UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Recognition-based Problem Solving

Permalink
https://escholarship.org/uc/item/1tvOn8ng

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Author
Howes, Andrew

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1tv0n8n9
https://escholarship.org
http://www.cdlib.org/

Recognition-based Problem Solving

Andrew Howes
MRC Applied Psychology Unit, 15 Chaucer Road, Cambridge, CB2 2EF, United Kingdom. "
Andrew.Howes@ mrc-apu.cam.ac.uk

Abstract

This paper describes a space of possible models of
knowledge-lean human problem solving characterised
by the use of recognition knowledge to control
search. Recognition-based Problem Solvers (RPS)
are contrasted to Soar and ACT-R which tend to use
large goal stacks to control search and to situated
theories of cognition that tend not to be able to do
search at all (e.g. Pengi). It is shown that with
appropriate knowledge increments RPS can apply
algorithms such as depth-first search with a bounded
demand on Working Memory. The discussion then
focuses on how some weak methods, such as depth-
first search, are more difficult to encode in RPS than
others. It is claimed that the difficulty of encoding
depth-first reflects human performance. !

Introduction

Architectural theories of cognition such as Soar
(Newell, 1990) and ACT-R (Anderson, 1993) are
based on a classical decomposition between Working
Memory (WM) and Long-Term Memory (LTM). As
their name suggests Working Memory is used for
storing temporary information about the problem
solver’s immediate situation and goals, whereas
Long-Term Memory is used to code persistent
knowledge that is used on many successive occasions.
In these architectures WM is organised using a goal-
hierarchy: a stack of goals, each of which is the
subgoal of the immediately preceding goal.

Soar’s goal-hierarchy is a particularly rich data-
structure. Each level may contain information about
a problem space, about a state and about many
alternative operators. This structure can support
powerful computations. For example, it is a trivial
exercise to do exhaustive depth-first search of large
problem domains. The goal-hierarchy can expand ad
infinitum, whilst storing as many intermediate
problem states and operator evaluations as are

1 This work was carried out whilst the author was an
exchange visitor at the Department of Psychology,
Carnegie Mellon University, Pittsburgh, PA. 15213.

551

required. The goal-hierarchy and therefore the WM are
essentially unbounded. As a result an emergent
theoretical problem has been how to equate the
computational power provided by this data-structure
with the all too evident inability of people to do
complex internal problem solving.

One answer to this problem is to propose
limitations on the size of WM that supposedly
correspond to limitations on human Short-Term
Memory (STM) (Anderson, 1983; pages 161-162).
That people have limited STM is the standard
explanation for the pervasive human inability to
methodically search large problem domains. The idea
is that the search mechanisms employed by people
would work better if they had larger STM, but that
they are arbitrarily constrained by technologically
(neurally) imposed limits.

An alternative, or at least complementary answer is
that STM is functionally bounded (Newell, 1990:
page 354). The idea is that short-term phenomena
might arise just because of how the system must be
designed in order to learn, perform and interact. This
hope has served to guide the construction of the Soar
architecture which has no technologically imposed
limits. Here we work with a variation on the theme
in which it is hypothesised that much human
problem solving may only need limited STM. Under
this view increasing STM is not required with
increasing problem complexity, rather the size of
STM is a constant regardless of the problem.

One of the reasons for believing that a functionally
bounded WM might be possible is that the external
task environment provides many resources for
computation. It has long been realised that human
problem-solvers are dependent on the environments in
which the problem solving takes place (Newell &
Simon, 1972). This has recently resurfaced as an
issue in the work of many researchers. Problem
solving is not something that people do exclusively
in their heads, but instead is an activity that involves
the combined use of internal and external resources.
Models consistent with this approach include Pengi
(Agre & Chapman, 1990). However, whilst not
requiring much if any WM and whilst exhibiting
many interactive phenomena, it is not clear how these
models can, even in principle, be applied to solving
complex tasks.

mailto:Andrew.Howes@mrc-apu.cam.ac.uk

Figure 1: An example graph.

