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Abstract 

Descriptive models of music cognition propose various 
principles as underlying melodic expectancy, however there is 
very little discussion regarding the processes involved in the 
acquisition of melodic expectation.  To explore the potential 
role of learning processes, a simple recurrent network (SRN) 
was trained on a set of musical sequences to examine the degree 
to which the principles described by Schellenberg’s (1997) two-
factor model might be learned through musical exposure.  The 
principle of pitch proximity, but not pitch reversal constrained 
the model’s expectations of tones following melodic fragments.  
Implications for this model in the area of music perception and 
sequential modeling are discussed, as are potential extensions 
of this simple system.  

Keywords: melodic expectancy; simple recurrent network; 
learning  

Expectancy in Music Cognition 
When hearing music, much of the listener’s experience 
depends upon how much a given note is expected given the 
current musical context.  This expectancy may be thought of 
as a dynamic probability distribution that changes depending 
on global context variables, such as the style, mode, or key of 
a musical piece, as well as local context variables, such as the 
specific notes that have recently been heard (Carlsen, 1981; 
Krumhansl et al., 1999). 

Many investigations in music cognition have 
determined what musical variables lead to what expectancies 
in order to understand both the psychology and art of music 
(see Krumhansl, 1995; 2000 for a review).  The focus of the 
present investigation will be the local context with the goal of 
investigating how the underlying musical knowledge being 
probed in these types of investigations may be learned 
through musical exposure. This goal will be pursued by 
examining how a connectionist network designed for 
sequential processing, Elman’s (1988) Simple Recurrent 
Network (SRN), develops melodic expectancy from a small 
corpus of simple melodies.  The novelty of this work in 
relation to previous models (e.g., Bharucha & Todd, 1989; 
Krumhansl et al., 1999; Mozer, 1991; Page, 1999) is the 
model's simplicity and the analysis of the model's 
performance. 

The Implication-Realization (I-R) Model 
One model that has gone to great lengths in describing the 
role of local context in melodic expectancy is the Implication-
Realization (I-R) Model (Narmour, 1990). This model de-
emphasizes a global, or stylistic, analysis of music and 
instead focuses on note-to-note relationships to examine how 
musical implications and realizations are perceived (Narmour, 
p. ix).  According to this model, and other theoretical 
descriptions of music cognition upon which it was built, an 
implication is created whenever two notes (an interval) are 
perceived as incomplete, or open.  This implicative interval 
creates an expectation for the next note of the melody, which 
is the realization of this interval.  The interval between the 
realized note and the second tone of the implicative interval is 
the realized interval. 
 For any given implicative interval, there will be a set 
of tones that are implied by the interval and the strength of 
their implication will be graded.  That is, certain tones will be 
strongly implied, while others will be weakly implied, and 
still others will fall in between these extremes. The goal of 
theoretical models of music cognition like the I-R model is to 
determine where individual notes fall along this continuum 
for different types of implicative intervals and what general 
principles may be used to describe similar types of 
expectancies.  While an entire volume (Narmour, 1990) has 
been dedicated to the details of the I-R model, the present 
discussion will focus on Schellenberg's (1997) simplification 
of the model into two orthogonal principles. 

The Two-Factor Model 
One criticism of the full I-R model is that its principles are 
over specified and overlap with one another (Schellenberg, 
1997).  In recognition of this fact, and in order to uncover the 
fundamental components of melodic expectation, 
Schellenberg advocated a reduction of the I-R model down to 
two orthogonal principles, pitch proximity and pitch reversal.  
Apart from being orthogonal, these principles are also 
dependent on different contextual windows: Pitch proximity 
considers only the last note of a sequence, but pitch reversal 
requires the consideration of the last two notes (i.e., the 
implicative interval) of a sequence. 
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Pitch Reversal 
Pitch reversal collapses the registral return and registral 
direction principles in the I-R model into one principle.  
Following a large implicative interval (≥ 7 semitones), the 
realized interval should either be lateral or in the reverse 
direction, thus changing the melodic contour established by 
the interval.  Further, with a change in direction, the note 
should be either a complete return, or a near return.  With a 
small interval, the only contributor to expectation is the return 
characteristic. 

Pitch Proximity 
Pitch proximity is essentially identical to the proximity 
principle of the I-R model in that, the closer a tone is to the 
previous pitch, the greater the expectation for that tone.  The 
unison tone (i.e., the same tone) is the most expected tone and 
expectations fall off linearly and absolutely from this tone. 
 
