
UCLA
UCLA Previously Published Works

Title

Reproducibility of lung nodule radiomic features: Multivariable and univariable investigations 
that account for interactions between CT acquisition and reconstruction parameters

Permalink

https://escholarship.org/uc/item/1tr232kf

Journal

Medical Physics, 48(6)

ISSN

0094-2405

Authors

Emaminejad, Nastaran
Wahi‐Anwar, Muhammad Wasil
Kim, Grace Hyun J
et al.

Publication Date

2021-06-01

DOI

10.1002/mp.14830
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tr232kf
https://escholarship.org/uc/item/1tr232kf#author
https://escholarship.org
http://www.cdlib.org/


Reproducibility of Lung Nodule Radiomic Features: Multivariable 
and Univariable Investigations that Account for Interactions 
Between CT Acquisition and Reconstruction Parameters

Nastaran Emaminejad, Muhammad Wasil Wahi-Anwar, Grace Hyun J. Kim, William Hsu, 
Matthew Brown, Michael McNitt-Gray*

Department of Radiological Sciences, David Geffen School of Medicine at UCLA

Abstract

Purpose: Recent studies have demonstrated a lack of reproducibility of radiomic features in 

response to variations in CT parameters. In addition, reproducibility of radiomic features has not 

been well established in clinical datasets. We aimed to investigate the effects of a wide range of 

CT acquisition and reconstruction parameters on radiomic features in a realistic setting using 

clinical low dose lung cancer screening cases. We performed univariable and multivariable 

explorations to consider the effects of individual parameters and the simultaneous interactions 

between three different acquisition/reconstruction parameters of radiation dose level, reconstructed 

slice thickness and kernel.

Method: A cohort of 89 lung cancer screening patients were collected that each had a solid lung 

nodule >4mm diameter. A computational pipeline was used to perform a simulation of dose 

reduction of the raw projection data, collected from patient scans. This was followed by 

reconstruction of raw data with weighted filter back projection (wFBP) algorithm and automatic 

lung nodule detection and segmentation using a computer-aided detection tool. For each patient, 

36 different image datasets were created corresponding to dose levels of 100%, 50%, 25% and 

10% of the original dose level, three slice thicknesses of 0.6mm, 1mm, and 2mm, as well as three 

reconstruction kernels of smooth, medium, and sharp. For each nodule, 226 well-known radiomic 

features were calculated at each image condition. The reproducibility of radiomic features was 

first evaluated by measuring the inter-condition agreement of the feature values among the 36 

image conditions. Then in a series of univariable analyses, the impact of individual CT parameters 

was assessed by selecting subsets of conditions with one varying and two constant CT parameters. 

In each subset, intra-parameter agreements were assessed. Overall Concordance Correlation 

Coefficient (OCCC) served as the measure of agreement. An OCCC≥0.9 implied strong agreement 

and reproducibility of radiomic features in inter-condition or intra-parameter comparisons. 
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Furthermore, the interaction of CT parameters in impacting radiomic feature values was 

investigated via ANOVA.

Results: All included radiomic features lacked inter-condition reproducibility (CCC<0.9) among 

all the 36 conditions. Out of 226 radiomic features analyzed, only 17 and 18 features were 

considered reproducible (CCC≥0.9) to dose and kernel variation, respectively, within the 

corresponding condition subsets. Slice thickness demonstrated the largest impact on radiomic 

feature values where only one to five features were reproducible at a few condition subsets. 

ANOVA revealed significant interactions (p<0.05) between CT parameters affecting the variability 

of >50% of radiomic features.

Conclusion: We systematically explored the multidimensional space of CT parameters in 

affecting lung nodule radiomic features. Univariable and multivariable analyses of this study not 

only showed the lack of reproducibility of the majority of radiomic features but also revealed 

existing interactions among CT parameters, meaning that the effect of individual CT parameters 

on radiomic features can be conditional upon other CT acquisition and reconstruction parameters. 

Our findings advise on careful radiomic feature selection and attention to the inclusion criteria for 

CT image acquisition protocols within the datasets of radiomic studies.

Keywords

Quantitative imaging/analysis; Radiomics; Reproducibility; CT Acquisition and Reconstruction 
Conditions; Multivariable Analysis; Univariable Analysis; Lung Nodules; Biomarkers

1. Introduction:

Radiomics is a continuously expanding field in medical imaging research. Radiomic features 

are descriptors calculated over tumor regions on medical images and describe various 

properties of tumor such as size, shape, and tissue heterogeneity1. Several radiomic studies 

have shown the power of CT radiomic features of lung tumors to provide decision support 

for diagnostic or prognostic tasks in lung cancer2–4 or lung cancer screening patients5–8. 

These studies have demonstrated the potential of radiomic features to serve as a digital 

biomarker in phenotyping lung tumor tissue9, describing its histopathological 

characteristics10, serving as a computer-aided tool for the radiologist in cancer diagnosis as 

well as for oncologists11 to predict treatment outcome and perform patient survival analysis.

Despite the widespread use of radiomics in research, radiomics still faces uncertainties and 

concerns in its reliability which inhibits its adoption into routine clinical practice. Other than 

the standardization recommended by Quantitative Imaging Biomarkers Alliance (QIBA)12 

for volume measurements of lung nodules, there are no other guidelines or standards in chest 

CT protocols regarding acquisition and reconstruction parameter settings that can be applied 

in a radiomics study for non-volumetric radiomic features. Many radiomic studies have been 

implemented by using retrospective image data without controlling for CT scan parameters, 

resulting in datasets with a heterogenous set of CT acquisition and reconstruction conditions. 

Since different choices of CT scan parameters can affect image quality differently, there is a 

risk that the radiomic feature quantification can differ between different datasets with 

heterogenous set of CT parameters. As a consequence, the results of many radiomic studies 
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do not generalize between research centers that use scans with different protocols13,14. 

