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ABSTRACT
Tryptophan-aspartic acid-(WD)-repeat 72 (WDR72) as a regulator of endocytosis in the
degradative pathway during the maturation stage of enamel formation
by
Kaitlin A. Katsura
Amelogenesis Imperfecta (Al) is a clinical diagnosis that encompasses a group of genetic
mutations, each affecting processes involved in tooth enamel formation and thus, result in
various enamel defects. The hypomaturation enamel phenotype has been described for
mutations involved in the later stage of enamel formation, including Kik4, Mmp20, C4orf26,
and Wdr72. Using a candidate gene approach, we discovered a novel Wdr72 human mutation,
resulting in a hypomaturation Al phenotype, to be a 5-base pair deletion (c.806_810delGGCAG;
p.G255VfsX294). To gain insight into the function of WDR72, we used computer modeling of the
full-length human WDR72 protein structure and found that the predicted N-terminal sequence
forms two beta-propeller folds with an alpha-solenoid tail at the C-terminus. This domain
iteration is characteristic of vesicle coat proteins, such as beta’-COP, suggesting a role for
WDR72 in the formation of membrane deformation complexes to regulate intracellular
trafficking. Our Wdr72 knockout mouse model (Wdr727"), containing a LacZ reporter knock-in,
exhibited hypomineralized enamel similar to the Al phenotype observed in humans
with Wdr72 mutations. MicroCT scans of Wdr72”~ mandibles affirmed the hypomineralized
enamel phenotype occurring at the onset of the maturation stage. H&E staining revealed that
Wdr72”~ ameloblasts were shorter, and the enamel matrix was retained during maturation
stage. H*/CI” exchange transporter 5 (CLC5), an early endosome acidifier, was co-localized with
WDR72 in maturation-stage ameloblasts and decreased in Wdr72”~ maturation-stage
ameloblasts. Other markers along the endocytic degradative pathway were disrupted in
Wdr72”" mice, including clathrin, Dynamin Il, and ANXAS8. There were no obvious differences in

RAB4A and LAMP1 immunostaining of Wdr72”~ mice as compared to wildtype and

Vii



heterozygous controls. Moreover, Wdr72”~ ameloblasts had reduced amelogenin
immunoreactivity, suggesting defects in amelogenin fragment resorption from the matrix. /n vivo
and in vitro tracer studies with HRP and amelogenin showed delayed processing and loss of
transport to lysosomes through the degradative pathway in Wdr72”~ ameloblast-like cell line
generated using a CRISPR/Cas9 approach. These cells enabled live cell mechanistic studies
targeting WDR72 function in vesicle acidification and microtubule recruitment, revealing a
complex relationship with a major vesicle acidifying protein, vacuolar H+-ATPase (v-ATPase),

and a link to microtubule recruitment. Ultrastructure of Wdr72™~

ameloblasts also showed faulty
vesicle formation and ruffled border formation that coincided with pH and calcium matrix
defects. These data demonstrate that WDR72 has a major role in enamel mineralization, most
notably during the maturation stage, and suggest a function involving endocytic vesicle

trafficking, possibly in the removal of amelogenin proteins by regulating microtubule assembly

and membrane turnover in the degradative pathway.
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INTRODUCTION

Enamel Formation

Teeth begin to develop in utero, initiated by a series of epithelial-mesenchymal interactions to
undergo several stages of formation of the tooth bud and differentiation of the dental tissues.
Odontoblasts are the mesenchymal cell type responsible for the formation of dentin, whereas
the ameloblasts are the epithelial-derived cells that are responsible for the formation of the tooth
enamel ', Tooth enamel is the hardest tissue in the body, and it is comprised of enamel rods

made of carbonated hydroxyapatite that decussate to provide its strength and hardness 2.

The formation of enamel is a complex progression of ameloblast cells undergoing a series of
differentiation stages, throughout which each ameloblast is responsible for the growth and
development of a single enamel rod '. The first major stage of ameloblast differentiation is the
secretory stage. During secretory stage, secretory ameloblasts elongate and form an apical
process known as the Tomes’ process. This cell stage is predominantly responsible for
producing large quantities of enamel matrix proteins that will be secreted via the Tomes’
process into the extracellular enamel space to form a scaffold for the future tooth enamel.
Throughout the secretory stage, the extracellular matrix is laid down to form and determine the
full thickness of the tooth enamel matrix and provides stability for the elongation of the long thin
hydroxyapatite (HAP) crystals that span the width of the enamel matrix . This stability is largely
a result of the hydrophobic amelogenin proteins, comprising 90% of the organic volume in the

secretory stage.

Once the final thickness of the tooth enamel has been produced, ameloblasts differentiate into
maturation-stage ameloblasts *. During this change, ameloblasts undergo a dramatic shift in
their morphological appearance, with a brief transition and the formation of ruffle-ended

ameloblasts. The enamel matrix underlying the ruffle-ended ameloblasts (RA) is acidic (pH 5.8-



6.2) and is neutralized when the ameloblasts modulate to smooth-ended ameloblasts (SA) °.
During the maturation stage, ameloblasts continue to modulate between ruffle- and smooth-
ended cell types, resulting in hydrolysis and removal of the organic matrix, to allow the HAP

crystals to grown in width to form the highly mineralized enamel matrix.

RA and SA ameloblasts are distinct in organellar organization and the presence of tight
junctions. RA have tight junctions at the apical border, and an invaginated apical membrane,
while SA have open cell junctions and smooth apical borders. This cellular modulation is
essential for facilitating the cycling of Ca2*, POs*, H,0, and other small molecules through and

between the cells, and removal of matrix proteins to allow crystal growth.

Amelogenesis imperfecta

Enamel formation is a highly regulated and complex process, and genetic mutations that alter
the formation of the enamel matrix are referred to as amelogenesis imperfecta (Al). The genes
that have been associated with Al include those encoding enamel matrix proteins,

namely Ambn (MIM 601259) ¢, AmelX (MIM 300391), Amtn (MIM 610912), Enam (MIM
606585), and associated matrix proteinases Klk4 (MIM 603767), and Mmp20 (MIM 604629) ).
Genes related to a full range of functions that are not specific to ameloblasts, including ion
transport, vesicle transport, pH sensing, and cell-cell adhesions have also been identified:
Slc24a4 (MIM 609840) '°, Fam83h (MIM 611927) '""2, jtgb6 (MIM 14755) *-'° and Lamb3
(MIM 150310) '*'8; as well as molecules of unknown function including Fam20a (MIM 611062)

1920 C40rf26 (MIM 614829) #', Wdr72 (MIM 613214) 2?3, and Gpr68 (MIM 601404) %,

And while Al was traditionally thought to be a non-syndromic disease affecting only tooth
enamel, more recently, several genes have been linked to syndromes in addition to Al: Tp63

(OMIM 604292) 2° with ectodermal dysplasia, Slc13a5 with Kohlschiitter-Ténz syndrome %,



Lama3 (MIM 600805) with epidermolysis bullosa %’, and Wdr72 222 with bone development and

distal renal tubular acidosis. A more complete list has been reviewed by Wright and co-workers

30

WDR72 defects related to amelogenesis imperfecta

The human Wdr72 gene has a total of 20 exons that contribute to several different transcript
variants (ENST00000360509) *' the longest and most common of which encodes a protein
1,102 amino acids in length (CCDS 10151.1). Wdr72 was first found to be a candidate for
autosomal recessive amelogenesis imperfecta (Al) in individuals affected with a pigmented and
hypomaturation enamel phenotype (AI2A3; MIM 613211) through the use of a single nucleotide
polymorphism (SNP) microarray 2. Since this discovery, a total of ten Wdr72 mutations have
been reported as causal links to Al, including the 5-base pair deletion that we identified in exon
8 (c.806_810delGGCAG) (see Fig. 1.1). Previously reported mutations located farther
downstream, spanning exons 10 through 17, are also predicted to disrupt the unique C-terminal
domain (exons 15 to 20) by introducing premature stop codons that lead to truncated proteins
922232832 \While it is unclear whether any of these mutated Wdr72 variants are indeed translated
as defective proteins or degraded by nonsense-mediated decay, all mutations lead to similar

hypomaturation enamel phenotypes.

My interest in Al, related to mutations of the Wdr72 gene, arose when | identified a novel
mutation of the WDR72 gene as the cause for a hypomaturation Al phenotype in a family seen
in the UCSF pediatric dental clinic. | identified this mutation through a candidate gene approach
to compare DNA sequences of affected individuals and their immediate family members (Fig.
1.1A) (Table 1). Chromatograms of affected, unaffected, and carrier individuals at exon 8 of the
human Wdr72 gene (NM_182758.2) revealed a 5-base pair deletion (c.806_810delGGCAG)

that followed an autosomal recessive inheritance pattern of the Al phenotype (Fig. 1G). This



exon 8 deletion mutation resulted in a frameshift and premature stop codon
(c.806_810delGGCAG,; p.G255VfsX294). In addition, single nucleotide polymorphisms (SNPs)
were also found to segregate with the deletion mutation, occurring in exon 14 as a silent
mutation (c.1865G > A, p.613 V >V, rs74018741) and in the intron between exons 12 and 13
(9.53994305A > G; rs74018741) (Table 2). All other variations in sequenced candidate genes
(Amtn, Ambn, Enam, Mmp20, and Klk4) of this family did not follow the disease inheritance

(Tables 1 & 2).

This was the 7th reported mutation in Wdr72 to be associated with an autosomal recessive
pattern of inheritance to result in Al (Fig. 1.1A). Among the affected individuals, the 10.5-year-
old proband (V3) illustrated the most severe phenotype, exhibiting yellow-brown staining and
hypomature enamel in the permanent dentition (Fig. 1.1B). His panoramic radiograph revealed
unerupted tooth enamel with an apparently normal thickness and an indistinguishable
radiopacity to dentin, which is typically less radiopaque than enamel and indicates
hypomineralization (Fig. 1.1C). Primary teeth of the affected identical twin sisters (V4 & V5) at
4-years-old displayed less severe phenotypes, although enamel was largely absent on the
occlusal third of all primary teeth (Fig. 1.1D). Their radiographic images showed erosion of
erupted primary molar enamel with similar radiopacities to dentin (Fig. 1.1E & F). All affected
children were highly sensitive to thermal and chemical stimuli. These enamel phenotypes are
similar to those described in previous reports of patients with mutated copies of the Wdr72 gene
9.23.2832 4] of which predict early stop codons (Fig. 1H). In addition to a tooth enamel defect, the
proband had congenitally missing 3 out of 4 six-year-old permanent molars (teeth #3, 19 and
30) and exhibited delayed eruption of his mandibular primary canines and molars, indicating a

1-year delay in dental development (Fig. 1C). Similar tooth development phenotypes have been

reported in association with only one other Wdr72 mutation, the second-most upstream



mutation occurring at exon 10 (Fig. 1H) %8, possibly linking early Wdr72 mutations to additional

tooth-related defects.

WDR72 is interesting because while its mutation results in a severe enamel phenotype, effects
on other cells and tissues in the body range from relatively mild to a severe syndromic effect.
One variant was reported to be associated with developmental problems in height, speech,
respiration, and vision 2%, while another is causal to distal renal tubular acidosis ?°. In addition,
several Wdr72 single nucleotide polymorphisms (SNPs) have been associated with kidney,

heart, pancreatic, and neural diseases %%

The hypomaturation enamel defect suggests that WDR72 function occurs during the maturation
stage of enamel formation where enamel maturation and mineralization is completed. Indeed, a
previous study showed WDR72 to be expressed in murine ameloblasts with an increased
expression during maturation stage ?%; and our studies confirm this 3. Of the ten mutations in
the Wdr72 gene that have been identified in humans affected with Al, all display
hypomineralized enamel phenotypes in which the unerupted tooth enamel forms a matrix of
normal thickness, but is radiolucent and abrades easily from the underlying dentin upon tooth

9:22.23.28323940 The known Wdr72 mutations occur throughout the lengthy gene, possibly

eruption
leading to alternative splice variants or non-sense mediated decay. Based on protein structure
analysis, understanding where these mutations are occurring may possibly indicate the

structural role of WDR72.

In the following chapters, my studies aim to identify the function of WDR72 as described.
Chapter 1 begins with our published findings of the development and characterization of our
Wdr72™"~ mouse model. This mouse showed a clear role in the maturation stage and

mineralization of tooth enamel and provided a hypomineralized tooth model similar to what is



observed in humans with Wdr72-associated Al. Chapter 2 then focuses on identifying WDR72’s
role in endocytosis, and Chapter 3 further delves into the mechanism by which WDR72

regulates the degradative pathway of endocytosis through the process of endosome maturation.



CHAPTER 1: WDR72 is a stage-specific regulator of enamel mineralization

RESULTS

To begin to understand how WDR72 alters enamel formation, | generated a Wdr72 knockout
(Wdr727") mouse model using the resources of the Knockout Mouse Project (KOMP). This
functional Wdr72 knockout mouse strain (Wdr727"), along with littermate controls (Wdr72** and
Wdr72""), was made by breeding heterozygous mice (Wdr72*") obtained from the KOMP
Repository and the Mouse Biology Program at the University of California, Davis. In these mice,
the Wdr72 mutant allele (Wdr727) was generated using a ‘knockout first conditional ready’
approach using previously published methods *' to splice in a LacZ gene reporter cassette prior
to the critical Wdr72 exon 3 (Fig. 1.2A). Exon 3 is present in all identified alternatively spliced
Wdr72 transcripts. PCR analysis confirmed that with this approach and verified a functional

WDR?72 knockout in the mice (Fig. 1.2B & D).

Mandibular molars and incisors of 6-week-old male Wdr72** and Wdr72”~ mice were evaluated
for gross morphological differences (Fig. 1.2C) and exhibited an enamel phenotype similar to
that observed in our affected Al patients (Fig. 1.1B & D). Wdr72”~ mice showed opaque and
darkly stained enamel relative to the translucent appearing enamel observed in Wdr72** mice
(Fig. 1.2C). Wdr72™~ enamel was of normal thickness at the base of incisors and molar crowns
but was lost at occlusal surfaces, while the exposed dentin remained relatively intact.
Heterozygous mice (Wdr72*") appeared to have normal enamel akin to Wdr72"* mice (data not

shown), which mimics the autosomal recessive inheritance pattern seen in Al.

No other obvious tooth phenotypes or differences in major organs known to express Wdr72 (ie.

kidney and brain) were observed in Wdr727~

mice (data not shown). Whole body weights
of Wdr72™~ mice were significantly reduced (P < 0.05), beginning at postnatal day 21 (P21) in

males and P24 in females compared to their Wdr72"* controls (Fig. 1.3). Tooth eruption in mice



occurs between ages P10 and P14, while weaning age is P21, indicating that these body weight
differences were due to difficulties with chewing hard foods rather than systemic effects caused

by a loss of Wdr72.

Quantitative real-time PCR (qPCR) of micro-dissected secretory and maturation-stage
ameloblasts showed significantly reduced Wdr72 mRNA expression in Wdr72”" secretory and
maturation-stage ameloblasts to 4.4% and 1.7%, respectively, as compared to Wdr72"* controls
(P < 0.05). Such relatively low levels of Wdr72 transcript observed in our mouse model is
consistent with leaky expression levels observed for gene trapping methodologies and indicate
successful Wdr72 knockout (Fig. 1.2D) *2. In addition, relative amounts of Wdr72 transcript were
significantly up-regulated from secretory to maturation stage in Wdr72** ameloblasts (P < 0.05),

suggesting a major function during enamel maturation (Fig. 1.2D).

To confirm that WDR72 protein synthesis was altered, we made an antibody to the
CETGTLERHETGERA peptide sequence of the WDR72 protein (amino acids 587—600 plus an
extra cysteine residue). Verification of our WDR72 antibody, which was made against the same
peptide sequence as the one previously synthesized *, was performed

on Wdr72** and Wdr72” kidneys by western blot (Fig. 1.4).

Immunostaining illustrated little to no WDR72 present in Wdr72”~ ameloblasts (Fig. 1.5B, D, &
F). In Wdr72** mice, ameloblasts showed increased WDR72 immunoreactivity from secretory to
maturation stage (Fig. 1.5A, C, & E). Using the continuously growing mouse incisor to visualize
WDR72 expression on a time-scaled spectrum of ameloblast differentiation stages required for
enamel formation, we further observed a specific increase at the onset of maturation stage and

subcellular localization to distinct vesicle-like puncta at apical and basal regions of the cell (Fig.



1.5C & E), whereas, immunoreactivity in secretory ameloblasts appeared light and diffuse (Fig.

1.5A.).

Wdr72”~ mice had enamel phenotypes consistent with functional defects at the maturation
stage

Murine mandibles from 6-week-old male Wdr72"* (n = 3) and Wdr72”" mice (n = 3) were
scanned by micro-computed tomography (microCT) and analyzed for differences in relative
intensities of the major mineralized tissue types (enamel, dentin, and alveolar bone). The
process of normal enamel mineralization was observed in the continuously growing mouse
incisor of Wdr72** mice, which showed an increasing enamel radiopacity that coincided with the
transition zone of differentiating ameloblasts from secretory to maturation-stage morphologies
(Fig. 1.6A, arrow). In contrast, radiopacity of enamel, beginning at the maturation stage

of Wdr727"~ molars and incisors, was significantly reduced compared to that of the Wdr72"*mice
(Fig. 1.6A & B). These observations were quantified in cross-sections of the mandibular incisor,
taken at secretory and maturation stages, and averaged for gray scale values within a selected
region of interest (Fig. 1.6C—F). We found enamel radiopacities of Wdr72** and Wdr72”~ mice
were not significantly different at secretory stage (P = 0.92) but were significantly reduced at
maturation stage in Wdr72”~ mice (P < 0.05) (Fig. 1.6E). Interestingly, Wdr72”~ enamel from
secretory to maturation stages showed significant differences (P < 0.05), suggesting that partial
mineralization of the enamel matrix still occurred in the absence of Wdr72. Wdr72™" dentin

(P =0.26) and alveolar bone (P = 0.22) did not significantly differ in gray scale values compared

to Wdr72*"* controls (Fig. 1.6E).

Hematoxylin and eosin (H&E) stains of Wdr72"* and Wdr72”~ mouse mandibles at P10 showed
morphologically normal secretory ameloblasts in Wdr72”~ mice and shortened maturation-stage

ameloblasts, (Fig. 1.7). In addition, Wdr72”~ mice exhibited retained non-mineralized, organic



material in the enamel matrix during maturation stage (Fig. 1.7, yellow arrows), whereas the
lack of this proteinaceous staining in Wdr72** enamel matrices indicated a more mineralized

enamel matrix (Fig. 1.7A & B).

Loss of Wdr72 resulted in decreased intracellular amelogenin proteins with no effect on
transcript levels

We next investigated the possibility that Wdr72 was needed for reuptake of amelogenin proteins
from the matrix, since our Wdr72™~ mice showed retained proteinaceous material in the enamel
matrix, and amelogenin is the predominant extracellular matrix protein secreted and hydrolyzed
into fragments during enamel formation. Amelogenin immunoreactivity was slightly reduced in
secretory stage ameloblasts at the Tomes' processes in Wdr72™~ mice (Fig. 1.8B) and was
more obviously reduced at the apical border and the cytoplasm in Wdr72™~ ameloblasts at early
maturation stage (Fig. 1.8D) as compared to ameloblasts from Wdr72** mice (Fig. 1.8A & C,
respectively). By mid-maturation, intracellular amelogenin staining was absent in

both Wdr72** and Wdr72™~ ameloblasts (Fig. 1.8E & F).

