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Introduction
A major challenge of sensory neurobiology—and neuroscience 
in general—is to understand the pathways that bridge an exter­
nal stimulus to its representation in the brain as a percept, and 
how such pathways ultimately drive behaviors. The first step of 
this process involves the primary sensory neurons, which detect 
physical stimuli through a variety of highly specialized recep­
tors. The perception of a smell begins with the activation of  
receptors expressed by the olfactory sensory neurons (OSNs), 
which reside in the main olfactory epithelium lining the nasal 
cavity (Fig. 1 A). Each OSN extends a single dendrite to the  
lumenal surface of the epithelium, from which immotile cilia 
extend to catch inhaled odorants from the air. These olfactory 
sensory cilia are enriched in the odorant receptors and other sig­
naling components that mediate the initial transduction events 
in the cell (Firestein, 2001). At the other end of the neuron, a 
single, unbranched axon projects to the olfactory bulb, a special­
ization of the forebrain that serves as the first relay station in 
this neural pathway. The axons of OSNs in the periphery together 
comprise the olfactory nerve. Once the axons reach the olfac­
tory bulb, they make synapses with the dendrites of projection 
neurons, within discrete structures known as glomeruli. In the 
mouse, there are 5–10 million OSNs in the olfactory epithelium 

and 1,800 glomeruli in each olfactory bulb, which translates 
to an 103-fold convergence of primary sensory axons onto 
each olfactory glomerulus (Firestein, 2001). This convergence 
lies at the heart of the coding strategy for olfactory sensory  
information. In parallel to the main olfactory epithelium, the 
vomeronasal organ—an anatomical specialization of the nose in 
terrestrial vertebrates that is separate from the main olfactory 
epithelium—senses nonvolatile chemical stimuli, including 
pheromones (Dulac and Torello, 2003; Mombaerts, 2004). The 
present review focuses on the main olfactory epithelium and the 
multiple roles that the “OR” family of odorant receptors play, 
not only as detectors of volatile chemicals in the environment, 
but also as regulators of key developmental decisions made by 
differentiating OSNs.

The nose, its receptors, and connections 
to the brain
A large multigene family of olfactory-specific G protein–coupled 
receptors (GPCRs) was initially identified in the rat (Buck and 
Axel, 1991) and belongs to what is now referred to as the OR 
family of odorant receptors (Mombaerts, 2004). The predicted 
structure of these receptors exhibits a seven-transmembrane do­
main topology, and their sequences place them in the rhodopsin 
class of GPCRs. The size of the OR gene family in mammals is 
extremely large and ranges from 700 genes in humans (about 
half of which are functional) to over 1,200 genes in rodents 
(about two-thirds of which are functional; Mombaerts, 2004; 
Nei et al., 2008). In the fish, the size of the OR repertoire ap­
pears to be much smaller, containing only 40–140 intact genes 
depending on the species (Alioto and Ngai, 2005; Niimura and 
Nei, 2005). The ORs exhibit extensive sequence diversity within 
their transmembrane domains—the presumed sites of ligand 
binding in this class of GPCR. Thus, the OR family has evolved 
to detect a wide range of chemical structures present in the ani­
mal’s environment. In addition to the ORs, members of the 
much smaller trace amine–associated receptor (TAAR) family 
are expressed in OSNs of the main olfactory epithelium and are 
thought to mediate the reception of amine cues (Liberles and 
Buck, 2006). Finally, the neurons of the vomeronasal epithelium 
express receptors from three unrelated GPCR families, the V1R, 

The olfactory system detects and discriminates myriad 
chemical structures across a wide range of concentrations. 
To meet this task, the system utilizes a large family of  
G protein–coupled receptors—the odorant receptors— 
which are the chemical sensors underlying the perception 
of smell. Interestingly, the odorant receptors are also involved 
in a number of developmental decisions, including the 
regulation of their own expression and the patterning of 
the olfactory sensory neurons’ synaptic connections in 
the brain. This review will focus on the diverse roles of the 
odorant receptor in the function and development of the 
olfactory system.
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V2R, and formyl peptide-like receptors (Mombaerts, 2004; 
Yang et al., 2005; Rivière et al., 2009).

Upon binding its cognate odor ligand, the activated OR (and 
presumably also TAAR) couples through Golf, a Gs isoform en­
riched in OSNs (Belluscio et al., 1998). Activated Golf in turn ac­
tivates type III adenylyl cyclase (Wong et al., 2000), which catalyzes 
the production of cAMP. The increase in intracellular cAMP “gates” 
or opens a cyclic nucleotide-gated (CNG) channel, leading to an in­
flux of sodium and calcium ions and depolarization of the neuron 
(Brunet et al., 1996). This initial depolarization is further amplified 
by the subsequent activation of calcium-activated chloride chan­
nels and, owing to the low concentration of extracellular Cl in the 
mucus bathing the olfactory cilia, the efflux of Cl from the cell 
(Stephan et al., 2009; Fig. 2 A). The odor-induced depolarization in 
the olfactory cilia spreads throughout the neuron, resulting in the 
opening of voltage-sensitive ion channels in the sensory neuron’s  
axon hillock, the firing of action potentials, and the release of neuro­
transmitter at the synaptic terminal in the olfactory bulb.

