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Abstract

Handling unanticipated events during problem solving is dif-
ficult enough when an agent is operating by itself. When
the agent is part of a cooperative distributed problem solv-
ing (CDPS) system, the task's difficulty increases dramatically.
Now the agent is forced to consider the effect of the event not
only on itself, but also on others and the group as a whole.
It must also consider who should handle the event and the
likely impact that actions taken to diagnose the event or re-
spond to it may have on other agents. In this paper, we discuss
preliminary work aimed at developing a process for handling
events during multiagent cooperative problem solving. The
domain in which the work is being done is cooperating mul-
tiple autonomous underwater vehicles (AUVs). However, the
approach should have broader applicability to almost any real-
world cooperative problem solving task involving autonomous
or nearly autonomous agents.

Introduction

Autonomous agents, whether humans or computer systems,
must cope with the fact that the world is unpredictable. This
has a variety of causes, most of which can be traced to uncer-
tainty or incomplete information about the environment, un-
known processes operating in the world, other agents’ actions,
or the actions of the agent itself. Unpredictability manifests
itself in the form of unanticipared events that occur during
problem solving: unexpected states or action outcomes, in-
cluding failures and unanticipated interactions with others.
Unless an agent can recognize and handle these events, it will
be incapable of prolonged useful activity in the real world.
Its plans will fail beyond recovery, and it will fail to seize
unexpected opportunities.

Handling unanticipated events is difficult. Meaningful
events are often difficult to pick out from the background
of changes taking place in the world and the agent; even
when detected, it is often hard to adequately diagnose the
evenl's cause and select an appropriate response for the cur-
rent problem-solving situation. The problem is compounded
when an agent is part of a larger problem-solving ensemble,
as in the case of a group of agents participating in coopera-
tive distributed problem solving (CDPS). Here, agents must
disentangle those events affecting only themselves from those
affecting the broader group. In addition, at all points during
the process of handling an event, an agent must keep in mind
its role in the overall group and the fact that it may need to
coordinate its information or responses with other members.

In this paper, we discuss event handling during multiagent
cooperative problem solving. Our domain is cooperating au-
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tonomous underwater vehicles (AUVs) (Turner er al., 1991);
however, much of what we discuss should be applicable to
any group of autonomous agents collaborating to solve prob-
lems in the real world. The work reported is largely a part of
the ORCA project (Turner, 1994; Turner & Stevenson, 1991),
whose goal is the creation of a robust, intelligent controller
for AUVs for use in ocean science and CDPS systems.

Unanticipated Events and Multiagent Systems

Elsewhere, we have defined unanticipated events as all un-
predictable changes to the agent’s problem-solving situation
(Turner, 1994). We do not necessarily mean only those things
that are novel or completely unexpected, hoWever (though we
do not rule those out). Instead, we mean “unpredictable” in
the sense that a person stepping in front of a car is unpre-
dictable: although it is likely that, if asked, the driver would
have been able to predict that at some time some person could
step in front of his or her car at some place, the exact combi-
nation of time and person and place was utterly unpredictable
in advance.

Unanticipated events in the context of multiple agents force
us to consider not only events that impact a single agent’s
problem-solving activities, but also those that impact one or
more other members of the group or the group as a whole. This
is hampered by the essentially local view that any particular
agent has of its world. Agents build their view of the world
based on input from sensors, their understanding of the effects
of actions in the world, knowledge of the way agents inter-
act (including the overall organizational structure and agents’
roles in it), and knowledge about what other agents may be-
lieve concerning a particular situation. Unfortunately, this lo-
cal view is inherently incomplete and uncertain.! In addition,
the agent cannot ignore the effects of its actions and changes
in its beliefs on other agents with which it cooperating. These
two things, a local world view and interdependence of agents’
actions and beliefs, impact all phases of event handling.

Handling Events in Multiagent Systems

Our overall process for handling events during collaborative
problem solving is shown in Figure 1. In many ways, it is
similar to the process described by Turner (1994) for event
handling when there is only a single agent involved: event
detection, followed by diagnosis, importance assessment, and

'Perhaps this is just as well, as bounds on the agent’s processing
abilities would most likely preclude using the knowledge even if it
were complete and certain.
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Figure 1: Process of handling events in a multiagent system.

response selection. There are, however, some notable differ-
ences, as we discuss below.

