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Simulating clinical features on 
chest radiographs for medical 
image exploration and CNN 
explainability using a style-based 
generative adversarial autoencoder
Kyle A. Hasenstab1,2, Lewis Hahn2, Nick Chao1 & Albert Hsiao2

Explainability of convolutional neural networks (CNNs) is integral for their adoption into radiological 
practice. Commonly used attribution methods localize image areas important for CNN prediction 
but do not characterize relevant imaging features underlying these areas, acting as a barrier to the 
adoption of CNNs for clinical use. We therefore propose Semantic Exploration and Explainability using 
a Style-based Generative Adversarial Autoencoder Network (SEE-GAAN), an explainability framework 
that uses latent space manipulation to generate a sequence of synthetic images that semantically 
visualizes how clinical and CNN features manifest within medical images. Visual analysis of changes 
in these sequences then facilitates the interpretation of features, thereby improving explainability. 
SEE-GAAN was first developed on a cohort of 26,664 chest radiographs across 15,409 patients 
from our institution. SEE-GAAN sequences were then generated across several clinical features 
and CNN predictions of NT-pro B-type natriuretic peptide (BNPP) as a proxy for acute heart failure. 
Radiological interpretations indicated SEE-GAAN sequences captured relevant changes in anatomical 
and pathological morphology associated with clinical and CNN predictions and clarified ambiguous 
areas highlighted by commonly used attribution methods. Our study demonstrates SEE-GAAN can 
facilitate our understanding of clinical features for imaging biomarker exploration and improve CNN 
transparency over commonly used explainability methods.

Keywords  Convolutional neural network, Generative adversarial network, Autoencoder, Explainable 
artificial intelligence, Chest radiographs

Convolutional neural networks (CNNs), a class of artificial intelligence (AI) algorithms, have become 
increasingly popular in radiology for their ability to automate complex imaging tasks with high accuracy1. 
Their strong performance stems from their ability to approximate complex relationships between images and 
relevant outcomes using a hierarchy of imaging features learned through training2. However, their architectural 
complexity also makes it exceedingly difficult to explain their predictions, which can act as a barrier to the 
adoption of these algorithms for clinical practice3.

In response to the need for interpretable artificial intelligence algorithms, several explainable AI (XAI) 
methods have been proposed4,5, the majority of which are some form of attribution6–13. Attribution maps are static 
visualizations that highlight areas of an input image important for a CNN’s prediction. Although widely used for 
their ease of implementation, their trustworthiness has been an ongoing subject of debate14–18. Attribution maps 
localize areas of importance, but they do not describe the relevant imaging features underlying these highlighted 
areas (e.g., texture, intensity, morphology). This lack of detail can be detrimental to the explainability of CNNs, 
especially for diffuse disease processes, where large areas of the input image may be potentially relevant for a 
CNN’s prediction or where multiple focal observations are spatially colocalized. Therefore, an explainability 
method capable of both highlighting and characterizing imaging features would be beneficial as a supplement 
to existing XAI methods.
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In recent years, generative adversarial networks (GANs) have emerged as the state-of-the-art approach for 
synthetic image generation and latent space manipulation for image editing19–21. We build on these prior works 
to propose Semantic Exploration and Explainability using a Style-based Generative Adversarial Autoencoder 
Network (SEE-GAAN), a GAN-based XAI framework that uses latent space manipulation to generate a sequence 
of synthetic images that semantically visualizes how clinical features and CNN predictions manifest within 
medical images. Visual analysis of changes in these synthetic image sequences then facilitates the interpretation 
of these features, thereby improving explainability.

In this feasibility study, we hypothesized that SEE-GAAN synthetic image sequences can overcome the 
limitations of commonly used attribution methods by providing dynamic visual explanations of the relationship 
between clinical features and relevant imaging patterns. We first assess SEE-GAAN’s ability to semantically 
visualize a variety of clinical features on chest radiographs. We then compare SEE-GAAN to commonly used 
attribution methods using a CNN developed to infer pulmonary edema severity from chest radiographs as a 
model for comparison22.