To determine the identity of an odorant stimulus, the ner­
vous system must discern which of the 1,000 ORs has been  
activated. Two organizing principles of the peripheral olfactory 
system underlie the encoding of this information. First, each OSN 
in the olfactory epithelium expresses just one allele of a single 
OR (Chess et al., 1994; Serizawa et al., 2003; Lewcock and Reed, 
2004; Fig. 1 B)—a phenomenon referred to as the “one receptor, 
one neuron” rule. In this way, the spectrum of odorous com­
pounds to which an individual OSN can respond (its “receptive 
field”) is a direct function of the ligand-tuning properties of its 
singularly expressed OR. How, then, is activity from a particular 
class of OSNs (here defined by the OR that it expresses) distin­
guished from activity of all the other OSN classes, and by exten­
sion, from activity of other ORs? This second level of processing 
relies upon the projection of axons from OSNs expressing the 
same OR to common glomeruli in the olfactory bulb (Fig. 1 B). 
Interestingly, the projection of OSNs to the olfactory bulb com­
prises a discontinuous map; neurons expressing a given OR, al­
though distributed broadly in the peripheral sensory epithelium 
(Ressler et al., 1993; Vassar et al., 1993), converge to discrete 
glomeruli in the olfactory bulb in a spatially invariant pattern 
(Ressler et al., 1994; Vassar et al., 1994; Mombaerts et al., 1996; 
Mori et al., 1999). This sensory map displays a mirror symmetry, 
such that OR-specific neurons typically innervate one glomerulus 
in the olfactory bulb’s medial hemisphere and another glomer­
ulus in the lateral hemisphere (Ressler et al., 1994; Vassar et al., 
1994; Mombaerts et al., 1996; Nagao et al., 2000). The dendrites 
of the projection neurons of the olfactory bulb—the mitral and 
tufted cells—in turn innervate the glomeruli and carry this infor­
mation via their axons to the olfactory cortex. The spatial patterns 
of activity elicited in the olfactory bulb appear to be represented 
not as a corresponding spatial map in the olfactory cortex, but 
rather in a sparse and distributed manner at this level (Poo and 
Isaacson, 2009; Stettler and Axel, 2009).

The odorant receptor: chemical sensor  
par excellence
Since their discovery in 1991, the ORs have been widely as­
sumed to comprise a family of odorant receptors based on their 

Figure 1.  Anatomy of the rodent peripheral olfactory system. (A) Sche-
matic representation of a parasagittal section through adult mouse head. 
Axons of the OSNs in the main olfactory epithelium comprise the olfac-
tory nerve and innervate the olfactory bulb. Vomeronasal sensory neurons 
project their axons via a separate tract, the vomeronasal nerve, to inner-
vate the accessory olfactory bulb. (B) Each OSN of the main olfactory 
epithelium expresses only one odorant receptor gene (OR A, OR B, OR C, 
etc.) out of a repertoire of over 1,000 genes. Neurons expressing a given 
OR are organized into broad zones along the dorsal–ventral axis of the  
olfactory epithelium (OE) and converge to a common glomerulus at cor
responding dorsal–ventral zones in the olfactory bulb (OB). Each glomerulus 
thus receives innervation from sensory neurons expressing a single odorant 
receptor, providing the anatomical basis of the olfactory sensory map.
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screen in a high-throughput fashion a large array of receptors 
against a similarly large panel of candidate odorants—arguably  
a necessity if we are to understand how this family of 1,000 
receptors is used to discriminate among the vast range of 
chemicals in odor space. One approach to achieve surface ex­
pression of ORs in cultured cells utilizes receptor chimeras in 
which an N-terminal peptide from rhodopsin is fused to the OR 
N terminus, facilitating cell surface expression and character­
ization of some (but not all) ORs tested in heterologous cells 
(Krautwurst et al., 1998). A more effective and generally appli­
cable solution was found by Matsunami and colleagues, who  
found that coexpression of ORs with the olfactory-specific 
chaperones RTP1 and REEP allows a large number of ORs  
to be functionally expressed in heterologous cells (Saito  
et al., 2004, 2009; Matsunami et al., 2009). Together, these 
various strategies have yielded insights into the specificities of 
individual ORs, with several principles emerging. For exam­
ple, while showing a preference for compounds with certain 
molecular features (e.g., n-aliphatic aldehydes over alcohols), 
an individual OR can be broadly tuned for other characteris­
tics, such as carbon chain length (Zhao et al., 1998; Araneda  
et al., 2000; Kajiya et al., 2001; Abaffy et al., 2006; Repicky and 
Luetje, 2009; Saito et al., 2009). These observations provide the 
molecular underpinnings of a combinatorial code in which the 
identity of an individual odorant is encoded by the particular 
subset of receptors that it activates (Fig. 3). Variations in the  
ligand’s structural features (e.g., in carbon chain length, or the 
nature of a functional group) would elicit activity in a different 
subset of receptors and give rise to the perception of a different 
smell (Repicky and Luetje, 2009; Saito et al., 2009). Given the 
combinatorial nature of the code and the large number of dif­
ferent ORs found in a given species, the number of different 
perceived odors is vast.

