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ABSTRACT OF THE THESIS

Enhancing MRI-Based Alzheimer’s Diagnosis:

Leveraging Synthetic Data from Generative Models to

Improve Image Classification Performance

by

Daniel Kwon

Master of Applied Statistics

University of California, Los Angeles, 2024

Professor Ying Nian Wu, Chair

The advancement of generative models have enabled the creation of high-quality synthetic

images, offering a cost-effective solution to augment datasets in resource-intensive fields

like medical imaging. This study evaluates the efficacy of synthetic image augmentation for

Alzheimer’s disease classification using MRI data. By training convolutional neural networks

(CNNs) and vision transformers (ViTs) on varying proportions of original and synthetic

images, we assessed the impact of selective augmentation across dementia severity classes,

comparing its performance to traditional and automated augmentation methods

Overall, synthetic image augmentation demonstrates significant potential, particularly

for CNNs, as a complementary or standalone augmentation strategy. Selectively augment-

ing specific classes, such as mildly and moderately demented cases, improved CNN per-

formance, reducing cross-entropy loss when compared to training on the original dataset

alone. Synthetic augmentation often outperformed traditional augmentation, including au-

tomated methods like AutoAugment. For ViTs, performance gains were minimal, reflecting

the architecture’s reliance on larger datasets. These findings highlight its value in resource-

constrained settings, emphasizing selective application to maximize diagnostic accuracy in

medical imaging.
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CHAPTER 1

Introduction

The rapid advancements in state-of-the-art generative models have significantly simplified

the production of high-quality synthetic images, often requiring only basic text or image

prompts. Models like DALL-E can now generate images with a level of quality that closely

approximates real images, narrowing the distinction between synthetic and authentic data.

As the effort required to create synthetic images diminishes and their quality continues to

improve, the potential for leveraging these images to augment datasets becomes increasingly

promising—particularly in fields where data collection is constrained by high costs or limited

resources [GYZa].

In the field of medical imaging, where image datasets often require specialized equipment

and subject matter experts to capture and label images, gathering enough data to sufficiently

train a classification model can be both expensive and time-consuming. For example, with

the average cost of magnetic resonance imaging (MRI) at $1,325 in the United States, a

dataset consisting of a few hundred images can exceed $1 million; image classification models

often require thousands of photos [GYZb].

One way computer vision models have historically attempted to remedy insufficient train-

ing datasets has been to employ traditional image augmentation techniques, which involve

applying transformations such as flipping or blurring an original image to produce additional

images for training. However, such transformations must be applied carefully in order to not

lose the fidelity needed to make accurate diagnostic prediction. Transformations that alter

the nature of the images can potentially lead to a degradation in model performance.

Augmenting image datasets with high quality synthetic images may allow for significant

cost-saving while maintaining model performance, and previous research has found that
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synthetic images may play a complimentary role to image augmentation [MKC24]. The goal

of this paper is to train image classification models on a MRI dataset to identify the presence

of varying levels of dementia and investigate the effect of different image augmentation

policies on model performance as well as compare their performance against an augmentation

policy that generates synthetic images.
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CHAPTER 2

Dataset

2.1 Alzheimer MRI Preprocessed Dataset

For the purposes of this paper, we use publicly available MRI images of patients with varying

levels of dementia, labeled as not demented, very mildly demented, mildly demented, and

moderately demented.

(a) Not

Demented

(b) Very Mildly

Demented

(c) Mildly

Demented

(d) Moderately

Demented

Figure 2.1: Examples of real MRI images

Not Demented Very Mildly

Demented

Mildly Demented Moderately

Demented

2566 1781 724 49

Table 2.1: Count of each class in training data

These images were downloaded via the datasets module provided and maintained by

Hugging Face. All images are in black and white and have been pre-processed to 128x128
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resolution or 256x256 resolution, depending on the model being tested [Fal23].

2.2 Synthetic Images

This paper utilizes OpenAI’s Dall-E-2 to produce synthetic images. To generate synthetic

images, an original image is supplied as a source and the generative models are prompted to

creating a similar image.

In order to generate images using Dall-E-2 we utilize OpenAI’s image variation API

endpoint, which returns a variation of a given image [Ope].

(a) Real Image (b) Synthetic Image

Figure 2.2: Results of Dall-E-2’s image variation generation

Dall-E-2 reliably generates images that are similar to the real MRIs that are provided.