Event detection. Detecting an event fundamentally relies
on comparing the agent’s sensor stream—that is, the informa-
tion coming from its sensors (possibly after being processed
by other software, in the case of software agents)—with what
the agent believes about the world, other agents, and the likely
results of its own actions. Messages from others can also serve
as a source of information to use in event detection; for exam-
ple, another AUV might tell an agent “You have run aground.”

The knowledge necessary for event detection includes a
good model of the environment around the agent, so that
differences between what the sensors report and what the agent
believes can be meaningful. An agent also needs to know the
organization of the group of which it is a part, including its
own and others’ responsibilities and commitments to actions
(i.e., their intentions (e.g., Durfee & Lesser, 1987; Georgeff &
Ingrand, 1988)). This allows it to predict the likely impact of
features of the environment (or itself, or others) that it detects
on its and others’ actions and plans. For event notification
messages, the agent needs to know how reliable the other
agent is, not only with respect to the sender’s processing and
sensor abilities, but also its beliefs and knowledge about the
agentand the group. The agent also needs to maintain ahistory
of past sensor information, beliefs, and so forth, so that trends
and intermittent events can be detected (e.g., power slowly
failing).
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Checking for simultaneous event detection. After an
event is detected by an agent, it must decide if others are
likely to have also detected (or will soon detect) the event. It
would not do to have several agents simultaneously handling
a single event, unaware of others’ actions. Not only are “race
conditions” likely, but the duplicated work would probably be
unproductive or even counter-productive.

To do this, an agent must have a good model of the other
agent’s activities, position, sensor capabilities, and of rheir
internal models of the world. The former three are needed
so that the agent can determine whether the others are at
vantage points to witness the event and whether they have
the necessary sensory and attentional resources to detect the
event when it occurred. The latter is needed so that the agent
can predict whether the event looked like an event to the
other agents. For example, suppose during a cooperative
underwater photography task (e.g., the MAVIS task (Turner
et al., 1991)), AUV A notices that AUV B's light turned off
when, from A’s standpoint, it should not have. AUV A should
predict that B likely (but not necessarily) also detected the
event; it should also predict that another of the group’s AUVs,
C, that is not involved in the current task, would likely not
have noticed—to it, seeing B’s light go off would not mean that
something unexpected had happened. Consequently, A needs
only be concerned with B having simultaneously noticed the
event

If an agent believes that others have also noticed an event,
then it needs to enter into negotiation (see, e.g., Sycara, 1989)
to decide which of them will handle the event. The possibili-
ties are: the agent, the agent and others (possibly including the



one being negotiated with), or others and not the agent. If the
agent has no responsibility for the event, then its processing
of it can terminate.?

Assessing the scope of the event. When an agent decides
that no other agents are likely to have noticed an event, then
it has de facto responsibility for it. Part of this responsibility
entails deciding whether or not to notify others and/or to get
help. This relies on an assessment of the scope of the event:
Does the event impact only me, or does it impact others in the
group (or the group as a whole)?

If the agent determines that the event impacts only itself,
then it can proceed with handling it. If it decides that the event
affects no one, then it can terminate processing the event. (For
example, if an agent notices a rockslide, but neither it nor any
other agent is predicted to go near the rubble, then it may be
safe to ignore the event.) If the event is predicted to impact
others, then the agent must decide who is best able to handle
the event.

The knowledge necessary to support assessment of an
event’s scope again relies on environmental knowledge as
well as a model of the group’s organization and models of
others’ actions, plans, and beliefs.

Determining the best agent to handle the event. De-
termining what agent can best handle an event can be done
in a number of ways, the one selected depending both on the
organization of the CDPS group as well as on the agent’s
knowledge. If the group’s organization is hierarchical, for ex-
ample, then it may be a standing policy that an agent noticing
an event must notify its superior, which will then (possibly
after notifying irs superior, etc.) select the agent(s) that will
handle the event. In other situations, for example, when there
is a “flat” agent organization (e.g., in PGP systems (Durfee &
Lesser, 1987)), agents may negotiate among themselves as to
who should handle the event.