Generalizability or reproducibility is a crucial requirement for any radiomic feature to serve 

as a reliable imaging biomarker as well as adoption into clinical practice. If the radiomic 

features that are used in decision support systems are not reproducible, they may cause 

inconsistency of measurements and predictions. Hence, it is necessary to have an 

understanding of the reproducibility of radiomic features. However, there is still a lack of 

sufficient knowledge regarding the impact of CT acquisition and reconstruction parameters 

on radiomic features of lung nodules in clinical patient datasets.

The current body of knowledge on the sources of uncertainty in CT radiomic features of 

lung nodules is limited to the exploration of radiomic robustness in phantom images or a few 

numbers of patient studies. As an example, a radiomics phantom, the Credence Cartridge 

Radiomics (CCR) phantom created by Mackin et. al.15, with two cartridges that match with 

texture and intensity characteristics of lung tumors, has been used in various studies to 

investigate the robustness of radiomic features16,17. Shafiq-Ul-Hassan, et. al.18 and Kim et. 
al.19 in their study on radiomic features of the CCR phantom, showed a significant impact of 

reconstruction kernel on most first-order and Gray Level Co-occurrence Matrix (GLCM) 

features. Other studies have used an anthropomorphic thoracic phantom20 with vasculature 

and synthetic nodule inserts to investigate the robustness of radiomic features. These works 

have reported notable variation of radiomic features due to variation of slice thickness and 

reconstruction algorithm21,22.

Even though phantom studies provide a basic understanding of the impact of acquisition 

protocols on image quality in general, the impacts on radiomic features differ when 

compared to patient datasets with nodules23. Phantom images do not provide a perfect 

representation of the complex shape and heterogenous composition patterns of lung tumors; 

thus, there is still a need for in-depth investigation of sources of variability in patient 

cohorts. However, due to the difficulty of acquiring patient images at variety of 

reconstruction or acquisition settings, there exist only a few studies investigating the 

robustness of radiomic features in patient datasets; Some studies focused on comparisons 

other than the ones discussed in our work, such as the impact of manual vs. automated tumor 

segmentation24, the variation of features between scan repetitions25, and impact of different 

CT scanners26. Some other studies have focused on the similar parameters in our study but 

are from other anatomical parts of the body; for example, Midya et. al.27, along with their 

phantom study, analyzed the effect of the variation of reconstruction kernel on radiomic 

features of liver lesions in one human abdominal CT. Additionally, Meyer et. al.28 

investigated the effect of reconstruction settings along with a variation of dose level in a 

patient cohort with liver lesions.

Currently, the patient studies of lung nodules are mostly limited to the exploration of the 

impact of only one or two parameters (generally reconstruction algorithm and/or slice 

thickness) on radiomic features of lung nodules. Little has been done to include varying dose 

(or other parameters) in addition to these, as it has not been feasible for investigators to 

obtain multiple CT images of patients at various dose levels. Kim et. al.19 studied inter-

reconstruction algorithm (FBP B50f kernel vs. iterative with strengths 3 and 5) along with 

intra- and inter-reader variability of 15 radiomic features of 42 pulmonary tumors. Zhao et. 
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al.29 studied the impact of CT reconstruction algorithm (sharp, smooth) and slice thickness 

(1.25mm, 2mm and 5mm) on 89 radiomic features of 32 lung cancer patients. Both these 

studies reported significant differences induced by variation of reconstruction algorithm. 

Among all lung nodule studies, to the best of our knowledge, only one study by Fave et. al.30 

explored the impact of radiation dose variation on radiomic features in patient datasets. 

However, this study was performed using Cone Beam CT images, which is a different 

modality compared to helical CT imaging. Hence, the impact of dose variation on CT 

radiomic features of patient lung nodules has remained as an unaddressed problem to this 

end.

As a summary, there are clear deviations between the robustness of radiomic features in 

phantom studies and patient studies. Additionally, there is a lack of studies that analyze the 

reproducibility of radiomic features in patient datasets. Moreover, the scope of available 

patient studies may be limited in terms of the range of parameters under investigation that 

has often resulted in univariable analyses that assess parameter impacts individually and one 

at a time. This demonstrates the need for further studies that examine the effect of multiple 

parameters simultaneously in radiomic features reproducibility within clinical datasets.

Motivated by these facts and to address the existing knowledge gap, we aimed to perform a 

systematic investigation of the reproducibility of radiomic features in patient datasets with 

lung nodules across a wide range of CT settings; we assessed the effect of three CT technical 

factors of dose and weighted filter back projection (wFBP) reconstruction parameters of 

kernel and slice thickness on radiomic features. The impact of these CT parameters was 

studied not only by univariable assessments but also by multivariable assessments that allow 

for a multi-faceted and simultaneous analysis of these parameters and reveals their 

interactions in affecting radiomic feature values. Our goals were 1) to understand whether 

radiomic features vary between different CT image conditions (consisting of different 

combinations of CT parameters) in our dataset, and 2) to understand how the CT parameters 

impact the radiomic features.

