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Abstract

An essential part of cognitive science is designing experiments
that distinguish competing models. This requires patience and
ingenuity—there is often a large space of possible experiments
one could run but only a small subset that might yield informa-
tive results. We need not comb this space by hand: If we use
formal models and explicitly declare the space of experiments,
we can automate the search for good experiments, looking for
those with high expected information gain. Here, we present
an automated system for experiment design called webppl-oed.
In our system, users simply declare their models and experi-
ment space; in return, they receive a list of experiments ranked
by their expected information gain. We demonstrate our sys-
tem in two case studies, where we use it to design experiments
in studies of sequence prediction and categorization. We find
strong empirical validation that our automatically designed ex-
periments were indeed optimal.

Introduction

Cognitive scientists often design experiments to test compet-

ing computational models. Good experiments are ones where

the models make different predictions, but there is typically

a large space of possible experiments one could run (e.g.,

there could many different possible stimulus sets to present).

Rather than systematically search the experiment space, sci-

entists often rely on intuition to design experiments where

models sufficiently diverge. This intuition may be biased in

a number of ways, such as towards experiments that show

qualitative differences between models even when more in-

formative quantitative differences may exist.

In principle, there is a better way—if we formally declare

the space of models and space of experiments, optimal ex-

periment design (OED) allows us to automate the search for

good experiments (i.e., ones that strongly update our beliefs

about a scientific question). However, while the mathemat-

ical foundations of OED are fairly straightforward (Lindley,

1956), it has not enjoyed widespread use in practice. Some

OED systems are too specialized for general use; others are

more general but require too much statistical and computa-

tional know-how to be widely adopted (e.g., users must sup-

ply their own objective function and derive a solution algo-

rithm for it). In this work, we describe an automated system

that is both general and practical—the user writes the compet-

ing models and space of possible experiments in a common

language; a set of potentially informative experiments is then

computed with no further input from the user.

We first describe our framework in general terms and then

apply it in two case studies. First, we consider the problem

* Authors contributed equally to this work.

of distinguishing three toy models of human sequence predic-

tion. Second, we go beyond toy models and analyze a classic

paper (Medin & Schaffer, 1978) on human category learning

that compared two models using a hand-designed experiment.

Our OED system discovers experiments that are several times

more effective (in an information-theoretic sense) than the

original. Our work opens a number of rich areas for future

development, which we explore in the discussion.

Experiment design framework

Imagine that we are studying how people predict elements

in a sequence (e.g., flips of a possibly-trick coin). We want

to compare two cognitive models of people’s behavior: mfair,

where people believe the coin is unbiased (i.e., H and T are

equally likely), and mbias, where people believe the coin has a

bias that is unknown to them. A priori, one model is not pre-

ferred over the other; in Bayesian terms, we have a uniform

prior on the models. We wish to update our beliefs about

these models through an experiment where we show people

4 flips of the same coin and ask them to predict what will

happen on the next flip. There are 16 possible experiments

(i.e., sequences of H and T for the 4 flips);1 as each participant

responds by predicting either H or T, there are 2n possible out-

comes for n participants. The models predict how people will

respond in an experiment (i.e., after seeing some particular

sequence of flips). Formally, a model defines a probability

distribution on {H, T}n conditional on the experiment x. For

convenience, we write our models in terms of what a single

person would do and assume that all people respond accord-

ing to the same model, i.e., participant responses are i.i.d.2

Should we run experiment HHTT? mfair always predicts H and

T with equal probability; for this experiment, mbias learns that

the bias favors H and T equally, and thus also makes the same

prediction. Regardless of the observed outcome (person pre-

dicts H or T), the data cannot update our beliefs about the mod-

els, so this is a poor experiment. By contrast, the experiment

HHHH would be much more informative. Under mfair, p(H) = 1
2

but under mbias, p(H) = 5
6

(this is the updated probability of

heads after estimating the coin bias). In this case, either ex-

perimental response would be informative. If the participant

predicted heads, this would favor mbias and if she predicted

1 Our notion of “experiment” is quite general, including tradi-
tional components like stimulus properties (e.g., coin sequence) as
well as other components like dependent measure and sample size.