The agent’s own knowledge impacts the determination as
well. If it has sufficient knowledge, it may be able to predict
which of its fellow agents is in the best position, from the
standpoint of both knowledge and ability, to handle the event.
To do this, it needs knowledge of other agents’ abilities, inten-
tions, knowledge, and current workload. The latter is needed
because an agent may be in the best position to handle an
event, yet be too busy.

Diagnosing the event. Eventdiagnosis is a difficult task.
Among other things, it is difficult to know when to stop:
Should the event be diagnosed to the ultimate cause or just to
the level at which a response can be made to it? Elsewhere, we
have argued that the latter is most appropriate (Turner, 1994);
Rubin (1975) made a similar argument for the diagnosis of the
surface form of medical “events” (i.e., signs and symptoms).

It may be that an agent in a multiagent system needs to
contact other agents to perform event diagnosis. One reason
for this may be to obtain information that it does not have.
For example, an AUV may notice that it is drifting off course;
one reason for this may be that it is in a current. If another

*This is not strictly true; the agent should monitor the handling
of the event so that at some later time it can help, if necessary.
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AUV has recently traveled through the same region, it can ask
itif 1t, too, experienced difficulty maintaining its heading—if
so, then it's likely that there is a current present.

Event diagnosis may also involve taking actions; this is
true, for example, in medical diagnosis (e.g., perform a lab
test) as well in the AUV domain (e.g., attempt to back up to
see if the vehicle is trapped in a net). An agent may need to
ask others to take actions on its behalf to help it diagnose an
event it has noticed. For example, an AUV may ask another
to visually inspect its thrusters to look for damage after it
notices that its motion has stopped. When such coordination
is necessary, the agent faces the usual quandary of how much
to tell its partner(s) about why it has requested the actions:
Should it simply ask for an action to be performed, or should
it give a rationale for the action, so the other agent can use its
own knowledge and initiative to better help it?

Even if the agent needs no help from others, if it must take
actions to diagnose an event, it must first assess the actions’
impact onothers. It may, depending on the actions to be taken,
need to inform or even negotiate with others.

The knowledge needed for diagnosis in a sense goes some-
what beyond the knowledge of others and their actions, etc.,
necessary for the other phases of event handling. Event diag-
nosis also requires the kinds of associational/causal or model-
based knowledge needed for other diagnostic tasks.

Assessing the event’s importance. Once an event has
been diagnosed to a treatable cause, then the agent needs to
determine if it is important enough to respond to.> As we
discuss below and elsewhere (Turner, 1993; Turner, 1994),
an event’s importance depends to a very large extent on the
current problem-solving context; whether or not a response
is selected depends not only on the event's importance, but
how reactive the reasoner chooses to be in the current situation.
Both of these factors can depend on other agents or the overall
problem-solving group. For example, the failure of an AUV’s
light may have little importance for the AUV or its plans;
however, if it knows that a camera-bearing AUV is likely to
ask it to illuminate targets at some point during the mission,
the event becomes more important.

If an agent predicts that an event may have importance to the
broader problem-solving system, it may need to inform others
of the event, ask for information to help with the assessment,
or even negotiate with other agents to settle on a mutually-
agreeable importance estimate. The knowledge needed for
this is similar to that for the other phases of event handling.

Selecting a response. The appropriate response for an
event may be different in a multiagent context than in a situa-
tion involving a single agent. For example, when encountering
a current, an agent operating by itself would likely maneuver
out of the current and update its internal model of the envi-
ronment so it would not stray into the current in future; in a
multiagent situation, however, it should also consider broad-
casting information about the current to its co-workers so that
they can avoid it.

This phase occurs after diagnosis because importance often de-
pends more on the cause (e.g., a disease) than the surface event (e.g.,
a symptom).



In a multiagent situation, an agent may also be able to ask
other agents to take actions on its behalf to respond to an
event. For example, an AUV that has landed on a soft bottom
and has subsequently become stuck may ask another agent to
try to pull it off.

