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RESEARCH ARTICLE

Mucosal fluid glycoprotein DMBT1

suppresses twitching motility and virulence of

the opportunistic pathogen Pseudomonas

aeruginosa

Jianfang Li1, Matteo M. E. Metruccio1, David J. Evans1,2, Suzanne M. J. Fleiszig1,3*

1 School of Optometry, University of California, Berkeley, California, United States of America, 2 College of

Pharmacy, Touro University California, Vallejo, California, United States of America, 3 Graduate Groups in

Vision Science, Microbiology and Infectious Disease & Immunity, University of California, Berkeley, California,

United States of America

* fleiszig@berkeley.edu

Abstract

It is generally thought that mucosal fluids protect underlying epithelial surfaces against

opportunistic infection via their antimicrobial activity. However, our published data show that

human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeru-

ginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear

protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results

showed that tear fluid suppressed twitching motility, a type of surface-associated movement

conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal

of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhi-

bition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity.

Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear

components lacked the activity. Systematic protein fractionation, mass spectrometry, and

immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors

1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as

well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced dis-

ease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expres-

sion, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P.

aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB).

However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from

PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter

could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or

cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motil-

ity contributes to the mechanisms by which mucosal fluids protect against P. aeruginosa

infection. This study also advances our understanding of how mucosal fluids protect against

infection, and suggests directions for novel biocompatible strategies to protect our surface

epithelia against a major opportunistic pathogen.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006392 May 10, 2017 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Li J, Metruccio MME, Evans DJ, Fleiszig

SMJ (2017) Mucosal fluid glycoprotein DMBT1

suppresses twitching motility and virulence of the

opportunistic pathogen Pseudomonas aeruginosa.

PLoS Pathog 13(5): e1006392. https://doi.org/

10.1371/journal.ppat.1006392

Editor: Marvin Whiteley, The University of Texas at

Austin, UNITED STATES

Received: February 9, 2017

Accepted: April 28, 2017

Published: May 10, 2017

Copyright: © 2017 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Institutes of Health (R01 EY024060, SF), and by

the China Postdoctoral Council (20140085, JL).

The P. aeruginosa mutant collection was supported

by the National Institutes of Health (P30

DK089507, University of Washington, Seattle, WA).

The funders had no role in study design, data

https://doi.org/10.1371/journal.ppat.1006392
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006392&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006392&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006392&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006392&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006392&domain=pdf&date_stamp=2017-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006392&domain=pdf&date_stamp=2017-05-22
https://doi.org/10.1371/journal.ppat.1006392
https://doi.org/10.1371/journal.ppat.1006392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Author summary

Pseudomonas aeruginosa is an opportunistic pathogen that causes life-threatening infec-

tions. P. aeruginosa disease is increasing in prevalence while bacteria continue to evolve

antibiotic resistance. It is not clear how mucosal fluids usually protect against opportunis-

tic pathogens. Knowing the key ingredients would help us understand susceptibility and

develop novel biocompatible therapeutics. Mucosal fluid factors suppressing bacterial vir-

ulence may induce less bacterial resistance than traditional antimicrobials. Here we show

that DMBT1, an abundant mucosal fluid glycoprotein, enabled tear fluid to inhibit P. aer-
uginosa twitching motility. We also show DMBT1 directly binds pili, which mediate

twitching motility, suggesting a potential mechanism for twitching inhibition. Reflecting

the known importance of twitching motility in virulence, purified DMBT1 reduced P. aer-
uginosa traversal of human cornea epithelial cell layers in vitro, and protected against P.

aeruginosa induced disease in vivo, as does whole human tear fluid. These findings con-

tribute to our understanding of mucosal fluid protection against infection, and suggest

that DMBT1, or its derivatives, have potential as novel anti-virulence agents that protect

against infection.

Introduction

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen ubiquitous in our envi-

ronment. It is a leading cause of life-threatening infections in debilitated individuals in the

hospital setting [1], and of sight-threatening corneal disease in healthy people who wear con-

tact lenses [2, 3]. However, the mechanism(s) by which medical devices at any mucosal surface

predispose to infection with P. aeruginosa or other opportunists remains poorly understood

[4, 5].

The surface of the eye is normally bathed in tear fluid, which like other mucosal fluids con-

tains many proteins-peptides, lipids, small molecule metabolites, and electrolytes. Indeed,

more than 1000 proteins have been identified in healthy human tear fluid [6]. In addition to

playing antimicrobial roles, mucosal fluids function to provide lubrication, remove foreign

debris, provide homeostatic factors, and repair epithelial damage [7], Our previous studies

have confirmed that tear fluid collected from healthy people can protect corneas (of mice)

against P. aeruginosa infection in vivo [8].

Of likely relevance to the pathogenesis of contact lens related infections, when a contact

lens is worn it dramatically reduces normal tear exchange between the greater tear fluid reser-

voir and the space between the lens and ocular surface [9, 10]. Suggesting that tear fluid bio-

chemistry is altered under a worn lens, and that this is potentially relevant to the pathogenesis

of infection, bacteria inoculated on the back surface of worn lenses grew more efficiently after

8 h of wear compared to 1 h of wear [11]. Candidate antimicrobial tear components in tear

fluid that could be impacted by lens wear include; complement, defensins, lactoferrin, lipoca-

lin, lysozyme, secretory phospholipase A2, secretory IgA, soluble mucins (Muc5AC), and/or

surfactant proteins (SP-A, SP-D) [12].

However, mechanisms other than antimicrobial activity can also contribute to the protec-

tive activity of tear fluid against P. aeruginosa virulence. Indeed, only ~ 50% of P. aeruginosa
clinical isolates are susceptible to tear fluid bacteriostatic activity [13], but almost all show

reduced virulence in tear fluid. Further, these tear fluid activities are mechanistically separable

[13]. Relevant to this, tear fluid can act directly on epithelial cells to enhance their resistance to

P. aeruginosa virulence [13, 14] through upregulation of epithelial cell innate defense factors,

DMBT1 inhibition of P. aeruginosa twitching motility and virulence
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e.g. RNase7 and ST2 [14, 15], alterations to microRNA expression [14], and the regulation of

transcription factors NFκB and AP-1 [14]. Non-bacteriostatic activities of tear fluid also

include its capacity to disperse P. aeruginosa biofilms [16], which are thought to be key to the

pathogenesis of device-related infections.

A multitude of P. aeruginosa virulence factors can participate in virulence during corneal

infection, most playing redundant roles but some required for full virulence [4, 17]. Among

the major contributions is twitching motility [18, 19]. Twitching motility is a surface-associ-

ated bacterial movement conferred by extension and retraction of type IV pili (T4P) com-

monly used by Gram-negative bacteria [20]. While assisting bacterial adhesion to surfaces,

retraction of pili can bring bacteria into intimate contact with the surface, allowing it to

migrate away from the initial point of contact or toward an attractant, to reposition cells with

respect to one another (e.g. differentiation within a biofilm), and can also help cells efficiently

escape from surfaces when desirable [21]. In P. aeruginosa, the T4P consist of a polymer of the

PilA major pilin subunit, while the extension and retraction of pili are controlled by ATPases

PilB, PilU and PilT [22, 23]. While twitching motility mutants are able to adhere to, and

invade, human corneal epithelial cells grown in vitro, they have a reduced capacity to exit cells

after invasion [19]. Twitching mutants are also defective in their ability to traverse multilayers

of epithelial cells [19], which may explain their lack of virulence in vivo [18].

Given the protective effect of tear fluid against P. aeruginosa, and the critical role of twitch-

ing in corneal pathogenesis, we examined the impact of tear fluid on twitching motility. Sys-

tematic fractionation of human tear fluid, combined with mass spectrometry and immuno-

precipitation, identified DMBT1 (also known as glycoprotein-340) as required for tear inhibi-

tion of twitching motility. DMBT1 purified from saliva was sufficient when used alone for

inhibiting twitching, preventing P. aeruginosa traversal of multilayered epithelial in vitro, and

for reducing corneal disease severity in a murine model of P. aeruginosa keratitis. These results

suggest a novel function for mucosal fluid and specifically DMBT1 in innate defense against

infection.

Results

Human tear fluid inhibits P. aeruginosa twitching motility

Time-lapse imaging was used to examine the impact of human tear fluid on twitching motility

of P. aeruginosa strain PAO1. For this purpose, specialized agar media was used, absorbed

with undiluted human tear fluid or PBS (see Methods). For each sample, images were collected

with the colony edge positioned half way across the field. To determine speed of bacterial

movement, time-lapse imaging was done by repeated 10 second interval image capture over a

period of 300 seconds. Velocity of the twitching competent P. aeruginosa strain PAO1 was

compared with and without tear fluid added to the media. PAO1-pilA::Tn, lacking twitching

motility, was used as a negative control. Fig 1 shows the edge of representative bacterial colo-

nies over a period of 300 seconds (0, 150 and 300 seconds) for PAO1 with and without tear

fluid, and compared to the pilA twitching mutant control. Comparison of the colony edge at

each time point relative to the dotted white line illustrating the colony edge at the start of the

experiment, showed that tear fluid significantly reduced twitching motility compared to PBS

(Fig 1, S1, S2 and S3 Videos).

Fig 2 shows quantitative analysis of the impact of tear fluid on reducing twitching motility

quantitatively using three methods; i) averaging velocity of all bacteria in the field i.e., bacterial

motility in the whole field was corresponded to the standard deviation (σ) of pixel intensity in

a 5 min movie (Fig 2A and 2B), ii) examining movement of 10 individual bacteria at the colony

edge in a 5 min movie to better represent the concerted movements of twitching [24] (Fig 2C),

DMBT1 inhibition of P. aeruginosa twitching motility and virulence
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and iii) quantifying colony size over time for 3 colonies per sample, based on published data

that surface-associated twitching movement promotes colony expansion on solid surfaces [21]

(Fig 2D). In each instance, tear fluid exposure caused a dose-dependent inhibition of twitching

motility (as measured by reduced bacterial velocity and colony size expansion) after 4 h. Tear

fluid dilutions up to and including as low as 6.25% retained some degree of inhibition (Fig 2C

and 2D). Controls confirmed that tear fluid at 25% dilution, which inhibited twitching motility

similarly to undiluted tears, did not inhibit bacterial growth (Fig 2E).

Since we had previously shown that P. aeruginosa could overcome the cytoprotective activi-

ties of tear fluid with prolonged exposure (8 h or more) [13], we also examined the impact of

tear fluid (25%) on PAO1 twitching motility for up to 24 h. Tear fluid (25%) maintained inhi-

bition of twitching for up to 8 h (Fig 2F and 2G). At 24 h, twitching velocity was very slow in

PBS, and not significantly different from tear fluid-treated PAO1 or the pilA mutant (Fig 2F).

However, tear fluid retained significant inhibition of colony size expansion at 24 h (Fig 2G).

While that result likely reflected the cumulative effects of tear-mediated twitching inhibition, it

suggested that the bacteria do not readily adapt to tear inhibition of twitching, or that the tear

factor(s) involved are not readily compromised.

The above hypotheses were supported by experiments in which P. aeruginosa was pre-

treated with 25% tear fluid on twitching media for 24 h, before transfer to fresh media (PBS or

25% tear fluid) for 4 h. Results showed that 24 h tear pretreatment did not affect bacterial sus-

ceptibility to inhibition of twitching as measured by twitching velocity (Fig 3A) or colony size

expansion (Fig 3B). The data also showed that tear-exposed P. aeruginosa recovered twitching

once placed in PBS indicating reversible inhibition.

Several other P. aeruginosa strains were also tested for susceptibility to tear inhibition of

twitching motility (Fig 4). Strains 6206, PAK, and PA103 were each susceptible to tear inhibi-

tion as measured by reduced velocity (Fig 4A) or reduced colony size expansion (Fig 4B).