The ability to characterize the functional properties of 
ORs has allowed interesting insights into the mechanisms of 
human olfaction. For example, it has long been known that 
some humans can detect the steroid androstenone (a com­
pound found in human sweat), whereas others cannot. The 
androstenone “detectors” can be further divided, with one 
group describing the odor as musky and even pleasant and the 
other finding it distinctly unpleasant, akin to the smell of 
sweaty socks. What underlies these differences in human per­
ception? A solution was found through an elegant combina­
tion of human genetics and functional characterization of 
specific OR genes (Keller et al., 2007). Two single-nucleotide 
polymorphisms (SNPs) associated with androstenone non­
detectors were identified within the coding sequences of an 
OR gene. Functional expression in heterologous cells showed 
that the OR is activated by androstenone, whereas the double-
SNP variant is not. The detection and perception of andro­
stenone can be predicted based on this polymorphic OR: 
individuals homozygous for the wild-type allele tend to per­
ceive androstenone as unpleasant, whereas those possessing 
one or no functional alleles perceive androstenone as less un­
pleasant or undetectable (Keller et al., 2007). These results 
highlight the role that a single OR receptor can play in human 
olfactory perception.

numbers, sequence diversity, and patterns of expression in OSNs. 
Although work over the last two decades has unequivocally 
supported this view, finding the ligands for these receptors (a 
process often referred to as “de-orphaning”) has been surpris­
ingly difficult. A major impediment to identifying ligands for 
these chemosensory receptors has been the difficulty in obtain­
ing cell surface expression of cloned receptors in heterologous 
cells (Touhara, 2007). One approach—obviating the problems 
found in heterologous cell expression—has been to study the 
properties of virally transduced or even endogenous ORs in 
OSNs in vivo, thereby allowing them to be tested in their na­
tive cellular environment (Zhao et al., 1998; Malnic et al., 
1999; Touhara et al., 1999) and providing a rich source of in­
formation on OR ligand tuning properties. Indeed, the first OR 
to be functionally characterized was de-orphaned by virally 
transduced expression in vivo (Zhao et al., 1998). However, 
such approaches are cumbersome and preclude the ability to 

Figure 2.  Signal transduction in the OSN. (A) Representation of the re-
ceptors, enzymes, and ion channels—present in the olfactory cilia—that 
transduce activity of the odorant receptor (OR) into changes in membrane 
potential and gene expression. Binding of an odorant to its cognate OR 
results in the activation of heterotrimeric G protein (Golf plus G). Ac-
tivated Golf in turn activates type III adenylyl cyclase (AC3), leading 
to the production of cyclic AMP (cAMP) from ATP. cAMP gates or opens 
the cyclic nucleotide-gated (CNG) ion channel, leading to the influx of 
Na+ and Ca2+, depolarizing the cell. This initial depolarization is ampli-
fied through the activation of a Ca2+-dependent Cl channel. In addition,  
cAMP activates protein kinase A (PKA), which can regulate other intra
cellular events, including transcription of cAMP-regulated genes. (B) Events in  
the nucleus of OSNs important for establishing and maintaining sensory 
neuron identity. Selection of a particular OR gene by the cell is thought 
to occur via interaction of a cis-regulatory locus control region with the 
proximal promoter of a single OR gene within a cluster of OR genes. This 
choice is stabilized—and the expression from all other OR genes in the 
genome is silenced—by an OR-dependent feedback loop, which ensures 
the expression of a single OR per sensory neuron. The mechanism under
lying OR-mediated, OR gene silencing is at present not understood. OR- 
mediated activity also leads to transcriptional regulation of cAMP response 
element binding protein (CREB)–dependent gene expression via CREB’s 
phosphorylation by PKA.
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in which the OR gene choice had already been made would 
show a grossly perturbed pattern of OR gene expression be­
cause all cells of the animal would have inherited the structural 
rearrangement that led to expression of that one OR allele. This 
idea was ruled out by the observation that mice cloned from a 
single, mature OSN in fact express the full complement of ORs 
with no apparent perturbations (Eggan et al., 2004; Li et al., 
2004). Thus, the mechanism by which an OSN chooses an OR 
gene to express does not involve irreversible structural changes 
in genomic DNA.