Given that dementia is often physically tied to brain atrophy in certain areas, the synthetic

images produced by Dall-E-2 generally reproduce the ridges, folds, and cavities of the source

images as well [Cli].
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CHAPTER 3

Exploration using Grad-CAM

In order to better understand what parts of an image classification models deem to be more

”important” in regards to predicting the presence of dementia, we employ Gradient-weighted

Class Activation Mapping, or Grad-CAM, as a way to represent what a convolutional neural

network ”sees” when classifying both real and synthetic images. Grad-CAM is a technique

that maps the gradients of a final convolutional layer in regards to a specific class prediction

to product a heat map. The result is a visually intuitive way of illustrating which portions

of an image contribute most to a given classification [SCD19].

3.1 Overview of Grad-CAM

1. First, calculate the gradients of the model’s output in the final convolutional layer,

with respect to the feature maps. Assuming yc is the score for class c (before softmax)

and δAk is the feature map activation of the kth layer, compute δyc
δAk .

2. Next, calculate the global average pooling of the feature map. Global average pooling

is a pooling operation designed to generate one feature map for each corresponding

category of the classification task in the last convolutional layer and then take the

average of each feature map [LCY14].

αck =
1

Z

∑
i

∑
j

δyc
δAkij

Z here represents spatial dimensions of the feature map—in this case, its height and

width. By dividing by Z, we obtain the average of gradients over all spatial locations.
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δyc
δAk

ij
is the gradient for class c with respect to the activation at Akij, or spatial location

(i,j) on activation layer k.

3. Lastly, we take the resulting importance weights in ack and combine them with Ak

to calculate a weighted combination of all forward activation maps. We then apply

the ReLU activation function to the resulting combination in order to take the positive

values only. This ensures that we are only looking parts of the image that are positively

correlated with a given class.

LcGrad−CAM = ReLU(
∑
k

αckA
k)

Notice that LcGrad−CAM will have the dimensions of the final convolutional layer and

therefore is likely to be smaller than the original input image. In that case, we simply

upsample the result to the dimensions of our original image in order to overlay the

two.

3.2 Exploratory Results

In order to better understand what our models ”look at” when evaluating an image and

predicting a class, we take a basic CNN with the same architecture outlined in chapter 5,

section 1 and train it on real MRI images. While the model architecture is relatively simple

compared to deeper networks, it is sufficient in order to explore what parts of an image

a typical CNN focuses on. For the purposes of this exploratory analysis we only look at

MRIs labeled as moderately demented or non-demented, as these classes are the at the most

extreme ends of the spectrum and will illustrate what characteristics contribute to the model

detecting the presence of absence dementia.

6



3.2.1 Real vs synthetic images labeled as having moderate dementia

(a) Real (b) Synthetic

Figure 3.1: Grad-CAM when predicting ModerateDemented for ModerateDemented class

When looking at a real image of a brain with moderate dementia, we can see that signs of

atrophy contribute to the likelihood that the model classifies this brain as one with moderate

dementia. When applying Grad-CAM on a synthetic image generated via the previous

original image as a source, we can see that the qualities that indicate the presence of dementia

are also present in the synthetic images as well. While not as pronounced, the areas of atrophy

in the synthetic brain image are present and our model focuses on those areas in both real

and synthetic images.
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(a) Real (b) Synthetic

Figure 3.2: Grad-CAM when predicting NonDemented for ModerateDemented class

The same image shows that the areas of non-atrophy, particularly those closer to the

brain stem, contribute to a likelihood that this image would be classified as non-demented.

The associated synthetic image shows similar patterns.

3.2.2 Real vs synthetic images labeled as having no dementia

(a) Real (b) Synthetic

Figure 3.3: Grad-CAM when predicting ModerateDemented for NonDemented class

When comparing real and synthetic images of a brain with no signs of dementia, we see that

our synthetic image captures the areas of non-atrophy that is present in the original source

8



image.

(a) Real (b) Synthetic

Figure 3.4: Grad-CAM when predicting NonDemented for NonDemented class

There does not appear to be significant signs of atrophy present in an image of a non-

demented brain—which our synthetic image has adequately captured. Both real and syn-

thetic images show larger non-atrophied areas of the brain, which our model is focusing on

as an indication of a brain without dementia.
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CHAPTER 4

Background on Training Deep Learning Models

4.1 Overview of Neural Networks

While deep learning architectures can span many layers and can incorporate many differ-

ent mechanisms, at its core all deep learning models are neural networks. Training neural

networks comprise of a few key steps.