Some variability was noted between these strains and PAO1. For example, undiluted tear fluid

Fig 1. Human tear fluid inhibition of P. aeruginosa twitching motility. Captured frames of P. aeruginosa PAO1

twitching motility in a 5 min video after 4 h incubation on twitching media absorbed with PBS or undiluted human tear fluid.

The twitching mutant PAO1-pilA::Tn served as a negative control. A 5 min time-lapse video was captured at 10 s intervals

using a 60 × oil-immersion lens. Dotted lines indicate initial colony edges. Scale bar = 20 μm.

https://doi.org/10.1371/journal.ppat.1006392.g001
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was required for reducing twitching velocity of strains PAK and PA103. Nevertheless, these

data show that tear fluid inhibition of twitching motility is not restricted to one strain.

Identification of DMBT1 as a tear fluid factor inhibiting twitching motility

To begin to identify the tear factor(s) involved in twitching inhibition, human tear fluid was

boiled or treated with proteinase K prior to bacterial exposure. In each instance, tears lost their

Fig 2. Tear fluid inhibition of P. aeruginosa twitching motility in a dose-dependent manner. (A) PAO1 motility was

measured as the standard deviation (σ) of pixel intensity in a 5 min video. Larger standard deviations correspond to greater pixel

intensity modulation resulting from higher bacterial motility. Blue represents slower movement. Scale bar = 50 μm. (B) Effect of

tear fluid concentration on PAO1 twitching motility quantified using the above method. (C) Effect of tear fluid concentration on

PAO1 twitching quantified by displacement of bacteria in the leading edge of the colony from the first to last slide of the same

experiment shown in panel B. Ten single bacteria in the leading edge in each video were tracked. (D) Effect of tear fluid

concentration on PAO1 colony size at time zero and 4 h incubation times on twitching media in the same experiment shown in

panel B. (E) P. aeruginosa PAO1 growth on twitching media in PBS or 25% tear fluid. (F) PAO1 twitching velocity measured in 5

min videos on twitching media with PBS or 25% human tear fluid after different incubation times. (G) PAO1 colony size expansion

on twitching media with PBS or 25% human tear fluid after different incubation times. In each panel, data are expressed as the

mean ± SEM per sample from at least three independent experiments. Significance was determined by one-way ANOVA with

Tukey’s post-hoc analysis for twitching velocity and growth, and two-way ANOVA with Tukey’s post-hoc analysis for colony size.

****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1006392.g002
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inhibitory effects on twitching motility (Fig 5A and 5B) suggesting a heat-labile protein(s) was

involved. Lysozyme and lactoferrin (alone or combined) at concentrations found in human

tears [25] had no effect on twitching motility (Fig 5C). Commercially available contrived

human tears containing lysozyme, lipocalin, albumin, lactoferrin, and gamma-globulins, and

resembling tear fluid by SDS-PAGE (Fig 5D), also had no effect (Fig 5E). However, separation

of human tear fluid into molecular weight fractions greater or less than ~30 kDa (Fig 5F),

revealed that > ~30 kDa fractions inhibited twitching motility, while < ~30 kDa fractions did

not (P< 0.05, ANOVA) (Fig 5G).

Human tear fluid was separated into 7 fractions by size exclusion chromatography (Fig 6A

& S2A Fig), and each fraction tested for inhibition of twitching motility in duplicate experi-

ments. Consistent with our previous results (Fig 5F), only the high molecular weight fractions

(Fraction 1 in Fig 6A, and Fraction 2 in S2A Fig) significantly inhibited P. aeruginosa PAO1

twitching motility (Fig 6B & S2B Fig). Since the active fraction in the first experiment (S2A &

S2B Fig) was of high molecular weight, a different column material (Superose 6) was used for

Fig 3. P. aeruginosa does not adapt to tear fluid inhibition of twitching motility. PAO1 was pretreated

with PBS or 25% human tear fluid for 24 h on twitching media, then transferred to new twitching media with

PBS or 25% human tear fluid for 4 h. Bacterial twitching velocity in 5 min videos (A) and colony size expansion

(B) were measured. Data are shown as the mean ± SEM per sample from three independent experiments.

Significance was determined using two-way ANOVA with Tukey’s post-hoc analysis. ****, P < 0.0001;

***, P < 0.001; ns, not significant.

https://doi.org/10.1371/journal.ppat.1006392.g003

Fig 4. Human tear fluid inhibition of twitching motility on multiple P. aeruginosa strains. (A) Twitching

velocity of P. aeruginosa strains 6206, PAK, and PA103 under the same experimental conditions used for

PAO1. (B) Colony size on twitching media for P. aeruginosa strains 6206, PAK, and PA103 at 0 and 4 h

incubation times. In each panel, data are expressed as the mean ± SEM per sample from at least three

independent experiments. Significance was determined by one-way ANOVA with Tukey’s post-hoc analysis

for twitching velocity and growth, and two-way ANOVA with Tukey’s post-hoc analysis for colony size.

****, P < 0.0001; ***, P < 0.001; *, P < 0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1006392.g004
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the second fractionation to obtain better protein separation. Proteins in the active fractions

(Fraction 1 in Fig 6A, and Fraction 2 in S2A Fig) were analyzed by mass spectrometry. Results

revealed the presence of only 4 proteins; DMBT1 (Deleted in Malignant Brain Tumors 1), ker-

atin 1, keratin 2a and haptoglobin, were present in active fractions of both experiments (Fig

6C & S1 Table).

It has been shown that spectrum counting and mass spectrometry chromatograms correlate

with quantitative changes in protein amount [26]. Considering that large proteins tend to con-

tribute more peptide/spectra than small ones, the NSAF (normalized spectral abundance fac-

tor) was used to account for the effect of protein length on spectral counts, which allowed a

Fig 5. Heat-sensitive protein(s) in human tear fluid > 30 kDa inhibit P. aeruginosa twitching motility. P. aeruginosa PAO1

twitching velocity on twitching media was measured after 4 h. (A) Human tear fluid (25%) heated at 95˚C for 10 min (boiled) then

centrifuged to remove precipitated proteins lost inhibitory activity against twitching. (B) Human tear fluid (25%) treated by proteinase K

(100 μg/mL) at 42˚C for 2 h lost inhibitory activity. (C) Purified lysozyme (2 mg/mL), lactoferrin (2 mg/mL) or a combination cocktail do not

inhibit P. aeruginosa PAO1 twitching motility. (D) Protein analysis of human tears and contrived tears by SDS-PAGE. (E) Contrived tears

do not inhibit P. aeruginosa PAO1 twitching motility. (F) Protein analysis of human tear fluid fractions by SDS-PAGE after separation

using a ~30 kDa cut-off column. (G) Tear fractions > 30 kDa inhibited PAO1 twitching motility. Data are shown as the mean ± SEM per

sample from three independent experiments. Significance was determined using one-way ANOVA with Tukey’s post-hoc analysis.

****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1006392.g005
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comparison of individual protein abundance in multi-protein complexes [27]. Based on NSAF

values, DMBT1 showed the highest relative abundance in active fractions for both experi-

ments, and was therefore considered the most likely candidate for tear inhibition of P. aerugi-
nosa twitching motility.

To directly evaluate DMBT1 involvement in tear inhibition of twitching motility, DMBT1

was immunoprecipitated from human tear fluid. Human tear fluid-depleted of DMBT1 lost

Fig 6. Identification of DMBT1 as the tear fluid inhibitor of P. aeruginosa twitching motility. (A) Human

tear fluid was separated into 7 fractions using size exclusion chromatography. (B) Effect of tear fractions on

twitching velocity of PAO1 reveals a high Mw fraction retains inhibitory activity. (C) Mass spectrometric

analysis of high Mw tear fractions from two size-exclusion experiments reveal 4 proteins common to fractions

inhibiting twitching motility. (D) DMBT1-depleted human tear fluid does not inhibit twitching motility of PAO1.

(E) Western blot analysis of samples used in (D) shows depletion of DMBT-1 from tear fluid, and partial

depletion by isotype control and protein G only beads control. Data shown in panels B and D as mean ± SEM

from three independent experiments. Significance was determined using a one-way ANOVA with Tukey’s

post-hoc analysis. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1006392.g006
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inhibition of P. aeruginosa twitching motility compared to 25% tears, with no significant dif-

ference in twitching velocity found between PBS and tear-fluid depleted of DMBT1 (Fig 6D).

It was noted that tear fluid treated with isotype control antibody and protein G only beads par-

tially inhibited twitching motility (Fig 6D). Western immunoblot (Fig 6E) confirmed that

DMBT1 was efficiently removed from tear fluid. Fig 6E also showed that the isotype control

and protein G only beads partially depleted DMBT1 suggesting a degree of non-specific bind-

ing, but consistent with observed partial effects on twitching velocity (Fig 6D). Together, these

data suggested that DMBT1 was required for human tear fluid inhibition of P. aeruginosa
twitching motility.

DMBT1 purified from saliva also inhibits P. aeruginosa twitching motility

DMBT1 is expressed in multiple tissues and body fluids and can undergo modifications that

could affect its function at specific sites [28, 29]. Since DMBT1 is abundant in saliva, we tested

if human saliva could inhibit P. aeruginosa twitching motility. Results confirmed a significant

reduction in P. aeruginosa twitching velocity by human saliva treatment from a mean (± SEM)

of 1.16 (± 0.14) μm/min in PBS controls to 0.27 (± 0.02) μm/min with human saliva treatment

(P< 0.0001, one-way ANOVA, Tukey’s post-hoc analysis). The latter velocity was not signifi-

cantly different from the reduction achieved by 25% tears 0.48 (± 0.06) μm/min (P = 0.2316).

Thus, DMBT1 was purified from human saliva, and tested for inhibition of twitching motility.

DMBT1 purification was achieved by exploiting DMBT1 binding to/aggregation of Streptococ-
cus pyogenes, and the bound DMBT1 then released from the aggregated S. pyogenes with

EDTA treatment [30, 31]. Results (S3 Fig & S2 Table) showed that after purification using S.

pyogenes, DMBT1 was the only protein common in two independent fractions (two experi-

mental replicates), and the major protein in the purified fractions based on NSAF. This frac-

tion was referred to as "purified DMBT1" in subsequent experiments.

The purified DMBT1 fraction from saliva caused a dose-dependent inhibition of PAO1

twitching velocity and colony size expansion (Fig 7A). In each instance, a significant inhibition

was achieved with concentrations of DMBT1 equal to or greater than 12.5 ng/μl (5 μl drop

placed onto twitching media) (Fig 7A). DMBT1 at 1 μg in PBS (placed on twitching media)

also inhibited twitching motility of all of three other P. aeruginosa strains (Fig 7B).

Mass spectrometry analysis of high Mw fractions that inhibit P. aeruginosa twitching motil-

ity, from human tear fluid (S1 Table) or saliva (S2 Table) showed that only DMBT1 was pres-

ent in all samples, and that it was the most abundant protein further supporting the hypothesis

that DMBT1 is responsible for inhibition of twitching motility in tear fluid and saliva.

Saliva-purified DMBT1 inhibits P. aeruginosa traversal of multilayered

human corneal epithelial cells in vitro

Our previous studies have shown that twitching motility contributes to P. aeruginosa traversal

of corneal epithelial cells [19], and that tear fluid protects against P. aeruginosa traversal [8].

Thus, we hypothesized that purified DMBT1 would also inhibit P. aeruginosa traversal of mul-

tilayered human corneal epithelial cells.