2. Materials and Methods:

2.1. Patient Cohort

Under IRB approval, we identified 89 patients who underwent a clinically indicated low 

dose lung cancer screening CT exam and who had a nodule identified that was ≥ 4mm in 

diameter in the clinical interpretation of that exam. All patients were scanned with a 

standard lung cancer screening CT protocol using a 64 slice multidetector CT scanner 

(Definition AS, Siemens Healthineers, Forchheim, Germany). The key acquisition and 

reconstruction parameters for the clinical exam were: 120 kV, CareDOSE 4D on, Quality 

reference mAs of 25, collimation of 64 × 0.6mm (using the z-flying focal spot), 0.5 second 

rotation time, pitch of 1.0, reconstructed slice thickness of 1.0mm (spacing 1.0 mm) and B30 

reconstruction kernel. For each case, the raw CT projection data (i.e., sinogram data) were 

collected for each scan. For each patient, only the largest representative nodule was included 

in the study. Table 1 describes the information regarding the range of nodule sizes included 

in the data.
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2.2. Image Data Simulation and Reconstruction

An in-house high-throughput pipeline31 processed the raw CT projection data (Figure 1) to 

first, create a series of simulated raw data at reduced-dose levels, and second, reconstruct the 

raw data using wFBP algorithm via a free-CT tool32. The resulting unique image dataset 

consisted of 36 different conditions representing wide range of dose levels, reconstruction 

kernels, and slice thicknesses as shown in Table 2. In this pipeline, the dose reduction 

simulation is done by leveraging a realistic noise model33 to add a calibrated amount of 

noise to the projection data; this approach has been described previously and used in similar 

studies by Young et. al.34,35. Young et. al. developed the current low dose simulation tool 

that applies the methods described by Zabic et. al.33, on our own multidetector-row CT 

scanner equipped with tube current modulation (TCM). The photon fluence and bowtie filter 

shape of this scanner were estimated by acquiring air scans. Calibrated levels of noise 

(sampled from altered Poisson distribution) were added to the original raw projection data to 

simulate specific amounts of dose reduction. Because all of our scans used TCM, the dose 

reduction was modeled as a linear scaling of the TCM function (which is recorded in the raw 

projection data of the scanner) with respect to the desired dose level for each patient scan 

(10%, 25% or 50% of the original dose), such that the quality reference mAs was the same 

for all patients within a dose level. Young et. al. validated the low dose simulation tool by 

making comparisons with scans of anthropomorphic chest/lung phantom both qualitatively 

and quantitatively (via mean and standard deviation of Hounsfield-unit values).

The free-CT tool performs reconstruction of raw projection data using wFBP algorithm at 

three different kernel settings of smooth, medium, and sharp that resemble Siemens B20, 

Siemens B45, and Siemens B70 respectively. Boedeker et. al.36 plotted the modulation 

transfer function (MTF) for Siemens wFBP reconstruction kernels in the range of B10-B80 

in their Figure 2 and Figure 3 that presents how the contrast changes at different spatial 

frequencies as a result of the application of different kernels. Hoffman et. al.32 has also 

plotted the profiles of the three free-CT kernels used in the current study in their figure 1.

Figure 2 shows an example of a nodule region under these 36 image conditions, and it 

demonstrates how the appearance of the nodule tissue and the noise changes as CT 

parameters change. Figures S3 – S5 in supplemental file show example of a whole lung 

image across various CT conditions.

The range of CT parameters was systematically chosen such that the resulting images cover 

a wide range of conditions. Additionally, this selection enabled us to push further on 

parameters, e.g., dose, to rigorous conditions (e.g., 10%) to understand the limits of 

tolerance for radiomic features.

2.3. Nodule Segmentation

An in-house Computer-Aided Detection (CAD) tool37 was used to perform automatic 

nodule detection and segmentation. For each nodule, three volumes of interest (VOI), each 

segmented at a different slice thickness, were selected. As shown in Figure 2, each VOI was 

mapped to the nodule images with the same slice thickness of the VOI to perform radiomic 

feature calculation. The rationale for this VOI selection and mapping was as follows: since it 
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is possible that nodule segmentations on images at different conditions vary in terms of 

shape and size, these variations can also impact feature values. For the purpose of this study, 

we aimed to control the segmentation to avoid its contribution to variation of radiomic 

features. Therefore, it is required to use the same VOI for feature calculations to keep nodule 

size and shape constant. However, because mapping the VOIs to different slice thicknesses 

results in inconsistencies due to different amounts of volume averaging, VOIs were only 

mapped to conditions with the same slice thickness. Therefore, three VOIs (corresponding to 

the three investigated slice thicknesses) were selected for each case to minimize the impact 

on radiomic feature values caused by variation of nodule segmentation.

2.4. Radiomic Feature Calculation

Although the IBSI has described38 a large number of radiomic features, we have selected a 

representative set of 226 well known and frequently used features for this study. These 

features included features that describe intensity-based and texture-based characteristics of 

the nodule region. Selected features, as described by Zwanenburg et. al.38, included 19 first-

order descriptors of voxel intensities and heterogeneity, 12 second-order features to describe 

heterogeneity of nodule tissue and spatial relationships in gray level intensities from the co-

occurrence matrix (GLCM), 16 gray level run length matrix (GLRLM), 16 gray level size 

zone matrix (GLSZM), 5 neighboring gray tone difference matrix (NGTDM), 14 Gray level 

dependence matrix (GLDM), as well as 144 first order wavelet features. Since in our study, 

the nodule region was kept constant within each slice thickness, radiomic features that 

describe nodule size or shape were not analyzed. All the descriptors used in this study were 

calculated using Pyradomics software package39 using the default settings, except for 

GLCM features. The settings used for these descriptors are shown in supplemental file 

(section 1). Each feature was calculated for each of the 89 nodules using the VOI defined for 

all 36 image conditions.

2.5. Analysis Metric for Assessing Radiomic Feature Reproducibility

A radiomic feature is considered reproducible when it shows strong agreement between its 

calculations under different image conditions (i.e., acquisition and reconstruction 

conditions). In order to evaluate the reproducibility of radiomic features among various CT 

image conditions, we measured the inter-condition agreements of radiomic feature values 

through Overall Concordance Correlation Coefficient (OCCC)40. OCCC is the weighted 

average of all pairwise Concordance Correlation Coefficients (CCC)41 between any two 

image conditions (refer to section 2 in supplemental file). According to the proposal by 

McBride42 and similar works43,44, CCC values of equal or higher than 0.9 are considered as 

moderate to strong agreement, hence in this study OCCC ≥ 0.9 was considered as strong 

agreement. Therefore, a radiomic feature with OCCC ≥ 0.9 among a set of CT image 

conditions was considered as reproducible within that condition set.