How, then, is an OR gene selected for expression? Given 
that OR genes are found in clusters on multiple chromosomes 
(Mombaerts, 2004; Niimura and Nei, 2005), perhaps local se­
quence elements regulate the expression of genes within each 
cluster. In one model, a locus control region (LCR) governs OR 
gene expression as part of a hierarchy of cis-acting regulatory 
elements. In support of this model, an 2-kb sequence residing 
75 kb upstream of a cluster of OR genes on mouse chromosome 
14—termed the “H” region because of its homology to a similar 
sequence in the human genome—was shown to function as an 
enhancer of OR gene expression in transgenic mice made with 
yeast artificial chromosome (YAC) constructs with inserts suffi­
ciently large to contain the H region together with the proximal 
OR gene sequences themselves (Serizawa et al., 2003). The H 
region has the hallmarks of an enhancer: moving it closer to an 
OR gene increases the number of cells expressing that gene, and 
deletion of the H region from the YAC transgene results in 
highly reduced expression of transgenic ORs (Serizawa et al., 
2003). Cis-acting enhancers have also been identified in and 
around OR gene clusters in the zebrafish genome (Nishizumi  
et al., 2007); although these elements show no obvious sequence 
similarity to the mammalian H region, their presence supports 
the notion that each OR gene cluster is regulated by one or more 
LCR. Interestingly, only a single OR is expressed per cell from 
an H region–containing YAC transgene carrying a cluster of OR 
genes (Serizawa et al., 2003). Similar to the mechanism used to 
assure the expression of a single red or green opsin gene in the 
cone photoreceptor cell (Cook and Desplan, 2001), LCRs asso­
ciated with OR clusters could account for the initial selection of 
a single OR gene by the OSN via a stable intrachromosomal inter­
action between the H region and the chosen OR’s proximal  
promoter (Serizawa et al., 2003; Fig. 2 B). In an intriguing vari­
ation of this model, it was suggested that the H region might 
function as a master regulator of all OR genes in the genome, 
serving as both a cis- and trans-chromosomal regulatory element 
(Lomvardas et al., 2006). Indeed, experiments using chromo­
some conformation capture demonstrated physical associations 
between the H region and OR genes on other chromosomes 
(Lomvardas et al., 2006). This was a tantalizing observation, as 
an exclusive association of a single OR gene’s proximal pro­
moter with one allele’s H region could help explain singularity 
of OR expression. However, subsequent studies showed that  
genetic ablation of the H region resulted in the loss of expres­
sion of only the most proximal OR genes in the neighboring  
OR gene cluster on chromosome 14, with normal expression of 
more distant genes in the cluster, as well as genes on other chromo­
somes (Fuss et al., 2007; Nishizumi et al., 2007). Thus, it is 

Odorant receptor gene expression:  
the problem of choosing one and forsaking 
all others
During development, each differentiating OSN must select and 
express a single receptor at the exclusion of all other receptors 
in the genome. How is this singularity in OR gene expression 
initially established and subsequently maintained over the life­
time of the cell? Several models have been advanced to explain 
how a single OR gene is expressed in each OSN. One idea pos­
its somatic DNA rearrangements as a way of irreversibly select­
ing a single OR gene for expression while simultaneously 
repressing other genes in the repertoire. For example, DNA re­
combination events may be required to place the coding se­
quence adjacent to a promoter sequence or into a transcriptionally 
active locus, similar to the selection of a single antigen receptor 
gene via V(D)J recombination by cells in the immune system or 
antigenic variation of surface coat proteins in trypanosomes 
(Borst, 2002). If this were the case, mice cloned from an OSN 