Human corneal epithelial cells (hTCEpi) were grown on Transwell filters (3 μm pore-size)

and airlifted for 7 days to form multilayers. P. aeruginosa PAO1 was added to the apical surface

with DMBT1 solution, PBS or human tear fluid. After 3 and 6 h, viable bacteria from the apical

and basal chambers were counted. Human tear fluid (50%) or DMBT1 (100 ng/μl) had no

effect on bacterial growth in the apical chamber (Fig 8A), but significantly inhibited P. aerugi-
nosa traversal at 3 h and 6 h (Fig 8B). As expected, the pilA mutant showed significantly

reduced traversal compared to wild-type PAO1. Transepithelial resistance (TER) was

DMBT1 inhibition of P. aeruginosa twitching motility and virulence
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Fig 7. Saliva-purified DMBT1 inhibits twitching of multiple P. aeruginosa strains. DMBT1 solutions

(5 μl) at different concentrations up to 200 ng/μl DMBT1 in PBS were dropped onto twitching media then

inoculated with bacteria and incubated for 4 h at 37˚C. Twitching velocity and colony size were quantified. (A)

Purified DMBT1 from saliva inhibited P. aeruginosa PAO1 twitching velocity and colony size expansion in a

dose-dependent manner. (B) Purified DMBT1 from saliva (1 μg) inhibited twitching velocity and colony size

expansion in three other P. aeruginosa strains. In each panel, data are expressed as mean ± SEM per sample

from three independent experiments. Significance was determined by one-way ANOVA with Tukey’s post-hoc

analysis for twitching velocity, and two-way ANOVA with Tukey’s post-hoc analysis for colony size.

****, P < 0.0001; ***, P < 0.001; **, P < 0.01; *, P < 0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1006392.g007

Fig 8. DMBT1 purified from saliva inhibits P. aeruginosa traversal of multilayered human corneal epithelial (hTCEpi) cells in

vitro. Traversal of P. aeruginosa PAO1 or its pilA mutant across cultured airlifted human corneal epithelial cells in vitro. PAO1 was

incubated in PBS, treated with 50% human tear fluid, or with 100 ng/μl of DMBT1. The pilA mutant was added in PBS. (A) Viable bacterial

counts (means ± SD) in the apical chamber were determined at 3 and 6 h to evaluate bacterial growth. (B) Viable bacterial counts

(means ± SD) in the basal chamber were determined at 3 and 6 h to estimate traversed bacteria. In each instance significance was

determined using one-way ANOVA with Tukey’s post-hoc analysis. *, P < 0.05. (C) TER (Ω�cm2) across the human corneal epithelial

cells over 6 h. A Transwell filter without cells was used as a control. TER values shown represent TER(sample)—TER(bank).

https://doi.org/10.1371/journal.ppat.1006392.g008
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unaffected in each sample over the 6 h incubation (Fig 8C) consistent with our published data

for wild-type P. aeruginosa [19].

DMBT1 purified from saliva protects against P. aeruginosa corneal

infection in vivo

Our previous studies showed that twitching motility was important for P. aeruginosa virulence

in a murine scarification model of corneal infection [18], and that human tear fluid can protect

against P. aeruginosa corneal infection in both scarification and healing injury models [8].

Thus, we explored if DMBT1 could protect against P aeruginosa infection in vivo using a

mouse model.

After scarification injury and 6 h healing, mouse corneas were inoculated with P. aeruginosa
PAO1 in PBS or DMBT1 (see Methods). Representative images (Fig 9A) show that corneas

Fig 9. DMBT1 purified from saliva protects against P. aeruginosa corneal infection. (A) Representative

images of C57BL/6 murine corneas at 24 and 48 h and post-infection with P. aeruginosa PAO1 in PBS or

DMBT1 (150 ng/μL). (B) Schematic for grading disease severity of infected murine corneas. Effect of DMBT1

on corneal infection disease severity scores at 24 and 48 h comparing (C) area of infection, (D) density of

opacity, (E) corneal surface irregularity, and (F) total disease severity, the sum of values shown in (C), (D),

and (E). Data are reported as the mean ± SEM per group over three independent experiments (6 mice per

group in total). Significance of differences between groups was determined using the Mann-Whitney U test.

**, P < 0.01; *, P < 0.05; ns, not significant.

https://doi.org/10.1371/journal.ppat.1006392.g009
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inoculated with PAO1 in PBS presented with clear signs of infection after day 1 that progressed

further by day 2. DMBT1 treated corneas showed reduced disease pathology at day 1, and

greatly reduced pathology at day 2. Quantification of disease severity using a grading system

that accounted for area of infection, density of opacity, and surface irregularity (Fig 9B) [32]

showed DMBT1 treated corneas had a significant reduction in area of infection at day 1 and

day 2 (Fig 9C), and in corneal opacity at day 2 (Fig 9D). Surface irregularity was relatively

unaffected (Fig 9E). Overall disease severity was significantly reduced in DMBT1 treated eye at

both time points (Fig 9F) showing that DMBT1 protected corneas from P. aeruginosa keratitis.

DMBT1 does not affect P. aeruginosa PilA expression or cyclicAMP but

does bind pili

Salivary DMBT1 is a well recognized agglutinin for Gram-positive and Gram-negative bacteria

except P. aeruginosa [31, 33–36]. Tear fluid DMBT1 was also shown to bind Staphylococcus
aureus, but not P. aeruginosa, using anti-DMBT1 antibody in a dot-immunoblot assay [29].

We confirmed that DMBT1 purified from saliva aggregates S. pyogenes [30], but does not

aggregate P. aeruginosa (S4 and S5 Videos), suggesting a novel mechanism for inhibiting P.

aeruginosa twitching motility.

Type IV pilus (T4P) production and twitching motility in P. aeruginosa is controlled by the

Pil-Chp pathway (encoded by gene cluster IV) containing pilG/H/I/J/K and chpA/B/C/D/E
genes [37]. The Chp system controls T4P production by modulation of cyclicAMP; twitching

motility is cyclicAMP-independent [38]. To begin to explore the mechanism for DMBT1 inhi-

bition of twitching motility, we examined some key elements of the pathways involved. West-

ern immunoblots showed no difference in PilA expression by P. aeruginosa PAO1 after

DMBT1 exposure for 4 h (Fig 10A) suggesting that pilin production was unaffected. Purified

DMBT1 also had no effect on cyclicAMP levels in P. aeruginosa PAO1 collected from twitch-

ing media after 4 h (Fig 10B). Since many chemotaxis mutants of P. aeruginosa lose twitching

motility, it is difficult to determine if DMBT1 inhibition of twitching motility involves chemo-

taxis genes [38]. However, the latter study identified three mutants of P. aeruginosa strain PAK

that retained twitching motility; mutants in cyaB (encoding an adenylate cyclase to control

cAMP synthesis), chpB (encoding a methylesterase) which can adjust the methylation status of

the sensor module in the pili-mediated chemotaxis system [37], and pilK (encoding a methyl-

transferase) [38]. In the present study, cyaB, chpB, and pilK mutants of strain PAO1 also

retained twitching motility under control conditions (Fig 10C). DMBT1 inhibited twitching of

all three mutants (Fig 10C), suggesting that those genes are not needed for DMBT1-mediated

twitching inhibition. Dot-immunoblot assays, however, showed that purified DMBT1 could

bind pili extracted from P. aeruginosa strain PAO1 (Fig 10D and 10E), suggesting that the

mechanism for inhibition of twitching motility involves a direct interaction with P. aeruginosa
pili.

Discussion

Previously, we showed that tear fluid could protect human corneal epithelial cells and mouse

corneas against P. aeruginosa infection [8, 19], a protective activity mechanistically separable

from bacteriostatic activity. Here, we explored the mechanisms involved and found that

human tear fluid can inhibit surface-associated twitching motility by P. aeruginosa, dependent

on the glycoprotein DMBT1. DMBT1, also known as GP340, is abundant in various mucosal

fluids. Used alone, DMBT1 purified from saliva inhibited twitching motility, suggesting it is

both necessary and sufficient for the protective activity of tear fluid. DMBT1 did not suppress

P. aeruginosa viability, or aggregate bacteria, and its inhibition of twitching was not associated

DMBT1 inhibition of P. aeruginosa twitching motility and virulence
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with changes in pilin expression or bacterial cyclicAMP. However, DMBT1 bound pili

extracted from P. aeruginosa suggesting a direct interaction with pili is involved in twitching

inhibition. Reflecting the known importance of twitching in virulence, DMBT1 protected mul-

tilayers of human corneal epithelial cells against P. aeruginosa traversal, and reduced disease

severity in an in vivo animal model. Thus, this glycoprotein, or an active derivative, may have

potential as a biocompatible therapeutic intervention against P. aeruginosa that acts without

suppressing bacterial viability or bacterial aggregation. Although this study was focused on

tear fluid and the cornea, the findings might be broadly applicable to other mucosal surfaces

that P. aeruginosa infects given that DMBT1 is present in human saliva, the small intestine,

and airways [28, 29].

Fig 10. DMBT1 does not affect P. aeruginosa PilA expression or cyclicAMP levels, but inhibits

twitching of PAO1 mutants in cyaB, chpB, and pilK. (A) Western immunoblot of PilA expression in P.

aeruginosa PAO1 after DMBT1 (100 ng/μl) treatment on twitching media for 4 h. PilA protein levels were

unaffected by DMBT1 exposure in all samples (bacteria, vortexed bacteria, and supernatant, see Methods).

(B) CyclicAMP levels of P. aeruginosa PAO1 treated with DMBT1 (100 ng/μl) on twitching media for 4 h. (C)

Effects of DMBT1 (100 ng/μl) on twitching velocity of PAO1 mutants in cyaB, chpB and pilK after 4 h. Data are

shown as the mean ± SEM per sample from three independent experiments. Significance was determined

using one-way ANOVA with Tukey’s post-hoc analysis. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01;

*, P < 0.05; ns, not significant. (D) Dot-immunoblot assay using anti-PilA antibody to show the binding of

PAO1 pili to DMBT1 after 40 min incubation with a pili-containing extract from PAO1. Diluted extracts from

PAO1 (S-PAO1) or its pilA mutant (S-PAO1-pilA::Tn) (see Methods) were used as controls. A representative

experiment of two independent experiments is shown. (E) Quantification of dot-intensity from the dot-

immunoblot assay shown in D. Data are shown as the mean ± SEM of triplicate measurements from each

sample.

https://doi.org/10.1371/journal.ppat.1006392.g010
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DMBT1 was first isolated from saliva using affinity adsorption to Streptococcus mutans, and

identified as a ~300–400 kDa glycoprotein [28]. It belongs to the scavenger receptor cysteine-

rich (SRCR) protein superfamily, which is highly conserved down to sponges as secreted or

membrane-bound proteins [39]. The human chromosome contains one copy of the gene

encoding DMBT1 located on chromosome 10q26.13. However, there are different human

DMBT1 alleles within the population and different isoforms in different tissues governed by

alternative splicing and post-translation modification, e.g. DMBT1 variations include the num-

ber of SRCR domains or patterns of glycosylation [28, 39, 40]. Approximately 25% of the molec-

ular mass of salivary-derived DMBT1SAG (Salivary Agglutinin) is due to glycosylation (~10%

for N-glycosylation, and ~15% for O-glycosylation) [41, 42]. Differences in DMBT1 glycosyla-

tion were reported between saliva-derived DMBT1SAG and lung-derived DMBT1GP340, the lat-

ter lacking Lewis (Le) antigens [43]. Moreover, two isoforms of DMBT1 derived from human

tear fluid expresses sialyl-Lea antigens [44], not sialyl-Lex antigens expressed by DMBT1SAG. In

our studies, DMBT1 depletion from human tear fluid removed inhibition of twitching motility,

while DMBT1 purified from saliva inhibited twitching motility. Thus, reported differences in

sialyl-Le antigens do not affect this function suggesting that tear fluid and salivary DMBT1 iso-

forms share a common domain(s) to fulfill twitching inhibition. Detailed structure function

studies to identify domains inhibiting twitching will require further investigation.

