the germline antibody, which may indicate a weaker interaction in this case.  

 

The differences in dynamics are far more evident.  The hydrogen bond to Tyr100Ha is 

quickly lost in the germline trajectory (3% occupancy), while, in the mature case, Asn34L 

interacts with Asp101H (90% occupancy) and maintains its hydrogen bond with Tyr100H 

(74% occupancy) (Figure 7).  The hydrogen bond between Asp101H and Tyr100H is 

absent in the germline simulation (0.4% occupancy), while in the mature simulation, it 

creates an electrostatically auspicious environment for the tyrosine hydroxyl group where 

it can make two hydrogen bonds simultaneously.. 
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This interaction is important because Tyr100Ha sits at the base of the H3 loop and it is the 

mutation most likely to affect the H3 conformation41.  In the germline simulation, the H3 

loop folds over onto the space that would be occupied by the ligand upon binding as 

Tyr100Ha makes contacts with other residues which permits this shift (Figure 7).  Thus, 

this mutation likely contributes significantly to the flexibility differences in Figure 1.  It 

also suggests a mutation of Asp101H to alanine would have an effect on the binding 

affinity of the mature antibody and have no effect on binding for its germline 

predecessor.  

 

As in the 7G12 case, a hydrogen bond network appears responsible for anchoring H3.  

Sinha et al15 observed the formation of similar salt bridge networks during an MD 

simulation, which proved to play a role in binding and specificity.  So, the formation of 

these electrostatic contacts, even is absent in the crystallographic coordinates, is not 

necessarily an artifact. 

 

48G7 

48G7 is an outlier in this analysis.  It appears to mature differently than the other cases 

because: 1) it undergoes 9 mutations (Ser30LAsn, Ser34LGly, Asp55LHis, Glu42HLys, 

Gly55HVal, Asn56HAsp, Gly65Hasp, Asn76HLys and Ala78HThr)30 rather than 6 or less 

as in the other cases, 2) the ligand bound conformation differs between the mature and 

germline species, 3) none of the mutated residues directly interact with the ligand, and 

most of them only weakly affect the binding affinity32 and 4) there is cooperativity 

between pairs of mutations31, that is, combinations of mutations have a larger effect on 
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binding than the sum of their individual contributions. Priscilla et al31,32 suggest that 

initial mutations may change the ligand binding-pose and subsequently introduce new 

contacts.  Thus, mutations that optimize those new contacts are only relevant if the 

previous mutations are present.  Because of the latter observation, the analysis of the 

simulations performed here focused on those mutations that, alone, most affected the 

binding affinity. 

 

H3 Cα B-factors from the mature simulation are only slightly lower values than the 

corresponding germline data (Figure 1).  Most of the mutations induced no new contacts; 

many of their side-chains simply diffused through solvent during the simulation.  The 

higher rigidity of the H3 loop in the affinity-matured antibody appears to be due largely 

to the Asp55LHis mutation, which causes the loss of a salt bridge between 55H and 

Arg46L; the latter is then free to interact with the backbone of H3.  The Asn76HLys 

mutation actually increases the flexibility of H130.  This flexibility, as discussed by 

Wedemeyer et al30 , permits the rearrangements necessary to optimize contacts with the 

ligand.  Interestingly, this is consistent with the effect of Ser76HAsn in the maturation of 

7G12 and Ser34LAsn in AZ28.  That is, asparagine appears to be able to restrict motion 

by making two electrostatic interactions simultaneously.  In the case of 48G7, its removal 

causes precisely the expected effect and increases flexibility.   

 

A previous molecular dynamics study on the germline and mature species of this 

antibody concluded the germline complex is more flexible than its mature counterpart42.  

In that study the simulation included the ligand and was much shorter (less than a 
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nanosecond).  At shorter simulation times (< 2 ns), we find a larger gap between the 

germline and mature H3 flexibility, so it is unclear if their conclusion would hold at 

longer simulation times and in the absence of ligand.   

 

H3 loop local-minima energy landscape analysis 

To further investigate H3 loop flexibility, we generated local minima for the H3 loops in 

the same germline and mature antibodies using a different sampling method and a 

different force field (see Methods).  While in general, molecular dynamics explores low-

energy basins and has difficulty crossing high energy barriers, loop enumeration methods 

can hop from basin to basin freely (at the expense of generating a true statistical 

ensemble.)  We aimed to analyze qualitative differences between the germline and 

mature antibody energy landscapes at a large scale as an alternative to the more local 

fluctuations captured by MD.  In Figure 8, energy landscapes are generally different 

between the antibody pairs.  7G12 shows a marked focusing of the energy well, though in 

the mature antibody there is one minima outlier ~8 kcal/mol higher than the global 

sampled minimum.  The mature 28B4 and AZ28 antibodies show a similar reduction in 

the number of minima <10kcal/mol from the lowest energy antibody.  The mature 48G7 

antibody shows a slight increase in local minima <1Å from the lowest energy minimum.  