To verify that the decreased intracellular amelogenins in Wdr72™~ mice was not due to a
decrease in amelogenin mRNA production, we quantified amelogenin transcripts from
microdissected enamel epithelia at secretory and maturation stages. Analyses by gPCR showed
no significant differences between Wdr72"* and Wdr72”~ ameloblasts at either stage

(n=3; P=0.81 secretory, P = 0.53 maturation) (Fig. 1.8G).

Wdr72™"~ mice showed reduced immunostaining of the endosome protein CLC5 during the

maturation stage compared to other vesicle markers
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Consecutive sections of Wdr72** maturation-stage ameloblasts showed WDR72 and CLC5
immunolocalization to the same supernuclear (basal) areas, as well as to apical regions slightly
distal to the enamel matrix border (arrowheads, Fig. 1.9G & H). In addition, CLC5 was less
immunoreactive in Wdr72”~ maturation-stage ameloblasts, as compared to Wdr72** mice (Fig.
1.9B, D, & F). Unlike CLC5, immunostaining for RAB4A (a marker for endosome sorting and
recycling) and LAMP1 (a marker for lysosomes) did not show obvious differences

between Wdr72"* and Wdr72”~ maturation-stage ameloblasts (Fig. 1.91-L).

WDR72 structure modeling predicted a configuration unique to proteins found in membrane-
deformation complexes with homology to the crystallized B'-COP structure

These characterizations of the Wdr72 knockout mouse model, including reduced CLC5 and
retained enamel matrix, suggest the possibility of an endosome related phenotype, possibly
resulting in an endocytosis defect. To gain further insights into the function of Wdr72 in enamel

formation, | used a molecular modeling approach, described in this section.

The human full-length WDR72 protein is 1102 amino acids in length and predicts two clusters of
WD40 repeat domains at the N-terminus and a unique C-terminus with no identifiable homology
domains (Fig.1.10A; ENSG00000166415). To provide further insight into WDR72 function, we
generated all-atom models of the human full-length WDR72 protein (Fig.1.10A) and mutated
variants (Fig. 1.11). These models were generated using sequence similarity to annotated
proteins using two comparative protein structure prediction pipelines: (1) I-TASSER **#* and (2)
HHsearch ported into MODELLER “*#°. Among all known protein structures in the Protein Data
Bank (PDB), both modeling pipelines showed full-length WDR72 with greatest structural
homology to the known crystal structure of Saccharomyces cerevisiae '-COP (Fig.1.10B), an
essential subunit in eukaryotic COPI vesicle coat assemblies (PDB identifier: 3mkq) and was

thus was used as the primary template for constructing the WDR72 models. All statistically
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reliable models of full-length WDR72 (zDOPE < - 1) showed a series of B-sheets folded into two
B-propellers, followed by a succession of parallel a-helices twisting into a compact tail, referred
to as an a-solenoid (Fig.1.10C). This structural iteration of 1 or 2 B-propellers followed by an o-

46,47

solenoid is unique to membrane-deformation complexes , Which include vesicle coatomers

(i.e. clathrin, COPII, COPI) and the nuclear pore complex (i.e. Nup).

To evaluate the number of blades present in each B-propeller, we applied the hidden Markov
random field algorithm SMURF “8, built specifically to detect combinations of 6-, 7-, and 8-
bladed double B-propellers. We found that full-length WDR72 was most likely composed of two
7-bladed B-propellers (P < 0.0001) rather than any other combinations of one or two 6-, 7- or 8-
bladed B-propellers (P > 0.05), which is consistent with other membrane-deformation complex
proteins. The 1st B-propeller blades were predicted as the following residues: 22-59, 67-104,
119-150, 168-198, 215-251, 260-292, and 301-353; and for the 2nd B-propeller: 359-400,
407442, 466—494, 521-554, 562-627, 633-659, and 665-686; with a-helices thereafter (Fig.
1.2C). Therefore, the constructed model of WDR72 showed two B-propeller domains and a

curved a-solenoid tail.

We observed that both exon 8 and exon 10 mutations occurred between two predicted WD40-
repeat domain clusters (Fig. 1.10A; ENSG00000166415). Multiple splice variants have been
identified for the human Wdr72 gene, whose encoding is regulated by several different 5'UTRs
and 3'UTRs (AceView) *'. This may suggest evasion of RNA decay in Wdr72 mutations
observed in individuals with Al. Under this possibility, we modeled all putative WDR72
truncations resulting from Al-related mutations and found that these two most up-stream
mutations formed a single 3-propeller containing only 6 blades (P < 0.01), rather than 7, which

suggests instability of the protein fold (Fig. 1.11).
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DISCUSSION

Previously, publications hypothesized that the function of WDR72 was vesicle-related, based on
the known vesicle trafficking functions of WDR72's closest human homologue, WDR7 (El-Sayed
et al., 2009; Lee et al., 2010). To further define the function of WDR72, we generated a
knockout mouse (Wdr727"), which exhibited a hypomaturation enamel phenotype similar to that
observed in humans with Wdr72-associated Al °?%?8, Quantitative RT-PCR (qgPCR)

of Wdr72™" secretory and maturation-stage ameloblasts showed low mRNA Wdr72 transcript
levels in both tissue groups relative to the observed up-regulation from secretory to maturation
stage in Wdr72** control mice. Similarly, anti-WDR72 immunostaining of Wdr72”~ ameloblasts
exhibited non-specific background staining at all stages of enamel formation,

whereas Wdr72** controls were intensely immunoreactive shortly after entering the maturation
stage. Western blots of Wdr72** and Wdr727/- kidney samples paralleled these findings with

low WDR72 protein levels in Wdr72”~ mice.

Whole body weights of both female and male Wdr72™~ mice were decreased compared

to Wdr72"* mice, however, this was observed only after weaning age (P21), suggesting that this
difference was due to the tooth-related defect as opposed to other systemic effects. Overall,

the Wdr72”" mice paralleled the descriptions of individuals with Wdr72-related Al. Taken
together, these initial characterization studies illustrate that Wdr72 is functionally knocked out in
our Wdr72™~ mouse model, providing an excellent system for studying Wdr72-associated Al to

elucidate its role in tooth development.

Similar to the radiolucent enamel phenotypes described for human Wdr72 mutations, our

_/_

microCT imaging of Wdr72”~ mandibles showed stage-specific and tissue-specific

hypomineralized defects in the tooth enamel. At secretory stage, relative intensities
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of Wdr72”~ enamel radiopacities were comparable to those of Wdr72** controls but did not
increase in radiopacity to the same extent as Wdr72"* enamel once the maturation stage
began. Wdr72 loss also appeared to have tissue-specific effects, showing dentin and alveolar

bone to be unchanged in Wdr72”~ mice.

Additional evidence in support of the stage-specificity of WDR72 during enamel maturation were
our findings that Wdr72™~ ameloblasts appeared shorter in height only after differentiating into
the maturation-stage cell type, and the Wdr72”~ enamel matrix differed only during the
maturation stage, showing retained organic matter. These comparisons were made along the
continuously growing mouse incisor, which presents the entire spectrum of enamel formation *°,
thus providing time-scale insight into WDR72 function. The observed cell and matrix phenotypes
further support a stage-specific role for WDR72 in regulating enamel mineralization and

suggests a function in one of the major cell processes in maturation-stage ameloblasts.

A major function of maturation-stage ameloblasts that is often disrupted in Al hypomaturation
phenotypes is the processing of amelogenin proteins, which constitute the majority of the
organic extracellular matrix *°°2, Our observation that organic material was retained

in Wdr72”~ enamel matrices during maturation suggests that WDR72 has a role in either the
secretion of proteases into the mineralizing matrix or in removal of hydrolyzed protein fragments
from the matrix to allow final matrix mineralization to occur. Amelogenins are secreted during
early matrix formation and are subsequently hydrolyzed and removed from the enamel matrix
during the maturation stage to allow thickening of the hydroxyapatite crystals that comprise the
tooth enamel 8%%** Removal of hydrolyzed matrix proteins, including amelogenins, may be due
to either a passive diffusion between the open junctions of smooth-ended ameloblasts or an

active transport mechanism through the cells *°. As amelogenins are removed, Ca*" is
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transported through ameloblasts and deposited along with phosphate to form the mineralized

enamel matrix %.

We found that Wdr72”~ maturation-stage ameloblasts had less intracellular amelogenin protein
with no change in the relative synthesis as compared to Wdr72"* controls, suggesting that
WDR72 influences the active uptake of amelogenin fragments into the cell, presumably by
regulating endocytosis. Interestingly, we also observed decreased amelogenin immunoreactivity
at the Tomes' processes in Wdr72™" secretory ameloblasts with no effect on transcript levels.
This was surprising, given that Wdr72 loss had so far manifested as a maturation stage
phenotype; however, it is still consistent with the fact that Wdr72** secretory ameloblasts
express WDR72, albeit at low levels ?2. Tomes' processes, though largely functioning in the
exocytosis of amelogenins, also have endosomes that contain hydrolyzed amelogenins °*°7%8 |t
is also possible that WDR72 has more subtle roles at earlier stages of tooth development that

involve intracellular amelogenin transport, which is supported by the tooth agenesis and delayed

eruption observed in some Al individuals.

To further investigate a possible vesicle trafficking function of WDR72, we

immunostained Wdr72** and Wdr72”~ maturation-stage ameloblasts with anti-CLC5 as a
marker of early endosomes, anti-RAB4A as a marker of early and recycling endosomes, and
anti-LAMP1 as a marker of lysosomes. Our immunostainings of WDR72 and CLCS5 on
consecutive sections of Wdr72** maturation-stage ameloblasts are consistent with the
possibility that WDR72 localizes to endosomes. This is further supported by similar
immunolocalizations observed for RAB4A and the endocytic coat protein, AP2 *°, but not the

more basal immunolocalization of LAMP1 to lysosomes.
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In Wdr72™"~ maturation-stage ameloblasts, CLC5 showed decreased immunoreactivity relative
to Wdr72** controls, while RAB4A and LAMP1 appeared to be unaffected. CLC5 and RAB4A
are both early endosome markers and are frequently associated with one another ¢, although
RAB4A also specifically functions in recycling endosomes. This suggests a unique function for
WDR72 in mediating a specific subpopulation of endosomes, possibly related to other known
functions of CLC5, such as exocytosis of ion channel antiporters ', Ca?* transport 2, or pH
regulation 3253%* that are integral to major processes carried out by maturation-stage
ameloblasts. While it is also possible that CLC5 decreases observed in Wdr72”~ ameloblasts
were attributed to secondary effects on the cell, these decreases coincided with the timing of

normal WDR72 expression.

Following the initial uptake into cells, endocytic vesicles are transported to lysosomes, which are
often characterized by LAMP1 labeling. LAMP1 has been associated with amelogenin uptake
into ameloblasts, and extracellular increases in amelogenin in vitro has been shown to
upregulate LAMP1 ¢35 Therefore, we would expect that if amelogenin uptake into the cell was

7~ mice. The

decreased, LAMP1 immunostaining would also be relatively decreased in Wdr72
lack of any change in LAMP1 may suggest that WDR72 does not mediate amelogenin uptake
into the cell, but rather is involved in degradation of amelogenins in the extracellular matrix,
possibly through the secretion of enamel matrix proteinases. Reduced proteinase secretion at
the maturation stage could inhibit the uptake of amelogenin protein fragments into the cell.

Further analysis of matrix proteinases in Wdr72”~ as compared to Wdr72** will further clarify

the possible roles of WDR72 in amelogenin degradation and endocytosis.

To evaluate the potential functions of WDR72, we used bioinformatics to model a predicted
protein structure of WDR72 by mapping the full-length human amino acid sequence onto all

known structures within the Protein Data Bank (PDB). Our WDR?72 structure model predicted a
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membrane-coating architecture composed of two 7-bladed B-propeller heads, followed by an a-
solenoid fold, which are respectively encoded by two N-terminal WD40-repeat domain clusters
and a unique C-terminus (residues #687-1102). This particular domain combination (1 or 2 §3-
propellers, then a-solenoid) is a highly conserved architecture among proteins that form
membrane coat complexes, dating back to the early eukaryotic endomembrane system *"_ In
addition, this group of membrane-coating complexed proteins has remained somewhat
exclusive to (a) the scaffold-layer proteins of the nuclear pore complex (Nups) that stabilize the
inner and outer nuclear envelope membranes at the nuclear pore edges and (b) the vesicle
coatomers (COPI, COPII, and clathrin) that assemble in cage-like lattices to initiate the budding
step of vesicle formation ®’. Structure domains of these membrane-coating proteins typically
utilize their WD40 B-propeller folds to serve as docking sites for multiple protein—protein

interactions %8-7°

and their a-solenoids, formed from anti-parallel stacked a-helices, to stabilize
and induce membrane curvature *"*”. Modeling WDR72 as a structure containing these
domains, specifically in the B——a order, suggests it as a member of this membrane-coating

group.

We found that when WDR72 was compared to all solved protein structures, the
highest structural homology was to 3-COP (PDB identifier: 3mkq), an essential subunit in the
COPI vesicle coatomer complex. This homology further suggests that WDR72 functions as a
vesicle coat protein, and together these bioinformatic analyses are consistent with the
previously proposed role for WDR72 in vesicle trafficking 222, This previously proposed function
for WDR72 was based on the high sequence homology to WDR7, a known regulator of Rab3A
GTPase in Ca?*-dependent exocytosis at neural synapses """2. Interestingly, WDR7 (under the
alias “Rabconnectin-33”) has another function in regulating vesicles, rather, in the endocytic
73,74

pathway by directly monitoring vacuolar H*-ATPase (v-ATPase) activity in Drosophila ,

suggesting the possibility that WDR72 may too function in both exocytosis and endocytosis.
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Further evidence pointing to an endocytic vesicle coat function for WDR72 are the in

vivo immunolocalization of AP2 (cargo-specifying adaptor component of clathrin coatomers)
found by Lacruz and co-workers *°. Together, these findings support a role for WDR72 in
mediating vesicle formation, potentially as an endocytic and/or exocytic coat protein to help

regulate transport between cell and matrix.

It is also worth noting that WDR72 and WDR?7 diverge at residue #845 (exon 15) %, and the
remaining 60% of WDR72's C-terminus is unique. The C-terminus is predicted to form the a-
solenoid region, and a-solenoids of canonical vesicle coatomers are structurally conserved but
exhibit little similarity to one another at the sequence level *’. These differences are thought to
contribute to the diversity of lattice size and shape, which invariably dictate cargo specificities
and vesicle type, suggesting that the unique C-terminal sequence of WDR72 specifies its
function to enamel formation and its vesicle cargo. The importance of this a-solenoid is
emphasized by our modeling of all putative WDR72 proteins containing mutations relevant to
hypomaturation enamel Al phenotypes, all of which showed a shortened or absent a-solenoid

tail (Fig. 1.11).

Both WDR72 and WDR7 are members of the WD40-repeat domain super family. Proteins in the
WD40-repeat domain superfamily are defined by 4-8 repeating units of approximately 44—60
amino acids ending in tryptophan (W) and aspartic acid (D). WD40 proteins typically contain
several repeat domains that encode a series of anti-parallel 3-sheet blades that configure into a
well-stabilized, non-catalytic propeller, called a “B-propeller”, for multi-unit complex docking ©7°.
Proteins containing these B-propellers are observed in a broad range of cell processes,
including signal transduction, cell cycle regulation, and vesicular trafficking; as such, they often

contain other domain types that dictate specificities of function and pathway . Our molecular

modeling of WDR72 predicted a vesicle coat function, based on its conserved iteration of sub-
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structural domains and structural homology to 3'-COP, a known protein structure that is a

necessary component of the COPI vesicle coatomer.

In summary, these studies have reported the use of structural modeling to support a function of
WDR?72 in vesicle trafficking. The generation and initial analyses of the Wdr72”~ mouse
confirmed the importance of WDR72 in enamel formation and illustrated a direct link between
mutated WDR72 to hypomineralized enamel. We found reduced intracellular amelogenin in

the Wdr72”~ ameloblasts with a similar reduction in the endosome marker protein CIC5,
suggesting a role for WDR72 in the removal of amelogenins during enamel maturation. Further
understanding of WDR72's function in amelogenesis will allow us to better understand this
unique biomineralization process and how other tissues potentially regulate mineralization.
These studies are also important in determining other yet unknown risk factors for Al patients

affected with mutated Wadr72.

In the next chapter, we investigate how WDR72 can facilitate amelogenin removal by regulating

vesicle transport.
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CHAPTER 2: WDR72 is required for endocytosis

Our studies of the Wdr72 knockout mouse model indicate a role for Wdr72 in removal of
proteins from the extracellular enamel matrix. In addition, our molecular modeling suggests a
role in vesicle formation. During enamel formation, both exocytic and endocytic functions in
vesicle transport are possible roles for WDR72, however, little is known about how ameloblasts
regulate these transport pathways to drive enamel mineralization. Therefore, a majority of our
clues for WDR72 function rely on its evolutionary homology to other known vesicle regulators.
As previously mentioned, WDR72’s closest human homolog is WDR7, a known regulator of

.72 and a direct interactor of

Rab3A GTPase in Ca? *-dependent exocytosis at neural synapses
vacuolar H*-ATPase (v-ATPase) activity in the endocytic pathway ">, indicating that WDR72
may too function in both exocytosis and endocytosis. In addition, our protein structural modeling

of WDR72 to B'-COP further supports WDR72’s role in vesicle transport, but specifically points

to a structural role in vesicle formation.

Additional clues pointing to the involvement of WDR72 in both exocytosis and endocytosis
during enamel maturation have been primarily speculation up to this point. KLK4 is the dominant
secreted protease during the maturation stage to hydrolyze extracellular matrix proteins, and
Klk4” mice have shown similar hypomaturation defects to those observed in our Wdr72” mice
7577 During the maturation stage, two major functions of ameloblasts are endocytosis and ion
transport, and a link between the endosome acidifying protein, H*/CI~ exchange transporter 5
(CLC5) and WDR72 have been established *°, suggesting that WDR72 may mediate a specific

subpopulation of endosomes.

Together, our studies of the Wdr72”- mouse model indicated a role for WDR72 in removal of
proteins from the extracellular enamel matrix, and our molecular modeling of the WDR72 protein

suggests a role of WDR72 in vesicle transport. Therefore, in this chapter, we focus on
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identifying WDR72’s function in protein removal by looking into its role in vesicle transport via

exocytosis and endocytosis.

RESULTS

KLK4 protease activity in the enamel matrix and mRNA expression are unchanged in Wdr72”
mice

To test whether WDR72 was involved in exocytosis of maturation-stage, we investigated the
activity of KLK4, a known proteolytic enzyme that is produced and secreted during the
maturation stage. KLK4 is secreted into the enamel matrix during the maturation stage in order
to hydrolyze enamel matrix proteins, which are then removed by ameloblasts to allow final
matrix mineralization *®757¢_ Inhibition of KLK4 synthesis or activity results in the retention of
enamel matrix proteins, making altered KLK4 exocytosis a candidate pathway to result in the
retention of amelogenins in the Wdr72" mouse enamel matrix. To investigate the possibility that
increased matrix proteins in the WDR72 matrix are due to altered KLK4 activity, we measured
both KLK4 expression in maturation-stage ameloblasts and the hydrolytic activity in the enamel

matrix of Wdr72"*, Wdr72*", and Wdr72" mice.

We found no significant differences in either incisors or molars of protease activity among
Wdr72"*, Wdr72*-, and Wdr72”~ mouse enamel (Fig. 2.1). These studies were done by adding
a quencher peptide with a specific KLK4 cleavage site was added to isolated enamel matrices
of whole mandibular incisors or first molars. Between 90 and 120 minutes, KLK4 activity in
Wdr72"*, Wdr72*", and Wdr72”~ mice showed complete hydrolysis of available quenched

peptide, which was similar to previous studies showing maximum hydrolysis after 2 hours 8.
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To confirm that our protease findings were not affected by alterations in Klk4 transcript levels,
we used gPCR to measure Klk4 mRNA levels in maturation-stage ameloblasts. We found no

significant differences among Wdr72**, Wdr72*", and Wdr72” mouse ameloblasts.