First, training data is input into a neural network and passed through as-is in what is

known as a ”forward pass.” In a fully connected neural network, every individual neuron in

a layer of the neural network is connected to each neuron in the preceding layer [SP17a].

Figure 4.1: An illustration of a typical fully-connected neural network

Each of these connections has a weight that stores how strong of a connection each

preceding node has to the current node. A bias term is also present, which represents whether

10



a neuron is general activated or not. Often, an initialized neural network will comprise of

randomized weights and biases whereas a pre-trained model will have the weights and biases

already defined from previous training. When training a neural network, the weights and

biases are what are being adjusted in order to minimize loss. The formulation of a single

neuron with n nodes in the previous layer is below [ZLL23]:

σ(w0a0 + w0a0 + w0a0 + ...+ +wn−1an−1 + b)

After the forward pass, backpropagation occurs in which the gradient (the vector of

partial derivatives) of the loss function with respect to each weight and bias is calculated via

chain rule [SP24a]. Each gradient value represents the magnitude and direction of the change

in our loss function given a change to that particular weight or bias. Because backpropagation

uses the chain rule to propagate the loss backward from the output layer to the input layer,

the process of finding the gradient of a loss function remains the same no matter how many

layers are in the network or how many neurons are in each layer.

Once the gradient is calculated, the gradient descent algorithm is used to update the

weights and biases in order to minimize loss. However, applying the gradient descent on

an entire training dataset in a single batch is computationally expensive. Instead, gradient

descent is often applied to subsets of the training data, called mini-batches. Each training

iteration, or epoch, will then take a mini-batch to apply the forward and backward passes on

to to updates its weights and biases. The result is an accurate approximation of the gradient

of the loss function while significantly decreasing computational expenses [SP24b].

4.2 Loss Function

The loss function used throughout this paper when measuring model performance is cross

entropy loss. Cross entropy loss is defined as:

L = −
C∑
c=1

yclog(pc)

11



where C = the number of classes, yc is the true label for class, and pc is the predicted

probability for class c. Cross entropy loss therefore compares the predicted probabilities with

the actual labels and penalizes more when the predicted probabilities for a correct class is

low [Mah24].

Cross entropy loss is better suited for measuring the performance of classification models

when multiple classes are involved than traditional measures of error, such as the sum of

residuals, as it is more sensitive to predictions that are ”more” incorrect. In an image

classification problem, a model may mislabel a given image, but the cross entropy loss will

be lower if the predicted probability for the correct class is higher, even if the model did not

ultimately end up labeling correctly. Contrast that with the sum of residuals, which only

views predictions as completely correct or completely incorrect and fails distinguish between

the degrees of how right or wrong a prediction can be [Sta].

Figure 4.2: Illustration of Cross Entropy Loss vs Squared Residual [Sta]

Take for example, when the true label is 1 and the predicted class weight yc is 0.0001—

making our model prediction very bad. The squared residual would be (1−0.0001)2 = 0.9998

while our cross entropy loss would be more punitive at −log(0.0001) = 4. Cross entropy loss

also has a much larger gradient for very bad predictions, allowing our model to more quickly

learn to avoid bad predictions.
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4.3 Gradient Descent

As mentioned previously, performing gradient descent on every single training image can be

computationally inefficient [SP17b]. Instead, stochastic gradient descent which divides the

training dataset into smaller batches and applied the gradient descent algorithm on each

batch, can significantly reduce runtime.

In addition to dividing the training dataset into mini-batches, there are other meth-

ods that make optimization via gradient descent more efficient—namely, learning rate and

momentum.

4.3.1 Learning Rate

The formulation for stochastic gradient descent is defined as [ZLL23]:

θt+1 = θt − η∇θL(θt;x
(i))

Where:

• θt is the model’s weights and biases at iteration t

• η is the learning rate

• ∇θL(θt;X
(i)) is the gradient of the loss function at time t with respect to x(i)

• x(i) is a randomly selected mini-batch

The learning rate is a critical parameter for the training of any deep learning model

and can dramatically effect how the gradient descent algorithm behaves. Learning rate can

be understood intuitively as the step size the optimization algorithm takes when it decides

which direction to step—too large of a learning rate can lead to sub-optimal changes to a

network’s weights and biases; too small and achieving model convergence can much longer.

Furthermore, the learning rate does not necessarily need to be constant throughout the

entire optimization process. It can vary over time with a larger learning rate at the beginning

13



of the training, when large steps along the gradient is appropriate, and reducing later in

training process, when smaller learning rates are more appropriate.