In this paper a framework that defines a class of
models called Recognition-based Problem-Solvers
(RPS) is proposed. The idea behind an RPS is that
the functions that would otherwise be performed by a
goal-hierarchy are instead performed by knowledge
encoded, during problem solving. in LTM. The basic
form of this knowledge is recognition knowledge.
This is knowledge that adds a ‘recognised’ marker to
an object in WM whenever that object has been in
WM on some previous occasion. The use of
recognition knowledge is apparent in recent cognitive
models (e.g. Aasman & Akyurek, 1992) and it can
also be found in the earlier work of Atwood, Masson
& Polson (1980).

The description of an RPS is not intended as a
specification of a cognitive architecture, but merely as
a description of the assumptions of recognition-based
problem solving. Its purpose is to facilitate the
investigation of encoded algorithms. Which in turn
will make it possible to illustrate some of the
emergent properties of an RPS. To anticipate the
conclusion, the first property is that its use of WM is
bounded. This will be demonstrated for a depth-first
search algorithm, which in turn will reveal a second
property; RPS leads to a more cognitively plausible
encoding of depth-first search than does a stack-based
problem solver.

The RPS space of models

An RPS can be described in terms of how it uses
WM, how it uses LTM and the conditions under
which it learns; the learning conditions. Learning
conditions are a set of rules that determine the
acquisition of chunks. A chunk is simply a rule that
is added to LTM during problem solving. For
example the learning condition Lj,

L;. IF apply(S,0) THEN-LEARN
state(S) & operator(O) =» recognised(S,0).

adds a chunk that recognises operators which are
actually applied to the state. Once added to LTM the
chunk will fire whenever the particular state and
operator enter WM.

552

The rule learnt by L; is an example of recognition
knowledge. This can be contrasted to control
knowledge, which may for example determine
whether, in a particular situation, one operator is
better than another and to predictive knowledge that
determines the result of applying a particular operator
to the world. The use of either of these types of
knowledge is not precluded in an RPS. However, the
emphasis here is on the use and role of recognition
knowledge.

The initial contents of the LTM is a set of decision
rules that determine the problem solving method for
the task. Each decision rule has a left-hand-side that
is a set of conditions in WM and a right-hand-side
that proposes some state elaboration. For example, a
preference for an operator,

Dj. state(S) & operator(O)
& recognised(S, O) =¥ reject(S,0)

which says, if you recognise that the current operator
has been applied to the current state then reject the
operator. The problem solving method defined by
these rules may be a depth-first search or hill-
climbing or some other method.

The RPS’s Working Memory includes a description
of the current task, of the current state, and of the
operators that are applicable to the current state.
There are also predicates about what in the current
WM has been recognised, and a predicate describing
the immediately previous operator. Other predicates
may be added by knowledge in LTM but this does not
include arbitrary knowledge about previous problem
solving history. There is only one task in WM, and
only one state. There is no goal-hierarchy.

As with the Soar problem solving architecture the
RPS is intend to work using alternate elaboration and
decision phases. In the elaboration phase, WM is
updated with the current description of the external
world and with knowledge brought from LTM. The
elaboration phase runs to quiescence and is then
followed by the decision phase which chooses an
operator to apply to the world.

In the elaboration phase, rules in LTM may post
any number of operator preferences. During the
decision phase an operator selection is made on the

RPS LEARNING CONDITIONS

L1. IF apply(S,0) & state(S) THEN LEARN [state(S) => recognised(S)]

L2. IF apply(S,0) & state(S) & operator(O) THEN LEARN [state(S) & operator(O) = recognised(S,0)]

L3. |IFtask(T) & state(T) THEN LEARN [task(T) = recognised(T)]

LEARNING CONDITIONS (DEPTH-FIRST SEARCH)

L4.