Finally, to determine whether loss of KLK4 would alter synthesis of WDR72, we immunostained
Klk4”- mouse incisors for WDR72 and found no differences in immunostaining of the Klk4” as
compared to Kik4** mice. (Fig. 2.2). This finding suggests that KLK4 does not affect WDR72
expression or localization. When considered with our results from Fig. 2.1, these data indicate
that matrix retention observed in Wdr72” mice is likely unrelated to KLK4 and that WDR72 and

KLK4 hold truly independent functions of one another in enamel formation.

WDRY72 is a regulator of the endocytic pathway during the maturation-stage of enamel formation
We next examined whether the Wdr72”- enamel phenotype was due to defects in the endocytic
pathway. Although little is known regarding endocytosis in maturation-stage ameloblasts, the
presence of a diversity of endocytic vesicles have been identified 781, Additionally, it has been
shown that an exogenous tracer molecule, horseradish peroxidase (HRP), can be endocytosed

by maturation-stage ameloblasts 588283,

HRP is a well-studied marker of fluid-phase endocytosis, and it has been found to mix with
organic matrix during the endocytic process in a nonselective manner 8. HRP readily passes
through open cell junctions (presumably of smooth-ended ameloblasts) to reach the enamel
matrix surface, where it is then constitutively endocytosed and digested by cells through the
degradative pathway in the endolysosomal system °¢¥283 QOne study suggested that
amelogenins are likely to be reabsorbed by this fluid-phase endocytosis or micropinocytosis, a

process of “cell drinking”, or sampling, of the external environment %8 To determine whether
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WDR72 modulates endocytosis of matrix proteins by ameloblasts, we injected HRP into Wdr72”

, Wdr72*”, and Wdr72** mice and recorded its uptake into the ameloblasts.

Fluorescein labeled HRP was injected into Wdr72**, Wdr72*", and Wdr72” mice at 15, 30, and
60 minute intervals. Following HRP injections, dissected mandibular and maxillary incisors were
cryosectioned and immunostained for lysosomal-associated membrane protein 1 (LAMP1), a

common marker of lysosomes. Sections were then visualized under confocal microscopy. For a

more detailed description of the methods, please see Methods Section.

Similar to previous studies that tracked HRP in rats and hamster ameloblasts , our control
mice showed classic HRP uptake patterns. At the onset of maturation stage, HRP that had
reached the enamel matrix was taken up at the apical border of ameloblasts after 15 minutes
but had not quite reached LAMP1-positive vesicles (Fig. 2.3A-D). At 30 minutes post-injection,
control mice showed some HRP co-localizing with LAMP1 and much of the apical HRP was
absent (Fig. 2.3I-L). By 60 minutes, HRP was mostly absent in Wdr72** and Wdr72*"
ameloblasts (Fig. 2.3Q-T). This progression of HRP through the ameloblasts was distinctly
different in Wdr72” mice. Initially, Wdr72” mice showed similar intracellular HRP uptake
patterns as the controls (Fig. 2.3E-H). However, at the 30-minute time point, HRP remained
largely localized to the apical border (Fig. 2.3M-P). Even after 60 minutes, Wdr72” ameloblasts
showed high levels of HRP at the apical border, while only some HRP localized to LAMP1

positive vesicles (Fig. 2.3U-X).

WDRY7?2 affects markers within the endocytic system that are involved in vesicle formation along
the degradative pathway
Several endocytic vesicles exist in maturation-stage ameloblasts, and, as in all cells, this

diversity of endosomes interact within a complex web of pathways. Since our Wdr72” mice
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showed a delay in intracellular processing of HRP, we immunostained targeted proteins known
to participate at different stages along the degradative pathway of endocytosis. The following
spatial and temporal analyses illustrate WDR72 as a regulator of endocytosis, supporting a role

in the degradative pathway.

To assess the first stage in the endocytic pathway, we immunostained Wdr72** and Wdr72”
mice for clathrin, as it is one of the first players involved in the initial uptake of exogenous
material, and clathrin has structural homology with WDR72 as another B-propeller/a-solenoid
protein (see Chapter 1) *. Immunolocalization of clathrin heavy chain in Wdr72"*, Wdr72*", and
Wdr72” mice showed positive reactions in control mice that appeared to coincide with the
typical cycling pattern of maturation-stage ameloblasts (SAO/RAO, RA1, SA1, RA2, etc.) (Fig.
2.3A). After transition stage, control mice showed clathrin in punctate aggregates at the apical
border (RA1), then briefly became diffused (SA1), and then returned to the aggregates in the
apical region of the cells (RA2) (Fig. 2.3). In Wdr72” mice, similar aggregate staining appeared
along the apical border (RA1), however, once becoming diffuse, clathrin aggregates remained

diffuse and did not appear to cycle back along the apical border.

Loss of Wdr72 increases Dynamin Il, a vesicle scission protein

The disruption of clathrin immunolocalization observed in Wdr72” mice occurred after WDR72’s
initial expression at the beginning of maturation stage (Fig. 1.5B), suggesting the possibility that
WDRY72 regulates clathrin coated vesicles. However, clathrin is present in multiple endocytic
vesicles within the cell, such as the early endosome, secretory granules, and the trans-Golgi
network 34, and it is therefore possible that WDR72 may affect only certain clathrin-coated
vesicles. We therefore investigated whether the effect observed in clathrin was linked
specifically to clathrin-mediated endocytosis by looking at a specific marker to clathrin at the

plasma membrane.
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Dynamin Il is well-known to interactor with clathrin to regulate vesicle scission, most notably at
the plasma membrane. Interestingly, when we immunolocalized dynamin in Wdr72” mice, we
saw a stark increase in reactivity (Fig. 2.4). In control mice, immunoreactivity of dynamin |
showed apical staining after transition stage, then became very lightly diffuse, almost absent
even, and then returned to apical staining (Fig. 2.4), coinciding with the ruffle border cycles. In
Wdr72”~ mice, however, staining along the apical border initially occurred but became diffusely
stained with retained immunoreactivity throughout the remainder of the maturation stage. An
increase in dynamin suggests an increase in vesicle scission at the apical border, indicating that
perhaps WDR72 is an important inhibitor to regulate the timing of vesicle formation to ensure

proper transport of cargo.

WDRY7?2 affects localization of annexin A8 (ANXAS8), a known regulator of late endosomes /
multivesicular bodies

After endocytosis is initiated by uptake into early endosomes (EE), cargo is either routed to (1)
recycling endosomes back to the plasma membrane or (2) to late endosomes (LE), also known
as multivesicular bodies (MVB) to fuse with lysosomes. Our previously published work showed
no difference in the recycling endosome marker, RAB4A *°, whereas our HRP tracer studies
showed delayed processing to the lysosomes (see above, Fig. 2.3). Therefore, we wanted to
test whether proteins involved in the stages between the EE and the lysosome would also be

affected.

In the degradative pathway of endocytosis, LE/MVBs are intermediate vesicles between the EE
and the lysosome. LE/MVBs are characterized by their low pH compared to other endosomes,
since they progress and mature along the degradative pathway by forming intralumenal vesicles

(ILVs), acidifying their lumens, and incorporating lysosomal hydrolases to digest material. Once
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matured, these LE/MVBs fuse with lysosomes to become an endolysosome hybrid, which is the

last step prior to merging with lysosomes.

In a microarray of secretory and maturation-stage ameloblasts, we found annexin-A8 (ANXAS8)
to have a 2.9 fold increased expression in maturation-stage ameloblasts as compared to
secretory ameloblasts %. ANXAS8 has a role in LE/MVB formation 8¢, possibly by organizing the
membrane and cytoskeleton thought to be through interactions with direct binding to

PtdInsy 5P2 and recruitment of F-actin 878,

When immunostaining ameloblasts for ANXA8, Wdr72"* early maturation-stage ameloblasts
showed little to no staining, which then became apparent much later in maturation. However,
whereas Wdr72” mice showed an immediate increase in ANXA8 immunostaining shortly after
the onset of maturation stage (Fig. 2.7). Together with our previous HRP data showing delayed
transport to the lysosomes in Wdr72” mice (Fig. 2.3), these data may suggest an accumulation
of LE/MVBs in Wdr72”" maturation-stage ameloblasts that result in a similar delay in fusion to

the lysosome.

An additional surprising observation was that ANXA8 localized to the nuclei of Wdr72”
ameloblasts, whereas control mice showed only cytosolic immunoreactivity (Fig. 2.7). Because
of ANXA8’s previously identified interaction with the cytoskeleton ¥, our finding may further
indicate a possible function for WDR72 involved in cytoskeletal dynamics that facilitate the
progression of MVBs or the rearrangement of cytoskeletal components for directing vesicle
transport or ameloblast morphology cycling between RA and SA phenotypes. More data
suggesting a role for WDR72 involved in cytoskeletal dynamics will be discussed in the following

chapter.
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DISCUSSION

During enamel mineralization, maturation-stage ameloblasts are known to remove the
hydrolyzed matrix proteins from the extracellular developing enamel into intracellular vesicles
along the degradation pathway *%. In Chapter 1, we found that Wdr72” ameloblasts had
decreased intracellular amelogenins, whereas the enamel matrices retained significant amounts
of organic material. The work described in this chapter demonstrates a clear functional role for

WDRY72 in vesicle transport through the endocytic pathway.

Although endocytosis is present in all cell types and maturation-stage ameloblasts have an
active endocytic role during enamel formation, little is currently known about the mechanisms of
internalized material during the maturation stage. Endocytosis is a general term that describes
the internalization and cycling of fluid, solutes, macromolecules, plasma membrane
components, and particles. Huotari and Helenius described the classical endocytosis model as
having two main circuits: (1) a recycling circuit that transports material back to the plasma
membrane, and (2) a degradative circuit that moves macromolecules in conjunction with the
trans-Golgi network (TGN) to be digested by lysosomes #. The recycling pathway helps to
move endocytosed cargo and can join with the secretory pathway involved in exocytosis. Within
the degradative pathway, there exists a unidirectional feeder pathway mediated by late
endosomes (LE) or multivesicular bodies (MVB). LE/MVBs interact closely with the trans-Golgi
network (TGN) to regulate transport of lysosomal components prior to fusing with lysosomes.

This allows maintenance, diversification, and expansion of the degradative system.

We found that in ameloblasts lacking Wdr72, although HRP was initially taken up into
maturation-stage ameloblasts, transport was delayed, indicating that WDR72 modulates the
endocytic pathway. Our finding that clathrin localization was dysregulated points to the

possibility that WDR72 mediates the transition of clathrin-coated vesicles. Clathrin is the major
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coat protein of both (1) coated pits of endocytic vesicles prior to fusion with early endosomes,
and (2) vesicles transporting lysosomal hydrolases to acidic vesicles along the degradation
pathway (ie. late endosomes, multivesicular bodies, and lysosomes). These results support a
previously published finding that WDR72 interacts with adaptor protein AP2, which recruits

clathrin to the membrane to initiate vesicle formation .

However, an argument against a direct interaction between WDR72 and clathrin is our finding
that that the timing of the clathrin dysregulation in Wdr72” mice was observed later than the
onset of maturation. To further investigate this, we specifically determined WDR72 involvement
in clathrin-mediated endocytosis by immunostaining for the clathrin-interacting protein, dynamin

Dynamin Il is Ca**-dependent interactor with clathrin and the cytoskeleton to facilitate the
scission of the budding membrane to create a completed vesicle, specifically during clathrin-
mediated endocytosis, one of the initial uptake steps in the endocytic pathway °'~**. It is unclear
why we saw a retention of dynamin in maturation-stage ameloblasts, but it is possible that this is
also related to the dysregulation of clathrin with increased intracellular localization and an
apparent reduced recruitment back to the plasma membrane coinciding with the RA and SA

cycling.

Towards the end of the degradation pathway, LE/MVBs are the last vesicle type before reaching
the lysosome. Because annexin-A8 (ANXA8) was the only LE/MVB marker found to be up-
regulated in maturation-stage ameloblasts ®, we immunostained for it in our Wdr72” mice.
When Wdr72 is deleted, ANXAS8 also showed a dysregulated localization, including localized to

the nuclei of Wdr72” ameloblasts (Fig. 2.7).
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Taken together these results show a clear role for WDR72 at multiple stages of the endocytic
pathway, particularly in the processing and degradation of extracellular proteins. The absence of
WDR72 has the ultimate outcome of delayed endocytosis and an apparent disruption to the
localization of multiple endocytic vesicles and their functions. In the final chapter, we investigate
the possible mechanisms by which WDR72 functions endocytosis by focusing on the
mechanisms that direct the degradative pathway and further elucidate its role in RA and SA

cycling.
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CHAPTER 3: Investigating WDR72’s role in the degradative pathway

In the previous chapter, we demonstrated that WDR72 is a necessary contributor to the
complex and dynamic endocytic system by identifying the progression of tracers and key vesicle
markers. Endocytic vesicles, however, have a variety of destinations once inside the cell and
are routed within a complex and dynamic system to enable cargo to be returned to the plasma
membrane, exchanged with the Golgi apparatus, or destined for lysosomes to be degraded.
While our data thus far point to the possibility of WDR72’s function involved in the degradative
pathway, the following chapter aims to narrow the function towards WDR72 as a key regulator

of LE/MVB maturation within the degradative pathway.

The endocytic system is a series of intracellular pathways comprised of vesicle transport steps
that enable the external environment to be removed, recycled, and digested in order to process,
transport, and destroy cargo. A more detailed overview of this system was described in Chapter
2, as well as in reviews by Huotari and Helenius %°. Briefly, however, two major circuits exist
after material is internalized into the cell: (1) recycling of cargo back to the plasma membrane,
and (2) degradation of cargo into lysosomes. The latter circuit is largely regulated by late
endosomes (LE), or multivesicular bodies (MVB), which interact closely with the trans-Golgi
network (TGN) and lysosomes to mediate the transport of lysosomal components between
them. This degradative pathway begins with the conversion of early endosomes (EE) into

LE/MVBs and ends with the fusion of LE/MVBs with lysosomes.

A major function of the degradative pathway is the maturation of LE/MVBs. Once formed, they
undergo several changes in order to fully mature, which involve five major processes: (1) input
from Rab GTPase switches %, (2) acidification of the lumen to a pH of 6.0-4.9 via H*, Ca*",

97-100

Na*, and K* exchange , (3) formation of intralumenal vesicles (ILV) to sort cargo for

degradation in lysosomes %', (4) association with Arf1/COPI %2, and (5) movement from the
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peripheral cytoplasm to the perinuclear region of the cell, where they fuse with lysosomes and
endolysosome hybrid organelles '®. Aimost all of these processes contributing to LE/MVB
maturation have been linked to WDR72. For example, the closest human homolog to WDR72,
WDRY7, is a known interactor with Rab GTPase effectors '%*; WDR72 has the highest structural
homology with COPI (Chapter 1) ; and loss of WDR72 leads to both premature LE/MVB
marker localization to the nucleus (Fig. 2.6) and significant delays in HRP transport to the

perinuclear region of the cell to co-localize with lysosomes (Fig. 2.3).

The focus of this final chapter is to provide further evidence of WDR72’s role in the degradative
pathway and to specifically elucidate its role in LE/MVB maturation as a mechanism for enamel
mineralization. Understanding of WDR72’s precise function will not only enhance our current
knowledge of endocytic processing in maturation-stage ameloblasts, but also how the
degradative pathway interacts with other well-studied functions during enamel maturation, such

as ion transport and modulation.

RESULTS

Ameloblast-like cells (ALC) without WDR72 are able to uptake hydrolyzed amelogenin
fragments but cannot process these amelogenins to lysosomes

While our previous in vivo studies provided an excellent model for tracing the processing of
HRP in endocytosis, to further examine WDR72 function in either the recycling or degradative
circuit, we developed an in vitro model. To do this, we deleted the Wdr72 gene in the
ameloblast-like cell line (ALC) '®'% by targeted CRISPR/Cas9 technology. For control cells,
we targeted crRNA as recommended by manufacturer’s instructions, and for the knockout cell
lines, we targeted the 10 base pairs deleted in our identified human mutation. DNA sequencing
results showed a successful 10 base pair deletion in two different cell clones (E8 & G4) with the

same deletion mutation at exon 12, causing a frameshift in the reading frame (Fig. 3.1).
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Immunocytochemistry was used to assess relative amounts of WDR72 protein and showed

dramatically reduced WDR72 in the knockout cell lines (Fig. 3.1).

These cell lines enabled us to test in vivo whether the lack of Wdr72 led to a defect in LE/MVB
maturation and also track amelogenins through the degradation pathway. A previous study
demonstrated that in Wdr72” mice, hydrolyzed amelogenin fragments of size 20kD were
retained in the matrix %7, therefore, we decided to simulate in vivo processing of extracellular
amelogenins by adding recombinant amelogenin of size 20kD to our cells. To trace
amelogenins through the degradative pathway of ameloblasts, we incubated control and Wdr72-
deficient ALCs with LysoTracker and fluorescently tagged recombinant amelogenin 20kD
(rAMG20). LysoTracker is a fluorescent marker of vesicles and is commonly used to specifically
label lysosomes, but has also been found to detect LE/MVBs as well due to their low acidity at

more mature stages "%,

We found that rAMG20 was internalized by both control and Wdr72” cells. However, while
control cells demonstrated co-localized rAMG20 with large LysoTracker-positive vesicles, cells
without Wdr72 lacked co-localization of rAMG20 with LysoTracker, and these LysoTracker-
positive vesicles were much smaller in size compared to controls (Fig. 3.2). These findings are
consistent with our HRP in vivo studies showing lack of localization to acidic vesicles (Fig. 2.3)
and further support our finding that WDR72 functions in the transport of exogenous material
through the degradation pathway to lysosomes. Specifically, the general presence of small
acidic vesicles in the Wdr72” cell lines and lack of movement of rAMG20 to larger perinuclear
vesicles as observed in Wdr72” cells (in vitro) suggest that WDR72 is required for maturation of

LE/MVBs to lysosomes (see discussion section below).
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Ultrastructure reveals disrupted ameloblast ruffled border and small vesicles in Wdr72”- mouse
ameloblasts

Our in vitro experiments showed greater detail of vesicles and endocytosis in Wdr72” cells,
illustrating smaller vesicles present in Wdr72” cells (Fig. 3.2). The presence of smaller vesicles
in these cells may point to a disruption in the formation of intralumenal vesicles (ILV), which is
an essential process for LE/MVB maturation. As LE/MVBs mature, they become larger and an
increase in these ILVs are formed. When fewer ILVs form, cargo accumulates in endosomes
with abnormal morphology '®. The inefficient transport of HRP in vivo and amelogenins in vitro,
as well as the presence of smaller vesicles in the Wdr72” cell lines (Fig. 2.3 & 3.2), suggest

that the loss of WDR72 prevented formation of these acidic vesicle types.

To further explore the possibility that WDR72 is associated with vesicle formation, we examined
maturation-stage ameloblasts at the ultrastructural level using transmission electron microscopy
(TEM). TEM is an excellent tool for visualizing organelles to detect more subtle phenotypes
involved in a cell's structure. Consistent with our in vitro findings, we found that Wdr72”

ameloblasts showed smaller vesicles compared to the Wdr72** ameloblasts (Fig. 3.3).