The SRCR domains play a key role in the function of DMBT1 in mucosal immunity as a

bacterial agglutinin that binds many pathogens including Gram-positive and Gram-negative

bacteria, and viruses [31, 33–36]. However, DMBT1 does not aggregate P. aeruginosa strain

PAO1 [29], a finding confirmed in the present study (S4 and S5 Videos).

DMBT1 is known to bind other mucosal fluid antimicrobial and immune defense proteins

including; SP-D [45], SP-A [46], lactoferrin [47] and secretory IgA [48]. Thus, some of its

apparent activities can depend on its binding partners. However, no other known defense fac-

tors were found in the mass spectrometry analysis of the high Mw fractions of tear fluid or

DMBT1 purified from saliva, which both inhibited twitching motility. While the active tear

fraction containing DMBT1 did contain three other proteins in replicate experiments; keratin

1, keratin 2a, and haptoglobin (Fig 4C), none of them were present in the saliva-purified frac-

tions containing DMBT1 that inhibited twitching.

That neither tear fluid nor purified DMBT1 inhibited the growth of P. aeruginosa strain

PAO1 (Figs 2E and 8A) is consistent with our previously published data showing a lack of tear

fluid bacteriostatic activity against many P. aeruginosa isolates [13].

Thus, the mechanism by which DMBT1 inhibits P. aeruginosa twitching motility appears to

be independent of bacterial aggregation, known DMBT1 binding partners, other proteins

present in the active fractions with DMBT1, and bacteriostatic activity. Our data also indicated

that pilin expression, and bacterial cyclicAMP levels were unaffected by DMBT1 exposure,

and DMBT1 could inhibit twitching motility of P. aeruginosa mutants in pilK (encoding a

methyltransferase), chpB (encoding a methylesterase), or cyaB (encoding an adenylate cyclase),

suggesting that none of these factors were involved.

Purified DMBT1 did, however, bind pili extracted from P. aeruginosa PAO1 suggesting that

twitching motility inhibition involves direct interaction with pili. Such interactions could

affect numerous aspects of pilus function including; their extension or retraction, their interac-

tions with surfaces (biotic and abiotic), or cause their aggregation. However, twitching motility

could also be compromised by DMBT1 at other levels including an alteration of gene expres-

sion in the Pil-Chp pathway (or its regulation), or interfering with small molecule regulation,

e.g. cyclic-di-GMP [21, 22]. Targets for future study could include pilus extension or retraction

motor proteins, e.g. ATPases PilB or PilT respectively [49, 50], or the chemosensory protein

PilJ which directly interacts with PilA [23], and also controls pilus extension [51].
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It is possible that DMBT1 interacts with other P. aeruginosa surface antigens or structures,

in addition to pili, that affect twitching motility and/or other bacterial functions. While

DMBT1 did not affect bacterial swimming motility (S5 Video), the full spectrum of DMBT1-P.

aeruginosa interactions, and their consequences, will require further investigation.

The protective mechanism of DMBT1 in our in vitro and in vivo infection models is likely

to involve suppression of twitching motility, given that twitching is critical to pathogenesis in

the cornea [18]. While enabling bacteria to traverse surface epithelial cells, twitching may be

used for trafficking along/through the basal lamina [52], and/or for disseminating within the

underlying corneal stroma [53]. Twitching is also important for biofilm formation [54], a key

virulence determinant when infection is device-related [55, 56].

However, activities of DMBT1 other than inhibition of twitching might have contributed to

its protective activities in our in vivo experiments, for example through binding and associa-

tion with other tear defense proteins. Surfactant protein D (SP-D) which readily binds

DMBT1 can protect corneal epithelial cells against P. aeruginosa invasion [57], and it contrib-

utes to clearing P. aeruginosa from the ocular surface [58]. IgA, another binding partner, can

prevent P. aeruginosa binding to mouse corneas and reduces severity of P. aeruginosa keratitis

[59]. Both factors can also function as opsonins facilitating phagocytosis and clearance of P.

aeruginosa [60, 61]. Also possible, is that DMBT1 influences pathogenesis via direct effects on

resident or infiltrating host cells. Indeed, it can stimulate a dose-dependent chemokinesis (ran-

dom migration) of alveolar macrophages, suggesting role(s) in respiratory inflammatory and

immune responses [46]. It is also able to activate classical and lectin pathways of the comple-

ment system [62, 63]. Teasing apart the relative contributions of different DMBT1 activities in

protecting the cornea against P. aeruginosa infection in vivo will not be straightforward.

Mice also express a homolog of DMBT1 [64]. The ability of P. aeruginosa to infect control

eyes in our study likely reflects characteristics of the infection model, in which murine corneas

were washed with PBS prior to bacterial inoculation, and mice sustained under anesthesia for

4 h after inoculation. This methodology would remove murine tear fluid, and reduce tear flow,

likely compromising the ability of murine DMBT1 to exert protective effects.

In sum, the results of this study suggest that DMBT1 inhibition of twitching motility con-

tributes to mechanisms by which mucosal fluids protect against P. aeruginosa infection, and is

likely accomplished by direct binding to pili. Twitching motility, important to P. aeruginosa
virulence both in vitro and in vivo, is also key to biofilm formation. Thus, discovery that

DMBT1 modulates bacterial virulence factor expression adds to our understanding of how

mucosal fluids defend tissue surfaces against infection. Further, DMBT1 or its derivatives may

hold promise for development of biocompatible strategies for preventing P. aeruginosa infec-

tion that act by altering expression of virulence genes rather than agglutinating bacteria, or

suppressing their viability. Whether wearing a contact lens or other device at mucosal surfaces

impacts the quantity, location, or integrity of DMBT1, and if any changes relate to pathogene-

sis of infection, remains to be determined.

Materials and methods

Ethics statement

Human tear fluid and saliva were collected from healthy volunteers under a protocol approved

by the Committee for the Protection of Human Subjects, University of California Berkeley.

Informed, written consent was obtained from all participants. All procedures involving mice

were carried out in accordance with standards established by the Association for the Research

in Vision and Ophthalmology, under the protocol AUP-2016-08-9021 approved by the

Animal Care and Use Committee, University of California Berkeley, an AAALAC accredited
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institution. The protocol adheres to PHS policy on the humane care and use of laboratory ani-

mals, and the guide for the care and use of laboratory animals. Anesthesia was achieved by

intraperitoneal injection of an anesthetic cocktail containing ketamine (80 mg/Kg) and xyla-

zine (10 mg/Kg), or ketamine (50 mg/Kg) and medetomidine (0.75 mg/Kg) for sustained anes-

thesia. Euthanasia was performed using carbon dioxide inhalation.

Bacterial strains and culture conditions

P. aeruginosa strains PAO1, PAK, PA103 and 6206 were used. Bacteria were grown on tryptic

soy agar (TSA) plates at 37˚C for 16 h to obtain lawn cultures. P. aeruginosa PAO1 transpo-

son insertion mutant pilA::Tn (PW8621) [65] lacking twitching motility, was grown on TSA

with 60 μg/mL tetracycline, and used as a negative control. P. aeruginosa PAO1 transposon

insertion mutants cyaB::Tn (PW6387), chpB::Tn (PW1760) and pilK::Tn (PW1757) [65] were

also grown on TSA with 60 μg/mL tetracycline. Each of the transposon mutants was verified

by PCR (S1 Fig) using previously reported primers [65] or primers designed for pilK. For

twitching motility assays, bacteria were grown on twitching motility Gellan Gum media

(TMGG, 0.8 g Gellan gum, 0.4 g tryptone, 0.2 g yeast extract, 0.2 g NaCl, 0.1 g MgSO4�7H2O,

in 100 mL H2O) at 37˚C in a humidified chamber for different times. Streptococcus pyogenes
(ATCC19615) was grown in Brain and Heart Infusion (BHI) broth at 37˚C overnight and

used for purification of DMBT1.

Reagents

Tear fluid was collected using a 30 μl volume capillary tube. Subjects were non-contact lens

wearers, males and females, between 18 and 45 years of age, and with no ocular infection or

inflammation at the time of collection. Approximately 5% of the tear fluid from each subject

was plated on TSA to control for bacterial contamination; sterile tear fluid was pooled (from 6

to 8 subjects) and stored at -80˚C until used. In different experiments, human tear fluid (25%)

was boiled at 95˚C for 10 min to denature heat-liable components, treated with proteinase k

(Sigma-Aldrich, 100 μg/mL) at 42˚C for 2 h, or fractionated using sterile water pre-rinsed

Microcon centrifugal filter devices with membrane cutoffs of ~30 kDa (Millipore). Saliva was

obtained from healthy volunteers, clarified by centrifugation at 3,800 x g for 10 min then used

for testing its effect on twitching motility, and for DMBT1 purification as described below.

Purified lactoferrin and lysozyme from human milk (2 mg/mL in PBS) were purchased from

Sigma-Aldrich. Contrived tear fluid containing lysozyme, albumin, and γ-globulins was pur-

chased from Ursa BioScience (MD, USA).

Twitching motility assays

Twitching motility was measured using a method modified from the microscope slide assay

described previously [66]. Bacteria were grown on TSA plates (supplemented with tetracycline

if needed) at 37˚C for 16 h. Twitching motility Gellan Gum media was dried for 20 min in a

sterile airflow (BSL2 Biosafety Cabinet) before use and then 5 μL of tear fluid, PBS or other

solution was dropped onto the twitching media until completely absorbed. Bacteria grown on

TSA were collected, and mixed using a plastic inoculation loop and subsequently inoculated

onto the twitching media using a sterile toothpick to achieve a tip-sized inoculum. A glass cov-

erslip was gently placed onto the twitching media to create an interstitial space. The slides

were then incubated at 37˚C for 4 h unless otherwise stated. After indicated incubation times,

5 min time-lapse videos were captured at 10 s intervals via differential interference contrast

(DIC) microscopy using a Nikon ECLIPS Ti microscope with a 60× oil-immersion objective at

37˚C.
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Quantification of twitching motility

Twitching motility was quantified with three different methods. Firstly, individual bacterial

twitching motility was quantified as the degree to which they modulated light in a DIC image.

To normalize the contrast of each image and eliminate contrast bias in areas of high focus/illu-

mination, a band pass filter (2–40 pixels) was used in ImageJ. The degree of modulation was

measured as the standard deviation of intensity of each pixel during the length of the movie.

The standard deviation map was then thresholded so that only regions containing bacteria

were analyzed. A histogram of the standard deviation map was then used to measure the distri-

bution of bacterial motility in each sample. A notched boxplot was used to represent each

result. In a notched box plot, if the notches do not overlap then the distributions are signifi-

cantly different. Secondly, twitching velocity was measured as the twitching distance of the

colony leading edge divided by time. The bacterial distance traveled in a 5 min video was mea-

sured from location in the first slide to location in the last slide using ImageJ. Different treat-

ment groups for bacteria were done in triplicate and ten bacteria were tracked in each video.

Thirdly, bacterial colony size was measured soon after inoculation onto twitching media (time

zero) and after different incubation times.

Bacterial growth in the presence of tear fluid

P. aeruginosa PAO1 bacteria were grown on TSA media overnight and then diluted to OD600

0.03 by use of TSB (tryptic soy broth) media. One microliter of diluted bacteria was dropped

onto twitching media absorbed with PBS or 25% human tear fluid and incubated at 37˚C for

up to 24 h. After collection and serial dilution in PBS, samples were plated onto TSA agar and

incubated at 37˚C overnight to determine numbers of viable bacteria expressed as Colony

Forming Units (CFU). Experiments were repeated five times.