This contradicts the slight decrease in B-factor in the molecular dynamics but does 

concur with out earlier conclusion that 48G7 matures differently in comparison to the 

other antibody pairs. 
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Conclusion  
While the set of cases is too small to make generalizations, it was possible to rationalize 

how mutations, sometimes not at the active site (Ser76HAsn in 7G12), restrict CDR 

mobility.  Mutations to asparagine appear to have a restricting effect, especially since 

reverse mutations caused an increase in flexibility (48G7).  Restrictions due to bulky side 

chains (Asp95HTrp of 28B4) can also play a role.  This type of mutation long-range 

effects are evident in HIV-1 protease drug resistant mutants, where mutations not in the 

active site affect binding43 and, interestingly, seem to modulate the binding site 

flexibility44,45.  

 

An unexpected and interesting result from our simulations was the equilibrium between 

bound and unbound H3 conformations in the absence of ligand (7G12 germline), which is 

consistent with a conformational selection mechanism for binding.  These results suggest 

a general model where germline antibodies span a broad conformational space and 

somatic mutations that introduce multiple hydrogen bonds or tight sidechain packing 

anchor them into conformations auspicious for binding.   

 

Here we focused on rigidification of CDR loops during maturation, however, other 

mechanisms for affinity maturations exist; 48G7 appears to mature via an alternative 

route and experiments identified others.  Sethi et al46 found a germline antibody that 1) 

bound several peptides, but in different conformations and 2) its maturation involved 

disruption of binding contacts except for those involving the target antigen.  
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A further step would be to investigate the contribution of both entropy and enthalpy to 

the change in binding free energy upon maturation.  Mutations that lead to rigidifying 

antibodies reduce the conformational entropy penalty upon binding.  But these mutations 

can also lead to more favorable enthalpy upon binding.  If the enthalpic change is greater 

than the entropic change, rigidification of antibody variable regions may be less 

important than previously thought.  For example, Torigoe et al.47 calculated these 

contributions using isothermal titration calorimetry and found that maturation lead to a 

predominant enthalpic reduction.  More studies would need to be carried out in order to 

form a general theory, however.  In addition, calculating the enthalpic and entropic 

contributions would be very difficult to do rigorously in a molecular dynamics 

simulation.  Finally, the entropic changes of water molecules near the binding site 

complicate the question. 
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Chapter 4: Table 1 
Antibody Germline Structure 

PDB code 
Mature Structure 
PDB code 

CDR region 
residues 

7G12 1NGZ  
(L1-110, H1-110) 

1NGY  
(L1-110, H1-110) 

L1: L23-34 
L2: L50-56 
L3: L88-97 
H1: H26-33 
H2: H50-58 
H3: H99-103 

28B4 1FL5  
(L1-112, H1-113) 

1KEM 
(L1-112, H1-117) 

L1: L24-40 
L2: L54-61 
L3: L94-102 
H1: H26-35 
H2: H52-56 
H3: H101-108 

AZ28 1D5I  
(L1-110, H1-110) 

1D5B  
(L1-110, H1-110) 

L1: L24-34 
L2: L50-56 
L3: L89-97 
H1: H26-35 
H2: H52-58 
H3: H95-102 

48G7 2RCS  
(L1-110, H1-110) 

1HKL  
(L1-110, H1-110) 

L1: L24-33 
L2: L48-55 
L3: L89-97 
H1: H26-35 
H2: H51-56 
H3: 95-103 

 
Table 1.  Structural information for simulations setup.  PDB structure codes and specific 
chain segments used in the simulation for germline and mature antibodies are listed.  In 
addition, the assignment of CDR residues is explicitly shown. 
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Chapter 4: Figure 1 

 
Figure 1.  H3 loop Ca B-factors calculated from molecular dynamics trajectories.  The 
germline species consistently yields higher, sometimes by a large margin, B-factors than 
the mature simulation.   
 