2.5.1 Inter-condition Reproducibility Among All 36 Conditions—Initially, to 

obtain an overall understanding to determine whether radiomic features vary in response to 

CT parameter variations in our dataset, we assessed inter-condition reproducibility. This 

involved measuring the radiomic feature value agreement between all the 36 available 

combinations of CT parameters. In this analysis, OCCC ≥ 0.9 for each radiomic feature 
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indicates high agreements and inter-condition reproducibility among all the 36 conditions. 

OCCC values for all radiomic features were then demonstrated in a bar plot.

2.5.2 Intra-parameter Reproducibility with Respect to Individual Parameters
—The inter-condition analysis among 36 conditions provides information as to whether 

radiomic features show variation in general. However, to understand the details of individual 

CT parameter impact on radiomic features, we assessed intra-parameter agreement of 

radiomic feature values.

For each radiomic feature, a series of univariable analysis was performed by selecting subset 

of conditions in which only one CT parameter varied while the two other CT parameters 

were kept constant. Intra-parameter agreement of radiomic feature values was measured 

among different levels of the varying CT parameter via OCCC. Figure 3 (a), (b) and (c) each 

show the set of univariable analyses for each of the three CT parameters and their 

corresponding subset of conditions. For example, to understand the impact of dose variation, 

intra-parameter agreement of radiomic features (Figure 3 (a)) was assessed as follows: 

subsets of conditions were selected wherein each subset, the kernel and slice thickness were 

fixed, but the dose varied from 100% to 10%. Each subset had a unique combination of fixed 

kernel and slice thickness; given three different kernels and three slice thicknesses, there 

were nine subsets for analysis of the effects of dose level. In each subset, agreement 

assessment with respect to dose variation is shown as d.ki_stj at kernel ki and slice thickness 

stj. The agreement (OCCCd . ki_stj) was then measured within each subset to identify whether 

the variation of dose impacts the feature values at kernel ki and slice thickness stj (refer to 

section 2 in supplemental file).

For each CT parameter, a heatmap was generated using the OCCC values of the 

corresponding subsets to visualize the agreements of each radiomic feature with respect to 

that CT parameter. The radiomic features that had OCCC ≥ 0.9 across all the corresponding 

subsets for a CT parameter, were considered reproducible against variation of that CT 

parameter within the ranges that were explored in this study. For example, in Figure 3 (a), 

for a feature to be considered reproducible against dose values of 10% – 100%, it has to 

have OCCCd . ki_stj ≥ 0.9 for all ki and stj levels of kernel and slice thickness.

2.5.3 Assessing Interaction of CT Parameters in Affecting Radiomic Feature 
Values—A multivariable analysis was performed to study interaction of CT parameters on 

radiomic feature values. For each radiomic feature (y), three-way ANOVA was fitted using 

kernel (α) and dose (β), and slice thickness (γ) (as categorical independent variables) as 

shown in equation (1). In this equation, kernel (α) is at three levels of (k1, k2, k3), dose (β) is 

at four values of [100, 50, 25, 10], slice thickness (γ) has three values of (0.6mm, 1mm, 

2mm). So, three main factors of kernel, dose, slice thickness, and two-way interactions of 

kernel and dose (αβ), kernel and slice thickness (αγ), and dose and slice thickness (βγ), and 

a three-way interaction term (αβγ) were included in the model. The interaction terms were 

tested in fitting the radiomic feature values. p-value ≤ 0.05 is used for the level of 

significance indicating the rejection of the null hypothesis (equations 2–5) and determined 

the significance of interaction between the corresponding CT parameters.
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yijkl = μ… + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl (1)

where i = 1,2,3 for kernel, j = 1,2,3,4 for dose, k = 1,2,3 for slice thickness, and l = 1 …, 89 

for number of patients. yijkl is the radiomic feature value for lth subject from a population 

with grand mean of μ… and variance of σ2, and εijkl ~ N (0, σ2) is the error term.

H0:αβij = 0,       Ha:αβij ≠ 0      for kernel i and dose j (2)

H0:αγik = 0,       Ha:αγik ≠ 0      for kernel i and slice tℎickness k (3)

H0:βγjk = 0,       Ha:βγjk ≠ 0      for  dose j  and  slice tℎickness k (4)

H0:αβγijk = 0,       Ha:αβγijk ≠ 0      for kernel i, dose j, slice tℎickness k (5)

3. Results:

3.1 Results of Inter-condition Reproducibility Analysis

When inter-condition reproducibility of radiomic feature was calculated among all 36 

different CT conditions, all features had OCCC<0.9, as shown in Figure 5 (non-wavelet 

features) and Figure S1 (wavelet features) in the supplemental file. This indicates that no 

feature is sufficiently robust to feature variation due across all 36 conditions. Among these 

features, first order features of mean and median intensity had OCCC ≅ 0.85 and a set of 8 

first order wavelet features had OCCC>0.8.