Methods
This retrospective study is Health Insurance Portability and Accountability Act-compliant and institutional 
review board-approved by the University of California, San Diego Human Research Protections Program with 
waived requirement for written informed consent; all research was performed in accordance with relevant 
guidelines/regulations.

SEE-GAAN framework
SEE-GAAN (Fig. 1) is a model-agnostic, local and global, generative XAI framework that visualizes how clinical 
features correlate with imaging patterns. Through autoencoder latent space manipulation, SEE-GAAN generates 
sequences of synthetic images correlated with these externally observed features. Subsequently, the analysis of 
changes in these sequences facilitates the interpretation of these features for improved explainability.

SEE-GAAN autoencoder
The backbone of SEE-GAAN is an adversarially trained style-based autoencoder (Fig. 1a) inspired by the method 
of Han et al.23, comprising a residual encoder network E and style-based generator G (i.e. decoder network). 
For an image IE, E first computes a 512-dimension latent representation, wE = E (IE). G then inverts this 
transformation by reconstructing the same image using only its latent representation, ÎE = G (wE). The latent 
representation wE  contains high level semantic information (e.g., anatomy, morphology) about the input image 
useful for the reconstruction. However, we systematically manipulate the latent representation wE  to augment 
the reconstructed image according to an externally observed clinical feature.

SEE-GAAN latent space manipulation for global interpretation
Figure  1b provides an example of SEE-GAAN latent space manipulation to visualize the global relationship 
between a qualitative clinical feature (e.g., acute heart failure [AHF] status) and the appearance of chest 
radiographs. Radiographs are first stratified into AHF- and AHF + mutually exclusive groups. Each radiograph 
is then propagated through the encoder network to extract their corresponding 512-dimension latent 
representations. Latent representations are then averaged at the feature level, producing a single 512-dimension 
latent vector for AHF- ( −

wE,AHF−) and AHF+ ( −
wE, AHF+), respectively. We then traverse the latent space from 

AHF- to AHF+ using basic linear interpolation at each latent neuron, producing interpolated latent vectors −
wE . 

These latent vectors are then propagated through the generator network for reconstruction in image space 
[ G

(−
wE

)
]. The result is a smooth sequence of synthetic images that visualizes the transition from AHF- and 

AHF+ in image space.
For semantic visualization of quantitative clinical features, such as laboratory values, radiographs are 

first ordered by the clinical feature of interest and propagated individually through the encoder network to 
extract their corresponding latent representations. We then traverse the latent space using regression-based 
interpolation. Additional details on this procedure are provide in Appendices E1-E2 (supplement).

SEE-GAAN visualization and permutation testing
To facilitate interpretation, we subtract synthetic images from the first image in the sequence and visualize using 
the spectral color map24, as shown in Fig. 1c. Pixel-wise significance across each subtraction is then determined 
using permutation testing over 100 permutations, such that the latent vectors are randomly shuffled across 
images at each iteration, to reduce false positives. Pixel values that are not statistically significant at a prespecified 
significance level α  are given a value of zero for the final SEE-GAAN visualization. Details on the permutation 
testing procedure are included in Appendix E3 (supplement).

SEE-GAAN latent space manipulation for local interpretation
SEE-GAAN can also manipulate the latent space of individual images for local explainability (Fig. 2). Let wE  
represent the SEE-GAAN encoder latent representation of an AHF- patient’s radiograph, and let −

wE,AHF− 

and −
wE,AHF+ represent the average latent representations of images corresponding to AHF- and AHF+ 

status, respectively. We can then linearly shift wE  so that its corresponding reconstruction contains imaging 
features consistent with either AHF- or AHF+ using 

(−
wE,AHF+ − −

wE,AHF−

)
, where wE

(λ ) is the shifted latent 
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vector for a given value of λ ≥ 0 (Fig.  2a). As we increase λ , reconstructions G
(
wE

(λ )
)

 gradually show 
the appearance of the patient’s radiograph as AHF+. We then visualize their subtractions using the spectral 
color map and determine pixel-wise significance across these subtractions using permutation testing (Fig. 2b). 
Generally, latent space manipulation is performed using wE

(λ ) = wE + λ
(−
wE,desired −

−
wE,current

)
, where 

−
wE,current and −

wE,desired are the average latent representations of the patients current representation (e.g., AHF-
) and desired representation (AHF+), respectively.