Additionally, our TEM results illustrated that large components of the membrane were
disorganized, particularly at the ruffled border and the endoplasmic reticulum (Fig. 3.3C & D).
This indicates that WDR72’s role in the degradation pathway may be linked to membrane
structure or turnover, specifically at the apical border. Wdr72” mice revealed a blunted and
disorganized ruffled border, which is the site of an abundant vesicle presence, and thus
membrane turnover, during enamel maturation. Wdr72”- ameloblasts also showed an increase
in the endoplasmic reticulum (Fig. 3.3), which is a major interacting organelle (along with the
trans-Golgi network) throughout the degradative pathway during LE/MVB maturation to provide

a membrane reserve . Finally, Wdr72” mitochondria also appeared deficient.
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Ameloblast modulation and enamel matrix pH are disrupted in Wdr72”- mice

As previously discussed in the introduction and chapter 2, ameloblasts undergo large
morphological changes during the maturation stage involving membrane turnover, both with its
intracellular organelle rearrangements, as well as the apical border cycling between ruffle-ended
and smooth-ended border phenotypes. In a variety of cell types, vesicle transport has been
shown to be a key contributor to membrane turnover ''°. Additionally, lysosomal storage
diseases associated with endocytic perturbance illustrate downstream effects on other cell
organelles, such as defects in mitochondria, ER, Golgi, etc. '"". It is possible, then, that WDR72
has a functional role in LE/MVB maturation integrated with membrane turnover that leads to
faulty regulation of ion transporters and ameloblast modulation. In fact, previous work showed

that Wdr72”- mice mislocalized ion channel NCKX4 that spans the cell membrane '%’.

To determine whether the membrane changes observed in Wdr72-deficient models were linked
to modulation, we used matrix pH and calcium (Ca®") staining to indirectly compare ameloblast
modulation in Wdr72** to Wdr72” mice. A typical feature of ruffle-ended ameloblasts (RA) and
smooth-ended ameloblasts (SA) is their matrix pH, where RA show an acidity of 5.5, whereas
SA show an acidity of 7.0 '. The Ca** sensing dye, glyoxal bis (2-hydroxyanil) (GBHA) 2, which
stains at neutral pH, has also been shown to be a reliable marker to identify modulations
between SAs and RAs, with the matrix under SAs staining red and the matrix under RAs having

no stain '3,

We found that both Wdr72"* and Wdr72*" incisors demonstrated typical GBHA banding patterns
observed during SA modulation cycles, whereas Wdr72” matrices showed a lack of banding
pattern altogether and stained the entire matrix (Fig. 3.4). We separately stained these enamel

matrices with Universal pH indicator dye, which showed a loss of matrix acidification in the
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Wdr72”" mice, consistent with both the downregulation of ion transporters and with disrupted
ameloblast modulation '"*. As expected, Wdr72"* and Wdr72" mice had a neutral pH (=7) at
the secretory stage matrix, which was followed by a brief acidified section at the transition stage
and beginning of enamel maturation (Fig. 3.4). During the maturation stage in control mice, the
enamel matrix cycled between acidic and neutral pHs. In contrast, the enamel of Wdr72” mice

remained neutral pH throughout secretory and maturation stage (Fig. 3.4).

Not only do the lack of banding patterns now link WDR72 function with ameloblast modulation,
but also given that both Ca?* and H* transport to the matrix was disrupted in Wdr72” enamel, it
is clearer that WDR72'’s role in the endocytic pathway is also linked to vesicle trafficking of ion
transporters also essential for proper enamel formation. Numerous papers have found links
between vesicle formation and ion transport, and this interaction is largely associated with the
degradative pathway during which LE/MVBs mature through regulation of H* and CI" influx, and
efflux of Ca®*, Na* and K* ®-1%_ |t has long been known that the regulation of Ca?* and H*

transport is critical for enamel mineralization 6112115116

The formation of RAs has also been shown to be associated with vacuolar H*-ATPase (v-
ATPase) at the apical border, which coincides with GBHA staining ''"''®. We immunolocalized
v-ATPase and found that similar to previously described work in normal ameloblasts,
immediately after transition stage, Wdr72** ameloblasts showed v-ATPase along the apical
border of ruffle-ended ameloblasts, followed by a more diffuse staining in the smooth-ended
ameloblasts (Fig. 3.5). In the Wdr72” mice, similar to the timing observed for clathrin (Fig. 2.4),
v-ATPase remained diffusely stained throughout the ameloblast, rather than returning to an
apical aggregate like the control mice. This suggests a dysregulation of v-ATPase for acidifying
vesicles in Wdr72”- ameloblasts and that vesicles are inhibited from returning to the plasma

membrane.
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Loss of Wdr72 affects v-ATPase in ameloblasts, but not through a dependent mechanism

We next investigated whether WDR72 regulation of v-ATPase leads to alterations in vesicle
acidification. V-ATPase function largely contributes to vesicle acidification in LE/MVBs and
lysosomes, aiding in their progressive acidification as LE/MVBs mature and progress through
the degradative pathway. V-ATPase has also been shown to be regulated by the closest human
homolog to WDR72, WDR7. WDRY7 (under the alias “Rabconnectin-33”) has a function in

73,74, and

regulating the endocytic pathway by directly monitoring v-ATPase activity in Drosophila
was more recently discovered to inhibit lysosome acidification in M-1 mouse cortical collecting
duct cells by inhibiting v-ATPase activity ''°. Bafilomycin is a reversible drug that specifically
inhibits the activity of v-ATPase. Therefore, to further tease apart the role of WDR72 in LE/MVB
maturation and vesicle acidification, we explored whether loss of WDR72 resulted in the ability

for vesicles to re-acidify following a bafilomycin challenge.

Using the newly developed Wdr72” cell lines (described above), we tested whether WDR72
regulated lysosome acidification via v-ATPase in a similar manner to experiments of WDR7 '*°.
Control and both knockout clones were first treated with the v-ATPase inhibitor, bafilomycin,
followed by a 3-hour washout recovery period, and labeled with LysoTracker, a fluorescent pH
indicator dye of vesicles with low pH (ie. LE/MVBs and lysosomes). Because LysoTracker is a
membrane-permeant dye, after 3-5 minutes, cells were washed and lysed to release the

LysoTracker fluorescence, which was measured using a bioassay reader.

We found that prior to bafilomycin treatment, Wdr72” clones demonstrated similar fluorescence
labeling with LysoTracker as compared to controls (Fig. 3.6). All cell groups significantly
decreased in fluorescence in the presence of bafilomycin, and both Wdr72” clones were able to

re-acidify lysosomes after challenge with the v-ATPase inhibitor similar to cells with the control
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vector. When considered with the v-ATPase immunostaining results (Fig. 3.5), these data

suggest that WDR72’s role in LE/MVB maturation is independent of vesicle acidification.

WDR72 may direct vesicle formation and membrane turnover by recruiting the cytoskeleton
Because our v-ATPase results did not link WDR72 function with vesicle acidification involved in
the degradative pathway, we investigated a final process necessary for LE/MVB maturation to
occur. An important influencing factor on the degradative pathway is LE/MVB motility towards
lysosomes, where microtubules are required for processing of LE/MVBs '?°. In addition,
cytoskeletal components have been found to affect membrane turnover '?', pointing to a
possible link to the modulation defects observed in the Wdr72” mice. Therefore, we
investigated whether Wdr72 deletion leads to defects in cytoskeletal structure. Here, we focused
on two main cytoskeletal components involved in the degradative pathway of endocytosis:

alpha-tubulin and F-actin.

We immunostained control and Wdr72” ALC lines for alpha-tubulin and F-actin. In control cells,
alpha-tubulin was organized into the canonical web-like structures with assembled focal points
along the cell border (Fig. 3.7). However, in the Wdr72” cells, tubulin was largely disorganized
at the border, and unlike the control cells, did not appear to extend to the cell membrane border.
This staining pattern in the Wdr72” cells suggests defects in microtubule assembly and
organization. Tubulin staining in the nucleus of Wdr72” cells (Fig. 3.7) further suggests defects

in microtubule recruitment to the apical border.

Immunostaining for F-actin showed that there was no difference between control and Wdr72”
cells. Although both actin and microtubules are essential components of the cell’s cytoskeletal
architectures, actin is thought to provide contractile forces for movement, whereas microtubules

build a polarized network that facilitate organelle and protein movement within the cell. When
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considered with the lack of organization at the ruffle-ended border and the endoplasmic
reticulum (Fig. 3.3), and lack of progression of endocytosed material throughout the degradative
pathway in Wdr72” ameloblasts (Fig. 2.3), these results point to a role of WDR72 in
microtubule assembly. Microtubules have a key function in the transport and maturation of
LE/MVB vesicles, and their disruption would lead to reduced efficiency of the endocytic
degradative pathway, as we have shown both in vivo and in vitro with the absence of WDR72.
Therefore, taken together, data presented in this chapter have pointed to the possibility that
WDR?72 facilitates the degradative pathway through the regulation of LE/MVB maturation via

microtubule assembly or recruitment.

DISCUSSION

In this chapter, we described in vivo ultrastructural and in vitro mechanistic studies that show
reductions in vesicle formation that point to a role of WDR72 in regulating the degradative
pathway of endocytosis and in ameloblast modulation, possibly via membrane turnover. During
endocytosis, membrane turnover can range from 50-180% return to the plasma membrane
every hour ''°, and maturation-stage ameloblasts undergo significant membrane changes at the
apical border by fluctuating between ruffle-ended (RA) and smooth-ended (SA) phenotypes. Our
findings show that unlike WDR7, WDR72 does not have a direct role in vesicle acidification, but
rather WDR72 has a general role in vesicle maturation during the LE/MVB stages and in

membrane remodeling.

The cytoskeleton is a major contributor to the degradative pathway, specifically in facilitating the
maturation of LE/MVBs, and is an important component to the cell’s structure. Vesicle fission,
fusion, and maturation through this pathway rely heavily on the cell’s cytoskeleton as a
structural framework and network to stabilize the forming vesicle and to serve as a track for

89,122

transportation , specifically in the regulation of cargo transport from EE to LE ', As
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LE/MVBs are transported along microtubules via motor proteins, the net movement is always
towards microtubule organizing centers that are located in the perinuclear region of the cell,
where most lysosomes localize '%°. Interestingly, WD40-repeat proteins have been shown to
have microtubule assembly functions, likely due to their structural configuration of beta-propeller
sheets that serve as sites for protein docking (ie. multiple protein-protein interactions) that can
serve as stabilizers for the dynamic movement. Specifically, WDR47 and WDR62 have both

been identified as integral microtubule-associated proteins in neurodevelopment 24125,

In maturation-stage ameloblasts, little is known about the cytoskeleton’s relationship with the
degradative pathway, however one report has demonstrated that microtubule inhibitors affect
vesicle size in secretory ameloblasts '?°. An additional indication that WDR72 may have a role in
cytoskeletal dynamics is our observation under TEM that the size of the ER is increased in
Wdr72”~ maturation-stage ameloblasts as compared to controls (Fig. 3.3). The ER structure and
shape have been shown to be stabilized by proteins that interact with microtubules '?”. An effect
of WDR72 on microtubule formation, therefore, is a potential mechanism that would likely affect
vesicle formation, ER structure, and formation of the ruffled border in maturation-stage

ameloblasts.

The smaller vesicles appearing both in vivo and in vitro Wdr72”- models (Fig. 3.2 & 3.3) further
support the function for WDR72 in microtubule formation. Wdr72” mice and cells both showed
lack of formation of larger vesicles that not only localized in the cell periphery (Fig. 3.2) but also
did not enlarge (Fig. 3.3). Transport of LE/MVBs along microtubules is thought to be essential
for LE/MVB maturation, as small LE/MVBs located close to the plasma membrane progress to
be larger and closer to the nucleus '?®. LE/MVBs differ in size, ranging in diameter from 250nm

to 1000nm, and they progressively enlarge as they mature . As maturation occurs, LE/MVBs
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move from the peripheral cytoplasm to the perinuclear region of the cell, where they fuse with

lysosomes and endolysosome hybrid organelles to digest the internalized cargo '®.

In summary, the data presented in this chapter have pointed to the exciting possibility that
WDR?72 may have a role in facilitating the transport of LE/MVBs to enable their maturation of
these vesicles. Our findings show that WDR72’s function is not only regulating maturation in the
degradative pathway, but also possibly via cytoskeleton recruitment. This means, then, that
deficiency of vesicle transport to facilitate removal of proteins from the enamel matrix through
the cell for digestion is a cause for hypomineralized enamel formation in Al due to mutations in
the Wdr72 gene. Further studies to investigate the possible effect that this function of WDR72
has in other cells and tissues (ie. brain, heart, intestine, kidney) will allow us to not only enhance
our understanding of enamel formation but also will allow us to further understand the dynamics

of intracellular transport and the role of WDR72 in these systemic processes.
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Figure 1.1. Identification of a novel 5-base pair deletion in exon 8 of the Wdr72 gene in patients
affected with autosomal recessive Al of a pigmented and hypomaturation phenotype

(A) Family pedigree with autosomal recessive inheritance of Amelogenesis imperfecta (Al).
Double lines (=) symbolize consanguineous unions, black arrow denotes the proband,
emboldened shapes identify family members analyzed for DNA sequencing. (B) Permanent
dentition of the male proband (V3; 10.5 y.0.) was pigmented yellowish-brown with a loss of tooth
enamel at the surface. (C) The proband's panoramic radiograph revealed hypomineralized
enamel in unerupted teeth, missing first permanent molars (teeth #3, 19 and 30), and delayed
eruption sequences in primary canines and molars (red asterisk). (D) Representative
photograph of one affected twin sister (V4; 4 y.o.) showing primary dentition also exhibiting a
hypomaturation enamel phenotype on the occlusal surfaces of erupted teeth. (E, F) Lower PAs
also showed a loss of enamel in erupted teeth with similar radiopacity to dentin, indicating
hypomineralization (red arrow). (G) Comparisons of representative chromatograms for carrier,
unaffected, and affected individuals revealed a 5-base pair deletion in affected patients, which
localized to exon 8 of the Wdr72 gene and matched with the Al phenotype. The dotted box
encompasses the nucleotides absent in affected patients with a black arrow pointing to the
deletion site. (H) List of reported Wdr72 mutations in association with Al.
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Figure 1.2. Successful Wdr72-/- mouse model exhibits hypomaturation enamel phenotypes
(A) Wdr72 wildtype (*) and mutant (-) allelic variants. The Wdr72 mutant allele (Wdr72 ) is a
functional knockout through splicing in a LacZ gene reporter containing a high affinity splice
acceptor (SA, black dot) and termination sequence (pA, black X) prior to the critical exon 3. The
encoded mutant transcript is a truncated Wdr72 at exon 2 fused to LacZ. Neomycin (Neo) is
independently regulated, containing its own promotor (gray bent arrow) and termination
sequence (gray X). Numbered white boxes represent coded exons under the Wdr72 promotor,
whereas numbered gray boxes represent exons not encoded under the Wdr72 promotor. Black
arrows denote primer locations used for genotyping. Green triangles, frt sites; Red

triangles, loxP sites; (B) PCR genotyping of isolated mouse DNA from Wdr72**, Wdr72*",

and Wdr72™" tail biopsies. Amplicon sizes of Wdr72* allele, 520 bp; and Wdr72" allele, 633 bp.
(C) Representative photographs of 6-week-old male mandibular incisors (left panels, buccal
view) and molars (right panels, lingual view) after soft tissue removal. Wdr72"~ enamel was lost
from the intact dentin surface when teeth erupted into the oral cavity. Wdr72”~ enamel also
appeared opaque and stained as compared to the translucent Wdr72** enamel. (D)
Quantitative real-time PCR (gPCR) of micro-dissected secretory and maturation-stage
ameloblasts. Wdr72 transcript is successfully knocked out in Wdr72™~ mice and is significantly
up-regulated from secretory to maturation stages in Wdr72** ameloblasts (n = 3, P < 0.05).
Error bars represent £ SD of the mean.
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Figure 1.3. Average weights of Wdr72** and Wdr72”" mice at various postnatal ages.

Wdr72" female mice show significantly decreased weights at P24, and Wdr72-/- males are
significantly decreased at from P21 to P45 relative to Wdr72*"* controls (n=3; P>0.05). Murine
teeth erupt at P14, and weaning age is P21. Differences in weights between Wdr72""* and
Wdr72" mice occurring at these ages suggest difficulty in chewing a hard-food diet. Error bars
represent £SD of the mean.
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Figure 1.4. Wdr72*"* and Wdr72” kidneys showing knockout of WDR72 protein and mRNA.

(A) Western blot of Wdr72"* and Wdr72" kidneys of male mice at postnatal day 24 using
WDR?72 (top) and beta-actin (bottom) antibodies for detection. Expected weight for WDR72
protein is 123 kD (middle band), and top band shows non-specific protein. Beta-actin (45 kD)
was used as a loading control for total protein (bottom band). (B) Quantitative RT-PCR (qPCR)
of the same Wdr72"* and Wdr72" kidneys used for western blot and normalized to 18S. Wdr72
" mice have significantly decreased transcript relative to Wdr72** controls.
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Figure 1.5. WDR72 immunolocalizes to vesicle-like puncta in Wdr72"* maturation-stage
ameloblasts and shows protein-level knockout in Wdr72™~ mice.

Representative sagittal sections of P10 male Wdr72** and Wdr72”~ mandibles immunostained
with a polyclonal rabbit antibody to WDR72 peptide. (A) In Wdr72** mice, immunoreactivity
(red) was diffusely positive in secretory ameloblasts and increased upon entry into the
maturation stage (C, E), immunolocalizing to vesicle-like structures at the basal and apical ends
(arrowheads). (B, D, F) Slight non-specific background immunoreactivity was present

in Wdr72™"~ ameloblasts. am, ameloblast; es, enamel space; pl, papillary layer; tp, Tomes'
process. Scale bar, 10 um.
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Figure 1.6. Hypomineralized enamel phenotype in Wdr72™~ mice occurs at the onset of
maturation stage.

Representative sagittal (A, B) and cross sectional (C—F) microCT images of Wdr72** and
Wdr727~ 6-week-old male mandibles. In the continuously growing incisor, Wdr72** enamel
mineralization increased at the onset of maturation stage to form an enamel layer of increasing
relative intensity (A), which remained radiolucent in the Wdr72™~ mice (B). Red arrow marks
transition stage. Similar relative intensity comparisons between the Wdr72** and Wdr72™""
enamel were observed in fully formed molars (E, F). Dotted and dashed lines mark the sites
along the continuously growing incisor where coronal planes were taken at secretory stage (C,
D) and maturation (E, F) stages of enamel, respectively. Dentin and alveolar bone showed no
differences (A-D). Green, red, blue, and yellow shading overlays on the Wdr72"* cross-section
panels (C & E) represent the regions of interest that were used to quantify the average gray
values seen in the bar graph; green, incisor enamel at secretory stage; red, incisor enamel at
maturation stage; blue, dentin; yellow, alveolar bone. Quantification of these observations is
depicted in the graph to the right (G). Error bars represent + SD of the mean (n = 3). Paired
student t-tests between Wdr72** and Wdr72™"~ average gray scale values with a threshold for P-
values at < 0.05.
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Figure 1.7. Enamel matrix and ameloblasts display maturation-stage specific phenotypes in
Wdr72”~ mice.