3.2 Results of Intra-parameter Reproducibility Analysis

3.2.1 Univariable Dose Analysis—The intra-parameter agreement of radiomic 

features after dose variations, measured within each of the nine subsets of CT conditions 

with constant kernel and constant slice thickness, indicated that several radiomic features are 

not reproducible against variation of dose. Figure 5(a) and Figure S2(a) in supplemental file 

show heatmaps of OCCCd . ki_stj for non-wavelet and wavelet features in response to 

variation of dose in each subset. Light green and dark green colors show reproducible 

features (OCCC≥0.9). Table 3 shows that 17 radiomic features were reproducible with 

respect to dose variations within all nine subsets of ki_stj. However, one first order, five 

GLCM, seven GLDM, nine GLRLM, ten GLSZM, two NGTDM, and 86 first order wavelet 

features were always impacted by dose variations in any given condition subsets of ki_stj 
(e.g. GLCM variance had OCCCd . ki_stj < 0.9 in all nine subsets in Figure 5(a)). The rest of 

the radiomic features responded differently to variation of dose level. These features were 

only reproducible at certain subsets.

Figure 6(a) shows the total number of radiomic features that were reproducible against 

variation of dose in each subset. In k1_st2 subset, with the smoothest kernel and thickest 

slice, 100 features are reproducible against variation of dose while in k3_st0.6 subset, that has 
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the sharpest kernel and thinnest slice, this number reduces to 19. Figure 6(a) shows the 

declining trend of number of features from k1_st2 to k3_st0.6 subsets. Hence, variation of 

dose has resulted in the least impact on radiomic feature values in k1_st2 subset, and the 

most impact in k3_st0.6 subset. Altogether, these results indicate that the impact of dose on 

radiomic feature values varied at different combinations of constant slice thickness and 

kernel. Overall, 94% of first order features, 42% of second order texture features, and 40% 

of wavelet features (especially at LLL decomposition: with low-pass filter in three 

dimensions) were reproducible against dose variations in at least one condition subset.

3.2.2 Univariable Kernel Analysis: Figure 5(b) and Figure S2 (b) in supplemental file 

show heatmaps for OCCCk . di_stj of non-wavelet and wavelet radiomic features within 12 

CT condition subsets of di_stj with constant dose and slice thickness. As shown in Table 3, 

the majority of features that were reproducible against dose variations in all subsets are also 

reproducible against variation of kernel within all 12 subsets of di_stj. Three first order 

features, ten GLCM, seven GLDM, eleven GLRLM, twelve GLSZM, two NGTDM, and 103 

first order wavelet features were never reproducible in response to variation of kernel and 

had OCCCk . di_stj < 0.9 at any given subset of di_stj. The rest of the radiomic features 

behaved differently in response to variation of kernel. According to Figure 6 (b), more 

features were reproducible at d100_st2, and the number of reproducible features declined at 

subsets with a lower controlled dose or a thinner slice thickness. This indicates that for some 

radiomic features, impact of kernel on feature values varied at different combinations of 

dose and slice thickness. Overall, 84% of first order features, 31% of second order texture 

features, and 28% of wavelet features (mainly at LLL decomposition) were reproducible 

against kernel variation in at least one condition subset.

3.2.2 Univariable Slice Thickness Analysis: Figure 5 (c) and Figure S2 (c) in 

supplemental file show heatmaps of OCCC between non-wavelet and wavelet radiomic 

features within 12 condition subsets of di_kj with constant dose and constant kernel. Poor 

agreements (OCCCk . di_kj < 0.9) among majority of radiomic features among the 

corresponding 12 subsets is indicative of large impact of variation of slice thickness on 

radiomic feature values that has resulted in only a few reproducible features in each subset 

as shown in Figure 6 (c). Among first order features, 90th percentile feature was 

reproducible within four subsets in response to variation of slice thickness. First order mean 

intensity (referred as 1storder_Mean) had OCCC in the range of (0.81, 0.87). One GLDM 

feature and three first order wavelet features were also reproducible within few controlled 

condition subsets.

3.3 Interaction of CT Parameters in Affecting Radiomic Feature Values

Table 4 summarizes the percentage of radiomic features that were impacted by interaction of 

CT parameters. Interaction of CT parameters affected up to 50% of non-wavelet and more 

than 50% of wavelet radiomic features. This table demonstrates that the effect of variation of 

the three CT parameters (i.e., slice thickness, dose, kernel) on radiomic feature values is 

dependent upon each other. Interestingly, these results were in agreement with the 

observations in Figure 5. For example, a feature like mean intensity (referred as 
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1storder_Mean) that has OCCC ≥ 0.9 in response to dose and kernel variations in all 

corresponding condition subsets (Figure 5 (a) and (b)) and has OCCC < 0.9 in all subsets in 

response to slice thickness variation (Figure 5 (c)), is not impacted by interaction of any CT 

parameters (p > 0.05). However, for some instances of features, such as standard deviation 

(1storder_SD), radiomic features are not only dependent on variation of each individual CT 

parameter but are also dependent on the interaction of all three CT parameters. Other 

instances of features (e.g., glcm_correlation, glcm_dissimilarity, 1storder 
RootMeanSquared, etc.) that have OCCC ≥ 0.9 in few subsets and then show poor 

agreements in other subsets (OCCC < 0.9) were also among the features that were affected 

by interaction of CT parameters.

4. Discussion:

The successful use of radiomics features in building reliable predictive models in a clinical 

setting is highly dependent on understanding and overcoming its challenges. Given that few 

studies have explored the robustness issue of radiomics in the context of CT image protocols 

in clinical datasets with chest CT scans, we aimed to expand the scope of prior patient 

studies23 in understanding the reproducibility of radiomic features. Our purpose was to 

overcome the limitations of the current literature, such as the lack of systematic 

representation of CT conditions and the lack of analysis of a wide range of CT scan settings 

in a multi-faceted and simultaneous fashion that accounts for interactions among CT 

parameters. We addressed the existing knowledge gap regarding the impact of variation of 

set of CT technical parameters (i.e. dose, slice thickness, and kernel) on lung nodule 

radiomic features extracted from patient scan datasets.