Fig. 1.  Semantic Exploration and Explainability using a Generative 1 Adversarial Autoencoder Network  (SEE-
GAAN), a framework for visualizing how clinical features and CNN predictions present within  medical 
images. (a) SEE-GAAN autoencoder designed to reconstruct an image from its latent space  representation. 
(b) SEE-GAAN latent space manipulation and synthetic image sequence generation using  the SEE-GAAN 
autoencoder. (c) SEE-GAAN sequence of synthetic images and subtractions for global  explanations of clinical 
and CNN features. Subtraction images visually highlight specific changes in  augmented images and facilitate 
interpretation.
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Dataset for feasibility testing
We demonstrate SEE-GAAN on a dataset comprising 26,644 frontal chest radiographs and clinical information 
across 15,409 deidentified patients from our institution (2017–2020). Radiographs were acquired on machines 
from several vendors. Laboratory and clinical measurements were collected within 24 h of each corresponding 
radiograph. Clinical and demographic information included sex, age (years), AHF status, and NT-pro B-type 
natriuretic peptide (BNPP [pg/mL]) laboratory measurements (Table 1).

SEE-GAAN autoencoder training
Radiographs were resized to 256 × 256 resolution using bicubic spline interpolation and then individually mapped 
to [-1, 1]. Images were then partitioned at the patient level into an 80/10/10 split, resulting in 21,351/2,602/2,691 
images for training/validation/testing. We then trained the SEE-GAAN autoencoder from scratch for one 
million steps using an Adam optimizer with learning rate 0.001 and a batch size of four while saving weights 
every 10,000 training steps. During training, augmentations including random translations, rotations, zoom, 
and brightness adjustments were applied to images with a 0.2 probability. Fréchet Inception Distance (FID) was 
used to evaluate the quality of synthetic images across training steps25. The training step resulting in the smallest 
validation FID was selected for testing. Technical details on SEE-GAAN training are included in Appendix E4 
(supplement) for reference. Python and Tensorflow-Keras code implementing SEE-GAAN is also made available 
at github.com/khasenst/see-gaan.

SEE-GAAN clinical feature exploration
Global interpretation
To assess SEE-GAAN’s ability to semantically visualize clinical features, we first generated SEE-GAAN sequences 
for sex, age, acute heart failure status, and device manufacturer (Carestream Health vs. General Electric [GE]). 
All visualizations were created using images from the testing set.

Fig. 2.  SEE-GAAN local explanations of clinical and CNN features. (a) Local explanations are created 
by linearly shifting the latent vector (wE) of an image in the direction of the opposing class (e.g., (−
wE,AHF+ − −

wE,AHF−

)
  by some weighting factor  λ . (b) Varying the weighting factor λ  gradually 

augments the appearance of reconstructions G
(
wE

(λ )
)

  as the opposing class (e.g., AHF+). The result is an 
image sequence that visualizes how a clinical or CNN feature presents on a specific patient’s image. Subtraction 
images visually highlight specific changes in augmented images and facilitate interpretation.
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Local interpretation
To assess SEE-GAAN’s ability to augment an existing image by a preselected clinical feature for local interpretation, 
we selected a healthy 27-year-old female patient from the testing set and generated SEE-GAAN sequences for 
sex (female to male), age (younger to older), and AHF status (AHF- to AHF+).

SEE-GAAN for CNN explainability
We explore SEE-GAAN as a tool for CNN explainability using a CNN developed to infer pulmonary edema 
severity from chest radiographs (BNPP-CNN) as a test model22. The BNPP-CNN is a ResNet152 regression 
CNN developed to predict log BNPP as a biomarker for pulmonary edema using 256 × 256 chest radiographs 
as input.

Global explainability
For global analysis, we generated and compared SEE-GAAN sequences for ground-truth BNPP and predictions 
from the BNPP-CNN ( B̂NPP).