4.3.2 Momentum

Momentum takes into account the gradient at previous steps, beyond simply looking at

the gradient at time t− 1. By doing so, the gradient descent algorithm tends to stay in the

direction where the gradient has consistently pointed towards. The formulation for stochastic

gradient descent with momentum is defines as [ZLL23]:

θt+1 = θt − ηvt

Where vt is known as the velocity term, defined as:

vt = βvt−1 + (1− β)∇θL(θt)

Where:

• β is the momentum coefficient, which determines how much of the previous gradients

carry over into the latest velocity calculation at time t—this parameter can be set

between 0 and 1

• ∇θL(θt) is the gradient of the loss function at time t− 1

4.3.3 Adam Optimizer

Adaptive Moment Estimation, also known as Adam Optimization, combines aspects of both

a variable learning rate as well as momentum in order to develop an optimization algorithm

that efficiently calculates the gradient [KB17]. Gradient descent using Adam optimization

is defined as:

θt+1 = θt −
η√
v̂t + ε

m̂t

Where:

• m̂t is known as the bias correction for the first moment and defined as mt

1−βt
1

14



• v̂t is known as the bias correction for the second momemt and defined as vt
1−βt

2

• mt = β1mt−1 + (1− β1)∇θL(θt)

• vt = β2vt−1 + (1− β2)(∇θL(θt))
2

• β1 is the decay rate for the first moment

• β2 is the decay rate for the second moment

The first moment mt allows the Adam optimization algorithms to take into account

momentum by taking the weighted average of past gradients. The second moment vt acts as

an adjustment to the learning rate and allows Adam algorithm to have a variable learning

rate based on previous squared gradients. For all models trained in this paper, we use the

Adam optimizer.

4.4 Fine-tuning Pre-trained Models

Often times, computer vision models require a large number of images as well as a signifi-

cant amount of computation time. In order to accelerate the training process, many image

classification models will utilize a pre-trained model, instead of starting training from ran-

domly initialized weights and biases. A common image dataset used to pre-train models is

the ImageNet-1000 dataset, which is comprised of 1000 distinct classes, 1,281,167 training

images, 50,000 validation images and 100,000 test images [Chi24].

Once a model is pre-trained, fine-tuning can take two forms—either progressing through

training as you normally would with images intended for fine-tuning (i.e., your dataset) or

freezing all weights in the pre-trained model (essentially locking the model from any further

training) and re-training only the fully connected neural nerwork appended to the pre-trained

model. If the latter method is used, the pre-trained model can regarded as a fixed feature

extractor for an image. For the purposes of our paper, all pre-trained models are fine-tuned

by re-training on our dataset.

15



CHAPTER 5

Overview of Model Architectures

In order to gain an understanding as to how both convolution-based and attention-based

architectures react to the introduction to synthetic data in training, We tested three differ-

ent deep learning model architectures for our image classification models—a basic Convo-

lutional Neural Network (CNN), a pre-trained ResNet-18 model, and a pre-trained Vision

Transformer (ViT).

5.1 Convolutional Neural Networks

Figure 5.1: Typical CNN Architecture [Kli24]

CNNs are a deep learning architecture that is comprised of convolutional layers—which

abstract an image to a feature map, pooling layers—which reduce the dimensions of data

by combining the outputs of adjacent layers via downsampling, and fully connected layers—

which are neural networks that take the final activations from the convolutional and pooling

layers to generate class weights [ON15].
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Convolutional layers are a key component of convolutional neural networks and act as

a way for the network to extract abstract features from an image. The primary operating

mechanism of a convolutional layer comprises of a kernel, or a filter that is applied to the

original image.

Figure 5.2: Illustration of Convolutional Layer [IBM24]

Often, convolutional layers may stack multiple kernels resulting in activation maps with

more channels. As subsequent layers get deeper, more complex and increasingly abstract

features are extracted from the original image. While the kernels from the earlier layers of

a CNN may learn to identify basic shapes and patterns, kernels in deeper layers may learn

to identify specific edges and details.

Figure 5.3: Illustration of 2x2 Max Pooling [Pap24a]

Though not explicitly required, max pooling layers frequently follow convolutional lay-

ers. Max pooling layers essentially downsample the activation map so that the important

17



features and spatial relationships contained in an image are captured while removing unnec-

essary details and reducing the feature map’s dimensions, thereby improving computational

efficiency of the network.