 Schellenberg (1997) evaluated the predictive power 
of the I-R and Two-Factor models by applying them to a set 
of expectancy ratings reported by Cuddy and Lunney (1995). 
Expectancy ratings are collected through a melodic 
expectation task wherein participants are played a melodic 
fragment (i.e., a melody ending in an implicative interval) 
followed by a probe tone.  The participants are asked to rate 
the tone according to how well it completes the melodic 
fragment following the logic that a highly expected tone will 
be given a high rating.  Typically, multiple fragments, each 
with a unique implicative interval, are used and over the 
course of the entire experiment these fragments are heard in 
conjunction with a wide range of probe tones.  This procedure 
results in an expectancy profile for each melody for each 
subject.  A multiple regression is then performed on these 
ratings using the principles of the models as predictors, with a 
model’s success being determined by its predictive power. 
 Schellenberg (1997) found that the Two-Factor 
model explained 72.5% of the variance in the expectancy 
ratings reported by Cuddy and Lunney (1995), compared to 
the I-R model's 64.0%.  In a prospective study of similar 
design, Schellenberg et al. (2002) again found the two-factor 
model to be as successful or more successful than the I-R 
model in accounting for the variance of the listener’s ratings 
(but see Krumhansl, 1995; Krumhansl et al., 1999; 
Thompson, Cuddy, & Plaus, 1997).  These results raise the 
question of whether pitch proximity and pitch reversal are the 
fundamental principles of melodic expectancy.  Further, the 
fact that these principles require different degrees of context, 
as well other evidence that these principles appear to be 
sensitive to one’s musical culture (Carlsen, 1981; Thompson 
et al., 1997) raises the question of whether these principles 
might be learned through musical exposure.  The goal here is 
to test the feasibility of learning through mere exposure and to 
propose a candidate learning process. 

Developing Melodic Expectation 
The proximity principle of the two-factor model is predictive 
of the expectancy ratings of children as young as seven years 

old as well as those of adults and children of intermediate 
ages (Schellenberg et al., 2002).  Further, this principle 
explains a majority of the variance as compared to the 
principle of pitch reversal in all groups.  Pitch reversal, on the 
other hand, only emerges as a significant predictor in adults, 
or children with an elevated musical ability.  For this latter 
group, pitch reversal emerges in children as young as five 
years old. 
 The evidence for the emergence of pitch reversal 
only after significant musical experience has thus been 
presented, but the emergence of pitch proximity (as opposed 
to an innate predisposition) is still in question.  Its presence in 
children as young as seven and five years old may provide 
evidence against a learning-based account, however this 
depends largely on how easily such a principle might be 
learned in a given stimulus environment.  It is the goal of the 
present examination to determine just how easily such a 
principle might be learned by an SRN exposed to sequences 
of simplistic melodies, such as those found in nursery rhymes 
and folk songs.  The choice of an SRN for the present project 
was driven by the fact that it is a computational system with 
very little structure, yet the ability to process sequences of 
information and the fundamental characteristic of expectancy 
in its operation.  Further, the SRN's demonstrated success 
with a wide variety of procedural learning tasks (e.g., syntax, 
artificial grammar, digit entering, word form, and action 
learning) links the computational model to a potential 
learning process that further empirical investigations can aim 
to verify. 

The Computational Model 

Architecture 
In order to maintain the focus of the present investigation on 
the note-to-note processing of melodies with notes being 
described as abstract primitives, and thus maintain the spirit 
of Narmour’s (1990) original analysis, the representation of 
notes in the network were localist.  Specifically, twelve nodes 
in the input layer and twelve nodes in the output layer 
represented each of the tones on a chromatic scale (see Figure 
1).  Taking advantage of the principle of enharmonic 
equivalence (whereby sharpening a note is perceptually 
equivalent to flattening a note one whole tone above the 
sharpened note), one node was used to represent equivalent 
sharps and flats (e.g., A-sharp/B-flat).   

In order to easily expand the representational 
capability of the network and represent similarity between the 
same notes in different octaves, octave information was also 
represented by a single localist node.  Four nodes in the input 
layer and the output layer each represented a different octave 
according to the number given to them in musical notation 
(e.g., the octave below middle C=3, the octave containing 
middle C=4, and so on).  Together, these sixteen input and 
output nodes can represent any note from C3 – B6. 

Inherent within the SRN is the abstract 
representation of local musical context through recurrence 
between the hidden layer and a separate context layer, both of 
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which lie between the input and output layers.  The hidden 
unit sends activation through one-to-one, non-modifiable, 
connections to the context layer, which in turn sends 
activation through modifiable connections back to the hidden 
layer. Upon presentation of a note, the resultant  activation at 
the hidden layer is copied onto the context layer. This context 
is then presented alongside the next input event and the 
context's influence is determined by the strength of the 
connection weights between the context and the hidden layer.  
Thus, information about previous notes and the current note is 
available to the model.  The hidden layer and context layer 
were each made up of four units. 
 