IF state(S) & not(recognised(S)) & previous-op(P) & operator(U) & undo(P,U)

THEN LEARN [state(S) & operator(U) = backup(U)]

L5. IF task(T) & not(recognised(T)) & state(S) & operator(O) & recognised(S.0) & previous-op(P)
& undo(P,0) THEN LEARN [task(T) & state(S) & operator(Q) =» reject(O)]

DECISION RULES (DEPTH-FIRST SEARCH)

D1. [task(T) & not(recognised(T)) & state(S) &

operator(O) & not(recognised(S,0)) & not(backup(O)) => acceptable(O)]

D2. [task(T) & not(recognised(T)) & state(S) & recognised(S)
& previous-op(P) & not(backup(P)) & undo(P, U) & operator(U) =» best(U)]

Ds3.

D4. [task(T) & state(T) =» succeeded(T)]

D5. [task(T) & recognised(T) & state(S) & recognised(S)
& operator(O) & recognised(S,0) & not(reject(O)) =» acceptable(S,0)]

[task(T) & not(recognised(T)) & state(S) & recognised(S) & operator(O) & backup(O) => worst(O)]

Figure 2: RPS and knowledge increments required to do depth-first search.

basis of the following preference ordering; best,
acceptable, worst. Operators with a reject preference
will not be selected. As soon as the operator is
applied the old state is replaced by the new, and all
WM elaborations that were dependent on the old state,
e.g. the operators are removed from WM.

For the purposes of this paper these components
will be sufficient to define an RPS. The important
points are that WM is restricted to a description of the
current external situation, knowledge is stored in
LTM whenever a learning condition is met, and lastly
decision rules for the particular task define a search
algorithm.

The idea behind separating out the content of the
decision rules from the RPS architecture is that it is
now possible to derive how different search
algorithms (e.g. depth-first search, means-ends
analysis and the other weak methods) can make use of
the resources provided by recognition chunking. The
next section illustrates this with an RPS description
of a depth-first search for an undirected graph
structure.

Depth-first graph search

Imagine an undirected graph such as that depicted in
Figure 1. The structure is an abstraction of a domain

553

in which only one node of the graph is visible to the
problem-solver at a time, and transitions are made
between nodes by transitions of the represented arcs.
How, given a goal node, will an RPS, (a) explore the
graph to find the goal, and, (b) acquire control
knowledge that will enable it to improve its
performance?

A depth-first RPS solution is illustrated in Figure
2. The figure consists of two sets of definitions.
The first is a list of the learning conditions (L1 to
LS), and the second is a list of the decision rules (D1
to D5).

Learning conditions L1 to L3 define the acquisition
of recognition knowledge. L1 learns chunks to
recognise visited states. L2 learns chunks to
recognise operators that have been applied to states,
and L3 learns chunks to recognise a task that has been
achieved before. These chunks provide the
recognition resources by which the RPS controls its
exploration. They are not specific to depth-first
search. The remainder of the learning conditions and
decision rules are knowledge increments that define a
depth-first search algorithm.

These rules use three special predicates that define
aspects of the currently available operators. The first
of these is the previous operator, which is the most
recently applied operator and which moved the RPS

into the current state. The previous operator is
dynamic and changes every time that a new state is
entered. Second, the problem solver needs to know
how to undo the effect of the previous operator. The
undo operator will return it to the immediately
previous state. Third, the backup operator is used in
the management of depth-first search. The backup
operator undoes the effect of the operator by which a
state was first entered. When all other routes have
been searched this operator can be applied to return
the problem solver to the immediately higher node in
the depth-first search tree. There is only ever one
backup operator for a particular state and it never
changes.

The following paragraphs trace the behaviour of the
RPS when applied to the graph in Figure 1. The
action of the learning conditions and the decision
rules is described. The trace is split into a first trial
and a second. The initial state is U and the goal state
is A, giving an initial WM of, task(A), state(U),
operator(3), operator(4), operator(8), operator(5).