Size-exclusion chromatography of human tear fluid

Size-exclusion chromatography was performed on an AKTAmicro system using a Superdex

200 10/300 GL column (GE Healthcare) in the first separation, or a Superose 6 10/300 GL col-

umn (GE Healthcare) in the second separation, equilibrated in PBS (pH 7.4). To minimize

peak broadening, short lengths of 0.15 mm i. d. tubing were used between the injection valve

and the fraction collector. Human tear fluid was injected onto the column, and fractions of

250 μl were collected. Protein was detected by UV absorbance at 280 nm. Eluted fractions were

pooled according to protein peaks and concentrated using a ~3 kDa cut-off filter (Millipore).

The activity of eluted fractions against P. aeruginosa twitching motility was then assessed as

described above.

Mass spectrometry

Mass spectrometry (MS) was performed at the Proteomics/Mass Spectrometry Laboratory,

University of California, Berkeley. A nano LC column was packed in a 100 μm inner diameter

glass capillary with an emitter tip. The column consisted of 10 cm of Polaris C18 5 μm packing

material (Varian, Agilent, CA), followed by 4 cm of Partisphere 5 SCX (Whatman, Sigma-

Aldrich, MO). The column was loaded by use of a pressure bomb and washed extensively with

buffer A (see below). The column was then directly coupled to an electrospray ionization

source mounted on a Thermo-Fisher LTQ XL linear ion trap mass spectrometer. An Agilent

1200 HPLC equipped with a split line to deliver a flow rate of 300 nl/min was used for chroma-

tography. Peptides were eluted using a 4-step MudPIT procedure [67]. Buffer A was 5% aceto-

nitrile/ 0.02% heptaflurobutyric acid (HFBA); buffer B was 80% acetonitrile/ 0.02% HFBA.
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Buffer C was 250 mM ammonium acetate/ 5% acetonitrile/ 0.02% HFBA; buffer D was same as

buffer C, but with 500 mM ammonium acetate.

Protein identification and quantification were done with Integrated Proteomics Pipeline

(IP2, Integrated Proteomics Applications, Inc. San Diego, CA) using ProLuCID/Sequest,

DTASelect2 and Census [68–70]. Tandem mass spectra were extracted into ms1 and ms2 files

from raw files using RawExtractor [71], and searched against the human protein database plus

sequences of common contaminants, concatenated to a decoy database in which the sequence

for each entry in the original database was reversed [72].

Immunoprecipitation of DMBT1

Immunoprecipitation was performed using mouse monoclonal anti-DMBT1 antibody

(ab17779, Abcam, MA), or a mouse IgG1 isotype control (Thermo Fisher, NY), and protein

G-magnetic beads (New England BioLabs, MA) according to manufacturer’s protocols. After

coating protein G magnetic beads with either DMBT1 antibody or isotype control in a 20 μl

reaction, the complex was incubated with 25 μl of 25% tears for 60 min at 4˚C. Non-coated

protein G magnetic beads were also used as a negative control. The supernatant was then col-

lected for assessing its activity on twitching motility, and its DMBT1 protein content by West-

ern immunoblotting (anti-DMBT1 antibody was diluted 1:1000). The beads were washed 3

times with PBS and then eluted with 20 μl of 0.1 M glycine (pH 2.5) for 3 min at room temper-

ature twice. The supernatant was collected and neutralized with 2 M tris (pH 9.0). The proteins

bound to beads were analyzed by MS as described previously.

Purification of DMBT1 from human saliva

DMBT1 was purified from human saliva rather than tear fluid because saliva is more abundant

and easier to collect. Purification of DMBT1 was performed as described previously [31, 73].

Briefly, clarified saliva was diluted 50% with PBS. Streptococcus pyogenes was incubated in BHI

broth overnight at 37˚C, collected by centrifugation at 3,800 x g for 5 min, and washed three

times with PBS. Bacterial concentration was adjusted to ~5 x109 CFU/mL. Equal volumes of

bacterial suspension and diluted saliva were then mixed and incubated at 37˚C for 60 min.

Bacterial cells were collected again by centrifugation at 3,800 x g for 5 min, and washed three

times with PBS. PBS (1.5 mL) containing 5 mM EDTA was then used to release bound protein

at room temperature for 5 min. The bacterial culture was centrifuged at 15,000 x g for 5 min,

the supernatant filtered using a 0.22 μm filter, and then dialyzed (Slide-A-Lyzer dialysis cas-

settes, Thermo Fisher, NY) against PBS at 4˚C overnight. Dialyzed eluate was subjected to gel

filtration chromatography on a Superose 6 10/300 GL column (GE Healthcare, CA) equili-

brated in PBS (pH 7.4). The eluate at void volume was collected and used as purified DMBT1

from saliva. The presence and purity of DMBT1 was verified by mass spectrometry as

described above. DMBT1 concentration was measured using a micro BCA protein assay kit

(Thermo Scientific, IL, USA).

Bacterial traversal assay

Telomerase-immortalized human corneal epithelial cells (~ 6 × 104 cells) were seeded onto

24-well polyester tissue culture treated Transwell™ inserts (3 μm pore size, Corning Costar,

NY) in KGM-2 medium containing 1.15 mM CaCl2 for 7 days, then airlifted for 7 days as pre-

viously described [74]. P. aeruginosa strain PAO1, or its pilA mutant (~1.3 × 106 CFU) was

inoculated on the apical surface of the cells in PBS, human tear fluid (50% in PBS) or DMBT1

(100 ng/μl in PBS) for 6 h at 37˚C (5% CO2). Transepithelial resistance (TER) (O�cm2) was

measured using an Epithelial Voltohmeter (World Precision Instruments, Inc., FL) before
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inoculating the bacteria, and after 6 h incubation. Transwell™ inserts without corneal cells

served as negative controls. After 3 and 6 h, bacterial viable counts in the apical and basal

chambers were determined to measure bacterial growth and epithelial traversal.

Murine corneal infection

All procedures were approved by the University of California, Berkeley Animal Care and Use

Committee. The scarification with healing murine model of corneal infection was used as pre-

viously described [8] with minor modification. Briefly, C57BL/6 mice (6 to 12 weeks old) were

anesthetized by intraperitoneal injection of an anesthetic cocktail containing ketamine (80

mg/Kg) and xylazine (10 mg/Kg). Eyes were checked for corneal clarity using a stereomicro-

scope prior to the initiation of experiments. Three parallel scratches were made on the right

cornea of each anesthetized animal using a sterile 25 5/8-gauge needle. Mice were checked

every 15 min until they woke up. After 6 h of epithelial healing, mice were anesthetized with a

cocktail containing ketamine (50 mg/Kg) and medetomidine (0.75 mg/Kg), 70 μl per 25 g of

body weight. Healing corneas were then washed with PBS (500 μl), then inoculated with 5 μl of

a P. aeruginosa PAO1 suspension containing ~2 ×103 CFU bacteria in DMEM mixed with

either PBS or 200 ng/μl of DMBT1 at a ratio of 1:3. After 4 h infection under sustained anesthe-

sia, an anesthesia reversal agent, atipamezole (3.75 mg/Kg), 50 μl per 25 g of body weight, was

used to wake the mice. Mice were observed daily and ocular images were captured at 24 and

48 h post-inoculation using 2–3% isoflurane in oxygen inhalation for anesthesia. Corneal dis-

ease severity was graded by a masked observer using a previously described scoring system

[32], which assesses area of infection, density of opacity, surface regularity and overall disease

severity.

Immunoblot assays

To study the effects of DMBT1 on pilin expression, PilA was measured by Western immu-

noblot using sample preparation methods based on previous studies [75]. PAO1 or its pilA
mutant were treated with PBS or DMBT1 (100 ng/μl) as described above in the twitching

motility assays section. After 4 h incubation, bacteria were washed from the twitching

media and cover-slip with 50 mM Na2CO3 (pH 9.6). Bacterial OD600 was adjusted to 0.6,

and 300 μl of bacterial culture centrifuged at 13,000 x g for 5 min, and re-suspended into

SDS-PAGE sample buffer ("bacteria" sample). Another 300 μl of bacterial culture was exten-

sively vortexed for 3 min to remove pili, centrifuged at 15,000 x g for 20 min, and the pellet

dissolved in SDS-PAGE sample buffer ("vortexed bacteria" sample). The supernatant was

placed at 4˚C overnight, after adding MgCl2 to a concentration of 100 mM, and the next day

centrifuged at 15,000 x g for 20 min. The pellet was dissolved in same volume of SDS-PAGE

sample buffer ("supernatant" sample). All samples were heated at 95˚C for 10 min, separated

by SDS-PAGE (20% gel), and probed with antibody to PilA (1:5000) (a kind gift from Dr.

Joanne Engel, University of California, San Francisco), then goat anti rabbit-HRP antibody

(1:5000, Abcam, MA).

Dot-immunoblotting was used to test if DMBT1 could bind P. aeruginosa pili. Briefly, to

prepare an extract of pili, a suspension of P. aeruginosa PAO1 in PBS was prepared to an

OD600 of ~10. The suspension was vortexed for 3 min, centrifuged at 15,000 x g for 20 min,

and the supernatant collected. MgCl2 solution (1 M) was added to the supernatant to a final

concentration of 100 mM, and the supernatant placed at 4˚C overnight. After centrifugation at

15,000 x g for 20 min, the pellet was resuspended in PBS (500 μl) to form a pili-containing

extract. The same method was used to prepare a negative control extract of PAO1-pilA::Tn.

For dot-immunoblot assays, 2 μl of DMBT1 in PBS (400 ng/μl and serial dilutions in PBS)
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were spotted onto a nitrocellulose membrane (0.2 μm pore-size, BioRad), along with a PBS

control, the pili-containing extract from PAO1 (positive control), and the extract from the

pilA mutant (negative control). The extracts were diluted 1 in 500 in PBS for use as controls.

After the membrane was dry, it was blocked with 5% BSA for 1 h at room temperature, then

washed with PBS for 5 min. The membrane was then incubated with the original (undiluted)

pili-containing extract of PAO1 for 40 min at room temperature, then washed 5 times with

PBS. Membranes were then probed with anti-PilA primary antibody (1:5000) and Goat anti-

Rabbit HRP-conjugated secondary antibody (1:5000). Dot intensity was measured using

AlphaView FluoChem HD2 software.

CyclicAMP assay

Intracellular cyclicAMP of P. aeruginosa was measured as described previously [38] with

minor modification. PAO1 was incubated on twitching media with DMBT1 (100 ng/μl) or

PBS at 37˚C for 4 h as described above in twitching motility assays. Bacteria were washed from

twitching media with 0.9 M NaCl at 4˚C, made with superpure water from Cayman Chemical

(Ann Arbor, MI) and kept on ice. Bacterial suspensions were adjusted to the same OD600 value

of ~1.0. Two equal volumes of each suspension were centrifuged at 13,000 x g for 2 min at 4˚C,

and the bacterial pellets washed twice with 1 mL of cold 0.9 M NaCl (final OD600 ~ 2.5). Bacte-

rial pellets were suspended in 200 μl of 0.1 N HCl (made with superpure water) and incubated

on ice for 10 min with occasional vortexing to lyse the bacteria. Lysates were centrifuged at

13,000 x g for 5 min at 4˚C to remove cellular material, and the supernatant was assayed for

cAMP concentration using a Cyclic AMP EIA Kit (Cayman Chemical) following the manufac-

turer’s protocol for sample acetylation.

Statistical analysis

Data were expressed as a mean ± standard error of mean (SEM) unless otherwise stated. The

significance of differences between groups was assessed by one or two-way ANOVA with

Tukey’s post-hoc analysis, or using the Mann-Whitney U test for in vivo experiments. P values

of less than 0.05 were considered significant.

Supporting information

S1 Video. P. aeruginosa PAO1 twitching motility in PBS. Represents a 5 min time-lapse

movie of P. aeruginosa twitching motility captured at an interval of 10 s with a 60 × oil-immer-

sion lens. Scale bar = 20 μm. Frame rate = 10 fps.