Figure 3.  Combinatorial coding of olfactory information. Graphic repre-
sentation of the olfactory receptor combinatorial code. In this hypothetical 
example, the responses of five odorant receptors to seven odorants (a–g) 
are shown, with the magnitudes of responses proportional to the sizes of 
the circles. Reflecting functional studies on individual odorant receptors, 
some receptors are more narrowly tuned than others, and individual odor-
ants can activate different subsets (and numbers) of receptors. The pattern 
of receptor activation elicited by a particular compound is thought to rep-
resent that compound’s chemical identity.
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in lieu of an intact OR fails to suppress the expression of other 
OR genes (Imai et al., 2006). These observations leave us with 
a bit of a puzzle: the OR is required for silencing, but this pro­
cess does not appear to operate through the expected G protein 
signaling pathway. Perhaps other, noncanonical, G protein– 
independent mechanisms are at play. It is also possible that the 
inactivated mutant receptor used in the above-mentioned study 
(Imai et al., 2006) retains a level of intrinsic activity—reflecting 
the receptor’s equilibrium between inactive and active states in 
the absence of bound agonist (Rosenbaum et al., 2009)—to re­
press expression from other OR gene loci. Accordingly, OR-
mediated gene silencing may well depend on intrinsic OR 
activity, which could be transduced not through Golf/cAMP-
mediated signaling, but via G signaling, the other arm of the 

likely that the H region—and similar 
sequences found within other OR gene  
clusters—act in cis to regulate the expression 
of OR genes in their immediate chromo­
somal vicinity. In a hierarchical mechanism, 
the selection of a single OR by a cell could 
come about through the initial restriction 
to a single LCR, which in turn stochastically 
makes a stable interaction with a single OR 
gene within its associated cluster.

The odorant receptor: 
enforcer of the “one 
receptor, one neuron” rule
Once an OR has been chosen by an OSN, it 
is stably expressed for the lifetime of the 
cell, at the exclusion of all other OR genes 
in the genome. What is the mechanism be­
hind this exquisite mode of gene regula­
tion? An important clue came from the 
observation that individual sensory neu­
rons can in rare instances sequentially ex­
press multiple OR genes, with such “gene 
switching” events occurring more fre­
quently when the initial OR gene expressed 
by the cell is a pseudogene (Serizawa et al., 
2003; Lewcock and Reed, 2004; Shykind 
et al., 2004). These observations support a 
model in which a functional OR protein, 
once selected and expressed, silences the 
expression of other OR genes in the ge­
nome (Serizawa et al., 2004; Shykind, 
2005). In a negative feedback mechanism, 
OR-dependent gene silencing prevents gene 
switching and ensures the stable expression 
of a single OR in each OSN (Fig. 2 B). There 
are two obvious consequences to this ar­
rangement. First, if an OR pseudogene is 
initially selected for expression, the gener­
ation of a functional OSN is ensured by 
switching to another OR gene—an impor­
tant quality control/quality assurance mecha­
nism considering that a significant fraction 
of the OR gene repertoire comprises pseudogenes (25–30% in  
rodents and 50% in humans; Mombaerts, 2004; Niimura and 
Nei, 2005). Second, once a functional OR is selected for expres­
sion, gene silencing safeguards the functional identity of the 
OSN over the lifetime of the cell.

What are the intracellular signaling mechanisms mediat­
ing OR-dependent gene silencing? Several lines of evidence 
suggest that this feedback mechanism does not depend on OR 
activity (Imai et al., 2006). First, expression of multiple ORs per 
cell is repressed by transgenic expression of a mutant OR in 
which a conserved receptor activation motif is mutated, render­
ing the receptor unresponsive to odorant stimulation (Imai et al., 
2006). Second, a constitutively active Gs mutant (which is ex­
pected to bypass or substitute for an active receptor) expressed 

Glossary

Axon growth cone. The leading, motile structure of a neuron’s growing axon; the growth cone 
senses gradients of axon guidance cues via transmembrane receptors expressed on the plasma 
membrane. These interactions can cause local changes in actin polymerization and depolymer-
ization, resulting in directional changes in the growth cone trajectory.

Axon guidance cue. A secreted, cell surface, or extracellular matrix protein that influences the 
growth of extending axons toward (attractive) or away from (repulsive) the source of the cue. 
These cues, which include proteins such as the semaphorins, netrins, ephrins, and slits, function 
by interacting with their cognate receptors on the axon growth cone.

Glomerulus. Functional unit of the olfactory bulb that segregates and organizes the synaptic in-
puts from the OSNs with their partner output neurons (the mitral cells), which in turn carry infor-
mation from the olfactory bulb to higher cortical centers.

GPCR. G protein–coupled receptor; representing a large superfamily of receptors with a character
istic seven-transmembrane topology and whose intracellular signals are transduced by hetero
trimeric G proteins; includes receptors for hormones, neurotransmitters, visual stimuli, and 
chemosensory (olfaction and taste) stimuli.

LCR. Locus control region; a class of transcriptional regulatory element that can influence the 
transcription of genes within a large stretch of genomic DNA. Regulation of transcription by 
LCRs is thought to involve a physical interaction of the LCR and the target gene’s proximal pro-
moter sequence—a regulatory DNA sequence found immediately adjacent to the protein-coding 
portion of a gene.

Odor. Scent or smell; natural sources of odors are often complex mixtures of many compounds, 
some of which (but not necessarily all) can contribute to the perception of the particular smell.