Figure 5.4: Basic CNN Architecture

For the purposes of this paper, the CNN we train from scratch consists of 2 convolutional

layers, each paired with a ReLU activation function and a max pooling layer. After all

feature extraction layers are complete, the final activation layer is fed into a fully connected

neural network with 2 hidden layers and an output layer that predicts probabilities weights

for each of our four classes.

5.2 ResNet-18

The second model architecture we test is a ResNet-18 model, pre-trained on the ImageNet-

1000 dataset. The ResNet architecture is similar to a basic convolutional neural network but

adds two additional components—skip connections and residual blocks.

18



Figure 5.5: ResNet-18 Architecture [HZR15]

Skip connections allow the network to skip a convolutional layer entirely thereby skip-

ping training for some layers. Doing so helps to avoid a phenomenon known as vanishing

gradients—which occurs in deep networks where the gradient calculated via backpropagation

becomes so small that weights from earlier layers become insignificant and changes to the

input image cease to meaningfully affect feature mapping in deeper layers. Skip connections

allow the ResNet model to build deep networks while avoiding vanishing gradients by giving

the model a mechanism in which training a layer can be skipped entirely.

ResNet architectures are also characterized by their use of residual blocks, which con-

sistent of 2 convolutional layers and a skip connection. Residual blocks allow the ResNet

model to train on the residual between layers, or the difference between the input and the

ideal output of the layers [HZR15].

y = F (x) + x

Where:

• x is input fed into the residual block

• F (x) is output coming from the residual block

• y is desired final output coming from the residual block

Therefore, F (x) = y − x makes F (x) the residual of y and x. ResNets train by using

residual blocks to learn the residual mapping, instead of being forced to train each convolu-
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tional layer and the desired feature map (although that is still an option left for the model

to evaluate). By doing so, the ResNet remains computationally efficient while maintaining

the ability to extract features, either through its traditional convolutional layers or via a

residual block.

5.3 Vision Transformers

The last type of model architecture tested—known as vision transformers or ViT for short—

is one that foregoes the use of convolutional layers entirely and instead utilizes the attention

mechanism to capture spatial relationships and abstract features [DBK21].

Figure 5.6: ViT Architecture [DBK21]

The transformer architecture is often utilized in natural language processing tasks and

serves as the architectural foundation for cutting edge large language models such as Chat-

GPT, Llama, Gemini, and Claude.

Because applying transformers for the purpose of image classification closely parallels

how they are employed for text generation, each transformer component reviewed in this

section will be accompanied with an analogous example of how the component would work

in a text transformer whenever possible.
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5.3.1 Background on Embeddings

Before any data can be used as an input into a transformer, it must first be turned into

a numeric representation so that the appropriate operations can be performed on it. For

example, if an embedding has three dimensions you can imagine the embeddings for words

such as ”jump” and ”leap” to have high cosine similarity, even if they are different words

[ZLL23].

Figure 5.7: Hypothetic 3-dimensional word embeddings

In practice, embeddings can be tens of thousands of dimensions. It is also worth noting

that these embeddings are not static representations but trainable parameters that can be

modified and adjusted as the transformer trains.

5.3.2 Patch Embeddings and Positional Encoding

In a ViT, rather than words (or tokens) being transformed into embeddings, the image

is broken up into a series of 16x16 images and flattened into a 256 dimensional vector

[DBK21]. An original image that is x ∈ RH×W×C is therefore split into patches that are

RP 2×C . Therefore across N patches, we have matrix xp ∈ RN×(P 2·C).
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Where:

• H and W is the height and width of the original image

• C is the number of channels in the original image

• P is the dimension of the P × P patch

• N = HW/P 2 is used to calculate the needed number of patches, given a P × P patch

size

xp is then unrolled to a vector and multiplied by an embedding matrix E to get the patch

embedding.

zi = xp · E

Where:

• E ∈ R(P 2·C)×D is a projection matrix with learnable weights

• xp is a given image patch, unrolled into vector form

The patch embedding is then combined with the positional encoding by summing it with

the patch embedding in order to give the transformer the ability to track where each image

patch is relative to the original image. The positional embedding represents the relative

position of the original image that the image patch is sourced from. The resulting patch

embedding and position encoding are then fed into a transformer architecture similar to how

a string of token embeddings are fed into a traditional transformer used for natural language

processing.

5.3.3 Transformer Architecture

The transformer encoder in a ViT consists of alternating layers of multi-headed self attention

and MLP blocks, with layer normalization applied before every block and residual blocks

after every block.
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Figure 5.8: ViT Encoder Architecture [DBK21]

The ViT architecture is notable for its usage of the multi-head attention block, which

combine query (Q), key (K), and value (V ) matrices in order to allow the model to ”pay

attention” to certain patches [Pap24c].