(AVI)

S2 Video. Human tear fluid inhibition of PAO1 twitching motility. Represents a 5 min

time-lapse movie of P. aeruginosa twitching motility captured at an interval of 10 s with a

60 × oil-immersion lens. Scale bar = 20 μm. Frame rate = 10 fps.

(AVI)

S3 Video. A twitching motility negative pilA mutant PAO1-pilA::Tn. Represents a 5 min

time-lapse movie of P. aeruginosa twitching motility captured at an interval of 10 s with a

60 × oil-immersion lens. Scale bar = 20 μm. Frame rate = 10 fps.

(AVI)

S4 Video. P. aeruginosa PAO1 movement in PBS at 37˚C for 4 h. Represents a 10 s time-lapse

movie of P. aeruginosa movement captured at no delay with a 40 × lens. Frame rate = 10 fps.

(AVI)
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S5 Video. PAO1 movement in purified DMBT1 (100 ng/μl) at 37˚C for 4 h. Represents a 10

s time-lapse movie of P. aeruginosa movement captured at no delay with a 40 × lens. Frame

rate = 10 fps.

(AVI)

S1 Fig. PCR verification of P. aeruginosa PAO1 transposon insertion mutants. PAO1-

pilA::Tn (PW8621), PAO1-cyaB::Tn (PW6387), and PAO1-chpB::Tn (PW1760) were verified

by PCR with primers provided by the insertion mutant library database. PAO1-pilK::Tn

(PW1757) was verified by PCR with the following primers; pilK flanking primers pilK-F

(5’-AGATGCGCAACTCGGTATCC-3’) and pilK-R (5’-TTCAGGGTTTCGGCGATCTC-3’).

The red square was used to label target products.

(TIF)

S2 Fig. (A) Fractions of human tear fluid separated by size exclusion chromatography (first

experiment). (B) Effect of tear fractions on P. aeruginosa PAO1 twitching velocity measured in

5 min videos of each sample. Data are expressed as the mean ± SEM per sample from three

independent experiments. Significance was determined using one-way ANOVA with Tukey’s

post-hoc analysis. ���� P < 0.0001, ���P< 0.001.

(TIF)

S3 Fig. DMBT1 purification from human saliva. (A) SDS-PAGE with silver stain (left panel)

suggested DMBT1 was present after S. pyogenes treatment, and was confirmed by Western

immunoblot (right panel) using anti-DMBT1 antibody. (B) and (C) Two independent experi-

ments each showing that size-exclusion chromatography after DMBT1 purification from

human saliva using S. pyogenes generated a high Mw fraction (fraction 1). Proteins were

separated from aggregated S. pyogenes in human saliva using EDTA (5 mM). (D) Mass spec-

trometric analysis of fraction 1 after DMBT1 purification from saliva revealed the presence of

DMBT1 in two independent experiments.

(TIF)

S1 Table. Mass spectrometry results of human tear fluid fractions that inhibited twitching

motility of P. aeruginosa PAO1. Results shown for two independent fractionations of human

tear fluid using size-exclusion chromatography.

(TIF)

S2 Table. Mass spectrometry results of two independent fractions obtained by size-exclu-

sion chromatography after DMBT1 purification from saliva using S. pyogenes. Each frac-

tion inhibited twitching motility of P. aeruginosa PAO1. Results represent two independent

experiments.

(TIF)

Acknowledgments

Our thanks to Dr. Joanne Engel (UCSF, San Francisco, CA) for providing the antibody to

PilA, and to our colleagues from UC Berkeley, Berkeley, CA: Dr. Chris Jeans, for separating

proteins from human tears and saliva; Drs. Lori Kohlstaedt and Vincent Coates, for mass

spectrometry analysis; Dr. Benjamin Smith, for image analysis, and Ms. Hart Horneman,

for scoring corneal pathology in the murine model. P. aeruginosa PAO1 and its mutants

were obtained from the P. aeruginosa mutant collection, University of Washington,

Seattle WA.

DMBT1 inhibition of P. aeruginosa twitching motility and virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006392 May 10, 2017 21 / 26

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006392.s005
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006392.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006392.s007
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006392.s008
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006392.s009
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1006392.s010
https://doi.org/10.1371/journal.ppat.1006392


Author Contributions

Conceptualization: JL MMEM DJE SMJF.

Data curation: JL MMEM DJE SMJF.

Formal analysis: JL DJE.

Funding acquisition: SMJF JL.

Investigation: JL MMEM.

Methodology: JL MMEM DJE SMJF.

Project administration: SMJF DJE.

Supervision: SMJF DJE.

Validation: JL MMEM DJE SMJF.

Visualization: JL DJE SMJF.

Writing – original draft: JL MMEM DJE SMJF.

Writing – review & editing: JL MMEM DJE SMJF.

References
1. MacVane SH. Antimicrobial resistance in the intensive care unit: A focus on Gram-negative bacterial

infections. J Intensive Care Med. 2017; 32(1):25–37. https://doi.org/10.1177/0885066615619895

PMID: 26772199

2. Yildiz EH, Airiani S, Hammersmith KM, Rapuano CJ, Laibson PR, Virdi AS, et al. Trends in contact

lens-related corneal ulcers at a tertiary referral center. Cornea. 2012; 31(10):1097–102. https://doi.org/

10.1097/ICO.0b013e318221cee0 PMID: 22902490

3. Ng AL, To KK, Choi CC, Yuen LH, Yim SM, Chan KS, et al. Predisposing factors, microbial characteris-

tics, and clinical outcome of microbial keratitis in a tertiary centre in Hong Kong: A 10-year experience. J

Ophthalmol. 2015; 2015:769436. https://doi.org/10.1155/2015/769436 PMID: 26167295

4. Evans DJ, Fleiszig SM. Why does the healthy cornea resist Pseudomonas aeruginosa infection? Am J

Ophthalmol. 2013; 155(6):961–70.e2. https://doi.org/10.1016/j.ajo.2013.03.001 PMID: 23601656

5. Evans DJ, Fleiszig SM. Microbial keratitis: could contact lens material affect disease pathogenesis?

Eye Contact Lens. 2013; 39(1):73–8. PMID: 23266587

6. Zhou L, Zhao SZ, Koh SK, Chen L, Vaz C, Tanavde V, et al. In-depth analysis of the human tear prote-

ome. J Proteomics. 2012; 75(13):3877–85. https://doi.org/10.1016/j.jprot.2012.04.053 PMID:

22634083

7. Ohashi Y, Dogru M, Tsubota K. Laboratory findings in tear fluid analysis. Clin Chim Acta. 2006; 369

(1):17–28. https://doi.org/10.1016/j.cca.2005.12.035 PMID: 16516878

8. Kwong MS, Evans DJ, Ni M, Cowell BA, Fleiszig SM. Human tear fluid protects against Pseudomonas

aeruginosa keratitis in a murine experimental model. Infect Immun. 2007; 75(5):2325–32. https://doi.

org/10.1128/IAI.01404-06 PMID: 17325054

9. McNamara NA, Fleiszig SM. Human tear film components bind Pseudomonas aeruginosa. Adv Exp

Med Biol. 1998; 438:653–8. PMID: 9634950

10. McNamara NA, Polse KA, Brand RJ, Graham AD, Chan JS, McKenney CD. Tear mixing under a soft

contact lens: effects of lens diameter. Am J Ophthalmol. 1999; 127(6):659–65. PMID: 10372875

11. Wu YT, Zhu LS, Tam KP, Evans DJ, Fleiszig SM. Pseudomonas aeruginosa survival at posterior con-

tact lens surfaces after daily wear. Optom Vis Sci. 2015; 92(6):659–64. https://doi.org/10.1097/OPX.

0000000000000597 PMID: 25955639

12. McDermott AM. Antimicrobial compounds in tears. Exp Eye Res. 2013; 117:53–61. https://doi.org/10.

1016/j.exer.2013.07.014 PMID: 23880529

13. Fleiszig SM, Kwong MS, Evans DJ. Modification of Pseudomonas aeruginosa interactions with corneal

epithelial cells by human tear fluid. Infect Immun. 2003; 71(7):3866–74. https://doi.org/10.1128/IAI.71.

7.3866-3874.2003 PMID: 12819071

DMBT1 inhibition of P. aeruginosa twitching motility and virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006392 May 10, 2017 22 / 26

https://doi.org/10.1177/0885066615619895
http://www.ncbi.nlm.nih.gov/pubmed/26772199
https://doi.org/10.1097/ICO.0b013e318221cee0
https://doi.org/10.1097/ICO.0b013e318221cee0
http://www.ncbi.nlm.nih.gov/pubmed/22902490
https://doi.org/10.1155/2015/769436
http://www.ncbi.nlm.nih.gov/pubmed/26167295
https://doi.org/10.1016/j.ajo.2013.03.001
http://www.ncbi.nlm.nih.gov/pubmed/23601656
http://www.ncbi.nlm.nih.gov/pubmed/23266587
https://doi.org/10.1016/j.jprot.2012.04.053
http://www.ncbi.nlm.nih.gov/pubmed/22634083
https://doi.org/10.1016/j.cca.2005.12.035
http://www.ncbi.nlm.nih.gov/pubmed/16516878
https://doi.org/10.1128/IAI.01404-06
https://doi.org/10.1128/IAI.01404-06
http://www.ncbi.nlm.nih.gov/pubmed/17325054
http://www.ncbi.nlm.nih.gov/pubmed/9634950
http://www.ncbi.nlm.nih.gov/pubmed/10372875
https://doi.org/10.1097/OPX.0000000000000597
https://doi.org/10.1097/OPX.0000000000000597
http://www.ncbi.nlm.nih.gov/pubmed/25955639
https://doi.org/10.1016/j.exer.2013.07.014
https://doi.org/10.1016/j.exer.2013.07.014
http://www.ncbi.nlm.nih.gov/pubmed/23880529
https://doi.org/10.1128/IAI.71.7.3866-3874.2003
https://doi.org/10.1128/IAI.71.7.3866-3874.2003
http://www.ncbi.nlm.nih.gov/pubmed/12819071
https://doi.org/10.1371/journal.ppat.1006392


14. Mun JJ, Tam C, Evans DJ, Fleiszig SM. Modulation of epithelial immunity by mucosal fluid. Sci Rep.

2011; 1:8. https://doi.org/10.1038/srep00008 PMID: 22355527

15. Mun J, Tam C, Chan G, Kim JH, Evans D, Fleiszig S. MicroRNA-762 is upregulated in human corneal

epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates

the expression of host defense genes encoding RNase7 and ST2. PLoS One. 2013; 8(2):e57850.

https://doi.org/10.1371/journal.pone.0057850 PMID: 23469087

16. Wu YT, Tam C, Zhu LS, Evans DJ, Fleiszig SM. Human tear fluid reduces culturability of contact lens

associated Pseudomonas aeruginosa biofilms but induces expression of the virulence associated type

III secretion system. Ocul Surf. 2017; 15(1): 88–96. https://doi.org/10.1016/j.jtos.2016.09.001 PMID:

27670247

17. Willcox MD. Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review.

Optom Vis Sci. 2007; 84(4):273–8. https://doi.org/10.1097/OPX.0b013e3180439c3e PMID: 17435510

18. Zolfaghar I, Evans DJ, Fleiszig SM. Twitching motility contributes to the role of pili in corneal infection

caused by Pseudomonas aeruginosa. Infect Immun. 2003; 71(9):5389–93. https://doi.org/10.1128/IAI.

71.9.5389-5393.2003 PMID: 12933890

19. Alarcon I, Evans DJ, Fleiszig SM. The role of twitching motility in Pseudomonas aeruginosa exit from

and translocation of corneal epithelial cells. Invest Ophthalmol Vis Sci. 2009; 50(5):2237–44. https://doi.

org/10.1167/iovs.08-2785 PMID: 19136693

20. Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol. 2002; 56:289–314. https://doi.org/10.