2 We use this simple linking function throughout this paper but
our approach handles arbitrary linking functions (e.g., hierarchical
models with participant-wise parameters).
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tails, this would favor mfair. HHHH is a better experiment than

HHTT for disambiguating the models. The goal of OED is to

automate this kind of reasoning.

Now, we provide formal details. We wish to compare a set

of models M in terms of how well they account for empiri-

cal data. A model m is a conditional distribution Pm(Y | X)
representing the likelihood of empirical results y for different

possible experiments x. We adopt a Bayesian model compar-

ison approach—we start with a prior on models P(M) and

seek an experiment whose result will maximally update this

prior. A priori, we do not know what will happen if we run

experiment x. If we were to actually run x and obtain result y,

then we could measure actual information gain (AIG) by:

AIG(x) = DKL(P(M | Y = y,X = x) ‖ P(M)) (1)

where DKL is KL-divergence. We can compute the expected

information gain (EIG) of x by imagining hypothetical dif-

ferent experimental results and combining them—that is, we

can marginalize over y:

EIG(x) = Ep(y;x)DKL(P(M | X = x,Y = y) ‖ P(M)) (2)

where p(y;x) is the probability of observing y for x. If we

believe that M contains the true model of the data, then a suit-

able choice for p(y;x) is the predictive distribution implied by

the models: p(y;x) = Ep(m)pm(y | x). If, however, we believe

that M does not contain the true model, then an uninformative

distribution p(y;x) ∝ 1 may be more appropriate.

Note that we commit to a Bayesian approach only for

model comparison; the models themselves need not be

Bayesian nor even probabilistic. If the models define a prob-

ability distribution specifying predictions for different exper-

iments, they can be be used without further assumptions.

Models that make deterministic predictions can be made into

such a probability distribution by having predictions serve as

the mean of subjects’ responses with actual responses being

normally-distributed around this value; indeed, this implicit

assumption underlies standard data analysis used for such

models. Finally, OED does not need to do exact Bayesian

computation to be useful—approximate OED can still find

experiments that outperform those designed by hand.

Writing models as probabilistic programs

Models are probability distributions. As such, we have the

user express their models in a programming language where

probability distributions and operations on them are first-class

objects. In particular, we use WebPPL (webppl.org), a small

but feature-rich probabilistic programming language embed-

ded in Javascript (Goodman & Stuhlmüller, 2014). WebPPL

supports sampling from primitive probability distributions

and combining these samples in various ways, e.g., adding

Gaussian noise to a Binomial random variable:

var g = function () {

var x = sample(Binomial ({n: 4, p: 0.5}))

var y = sample(Gaussian ({mu: 0, sigma: 1}))

x + y // function returns its last expression

}

Infer(g)

The function g defines a sampling procedure for our com-

pound distribution. This implicitly represents a probability

distribution; to reify this into an actual distribution, we must

perform inference via Infer(g, options). This separation be-

tween what we wish to compute from how we try to compute

it is useful when writing larger, more complex models. Note

that in the above snippet, and throughout, we omit the options

object, which specifies which inference algorithm to use.3

WebPPL also supports expressing conditional probability

distributions. For instance, in the model above, we might ask

what values of x and y could lead their sum to be greater than

or equal to 2:

var g = function () {

var x = sample(Binomial ({n: 4, p: 0.5}))

var y = sample(Gaussian ({mu: 0, sigma: 1}))

condition(x + y >= 2)

[x, y]

}

Infer(g)

Here, condition rejects any states where x+ y < 2.