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Where:

• Q, K, and V are the query, key, and value matrices, respectively

• dk is the dimensions of the key vectors, such that dividing by
√
dk ensures that the

variance of q · k is 1

In order to pay attention to different image patches under different contexts the ViT

architecture uses multi-head attention, which allows for multiple attention mechanisms in

parallel.

MultiHead(Q,K, V ) = [head1, head2, ..., headh]W0

Where:
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• headi = Attention(QWQ
i , KW

K
i , V W

V
i )

• W are all learnable parameter matrices

Intuitively, multi-head attention allows the ViT model to pay attention to different parts

of the image for different contexts. For example, certain characteristics of an image may

warrant more attention when defining segment boundaries, while those same characteristics

may not warrant attention when considering segment orientation [Pap24b].
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CHAPTER 6

Overview of Image Augmentation Techniques

In addition to different model architectures, we also test combinations of different traditional

image augmentation policies and image augmentation via synthetic images. See below for

all image augmentation pairings tested:

Image Augmentation Policies

• Random horizontal flipping

• AutoAugment policy

• No image augmentation

Synthetic Image Policies

• Synthetic image generation via Dall-E-2

• No synthetic image augmentation

6.1 Rudimentary Image Augmentation

Image augmentation in its simplest basic form is a policy that consists of basic image trans-

formations, such as flipping an image on its horizontal or vertical axis. Often, this image

augmentation is applied randomly based on a probability defined prior to training. Because

rudimentary image augmentation is cost effective and can result in improved performance

for a image classification model with relatively low computational cost, it is frequently used

to augment limited datasets are difficult or expensive to collect and/or label [AI24].

25



Figure 6.1: basic image augmentation examples [AI24]

For the purposes of this paper, the basic image augmentation policy applies a horizontal

flip randomly with a probability of 50%. Other image transformations, such as cropping or

adjusting the color saturation, were not tested due to the nature or our training images. The

MRI dataset is in grayscale and intended to capture the entirety of the brain and therefore

cropping or changing the color of the image in any way did not fit our particular use case.

6.2 AutoAugment

AutoAugment is an image augmentation policy that was developed by researchers at Google.

It takes existing augmentation procedures, such as the ones listed in the previous section,

and automates the selection of which procedures to include, in order to select the opti-

mal transformations in order to improve the model performance. The result is a systemic

augmentation policy that eliminates the need for manual tuning [CZM19].

The AutoAugment policy works by employing a reinforcement learning framework in

order to find optimal policies. Using a neural network designated as the controller, the

AutoAugment policy explores a defined search space of possible transformations—with each

transformation having a probability of being applied and a magnitude of the transformation.

The controller then tests augmentation policies within the search space in order to train a
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model. The model’s subsequent performance is measured against a validation dataset and is

used to further optimize the image augmentation policy. This feedback loop continues until

controller has found an optimal augmentation policy.

AutoAugment is more computationally expensive than a basic image augmentation pol-

icy, as it involves training the controller neural network before it can be used in the training

of the actual model itself, which can be an entirely separate deep learning model. To address

this, AutoAugment policies can be pre-trained on larger datasets—which are then general-

ized to other images. In this paper, we tested an AutoAugment policy pre-trained on the

popular and widely available IMAGENET dataset.

6.3 Synthetic Image Generation Policy

The proposed image augmentation policy via synthetic image generation exists as a step that

exists prior to any traditional image augmentation steps, generating synthetic images that

are passed along to the subsequent image transformations that exist downstream. Given a

proportion of original training images to utilize for label i— denoted as Xi—and the desired

proportion of synthetic images to augment the training data for label i— denoted as Yi—we

combine both synthetic and original images in order to create a mixed train dataset used to

train the image classification model. In practice, Xi would almost always be 100% as you

generally want to train on available data you have; however, we test different values of Xi

in order to test the efficacy of our image generation policy across a range of possible dataset

sizes.

27



Figure 6.2: Illustration of the image generation policy

The figure above illustrates our image generation policy in order to generate our mixed

training set (i.e., containing both original and synthetic images)

1. First, we take a random sample of our original images

2. The sample is sent to Dall-E 2 via OpenAI’s API in order to generate an image variation

3. Image transformations are applied to our entire mixed training set (if applicable)

4. Mixed training set, post transformations/augmentation, is used to train the image

classification model
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CHAPTER 7

Methodology and Results

7.1 Methodology

To test the effects that synthetic images have on image classification performance, we tested

a variety of model architectures paired with differing image augmentation protocols. We also

tested protocols that involved synthetic image augmentation for all classes in our original

dataset and ones that involve augmentation for select classes only. Each combination is

trained 20 times on independent samples in order to get a distribution of results and reported

results are based on the median of the distribution of measured performances.