Representative sagittal sections of Wdr72** (A) and Wdr72”~ (B) P10 male mandibles stained
with hematoxylin and eosin. Unerupted first molars are at maturation stage, showing a lack of
organic material (yellow arrows) in the enamel space of the Wdr72** mice but retention in

the Wdr727". Lettered white boxes correspond to enlarged images below. Black scale bar,

400 pum. Bottom panels show Wdr72** (a—c) and Wdr72”~ (d—f) ameloblasts at different stages
of differentiation, showing the spectrum of enamel development along the continuously growing
incisor. During maturation stage, Wdr72”~ ameloblasts (f) are shorter in height compared to
those of Wdr72** mice (c), while earlier stages appear to have morphologically normal
ameloblasts. am, ameloblasts; es, enamel space. White scale bar, 20 ym.
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Figure 1.8. Wdr72™~ ameloblast cells have decreased intracellular amelogenin proteins at the
early maturation-stage of enamel formation, with no change in transcript levels.
Representative images of ameloblasts from P10 male Wdr72*"* and Wdr72™~ mice
immunostained with amelogenin antibody (red) and counterstained with methyl green.
Amelogenin is immunoreactive in secretory ameloblasts at the Tomes' processes (A, B) and in
early maturation-stage ameloblasts at the center and apical regions in small puncta (C, D), but
was more reactive in Wdr72"* than Wdr72”~ mice. As enamel formation progressed to mid-
maturation, intracellular amelogenin immunostaining was absent in both Wdr72** (E) and
Wdr72™"~ (F) ameloblasts. am, ameloblast; es, enamel space; pl, papillary layer. Scale bar,

10 um. (G) Relative amelogenin mMRNA expression in microdissected enamel epithelia from 6-
week-old male mice at secretory and maturation stages, showing no significant differences
between Wdr72"* and Wdr72™"~ mice at either secretory (P = 0.81) or maturation stages

(P =0.53). Gene copy numbers are relative to 18S. Error bars represent + SD of the mean
(n=3).
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Figure 1.9. Immunolocalization of vesicle markers in Wdr72** and Wdr72”~ ameloblasts.
Immunostaining of CLC5 in Wdr72** and Wdr72”~ ameloblasts (A—F) showed that CLC5 is
decreased in maturation-stage ameloblasts of Wdr72”~ mice as compared to Wdr72**. Serial
sections of Wdr72"* enamel organs at maturation stage showed WDR72 and CLC5 both
immunolocalizing in similar patterns at apical and basal regions of the ameloblasts, as well as
the papillary layer (G & H, arrowheads). Further immunostaining of LAMP1 (I, J) and RAB4A (K,
L) showed no differences between Wdr72** and Wdr72™~ maturation-stage ameloblasts. am,
ameloblast; es, enamel space; pl, papillary layer; tp, Tomes' process. Scale bars, 10 ym.
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Figure 1.10. WDR72 adopts the B-propeller and a-solenoid fold configuration characteristic of
membrane-deformation complexes.

(A) The human Wdr72 gene with predicted WD40 domains (cyan boxes) and sequence
homology divergence to all other human genes (magenta boxes). Reported mutations
associated with Amelogenesis Imperfecta are denoted with an asterisk (*), showing our
identified exon 8 mutation in between two clusters of WD40 repeat domains
(ENST00000360509). Mutation positions based on CCDC 10151.1; numbered

box, Wdr72 exon; line, intron; empty box, untranslated region (UTR). (B) Monomeric structure of
B'-COP protein interacting with the C-terminus of a-COP (yellow), another subunit of the
crystallized Saccharomyces cerevisiae COPI triskelion vesicle coat complex (PDB identifier:
3mkq). The side view of B’-COP (right) depicts what is referred to as a B-propeller structure
(cyan) and an a-solenoid tail (magenta) unique to proteins that interact with curved lipid bilayers.
This B'-COP structure was used as a template for model building, as it showed the greatest
similarity to WDR72 compared to any other solved protein structures. Numbers represent
blades #1-7 that comprise a single B-propeller. (C) constructed model of WDR72 showing two
B-propeller domains and a curved a-solenoid tail. The side view of full-length WDR72 (right)
depicts two B-propellers, each with 7 blades (cyan), and a series of a-helices (magenta) forming
an a-solenoid tail. Blue sphere, N-terminus; red sphere, C-terminus.
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Figure 1.11. Human WDRY7?2 variants expressing known mutations associated with Al.

The spectrum of truncated WDR72 protein models showing differences among reported Wdr72
mutations and their affected domain configurations. The full-length WDR72 (right) contains two
7-bladed B-propellers (cyan) with an a-solenoid tail (magenta). Our identified exon 8 mutation
and the previously reported exon 10 mutation showed the most dramatic fold predictions of
WDR72, with a single beta-propeller containing only 6 beta-sheet blades. These are the only
two mutations in WDR72 to report additional effects in Al patients, aside from enamel
hypomaturation phenotypes and may explain specific sub-structure functions of WDR72. All
other predicted structures show a disrupted a-solenoid domain, suggesting this region to be
necessary region for proper enamel formation. Blue sphere, N-terminus; Red sphere, C-
terminus.
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Figure 2.1. KLK4 activity in the enamel matrix and Klk4 mRNA expression do not differ in
Wdr72"*, Wdr72*" and Wdr72”" mice.
Left panels measure relative fluorescence units (RFU) of KLK4 proteolytic activity from 0 to 150
minutes in isolated enamel matrices of Wdr72"*, Wdr72*", and Wdr72” first molars at postnatal
day 14 (P14) (top panel) or mandibular incisors (bottom panel). KLK4 proteolytic activity shows

no significant difference between Wdr72**, Wdr72*", and Wdr72” ameloblasts. Error bars

represent = SD of the mean. The right panel represents the relative quantitative real-time PCR

(gPCR) of micro-dissected maturation-stage ameloblasts from first molars. Kik4 transcript
shows no significant difference between Wdr72** and Wdr72” (n = 3, P> 0.10). Error bars

represent = SD of the mean.
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Figure 2.2. KIk4” mice show no difference in WDR72 presence or localization.

Representative images of ameloblasts from adult KIk4"* and Klk4™~ mice immunostained with
WDRY72 antibody (red). WDR72 is immunoreactive in maturation-stage ameloblasts at the apical
border in both Klk4** and Kik4™~ mice (A, B). ameloblasts. am, ameloblast; es, enamel space;
pl, papillary layer. Scale bar, 10 ym.
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Figure 2.3. Tracer experiment of injected horseradish peroxidase (HRP) and immunolocalization

of LAMP1 in control and Wdr72™~ ameloblasts.

Fifteen minutes following HRP injection, HRP localizes to Wdr72** and Wdr72™~ ameloblasts at
the apical border during maturation stage. After 30 minutes, control mice show HRP co-
localizing with LAMP1 positive vesicles, whereas Wdr72” ameloblasts retain HRP at the apical
border. Sixty minutes following, controls show lack of HRP presence, whereas Wdr72”
ameloblasts show delayed movement towards LAMP1 positive vesicles as well as retention at

the apical border.
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Figure 2.3. Immunolocalization of clathrin heavy chain shows disruption during the maturation
stage in Wdr72”- ameloblasts.

Representative sagittal sections of control (Wdr72"* or Wdr72*") and Wdr72”~ mandibles
immunostained with a polyclonal rabbit antibody to clathrin heavy chain. Red boxes are the
enlarged in the panels below. Arrow denotes onset of maturation stage; double arrowhead
marks RA1. (A’, A”) In control mice, immunoreactivity (green) was diffusely present throughout
the cell with a strong apical presence at the onset of maturation stage (asterisk). During periods
of ruffle-ended ameloblasts, immunolocalization of clathrin occurs in vesicle-like structures at
the basal and apical ends during (arrowheads). (B’, B”) In the Wdr72” mice, immunoreactivity
initially began with similar vesicle-like structures after the onset of maturation, however, diffuse
immunoreactivity (asterisk) was present in Wdr72”~ ameloblasts. am, ameloblast; es, enamel
space; pl, papillary layer. Scale bar, 10 ym.
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Figure 2.4. Immunolocalization of dynamin Il in control and Wdr72”- ameloblasts.
Representative sagittal sections of adult Wdr72**, Wdr72*", and Wdr72”~ mandibles were
immunostained with a polyclonal antibody to Dynamin Il. Black boxes are the enlarged in the
panels below; black arrow denotes onset of maturation stage. (A’, A”) In control (Wdr72"* and
Wdr72*") mice, immunoreactivity (red) was initially localized to the apical border of maturation-
stage ameloblasts that became absent and then increased later into the maturation stage. (B,
B”) Wdr72”~ mice, however, showed apical staining (arrowheads) throughout the maturation
stage without any cycling pattern. am, ameloblast; es, enamel space; pl, papillary layer. Scale
bar, 10 pm.
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Figure 2.7. Immunolocalization of ANXAS8 in control and Wdr72”~ ameloblasts.

Representative sagittal sections of control (Wdr72"* and Wdr72*") and Wdr72”~ mandibles
were immunostained with a polyclonal rabbit antibody to annexin A8 (ANXAS8). Black boxes are
the enlarged in the panels below; black arrows show the differing onsets of ANXA8 expression
in (A) control and (B) Wdr72™~ maturation-stage ameloblasts. (A’, A”) In control (Wdr72** and
Wdr72*") mice, immunoreactivity (red) was initially localized to the subnuclear region of
transition ameloblasts and does not increase at the apical border until later in the maturation
stage. (B’, B”) Wdr72” mice, however, showed diffuse staining shortly after the onset of
maturation stage and localizes around the nucleus (arrows). am, ameloblast; es, enamel space;
pl, papillary layer. Scale bar, 10 ym.
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Figure 3.1. CRISPR/Cas9 deletion of Wdr72 gene in ameloblast-like cells (ALCs).
Chromatograms of (A) control and (B) Wdr72” clones (E8 & G4) demonstrate a 10-bp deletion
(red box) that leads to a frame shift. Inmunostaining with a polyclonal WDR72 antibody (red)
counterstained with DAPI (blue) illustrate presence of WDR72 in (C) control cells as punctae
present in the cytoplasm (arrowheads), whereas immunostaining is absent in (D) Wdr72”
clones. Scale bar, 5um.
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Figure 3.2. Wdr72-deficient ameloblast-like cells (ALCs) are unable to internalize recombinant
amelogenin size 20kD (rAMG20) with a distinct LysoTracker pattern.

(A) In control cells, rAMG20 is taken up into the cell and co-localizes with large vesicles stained
positive with LysoTracker (arrowheads). (B) Wdr72” cells show rAMG20 internalized into cells
(arrows) that do not co-localize with large LysoTracker-positive vesicles and show numerous
small vesicles. Scale bar, 2 ym.
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Figure 3.3. Ultrastructure of maturation-stage ameloblasts.

(A & B) Light microscopic observation of the semi-thin sections of maturation ameloblasts
immediately after the transition stage confirms the presence of the ruffled border (A,
arrowheads) in Wdr72**. In the Wdr72” section, alignment of the ameloblasts layers is
disorganized compared to the Wdr72"*, and the ruffled border is not evident (B). P: papillary
layer, Am: ameloblasts, Bar: 20 um (C and D) Transmission electron micrographs show highly
developed ruffled border (RB) in the Wdr72** ameloblasts (C). In the Wdr72” ameloblasts, only
some irregular membrane invagination is observed at the distal end of the cells, and the
distribution of the cytoplasmic organelles is disorganized (D). Bar: 1um (E & F) In the distal part
of the Wdr72** ameloblasts, small endocytic vesicles are fused and form larger early
endosomes (E, arrows). In the Wdr72” ameloblasts, small endocytic vesicles do not appear to
fuse and do not show formation of larger early endosomes (F, arrowheads). Bar: 1um.
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Figure 3.4. Wdr72"- enamel matrices show defects in matrix acidification and modulation during
the maturation stage.

Dissected adult mandibular and maxillary incisors of Wdr72**, Wdr72*", and Wdr72”" mice were
incubated in either Universal pH indicator (above) or glyoxal bis (2-hydroxyanil) (GBHA) (below).
Dotted lines demarcate the different stages of ameloblast differentiation in enamel formation.
Sec, secretory; RA, ruffle-ended ameloblasts; SA, smooth-ended ameloblasts. Double arrows
indicate typical banding pattern observed in SA. pH chart at the bottom is provided for
reference.
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Figure 3.5. Immunohistochemistry of vacuolar-type H*-ATPase (v-ATPase) in Wdr72" mice.
Wdr72** and Wdr72*" mice (controls) demonstrated immuno-positive reactions in a diffuse
pattern during smooth-ended ameloblasts (A’) and a localized pattern to the apical border during
the ruffle-ended ameloblasts (A”, arrowheads). Red boxes outline the enlarged images in the
panels below; white arrows denote onset of maturation stage; double arrowhead marks RA1. (B’
& B”) Wdr72” mice, however, show a trend of diffuse immunoreactivity (asterisk) throughout

maturation stage.
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Figure 3.6. Wdr72"~ ameloblast-like cells do not significantly affect v-ATPase-dependent re-
acidification of intracellular vesicles during recovery from bafilomycin A1 treatment.

Under steady-state conditions ALCs are readily labeled with lysosomotropic green-fluorescent
dye LysoTracker Green as quantified by fluorimetry and visualized by confocal microscopy.
After pretreatment with 100nM bafilomycin for 1hr, the number of acidic vesicles and total
fluorescent intensity were dramatically reduced in all cases, and all slowly recovered following a
3hr bafilomycin washout. All data are presented as mean values and error bars indicate the
standard deviation. n=3, P > 0.10.
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Figure 3.7. Alpha-tubulin is mislocalized in Wdr72”- ameloblast-like cells (ALCs), whereas F-
actin shows no difference.

Confocal microscopy images of control mice show alpha-tubulin (red) localizing intracellulary in
an organized, web-like pattern in the cytoplasm of control cells (A), showing organized focal
points at the border of cells (arrowheads). (B) Wdr72” cells, however, exhibit diffuse
intracellular staining and localization to the nucleus (white dotted outline) without organized
aggregates at the cell border. In contrast, F-actin (green) shows typical web-like striations
throughout the cell that organize around the nucleus (blue) in both (C) control and (D) Wdr72”
cells.
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TABLES

Table 1. Primers used to target candidate genes in family with amelogenesis imperfecta.

Forward (F) and reverse (R) primer pair sequences, annealing temperatures (Ta), and amplicon

sizes (bp) that were used for standard PCR and DNA sequencing to identify mutations in

candidate genes.

Exon Gene Primer Sequence (5’(13’) T. (°C) Size (bp)
1 Ambn  F: ATTGCAGGAGCAGAGATTCC 56 395
1 Ambn R: TGGGTGTTAGGCATGTCATC

2 Ambn  F: CCTTTATCCCGGTGGTTTTT 53 365
2 Ambn R: CGCTTTTGGATTGCAAGACT

3 Ambn  F: CTTCTTCATTCTGCCCAAGC 56 385
3 Ambn R: TGCAGTAGAATTATAAGACAAAGCTC

4 Ambn F: TCCACCTTTCAGTGATGATTTG 52 376
4 Ambn R: TTGTTTTTGTTTTTCCCTGTCA

5 Ambn  F: CTGGCGACAGAGCAAGATTC 54 370
5 Ambn R: TCGATTTATTTGGCACGAGA

6 Ambn  F: TCCTAGCCTCCCTTCCAGAT 56 452
6 Ambn R: TTATGCCTGAAGGCTACGATT

7-9 Ambn  F: TTGGGTCATACCTCCCAAAA 53 670
7-9 Ambn R: TCATGGATAAATGGGACAATGA

10-12  Ambn  F: TGGGTTCCTTTGTTCTCTTAAA 53 898
10-12  Ambn R: TTGGCTACATTCATGGCAGA

13 Ambn F: CAGCCAACTTCCTATTCTCCA 54 842
13 Ambn R: AAAGCAAGAAGGGGACCTACA

2 Amelx F: TGGAGCATTCATTACATCCAT 55 216
2 Amelx R: CCCTAATTTCACCAACTATGAGC

3 Amelx F: TCCTTTAATGTGAACAATTGCAT 55 199
3 Amelx R: AACGCAAACAATGGTCAAAA

4-5 Amelx F: CCCAACAAATTTTTACCTTCTTC 53 299
4-5 Amelx R: TGTGGAGTAGACATGATATTTCACTTA

6 Amelx F: TCACCTGAGCCAATGGTAAA 55 499
6 Amelx R: TGCATTGTAGTGGCTTCAAAA

7 Amelx F: AAGCAGTCCTCATGGACACC 55 372
7 Amelx R: TTAAGTTTCATTCAACACAAAGACA

1 Amtn F: CTGCAGCTAATAACCCACCTAATGA 55 636
1 Amtn R: AATTGACCTTTTACCACGATGGA

2 Amtn F: GGGCTGGCATTTTTCCACTCTACAT 56 437
2 Amtn R: TTTTCCCCACTCCCAAACGA

3 Amtn F: CGAGGCTTCATCTTTATTTACCTTC 58 306
3 Amtn R: CATTTGTGGATATACGCACCC

4 Amtn F: GCAATAGCCCTTGTAGTCGTAC 58 496
4 Amtn R: GCATGGTCAGTTCTCTGGGTATGTT

5 Amtn F: GGCATAGTAGCAGGCAACTGT 58 358
5 Amtn R: ACAAAGTACATTGGAAACCTCACAA

6 Amtn F: ATAGATCATAAGGCAGTTTAACATATT 54 373
6 Amtn R: TAGAAAAGTAGCTGGAGAAGTATAATG

7 Amtn F: CTCCATCTTTCCATTCCTACCCA 56 572
7 Amtn R: GAGTAAAAATATTCCCTCATGTTGCT

8 Amtn F: CTAAAGAATGATATGGATGCTCCTAAT 56 567
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Exon Gene Primer Sequence (5’(13’) T. (°C) Size (bp)
8 Amtn R: GAGACCAGAATTTGTCTTCACATTGC

3 Enam  F: TGTCAACATCGCCCTAGAA 55 595
3 Enam  R: GGATGACTGAGATCCCTTCC

4-5 Enam  F: TCCATACTCTCCTTGACAGACA 54 400
4-5 Enam R: TTCTCCTTTTTAGTAAATGTGTAGGAT

6 Enam F; TCAAGCATAAGTAGGAAAAGGTGA 55 377
6 Enam  R: TGTGAGAGGATAGGGGCAAT

7 Enam  F: GAGACAGCCTGAATCACAGC 58 361
7 Enam R: CGAGGCCATTTACAGATATGG

8 Enam  F: GATTGGAATCCTGGCTTCAG 61 552
8 Enam R: TGCACTGGTTTTGTTTCATACC

9 Enam  F: AATGGCGGCATCGAACGTGG 56 155
9 Enam R: TGGATTGTAATTTCTAGTGGAG

10a Enam  F: AACACCATGGTGGGAAACAAAG 58 573
10a Enam R: TTACGTTCCCAAGCAAAGAAGTTC

10b Enam F: ACAGAATAGGCCTTTTTACAGA 60 787
10b Enam R: ATATGGGTTATATTCAGGGTAGAA

10c Enam  F: CAAGAAGAACATTTACCCCATCCT 60 753
10c Enam R: CATGCCATAGTTCAAATTCTCACC

10d Enam  F: AGCTGGGCTTCAGAAAAATCCAAT 60 709
10d Enam R: AGATGGTCTTTGCTGTTGCCTCTC

10e Enam  F: CTCCAATCCAGAAGGCATCCAA 60 510
10e Enam R: CTCCACCTGGGTCGCTACTCCTAT

1 Klk4 F: TAACGTCCCAGAGGGAAGAA 57 310
1 Klk4 R: GCCATGGGGGACGGATAACA

2 Klk4 F: GGAGCCCTAGGCCTATATCC 55 395
2 Klk4 R: CTGAGTCCTTCCGAAGCAAG

34 Klk4 F: GTTGCCACAAAACTGACCTG 55 582
34 Klk4 R: GGCCCTGTGTGTCTCTGTCT

5 Klk4 F: CTTTCTGAGCCCACATCCAT 57 369
5 Klk4 R: GGGGATCTGTACCCTTGGTT

1 Mmp20 F: TACCCCATCATCAGGGAGAG 55 468
1 Mmp20 R: CCAGACACCAATCTAGGTGGA

2 Mmp20 F: CCCAAAACCAATCATCGTTA 55 594
2 Mmp20 R: GCCTGACGGATGGATGTAAA

3 Mmp20 F: TGTTGTTTCATATGCAGAAATTTAAC 52 399
3 Mmp20 R: CGAATTAAAGATGTAGAAGGAACAGTA

4 Mmp20 F: TTTTTCAATGGGCTGTTACTCA 53 485
4 Mmp20 R: CAACACAATTTGGGGTGGAT

5 Mmp20 F: CACCAAAGCTAAGTGCCAGA 55 468
5 Mmp20 R: CAGCTCTTCACAAGAAGGCATAG

6 Mmp20 F: GAAGCTGAGGCTTGCAAAGT 55 490
6 Mmp20 R: ACCACCCTTCTGCTGCATAG

7 Mmp20 F: AGGCAAGGCAAGAGCAAAG 55 414
7 Mmp20 R: TAGGGTGGCATTTCATACCC

8 Mmp20 F: ACTTTTGCCTCCAGGGAAGT 55 493
8 Mmp20 R: TCTGTAAATCGCACCCCAGT

9 Mmp20 F: TGGCACCACTACACTTCAGC 64.5 570
9 Mmp20 R: CAAACAAACAAACAAAAACTTTCC
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Exon Gene Primer Sequence (5°'(13’) T. (°C) Size (bp)
10 Mmp20 F: GACAAGCTAACTGCCACCTGA 55 831
10 Mmp20 R: AAGTGCCCATCTCTTGCCTA