 



 
 

Chapter 4: Figure 2 

 
 
 
Figure 2.  CDR loops for bound and unbound germline and mature antibodies.  The 
bound germline and mature structures are colored yellow and magenta while the free 
germline and mature structures are colored green and cyan, respectively.  It is most clear 
in the H3 loops that the unbound germline structure (green) is significantly different than 
the others. 
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Chapter 4: Figure 3 

 
 
 
 
 
Figure 3.  Probability density function of distances between residue centroid at positions 
28H and 76H of the germline and mature 7G12 antibody. 
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Chapter 4: Figure 4 

 
Figure 4.  7G12 H1 loop flexibility is diminished by Ser76HAsn mutation in ways not 
obvious from crystallographic structures.  A. H1 loop snapshots from 7G12 germline 
predecessor antibody simulation.  B.  H1 loop snapshots from 7G12 mature antibody 
simulation.  C.  H1 crystal structures of the 7G12 mature antibody and its germline 
predecessor.  The crystallographic structures are nearly identical.  D.  Asn76H hydrogen 
bonds H1 and restricts its motion in the mature species.   
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Chapter 4: Figure 5 

 
Figure 5.   7G12 germline H3 loop visits bound and unbound conformations during 
simulation .  A. H3 loop RMSD from the germline holo structure as a function of 
simulation time.  B. H3 loop RMSD from the germline apo structure as a function of 
simulation time.  The dotted line marks a 1.5 Å RMSD.   
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Chapter 4: Figure 6 

 
Figure 6.  Simulation of the H3 loop in the germline antibody (green) explores 
conformational spaces occupied by a bulky Trp95H sidechain in the mature species 
(green).  The latter is the result of a somatic mutation during maturation.  The bulky Trp 
sidechain restricts the available conformational space of H3. 
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Chapter 4: Figure 7 

 
 
 
Figure 7.  Simulation dynamics differences between AZ28 and its germline predecessor.  
A.  Simulation snapshot showing the hydrogen bond contacts of Asn34L of the mature 
AZ28 antibody.  Asn34L makes contacts with Asp101H and His100aH.  B.  Simulation 
snapshot showing the lack of a hydrogen bond between Ser34L and His100aH in the 
germline species simulation.  These snapshots are representative of the entire simulation.     
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Figure 8 Plots of energy (kcal/mol) versus RMSD for H3 loop samples generated 

using loop minima enumeration (see Methods).  Each red triangle represents a single loop 

conformation at an local energy minimum.  Left column: germline antibodies. Right 

column: mature antibodies.  Large plots show samples <25 kcal/mol from lowest energy 

sampled.  Line indicates 10 kcal/mol above lowest energy sample for reference.  For 

qualitative scale, inset plots show samples < 100 kcal/mol from lowest energy sample.  

RMSD’s are calculated between H3 backbone  atoms (N-Cα-C-O) and are relative to the 

conformation of the lowest energy sample. 
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Summary 

Clathrin is a key structural protein in membrane trafficking which forms a large, three-

legged triskelion.  These clathrin trimers, along with adaptor proteins create large cage-

like structures leading to clathrin-coated pits and vesicles found in endocytosis and 

membrane separation from organelles.  Crystal structures of a portion of the proximal leg 

and beta-propeller terminal domain were reported previously1,2 as well as a 7.9 Å 

resolution cryo-electron microscopy structure of the complete clathrin trimer3.  Questions 

remained however, regarding how clathrin is regulated, particularly by the flexible 

clathrin light chain which has been shown to inhibit clathrin assembly4-6.  The Brodsky 

and Fletterick labs successfully crystallized a clathrin hub construct (trimerization 

domain plus proximal leg) with the clathrin light chain.  However, several attempts failed 

to find a solution by molecular replacement using the previously published crystal 

structure of the proximal leg.  Here, we report methods for creating a complete, all-atom 

model of the clathrin hub which lead to a successful solution by molecular replacement.  

The model was assembled by aligning comparative models of each clathrin heavy chain 

repeat (CHCR) to the previously published cryo-EM model which only contained Cα 

coordinates.  The trimerization domain helices were also modeled and all loops between 

CHCR’s were refined.  The resulting 8.3 Å X-ray crystal solution contains novel atomic 

structure including multiple clathrin light chain conformations in the unit cell which are 

shown to be functional through biochemical analysis.  This work is part of a larger 

manuscript by Wilbur et al7. 
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Methods 
 
We constructed an all-atom model of the clathrin trimer hub for molecular replacement as 

follows.  Since the previously published3 Cα model was derived from low-resolution EM 

data (7.9 Å), we chose to build comparative models of each CHCR segment using the 

higher-resolution (2.6 Å) crystal structure, PDB: 1B891, as a template.  CHCR models 

were generated with the homology modeling function in the Protein local Optimization 

Program (PLOP)8 using a previously published sequence alignment CHCR’s1.  A subset 

of the alignment is shown in Figure 1.  Each CHCR model was then aligned to the Cα 

coordinates in the EM structure, PDB 1XI43, using the protein alignment function in 

Chimera9 (see Figure 2).  Loops joining CHCR segments were refined using our Physics-

based, loop prediction method10 resulting in a single clathrin leg.  The two loops and two 

helices, residues 1575-1630, found in the trimerization domain remained to be modeled.  