Given a set of competing models written as WebPPL func-

tions, a space of possible experiments (inputs to the models),

and expectations about the results for different experiments

(i.e., p(y;x), again written in WebPPL), our system webppl-oed

searches for experiments that have high EIG as defined in

Eq. 2. In abstract terms, webppl-oed calculates EIG(x) by

sampling imagined experiment results from p(y;x). For each

sample y, it performs inference to obtain a posterior distribu-

tion on models and then measures the KL divergence of this

posterior from the prior. The average of these KL divergences

is an estimate of EIG. The main bottleneck in this process is

posterior inference, which takes a good deal of expertise to

implement correctly and is also computationally challenging.

webppl-oed insulates end users from these technical concerns,

allowing them to concentrate on scientific questions rather

than engineering details. The software is available online at

github.com/mhtess/webppl-oed. We next demonstrate it by using

it to distinguish toy models of sequence prediction.

Case study 1: Sequence prediction

Human judgments about sequences are surprisingly system-

atic and nonuniform across equally likely outcomes – for ex-

ample, we might strongly believe the next coin flip in the se-

quence HHTTHHTT will be H, whereas the sequence THHTHTHT is less

suggestive of a particular next outcome. Several hypotheses

have been articulated about what underlies human intuitions

about such sequences (Falk, 1981; Goodfellow, 1938; Grif-

fiths & Tenenbaum, 2004). Here, we consider three simple

models of people’s beliefs: (a) Fair coin: people assume the

coin is fair, (b) Bias coin: people believe the coin has some

unknown bias that they can estimate from data (i.e., learning

the probability of an H outcome), (c) Markov coin: people be-

lieve the coin has some probability of transitioning between

spans of H and T outcomes, also learnable from observations.

3 WebPPL currently provides these inference algorithms:
MCMC (MH, HMC), SMC, enumeration, and variational inference.
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As in our earlier example, we consider an experimental setup

where participants see four flips of the same coin and must

predict the next flip.

Formalization

The model space M is {mfair,mbias,mmarkov}. For now, we as-

sume that the experiment will collect data from just a single

participant, so the experiment space X is the Cartesian prod-

uct {1}×{H,T}4 representing the fixed sample size of 1 and

sequence space. Finally, Y is the response set {H,T}1.

Under mfair, people assume that the coin always has an

equal probability of coming up heads or tails:

var fairCoin = function(seq) {

Infer(function (){ flip (0.5) })

}

Here, flip(0.5) is shorthand for sample(Bernoulli(p:0.5)).

Note the type signature of this model—it takes as input an

experiment (seq) and returns a distribution on possible results

of that experiment (the output of flip(..)).

Under mbias, people assume that the coin has some un-

known bias, learn it from past observations4, and use it to

predict the next flip:

var coinWeights = [0.01, 0.10, 0.20, ..., 0.90, 0.99];

var biasCoin = function(seq) {

Infer(function (){

var w = uniformDraw(coinWeights)

var biasedCoinFlip = function (){ flip(w) }

var predictedSeq = repeat(seq.length ,biasedCoinFlip)

condition(arrayEquals(seq ,predictedSeq))

biasedCoinFlip ()

})

}

Under mmarkov, people assume that the flips are generated by a

Markov process with transition probability p, which is learned

from past observations:

var markovCoin = function(seq1) {

Infer(function (){

var p = uniformDraw(coinWeights)

var markovFlip = function(lastFlip) {

flip(p) ? !lastFlip : lastFlip

}

var sampleSeq = function(n, seqSoFar) {

if (n == 0) {

seqSoFar

} else {

var nextFlip = markovFlip(last(seqSoFar))

var nextSeq = append(seqSoFar , nextFlip)

sampleSequence(n - 1, nextSeq)

}

}

var seq2 = sampleSeq(seq1.length - 1, [flip (0.5)])

condition(arrayEquals(seq1 , seq2))

markovFlip(last(sampledSeq))

})

}

4 The line that uses condition constrains likely values of the coin
weight—this mechanism is used to represent learning in Bayesian
models of cognition. For more, see the Learning as Conditional In-
ference chapter of the online textbook http://probmods.org.