We used a unique image dataset and systematically assessed impact of wide range of CT 

acquisition and reconstruction conditions both individually and simultaneously. While it is 

not feasible to acquire multiple CT scans of patients at different dose levels, we were able to 

study the impact of dose on radiomic features calculated from the same patients through the 

application of our validated and published pipeline tool31 and its calibrated dose simulation 

module34.

Our study demonstrated the lack of inter-condition reproducibility of several first order, 

second order texture features, and wavelet features among 36 image conditions that 

consisted of a wide range of CT parameters of kernel, dose, and slice thickness (Figure 4). 

To further expand our knowledge of the impact of CT parameters on radiomic features, we 

assessed the individual effect of each CT parameter (Figure 3) along with their interactions 

through both univariable intra-parameter and multivariable analyses. Intra-parameter 

agreement analysis within several subsets of conditions with controlled parameters identified 

three groups of radiomic features: 1) features that were reproducible against variation of an 

individual CT parameter within all corresponding condition subsets (OCCC ≥ 0.9 in all 

condition subsets) as shown in Table 3, 2) features that were never reproducible (OCCC < 

0.9) with response to variation of an individual CT parameter in any condition subset (Figure 

5), and 3) features that were reproducible in some but not all condition subsets (Figure 5).
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Results of ANOVA (Table 4) suggest that the effect of CT parameter variation on a large 

number of radiomic features is bi-directional, varies in influence, and is conditional upon 

other CT parameters of the image. This therefore correlates with the observation that the 

impact of CT parameters on a group of radiomic features (group 3) varied at different 

condition subsets. Furthermore, from Figure 6, we realize that when features were calculated 

at images with higher noise (e.g., lower dose or thinner slice thickness) or sharper 

reconstruction kernels, the feature values were more susceptible to CT parameter variations 

as we see fewer numbers of reproducible features at these conditions.

Our study, compared to phantom studies, provides realistic insight on variability of radiomic 

features by investigating the issue of image protocol variation in a clinical dataset. For 

example, unlike the results from investigations on CCR phantoms16–18, our intra-parameter 

analyses on patient dataset revealed the large impact of variation of slice thickness on a 

majority of lung nodule radiomic features. In clinical images, the partial volume effect and 

volume averaging between image object (nodule) and its background (lung tissue) at thicker 

slice thicknesses impacts various characteristics such as nodule’s mean intensity. On the 

contrary, in CCR or water phantom images, since no nodule object is present, the regions 

depicted for feature calculations are not different compared to their background; hence, 

when slice thickness changes, volume averaging does not impact the radiomic feature value. 

Meanwhile, the impact of slice thickness has been previously reported in anthropomorphic 

phantom studies as well, where a nodule object different than background is present. For 

instance, results of studies by Kim et. al.22 and Zhao et. al.21, on anthropomorphic phantom 

images of lung with phantom nodules, also showed large variation of radiomic features due 

to slice thickness variation. While the nodule phantoms deviate from patient nodules - as 

they consist of uniform regions as opposed to possible non-uniform and heterogenous tissue 

of patient nodules - our results confirm that slice thickness variation impacts patient nodule 

radiomic features (on CT images within the explored range of image conditions) as well.

Within the intra-parameter comparisons, more radiomic features were reproducible when 

varying the dose level (i.e. OCCCd . ki_stj > 0.9), as compared to variation of kernel and slice 

thickness (as shown in Figure 6 (a) compared to Figure 6 (b) and Figure 6 (c)). This result is 

important as it indicates that dose reduction in CT imaging may be possible without 

affecting reproducibility of a set of radiomic features. The majority of texture features, 

unlike the first order features, were not reproducible in response to dose variations 

(OCCCd . ki_stj < 0.9). Similarly, Zhao et. al.29 and Kim et. al.19 reported a large variation of 

most texture features between two different reconstruction settings. The reproducibility of 

radiomic features in response to dose and kernel variations had trends that were in 

agreement with findings from phantom studies as well; Shafiq-ul-Hassan et. al.18 reported a 

large dependency of texture features to kernel variations compared to dose dependency of 

these features. MacKin et. al.45 found that most phantom radiomic features were robust 

against dose variations at FC18 reconstruction kernel and 5mm slice thickness within 

heterogenous CCR cartridges compared to homogenous cartridges.

While results of the current work support prior observations in showing reproducibility of a 

set of radiomic features to CT technical parameters, the findings also expand our knowledge 
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regarding the details of reproducibility of radiomic features on a wider variation of CT 

parameter combinations in a clinical dataset. The current work is a systematic study that has 

been performed in a multivariable fashion by exploring the multi-dimensional space of 

possible combinations of CT settings (i.e., at 36 conditions with varying dose, kernel, and 

slice thickness), including the interactions of these three parameters (e.g., low dose, thin 

slice and sharp kernel). This has enabled us to observe that reproducibility of some radiomic 

features varied between different subsets of controlled CT parameters (Figure 6).

Results of our study can have clinical implications. This study can be helpful for radiomic 

studies focused on low-dose lung cancer screening CT cases to enable early cancer 

diagnosis. Since the National Lung Screening Trial (NLST) provided evidence that low-dose 

CT can reduce lung cancer mortality rate46, various studies have explored the predictive 

power of radiomic features in lung cancer diagnosis and have found encouraging results in 

early cancer risk assessments5,6. This is an important contribution as, to the best of our 

knowledge, this is the first time that the reproducibility of radiomic features is assessed in 

depth in the context of low-dose screening CT.