Trial 1. First the RPS enters the elaboration phase
and gathers all relevant knowledge from LTM. The
problem solver is in state U and no recognition
chunks will fire as neither the state, operators nor the
task has been seen before. As a result only decision
rule D1 (Figure 2) will fire. It is relevant whenever
there is a new task and an operator that has not been
tried before. In this situation it will give acceptable
preferences to operators 3, 5, 8 and 4.

Next the RPS enters the decision phase and a
selection is made randomly between the operators
with acceptable preferences. Let’s say that 4 is
selected. Then the predicate, apply(U, 4) is added to
WM and learning conditions L1 and L2 will
subsequently fire, adding chunks C1 and C2 to LTM,

C1: state(U) => recognised(U)
C2: state(U) & operator(4) =» recognised(U,4).

Both of these chunks will be used later on in this
trial. For now the RPS will move into state(B), and
its WM is updated. This involves replacing state(A)
by state(B), then removing all predicates that were
derived from state(A) (in this case the operator
proposals), and then adding the predicates previous-
op(4) and undo(4,4). (In this simple graph an
operator is its own inverse).

Once 1n state(B), WM will be elaborated with a
description of the available operators (which are 4 and
9) and then learning condition L4 will add the
following chunk to LTM,

C3: state(B) & operator(4) = backup(4).

This chunk will fire immediately and add predicate
backup(4) to WM. Again decision rule D1 fires and
gives an acceptable preference to operator(9). This
time operator(4) does not get an acceptable preference
because it is the backup operator. As a result

554

operator(9) is selected and applied moving the
problem solver to state(F). In the process the
following chunks are formed,

C4: state(B) = recognised(B)
C5: state(B) & operator(9) =¥ recognised(B,9)
C6: state(F) & operator(9) =» backup(9)

and the predicates dependent on state(B) are removed
from WM (including operator(4), operator(8),
backup(4), previous-op(4), and undo(4,4)). Let’s
imagine that the RPS now selects operator(8) and
traverses back to state U, forming the chunks,

C7: state(F) = recognised(F)
C8: state(F) & operator(8) > recognised(F,8)

Now the recognition knowledge learnt earlier comes
into play. State U was of course the initial state, and
has therefore been visited before. The RPS will
know this because chunk C1 will fire and post
recognised(U). The problem solver has wandered in a
loop, and the appropriate thing to do is return to the
previous state. This decision is captured by rule D2,
which proposes a best preference for operator(8).
Operator(8) will be selected and the RPS will return
to state(F).

It is in the return to state(F) that the point of the
RPS mechanism can be seen. The detection of the
loop and the return to a previous state has been
achieved using recognition knowledge in LTM rather
than by storing intermediate states in WM.

On returning to state(F), learning condition LS (see
Figure 2) fires. This condition is relevant when the
task has not yet been achieved and the RPS has just
backed up from a tried operator. Its effect is to create
a chunk that rejects the tried operator. In this case the
chunk would be,

C9: task(A) & state(F) & operator(8) - reject(8)

The logic of this rule is that immediately following
the deliberate return to a visited state, that branch of
the search space must have been fully explored
(remember that depth-first is an exhaustive
algorithm). Now this new chunk C9 fires
immediately and puts a reject preference for operator 8
into WM. Decision rule D1 fires for operators 6, 8
and 7 and gives them acceptable preferences. Chunk
C6 marks operator 9 as the backup operator, which in
turn will be given a worst preference by decision rule
D3.

The result of these preferences is to leave a random
choice between operators 6 and 7. If the RPS chooses
operator 6 then the problem solving and chunking
will continue in the same manner as has been
described. If on the other hand it chooses operator 7
then it will lead to the goal state. Once there, learning

condition L3 will create a chunk that recognises the
task as something that has been achieved,

C10: task(A) =» recognised(A)

and decision rule D4 will fire and post success.

Trial 2. On trial 2 a different strategy is possible.
In contrast to the first trial the RPS now has some
knowledge about how to get to its goal state. There
are two parts to the trial 2 strategy. First, rather than
D1 giving acceptable preferences to operators that
haven’t been tried before, decision rule D5 gives
acceptable preferences to operators that hgve been tried
before. The rational behind this is that if the task has
been done before then there is no point in doing
anything new. (Assuming that the initial state is the
same.)