Predictions of optimal experiment design

Using a uniform distribution for p(y;x), we ran OED for

three different model comparisons: fair–bias, bias–Markov,

and fair–bias–Markov and planned to collect data from 20

participants (rather than 1).5 We run OED by writing:

var n = 20,

fairGroup = groupify(fairCoin),

biasGroup = groupify(biasCoin)

OED({

M: function () { uniformDraw ([fairGroup , biasGroup ]) },

X: function () {

{n: n, seq: uniformDraw (["HHHH" ,...,"TTTT"])}

},

Y: function(x) { randomInteger(n + 1) }

})

We define a uniform prior on models M, an experiment space X

with a fixed number of subjects and all valid coin sequences,

and a result space Y, which is the uninformative prior over

the number of H responses. The results of different model

comparisons are below:

fair vs. bias bias vs. markov fair vs. bias vs. markov

HHHH
HHHT
HHTH
HHTT
HTHH
HTHT
HTTH
HTTT
THHH
THHT
THTH
THTT
TTHH
TTHT
TTTH
TTTT

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Expected Information Gain from 20 participants

E
x
p

e
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m
e

n
t

Figure 1: Results for sequence prediction model comparisons

Consider the fair–bias comparison (Fig. 1, left). Several

experiments have 0 information gain (e.g., HTHT)—the models

make exactly the same predictions in this case (albeit for dif-

ferent reasons, as discussed earlier), so the experiment has no

distinguishing power. The best experiments are HHHH and TTTT.

This is intuitive—the bias model infers a strongly biased coin

and makes a strong prediction, while the fair coin model is

unaffected by past observations.

In the bias–Markov comparison (Fig. 1, middle), the best

and worst experiments actually reverse. Now, HHHH and TTTT

are the least informative (because, as before, the models

make similar predictions here), whereas HTHT and THTH are the

most informative. This makes sense—the bias model learns

a weight of 0.5 and so assigns equal probability of heads and

5 Our models are of a single subject but we lift each
single-participant model into a model of group responses
using an i.i.d. linking function that we call groupify:
var groupify = function(model) {

var groupified = function(x) {

var sequence = x.sequence , n = x.n;

var singleModel = model(sequence);

var p = Math.exp(singleModel.score(true))

Binomial ({n: n, p: p})

}

groupified

}

Here, singleModel.score(true) returns the log-probability of the value
true under the singleModel distribution.
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Figure 2: Top three experiments in three-way model compar-

ison: (a) model predictions and (b) EIG versus sample size.

tails to the next flip, whereas the Markov model learns that

the transition probability is high and assigns high probability

to the opposite of the most recent flip (T for THTH and H for HTHT).

In the full fair–bias–Markov comparison (Fig. 1, right), the

worst experiments (e.g., TTHH) are again cases where all mod-

els make similar predictions. The best experiments are TTTT

and HHHH, a result that is non-obvious because we are compar-

ing three models rather than two. The best experiment HHHH

is very good at separating the fair model from the other two

models, while still predicting a difference between bias and

Markov (Fig. 2a, right). The second best experiment, HHHT,

predicts three qualitatively different responses for the three

models: bias model above baseline, Markov model below

baseline, and fair model at baseline (Fig. 2a, middle), but this

comes at the cost of less EIG overall. An automated design

tool is especially useful in these settings, where human intu-

ition would likely favor the qualitative over the quantitative

differences.

Finally, an experiment’s EIG varies as a function of sam-

ple size (Fig. 2b). This function is non-linear and, crucially,

the rank ordering of experiments can change. For the the

full model comparison, the experiments HTHT and HHHT switch

places after 12 participants. This is particularly relevant when

three models are being compared; small quantitative differ-

ences between two models may grow with the sample size.
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Figure 3: AIG vs. EIG for each experiment

Empirical validation

We validated our system by collecting human judgements for

all 16 experiments and comparing expected information gain

(EIG) with the actual information gain (AIG) from the em-

pirical results. We randomly assigned 351 participants to a

single experiment (sequence). All of the 16 experiments were

completed by ≥20 unique participants.6 Participants pressed

a key to sequentially reveal the sequence of 4 flips and then

predicted the next coin flip (either heads or tails).