1146/annurev.micro.56.012302.160938 PMID: 12142488

21. Burrows LL. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol.

2012; 66:493–520. https://doi.org/10.1146/annurev-micro-092611-150055 PMID: 22746331

22. Leighton TL, Buensuceso RN, Howell PL, Burrows LL. Biogenesis of Pseudomonas aeruginosa type IV

pili and regulation of their function. Environ Microbiol. 2015; 17(11):4148–63. https://doi.org/10.1111/

1462-2920.12849 PMID: 25808785

23. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. Type IV pili mechanochemically regulate virulence

factors in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2015; 112(24):7563–8. https://doi.org/

10.1073/pnas.1502025112 PMID: 26041805

24. Semmler AB, Whitchurch CB, Mattick JS. A re-examination of twitching motility in Pseudomonas aeru-

ginosa. Microbiology. 1999; 145 (Pt 10):2863–73.

25. Tiffany JM. The normal tear film. Dev Ophthalmol. 2008; 41:1–20. https://doi.org/10.1159/000131066

PMID: 18453758

26. Zybailov B, Coleman MK, Florens L, Washburn MP. Correlation of relative abundance ratios derived

from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable

isotope labeling. Anal Chem. 2005; 77:6218–24. https://doi.org/10.1021/ac050846r PMID: 16194081

27. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, et al. Quantitative proteomic

analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc

Natl Acad Sci U S A. 2006; 103(50):18928–33. https://doi.org/10.1073/pnas.0606379103 PMID:

17138671

28. Madsen J, Mollenhauer J, Holmskov U. Gp-340/DMBT1 in mucosal innate immunity. Innate Immun.

2010; 16(3):160–7. https://doi.org/10.1177/1753425910368447 PMID: 20418254

29. Jumblatt MM, Imbert Y, Young WW Jr., Foulks GN, Steele PS, Demuth DR. Glycoprotein 340 in normal

human ocular surface tissues and tear film. Infect Immun. 2006; 74(7):4058–63. https://doi.org/10.

1128/IAI.01951-05 PMID: 16790779

30. Loimaranta V, Hytonen J, Pulliainen AT, Sharma A, Tenovuo J, Stromberg N, et al. Leucine-rich repeats

of bacterial surface proteins serve as common pattern recognition motifs of human scavenger receptor

gp340. J Biol Chem. 2009; 284(28):18614–23. https://doi.org/10.1074/jbc.M900581200 PMID:

19465482

31. Kukita K, Kawada-Matsuo M, Oho T, Nagatomo M, Oogai Y, Hashimoto M, et al. Staphylococcus

aureus SasA is responsible for binding to the salivary agglutinin gp340, derived from human saliva.

Infect Immun. 2013; 81(6):1870–9. https://doi.org/10.1128/IAI.00011-13 PMID: 23439307

32. Cowell BA, Wu C, Fleiszig SM. Use of an animal model in studies of bacterial corneal infection. ILAR J.

1999; 40(2):43–50. PMID: 11309524

33. Ligtenberg AJ, Veerman EC, Nieuw Amerongen AV, Mollenhauer J. Salivary agglutinin/glycoprotein-

340/DMBT1: a single molecule with variable composition and with different functions in infection, inflam-

mation and cancer. Biol Chem. 2007; 388(12):1275–89. https://doi.org/10.1515/BC.2007.158 PMID:

18020944

34. Brittan JL, Nobbs AH. Group B Streptococcus pili mediate adherence to salivary glycoproteins.

Microbes Infect. 2015; 17(5):360–8. https://doi.org/10.1016/j.micinf.2014.12.013 PMID: 25576026

DMBT1 inhibition of P. aeruginosa twitching motility and virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006392 May 10, 2017 23 / 26

https://doi.org/10.1038/srep00008
http://www.ncbi.nlm.nih.gov/pubmed/22355527
https://doi.org/10.1371/journal.pone.0057850
http://www.ncbi.nlm.nih.gov/pubmed/23469087
https://doi.org/10.1016/j.jtos.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/27670247
https://doi.org/10.1097/OPX.0b013e3180439c3e
http://www.ncbi.nlm.nih.gov/pubmed/17435510
https://doi.org/10.1128/IAI.71.9.5389-5393.2003
https://doi.org/10.1128/IAI.71.9.5389-5393.2003
http://www.ncbi.nlm.nih.gov/pubmed/12933890
https://doi.org/10.1167/iovs.08-2785
https://doi.org/10.1167/iovs.08-2785
http://www.ncbi.nlm.nih.gov/pubmed/19136693
https://doi.org/10.1146/annurev.micro.56.012302.160938
https://doi.org/10.1146/annurev.micro.56.012302.160938
http://www.ncbi.nlm.nih.gov/pubmed/12142488
https://doi.org/10.1146/annurev-micro-092611-150055
http://www.ncbi.nlm.nih.gov/pubmed/22746331
https://doi.org/10.1111/1462-2920.12849
https://doi.org/10.1111/1462-2920.12849
http://www.ncbi.nlm.nih.gov/pubmed/25808785
https://doi.org/10.1073/pnas.1502025112
https://doi.org/10.1073/pnas.1502025112
http://www.ncbi.nlm.nih.gov/pubmed/26041805
https://doi.org/10.1159/000131066
http://www.ncbi.nlm.nih.gov/pubmed/18453758
https://doi.org/10.1021/ac050846r
http://www.ncbi.nlm.nih.gov/pubmed/16194081
https://doi.org/10.1073/pnas.0606379103
http://www.ncbi.nlm.nih.gov/pubmed/17138671
https://doi.org/10.1177/1753425910368447
http://www.ncbi.nlm.nih.gov/pubmed/20418254
https://doi.org/10.1128/IAI.01951-05
https://doi.org/10.1128/IAI.01951-05
http://www.ncbi.nlm.nih.gov/pubmed/16790779
https://doi.org/10.1074/jbc.M900581200
http://www.ncbi.nlm.nih.gov/pubmed/19465482
https://doi.org/10.1128/IAI.00011-13
http://www.ncbi.nlm.nih.gov/pubmed/23439307
http://www.ncbi.nlm.nih.gov/pubmed/11309524
https://doi.org/10.1515/BC.2007.158
http://www.ncbi.nlm.nih.gov/pubmed/18020944
https://doi.org/10.1016/j.micinf.2014.12.013
http://www.ncbi.nlm.nih.gov/pubmed/25576026
https://doi.org/10.1371/journal.ppat.1006392


35. Prakobphol A, Xu F, Hoang VM, Larsson T, Bergstrom J, Johansson I, et al. Salivary agglutinin, which

binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine-rich pro-

tein gp-340. J Biol Chem. 2000; 275(51):39860–6. https://doi.org/10.1074/jbc.M006928200 PMID:

11007786

36. Hartshorn KL, Ligtenberg A, White MR, Van Eijk M, Hartshorn M, Pemberton L, et al. Salivary agglutinin

and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and

interactions with surfactant protein D that vary according to donor source and sialylation. Biochem J.

2006; 393(Pt 2):545–53. https://doi.org/10.1042/BJ20050695 PMID: 16190864

37. Sampedro I, Parales RE, Krell T, Hill JE. Pseudomonas chemotaxis. FEMS Microbiol Rev. 2015; 39

(1):17–46. https://doi.org/10.1111/1574-6976.12081 PMID: 25100612

38. Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC. The Pseudomonas aeruginosa Chp chemo-

sensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol Micro-

biol. 2010; 76(4):889–904. https://doi.org/10.1111/j.1365-2958.2010.07135.x PMID: 20345659

39. Ligtenberg AJ, Karlsson NG, Veerman EC. Deleted in malignant brain tumors-1 protein (DMBT1): a pat-

tern recognition receptor with multiple binding sites. Int J Mol Sci. 2010; 11(12):5212–33. https://doi.org/

10.3390/ijms1112521 PMID: 21614203

40. Polley S, Louzada S, Forni D, Sironi M, Balaskas T, Hains DS, et al. Evolution of the rapidly mutating

human salivary agglutinin gene (DMBT1) and population subsistence strategy. Proc Natl Acad Sci U S

A. 2015; 112(16):5105–10. https://doi.org/10.1073/pnas.1416531112 PMID: 25848046

41. Oho T, Yu H, Yamashita Y, Koga T. Binding of salivary glycoprotein-secretory immunoglobulin A com-

plex to the surface protein antigen of Streptococcus mutans. Infect Immun. 1998; 66(1):115–21. PMID:

9423847

42. Holmskov U, Lawson P, Teisner B, Tornoe I, Willis AC, Morgan C, et al. Isolation and characterization

of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfac-

tant protein-D binding molecule. J Biol Chem. 1997; 272(21):13743–9. PMID: 9153228

43. Eriksson C, Frangsmyr L, Danielsson Niemi L, Loimaranta V, Holmskov U, Bergman T, et al. Variant

size- and glycoforms of the scavenger receptor cysteine-rich protein gp-340 with differential bacterial

aggregation. Glycoconj J. 2007; 24(2–3):131–42. https://doi.org/10.1007/s10719-006-9020-1 PMID:

17243023

44. Schulz BL, Oxley D, Packer NH, Karlsson NG. Identification of two highly sialylated human tear-fluid

DMBT1 isoforms: the major high-molecular-mass glycoproteins in human tears. Biochem J. 2002; 366

(Pt 2):511–20. https://doi.org/10.1042/BJ20011876 PMID: 12015815

45. Madsen J, Tornoe I, Nielsen O, Lausen M, Krebs I, Mollenhauer J, et al. CRP-ductin, the mouse homo-

logue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative

bacteria and interacts with lung surfactant protein D. Eur J Immunol. 2003; 33(8):2327–36. https://doi.

org/10.1002/eji.200323972 PMID: 12884308

46. Tino MJ, Wright JR. Glycoprotein-340 binds surfactant protein-A (SP-A) and stimulates alveolar macro-

phage migration in an SP-A-independent manner. Am J Respir Cell Mol Biol. 1999; 20(4):759–68.

https://doi.org/10.1165/ajrcmb.20.4.3439 PMID: 10101009

47. Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial

biofilm development. Nature. 2002; 417(6888):552–5. https://doi.org/10.1038/417552a PMID:

12037568

48. Reichhardt MP, Jarva H, de Been M, Rodriguez JM, Jimenez Quintana E, Loimaranta V, et al. The sali-

vary scavenger and agglutinin in early life: diverse roles in amniotic fluid and in the infant intestine. J

Immunol. 2014; 193(10):5240–8. https://doi.org/10.4049/jimmunol.1401631 PMID: 25320275

49. Chiang P, Sampaleanu LM, Ayers M, Pahuta M, Howell PL, Burrows LL. Functional role of conserved

residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus

motor proteins PilB, PilT and PilU. Microbiology. 2008; 154(Pt 1):114–26. https://doi.org/10.1099/mic.0.

2007/011320-0 PMID: 18174131

50. Bertrand JJ, West JT, Engel JN. Genetic analysis of the regulation of type IV pilus function by the Chp

chemosensory system of Pseudomonas aeruginosa. J Bacteriol. 2010; 192(4):994–1010. https://doi.

org/10.1128/JB.01390-09 PMID: 20008072

51. DeLange PA, Collins TL, Pierce GE, Robinson JB. PilJ localizes to cell poles and is required for type IV

pilus extension in Pseudomonas aeruginosa. Curr Microbiol. 2007; 55(5):389–95. https://doi.org/10.