Second, the chunks formed by learning condition
LS, in this case C9, ensure that branches that lead to
loops or deadends get rejected.

The combination of the action of decision rule D5
and the chunks learnt by learning condition LS5 is
such that on trial 2 the RPS will get to its goal
without branching or looping. The loop path back to
U from F would be eliminated by the chunk C9, and
the untried options, operator(U,3), operator(U,5), and
operator(F,6) would be eliminated because D5 would
not make them acceptable. The same behaviour
would be repeated on subsequent trials.

In this example, decision rule D5 continues using
recognition knowledge to guide search, whereas
chunks formed by L5 add control knowledge to WM.
There are other plausible combinations of the use of
recognition and control knowledge but unfortunately
there is not space to explore them here.

For now we have demonstrated one weak-method
by which an RPS can be incremented so as to search
graph structures in the external world. The important
point is that although the search is exhaustive, and as
efficient as can be expected without additional domain
specific knowledge, it imposes a bounded demand on
WM. This is achieved through the effective
acquisition and use of recognition knowledge.

It is worth briefly contrasting this solution to how
a goal-hierarchy based problem solver would have
achieved this task. If we assume that the task
knowledge can be coded internally then in Soar the
classical solution would involve creating a subgoal
for every decision point. These subgoals would form
a hierarchy in WM with one level for each state that
had so far been visited and not backed out of. The
number of states stored in WM would be equal to the
maximum depth of exploration done so far. In our
example trial the maximum number of states stored
in WM at any one time would have been four (U, B,
F and U). In general the stock of states in WM
would grow with the size of the problem domain
being explored. WM use is therefore unbounded.

555

Other than using unbounded WM a goal-hierarchy
solution has two other major differences to an RPS
solution, First the resources that it provides do not
naturally support loop detection. There is no
recognition knowledge and so loops can only be
detected if a special function is programmed that
matches pairs of items held in WM and determines
whether they are the same. In contrast loop detection
emerges from the RPS encoding of recognition
knowledge. Second, a goal-hierarchy supports
effortless back up to previous states, or backtracking.
Backtracking is simply a matter of popping a goal.
In contrast, in RPS backup functions must be
explicitly coded. As can be seen from the previous
analysis, to encode depth-first search in RPS requires
considerably more knowledge than it does with a
stack-based problem solver. The difficulty of
encoding and maintaining the backup operator may
capture the reason for why people are not commonly
observed doing depth-first search.

A Depth-first search algorithm similar to the RPS
one described here has been investigated in Soar by
Aasman & Akyurek (1992). For the purposes of this
paper a Prolog program was written to test the
algorithm,

Other weak methods in RPS

Laird & Newell (1983) introduce the concept of a
Universal Weak Method (UWM) and subsequently
define a UWM for Soar. The idea is that rather than
having a pre-programmed set of weak methods from
which an architecture can select, a weak method
emerges as a consequence of the task knowledge and
environment. In the same spirit the RPS framework
does not commit to a particular weak method. It is
possible that many weak methods could be defined
that make use of recognition knowledge. Two that
are of particular interest from the perspective of
modelling human cognition are means-ends analysis
and progressive deepening.

Means-Ends Analysis. Atwood, Masson & Polson
(1980) describe an empirically validated model that
uses a combination of means-ends and recognition
knowledge to evaluate operators in Missionaries and
Cannibals and other transformation problems. A
distinctive feature of the model is that it uses a
frequency measure of recognition to help control
search.