For each of the three model comparison scenarios de-

scribed earlier, we compared EIG to AIG for every experi-

ment x. Figure 3 shows that EIG is a reliable predictor of

AIG—the empirical value of an experiment (minimum r =

0.857). This indicates that the OED tool could be relied on to

automatically choose good experiments for this case study.

Case study 2: Category learning

Here, we explore a more complex and theoretically impor-

tant set of models and experiments. In addition, whereas the

previous section considered Bayesian cognitive models, here

we consider non-Bayesian models of category learning. In

particular, we analyze a classic paper on the psychology of

categorization by Medin and Schaffer (1978) that aimed to

distinguish two competing models of category learning – the

exemplar model and the prototype model. By hand, Medin

and Schaffer (MS) designed an experiment (often referred to

as the “5-4 experiment”) where the models made diverging

predictions and found that the results supported the exemplar

model. Subsequently, many other authors followed their lead,

replicating and using the 5-4 experiment to test other compet-

ing models. Here, we ask: how good was the MS 5-4 exper-

iment? Could they have run an experiment that would have

distinguished the two models with less data?

Models

Both the exemplar and prototype models are classifiers that

map inputs (objects represented as a vector of Boolean fea-

tures) to a probability distribution on the categorization re-

sponse (a label: A or B). The exemplar model assumes people

6 N’s were uneven due to randomization. We use the empirical
N’s for comparing EIG to AIG.
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store information about every instance of the category they

have observed; categorizing an object is thus a function of

the object’s similarity to all of the examples of category A

versus the similarity to all of B’s examples. By contrast, the

prototype model assumes that people store a measure of cen-

tral tendency for each category—a prototype. Categorization

of an object is thus a function of its similarity to the A pro-

totype versus its similarity to the B prototype. For space, we

omit these model implementations but refer interested readers

to the source code available online.

Experiments

Participants first learn about the category structures in a train-

ing phase where they perform supervised learning of a sub-

set of the objects and are then tested on this learning in a test

phase. During training, participants see a subset of the objects

presented one at a time and must label each object. Initially,

they can only guess at the labels, but they receive feedback so

that they can eventually learn the category assignments. Af-

ter reaching a learning criterion, they complete the test phase,

where they label all the objects (training set and the held out

test set) without feedback.

MS used visual stimuli that varied on 4 binary dimensions

(color: red vs. green, shape: triangle vs. circle, size: small

vs. large, and count: 1 vs. 2). For technical reasons, they

considered only experiments that (1) have linearly separable

decision boundaries, (2) contain 5 A’s and 4 B’s in the training

set, and (3) have the modal A object 1111 and the modal B

object 0000. There are, up to permutation, 933 experiments

that satisfy these constraints.

Predictions of optimal experimental design

Using the predictive prior for p(y;x), we computed EIG for

all 933 experiments and found that the optimal experiment

(for a single participant) sets the As to be 0001, 0011, 1100,

1110, 1111 and the Bs to be 0100, 0110, 1000, 1010. By con-

trast, the MS experiment sets the As as 1110, 1010, 1011,

1101, 0111 and the Bs as 1100, 0110, 0001, 0000. The optimal

experiment had an EIG of 0.08 nats while the MS experiment

had an EIG of only 0.03 nats, a 2.5-fold difference. Indeed,

the MS experiment is near the bottom third of all experiments

(Fig. 5a).

Why is the MS experiment relatively ineffective? One rea-

son is that Medin and Schaffer prioritized experiments that

predict a qualitative categorization difference. In particular,

they argued that the prototype model predicts that object 1110

should be easier to learn than object 1010, whereas the exem-

plar model predicts the reverse. However, this qualitative dif-

ference between two objects comes at the cost of little infor-

mation gain from the remaining objects (Fig 4). The optimal

experiment better disambiguates the models by maximizing

the information from all test objects simultaneously.