We constructed the two helices by building two small homology models using Prime 

(Schrodinger,Inc.) based on an arbitrary PDB structure containing a coiled coil (PDB 

1VDF11).  The remaining loops connecting these helices to the rest of the proximal leg, 

were predicted ab initio using our Protein Local Optimization Program.  The complete 

leg was then copied and aligned to the EM Cα coordinates to form a trimer model. 
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Figure 2 caption 

Overlay of CHCR comparative models (multi-colored) onto previously published Cα 

model derived from EM data (depicted as red wire).  CHCR’s 1-7 are depicted in pink, 

light blue, red, dark blue, yellow, purple, and cyan respectively.  Arrows delineate the 

clathrin hub, residues 1074-1675.  Black arc segments show inter–CHCR loops that were 

refined.  Atomic representation generated using Chimera, UCSF. 
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Summary 

Membrane-type serine protease 1 (MT-SP1) or Matriptase is a human type II trans-

membrane serine protease expressed in human epithelial cells.  Though its multiple roles 

are not fully understood, MT-SP1 is known to be integral to growth factor and growth 

factor receptor regulation1 as well as protease activation2 leading to shedding of the extra-

cellular matrix.  Over-expression of MT-SP1 has been implicated in tumor growth and 

metastasis in several forms of cancer3-8 which suggests it may be a possible drug target.  

Recently, Farady et al.9 characterized two potent (Ki = 8 and 140 pM) single chain 

antibody (scFv) inhibitors of MT-SP1 and recently crystallized the 8 pM E2 antibody 

antigen binding fragment (Fab)10.  Farady et al also found that MT-SP1 cleaves E2 in a 

substrate-like manner at pH 6 while E2 remains intact at pH 8.  This pH dependence is 

common among cognate inhibitors of serine proteases but is not understood at the 

molecular level11,12.  We hypothesize that E2 exhibits a different conformation at low pH 

which enables the protease to cleave E2.   Here, we describe unpublished, initial results 

using constant-pH molecular dynamics of the E2 / MT-SP1 complex at pH 8 and pH 6.  

The pH 8 complex is stable for the 2 nanosecond simulation while the ph 6 complex 

begins to dissociate after 1 nanosecond and separates further up to 2 nanoseconds.  

Though a drastic difference is observed, more sampling is needed.  Future simulations 

should include a structured water molecule to prevent a presumably-artificial collapse of 

a key arginine into the P1 pocket of the protease.  Though additional work is needed, this 

work presents a possible, molecular-level, hypothesis answering why there is pH-

dependent catalysis.  At this time, there is no plan to publish this work. 
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Methods 

Simulation 
The E2-MT-SP1 crystal structure was obtained from the Craik lab before publication and 

E2 was truncated to variable fragment (Fv) length to reduce the number of atoms in the 

simulation.  The constant pH simulation, using Amber 9 with the implicit solvent model, 

Generalized Born with Surface Area (GBSA) 13, at pH 6 and pH 8, included the 

following stages:   

1. minimization in five stages with Cartesian harmonic restraints.  Weights used 

were 25.0, 5.0, 4.0,  3.0, 2.0, an 1.0, respectively.   

2.  equilibration in 11 stages of 1000 steps each.  Temperature increased from 0-

300K in first three stages with Cα restraint wights of 1.0, 0.8, and 0.5.   Seven more 

equilibration stages reduce Cα restraint weights from 0.4 to 0.0.  Finally, a pH 

equilibration stage of 1024 steps was run at pH 6 and pH 8 for the two MD calculations 

presented here. 

3.  production simulation was run for 2 ns for each case. 

The simulations were run at pH 6 and 8 to compare to experiments by Farady et al9.  (The 

protease is most efficient at pH 8).  Analysis and trajectory viewing were carried out 

using Amber 913 and Chimera14. 

Choice of titratable residues 

Histidine, aspartic acid, and glutamic acid residues in the interface were considered for 

titration during the constant-ph simulation.  The following residues were included in the 

titration: His42,  Asp47, Asp91, Asp97, His138, Asp185, Asp190, Asp214, His332.