2 Wdr72 F: TGCTTGTAATATTATCGGTTTCCTC 57 298
2 Wdr72 R: GCAAGTTGTCCGTATTTTGTGA

3 Wdr72 F: CAAAAACAACAGAATTTCCTAATCA 54 300
3 Wdr72 R: TCCTTCAGCCCTAAAATTGTATTC

4 Wdr72 F: AAAGAAAAACTTGGTGGCACA 51 226
4 Wdr72 R: TTTGCAAATGCCCTAAACAA

5 Wdr72 F: GAGAAATCTTCAATGTAGCCAAA 51 345
5 Wdr72 R: TTTCTGAATTTCTGCCCAAT

6 Wdr72 F: ACACAGCCCTGCGTAATTCT 51 277
6 Wdr72 R: TTTGAACTTTTGACAATAAACATGTAA

7 Wdr72 F: GGAAGCAGGTCTTCTCATGG 57 328
7 Wdr72 R: GACACATCATTCCATGTTCTGG

8 Wdr72 F: TGTATCCCCTGAAACCTACCC 58 495
8 Wdr72 R: AAGCCTACCAAGCCCAGAGT

9 Wdr72 F: TACAAAACAGCAGGGGATGG 53 483
9 Wdr72 R: TTTCTCTTTGGTAGCCATTGAT

10 Wdr72 F: AAAACAGTGGCCATCTCTCTCTA 57 298
10 Wdr72 R: TCCCATGCTGCTCAACTTAG

11 Wdr72 F: GGGAGGGTGCCTTGATATTT 56 400
11 Wdr72 R: TCTTGTTTAGTGCAGTCTGTTGAA

12 Wdr72 F: GAAGAGAATCTTGGGACGATTT 54 392
12 Wdr72 R: TTTTCTTTGGAAATATGGGTCA

13 Wdr72 F: AAATGGGGCTTTAACAAAACTT 52 398
13 Wdr72 R: CATCACCGTGTCTTCTCTGAA

14 Wdr72 F: TTGCAAGATACTAAGGCACGA 57 385
14 Wdr72 R: TGCATATAACTTCTTATTCGGTTGA

15a Wdr72 F: CCTTTAGCTGCTCTGCAATG 51 500
15a Wdr72 R: TTGATGGCTTAGGCTGCAT

15b Wdr72 F: CCTCTTTCAGCAGAGGCACT 59 682
15b Wdr72 R: CCCACTGGAAAGAAGGAAGG

16 Wdr72 F: TGGTCATGTACCCATATCTTTGA 54 267
16 Wdr72 R: TGACACTGCTAACCAGTTATAGAAAGA

17 Wdr72 F: ACAAAGCTTCCCAGGTGATT 54 300
17 Wdr72 R: TTCAAAGGCCATTTTATGAGG

18 Wdr72 F: ATTTAAATTCCGGGCTTTGG 51 380
18 Wdr72 R: AATCGAAAATCGTTCAGTTGC

19 Wdr72 F: TGGAACTGAAAGGAAATGTTTTA 51 300
19 Wdr72 R: GAAAACAGCATTACAATGTCCTC

20 Wdr72 F: CTCCCCTCCTCTTGGTCTTT 49 199
20 Wdr72 R: AAACAAATGGCATCTTTTGGA
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Table 2. SNPs associated with candidate genes
Reference SNP data of sequenced candidate genes from a family with autosomal recessive

amelogenesis imperfecta with the identified exon 8 mutation in Wdr72 (c.806_810delGGCAG).
IV5 & IV6, carriers; V1& V2, unaffected; V3-V5, affected. Plus sign (+), major allele; Minus sign
(-), minor allele.

Gene Chr. Loc. Ref. SNP RefSeqGene IV5 IV6 V1 V2 V3 V4 V5
Ambn 4921 rs3924573 NC_000004.11 +/- +/+ +/- +/+ +/+ +/- +/-
Ambn 4921 rs71599963 - 4+ H- H+ H+ H- +H-
Ambn 4921 rs35266919 +- [+ H- A+ [+ - 4
Amitn 4913.3 rs35692424  NC_000004.11 +/+ +/- +/- +/+ +/+ +/- +/-
Amin 4q13.3 rs7660807 - - A+ - - H+ 4
Amitn 4913.3 rs3912755 - H+ 4+ [+ - -
Amtn 4913.3 rs17733287 -+ A+ H+ 4 -
Amitn 4q13.3 rs201205218 -+ A+ -+ A
Amtn 4913.3 rs17676820 S s s b
Enam 4913.3 rs3796703 NG 013024.1 +/+ +/- +/+ +/- +/- +/+ +/+
Klk4 19913.41 rs2978642 NG 0121541 +/- +/- +/+ /- +/+ +/- +/-
Kilk4 19q13.41 rs73042387 +H+  +- [+ H- [+ - -
Mmp20 11922.3 rs2245803 NG_0121511 -/~ /- - -~ - -~ -/-
Mmp20 11922.3 rs1784423 R e SR R &
Mmp20 11922.3 rs1784424 R S R &
Mmp20 11q922.3 rs1940054 +-  H+ H- A+ H- 4 -
Mmp20 11922.3 rs7934921 +- M+ 4[- [+ H- - -
Wdr72  15q21.3 rs690337 NG _017034.1 +/- -[- +/- +- - -~ -/-
Wdrr2  15921.3 rs551225 -+ - A+ A+ A+
Wdr72  15921.3 rs552960 - 4+ H- H- o H+ H+ A+
Wdr72  15921.3 rs6416452 R S
Wdr72  15q921.3 rs74018741 +- - H+ A+ - - -
Wdr72  15q21.3 rs78493456 +- - H+ A+ - o[- -
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MATERIALS AND METHODS

Mutation screening

A consanguineous family exhibiting hypomature phenotypes of autosomal recessive inheritance
Amelogenesis Imperfecta (Al) was examined at the UCSF pediatric dental clinic and screened
for mutations using a candidate gene approach. DNA samples of the probands and all
immediate family members were obtained using Oragene®DNA sample collection kit (DNA
Genotek, Inc., Ontario, Canada) with approval by the UCSF Committee on Human Research.
Forward and reverse primers were designed within introns to flank coding regions and potential
splice sites in ameloblastin (Ambn), amelogenin (AmelX), amelotin (Amtn), enamelin (Enam),
kallekrein-related peptidase 4 (Klk4), matrix metalloproteinase-20 (Mmp20), and WD repeat-
containing protein 72 (Wdr72) (Table 1). Polymerase chain-reaction (PCR) amplifications of
these candidate genes were performed using taq polymerase (Invitrogen, Carlsbad, CA), and
sequencing was conducted at Elim Biopharmaceuticals (Hayward, CA). DNA sequence
assemblies and SNP analyses (Table 2) were performed and documented with CodonCode

Aligner software (Centerville, MA).

Protein structure modeling

The WDR72 sequence was downloaded with accession identifier Q3MJ13 from the UniProt
knowledgebase. To generate atomic models for WDR72 wild type and mutant structures, we
applied the iterative threading assembler (I-TASSER) *® and the restraint-based comparative
modeling program MODELLER-v9.10 '? with alignments generated by the profile alignment
homology alignment algorithm HHpred #°. Models were generated with the automated modeling

pipelines accessible through the I-TASSER webserver (http://zhanglab.ccmb.med.umich.edu/I-

TASSER/) #*** and the bioinformatics toolkit (http:/toolkit.tuebingen.mpg.de/hhpred) *°;

respectively. These two pipelines model diverse crystallized proteins with an average structural
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alignment GDT-TS measure (range 0—100) "*°

of 70 in blinded assessments, outperforming all
other automated protein structure prediction tools '*'. To verify double seven-bladed B propeller

fold topology for WDR72, we applied the B-propeller blade structural motif algorithm SMURF “8.

WDR72 oligomer models were generated with the multi-scale modeling and structural
comparison tools in Chimera '*2 by comparison of monomer models to crystallographic

structures of structurally homologous protein oligomers found by HHpred.

Knockout mouse generation

The Wdr72 knockout mouse strain used in this study was created from an ES cell clone
(EPD0085_5 DO06) generated by the Welcome Trust Sanger Institute and injected into a
pregnant female mouse blastocyst by the KOMP Repository and the Mouse Biology Program at
the University of California, Davis. The Wdr72 mutant allele (Wdr72") was created using a
‘knockout first conditional ready’ approach using previously published methods *', generating a
functional knockout through splicing in LacZ gene reporter and Neomycin (Neo) selection
cassettes (Fig. 1.2A). The targeting vector incorporated an En2 splice acceptor (SA) and
internal ribosome entry site (IRES) upstream of LacZ, followed by a polyadenylation (pA) signal.
A loxP site separated the LacZ cassette from the subsequent Neo resistance cassette, which
was driven by an autonomous promoter (hBactP) and pA signal. Flippase recognition target
(FRT) sites flanked both LacZ and Neo cassettes, all of which was inserted between exons 2
and 3. Two additional loxP sites were introduced on either side of exon 3.

Wdr72*" heterozygous mice (Wdr72*") on a C57BL/6 genetic background were purchased and
subsequently bred to generate the knockout (Wdr727") and wild-type (Wdr72**) mice used in
these experiments. Genotypes of mice were determined by standard and quantitative PCR

(Transnetyx, Cordova, TN) using genomic DNA obtained from tail biopsies with forward
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primers: NeoF-GGGATCTCATGCTGGAGTTCTTCG, F-TCTTTCACCTAAGCAACACATGCGG,
and reverse primer R-GAAACCCGGAGATGAAGGAATGTGC. Amplicon sizes

of Wdr72* and Wdr72" alleles were 520 and 633 bp, respectively.

Animal use, husbandry, and genotyping

Mice were bred and housed in accordance with UCSF Institutional Animal Care Committee
(IACUC) guidelines. 2-5 mice were housed together on a 12-hr light/dark schedule with
constant access to food and water. Wdr72”~ mice were generated as described in the previous
section. Wdr72"~ male and female mice were used to generate breeding pairs, which produced
litters of a mixture of Wdr72"*, Wdr72*~, and Wdr72”~ genotypes to be used for experiments.
Only mice from the same litter were compared to one another when evaluating similarities and

differences.

Micro-computed tomography (microCT)

Mineral density levels of 6-week-old undecalcified Wdr72** (n = 3) and Wdr72™" (n = 3) murine
hemimandibles were scanned and compared by microCT (SkyScan1076; Bruker-microCT,
Kontich, Belgium). X-ray source operating settings were set to 50 kV and 160 pA and image
reconstitution was carried out with NRecon software (Bruker-microCT). Using Amira software
(ver 1.4.1 SkyScan), coronal sections perpendicular to the curve of the incisor and in line with
the midsagittal plane of the incisor were selected from 3D reconstructions for quantitative
densitometry (g/cm?) analyses. We compared Wdr72"* and Wdr72™~ coronal sections
landmarked at either the mesial root of the first molar (maturation stage) or the distal root of the
third molar (secretory stage) with indexed and normalized gray scale levels (range 0-255). A
region of interest (ie. enamel, dentin or alveolar bone) was selected from each coronal section

and quantified for mineral density by measuring the average of relative gray values at each pixel
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within the selected region (ImageJ, ver 1.46r). These gray value outputs were then averaged
across samples and compared by paired Students' t-tests with a statistical significance

threshold of P < 0.05.

Histology

Dissected Wdr72"*, Wdr72"~, Wdr72™", KIk4*"~, and KIk4”~ maxillae and mandibles at P10 and
adult ages were immediately immerse-fixed in 4% paraformaldehyde (PFA)/0.06 M cacodylate
buffer (pH 7.3) overnight and decalcified in 8% EDTA (pH 7.2) for two weeks at 4 °C. Samples
were then dehydrated and paraffin-processed for routine embedding and sectioning. Sagittal
incisor sections at 5 um were utilized for standard hematoxylin and eosin (H&E) staining or for

immunohistochemistry.

Immunostained tissue sections were deparaffinized and rehydrated, followed by incubation with
10% swine serum for blocking. Primary antibodies targeting WDR72, amelogenin, CLC5,
RAB4A, LAMP1, clathrin, Dynamin Il, ANXAS8, or v-ATPase subunit vOa1 were incubated at

25 °C overnight, followed by a biotinylated secondary antibody (Dako, Carpinteria, CA) at 25 °C
for 1 hr. Alkaline phosphatase conjugated to streptavidin (Vector Laboratories Inc., Burlingame,
CA) was used to visualize the colorimetric reaction. Sections were then counterstained using

methyl green (Dako, Carpinteria, CA).

The polyclonal rabbit anti-WDR72 antibody was synthesized by Genscript (Piscataway, NJ)
from a synthetic peptide (CETGTLERHETGERA) as previously described 22, and was used at a
2.7 yg/mL concentration. The rabbit anti-amelogenin antibody (1:500 dilution) was developed in
our laboratory as previously described ®>'**, Purchased antibodies and their concentrations
used in this study included the following: polyclonal rabbit anti-CLC5 (Novus Biologicals,

Littleton, CO) (NBP1-70374) at a 1:800 dilution; polyclonal rabbit anti-RAB4A (Santa Cruz
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Biotechnology, Santa Cruz, CA) (sc-312) at 1 yg/mL concentration; polyclonal rabbit anti-vOa1
(Aviva Systems Biology, San Diego, CA) (ARP46581-P050) """ at 2.5 ug/mL concentration. The
monoclonal rat anti-LAMP1 antibody (1D4B; 1 ug/mL concentration) developed by J. Thomas
August was obtained from the Developmental Studies Hybridoma Bank under the auspices of
the NICHD and maintained by the University of lowa, Department of Biology (lowa Cita, IA
52242). Dynamin Il (Santa Cruz Biotechnology, CA) (5E4C2F3, sc-81150) mouse monoclonal
antibody was used with Vector mouse on mouse (M.O.M.) kit (Vector Laboratories, Inc,
Burlingame, CA) (BMK-2202) and visualized using the alkaline phosphatase substrate kit
(Vector Laboratories) (SK-5100). Goat polyclonal antibody to clathrin heavy chain (Santa Cruz
Biotechnology, CA) (C-20, sc-6579) was used at a concentration of 1ug/mL. Rabbit polyclonal
antibody to annexin-A8 (Thermo Fisher Scientific) (PA5-31479) was used at 1:500 dilution. V-
ATPase was used at a concentration of 1ug/mL (Aviva) (ARP46581-P050), targeting voa+
subunit, as previously done "2, For immunofluorescent sections, conjugated primary antibody
Qdot 525 FITC streptavidin conjugate (Life Technologies) (Q10143MP) was used and were

subsequently counterstained with Hoescht DAPI stain (Invitrogen, H3570) at 1:10,000 dilution.

Negative controls were performed with normal rabbit IgG (Vector Laboratories Inc., Burlingame,
CA) (I-1000) at matching concentrations to the experimental diluted primary antibodies.
Histological images were taken with a Nikon Eclipse E3800 microscope (Melville, NY) using a

digital camera (QImaging Inc., Surrey, Canada) and SimplePCl imaging software version 5.3.1.

KLK4 protease assay

Dissected mandibular and maxillary first molars and incisors containing endogenous KLK4.
Proteolytic activity of KLK4 protein from each mouse was analyzed by digestion of a fluorogenic
peptide substrate, Boc-V-P-R-AMC (R&D Systems). The SpectraMax iD3 fluorescence plate

reader (Molecular Devices) with excitation at 380 nm and emission at 460 nm was used for the
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measurement of the enzymatic activity. Fluorescent readouts measuring KLK4 activity were

recorded every minute for 150 minutes.

Horseradish peroxidase tracer experiment

Wdr72"*, Wdr72*", and Wdr72™~ mice were anesthetized subcutaneously with tribromoethanol
to surgically expose the deltopectoral muscle and jugular vein. Seven units (0.7mL) of 5% HRP
(Sigma-Aldrich, MO) (P9250-25KU) in 0.9% saline were injected into the jugular vein through
the deltopectoral groove at the intersection of the jugular and axillary veins via a 31 gauge
needle at a rate of 7 units per minute. 0.9% saline solution was injected into control mice
serving as a negative control. Mice were kept under general anesthesia for 15, 30 or 60
minutes, prior to collecting tissue samples. Dissected Wdr72"*, Wdr72*~, and Wdr72”~ maxillae
and mandibles were immediately immerse-fixed in 4% paraformaldehyde (PFA)/0.06 M
cacodylate buffer (pH 7.3) overnight and decalcified in 8% EDTA (pH 7.2) for two weeks at 4 °C.
Samples were then incubated twice in 30% sucrose at 25°C for 15 minutes, acclimated in
optimum cutting temperature (O.C.T.) compound (Tissue-Tek) (Sakura Americas) for 5 minutes,
and flash-frozen in hexane and dry ice. Tissue blocks were cryosectioned using a Leica cryostat
machine (CM3050 S) at 7um (CT = -17°C, OT = -25°C) and placed on UV CryoJane slides
(Leica Microsystems Inc, IL) (39475209). Slides were then exposed to the CryoJane Tape-
Transfer system (Leica Microsystems Inc, IL), and stained with TSA Plus fluorescein (Sigma,
D5879) stain at 1:100 dilution, LAMP1 antibody (described above) with donkey anti-Rat Alexa
555 (abcam, ab150154) at 1:400 dilution, and counterstained with Hoescht DAPI stain
(Invitrogen, H3570) at 1:10,000 dilution. Histological images were taken with an inverted
confocal microscope (Leica Microsystems, DMi8) using Leica Application Suite X imaging

software under the following settings: 63X, 1024x1024, speed 400, 1.4% DAPI [410-502], 0.2%
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488 green [512-541], 1.9% 522 red [587-755]; 900V gain, 0.0% smart offset, 1.00 AV pinhole.