Odorant. A compound that elicits the perception of smell.

Odorant receptors. Receptors expressed by OSNs and belonging to the GPCR superfamily, re-
sponsible primarily for receiving “chemosensory” or chemical cues from the environment. There 
are multiple families of odorant receptors, which include the OR (the largest family), TAAR, V1R, 
V2R, and formyl peptide-like receptors.

Olfaction. The sense of smell.

Olfactory bulb. A specialized structure of the forebrain, which receives direct input from the 
OSNs in the nose.

Olfactory cortex. Collectively refers to the five brain regions that receive direct input from the  
olfactory bulb: the piriform cortex, anterior olfactory nucleus, olfactory tubercle, entorhinal cortex, 
and amygdala. The regions of the olfactory cortex are responsible for the perception of smell 
and for generating odor-evoked behaviors.

Olfactory epithelium. The sensory epithelium that resides in the nose and contains the primary 
sensory neurons (the OSNs) that are responsible for detecting chemical stimuli from  
the environment.

Olfactory sensory neuron. The primary sensory neuron of the olfactory system, responsible for  
receiving and transducing chemical information from the environment. The olfactory sensory 
neuron is where the olfactory system meets the outside chemical world.

Projection neuron. The mitral or tufted cell in the case of the olfactory bulb; these neurons receive 
information from the OSNs in the olfactory epithelium, and relay or “project” this information to 
the next level in the olfactory cortex.
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Loss-of-function mutations either in Robo2 (the receptor) or 
Slit1 (the ligand) result in ectopic projections of OSN axons 
originating from the dorsomedial epithelium into the ventral  
olfactory bulb (Nguyen-Ba-Charvet et al., 2008). In addition, the 
chemorepellent Semaphorin3F is released by the axon termi­
nals of dorsally projecting OSNs (which are the first to inner­
vate the bulb) and prevents later-born ventrally derived axons 
from entering the dorsal olfactory bulb via its receptor, Neuro­
pilin2, which is expressed in a high ventral to low dorsal gradi­
ent by OSNs in the olfactory epithelium (Takeuchi et al., 2010). 
Thus, complementary chemorepellent gradients of Slit1 and 
Semaphorin3F influence positioning of OSN projections along 
the dorsal–ventral axis (Fig. 4 A).

The projection of OSNs expressing a particular OR to the 
lateral versus medial olfactory bulb creates a mirror symmetry 
of innervation in this structure (Ressler et al., 1994; Vassar et al., 
1994; Mombaerts et al., 1996; Nagao et al., 2000). What influences 

heterotrimeric G protein signaling cascade. Future studies will 
hopefully soon identify the intracellular signaling pathways  
responsible for OR-dependent gene silencing, which is critical 
for maintaining the stable expression of a single OR gene and 
therefore the functional identity of the OSN.

Wiring up the olfactory sensory map
Patterning of connections by odorant receptor– 

independent mechanisms. In other sensory systems, neu­
ronal activity—here defined as activity leading to changes in 
membrane potential of the sensory neuron—plays a role in  
the refinement of synaptic connections during development and 
the modification of such connections underlying experience- 
dependent plasticity (Fox and Wong, 2005). What role does such 
activity play in the establishment of the precise targeting of 
OSNs in the olfactory bulb? Early studies using gene knock­
outs of the olfactory-specific CNG channel—the ion channel 
responsible for transducing OR-driven increases in cAMP ac­
cumulation into membrane depolarization (Fig. 2 A)—showed 
that targeting and convergence of OSN axons to the appropriate 
regions of the olfactory bulb can occur in the absence of stimulus-
evoked activity (Brunet et al., 1996; Zheng et al., 2000).

The projection of axons from OSNs expressing specific 
ORs to spatially invariant glomeruli in the olfactory bulb sug­
gests that the targeting of sensory axons in the olfactory bulb 
depends at least in part on spatially restricted guidance cues in 
the target tissue and along the axonal trajectory. How is this feat 
of connectivity achieved during development? In one model, a 
hierarchy of cues guides axons of neurons expressing the same 
odorant receptor first to the general vicinity of their targets, and 
then to their singular target glomerulus (Lin and Ngai, 1999;  
St John et al., 2002). Regarding the initial steps of axon path­
finding, it is instructive to consider this problem in terms of the 
olfactory bulb’s dorsal–ventral, medial–lateral, and anterior– 
posterior axes, given that the spatial identity of each glomerulus 
on the surface of this three-dimensional structure can be defined 
by its coordinates along these three principal axes. As we will 
discuss in the remaining sections, targeting of OSN axons to 
positions along the dorsal–ventral and medial–lateral axes oc­
curs primarily via mechanisms independent of OR-mediated 
activity, whereas projection along the anterior–posterior axis 
and axon convergence both depend on OR activity.