Local explainability
We demonstrate a local analysis using four patients selected from the testing set designated as a true positive, 
true negative, false positive, and false negative for inflated BNPP (BNPP > 400 pg/mL) by the BNPP-CNN, 
respectively. For the true positive and true negative patients, we generated local SEE-GAAN sequences as shown 
in Fig. 2b across B̂NPP values. However, to illustrate how SEE-GAAN can be used to troubleshoot inaccurate 
predictions, we process the false positive and false negative patients in the following manner.

During latent space manipulation, we select λ  such that the BNPP-CNN prediction of G
(
wE

(λ )
)

 is 
approximately equal to the ground-truth BNPP value (log BNPP within 0.01). That is, we select λ  that augments 
the image in such a way that the incorrect BNPP-CNN prediction is reversed, providing insight into the types of 
imaging features sought by the BNPP-CNN to make an accurate prediction. We then subtract this image from 
the reconstructed image G (wE) and visualize for interpretation.

Comparison with commonly used attribution maps
We computed vanilla gradient (VG)6 and gradient-weighted class activation mapping (Grad-CAM)9 attributions 
maps across the four patients for comparison with SEE-GAAN.

Software and Hardware
SEE-GAAN was developed using Python v3.9.17 on Keras-Tensorflow v2.12.026. Regression-based interpolations 
were performed using pyGAM v0.8.027 and statistical testing was performed using statsmodels v0.14.128. SEE-
GAAN was trained on a single NVIDIA Quadro RTX 8000 graphics processing unit (GPU) with 48 gigabytes of 
GPU memory. Training duration was ~ 8 days to complete the one million training steps.

Overall Training Validation Testing

Patients (n = 15409)

Patients 15,409 12,327 1541 1541

Age (mean ± SD) 63 ± 16 63 ± 16 63 ± 15 64 ± 16

Female 6792 5451 663 678

Clinical (n = 26667)

AHF 4193 3375 418 400

BNPP (mean ± SD) 4904 ± 11,297 4996 ± 11,443 4227 ± 9914 4825 ± 11,369

Imaging (n= 26667)

Radiographs 26,667 21,374 2602 2691

Manufacturer

Agfa 1683 1348 160 175

Canon Inc. 323 257 31 35

Carestream Health 9650 7756 913 981

GE Healthcare 9526 7623 963 940

Siemens 589 480 57 52

Swissray 3627 2910 343 374

Thales 1234 976 129 129

Varian 35 24 6 5

Table 1.   Summary of demographic, clinical, and imaging data. There were no statistically significant 
findings differences in clinical or demographic variables across the training/validation/testing sets. AHF = 
Acute Heart Failure; BNPP = NT-pro B-type natriuretic peptide
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Statistical analysis
Clinical information and demographics were summarized using mean ± standard deviation for quantitative 
variables and frequencies for qualitative variables. Statistical differences in clinical and demographic variables 
across the training/validation/testing sets were assessed using t-tests for quantitative variables and chi-squared 
tests for qualitative variables. Statistical significance was evaluated using a type I error rate of α =5%. All SEE-
GAAN sequences were reviewed by two board-certified radiologists for interpretation (LH, AH).

Results
Overview of dataset
A summary of clinical and demographic information is shown in Table 1. Average overall age was 63 years and 
44% (6792/15409) of the cohort were female. Average BNPP measurements were 4904 pg/mL and approximately 
16% (4193/26667) of radiographs were from patients with AHF. The majority of radiographs were acquired on 
Carestream Health (36% [9650/26667]) or GE Healthcare machines (9526/26667). There were no significant 
differences in clinical or demographic variables across the training/validation/testing sets (p-values > 0.05).