All images and z-stacks were then processed using Fiji plug-ins and ImageJ '34-1%,

RNA isolation and quantitative real-time PCR from whole tissues

Total RNA was isolated from dissected flash-frozen kidneys and from micro-dissected secretory
and maturation-stage ameloblasts of Wdr72** and Wdr72™~ mice at postnatal day 24 using
RNeasy Mini kit (QIAGEN, Germantown, MD). Aliquot containing 20 pg of total RNA was
reverse transcribed to cDNA using SuperScript® Ill Reverse Transcriptase and oligo dT primers
(Invitrogen, Carlsbad, CA). For kidney samples, polymerase chain reaction amplification for
standard PCR was performed with the Hot Start Taq kit (Qiagen) by first incubating the reaction
mixture at 95° for 5 min, followed by 94 °C, 57 °C, and 72 °C for 1 min each for 35 cycles and
then 72 °C for 10 min. The primers used flanked the exon—exon boundaries surrounding exon
14 of the Wdr72 transcript (ENST00000360509), targeting the epitope region to where our
WDRY72 antibody would recognize. Primers were designed using Frodo

(http://frodo.wi.mit.edu/primer3/) '*"'*8 The products were visualized on a 1.6% agarose gel

with SYBR GREEN staining (Invitrogen, Carlsbad, CA). Real-time PCR gene expression was
characterized by quantitative PCR using the ABI 7500 system (Applied Biosystems, Carlsbad,
CA). cDNA was amplified with the Fast Start SYBR Green master mix (Roche, Indianapolis, IN).
Relative expression levels of target genes were analyzed by the delta-Ct method as published

previously '*° using GAPDH or 18S as endogenous controls.

For measuring Klk4 expression, adult mice were euthanized by CO- asphyxiation, and dissected
whole mandibular incisors or first molars from maxillae and mandibles and placed into Qiazol
lysis buffer (Qiagen) (79306) on ice until processed. Samples were then vortexed every 30
seconds over a 5 minute time period at 25°C. Chloroform was added and samples were again

vortexed for 15 seconds and allowed to rest for 2-3 minutes. After centrifugation at 4°C at
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12,000xg for 15 minutes, the clear extract was placed into a new tube containing equal volume
of 70% ethanol. Samples were then vortexed immediately for 5 seconds and spun down and the
clear extract/ethanol mixture was added to a Qiagen RNA mini column for spin down at
12,000xg. Subsequent steps involved following the Qiagen RNA mini handbook to purify the
RNA. Total RNA concentrations were measured using a Nanodrop spectrophotometer
(Nanodrop Technologies, ND-1000 C253), and samples were stored in RNAse-free water at -

80°C.

Aliquot containing 20 pg of total RNA was reverse transcribed to cDNA using SuperScript®
Reverse Transcriptase and oligo dT primers (Invitrogen, Carlsbad, CA). Polymerase chain
reaction amplification for standard PCR was performed with the Hot Start Taq kit (Qiagen) by
first incubating the reaction mixture at 95° for 5 min, followed by 94 °C, 57 °C, and 72 °C for

1 min each for 35 cycles and then 72 °C for 10 min. The primers targeted Kik4. Primers were

designed using Frodo (http://frodo.wi.mit.edu/primer3/) **"'3¢ The products were visualized on a

1.6% agarose gel with SYBR GREEN staining (Invitrogen, Carlsbad, CA). Real-time PCR gene
expression was characterized by quantitative PCR using the ABI 7500 system (Applied
Biosystems, Carlsbad, CA). cDNA was amplified with the Fast Start SYBR Green master mix
(Roche, Indianapolis, IN). Relative expression levels of target genes were analyzed by the

delta-Ct method as published previously "*° using GAPDH or 18S as endogenous controls.

Western Blotting

Dissected tissues or cells were rinsed with PBS, trypsinized, spun down, and lysed in RIPA
buffer and protease inhibitor cocktail. Supernatant was collected total protein concentrations
were measured using the BCA protein assay kit (Thermo Scientific) (23225). Samples were

mixed with 6X SDS and ran in a mini protean TGX 4-20% gel (Bio-Rad, CA) for 2 hrs at 120V at
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25°C in electrophoresis buffer. iBlot was used for gel transfer, using setting P3 at 7 minutes.
The membranes were blocked using Odyssey Blocking buffer (LI-COR, NE) at 25°C for 1 hr on
a shaker and incubated with anti-beta-actin mouse monoclonal antibody at 1:2500 dilution or
anti-WDR72 polyclonal antibody at 1:1000 dilution. Membranes were washed and incubated in
Odyssey goat anti-rabbit IRDye 800 Green (926-32211) and goat anti-mouse IRDye 680Red

(C21024-02) secondary antibodies (LI-COR, NE).

Transmission electron microscopy

Young-adult mice were anesthetized in tribromoethanol in 0.9% NaCl and perfused with fresh
3% PFA and 2.5% glutaraldehyde in 0.06M Cacodylate buffer (pH 7.3). Mandibles and maxillae
were dissected and further immerse-fixed in the same fixatives at 4°C overnight. Following rinse
in 0.06M cacodylate buffer, the mandibles and maxillae were decalcified in 8% EDTA (pH 7.3)

supplemented with 1% glutaraldehyde at 4°C under constant agitation for two weeks.

Samples were then post-fixed with 1% osmium tetroxide in 0.06 M cacodylate buffer (pH 7.3) for
2h at 4°C and dehydrated through graded ethanols and embedded in LR white acrylic resin
(London Resin Company, Reading, UK). One-micrometer-thick semi-thin sections were
obtained for Toluidine Blue staining and light microscopic observation. An area where
ameloblasts were immediately after the transition stage was chosen for ultrathin sectioning (80—
100 nm). The ultrathin sections were placed on FormvarTM- and carbon-coated nickel grids,
double stained with UAR-EMS Uranyl Acetate Replacement Stain (Electron Microscopy
Sciences, Hatfield, PA) and 3% lead citrate, and examined under the FEI Tecnai G2
transmission electron microscope (Thermo Fisher Scientific Electron Microscopy, Hillsboro, OR)

at an acceleration voltage of 80kV.
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Cell culture protocols for ameloblast-like cells

ALCs of passage 22 were generously provided as a kind gift from Dr. Toshihiro Sugiyama, Akita
University, Japan, and Dr. John Bartlett, The Ohio State University. Cells that had been stored
in -80°C in cell culture freezing medium (Gibco, 12648-010) were thawed at 37°C and placed in
new DMEM (DME H-16) supplemented with 1g/L glucose, 0.11g/L Na Pyruvate, 0.4g/L L-
glutamine, and 3.7g/L NaHCO3 (UCSF Cell Culture Facility CCFAA001-166L01) and 10% fetal
bovine serum (FBS) (Gemini Gemcell, 100-500) and 1% penicillin and 1% streptomycin. Cells
were then spun down at 1.2 rcf for 5 minutes and resuspended in fresh media to be plated in T-
25 flasks (Thermo Fisher Scientific, MA). Media was changed daily or every other day for 1
week, after which they were approximately 60% confluent and were re-passaged and expanded
to generate the cell culture line. Re-passaging included the following steps: removal of media,
trypsinization for 3 minutes at 37°C, resuspended in media, measurement of cell concentration
to approximately 70,000 cells/mL using Trypsin Blue and cell counter, and replating onto new T-

75 flasks (Thermo Fisher Scientific, MA).

Cells used for storage were grown to 80-90%. Once media was removed, cells were rinsed with
PBS and trypsinized for 3 minutes at 37°C. New media was recombined with 0.05% trypsin and
placed into 15mL Falcon tubes to be spun down at 1.2 rcf for 5 minutes. After decanting

trypsin/media mixture, cells were resuspended in 1 mL of freezing media (Gibco, 12648-010) for

3 minutes at 37°C and placed in cryobox containing isopropanol at -80°C.

Wdr72-deficient ameloblast-like cell generation using CRISPR/Cas9
Ameloblast-like cells were grown to 70% confluence to be transfected. Cells were then
incubated at 37°C for 72 hours with serum-free media, 2.5uM sgRNA transfection complex,

100ng/puL Edit-R EGFP fluorescent Cas9Nuclease mRNA (Dharmacon, CAS11860), and
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transfection reagent. sgRNA transfection complexes (crRNA : tracrRNA in 10mM Tris Buffer, pH
7.4) were formed using either Edit-R crRNA Non-targeting Control #1 (U-007501-01-05) as a
negative control, Edit-R-Ppib synthetic crRNA Control (U-007100-01-05) as a positive control
targeting GTATACTTTGATTTACAAAT sequence, or Edit-R Mouse Wdr72 (546144) crRNA
(CM-068518-01-002) targeting AATATCCCAGAGGATCACAT at mm10|-chr9:74155036-
74155058 AGG, Accession NM_001033500.3 (exon 12), combined with Edit-R CRISPR-Cas9
Synthetic tracrRNA (U-002005-20). crRNAs targeting Wdr72 at exons 8 & 14 were also

performed, however, analysis of those knockout cells were not analyzed in this dissertation.

Following treatment with CRISPR/Cas9, cells were grown to 80% confluence in DMEM
supplemented with FBS and penicillin and streptomycin, as previously described (see above).
Following rinsing, trypsinization, and re-suspension, cells were single-cell sorted at the PFCC
flow cytometry core facility at Parnassus, UCSF (DRC Center Grant NIH P30 DK063720), using
the Aria Fusion machine (NIH S10 1S100D021822-01). Cells were gated for green
fluorescence protein (GFP) and viability and subsequently plated as single-cells in 96-well
plates. For the following two weeks, cells were monitored for single-colony growth in culture
media and expanded for DNA sequencing verification. DNA was first purified using QIAquick
PCR Purification Kit (Qiagen Sciences, Louisville, KY) (28104), and verification of cell knockout

lines were performed using Sanger Sequencing.

Live cell imaging of amelogenin endocytosis

Control and knockout cell clones were grown to 70% confluence at equivalent cell densities on
35mm glass bottom dishes No. 0 (MatTek) (P35GC-0-14-C/H), then starved in serum-free
media for 24 hours to facilitate endocytosis. Following starvation, 1uL of 1Tmg/mL rAMG 20kD
labeled with Alexa Fluor 594 Microscale Protein Labeling Kit (Thermo Fisher Scientific, MA)

(A30008) was added to media for 30 minutes. Synthesis and purification of recombinant
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amelogenin 20kD purification (rAMG 20kD) was performed as previously published °. A
solution of Hoescht DAPI stain (Invitrogen, H3570) and LysoTracker Green DND-26 (Life
Technologies, CA, L7526) in 1X PBS/FBS were incubated with cells for 5 minutes. All cell
groups were rinsed 3 times, and imaged under confocal microscopy for 45, 60, 90, and 135

minutes after rAMG 20kD was added.

Enamel matrix staining for modulation and pH changes

Adult mice were anesthetized with avertin in 0.9% NaCl, and maxillary and mandibular incisors
were dissected on ice. Dissected incisors were either incubated in Universal pH indicator
(Fisher Chemical, M21137) or in glyoxal-bis (2-hydroxyanil) (Santa Cruz Biotechnologies, CA)
(SC-250064) in a solution of 3.4% NaOH in 75% ethanol. Once immersed in solution, the
enamel organ was gently removed using a microbrush. All incisors were incubated for 3-5

minutes and rinsed in 100% ethanol until excess dye was removed, dried, and imaged.

Quantitative fluorescence-based vesicle acidification assay and imaging

Control and knockout cell clones were grown on either 96-well plates or 35mm glass bottom
dishes No. 0 (MatTek) (P35GC-0-14-C/H) to undergo one of the following groups: no treatment
(media only), 50 nM bafilomycin, or 50 nM bafilomycin plus a 3-hour washout. Cells in 96-well
plates were used for quantification of fluorescence, while those in dishes were imaged under

confocal microscopy for qualitative assessment.

Control and knockout cells used for quantification were incubated with either media only, 50 nM
bafilomycin A1 (Sigma-Aldrich, MO) (SML1661) for 1 hour, or 50 nM bafilomycin A1 for 1 hour
that was then washed out for 3 hours. All cell groups were labeled with a mixture of DAPI and

LysoTracker for 10 minutes, then rinsed three times in PBS and lysed in 200 pL of RIPA lysis
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buffer (50mM Tris-HCL, pH 7.4; 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1%
SDS). The lysate was then transferred into a black 96-well plate (Corning, Corning, NY), and
fluorescence released into the medium was immediately read using a SpectraMax iD3
fluorescence plate reader (Molecular Devices) with 0.4-s integration time, at 500/565 nm for
LysoTracker and 350/461 nm for DAPI. Total green fluorescence values (number of vesicles)
were normalized to total blue values (cell number), and then to the untreated control (media
only). Statistical significance was determined by one-way analysis of variance (ANOVA). P-

values < 0.05 were considered significant.

Control and knockout cells used for confocal imaging were performed in quadruplicate biological
replicates incubated under the same conditions as quantitative studies performed and imaged
using an inverted confocal microscope (Leica Microsystems, DMi8) with Leica Application Suite

X imaging software and processed using Fiji plug-ins and ImageJ 3713,

Immunocytochemistry of alpha-tubulin and F-actin

Control and knockout cell clones were grown to 70% confluence and rinsed with microtubule
stabilizing buffer (MSTB) with 0.5% glutaraldehyde for 30 minutes. Cells were then
permeabilized with MSTB / 0.5% Triton X at 25°C for 60 minutes, rinsed 3 times with PBS, and
labeled with primary mouse anti-chick tubulin antibody (Thermo Fisher Scientific, MS-581,
DM1A). M.O.M. biotinylated anti-mouse 1gG / M.O.M. diluent was used as the secondary
antibody for 10 minutes, followed by streptavidin 594 (DYlight, SA5594) at 1:100 dilution in the
dark for 30 minutes. Phalloidin AF 488 green was used to label F-actin and was incubated with
cells for 20 minutes in the dark. Cells were then counterstained with Hoescht DAPI stain

(Invitrogen, H3570) at 1:10,000 dilution for 15 minutes and imaged under confocal microscopy.

81



REFERENCES

1.

2.

10.

11.

12.

Nanci, A. Ten Cate’s Oral Histology: Development, Structure, and Function. (2012).
Warshawsky, H. & Smith, C. E. Morphological classification of rat incisor ameloblasts.
Anat. Rec. 179, 423-446 (1974).

Bartlett, J. D. Dental Enamel Development: Proteinases and Their Enamel Matrix
Substrates. ISRN Dent. 2013, 684607 (2013).

Smith, C. E., Pompura, J. R., Borenstein, S., Fazel, A. & Nanci, A. Degradation and loss
of matrix proteins from developing enamel. Anat. Rec. 224, 292-316 (1989).

E J Reith, A. B. The arrangement of ameloblasts on the surface of maturing enamel of
the rat incisor tooth. J. Anat. 133, 381 (1981).

Lu, T. et al. Whole exome sequencing identifies an AMBN missense mutation causing
severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int. J. Oral
Sci. 10, 26 (2018).

Poulter, J. A. et al. Deletion of ameloblastin exon 6 is associated with amelogenesis
imperfecta. Hum. Mol. Genet. 23, 5317-5324 (2014).

Hu, J. C. C., Chun, Y.-H. P., Al Hazzazzi, T. & Simmer, J. P. Enamel formation and
amelogenesis imperfecta. Cells. Tissues. Organs 186, 78-85 (2007).

Wright, J. T. et al. Amelogenesis Imperfecta: Genotype-Phenotype Studies in 71
Families. Cells Tissues Organs 194, 279-283 (2011).

Parry, D. A. et al. Identification of mutations in SLC24A4, encoding a potassium-
dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta. Am. J.
Hum. Genet. 92, 307-312 (2013).

Ding, Y. et al. Fam83h is associated with intracellular vesicles and ADHCAI. J. Dent. Res.
88, 991-996 (2009).

Wright, J. T. et al. Phenotypic variation in FAM83H-associated amelogenesis imperfecta.

J. Dent. Res. 88, 356-360 (2009).

82



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Wang, S.-K. et al. ITGB6 loss-of-function mutations cause autosomal recessive
amelogenesis imperfecta. Hum. Mol. Genet. (2013). doi:10.1093/hmg/ddt611

Mohazab, L. et al. Critical role for av36 integrin in enamel biomineralization. J. Cell Sci.
126, 732—-44 (2013).

Poulter, J. A. et al. A missense mutation in ITGB6 causes pitted hypomineralized
amelogenesis imperfecta. Hum. Mol. Genet. 23, 2189-2197 (2014).

Lee, K.-E. et al. Novel LAMB3 mutations cause non-syndromic amelogenesis imperfecta
with variable expressivity. Clin. Genet. (2014). doi:10.1111/cge.12340

Kim, J.-W. et al. LAMB3 mutations causing autosomal-dominant amelogenesis
imperfecta. J. Dent. Res. 92, 899-904 (2013).

Poulter, J. A. et al. Whole-exome sequencing, without prior linkage, identifies a mutation
in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta. Eur. J. Hum.
Genet. 22, 132-135 (2014).

Kantaputra, P. N. et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am. J.
Med. Genet. A 164, 1-9 (2014).

Wang, S.-K. et al. FAM20A Mutations Associated with Enamel Renal Syndrome. J. Dent.
Res. 93, 42-48 (2014).

Parry, D. A. et al. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite
crystal nucleation and growth activity, cause amelogenesis imperfecta. Am. J. Hum.
Genet. 91, 565-571 (2012).

El-Sayed, W. et al. Mutations in the beta propeller WDR72 cause autosomal-recessive
hypomaturation amelogenesis imperfecta. Am. J. Hum. Genet. 85, 699—-705 (2009).
Lee, S.-K. et al. Novel WDR72 mutation and cytoplasmic localization. J. Dent. Res. 89,
1378-1382 (2010).

Parry, D. A. et al. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68

Cause Amelogenesis Imperfecta. Am. J. Hum. Genet. (2016).

83



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

doi:10.1016/j.ajhg.2016.08.020

Kantaputra, P. N., Matangkasombut, O. & Sripathomsawat, W. Split hand-split foot-
ectodermal dysplasia and amelogenesis imperfecta with a TP63 mutation. Am. J. Med.
Genet. A 158A, 188-192 (2012).

Schossig, A. et al. SLC13A5 is the second gene associated with Kohlschiitter-Ténz
syndrome. J. Med. Genet. jmedgenet-2016-103988 (2016). doi:10.1136/jmedgenet-2016-
103988

Yuen, W. Y., Pasmooij, A. M. G., Stellingsma, C. & Jonkman, M. F. Enamel defects in
carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. Acta Derm.
Venereol. 92, 695-696 (2012).

Kuechler, A. et al. A Novel Homozygous WDR72 Mutation in Two Siblings with
Amelogenesis Imperfecta and Mild Short Stature. Mol. Syndromol. 3, 223-229 (2012).
Rungroj, N. et al. Distal renal tubular acidosis caused by tryptophan-aspartate repeat
domain 72 (WDR72) mutations. Clin. Genet. 94, 409-418 (2018).

Wright, J. T., Carrion, I. A. & Morris, C. The molecular basis of hereditary enamel defects
in humans. J. Dent. Res. 94, 52-61 (2015).

Thierry-Mieg, D. & Thierry-Mieg, J. (No Title). Genome Biol. 7, S12 (2006).

El-Sayed, W., Shore, R. C., Parry, D. A,, Inglehearn, C. F. & Mighell, A. J.
Hypomaturation amelogenesis imperfecta due to WDR72 mutations: a novel mutation
and ultrastructural analyses of deciduous teeth. Cells. Tissues. Organs 194, 60—66
(2011).

Vasan, R. S. et al. Genome-wide association of echocardiographic dimensions, brachial
artery endothelial function and treadmill exercise responses in the Framingham Heart
Study. BMC Med. Genet. 8 Suppl 1, S2--S2 (2007).