Scenarios tested were:

• Training on 100% of available training data

• Training on 100% of available training data and an additional 20% consisting of syn-

thetic images

• Training on 80% of available training data

• Training on 80% of available training data and an additional 20% consisting of synthetic

images images

To avoid overfitting our models, after each training epoch the performance of the model is

tested against a validation data set that is held out. If the model fails to improve (i.e., reduce

the loss function) against the validation data set for 2 consecutive epochs, that particular

training run is ended and the model performance is logged.
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7.2 Basic CNN Results

Cross Entropy Loss

Scenario
No

Augmentation

Random

Horizontal

Augment

AutoAugment

1 100% Real / 0% Synthetic 0.113512 0.173663 0.15266

2 80% Real / 0% Synthetic 0.23912 0.270616 0.274309

3
100% Real / 20% Synthetic

(Mild & Moderate Demented Only)
0.103296 0.169054 0.137484

4
80% Real / 20% Synthetic

(Mild & Moderate Demented Only)
0.213611 0.247438 0.242083

5
100% Real / 20% Synthetic

(All Classes)
0.11991 0.167369 0.178442

6
80% Real / 20% Synthetic

(All Classes)
0.267219 0.273711 0.276593

Table 7.1: CNN results

The basic image augmentation and AutoAugment protocols resulted in a slight degra-

dation of model performance across all training scenarios, illustrating that simply applying

image augmentation is not always recommended when training image classification models.

Similarly, synthetic image augmentation applied equally across all image classes results

in a slight increase in cross entropy loss. This is likely due to Dall-E-2 struggling to produce

non-demented images with sufficient fidelity.

However, models trained on datasets with image augmentation applied to only the 2

most demented image classes (labeled as mildly and moderately demented) performed bet-

ter than those trained on synthetic images alone. Comparing scenarios 1 and 3, synthetic

image augmentation to specific classes resulted in a 9.0% decrease in cross entropy loss when

paired with the best performing traditional image augmentation protocol (no augmentation),

reducing loss from from 11.4% to 10.3%. This holds true for scenarios 2 and 4 as well, which

trained models on 80% of the available real training images. The introduction of synthetic
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images reduced error by 10.7%, from 23.9% to 21.4%.

7.3 ResNet Results

Cross Entropy Loss

Scenario
No

Augmentation

Random

Horizontal

Augment

AutoAugment

1 100% Real / 0% Synthetic 0.126419 0.216701 0.954748

2 80% Real / 0% Synthetic 0.209497 0.280073 0.955477

3
100% Real / 20% Synthetic

(Mild & Moderate Demented Only)
0.119202 0.175533 0.592514

4
80% Real / 20% Synthetic

(Mild & Moderate Demented Only)
0.194314 0.259539 0.785979

5
100% Real / 20% Synthetic

(All Classes)
0.137582 0.212513 0.934237

6
80% Real / 20% Synthetic

(All Classes)
0.182547 0.284151 0.989995

Table 7.2: ResNet results

ResNet models reacted to synthetic images similarly to our basic CNN architecture, with

findings from the ResNet model training scenarios aligning directionally with the results

found when using the CNN architecture. Comparing scenarios 1 and 3, synthetic image aug-

mentation to specific classes resulted in a 5.7% decrease in cross entropy loss when paired

with the best performing traditional image augmentation protocol (no augmentation), re-

ducing loss from from 12.6% to 11.9%. The same is true for scenarios 2 and 4 with synthetic

images reducing error by 7.2%, from 20.9% to 19.4%.
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Cross Entropy Loss

Scenario
No

Augmentation

Random

Horizontal

Augment

AutoAugment

1 100% Real / 0% Synthetic 1.027283 1.035484 1.039906

2 80% Real / 0% Synthetic 1.037404 1.038775 1.040221

3
100% Real / 20% Synthetic

(Mild & Moderate Demented Only)
1.030077 1.03741 1.042706

4
80% Real / 20% Synthetic

(Mild & Moderate Demented Only)
1.035646 1.056816 1.05099

5
100% Real / 20% Synthetic

(All Classes)
1.037403 1.035373 1.039411

6
80% Real / 20% Synthetic

(All Classes)
1.041386 1.034649 1.039104

Table 7.3: ViT results

7.4 ViT Results

ViT models consistently underperformed compared to CNNs, regardless of the augmentation

protocols applied during training. Among the tested configurations, ViT models achieved

their best performance when trained on the full training dataset without traditional or

synthetic image augmentation, suggesting a limited benefit from synthetic augmentation in

comparison to CNN architectures.