Neurons expressing a specific odorant receptor are segre­
gated within circumscribed zones in the epithelium along the 
dorsomedial–ventrolateral axis (corresponding more or less to 
the dorsal–ventral axis; Ressler et al., 1993; Vassar et al., 1993; 
Miyamichi et al., 2005). While axons arising from each zone 
project to a corresponding dorsal–ventral zone in the olfactory 
bulb (Mori et al., 1999; Miyamichi et al., 2005) within these  
latter zones odorant receptor-specific axons converge to form 
discrete glomeruli. How is this initial level of dorsal–ventral 
segregation established? The repulsive axon guidance cue, Slit1, 
and its receptor, Robo2, play a role in segregating OSN axons 
along the dorsal–ventral axis of the olfactory bulb. Slit1 is ex­
pressed in the ventral olfactory bulb, and its receptor Robo2 is 
expressed in OSNs in a high dorsomedial to low ventrolateral 
gradient across the olfactory epithelium (Cho et al., 2007). 

Figure 4.  Targeting of OSN axons to the olfactory bulb. The projection of 
OSNs in the olfactory epithelium (OE) to their target glomeruli in the olfac-
tory bulb (OB) can be considered along the bulb’s three principal axes.  
(A) Zone-to-zone projection along the dorsal–ventral axis is shaped in part by 
complementary gradients of the chemorepellent molecules Slit1 and Sema-
phorin3F (Sema3F) and their receptors Robo2 and Neuropilin2 (Nrp2), 
respectively. (B) Innervation of the lateral olfactory bulb is dependent on 
IGF signaling, which may function to counteract a default tendency of all 
olfactory neurons to project medially. (C) Projection of olfactory sensory 
axons along the olfactory bulb’s anterior–posterior axis depends not on the 
position of the cell in the OE, but rather on the level of intracellular cAMP, 
which in turn regulates the expression of the axon guidance receptor  
Neuropilin1 (Nrp1). By modulating the expression levels of axon guidance 
receptors such as Nrp1, the sensory axons are either more or less sensitive 
to guidance cues found in the OB or along the projection pathway.
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of the receptor (i.e., activity in an unliganded state) could set the 
gain level or sensitivity of the cell to respond to what we might 
consider more traditional axon guidance cues. Indeed, cAMP 
(as well as cGMP) can modulate the growth cone’s response  
to axon guidance cues (Song and Poo, 2001). In this scenario, 
OSNs project to different positions along the anterior–posterior 
axis of the bulb according to the particular OR’s level of intrin­
sic activity (or in the case of the 2-adrenergic receptor swap, 
the 2-adrenergic receptor’s intrinsic activity).

Support for this latter model has come from experiments 
in the mouse showing that perturbations in cAMP signaling 
cause anterior–posterior shifts in OSN axon targeting (Imai et al., 
2006). A decrease in cAMP-mediated signaling caused by trans­
genic expression of either an inactive mutant OR or a dominant-
negative protein kinase A (PKA) mutant results in an anterior  
shift in the target glomerulus (Imai et al., 2006). Conversely, 
transgenic expression of constitutively active Gs or constitu­
tively active PKA causes a posterior shift in innervation (Imai et al., 
2006). Intriguingly, transcription of specific genes in OSNs  
correlates with the level of cAMP signaling (Imai et al., 2006). 
Notable among these is the gene encoding Neuropilin1, a receptor 
for the repulsive axon guidance cue Semaphorin3A (Imai et al., 
2006); OSNs expressing high levels of Neuropilin1 project to 
the posterior olfactory bulb, whereas OSNs expressing low lev­
els project anteriorly. Thus, a model emerges in which the position 
of a given OSN’s target glomerulus along the olfactory bulb’s 
anterior–posterior axis is in part determined by the OSN’s sen­
sitivity to axon guidance cues such as Semaphorin3A (Fig. 4 C). 
This sensitivity in turn is determined by the level of intrinsic ac­
tivity manifested by the particular OR expressed by the OSN, 
which determines—via cAMP/PKA signaling—the level of ex­
pression of the Semaphorin3A receptor, Neuropilin1. In this 
way, OSN axons are sorted along the anterior–posterior axis of 
the olfactory bulb not based on their originating positions in the 
olfactory epithelium (as we discussed for dorsal–ventral and 
medial–lateral positioning), but rather based on the intrinsic ac­
tivity of the OR expressed by each neuron. Interestingly, axons 
destined for the anterior versus posterior olfactory bulb are pre­
sorted in the olfactory nerve before they enter the olfactory 
bulb, and Semaphorin3A–Neuropilin1 signaling is involved in 
this presorting process (Imai et al., 2009).