Even when an agent’s response does not directly involve
others, it may still need to coordinate with them if the response
impacts their current or future intentions. For example, if the
only AUV with a light begins to lose power, it may decide to
return to the support vessel; it should tell its peers, however,
as they may need to use the light later in the group’s mission.

In addition to needing a model of the domain and of others’
actions and beliefs, the agent must be able to project the likely
effects of its response on the environment and the others.

Coordination between agents. At several points during
the event handling process, agents need to communicate with
one another. This may involve informing agents of events or
responses, asking for help or information, or negotiating to
iron out inconsistencies in information or to agree on a course
of action.

In many domains, including the AUV domain, communica-
tion is not as straightforward as it might seem. For example,
in the AUV domain communication most often takes place
by broadcasting messages over an acoustic link. Issues arise
of limited communication channel bandwidth and overheard
messages giving rise to unintended event-handling behavior
on the part of the “eavesdroppers”. In addition, communi-
cation needs to be incorporated into the broader context of
group problem solving in a coherent manner, Tumer and
Turner (1991) describe one mechanism for this. In general,
much work remains to be done.

Role of context. In all of the preceding discussion of
knowledge required for multiagent event handling, much of
what we have been talking about can be described as contex-
tual knowledge: knowledge of the environmental, problem-
solving, and social/cooperative context the agent is in. Con-
textual knowledge is crucial in appropriately conditioning an
agent’s behavior to the current problem-solving context. Con-
textual knowledge, however, comes not only from the agent’s
sensor stream and messages received. It also comes from the
agent’s knowledge about problem-solving situations in gen-
eral, which may be the product of its past experiences.

Elsewhere, we have discussed a mechanism for context-
sensitive reasoning in real-world domains (e.g., Turner, 1989;
Turner, 1993; Turner, 1994), including handling unanticipated
events. We believe that this mechanism, which relies on
retrieving and merging contextual schemas into a coherent
picture of the current context, can be extended to facilitate
multiagent event handling as well.

Complications Arising from Time-Consuming Actions.
Above, we have discussed the process of event handling as
if actions, including communication actions, take negligible
tme. This is not the case in real world domains, and espe-
cially not in relatively slow domains such as AUV control.
For example, suppose the agent must move in order to diag-
nose an event; this could take seconds to minutes. Similarly,
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communication is slow underwater; the current generation of
available acoustic modems have a bit rate of about 1200 baud,
and there is a significant time lag arising from the speed of
sound in water.

During the time the agent is carrying out actions in support
of event handling, the world does not stand still. Information
continues to stream into the agent from outside, the world
continues to change, and others continue their tasks. The
agent cannot, then, suspend event handling while waiting for
actions to complete; new events will demand attention, and
should be handled.

Two possibilities suggest themselves. One solution is to
make the state of event handling explicit, so that the agent can
interrupt the handling of one event, then later resume where
it left off after the necessary actions have been taken. A
problem with this is that until the actions complete, the agent
has actually done nothing about the event, which could be
catastrophic: consider an event that suggests an AUV may be
drifting below its crush depth. The second solution is to allow
event handling to finish without waiting for actions, com-
munication, and/or negotiation to finish—but to make only a
provisional diagnosis, assessment, and action recommenda-
tion. Later, when additional information arrives as a result of
the actions or communication, the agent would recvaluate the
event in light of the new information. We will investigate the
latter solution as this work progresses.

Multiagent Event Handling in Orca

Figure 2 shows the internal structure of the current version
of ORCA. It is divided into several modules, including a
Communications Module that is not shown.

Massagua from User, Diber AUV Masaagea io Usar, Othar ALIVS

Inpuis from Lower-level Seftwars Commanis w Lower.level Seltwars

Figure 2: Internal structure of Orca.