SEE-GAAN Clinical Feature Exploration
Global interpretation
SEE-GAAN sequences for several clinical features are shown in Fig. 3. The SEE-GAAN sequence for sex shows a 
decrease in breast soft tissue density in the lower chest and increased density elsewhere in the chest wall, which 
may reflect increased muscle and bone density in males. For age, as patients approach 55 years, SEE-GAAN 
captures increased attenuation in the bilateral flanks which could reflect a change in body habitus. Throughout 
the aging process, there is a decrease in attenuation of the chest wall, possibly due to reduced muscle/bone 
mass. For AHF status, SEE-GAAN sequences indicate increased size of the cardiomediastinal silhouette and 
central pulmonary vasculature for AHF+. SEE-GAAN also captures differences in device manufacturer, where 
we observe increased attenuation in the chest wall for GE devices, possibly due to differences in dynamic range 
post-processing or device settings.

Local interpretation
A SEE-GAAN reconstruction from latent space and local SEE-GAAN sequences for a healthy 27-year-old 
female are shown in Fig. 4. As expected, the native image and reconstruction are largely identical with exception 
to minor differences in imaging features due to the 512-dimensional latent space compression. Sequence 
interpretations for sex, age, and acute heart failure are consistent with the global interpretations from Figs. 2and 
3 but are shown on a specific patient’s radiograph to facilitate local interpretation.

SEE-GAAN for CNN explainability
Global explainability
Global sequences for BNPP and B̂NPP are shown in Fig. 5. For elevated BNPP patients, SEE-GAAN sequences 
indicate increased size of the cardiomediastinal silhouette and pulmonary vasculature and decreased chest wall 
soft tissue density. The SEE-GAAN sequence for B̂NPP suggests the BNPP-CNN heavily focuses on the size of 
the cardiomediastinal silhouette and the chest wall soft tissue density to make its predictions, with somewhat 
less emphasis on vascularity.

Local explainability
Local SEE-GAAN sequences for the true positive and negative patients (Fig. 6a) are consistent with the global 
interpretations from Fig.  5, but are shown on specific patients’ radiographs to facilitate local interpretation. 
For the false positive and false negative patients (Fig.  6b), we observe the BNPP-CNN expects a smaller or 
larger cardiomediastinal silhouette and higher or lower chest wall soft tissue density, respectively, for a correct 
prediction.

Comparison commonly used attribution maps
VG and Grad-CAM attribution maps and local SEE-GAAN sequences for four patients are shown in Fig. 6. 
VG shows scattered activations centered on the heart and lungs but the interpretation of these activations 
remains unclear. In contrast, Grad-CAM shows more localized areas of attention spanning the heart, lungs, and 
some peripheral areas outside of the lungs. Although both methods highlight anatomical features known to be 
correlated with BNPP, the specific imaging characteristics underlying these areas of attention, such as heart size, 
remain ambiguous. From the local SEE-GAAN sequences, we determine the BNPP-CNN is focusing on heart 
size and body composition to make its predictions.

Discussion
In this feasibility study, we proposed a GAN-based XAI framework that uses autoencoder latent space 
manipulation to generate synthetic image sequences that semantically visualize clinical features. We applied our 
proposed SEE-GAAN framework to a variety of clinical features and showed that changes in their corresponding 
sequences provide an understanding of the presentation of these features within medical images. We further 
showed that SEE-GAAN produces both local and global visualizations for the analysis of clinical features and 
CNN predictions. Finally, we showed SEE-GAAN sequences also clarify ambiguities in the interpretation of 
popular explainability visualizations (i.e. VG maps and Grad-CAMs) by further characterizing the precise 
imaging patterns underlying their most salient areas through dynamic visualization.
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Fig. 3.  Global SEE-GAAN sequences visualizing the overall 1 presentation of clinical features in 
chest radiographs. (a) The SEE-GAAN sequence for sex shows decreased breast soft tissue density 
but increased chest wall density elsewhere for males, possibly reflecting increased muscle or bone density.  (b) 
Age captures increases and decreases in the attenuation of the flanks and decreases in chest wall soft 
tissue density. (c) Patients with AHF exhibit increased size of the cardiomediastinal silhouette and  central 
pulmonary vasculature. (d) GE devices show increased attenuation throughout the chest wall for  GE devices.
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As an XAI framework, SEE-GAAN has several favorable properties. SEE-GAAN uses dynamic visualization 
to elicit interpretation of clinical features and CNN predictions. Dynamic visualization enables feature 
interpretation through perceived changes in intensity, morphology, and texture within a synthetic image 
sequence. This is especially useful for interpreting features associated with diffuse disease processes or spatially 
colocalized focal observations, as we observed from several of the SEE-GAAN sequences. SEE-GAAN also does 
not depend on any specific type of model or algorithm (i.e. model-agnostic) and can be applied to any type of 