Training Corpus 
The training set for the model was created from 100 melodic 
sequences.  These sequences were actual songs chosen from 
three books containing traditional, Western, children’s and 
folk songs (Mitchell, 1968, Raph, 1964; Seeger, 1948).  
Transcriptions of these songs in the ABC ASCII notation 
were downloaded from an on-line depository (Chambers, 
n.d.).  84 of these sequences were completely unique and 16 
of these sequences were repeated titles transposed into 
different keys.  The downloaded text files were then 
processed so as to extract the sequence of tones that make up 
the melody of the song.  In all, 9,175 stimulus events were 
represented. 

Training Procedure 
During training, songs from the training corpus were selected 
randomly without replacement.  For each song, notes were 
presented one at a time to the SRN’s input layer, resulting in 
activation at the output layer, which will be interpreted as the 
network’s prediction, or expectation, of what the next note 
will be.  In order to train the network, the actual next note (or 
in the case of the last note of a song, a blank vector) was used 
as a target and the back-propagation learning algorithm was 
used to modify the connection weights of the system after 
each stimulus event based on the error between the model’s 

prediction and the actual next note.  The learning parameters 
of this algorithm were set as follows: learning rate = .01, 
momentum = .9, hysteresis, or µ,  = .3.  One training epoch 
constituted one pass through the training set, or one 
presentation of all one hundred songs.   

Testing Procedure 
The testing materials were notations of the melodic fragments 
presented to participants by Schellenberg et al. (2002, Figure 
3).  Each fragment was 14 - 16 notes in length and selected 
from an Acadian (French-speaking Canadians from the 
Maritime Provinces) folk song.  Fragments were selected 
from songs in the Acadian culture to eliminate the possibility 
that participants would have any a priori familiarity with the 
fragments.  Further, fragments were selected from these songs 
such that they ended in an upward implicative interval, which 
is considered to be more implicative than a downward 
interval.  Lastly, two of the implicative intervals were large (9 
& 10 semitones), providing an opportunity for the pitch 
reversal principle to emerge, while the other two intervals 
were small (2 & 3 semitones). 
 The model was tested on every epoch.  At test, 
learning was turned off and each of the melodic fragments 
was presented to the model.  Following the final stimulus 
event of a fragment (the second tone of the implicative 
interval), the activation levels of the output nodes were 
recorded.  The model’s prediction of a particular note in a 
specific octave (e.g., C4) was computed as the dot product of 
this final output vector and the target vector for the note in 
question.  This dot product was then treated as the expectancy 
rating of the model and scaled so as to match the likert scale 
ratings reported by Schellenberg et al. (2002, Figure 4).  This 
measure was used in order to functionally bind note and 
octave information, which must be done in order to translate 
the activation of the output vector into a metric akin to an 
expectancy rating.  After this measure was taken for each test 
sequence, learning was turned back on and the model was 
trained for another epoch before being tested again. 

We did not expect that this simple model, learning 
from a simple training set, would be able to capture all the 
nuances in expectancy ratings that human data show. Rather, 
we wished to examine whether the principles developed as 
descriptions of these expectancy ratings might emerge as a 
result of learning through exposure to nursery rhymes.  Given 
the pervasiveness across age groups and explanatory power of 
pitch proximity in the ratings reported by Schellenberg et al. 
(2002), this principle seemed the one most likely to be 
evident in the computational model.  Pitch reversal, on the 
other hand, would only be evident to the extent that a.) the 
model was able to take larger units of context into account (as 
proposed by Schellenberg et al. for humans) and b.) large 
implicative intervals were prevalent in the simple melodies  
of the training set. 