 
 

Results 

Artifacts of equilibration and implicit solvent 

The use of an implicit solvent model is required at this time for running constant-pH 

simulations but neglects effects of discreet water molecules.  In this complex, a structured 

water is seen in the crystal structure in the P1 pocket which is not included in the present 

study.  The H3 loop of E2 collapses into the P1 pocket at the end of equilibration (see 

Figure 1).  The effect of this is not clear without further simulations but it may affect the 

stability of the complex in an artificial way and may prevent us from seeing relevant 

conformations. 

 

Stability differences between pH 8 and pH 6 

Qualitatively, the simulations at pH 8 and pH 6 are very different.  The pH 8 simulation 

shows a stable complex throughout the 2 nanoseconds while the pH 6 simulation clearly 

begins to dissociate after 1 nanosecond (see Figure 2.)  This difference supports our 

hypothesis that the different pH leads to a conformational change.  The pH 6 complex 

may lead to eventual cleavage through reduced stability in the binding site. 

 

At the residue level, we see that four of the nine titrating residues (three ASP and one 

HIS) change their charge state about one third of the way into the pH 6 simulation while 

all titrating residues for the duration of the pH 8 simulation stay in their initial 

protonation states (see Figure 3.)   The pH 8 simulation is a good control as the X-ray 

structure was crystallized at pH 8 so we do not expect changes.  In the pH 6 simulation, 
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the three aspartic acids are close in proximity and their charge states may be coupled.  

The arginine in the P1 pocket may stabilize ASP185.  In figure 4, we see that the 

neutralizing of ASP185 is correlated with the arginine leaving the P1 pocket.  The other 

aspartic acids follow and neutralize as well.  This may then lead to the 100% protonation 

of HIS 138 which is already initially protonated to a large percentage because of the low 

pH. 

 

Non-specific molecular mechanism for catalysis at low pH 

These simulations do not propose, however, a discrete molecular mechanism for 

proteolytic cleavage at low-pH.  Though catalysis will not be observed in this classical 

dynamics simulation, we did hope to see a discrete change in orientation of the H3 

peptide backbone that we could propose is the mechanism for catalysis given the distance 

and orientation to the catalytic triad.  This was not observed, however, possibly because 

of the short simulation time or the lack of explicit water mentioned above.  The effect of 

low pH may be non-specific, whereby loosening of the complex enables more freedom 

for the H3 loop to be catalyzed.  However, though the effect of pH on the complex may 

be non-specific, the catalysis is very specific, cleaving between Arg131 and Arg132 in 

the H3 loop as reported earlier using mass-spectrometry9. 

 

Future Directions 

Understanding the mechanism by which cognate inhibitors of proteases are cleaved at 

low pH but not at physiological pH would be beneficial to understanding protease 

 179



 
 

inhibition in general.  Therefore, beyond this study of a synthetic antibody inhibitor, 

further constant-pH simulations of various proteases with their cognate inhibitors would 

be useful.  More sampling would be required as the effects seen here may not be 

representative of a mechanism based on an ensemble average.  Inclusion of at least the 

discrete water observed in the P1 pocket would also be interesting and may enable a more 

discrete change in conformation. 
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Chapter 6: Figure 1 
 

        

A B 

 
 
 

Figure 1 caption 

 

Collapse of arginine and H3 loop towards P1 pocket due to use of implicit solvent.  Pre-

equilibration is shown in (A) and post-equilibration in (B) with crystal structure in gray 

and simulation in blue.  The red oxygen is one of the structured waters found in the 

crystal structure that bridges between the arginine and aspartic acid.  The water is not 

present in the simulation which uses implicit solvation. 

 



 
 

Chapter 6: Figure 2 
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Figure 2 caption 

 

Comparison of complex structure at 0, 1, and 2 nanoseconds for pH 8 simulation (left 

column) and pH 6 (right column.)  Antibody is in blue and protease is in orange. 
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Chapter 6: Figure 3 

 

pH 8 

pH 6 



 
 

Figure 3 caption 
 
Plot of charge state for 4 titrating residues that show differences across simulation versus 

simulation time.  Top: simulation at pH 8.  Bottom: simulation at pH 6.   
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Chapter 6: Figure 4 
 

 

A T=0ps 

B T=850ps 

C T=2000ps 
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Figure 4 caption 

 

Snapshots from simulation in at 0, 850 and 2000 picoseconds.  Labeled residues in sphere 

representation are titrating residues.  All other non-titrating residues are in stick 

representation.  Hydrogen atoms do not represent true protonation state. 
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