Fig. 4.  Reconstruction and local SEE-GAAN sequences for a healthy 1 27-year-old female across 
several  clinical features. (a) The reconstruction is largely identical to the native image with exception 
to minor differences in imaging features due to the 512-dimensional latent space compression. (b)–
(d) Local  sequences emphasize the same imaging features as the global sequences, except visualize 
the  presentation of these features on a specific patient’s radiograph
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feature (e.g., CNN or clinical, quantitative or qualitative) for interpretation. In addition, SEE-GAAN provides 
both global and local interpretations of clinical features.

In comparison, attribution maps provide static visualizations that only localize regions of interest and 
therefore do not provide an explicit understanding of the imaging characteristics underlying their highlighted 
areas. Although attributions maps are model-agnostic, open-source implementations are often exclusive to 
neural networks and are not agnostic to other types of algorithms. Attribution maps provide both local and 
global visualizations, however, they typically require anatomical structures in images to be relatively coregistered 
for aggregation and global visualization. Nevertheless, in practice, we recommend using attribution maps in 
conjunction with the proposed SEE-GAAN sequences to synergize interpretation. Attribution maps can be used 
to first localize relevant areas of attention, while subsequently using SEE-GAAN to uncover the underlying 
anatomical or pathophysiological nature of this attention.

While we propose the use of GANs to improve CNN explainability, we acknowledge that other GAN-based 
alternatives have been proposed for this same purpose. Seah et al. used a GAN to synthesize chest radiographs 
with and without disease using permuted features from a CNN trained to predict B-type natriuretic peptide as 
a marker for congestive heart failure29. Another study by Hasenstab et al. proposed a GAN-based framework 
to interpret the features learned by a CNN trained for a similar task30. Both algorithms’ visual explanations 
were consistent with the interpretations provided by our SEE-GAAN sequences for BNPP. However, these 
methods are either not model-agnostic or do not provide both local and global explanations of clinical features. 
Moreover, they do not use style-based generators, which enable smoother latent space manipulation for dynamic 
visualization.

Other studies have proposed style-based generators to synthesize images across other modalities and 
anatomical regions. Fetty et al. explored the idea of latent space manipulation on CT and MR pelvic images31. 
Schutte et al. and Ren et al. proposed using latent space manipulation of style-based generators to explore 
musculoskeletal radiographs, pathology slides, and mammography32,33. Hong et al. extended this idea to 3D 
convolutions to study brain MR images34. We add to these works by proposing a framework that facilitates 
local and global interpretation of clinical features, which can be used in combination with commonly used XAI 
methods.

Outside of generative and commonly used gradient- or perturbation-based attribution methods, there are 
several alternative approaches for explainable AI in medical imaging35–37, including attention networks38 and 
feature analytic methods37,39,40. In contrast to attribution maps, which are model agnostic, post-hoc visualizations 
for explainability, attention networks use modules directly incorporated into the architecture, which offer a 

Fig. 5.  Comparison of global SEE-GAAN sequences for (a) ground-1 truth BNPP and (b) BNPP-CNN 2 
predictions  B̂NPP for CNN explainability. Increases in BNPP are associated with increased size of 
the  cardiomediastinal silhouette and pulmonary vasculature and decreased chest wall density. The SEE GAAN 
sequence for  B̂NPP  suggests the BNPP-CNN heavily focuses on the size of the cardiomediastinal  silhouette 
and chest wall soft tissue density to make its predictions, with somewhat less emphasis on  vascularity.
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level of explainability. Attention modules act as feature selectors during training, preserving features important 
for a given CNN task and producing attention maps that are visualized for interpretation. However, similar to 
attribution, attention maps only localize areas of importance and do not describe the relevant imaging features 
underlying these highlighted areas. Moreover, CNN architectures typically contain thousands of feature maps 
throughout the network, making visual exploration of this feature space less tractable. SEE-GAAN addresses 
these limitations by generating a single dynamic visualization to elicit feature interpretation and applies to both 
CNN predictions and standalone clinical features.