However, when comparing scenarios involving combinations of traditional and synthetic

augmentation (e.g., scenarios 1 and 5, as well as 2 and 6), there was a slight improvement

in performance, evidenced by modest reductions in cross-entropy loss. This suggests that

synthetic images may complement traditional augmentation methods to a limited extent.

Nonetheless, the relatively high cross-entropy loss observed in ViTs indicates that additional

data would be necessary to fully explore the potential impact of synthetic image augmenta-

tion on ViT performance.
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CHAPTER 8

Conclusion

Synthetic image augmentation showed potential to improve model performance—particularly

among models utilizing CNN-based architectures. Selectively augmenting only the mildly

and moderately demented classes with synthetic images led to notable performance improve-

ments. For instance, in basic CNNs, cross-entropy loss was reduced by 9.0% when models

were trained on 100% of the original images with an additional 20% of synthetic data, com-

pared to training on the original dataset alone.

Selectively applying synthetic image augmentation to more severely demented classes

were found to outperform indiscriminate application of synthetic image augmentation in

regards to CNNs. For our best-performing architecture, a basic convolutional neural network

(CNN), a model trained on 80% of the original training images and augmented with 20%

synthetic images performed worse than a model trained on 100% of the original images.

Additionally, it failed to outperform models trained on 80% of the original images without

synthetic augmentation. These findings suggest that augmenting all classes with synthetic

images is not universally beneficial and may, in some cases, impair model performance.

Traditional image augmentation methods were less effective for this specific dataset,

even when optimized programmatically using approaches like AutoAugment. By contrast,

synthetic image augmentation of select classes produced models that outperformed those

trained with traditional augmentation alone, highlighting the potential of synthetic data to

enhance performance in targeted scenarios.

Vision Transformer (ViT) models showed limited benefits from synthetic image augmen-

tation. Slight performance improvements were observed when synthetic augmentation was

combined with traditional methods, but the gains were minimal. ViTs typically excel with
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very large datasets, often numbering in the millions, which our dataset does not meet [Boe23].

As a result, the full potential of synthetic augmentation for ViTs could not be adequately

assessed.

Overall, synthetic image augmentation emerged as a promising approach for improving

image classification performance, particularly in CNN architectures. It often surpassed tra-

ditional augmentation protocols and yielded further gains when used in combination with

them. These results underscore the value of synthetic data, especially when applied selec-

tively to address dataset limitations.
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CHAPTER 9

Additional Considerations

The primary objective of this study was to evaluate the effects of synthetic image augmen-

tation and compare its performance to traditional image augmentation methods. However,

the study’s scope introduces certain limitations that warrant consideration.

First, while the analysis encompasses various model architectures, the focus was on un-

derstanding how synthetic image augmentation interacts with convolutional (CNN) and

attention-based (ViT) architectures without accounting for hyperparameter tuning. Conse-

quently, performance comparisons should be confined to models within the same architecture.

While further hyperparameter optimization could enhance individual model performance, the

study prioritizes the relative performance changes within each architecture under different

augmentation protocols.

Second, the choice of the generative model, OpenAI’s DALL-E-2, was influenced by

the accessibility and convenience of its API. Although suitable for this study, other open-

source and proprietary generative models may offer better suitability for specific synthetic

augmentation tasks and should be explored in future research.

Third, while synthetic image augmentation shows potential for improving model perfor-

mance, the results reveal that augmenting all classes indiscriminately can, in some cases,

degrade performance. However, selectively augmenting more severely demented classes led

to significant performance improvements in CNN-based models. This highlights the potential

value of developing automated protocols to programmatically determine optimal augmenta-

tion strategies, rather than relying on manual selection.

Finally, although ViT architectures were included in the analysis, their performance was

notably lower compared to CNN-based models. While slight improvements were observed
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with synthetic image augmentation, the small dataset used in this study limits the ability

to accurately assess these gains. Further investigation with significantly larger datasets is

necessary to better understand the potential benefits of synthetic image augmentation for

ViT models.
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