Simulation Results & Analysis 
 Table 1 shows correlations between the model’s 
expectancy ratings and the behavioral data, estimated from 

    

 C C# D D# E F F# G G# A A# B 3 4 5 6 

 C C# D D# E F F# G G# A A# B 3 4 5 6 

Figure 1:  Representational scheme used in the present 
SRN.  The first 12 input and output nodes are localist units 
representing each note on the chromatic scale.  The final 4 
nodes are localist units representing each octave region the 
network might encounter. 
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Figure 4 of Schellenberg et al. (2002).  Overall, the model 
correlates the best with expectancy ratings generated for 
smaller implicative intervals than for larger implicative 
intervals and the ratings of older children better than adults 
and younger children (see Table 1).  Furthermore, these 
correlations are evident after just one epoch of training.  For 
melody 1, the model shows a significant correlation (p < .05 
for all correlations) with ratings from all age groups [rs (13) = 
.829, .843, .761 for adults, older children, and younger 
children respectively].  For melody 2, the model correlates 
significantly with only the adults (r = .699) and the older 
children (r = .866).  For melody 3, which ends in a large 
implicative interval, the model again correlates significantly 
with adults (r = .515) and older children (r = .602), but not 
younger children.  Lastly, for melody 4, which also ends in a 
large implicative interval, the model only correlates 
significantly with adults (r = .480) and older children (r = 
.582).  Interestingly, these correlations are robust to additional 
learning.  With 30 more epochs of training, the correlations 
change an average of only .004. 

The correlations suggest that the model settles 
quickly into a state that creates expectancies that are most like 
the older children (see Figure 2) and, in the current 
architecture, are robust to further learning1. However, it is 
also clear that the model has difficulty in generating a 
psychologically valid expectation when given a large 
implicative interval, where pitch reversal is at its height in 
terms of creating expectations.  To further investigate these 
results, we performed a multiple regression analysis, 
including pitch proximity and pitch reversal as predictors of 
the model’s expectancy ratings, as Schellenberg et al. did for 
step two of a hierarchical regression for the human ratings.   
The analysis revealed that the two-factor model is indeed a 
significant predictor of the model's rating behavior, F(2, 59) = 
49.45, p < .05, adjusted R2 = .622.  However, only the 
proximity factor was a significant contributor to the model, t 
(59) = -9.90, p < .05.  This regression confirmed that the 
model behaves according to the principle of pitch proximity, 
but not reversal.   

Inspection of the pitch profiles generated by the 
model, compared to the profiles of older children provides 
visual indication of statistical findings (see Figure 2).  While 
the expectancy ratings of notes within the same octave as the 
final tone (the center point of the graph) are high, there is a 
sharp drop off between octaves, while the ratings of the 
humans show smoother transitions in ratings between 
octaves. Further, expectancy ratings in the model do not show 
an elevation at the first note of the implicative interval 
(denoted by an asterisk on the x-axis) or surrounding tones, 
which is predicted by the principle of pitch reversal. 

A second multiple regression analysis revealed that 
adding the simple frequency of a note in the training set as a 
predictor variable does improve the predictive power of the 
                                                           
1 Support for this claim can also be gathered from a procedurally-
identical simulation which was done with an SRN with 100 hidden 
units that was trained for 10,000 epochs at a learning rate of .001 
and produced approximately the same results at test. 

model.  This three-factor model is again a significant 
predictor of rating behavior, F(3, 59) = 35.92, p < .05, 
adjusted R2 = .640.  Further, the simple frequency factor is a 
nearly significant contributor to the model, t (59) = 1.97, p = 
.05, while pitch proximity remains a significant contributor, t 
(59) = -6.58, p < .05.  Thus the model was not simply 
tracking stimulus frequency, but it does contribute to its 
expectancies. 
 The simple correlations and multiple regressions 
indicate that the model is producing ratings that conform most 
to those that are predicted by Schellenberg's (1997) proximity 
principle and which are most like the profiles of older 
children, who have also been shown to produce profiles that 
are primarily predicted by the proximity principle.  The 
regressions also revealed that the model's ratings are 
influenced by the melodic context of the test sequence, not 
just the simple frequencies of notes in the training set.  We 
turn now to a more in-depth analysis of the training set to 
examine whether the data set differentially embodies pitch 
proximity, or if pitch reversal could be reasonably expected to 
emerge from this set. 

Corpus Analysis 
The main motivation for this analysis is to determine the 
prevalence of large implicative intervals compared to simple 
frequencies and small intervals, both of which have proven to 
be significant predictors of the model's expectancy ratings.  
These data are also interesting in and of themselves, as they 
reveal information about the degree of support for the 
theoretical principals being examined here in the intervallic 
statistics of real songs. 

In terms of simple frequencies, the 4 most frequent 
notes (A4, G4, B4, and D5 respectively) each occur more than 
1,000 times.  The next most frequent are 11 notes that occur 
between 100 and 900 times.  This second group includes only 
two sharps (F#4 and A#4) and all of the tones are in the fourth 
and fifth octave.  The least frequent group includes most of 
the sharps in the corpus as members, and the only two notes 
that fall outside of the fourth and fifth octave (B3 and A3).
 Moving to note intervals, 4,263 of the transitions are 
small intervals and the two most common intervals involving 
pitch movement are +/- 2 semitones (1,129 and 1,226 
occurrences, respectively).  However, even more frequent 
than these two interval sizes are unison intervals, which occur 
1,657 times.  A visual inspection of Figure 2 indicates that the 
model appears to favor movement over laterality.   