Kéttgen, A. Genome-wide association studies in nephrology research. Am. J. Kidney Dis.

56, 743-758 (2010).

84



35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Paterson, A. D. et al. A genome-wide association study identifies a novel major locus for
glycemic control in type 1 diabetes, as measured by both A1C and glucose. Diabetes 59,
539-549 (2010).

Hertel, J. K. et al. Evaluation of four novel genetic variants affecting hemoglobin A1c
levels in a population-based type 2 diabetes cohort (the HUNTZ2 study). BMC Med.
Genet. 12, 20 (2011).

Leblanc, M. et al. Genome-wide study identifiesPTPROandWDR72andFOXQ1-
SUMO1P1interaction associated with neurocognitive function. J. Psychiatr. Res. 46, 271—
278 (2012).

Franceschini, N. et al. Generalization of associations of kidney-related genetic loci to
American Indians. Clin. J. Am. Soc. Nephrol. 9, 150-158 (2014).

Katsura, K. A. et al. WDR72 models of structure and function: A stage-specific regulator
of enamel mineralization. Matrix Biol. 38, 48-58 (2014).

Hentschel, J. et al. Identification of the first multi-exonic WDR72 deletion in isolated
amelogenesis imperfecta, and generation of a WDR72-specific copy number screening
tool. Gene 590, 1-4 (2016).

Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of
mouse gene function. Nature 474, 337-344 (2011).

Galy, B., Ferring, D., Benesova, M., Benes, V. & Hentze, M. W. Targeted mutagenesis of
the murine IRP1 and IRP2 genes reveals context-dependent RNA processing differences
in vivo. RNA 10, 1019-1025 (2004).

Zhang, Y. Template-based modeling and free modeling by I-TASSER in CASP7. Proteins
69 Suppl 8, 108-117 (2007).

Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein
structure and function prediction. Nat. Protoc. 5, 725-738 (2010).

Sdding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology

85



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

detection and structure prediction. Nucleic Acids Res. 33, W244--8 (2005).

Lee, C. & Goldberg, J. Structure of Coatomer Cage Proteins and the Relationship among
COPI, COPIl, and Clathrin Vesicle Coats. Cell 142, 123-132 (2010).

Field, M. C., Sali, A. & Rout, M. P. Evolution: On a bender--BARs, ESCRTs, COPs, and
finally getting your coat. J. Cell Biol. 193, 963-972 (2011).

Menke, M., Berger, B. & Cowen, L. Markov random fields reveal an N-terminal double
beta-propeller motif as part of a bacterial hybrid two-component sensor system. Proc.
Natl. Acad. Sci. U. S. A. 107, 4069-4074 (2010).

Leblond, C. P. & Warshawsky, H. Chapter VIII Dynamics of Enamel Formation in the Rat
Incisor Tooth. (1979).

Hart, P. S. et al. Mutation in kallikrein 4 causes autosomal recessive hypomaturation
amelogenesis imperfecta. J. Med. Genet. 41, 545-549 (2004).

Kim, J.-W. et al. MMP-20 mutation in autosomal recessive pigmented hypomaturation
amelogenesis imperfecta. J. Med. Genet. 42, 271-275 (2005).

Barron, M. J. et al. A mutation in the mouse Amelx tri-tyrosyl domain results in impaired
secretion of amelogenin and phenocopies human X-linked amelogenesis imperfecta.
Hum. Mol. Genet. 19, 1230-1247 (2010).

Smith, C. E. Ameloblasts: secretory and resorptive functions. J. Dent. Res. 58, 695-707
(1979).

Gibson, C. W. The Amelogenin Proteins and Enamel Development in Humans and Mice.
J Oral Biosci. 53, 248-256 (2011).

Nanci, A. et al. Comparative Immunochemical Analyses of the Developmental Expression
and Distribution of Ameloblastin and Amelogenin in Rat Incisors. J. Histochem.
Cytochem. 46, 911-934 (1998).

Hubbard, M. J. Calcium transport across the dental enamel epithelium. Crit. Rev. Oral

Biol. {&} Med. 11, 437-466 (2000).

86



57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Sasaki, T. Tracer, cytochemical, and freeze-fracture study on the mechanisms whereby
secretory ameloblasts absorb exogeneous proteins. Cells. Tissues. Organs 118, 23-33
(1984).

Nanci, a., Fortin, M. & Ghitescu, L. Endocytotic functions of ameloblasts and
odontoblasts: immunocytochemical and tracer studies on the uptake of plasma proteins.
Anat. Rec. 245, 219-234 (1996).

Lacruz, R. S. et al. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis,
and related gene activities, are a prominent feature during maturation stage
amelogenesis. J. Bone Miner. Res. 28, 672—-687 (2013).

Devuyst, O. Intra-renal and subcellular distribution of the human chloride channel, CLC-5,
reveals a pathophysiological basis for Dent’s disease. Hum. Mol. Genet. 8, 247-257
(1999).

Lin, Z. et al. Chloride channel (Clc)-5 is necessary for exocytic trafficking of Na+/H+
exchanger 3 (NHE3). J. Biol. Chem. 286, 22833-22845 (2011).

Luyckx, V. A. et al. Intrarenal and subcellular localization of rat CLC5. Am. J. Physiol. -
Ren. Physiol. 275, (1998).

Hara-Chikuma, M., Wang, Y., Guggino, S. E., Guggino, W. B. & Verkman, A. S. Impaired
acidification in early endosomes of CIC-5 deficient proximal tubule. Biochem. Biophys.
Res. Commun. 329, 941-946 (2005).

Duan, X. lon channels, channelopathies, and tooth formation. J. Dent. Res. 93, 117-125
(2014).

Le, T. Q,, Zhang, Y., Li, W. & DenBesten, P. K. The effect of LRAP on enamel organ
epithelial cell differentiation. J. Dent. Res. 86, 1095-1099 (2007).

Shapiro, J. L. et al. Cellular uptake of amelogenin, and its localization to CD63, and
Lamp1-positive vesicles. Cell. Mol. Life Sci. 64, 244—256 (2007).

Devos, D. et al. Components of Coated Vesicles and Nuclear Pore Complexes Share a

87



68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Common Molecular Architecture. PLOS Biol. 2, €380 (2004).

Stirnimann, C. U., Petsalaki, E., Russell, R. B. & Mdller, C. W. WD40 proteins propel
cellular networks. Trends Biochem. Sci. 35, 565-574 (2010).

Good, M. C., Zalatan, J. G. & Lim, W. a. Scaffold proteins: hubs for controlling the flow of
cellular information. Science 332, 680—686 (2011).

Xu, C. & Min, J. Structure and function of WD40 domain proteins. Protein {&} cell 2, 202—
214 (2011).

Nagano, F. F. et al. Rabconnectin-3, a novel protein that binds both GDP/GTP exchange
protein and GTPase-activating protein for Rab3 small G protein family. J. Biol. Chem.
277, 9629-9632 (2002).

Kawabe, H. et al. A novel rabconnectin-3-binding protein that directly binds a GDP/GTP
exchange protein for Rab3A small G protein implicated in Ca(2+)-dependent exocytosis
of neurotransmitter. Genes to Cells 8, 537-546 (2003).

Yan, Y., Denef, N., Schipbach, T. & Schupbach, T. The Vacuolar Proton Pump, V-
ATPase, Is Required for Notch Signaling and Endosomal Trafficking inDrosophila. Dev.
Cell 17, 387-402 (2009).

Sethi, N., Yan, Y., Quek, D., Schupbach, T. & Kang, Y. Rabconnectin-3 is a functional
regulator of mammalian Notch signaling. J. Biol. Chem. 285, 34757-34764 (2010).
Smith, C. E. et al. Effect of kallikrein 4 loss on enamel mineralization: comparison with
mice lacking matrix metalloproteinase 20. J. Biol. Chem. 286, 18149—-60 (2011).

Hu, Y., Hu, J. C. C., Smith, C. E., Bartlett, J. D. & Simmer, J. P. Kallikrein-related
peptidase 4, matrix metalloproteinase 20, and the maturation of murine and porcine
enamel. Eur. J. Oral Sci. 119 Suppl, 217-225 (2011).

Simmer, J. P., Hu, Y., Lertlam, R., Yamakoshi, Y. & Hu, J. C. C. Hypomaturation enamel
defects in Klk4 knockout/LacZ knockin mice. J. Biol. Chem. 284, 19110-19121 (2009).

Zhu, L. et al. Preferential and selective degradation and removal of amelogenin adsorbed

88



79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

on hydroxyapatites by MMP20 and KLK4 in vitro. Front. Physiol. 5, 268 (2014).
Kallenbach, E. Fine structure of rat incisor ameloblasts during enamel maturation. J.
Ultrastruct. Res. 22, 90-119 (1968).

Sasaki, T., Tadokoro, K., Yanagisawa, T., Higashi, S. & Garant, P. R. H+-K+-ATPase
activity in the rat incisor enamel organ during enamel formation. Anat. Rec. 221, 823-833
(1988).

Salama, A. H. A. H., Zaki, A. E. A. E. & Eisenmann, D. R. D. R. Fine structural changes
and lysosomal phosphatase cytochemistry of ameloblasts associated with the transitional
stage of enamel formation in the rat incisor. Dev. Dyn. 190, 279-290 (1991).

Sasaki, T. T. Endocytotic pathways at the ruffled borders of rat maturation ameloblasts.
Histochemie. 80, 263-268 (1984).

Takano, Y. & Ozawa, H. Ultrastructural and cytochemical observations on the alternating
morphologic changes of the ameloblasts at the stage of enamel maturation. Arch. Histol.
Jpn. 43, 385-399 (1980).

Bonifacino, J. S. & Glick, B. S. The Mechanisms of Vesicle Budding and Fusion. Cell 116,
153-166 (2004).

Zhang, Y. et al. SATB1 establishes ameloblast cell polarity and regulates directional
amelogenin secretion for enamel formation. 1-16 (2019).

Goebeler, V., Poeter, M., Zeuschner, D., Gerke, V. & Rescher, U. Annexin A8 Regulates
Late Endosome Organization and Function. Mol. Biol. Cell 19, 5267-5278 (2008).
Goebeler, V., Ruhe, D., Gerke, V. & Rescher, U. Annexin A8 displays unique
phospholipid and F-actin binding properties. FEBS Lett. 580, 2430—-2434 (2006).

Grewal, T. & Enrich, C. Annexins — Modulators of EGF receptor signalling and
trafficking. 21, 847-858 (2009).

Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481-3500 (2011).

Samann, A. C., Wang, S.-K., Hu, J. C. C. & Simmer, J. P. Interactome Analysis of

89



91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

WDR?72 Reveals its Potential Function on Endocytosis. in IJADR 1 (2013).

Loerke, D. et al. Cargo and Dynamin Regulate Clathrin-Coated Pit Maturation. 7, (2009).
Robinson, S. The role of clathrin, adaptors and dynamin in endocytosis. Curr. Opin. Cell
Biol. 6, 538-544 (1994).

Shupliakov, O. et al. Synaptic Vesicle Endocytosis Impaired by Disruption of Dynamin —
SH3 Domain Interactions. 276, 259-264 (1997).

Zhang, C. et al. Endocytosis in Dorsal Root Ganglion Neurons. 42, 225-236 (2004).
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of
progression from early to late endosomes. Cell 122, 735-749 (2005).

Poteryaev, D., Datta, S., Ackema, K., Zerial, M. & Spang, A. Identification of the switch in
early-to-late endosome transition. Cell 141, 497-508 (2010).

Maxfield, F. R. & Yamashiro, D. J. Endosome acidification and the pathways of receptor-
mediated endocytosis. Advances in experimental medicine and biology 225, 189-198
(1987).

Huynh, K. K. & Grinstein, S. Regulation of Vacuolar pH and Its Modulation by Some
Microbial Species. Microbiol. Mol. Biol. Rev. 71, 452—462 (2007).

Jentsch, T. J. T. J. Chloride and the endosomal-lysosomal pathway: emerging roles of
CLC chloride transporters. in Journal of Physiology 633—-640 (2007).
doi:10.1113/jphysiol.2006.124719

Marshansky, V. & Futai, M. The V-type H+-ATPase in vesicular trafficking: targeting,
regulation and function. Curr. Opin. Cell Biol. 20, 415-426 (2008).

Vaccari, T., Duchi, S., Cortese, K., Tacchetti, C. & Bilder, D. The vacuolar ATPase is
required for physiological as well as pathological activation of the Notch receptor.
Development 137, 1825-1832 (2010).

Hunziker, W., Whitney, J. A. & Mellman, |. Brefeldin A and the endocytic pathway

Possible implications for membrane traffic and sorting. FEBS Lett. 307, 93—96 (1992).

90



103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Luzio, J. P., Pryor, P. R. & Bright, N. A. Lysosomes: fusion and function. Nat. Rev. Mol.
Cell Biol. 8, 622—632 (2007).

Gurkan, C. et al. Large-scale profiling of Rab GTPase trafficking networks: the
membrome. Mol. Biol. Cell 16, 3847-3864 (2005).

Nakata, A. et al. Establishment and characterization of a spontaneously immortalized
mouse ameloblast-lineage cell line. Biochem. Biophys. Res. Commun. 308, 834-839
(2003).

Sarkar, J. et al. Comparison of two mouse ameloblast-like cell lines for enamel-specific
gene expression. Front. Physiol. 5, 1-6 (2014).

Wang, S.-K. et al. Critical roles for WDR72 in calcium transport and matrix protein
removal during enamel maturation. Mol. Genet. Genomic Med. 3, 302-319 (2015).
Bampton, E. T. W., Goemans, C. G., Niranjan, D., Mizushima, N. & Tolkovsky, A. M. The
dynamics of autophagy visualized in live cells: from autophagosome formation to fusion
with endo/lysosomes. Autophagy 1, 23—36 (2005).

Razi, M. & Futter, C. E. Distinct roles for Tsg101 and Hrs in multivesicular body formation
and inward vesiculation. Mol. Biol. Cell 17, 3469-3483 (2006).

Steinman, R. M., Mellman, I. S., Muller, W. A. & Cohn, Z. A. Endocytosis and the
recycling of plasma membrane. J. Cell Biol. 96, 1-27 (1983).

Platt, F. M., Boland, B. & van der Spoel, A. C. Lysosomal storage disorders: The cellular
impact of lysosomal dysfunction. J. Cell Biol. 199, 723-734 (2012).

Damkier, H. H. et al. Fluctuations in surface pH of maturing rat incisor enamel are a result
of cycles of H(+)-secretion by ameloblasts and variations in enamel buffer characteristics.
Bone 60, 227-234 (2014).

Takano, Y. et al. A histochemical demonstration of calcium in the maturation stage
enamel organ of rat incisors. Arch. Histol. Cytol. 51, 241-248 (1988).

Bronckers, A. L. J. J., Lyaruu, D. M., Jalali, R. & DenBesten, P. K. Buffering of protons

91



115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

released by mineral formation during amelogenesis in mice. Eur. J. Oral Sci. 124, 415—
425 (2016).

Jalali, R. et al. NBCe1 (SLC4A4) a potential pH regulator in enamel organ cells during
enamel development in the mouse. Cell Tissue Res. (2014). doi:10.1007/s00441-014-
1935-4

Smith, C. E. C. E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral
Biol. {&} Med. 9, 128-161 (1998).

Josephsen, K. et al. lon transporters in secretory and cyclically modulating ameloblasts: a
new hypothesis for cellular control of preeruptive enamel maturation. Am. J. Physiol. Cell
Physiol. 299, C1299--307 (2010).

Johnson, L. et al. V-ATPases Containing a 3 Subunit Play a Direct Role in Enamel
Development in Mice. J. Cell. Biochem. (2017). doi:10.1002/jcb.25986

Merkulova, M. et al. Mapping the H* (V)-ATPase interactome: Identification of proteins
involved in trafficking, folding, assembly and phosphorylation. Sci. Rep. 5, 1-15 (2015).
Bayer, N. et al. Effect of Bafilomycin A1 and Nocodazole on Endocytic Transport in HeLa
Cells: Implications for Viral Uncoating and Infection. JOURNAL OF VIROLOGY 72,
(1998).

Schoumacher, M., Goldman, R. D., Louvard, D. & Vignjevic, D. M. Actin, microtubules,
and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol.
189, 541-556 (2010).

Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nat. Rev.
Mol. Cell Biol. 5, 317-323 (2004).

Gruenberg, J., Griffiths, G. & Howell, K. E. Characterization of the early endosome and
putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J.
Cell Biol. 108, 1301-1316 (1989).

Kannan, M. et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain

92



125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

development and autophagy. Proc. Natl. Acad. Sci. 114, EQ308-E9317 (2017).

Chen, J.-F. et al. Microcephaly disease gene Wdr62 regulates mitotic progression of
embryonic neural stem cells and brain size. (2014). doi:10.1038/ncomms4885

Akita, H. & Kagayama, M. Ultrastructure of mouse incisor ameloblasts after vascular
perfusion with colchicine. Cell Tissue Res. 239, 567-574 (1985).

Schwarz, D. S. & Blower, M. D. The endoplasmic reticulum: Structure, function and
response to cellular signaling. Cell. Mol. Life Sci. 73, 79-94 (2016).

Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis.
Nature 464, 243—-249 (2010).

Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial
restraints. J. Mol. Biol. 234, 779-815 (1993).

Zemla, A., Venclovas, Moult, J. & Fidelis, K. Processing and evaluation of predictions in
CASP4. Proteins Suppl 5, 13—21 (2001).

Mariani, V., Kiefer, F., Schmidt, T., Haas, J. & Schwede, T. Assessment of template
based protein structure predictions in CASP9. Proteins 79 Suppl 1, 37-58 (2011).
Yang, Z. et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J.
Struct. Biol. 179, 269-278 (2012).

Li, W., Mathews, C., Gao, C. & DenBesten, P. K. Identification of two additional exons at
the 3’ end of the amelogenin gene. Arch. Oral Biol. 43, 497-504 (1998).

Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with imageJ.
Biophotonics Int. 11, 36—41 (2004).

Rasband, W. S. ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA
Available at: https://imagej.nih.gov/ij/.

Schneider, C. A, Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
image analysis. Nature Methods 9, 671-675 (2012).

Koressaar, T. & Remm, M. Enhancements and modifications of primer design program

93



138.

139.

140.

Primer3. Bioinformatics 23, 1289-1291 (2007).

Untergasser, A. et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 40,
e115--e115 (2012).

Thomsen, R. R., Saglvsten, C. A. E. C. A, Linnet, T. E. T. E., Blechingberg, J. J. &
Nielsen, A. L. A. L. Analysis of gPCR data by converting exponentially related Ct values
into linearly related X0 values. J. Bioinform. Comput. Biol. 8, 885-900 (2010).

Svensson Bonde, J. & Bulow, L. One-step purification of recombinant human amelogenin

and use of amelogenin as a fusion partner. PLoS One 7, (2012).

94



LIBRARY RELEASE PAGE

Publishing Agreement

1t is the policy of the University to encourage the distribution of all theses,
dissertations, and manuscripts. Copies of all UCSF theses, dissertations, and
manuscripts will be routed to the library via the Graduate Division. The library will
make all theses, dissertations, and manuscripts accessible to the public and will
preserve these to the best of their abilities, in perpetuity.

Please sign the following statement:

I hereby grant permission to the Graduate Division of the University of California, San
Francisco to release copies of my thesis, dissertation, or manuscript to the Campus
Library to provide access and preservation, in whole or in part, in perpetuity.

——DocuSigned by:

Latilin, katsuwra 12/8/2019

—76E4CC1E78714AB... Author Signature Date

95