The findings of this study can contribute to the design of future studies involving radiomic 

feature values and predictive models based on radiomic features: we have provided details of 

the reproducibility of a large number of well-known radiomic features to variation of image 

acquisition protocols that possibly occur in retrospective or prospective image datasets of 

radiomics studies. Interestingly, a set of radiomic features that were found as powerful 

prognostic biomarkers for NSCLC patients such as, GLRLM gray level non-uniformity and 

first order energy features, reported by Aerts et. al.4, and first order features of entropy and 

mean intensity that were reported by Anh et. al.47, were reproducible in response to dose and 

kernel variations in a majority of condition subsets in our study. This encourages researchers 

to consider a careful assessment of radiomic features before making a selection for the 

features to incorporate in radiomic research and predictive modeling. On the contrary, 

features like first order kurtosis and skewness, previously identified as prognostic and 

associated with genetic mutations of NSCLC patients48, were impacted by dose, kernel, or 

slice thickness variations in several condition subsets. This observation this warns against 

use of different CT reconstruction parameters, especially slice thickness, interchangeably. 

Furthermore, this implies that if a high-performing prediction model (e.g., machine learning 

models) is achieved by training on non-reproducible radiomic features from an image 

dataset with homogenous set of acquisition protocols, the model’s performance may not 

generalize well to radiomic features of CT images acquired at other protocols. On the other 

hand, if by using radiomic features from a heterogenous image dataset (e.g. multi-center 

data with heterogeneous acquisition protocols), a poor-performing model is achieved, it is 

possible that model’s performance may improve with proper selection of reproducible 

radiomic features or with harmonization and preprocessing approaches49,50.

Our study has its own limitations. We have not explored other potential factors in CT 

medical imaging that can impact robustness of radiomic features, such as inter-scanner 

variabilities, other CT parameters (field of view, kV, pitch, etc.), nodule segmentation 

algorithm, or the impact of variation of feature definition itself or software packages. For 

example, recently McNitt-Gray et. al.51 and Foy et. al.52 reported the possible impact of use 
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of different feature calculation software on radiomic feature (first-order and second-order 

GLCM feature) quantification, especially when features are computed with default software 

package parameters. These studies found that after applying a harmonization on parameter 

choices or feature computation implementations, agreement of radiomic features increased. 

Hence, it is expected to see similar trends in radiomic feature reproducibility against 

variation of CT parameters if other radiomic software packages are used at consistent 

settings compared to the settings used in this study.

Different reconstruction algorithms (wFBP vs. iterative) is another potential source of 

variation in radiomics, as a study of quantitative imaging biomarker of emphysema score 

reported substantial differences between the measured scores of patients over CT images 

with wFBP and iterative (Siemens SAFIRE) reconstruction algorithms53; however, while 

important, these factors were out of the scope of this study and remain as future work. 

Furthermore, the current study did not address diagnostic or prediction power of radiomic 

features, and mainly focused on robustness of these feature values. It is critical to also 

understand how the variations in CT image acquisition protocol can impact the radiomic 

feature power and its downstream predictions. Li et. al.54 found CT slice thickness as a 

significant factor impacting EGFR mutation prediction ability of a set of reproducible 

radiomic features and Kim et. al.55 reported variation of nodule classification performance 

of radiomic-based models due to variation of CT reconstruction algorithm. Further 

investigation into variation of predictive performance of radiomic features can be achieved 

by collecting prospective image dataset with raw CT projection data as well as patient 

diagnosis information. Prediction power of radiomic features and their agreement at 

different acquisition conditions can then be assessed using OCCC or Kappa agreement index 

as well.

While the choice of OCCC threshold was obtained by recommendations in literature42, it is 

also of interest to perform a sensitivity analysis with respect to the OCCC threshold. 

Additionally, while we have used a unique dataset of clinical patients with a wide range of 

CT reconstruction parameters and dose levels for the same patient since the dataset in hand 

is only from low-dose screening scans, it would be helpful to also explore these effects in 

images at higher dose level or in a different patient population, which remains as a future 

step. However, given that a wide variation and combination of different levels of CT 

parameters were examined in this study and the fact that findings of this study were in line 

with other patient studies at diagnostic dose level, further explorations may reveal similar 

trends in variation of radiomic features on images acquired with diagnostic scan acquisition 

parameters.

There are a set of important considerations for this study. First, in designing the range of CT 

parameters in question, we chose the range of slice thickness and kernel that reflect the 

current clinical practice of lung cancer screening CT scans. However, for dose, we have 

intentionally pushed the range to low dose levels so that we obtain an understanding from 

tolerance of radiomic features. While this has resulted in a range of low dose levels (e.g., 

10% of screening dose) that are not currently in clinical use, lower dose levels are being 

explored for lung cancer screening CT. For example, recently, Fletcher et. al.56 assessed 
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nodule detectability at low radiation dose levels down to CTDIvol of 0.4mGy (i.e. 

corresponding to 20% of screening dose in this study).

Additionally, while variation of CT parameters may result in variation of lung nodule 

segmentation itself which can then turn into further impact on radiomic feature values, in 

this study, we decided to isolate radiomic feature variations to differences in acquisition and 

reconstruction parameters by controlling the segmentation. Hence, investigation into 

contribution of segmentation variation to radiomic feature variability remains as a future 

work. In this context, it should be noted that, while we aimed to keep the nodule VOI as 

constant as possible between different conditions, it was not possible to use and map only 

one nodule VOI across all slice thicknesses due to inconsistencies and lack of precision in 

mapping one region from one slice thickness to a different slice thickness. Hence, for each 

subject, we used a different VOI for each slice thickness but kept the VOI constant among 

all image conditions within each slice thickness. The volume of these different VOIs used 

for feature calculation were in high agreement, having an OCCC of more than 0.97. It 

should be noted that even in the scenario of mapping of one VOI to all 36 conditions, there 

are still inevitable segmentation variations due to volume averaging or oversampling. Hence, 

the technique used in this study was identified as the best possible scenario to achieve 

consistent mapping of VOIs while maintaining shape as much as possible. Though, it should 

be noted that in our investigations, in the scenario with only one VOI mapping, slice 

thickness was still the CT parameter that had the greatest impact on radiomic feature values.