1007/s00284-007-9008-5 PMID: 17713814

52. Alarcon I, Kwan L, Yu C, Evans DJ, Fleiszig SM. Role of the corneal epithelial basement membrane in

ocular defense against Pseudomonas aeruginosa. Infect Immun. 2009; 77(8):3264–71. https://doi.org/

10.1128/IAI.00111-09 PMID: 19506010

53. Tam C, LeDue J, Mun JJ, Herzmark P, Robey EA, Evans DJ, et al. 3D quantitative imaging of unpro-

cessed live tissue reveals epithelial defense against bacterial adhesion and subsequent traversal

DMBT1 inhibition of P. aeruginosa twitching motility and virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006392 May 10, 2017 24 / 26

https://doi.org/10.1074/jbc.M006928200
http://www.ncbi.nlm.nih.gov/pubmed/11007786
https://doi.org/10.1042/BJ20050695
http://www.ncbi.nlm.nih.gov/pubmed/16190864
https://doi.org/10.1111/1574-6976.12081
http://www.ncbi.nlm.nih.gov/pubmed/25100612
https://doi.org/10.1111/j.1365-2958.2010.07135.x
http://www.ncbi.nlm.nih.gov/pubmed/20345659
https://doi.org/10.3390/ijms1112521
https://doi.org/10.3390/ijms1112521
http://www.ncbi.nlm.nih.gov/pubmed/21614203
https://doi.org/10.1073/pnas.1416531112
http://www.ncbi.nlm.nih.gov/pubmed/25848046
http://www.ncbi.nlm.nih.gov/pubmed/9423847
http://www.ncbi.nlm.nih.gov/pubmed/9153228
https://doi.org/10.1007/s10719-006-9020-1
http://www.ncbi.nlm.nih.gov/pubmed/17243023
https://doi.org/10.1042/BJ20011876
http://www.ncbi.nlm.nih.gov/pubmed/12015815
https://doi.org/10.1002/eji.200323972
https://doi.org/10.1002/eji.200323972
http://www.ncbi.nlm.nih.gov/pubmed/12884308
https://doi.org/10.1165/ajrcmb.20.4.3439
http://www.ncbi.nlm.nih.gov/pubmed/10101009
https://doi.org/10.1038/417552a
http://www.ncbi.nlm.nih.gov/pubmed/12037568
https://doi.org/10.4049/jimmunol.1401631
http://www.ncbi.nlm.nih.gov/pubmed/25320275
https://doi.org/10.1099/mic.0.2007/011320-0
https://doi.org/10.1099/mic.0.2007/011320-0
http://www.ncbi.nlm.nih.gov/pubmed/18174131
https://doi.org/10.1128/JB.01390-09
https://doi.org/10.1128/JB.01390-09
http://www.ncbi.nlm.nih.gov/pubmed/20008072
https://doi.org/10.1007/s00284-007-9008-5
https://doi.org/10.1007/s00284-007-9008-5
http://www.ncbi.nlm.nih.gov/pubmed/17713814
https://doi.org/10.1128/IAI.00111-09
https://doi.org/10.1128/IAI.00111-09
http://www.ncbi.nlm.nih.gov/pubmed/19506010
https://doi.org/10.1371/journal.ppat.1006392


requires MyD88. PLoS One. 2011; 6(8):e24008. https://doi.org/10.1371/journal.pone.0024008 PMID:

21901151

54. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa bio-

film development. Mol Microbiol. 1998; 30(2):295–304. PMID: 9791175

55. Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA, Knobloch JK. Biofilm formation in medical

device-related infection. Int J Artif Organs. 2006; 29(4):343–59. PMID: 16705603

56. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections.

Science. 1999; 284(5418):1318–22. PMID: 10334980

57. Ni M, Evans DJ, Hawgood S, Anders EM, Sack RA, Fleiszig SM. Surfactant protein D is present in

human tear fluid and the cornea and inhibits epithelial cell invasion by Pseudomonas aeruginosa. Infect

Immun. 2005; 73(4):2147–56. https://doi.org/10.1128/IAI.73.4.2147-2156.2005 PMID: 15784557

58. Mun JJ, Tam C, Kowbel D, Hawgood S, Barnett MJ, Evans DJ, et al. Clearance of Pseudomonas aeru-

ginosa from a healthy ocular surface involves surfactant protein D and is compromised by bacterial elas-

tase in a murine null-infection model. Infect Immun. 2009; 77(6):2392–8. https://doi.org/10.1128/IAI.

00173-09 PMID: 19349424

59. Masinick SA, Montgomery CP, Montgomery PC, Hazlett LD. Secretory IgA inhibits Pseudomonas aeru-

ginosa binding to cornea and protects against keratitis. Invest Ophthalmol Vis Sci. 1997; 38(5):910–8.

PMID: 9112987

60. Giannoni E, Sawa T, Allen L, Wiener-Kronish J, Hawgood S. Surfactant proteins A and D enhance pul-

monary clearance of Pseudomonas aeruginosa. Am J Respir Cell Mol Biol. 2006; 34(6):704–10. https://

doi.org/10.1165/rcmb.2005-0461OC PMID: 16456184

61. Restrepo CI, Dong Q, Savov J, Mariencheck WI, Wright JR. Surfactant protein D stimulates phagocyto-

sis of Pseudomonas aeruginosa by alveolar macrophages. Am J Respir Cell Mol Biol. 1999; 21(5):576–

85. https://doi.org/10.1165/ajrcmb.21.5.3334 PMID: 10536117

62. Boackle RJ, Connor MH, Vesely J. High molecular weight non-immunoglobulin salivary agglutinins

(NIA) bind C1Q globular heads and have the potential to activate the first complement component. Mol

Immunol. 1993; 30(3):309–19. PMID: 8433709

63. Leito JT, Ligtenberg AJ, van Houdt M, van den Berg TK, Wouters D. The bacteria binding glycoprotein

salivary agglutinin (SAG/gp340) activates complement via the lectin pathway. Mol Immunol. 2011; 49

(1–2):185–90. https://doi.org/10.1016/j.molimm.2011.08.010 PMID: 21920605

64. Blackburn AC, Hill LZ, Roberts AL, Wang J, Aud D, Jung J, et al. Genetic mapping in mice identifies

DMBT1 as a candidate modifier of mammary tumors and breast cancer risk. American Journal of

Pathology. 2007; 170(6):2030–41. https://doi.org/10.2353/ajpath.2007.060512 PMID: 17525270

65. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, et al. Comprehensive transposon

mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2003; 100(24):14339–44.

https://doi.org/10.1073/pnas.2036282100 PMID: 14617778

66. Turnbull L, Whitchurch CB. Motility assay: twitching motility. Methods Mol Biol. 2014; 1149:73–86.

https://doi.org/10.1007/978-1-4939-0473-0_9 PMID: 24818899

67. Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimen-

sional protein identification technology. Nat Biotechnol. 2001; 19(3):242–7. https://doi.org/10.1038/

85686 PMID: 11231557

68. Xu T, Venable JD, Park SK, Cociorva D, Lu B, Liao L, et al. ProLuCID, a fast and sensitive tandem

mass spectra-based protein identification program. Mol Cell Proteomics. 2006; 5(10):S174–S.

69. Tabb DL, McDonald WH, Yates JR 3rd. DTASelect and Contrast: tools for assembling and comparing

protein identifications from shotgun proteomics. J Proteome Res. 2002; 1(1):21–6. PMID: 12643522

70. Park SK, Venable JD, Xu T, Yates JR 3rd. A quantitative analysis software tool for mass spectrometry-

based proteomics. Nat Methods. 2008; 5(4):319–22. https://doi.org/10.1038/nmeth.1195 PMID:

18345006

71. McDonald WH, Tabb DL, Sadygov RG, MacCoss MJ, Venable J, Graumann J, et al. MS1, MS2, and

SQT-three unified, compact, and easily parsed file formats for the storage of shotgun proteomic spectra

and identifications. Rapid Commun Mass Spectrom. 2004; 18(18):2162–8. https://doi.org/10.1002/rcm.

1603 PMID: 15317041

72. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP. Evaluation of multidimensional chromatography

coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast pro-

teome. J Proteome Res. 2003; 2(1):43–50. PMID: 12643542

73. Loimaranta V, Jakubovics NS, Hytonen J, Finne J, Jenkinson HF, Stromberg N. Fluid- or surface-

phase human salivary scavenger protein gp340 exposes different bacterial recognition properties.

Infect Immun. 2005; 73(4):2245–52. https://doi.org/10.1128/IAI.73.4.2245-2252.2005 PMID:

15784568

DMBT1 inhibition of P. aeruginosa twitching motility and virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006392 May 10, 2017 25 / 26

https://doi.org/10.1371/journal.pone.0024008
http://www.ncbi.nlm.nih.gov/pubmed/21901151
http://www.ncbi.nlm.nih.gov/pubmed/9791175
http://www.ncbi.nlm.nih.gov/pubmed/16705603
http://www.ncbi.nlm.nih.gov/pubmed/10334980
https://doi.org/10.1128/IAI.73.4.2147-2156.2005
http://www.ncbi.nlm.nih.gov/pubmed/15784557
https://doi.org/10.1128/IAI.00173-09
https://doi.org/10.1128/IAI.00173-09
http://www.ncbi.nlm.nih.gov/pubmed/19349424
http://www.ncbi.nlm.nih.gov/pubmed/9112987
https://doi.org/10.1165/rcmb.2005-0461OC
https://doi.org/10.1165/rcmb.2005-0461OC
http://www.ncbi.nlm.nih.gov/pubmed/16456184
https://doi.org/10.1165/ajrcmb.21.5.3334
http://www.ncbi.nlm.nih.gov/pubmed/10536117
http://www.ncbi.nlm.nih.gov/pubmed/8433709
https://doi.org/10.1016/j.molimm.2011.08.010
http://www.ncbi.nlm.nih.gov/pubmed/21920605
https://doi.org/10.2353/ajpath.2007.060512
http://www.ncbi.nlm.nih.gov/pubmed/17525270
https://doi.org/10.1073/pnas.2036282100
http://www.ncbi.nlm.nih.gov/pubmed/14617778
https://doi.org/10.1007/978-1-4939-0473-0_9
http://www.ncbi.nlm.nih.gov/pubmed/24818899
https://doi.org/10.1038/85686
https://doi.org/10.1038/85686
http://www.ncbi.nlm.nih.gov/pubmed/11231557
http://www.ncbi.nlm.nih.gov/pubmed/12643522
https://doi.org/10.1038/nmeth.1195
http://www.ncbi.nlm.nih.gov/pubmed/18345006
https://doi.org/10.1002/rcm.1603
https://doi.org/10.1002/rcm.1603
http://www.ncbi.nlm.nih.gov/pubmed/15317041
http://www.ncbi.nlm.nih.gov/pubmed/12643542
https://doi.org/10.1128/IAI.73.4.2245-2252.2005
http://www.ncbi.nlm.nih.gov/pubmed/15784568
https://doi.org/10.1371/journal.ppat.1006392


74. Robertson DM, Li L, Fisher S, Pearce VP, Shay JW, Wright WE, et al. Characterization of growth and

differentiation in a telomerase-immortalized human corneal epithelial cell line. Invest Ophthalmol Vis

Sci. 2005; 46(2):470–8. https://doi.org/10.1167/iovs.04-0528 PMID: 15671271

75. Whitchurch CB, Leech AJ, Young MD, Kennedy D, Sargent JL, Bertrand JJ, et al. Characterization of a

complex chemosensory signal transduction system which controls twitching motility in Pseudomonas

aeruginosa. Mol Microbiol. 2004; 52(3):873–93. https://doi.org/10.1111/j.1365-2958.2004.04026.x

PMID: 15101991

DMBT1 inhibition of P. aeruginosa twitching motility and virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006392 May 10, 2017 26 / 26

https://doi.org/10.1167/iovs.04-0528
http://www.ncbi.nlm.nih.gov/pubmed/15671271
https://doi.org/10.1111/j.1365-2958.2004.04026.x
http://www.ncbi.nlm.nih.gov/pubmed/15101991
https://doi.org/10.1371/journal.ppat.1006392