Progressive deepening. The depth-first search
algorithm described in the previous section was for
searching a graph structure that was external to the
problem solver. We can also speculate on what
implications RPS has for internal problem solving.
Internal problem solving can be achieved in RPS if
the results of operator applications (i.e. predictive
knowledge) are known. Given such knowledge it

would be possible to construct a new state internally,
without actually applying operators to the world. As
before this new state would replace the old. Now
assuming that recognition knowledge could be
chunked for internally visited states it would in
principle be possible to do depth-first search
internally. This would support the acquisition of
plans that consist of internally constructed
recognition and control knowledge. The construction
of the plan would correspond to trial 1 in section 3
and the application of the plan to trial 2. However
for many domains (e.g. chess) internal depth-first
search may be prohibitively difficult because of the
complexity of defining and chunking the backup
operator. Recall that the backup operator caused
much of the complexity in Figure 2. If backup is not
possible, then neither is depth-first search. Instead
the problem solver must explore paths by always
moving forward. If a failure state is reached then it
must return to the base position and start exploring
again. This is progressive deepening.2

Whatever the weak method used, the factorisation
between what comes with the architecture and what
counts as method-specific knowledge is different in
RPS to what it is in the UWM for Soar. The RPS
(with bounded WM) is far less powerful than the
UWM for Soar (with its WM goal-hierarchy and
backtracking facility) and it requires correspondingly
more knowledge (in the form of decision rules) to
define a weak method. The UWM and RPS clearly
furnish different predictions for the ease with which a
particular weak method can be used by people.
Which is correct is an empirical question.

Discussion

An interesting aspect of an RPS is that learning is
intrinsic to its problem solving capability. In
contrast Soar can solve many problems without
learning, and even when learning is done it often
occurs as a side-effect of problem solving. But in
RPS learning must occur to make problem solving
possible in the first place. Without learning there
would be no way of controlling search. RPS thereby
takes the tight architectural integration of learning and
problem solving a stage further.

A second consequence of the RPS mechanism is
that the burden of explanation for the errors and
inefficiencies in human performance is shifted from
the limited capacity of WM to the ability of the
problem solver to encode sufficient recognition

2In fact, people are observed to do modified
progressive deepening. This involves a one step
look-ahead and backup, that would require the RPS
working memory to expand to two state descriptions
rather than just one.

556

knowledge for the task. For example there may nol
be distinctive states in the world (e.g. a maze with
white walls) or the problem solver’s attention may
not be focused on the right aspects of its
environment. Inadequate recognition knowledge
would rapidly disable the RPS’s ability to solve
problems.

The point of this paper has not been to question the
role of goals and subgoals in models of human
cognition per se. It has been to question the use of
large goal-hierarchies in working memory. As an
alternative the use of recognition knowledge was
proposed. The argument in favour of it is twofold.
First, that with a bounded WM RPS is
computationally powerful enough to support
exhaustive external search, and second, the possibility
that for internal look-ahead, cognitively plausible
weak methods, such as progressive deepening, will
emerge.

Acknowledgement

Thank you to Richard Young and Jeff Shrager for
many detailed comments.

References

Aasman, J. & Akyurek, A. (1992) Flattening goal
hierarchies. In J.A.Michon & A.Akyurek (eds.)
Soar: A Cognitive Architecture in Perspective,
199-217. Kluwer.

Agre, P.E. & Chapman, D. (1990) What are plans
for? In P. Maes (Ed.) New Architectures for
Autonomous Agents: Task-level Decomposition
and Emergent Functionality. MIT Press,
Cambridge, Massachusetts.

Anderson, J.R. (1983) The Architecture of Cognition.
Cambridge MA: MIT Press.

Anderson, J. (1993) Rules of the Mind. Erlbaum.
Hillsdale, NY.

Atwood, M.E., Masson, M.E.J. & Polson, P.G.
(1980) Further explorations with a process model
for water jug problems, Memory and Cognition, 8
(2), 182-92.

Laird, Rosenbloom, Newell (1984) Universal
Subgoaling and Chunking: The Automatic
Generation and Learning of Goal Hierarchies.
Kluwer Academic Press, MA.

Newell, A. (1990) Unified Theories of Cognition.
Harvard University Press.

Newell & Simon (1972) Human Problem Solving.
Prentice-Hall, London.

http://ta.sk

	cogsci_1993_551-556