A crucial step for the future is addressing the variations observed in this study. The 

information provided regarding the relationship and the interactions between inherent 

characteristics of CT images (i.e., dose, kernel, and slice thickness) in affecting the lung 

nodule radiomic features, can contribute to implementation of strategies in avoiding or 

mitigating inter-condition variations impacting the reliability of a future radiomic study.

5. Conclusion:

In this study, we have explored the reproducibility of a set of well-known radiomic features 

in response to variation of CT image acquisition and reconstruction parameters of dose, 

kernel, and slice thickness. Since, in routine clinical imaging and between different clinical 

institutions, there is a possibility of differences in image acquisition protocols, it is important 

to understand how these differences impact the reliability of radiomic analysis. The work 

presented here constitutes a widely applicable experimental technique and methodology for 

assessing the robustness of radiomic features.

Results of this study determine that several radiomic features are impacted by the variation 

of CT parameters. Among the CT parameters investigated, slice thickness had the largest, 

and dose had the least impact on lung nodule radiomic feature values. This indicates that 

dose reduction may be possible without affecting the reliability of a set of radiomic features, 

but different slice thicknesses may not be used interchangeably. The multi-dimensional 

exploration of radiomic feature variability has revealed existing interactions between CT 

parameters in impacting radiomic feature quantification. These results can be leveraged to 

identify strategies for ensuring the reliability of radiomic analysis.
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Figure 1. 
Steps of image data creation from raw projections. Pipeline modules (in blue) first perform 

raw data simulation and then perform image reconstruction with wFBP algorithm.
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Figure 2. 
Sample nodule region at 36 different CT image conditions (four dose levels, three kernels, 

and three slice thicknesses) and the three different segmented nodule masks at three slice 

thicknesses. Each mask gets overlaid to all the images at the same slice thickness to identify 

the region for radiomic feature calculation.
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Figure 3. 
Measuring intra-parameter agreements of radiomic feature values to understand individual 

CT parameter impacts. Univariable agreement analysis due to variation of a) dose, b) kernel, 

and c) thickness (e.g., OCCCd . ki_stj assesses impact of dose d by measuring agreement of 

radiomic features at fixed kernel ki and slice thickness stj).
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Figure 4. 
Inter-condition agreement of radiomic features among 36 conditions. Vertical axis shows 

agreements of each feature value. Red dashed line shows the threshold of OCCC= 0.9 to 

indicate reproducible features across all 36 conditions.
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Figure 5. 
Agreement (OCCC) of non-wavelet radiomic features within condition subsets for analysis 

of a) impact of dose variation, b) impact of kernel variation, c) impact of slice thickness 

variation as shown by colors defined by the colormap. Colors in each column show 

agreements of radiomic features within the subset that is identified on the horizontal axis 

(e.g., k1_st2 shows impact of dose variation at k1 kernel and 2mm thickness). OCCC≤0.8 

values were cut off at dark red color as it indicates very poor agreements.
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Figure 6. 
Number of reproducible features within each condition subset due to variation of an 

individual CT parameter when two other parameters are kept constant. (a): variation of dose 

in subsets with constant kernel and slice thickness, (b) variation of kernel in subsets with 

constant dose and slice thickness, (c): variation of slice thickness in subsets with constant 

dose and kernel.
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Table 1.

Range of nodule sizes of patients in the study

Axial Diameter (D) Nodule Counts

4mm ≤ D < 6mm 43

6mm ≤ D < 8mm 19

8mm ≤ D < 15mm 17

D ≥ 15mm 10
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Table 2.

Description of CT parameters of image dataset generated by the pipeline

Dose Level Slice Thickness Reconstruction Kernel
b

CT parameter ranges
100%

a
, 50%, 25%, 10%

2mm, 1mm,0.6mm Smooth (k1), Medium (k2), Sharp (k3)

a
100% dose level represents the standard lung cancer screening dose with CTDIvol ≅ 2mGy

b
Smooth, medium, and sharp kernels correlate to Siemens B20, Siemens B45, and Siemens B70 respectively
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Table 3.

Radiomic features that were reproducible after dose and kernel variations in all the corresponding subsets

Feature type Reproducible against dose variations in all ki_stj subsets Reproducible against kernel variations in all di_stj subsets

First order

Entropy Entropy

Mean Mean

Median Median

GLDM

Dependence entropy Dependence entropy

Dependence non-uniformity Dependence non-uniformity

Gray level non-uniformity Gray level non-uniformity

GLRLM Run length non-uniformity Run length non-uniformity

GLSZM Gray level non-uniformity Gray level non-uniformity

NGTDM Strength -

Wavelet

Wavelet-HLL mean Wavelet-HLL Mean

Wavelet-LLL 10th Percentile Wavelet-LHL Mean

Wavelet-LLL 90th Percentile Wavelet-LLH Mean

Wavelet-LLL energy Wavelet-LLL 10Percentile

Wavelet-LLL mean Wavelet-LLL 90Percentile

Wavelet-LLL median Wavelet-LLL energy

Wavelet-LLL root Mean Squared Wavelet-LLL mean

Wavelet-LLL total Energy Wavelet-LLL median

- Wavelet-LLL root mean squared

- Wavelet- LLL total Energy
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Table 4.

Percentage of radiomic features that were significantly impacted by interaction of CT parameters (with p ≤ 

0.05)

Kernel-Dose
a 

Interaction
Dose-Slice Thickness

b 

Interaction
Kernel-Slice Thickness

c 

Interaction
Three-way Interaction

d

Non-wavelet 
features

51% 59% 52% 35%

Wavelet features 74% 76% 71% 63%

a, b, c
Two-way interactions

d
Kernel-Dose-Slice Thickness interaction
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