Event Handler accepts all incoming sensor information and
(parsed) messages from other agents, including the AUV’s
users. It is responsible for detecting if the input, together with
past input, signals an event. If not, it routes the input appro-
priately (e.g., to the working memory, in the case of data, or
Agenda Manager, in the case of goals). If so, it diagnoses the
event, assesses its importance, and selects a response (a goal),
which it then sends to Agenda Manager. Agenda Manager is
responsible for maintaining ORCA’s focus of attention, ensur-
ing that it is always working on an appropriate set of goals for
the current problem-solving situation. Schema Applier uses
ORCA's library of procedural schemas to achieve the goals on



the agenda, as described elsewhere (e.g., Turner, 1994). Con-
text Manager watches the evolving problem-solving situation
and decides what the current context is; it does this by build-
ing a current contextual schema from its library of contextual
schemas, each of which represent one class of situations. The
current contextual schema represents both a commitment (o
what the contextis and a repository for a great deal of context-
specific problem-solving knowledge the other modules use to
guide ORCA'’s actions.

The multiagent event-handling process shown in Figure 1
does not cleanly fit into any of the modules shown; nor should
it, necessarily, as the process of multiagent event handling is
quite different than for a single agent. Rather, it will have to be
distributed over the pieces of ORCA, with most of it residing
in Event Handler. Other pieces of the process are done by
Schema Applier and Agenda Manager. For example, both will
be involved when actions are necessary to commuicate with
other agents to carry out negotiation; both will be involved
when event diagnosis requires actions to be taken that impact
ORCA’s other actions. All the modules will continue to rely
on information supplied by Context Manager.

Related Work

Many planning systems meant for single-agent problem solv-
ing have had to deal with unanticipated events. For exam-
ple, PRS (Georgeff & Ingrand, 1988; Georgeff & Lansky,
1987) and MEDIC (Tumner, 1989; Turner, 1994) have both ex-
plored the problem of events occurring during the execution
of a single agent’s plan. PRS, for example, uses malfunction
procedures and meta-knowledge to handle failures that have
been anticipated and domain specific meta-knowledge to rea-
son about multiple unrelated failures; the development of a
general solution for reasoning about unexpected (unrelated)
failures is left for future work, MEDIC uses contextual schemas
to provide information about an unanticipated event’s impor-
lance in a particular situation and about how to handle the
event appropriately. ORCA (Turner, 1994; Tumner & Steven-
son, 1991), which is based partly on MEDIC, is extending
MEDIC’s event-handling mechanism to cope with real-world
domains; the work reported here will ultimately be folded into
ORCA.

Others have looked at the problem of handling events in
multiagent situations. For example, Phoenix (Cohen er al.,
1989), a multiagent system operating in the firefighting do-
main, has agents that interleave planning and execution, are
capable of reactive responses o anticipated events, and can
perform deliberative planning. However, unanticipated events
are not handled by individual agents, which have only a local
view of the problem-solving situation, but rather by a cen-
tral fire-boss with a global view of the situation. Individual
agents do not reason about the effect their actions may have
on others, and the system uses a set of predefined events a
single agent may encounter. Work on Partial Global Planning
(PGP) (e.g., Durfee & Lesser, 1987) also deals with events in
a distributed Al environment. However, the agents we are in-
terested in are more autonomous than the typical PGP agents;
consequently, they have more flexibility to handle events on
their own. Cammarata et al. (1983) were concerned with
agents that are semi-autonomous (airplanes) in their air traffic
control system. However, they dealt with a relatively impov-
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erished set of event types, and relied on planning by a single
agent in most cases to handle the event.

Conclusion

Handling events during multiagent cooperative problem solv-
ing is a very difficult task. Events can arise due to a single
agent or a group of agents; an event can be detected by the
agent that gave rise to it or by others. Deciding who should
handle the event, as well as the process of diagnosing it, as-
sessing its importance, and selecting a response may all need
to be done cooperatively.

In this paper, we have sketched an approach to handling
events in multiagent cooperative systems. The process relies
on knowledge about the world, oneself and one’s intentions,
and others’ beliefs and intentions, as well as on additional a
priori contextual knowledge, possibly built from past expe-
riences in similar situations. The process also depends on
knowing when and what to communicate with others, based
on what an agent knows about their current beliefs and in-
tentions, to inform them of pertinent information, to ask for
information or assistance, and to negotiate about handling the
event.

The work reported here is preliminary. Though we will be
developing and evaluating the approach in the AUV domain
as part of the ORCA project, we believe it is applicable for
handling unanticipated events in most cooperative problem-
solving situations in the real world.
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