Empirical validation

To validate our EIG calculations, we ran the MS and opti-

mal experiment with 60 participants each. Figure 5b shows
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Figure 4: In MS and optimal experiments, the divergence be-

tween model predictions (i.e., the absolute value of the dif-

ference in probabilities of being classified as an A by the two

models). The models diverge more in the optimal experiment.

that the optimal experiment we found for a single participant

is indeed better than the MS experiment (n=1, blue greater

than red). For n=1, the mean actual information gain (AIG)

for the optimal experiment is 0.15, whereas it is 0.026 for the

MS experiment. This 5-fold difference is even greater than

the 2.5-fold difference predicted by EIG. In addition, by in-

crementally introducing more data, we observe that both ex-

periments eventually reach maximal AIG but the optimal ex-

periment takes only 10 participants to do so whereas the MS

experiment takes around 30 participants. Thus, the optimal

experiment could provide the same amount of information for

a third of the experimental cost.

Related work

The basic intuition behind OED—to find experiments that

maximize some measure of expected informativeness—has

been independently discovered in a number of fields, includ-

ing physics (van Den Berg & Curtis, 2003), chemistry (Huan,

2010), biology (Liepe, Filippi, Komorowski, & Stumpf,

2013; Vanlier, Tiemann, Hilbers, & van Riel, 2012), psychol-

ogy (Myung & Pitt, 2009), and statistics (Lindley, 1956).

Previous work, however, has either been too narrow for

general use or required too much statistical and computa-

tional expertise. For example, Liepe et al. (2013) devised

a method for finding experiments that optimize information

gain for parameters of biomolecular models (ODEs with

Gaussian noise). Myung and Pitt (2009) described a more

general optimization method but this requires users to select

their own utility function for the value of an experiment and

implement inference on their own. For example, they com-

pared six memory retention models using Fisher Information

Approximation as a utility function and performed inference

using a custom annealed SMC algorithm. Such “bring-your-

own” requirements impose a significant burden on users and

are a real barrier to entry.

By contrast, our OED system is general and practical,

which allows users to rapidly explore different spaces of mod-
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Figure 5: (a) Distribution of EIG for all category learning

experiments on a single participant. MS has low EIG. (b)

AIG versus number of participants in analysis (error bars are

95% bootstrapped confidence intervals). MS requires more

participants to achieve maximum AIG.

els, experiments, and inference algorithms. This approach is

compatible with certain challenging features of cognitive sci-

ence experiments: participants give noisy responses, experi-

mental results are sensitive to sample size, and models often

require linking functions to convert model output into predic-

tions about experimental data. Additionally, our work is the

first to demonstrate that expected information gain is a reli-

able predictor of actual information gain.

Conclusion

Cognitive scientists aim to design experiments that yield in-

formative results. webppl-oed partially automates experiment

design, searching for experiments that maximally update be-

liefs about the model distribution. With our approach, sci-

entists write their models as probabilistic programs, define a

space of possible experiments and results, and hand these to

OED for experiment selection. We stress that the tool com-

plements scientists; it does not replace them. Our tool merely

eliminates the need to manually comb large spaces of po-

tential experiments, which is time consuming, tedious, and

prone to bias, such as a preference for local qualitative dif-

ferences at the expense of ultimate quantitative information

gain. The real ingenuity—devising empirical paradigms and

building models—must still come from the scientist.

Our approach suggests a number of interesting direc-

tions for future work. First, OED can be computationally

challenging—our software currently does not scale up to

huge response or experiment spaces, so there is still room

for optimizing search algorithms. Second, we have examined

model comparison problems where there are a finite number

of models. We believe that our approach also works in (1) pa-

rameter learning settings where the goal is to conduct experi-

ments that best update beliefs about continuous parameters of

a model, and (2) model comparison problems where a finite

number of models each have continuous parameters that are

unknown and must be integrated over.

Lastly, we have restricted attention to “one-shot” experi-

ments, but it would be useful to extend our work to sequential

settings such as adaptive testing. Adaptive testing can be for-

mulated as a problem of information gain of sequences of ex-

periments, which produce dependent and non-iid responses.

Some preliminary work suggests that webppl-oed can be prof-

itably extended to the adaptive setting.
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