Similar to SEE-GAAN’s latent space, low-dimensional embeddings have been used to visualize the feature 
space of CNNs to explain their predictions. Feature embeddings are often visualized across the distribution 
of output classes to identify challenging cases or clusters for automated assessment. Common techniques for 
feature analysis include principal components analysis, t-SNE, and UMAP37. Concept methods39,40 incorporate 
user-defined concepts during training in a supervised manner to encourage networks to learn high-level human-
friendly features. The incorporation of these high-level features during training have achieved competitive 
accuracy with conventional end-to-end models while enabling human-friendly interpretation of the model 
features. In contrast, SEE-GAAN uses the StyleGAN framework for its autoencoder, which learns a disentangled 
representation of high-level image features for its image reconstruction without supervision. Despite its 
unsupervised training procedure, SEE-GAAN is still able to capture the relationship between human-friendly 
features and their presentation on medical images through latent feature interpolation, which maps human-
friendly features (e.g., heart failure) to SEE-GAAN latent space and subsequently image space.

Our study has limitations. Due to computational restrictions during training, chest radiographs were 
downsampled to 256 × 256 resolution, thus reducing the visibility of finer imaging features (e.g., Kerley b 
lines). SEE-GAAN implementations at native resolution to study more granular imaging features are reserved 

Fig. 6.  Local SEE-GAAN sequences for CNN explainability and troubleshooting. (a) Sequence for a 53  year-
old male correctly classified as having elevated BNPP (>400). (b) Sequence for a 51 year-old male correctly 
classified as not having elevated BNPP (<400). Both sequences are consistent with the global  interpretations 
of cardiomediastinal silhouette, pulmonary vasculature, and decreased chest wall  density. Sequences further 
characterize the ambiguous regions highlighted by commonly used  attribution methods. (c)–(d) CNN 
troubleshooting using SEE-GAAN on a (c) false positive case (83 year old female) and (d) false negative case 
(51 year-old male). For both (c)–(d), we augment patients’ images  until the BNPP-CNN correctly predicts 
their ground-truth BNPP values. We observe that the BNPP-CNN  expects differences in the size of the 
cardiomediastinal silhouette and attenuation of the chest wall soft tissue to make correct predictions
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for future research. Clinical observations in our dataset were also limited. Future studies should investigate 
SEE-GAAN’s ability to capture a variety of other conditions, such as fibrosis and pneumothoraces. In addition, 
although SEE-GAAN can be applied to features from other CNNs for interpretation and explainability, the 
current iteration of SEE-GAAN only applies to the modality on which it was trained (i.e. chest radiographs). We 
reserve the development of a conditional version of SEE-GAAN applicable to multiple modalities and anatomical 
locations as a direction for future research. More broadly, although our study emphasizes the importance of 
CNN explainability to facilitate the adoption of these algorithms in clinical practice, we note that many other 
factors contribute to the underuse of AI for clinical purposes. Therefore, in addition to explainability, future 
studies aiming to produce algorithms for clinical use should holistically consider legal requirements, algorithm 
traceability, and rigorous evaluation by domain experts to ensure their adoption41–43.

In conclusion, our proposed SEE-GAAN framework facilitates the interpretation of clinical features and 
improves CNN explainability by providing an understanding of the specific imaging characteristics highlighted 
by popular attribution methods. As a result, SEE-GAAN visualizations can help facilitate the adoption of AI 
algorithms in clinical practice and can be used as a tool for clinical data mining and biomarker discovery.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the possibility 
of patients’ identification from clinical and imaging patterns but are available from the corresponding author on 
reasonable request.

Code availability
Python and Tensorflow-Keras code implementing SEE-GAAN available at github.com/khasenst/see-gaan.
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