The final step: convergence of like olfactory 
axons is influenced by OR-mediated 
neuronal activity
How do OSNs expressing the same OR that are distributed 
broadly in the olfactory epithelium converge upon a common 
glomerulus in each bulb hemisphere? OSN axons can converge 
to ectopic sites in mice missing their olfactory bulbs due to  
either surgical or genetic manipulations (Bulfone et al., 1998;  
St John et al., 2003; Chehrehasa et al., 2006; Ardiles et al., 
2007), suggesting that convergence reflects a process intrinsic 
to the OSNs, independent of their cellular targets in the olfac­
tory bulb. Insight into the mechanism underlying convergence 
was provided by a study showing that the homophilic cell adhe­
sion molecules, Kirrel2 and Kirrel3, as well as the repulsive 
molecules EphrinA5 and EphA5 (a ligand–receptor pair), are 

the choice of an extending OSN axon to project laterally versus 
medially? Neurons located in medial or lateral positions of the 
olfactory epithelium innervate the medial or lateral olfactory 
bulb, respectively (Levai et al., 2003). Gene knockout studies in 
the mouse demonstrated that insulin-like growth factor (IGF) 
signaling plays an important role in the choice of OSNs to inner­
vate the lateral versus medial olfactory bulb (Scolnick et al., 
2008). Mice homozygous for a knockout of the IGF receptor, 
IGF1R, demonstrate a loss of innervation of the lateral olfactory 
bulb; axons normally destined for this bulb hemisphere rerouted 
to more medial locations, whereas the positions of medial glo­
meruli appear unperturbed (Scolnick et al., 2008). IGF can serve  
as a chemoattractant for OSN axon growth cones in culture, and 
this activity is dependent on PI3 kinase (Scolnick et al., 2008), 
a downstream target of IGF1R and a mediator of the growth 
cone’s response to multiple axon guidance cues (Song and Poo, 
2001). However, the absence of any clear-cut medial–lateral 
gradients of IGF1 and IGF2 (the two IGF ligands) either along 
the olfactory axon trajectory or in the olfactory bulb makes it 
difficult to explain how IGF signaling promotes innervation of 
the lateral olfactory bulb. One possibility is that IGF-binding 
proteins (Efstratiadis, 1998) bind to and mask the IGFs along 
the olfactory projection, thereby altering their spatial distribu­
tion of available IGF ligands. Another possibility is that growth 
toward the medial olfactory bulb is the default for all olfactory 
axons, regardless of their point of origin in the olfactory epithe­
lium. Axons originating from the lateral olfactory epithelium 
would therefore require a counterbalancing lateral attraction in 
order to extend into the lateral hemisphere of the olfactory bulb; 
IGF ligands could serve as this attractive cue (Fig. 4 B). What­
ever the case, it appears that IGF participates in concert with 
other guidance cues to direct OSN axons to the medial or lateral 
olfactory bulb.

Patterning of connections by odorant receptor– 

dependent mechanisms. In contrast to the mechanisms 
underlying the patterning of OSN axon projections along the 
dorsal–ventral and medial–lateral axes in the olfactory bulb, tar­
geting along the anterior–posterior axis is influenced by the OR 
itself. This was first demonstrated through gene knock-in ex­
periments in which the protein-coding region of one OR gene 
was replaced with that of another OR. In these “receptor swap” 
experiments, neurons expressing the modified allele projected 
their axons to an ectopic glomerulus close to—but distinct from—
the target glomerulus of the substituted receptor (Mombaerts 
et al., 1996; Wang et al., 1998), indicating that the OR is just 
one determinant of the final position of the glomerulus. Two 
models can be entertained to explain these observations.  
In the first, the OR receives and transduces axon guidance cues 
at the growth cone, thereby serving a dual function as chemo­
sensory receptor and axon guidance receptor. Consistent  
with this notion, OR protein has been observed in OSN axon 
terminals (Barnea et al., 2004), although their role as axon guid­
ance receptors has yet to be demonstrated. This model also 
seems implausible in light of the demonstration that a receptor 
swap with the 2-adrenergic receptor coding sequence in place 
of the OR results in targeting of axons to glomeruli in the olfac­
tory bulb (Feinstein et al., 2004). Alternatively, intrinsic activity 
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dispersed locations in the sensory epithelium to discrete and in­
variant glomeruli in the olfactory bulb represents a major feat of 
axon guidance and synaptic specificity. Future research in this 
domain should help to unravel the intertwined roles of classical 
axon guidance cues and their receptors (not to mention novel 
players that may well be involved), neuronal activity, and the 
ORs themselves in establishing and maintaining the olfactory 
sensory map in the olfactory bulb.
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