Table 1:  Correlations between the ratings of the model after 
one epoch of training and the three human groups. * p < .05. 
 

Melody 
(Interval 

Size) 

Adult Old  
Child 

Young 
Child 

1 (Small) .829* .843* .761* 
2 (Small) .699* .866* .180 
3 (Large) .515* .602* .188 
4 (Large) .480* .582* .134 
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In terms of large intervals, there are only 3,255 large 
intervals, or slightly more than one-third of the corpus. Given 
a large implicative interval, the realization interval does tend 
to return back towards the first note of the implicative interval 
(there are 1,412 such returns), but it is also just as likely to 
stay near the last note.  A small interval following a large 
interval occurs 1,240 times and is only slightly more likely to 
be a reversal of pitch contour.  There are also 514 unison 
tones following a large interval, which means that proximity 
is a general property of the data set, rather than one that is 
specific to small or large intervals, and is thus learned by the 
model as this more general property, blocking the learning of 
the much lower frequency large returns following large 
intervals. 

While large intervals are a large part of the data set, 
they are not as common as smaller intervals (including 
unisons).  This presents the question of whether more 
sensitive listeners, who adhere to pitch reversal, have greater 
experience with large implicative intervals or if the 
responsible learning mechanisms are able to extract these less 
dominant characteristics of music. 

Discussion 
In the area of music cognition there are descriptions of 
perceptual principles that dictate human expectations for 
musical notes and which may be a result of learning.  The 
present investigation determined the extent to which an SRN 
acts in accordance with such principles following training on 
a small set of musical sequences.  This project was 
undertaken in the spirit of Schellenberg’s (1997) 
simplification of a larger, more specific theory of musical 
expectancy as well as the spirit of the many cognitive 
scientists who have applied SRNs to procedural learning 
tasks. 
 The expectancy ratings generated by the model after 
just one epoch of training were most like those generated by 
older children in Schellenberg et al. (2002) and were 
indicative of a system operating according to a combination 
of simple frequency and pitch proximity, but not pitch 
reversal.  An analysis of the training set revealed that pitch 
proximity indeed appears to be a general property of both 
large and small implicative intervals, rather than a principle 
which is specific to one or the other.  It also revealed that 
pitch reversal is a much smaller component of the training set 

Figure 2: Rating profiles for the SRN and older children from Schellenberg et al (2002).  The center note on the x-axis 
is the last note of the melodic fragment, the asterisk denotes the next-to-last note heard.  The profiles of the small 
implicative intervals (Melody 1 and Melody 2) are on the left, the profiles for the large intervals (Melody 3 and 4) are
on the right. 
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than proximity, leading to the question of how the principle 
emerges in more experienced listeners. 
 Future work on this model should be directed 
towards providing more information to the network in order 
to establish how these factors might influence the 
expectations of the network. For instance, adding a self-
organizing map that interacts with the output layer of the 
model may provide the model with top-down information 
regarding modes and keys, would allow the model to make 
contact with previously mentioned models, and would 
implement Narmour's (1990) top-down versus bottom-up 
distinction.  Another line of inquiry may be in determining 
the extent to which varied and more complex musical 
exposure might account for the experience-based findings of 
Schellenberg et al. (2002). 
 Another potential extension of the model could be to 
explicitly represent larger amounts of context by adding 
additional layers to the recurrent portion of the model.  This 
would force the model to represent longer time sequences and 
potentially allow it to learn the principle of pitch reversal 
from the few examples found in the current training set.  An 
additional benefit to this architecture would be that the model 
might begin to memorize individual songs because it would 
have some basis for recognizing songs and this memorization 
might allow the model to develop, rather than maintaining the 
stable state it currently displays (cf. Bharucha & Todd (1989). 
 In general, the current application of an SRN to the 
musical domain is a novel contribution in this area, which 
may help to provide information about the role of experience 
and learning in musical perception and the processes involved 
in the acquisition of melodic expectation.  It also proposes a 
candidate learning process for the acquisition of melodic 
expectancy, procedural learning, and the success of the model 
in this task provides evidence that pursuing the exploration of 
an empirical relationship between expectation and 
performance on a procedural task may be a fruitful line of 
experimental inquiry. 
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